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Introduction 

 

 Upon studying the modern theories of electricity, I have been led to write this new article on 

relative integral invariants. 

 By adopting Goursat’s notations, I shall establish (no. 1) a relationship between the operations 

D and E, which is a relationship from which I will immediately deduce (*) an extension of a 

theorem by Hargreaves. 

 The main goal of this article is to find some procedures that will allow one to deduce from an 

absolute or relative integral invariant Jp for the system: 

 

  i

i

dx

X
 = dt ,  i = 1, …, n, 

 

an absolute or relative invariant 
pJ   for the transformed systems: 

 

i

i

dz

Z
 = du , 

 

in which z1, …, zn represent the new dependent variables and u is the new independent variable. 

The solution to that problem is given completely in nos. 2 and 3. A first application to the equations 

of the ether and electric charge is developed in no. 4. I have added (no. 5) some bibliographic 

citations concerning my recent research into the generalized canonical equations in no. 2 of MI. 

Finally, after pointing out a theorem that relates to second-order differential equations (no. 6), I 

shall apply the preceding developments to the equations of motion of a corpuscle in an 

electromagnetic field. 

 
 (*) A somewhat-less general extension was given in my first article “Sur les invariants intégraux relatifs,” Bull. 

Acad. roy. Belgique, classe de sci. 1 (1909), 66-83. I shall denote that article by MI here. 
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1. – The operations D and E. 

 

 Definitions. – Consider the system of n differential equations: 

 

()       i

i

dz

Z
 du ,  i = 1, …, n, 

and a p-uple integral form: 

  Jp  
1 1

1

S
p p

p

i i i i
i i

N z z    p  n 

 

in which the 
1 pi iN  are functions of z1, …, zn, and u. 

 The operation D, when applied to Jp, consists of symbolically differentiating Jp in such a 

manner as to deduce a (p + 1)-uple integral form that is equal to: 

 

 DJp  
1

1 1
1 1

1

S S p

p p
p p

p

i i

i i i
i i i

i

N
z z z

z
  

+
+

+




 

 
1 1 2 1 1 1

1 1
1 1

1 1

S p p p p p

p
p

p p

i i i i i i i i

i i
i i

i i i

N N N
z z

z z z
 + − +

+
+

+

   
 − − −
   
 

. 

 

 We recall that 
1

S
pi i
 indicates a summation that extends over all combinations of 1, …, n taken 

p at a time. It is good to remark that one sets u  0 in the operation D, i.e., that the variation  of 

the independent variable is zero. In order to avoid any confusion in this topic, we shall often write 

pD J , instead of DJp, in which the exponent  serves to remind us that we are dealing with the 

system (), i.e., a system with the independent variable u. 

 The operation E, when applied to Jp, consists of replacing the 
1p iz , …, 

pp iz  that appear in 

the last row of each of the determinants: 

Jp  

1

1
1

1

1 1

S
p

p
p

p

i i

i i
i i

p i p i

z z

N

z z

 

 

 

 

with 
1i

Z , …, 
pi

Z , respectively. One will then obtain a (p – 1)-uple integral form that is equal to: 

 

EJp   
1 1 1

1 1

S S
p p p

p p

i i i i i
i i i

N Z z z 
−

−

. 

 

 We often write 
pE J , instead of EJp . 
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 Fundamental relation. – If the operation D is applied to Jp and followed by the application of 

the operation E to DJp then that will give a p-uple integral form that we will denote by EDJp. If we 

permute those two operations then we will generally get another integral form that we will denote 

by DEJp. We verify that if the coefficients of Jp do not include u explicitly then we will have the 

fundamental formula: 

EDJp + DEJp = p

d
J

du
, 

in which: 

  
d

du
  

1

n

i

i i

Z
t z=

 
+

 
   (see no. 1 of MI). 

 

 One can infer some remarkable consequences from that relation. 

 If Jp is an absolute invariant of () then one will recover a relation that Goursat encountered 

(*). If Jp is a relative integral invariant of () such that: 

 

p

d
J

du
 = D Wp−1 , 

 

in which Wp−1 is a (p – 1)-uple integral form, and if the Zi do not include n explicitly, in addition, 

then one will have: 

D (E Jp – Wp−1) = − E DJp . 

 

Now, H. Poincaré’s theory of integral invariants teaches us that DJp, as well as EDJp, are absolute 

invariants of () and that consequently: 

E Jp – Wp−1 

 

will be a (p – 1)-uple relative integral invariant of (). We verify, in addition, that by virtue of 

equations (), we will have: 

d

du
(E Jp – Wp−1) = − D E Wp−1 . 

 

This important result is equivalent to the following generalization of Hargreaves’s theorem: 

 

 Extension of Hargreaves’s theorem: 

 

 Consider the system: 

(I)  i

i

dx

X
 = dt ,  i = 1, …, n, 

 

 
 (*) E. Goursat, “Sur les invariants intégraux,” J. math. pures appl. (6) 4 (1908), 331-365, see esp. pp. 347. 
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in which Xi are functions of x1, …, xn, and the independent variable t. 

 Suppose that: 

  I

pJ   
1 1

1

S
p p

p

i i i i
i i

N z z    p  n 

 

is a relative invariant of (I) whose coefficients can include t explicitly, and suppose that one has: 

 

I

p

d
J

dt
  

1 1 1 1
1 1

S
p p

p

i i i i
i i

D W z z 
− −

−

 

by virtue of equations (I). 

 It results from those hypotheses that: 

 

II

1pJ +
  

1 1
1

S
p p

p

i i i i
i i

N x x t    

 

will be a (p + 1)-uple relative invariant of the system: 

 

(II)  i

i

dx

X
 = 

1

dt
 = d , 

 

in which  is the independent variable ( = 0), and one will have: 

 

II

1p

d
J

dt
+   −

1 1 1 1
1 1

II S
p p

p

i i i i
i i

D W x x t  
− −

−

 

by virtue of equations (II). 

 It will then result that: 

II

pJ   
1 1 1 1

1 1

II II

1 S
p p

p

p i i i i
i i

E J W x x t  
− −

−

+ +  

 

is a relative invariant of (II) and that: 

 

II

p

d
J

d
  

1 1 1 1
1 1

II II S
p p

p

i i i i
i i

D E W x x t  
− −

−

. 

 

 That is Hargreaves’s theorem. One notes the analogy between this proof and the one in no. 3 

of MI that relates to absolute integral invariants. 

 

 

2. – Change of dependent variables. 

 

 Notations. – In equations (I), we replace the n dependent variables x with n new dependent 

variables y that are defined by the equations: 
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yi = yi (x1, …, xn, t) . 

 

When those equations are solved for x, that will give: 

 

xi = xi (y1, …, yn, t) . 

 The system (I) becomes: 

(I) i

i

dy

Y
 = dt ,   i = 1, …, n, 

in which: 

Yi  
1

n
i i

k

k k

y y
X

x t=

  
+ 

  
  . 

 

The brackets always serve as a reminder that one has replaced the x as functions of the y and t 

here. Thus: 

[xi]  xi (y1, …, yn, t) , 

and similarly: 

[ (x, t)]   (y, t) . 

 

 Recall that in the theory of integral invariants, one has (*): 

 

i

d
x

dt
  = idx

dt
 . 

 Finally, we set: 

X f  
1

n

i

i i

f f
X

t x=

 
+

 
 , 

Yg  
1

n

i

i i

g g
Y

t y=

 
+

 
 . 

 

 Identities. – Regardless of the function  of the x and t, one will have the following identities: 

 

  [X ]  Y [] , 

  []  Y [] , 

  [ X ]   Y [] . 

 In particular, one will have: 

  [X xi]  Y [xi] , 

  [xi]  Y [xi] , 

  [ X xi]   Y [xi] .  

 

 Those identities can be deduced from the formula from differential calculus: 

 
 (*) See no. 4 of my “Étude sur les invariants intégraux,” Rend. circ. mat. di Palermo 15 (1901). 
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1

n

i

i i

Dx Dt
x t

 

=

 
+

 
  = 

1

[ ] [ ]n

i

i i

Dy Dt
y t

 

=

 
+

 
 , 

 

in which Dxi, Dt are arbitrary infinitely-small increments that are given to xi and t. 

 

 Theorem: 

 

 If Jp and Wp are two integral forms such that one has: 

 

X Jp = Wp 

then one will have: 

Y [Jp] = [Wp] . 

 

 That theorem results from the preceding identities. 

 In particular, if Jp is a relative invariant of (I) such that one has: 

 

X Jp = 1

1pD W −
 

then one will have: 

 Y [Jp] = 1

1[ ]pD W −
 = 1

1[ ]pD W


−
 . 

 

 Point transformation that is generated by equations (I). – Let: 

 

  i (x, t) = i (y, u) ,   i = 1, …, n, 

 

in which the right-hand side is deduced from the left-hand side by replacing x with y and t with u. 

We then infer that: 

yi = i (x, t, u) . 

 

 We say that this point transformation is generated by equations (I). If we consider u to be 

constant, i.e., if du / dt  0, then the yi will be invariants of (I). Indeed, from the system: 

 

i (y, u) = i , 

we infer that: 

yi = i (, u) . 

Q. E. D.  

 

 The transformed equations (I) will then become: 

 

  
0

idy
 = dt ,   i = 1, …, n. 
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 To fix ideas, consider a relative invariant: 

 

J1 = i i

i

N x  

 

such that X J1 = D K. From the change of variables, Y [J1] = D [K] , and if we set [J1] = i i

i

N y  

then we will find that: 

iN

t




  

[ ]

i

K

y




. 

 

 In addition to those relations, one will have the following relation from the calculus of 

variations: 

( , ) ( , )i i i i

i i

N x t x N y t y −   = ( , )

t

u

K x t dt  . 

 

The integral that appears on the right-hand side is extended over a trajectory of (I). Those 

trajectories are defined by the equations: 

 

i (x, y) = i (y, u) , 

when they are solved for the x. 

 

 

3. – Change of the independent variable. 

 

 Systems of differential equations. – Once more, consider the proposed system: 

 

(I)       i

i

dx

X
 = dt ,   i = 1, …, n. 

 

 Since the independent variable is t, one will have  t = 0. 

 After adding another variable t, that system will become: 

 

(II)  i

i

dx

X
 = 

1

dt
 = d . 

 

 The independent variable here is  ; one will then have   = 0. 

 Replace the variables x and t with the new variables y and u. The system will become: 

 

(III) i

i

dy

Y
 = 

du

U
 = d . 
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 The independent variable is once more  ; one will again have   = 0. 

 Divide both sides of (III) by U and introduce a new independent variable . One will have: 

 

(IV) 
/

i

i

dy

Y U
 = 

1

du
 = d . 

 

 Since the independent variable is , one will again have   = 0. 

 Finally, by analogy with the system (I), consider the system: 

 

(V)  
/

i

i

dy

Y U
 = du . 

 

 Since the independent variable is u, one will again have u = 0. 

 

 Problem. – If one knows an absolute or relative integral invariant I

pJ  of the system (I) then 

deduce some p-uple relative invariants of the system (II), (III), (V). 

 

 In no. 1 of this article, we showed how we can deduce a relative invariant II

pJ  for (II) from I .pJ  

In no. 2, we then showed how we could deduce a relative invariant III

pJ  for (III) from II

pJ . It remains 

for us to solve the last part of the problem that was posed. We proceed as follows: Deduce II

1pJ +
 

from I

pJ , in the way that was explained at the and of no. 1. Then deduce III

1pJ +
 from II

1pJ +
 in the 

way that was explained in no. 2. Suppose that we have: 

 

III

1III p

d
J

du

+  = III III

pD V  

 

by virtue of equations (III), in which the index III on du serves to remind us that we are dealing 

with the system (III) here, and III

pV  represents a p-uple integral form. We will then get the relative 

invariant V

pJ  of the system (V) by setting: 

 
V

pJ   III III III

1 0( )p p uE J V + =− . 

 

The subscript u = 0 signifies that one must replace the u in the p-uple integral form that enters 

into the parentheses with zero. In addition, the reader will verify that: 

 

V

V

p

d
J

du
 = − V IV III

0( )p uD E V  =
. 
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In the left-hand side, the subscript V on du signifies that the derivative d / du must be taken with 

respect to the system (V). In the right-hand side, one must perform the operation VD  on the integral 

form that is obtained by replacing u with zero in IV III

pE V . The problem that was posed is then 

solved completely. 

 

 

4. – Equations of the ether and electric charge. 

 

 Equations. – When one adopts the notations of H.-A. Lorentz (*), the equations of the ether 

and electric charge can be written: 

 

(A)       div d =  , 

 

(B)  div h = 0 , 

 

(C)  rot h = 
1

c
(d +  v) , 

(D)  rot d = 
1

c
 h . 

 

 The coordinate axes x, y, z are rectangular and right-handed. The vector d is called the electric 

displacement. The vector h represents the magnetic force. The scalar quantity  is the volume 

density of electricity. The vector v represents the velocity of the point x, y, z at the instant t. The 

speed of light in the ether (with no electric charge) is denoted by c. The three components of a 

vector will be denoted by the letter that represents the vector when it is endowed with a subscript 

x, y, or z. Finally, one sets: 

div d  
yx z

dd d

x y z

 
+ +

  
, 

 

and similarly for div h. The vector rot h has the components: 

 

yz
hh

y z


−

 
, x z

h h

z x

 
−

 
, 

y x
h h

x y

 
−

 
, 

 

and similarly for rot d. Finally, d  is a vector whose components are: 

xd

t




, 

yd

t




, zd

t




,  

and similarly for h . 

 
 (*) H.-A. Lorentz, The theory of electrons and its applications to the phenomena of light and radiant heat, Leipzig, 

1909. (See esp., pps. 3 and 12.) 
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 The two integral forms of Hargreaves. – In my MI, I drew attention to the two integral forms 

that were first studied by Hargreaves. Here, those forms will be written: 

 

   J2  S (dx y z + c hx t x) , 

2  S (hx y z − c dx t x) , 

 

in which the symbol S will serve to remind us that we are dealing with integral forms and will 

indicate, in addition, that we must perform a summation that extends over all cyclic permutations 

of x, y, z. 

 Those integrals forms enjoy the following property: 

 

 The necessary and sufficient conditions for the symbolic differential to be: 

 

DJ2 =  dx dy dz – S vx dy dz dt 

 

are nothing but equations (A) and (C). 

 The necessary and sufficient conditions for the symbolic differential to be: 

 

D 2 = 0 

are nothing but equations (B) and (D). 

 

 That property was utilized to good effect by Bateman (*) in order to study the changes of 

variables x, y, z, and t that leave the form of equations (A), (B), (C), and (D) invariant. I propose 

to recall that question later on when I appeal to differential parameters. 

 

 Change of variables x, y, z, and t. – The equations: 

 

(I)  
x

dx

v
 = 

y

dy

v
 = 

z

dz

v
 = dt 

 

define the trajectories. It results from equations (A), …, (D) (**) that equations (I) will possess the 

3-uple absolute integral invariant: 
I

3I   S  x y z . 

 

 The system (II) of no. 3 will become: 

 

 
 (*) H. Bateman, “The transformation of the electrodynamical equations,” Proc. London Math. Soc. (2) 8 (1910), 

223-264. 

 (**) H. A. Lorentz, loc. cit., see pp. 232. 
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(II)  
x

dx

v
 = 

y

dy

v
 = 

z

dz

v
 = 

1

dt
 = d . 

 

Those equations define the trajectories in space-time. They admit the absolute invariants: 

 

  II

4I   S  x y z t , 

II

5I   II II

4E I  =  x y z − S vx y z t . 

 

They will also admit the relative invariant J2, which we will denote by II

2J  here. We have seen that 

II II

2D J  = II

3I . It will then result that II

3I  is invariant, it is an exact differential, and II II

3E I = 0. In 

addition, we know that: 
II

2dJ

d
 = IID S (c hx + vz dx − vz dx) (vx t – x) . 

 

 Now, perform a change of the variables x, y, z, and t ; call the new variables x , y , z , t . No. 

2 of this article showed use how to use the invariants of (II) in order to deduce the invariants of a 

new system that we write as follows: 

 

(III) 
x

dx

v 


 = 

y

dy

v 


 = 

z

dz

v 


 = 

t

dt

v 


 = d . 

 

 Finally, if we would like to make t  play a role that is analogous to that of t then we will have 

to consider the system: 

(V) [sic] 
/x t

dx

v v 


 = 

/y t

dy

v v 


 = 

/z t

dz

v v 


 = dt , 

 

whose absolute integral invariant will be, by virtue of no. 3: 

 

V

3I   
( , , , )

( , , , )
S t

x y z t
v x y z

x y z t
   


  

   
. 

 

 If the x , y , z , t  are defined by the famous Voigt-H.-A. Lorentz transformation (*): 

 

 
 (*) W. Voigt, “Ueber das Doppler’sche Princip,” Gött. Nachr. (1887). – H.-A. Lorentz, loc. cit., (See pps. 197 and 

198.) 
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2

( ) ,

,

,

( )

x k l x wt

y l y

z l z

w
t k l t x

c

 = −
  =


 =

  = −


 

then we will find that: 

V

3I   
3 2

(1 )S x

k w
v x y z

l c
     − , 

which will lead us to set: 

V  
2 3

(1 )x

w k
v

c l
 − , 

 

which is a result that agrees perfectly with that of H. Poincaré (*). One knows that Lorentz had 

set    
3/ kl (loc. cit., pp. 197). One sees that   is not a multiplier of (V), but of the system 

(III). Some other divergences can be explained in the same way by means of the systems (I), (II), 

(III), and (V). 

 

 

5. – Generalized canonical equations. 

 

 Complements. – In my article MI, I showed that when one starts from a relative integral 

invariant of a given form, one will immediately find a system of differential equations that can be 

considered to be a generalization of Hamilton’s canonical equations. Since then, I have advanced 

that study: In two recent notes (**), I have especially studied the generalized canonical equations: 

 

  i

ki

k k

dx

H

x










 = dt   i, k = 1, …, 2m 

 

that are deduced from the relative invariant J  
2

1

m

i i

i

N x
=

 , and I have shown how one can deduce 

some other invariants from an invariant of a system of differential equations when one knows a 

differential parameter that is attached to a multilinear form and is invariant with respect to those 

differential equations. That generalization points to the deeper meaning of Poisson’s theorem. 

Vergne (C. R. Acad. Sci. Paris, 25 April 1910) has partially outlined it thanks to the theory of 

contact transformations (***). 

 
 (*) H. Poincaré, “Sur la dynamique de electron,” Rend. circ. Palermo 21 (1906). (See pp. 133.) 

 (**) Th. De Donder, “Généralisation du théorie de Poisson,” C. R. Acad. Sci. Paris, 8 March 1909. – “Sur le 

théorie de Poisson et sur les invariants différentiels,” C. R. Acad. Sci. Paris, 1 August 1910. 

 (***) A more-extensive article by Vergne will appear soon in the Annales de l’École normale supérieure de Paris 

and will treat the theory of integral invariants, in addition. 
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 In another article (*), I have used the integral invariant: 

 

  j = 
1

n

i i

i

N x 
=

 ,   l = 1, …, r  n, 

 

 in which 
iN  are some functions of r independent variables t1, …, tr, the n dependent variables x1, 

…, xn, and the partial derivatives 
ix   dxi / dt , in order to deduce the Hamilton-Volterra canonical 

equations, and I have made a deep study of those equations. 

 Let me make one last remark: One knows that the differential form in the 2m variables x1, …, 

x2m can be identified with another differential form 
1

m

k k

k

y z
=

 , which includes at least m terms, in 

general. The yk and zk are then 2m distinct functions of the x. 

 That reduction bears the name of the Pfaff problem. An analogous problem presents itself for 

integral forms. One knows that the relative invariant 
1

m

k k

k

y z
=

  that has the reduced or canonical 

Pfaff form plays an essential role in the classical theory of canonical equations. The same thing 

will be true for the p-uple relative invariant when it is put into the reduced form as it relates to the 

generalization of the canonical equations. That will be the subject of another article. 

 

 

6. – Second-order differential equations. 

 

 Notations. – The n second-order differential equations: 

 

  
2

2

id x

dt
 = , ,i

dx
x t

dt


 
 
 

   i = 1, …, n 

 

are equivalent to 2n first-order equations: 

 

(VI)     i

i

dx

x
 = 

( , , )

i

i

dx

x x t




 = dt ,  i = 1, …, n. 

 

 Now consider a system of n first-order equations: 

 

(VII) 
( , )

i

i

dx

x x t
 = dt , 

 

 
 (*) “Sur les équations canoniques de Hamilton-Volterra,” Mémoires in-4o de l’Acad. roy. de Belgique [classe des 

sciences], t. III). 
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in which the ( , )ix x t  are functions of the x and t, such that one will have, by virtue of equations 

(VI): 

( , )idx x t

dt


  ( , , )i x x t  , 

 

after having replaced the x  with their expressions in terms of x and t in the right-hand side. Finally, 

set: 

 f  
1 1

n n

i i

i ii i

f f f
x

x x t


= =

  
 + +

  
  , 

   g  
1

( , )
n

i

i i

g g
x x t

x t=

 
 +

 
 , 

 

which represent the infinitesimal transformations (VI) and (VII). 

 The operation consists of replacing the ix  with functions of x and t that satisfy the preceding 

relations /idx dt  = i , and it will be denoted by { }. Thus: 

 

{ }ix   ( , )ix x t  

and 

{ ( , , )}x x t    ( , ( , ), )x x x t t   . 

 

 Identities. – Regardless of the function ( , , )x x t  , one will have the identities: 

 

  { }   {} , 

 {}  { } , 

{  }   {} . 

 

 In the second identity, one has, explicitly: 

 

{ }
i

i i

x
x







   i i

i ii i

x x
x x

 
 

  
+ 

  
   . 

 

That identity will persist for any functions ( , )ix x t . 

 

 Theorem: 

 

 If Jp is a p-uple integral form such that: 

 

 Jp = Kp , 
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in which Kp is also an integral form, then one will have: 

 

 Jp} = {Kp}. 

 

 In particular, if Jp is a relative invariant of (VI) such that one has: 

 

 Jp = VI

1pD K −
 

then one will have: 

 Jp} = VII

1{ }pD K −
 . 

 Conversely, if: 

VIIIJ  = 
1

( , )n

i

i i

x t
x

x




=




  

is a relative invariant of: 

 

(VIII)      
( , )

i

i

dx

x x t
 = dt ,   i = 1, …, n, 

 

in which ix  are arbitrary functions of x and t, and if one has: 

 
VIIIdJ

dt
 =  Q (x, t) 

then I say that: 

IXJ  = 
1

( , )n

i

i i

x t
x

x




=




  

is also a relative invariant of: 

(IX)     
( , , )

i i

i i

dx dx

x x x t


−

 
 = dt ,   i = 1, …, n, 

 

in which the ( , , )i x x t   are inferred from: 

 
2 2

1

( , ) ( , )
( , , )

n

k

i i k i

x t x t
x x t

x x x t

 


=

  
 +

     
  = 

( , )

i

S x t

x




, 

in which: 

S (x, t)  Q (x, t) − ( , )x t  , 

and one: 

ix   ( , )ix x t  

 

in only that function S. By virtue of equations (IX), one will have: 
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IXdJ

dt
 =  (S (x, t) + ( , )x t  ) . 

 In particular, if: 

 = 21
2

1

n

i

i

x
=

 , 

one will have: 

J  
1

n

i i

i

x x
=

 , 

 

which is an integral invariant that plays a fundamental role in the theory of vortices. Thus: 

 

i = 
( , )

i

S x t

x




 

and 

dJ

dt
 = 21

2
( , ) i

i

S x t x
 

+ 
 

  . 

 

 

7. – Application to superimposed electric and magnetic fields. 

 

 Problem. – Find the equations (VI) that possess the relative invariant: 

 
VIJ  = i i

i

x x U W  − , 

 

in which U and W are two functions of x1, …, xn that are invariant in such a way that one will have: 

 
VIdJ

dt
=  K , 

by virtue of equations (VI). 

 Upon introducing the auxiliary function: 

 

S  i

i i

W
K U x

x


+


  

 

in the course of calculation, one will easily find that in equations (VI), one will have: 

 

( , , )i x x t   = − 
1

( , ) ( , )

( , )

n

k

ki i k

V x t U W
x

x x x=

 
−

 
 , 

and that: 
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K = 21
2 i i

i i i

W
x V U x

x


 − −


  , 

 

in which V (x, t) is an arbitrary function. 

 Equations (VI) are equivalent to the system: 

 

(IV)    
2

2

id x

dt
 = − 

1

( , ) ( , )

( , )

n
k

ki i j

dxV x t U W

x x x dt=

 
−

 
 , i = 1, …, n. 

 

 Equations of motion of a corpuscle. – The motion of a corpuscle (x, y, z) of mass m and 

charge e in an electric and magnetic field is governed by the equation (*): 

 
2

2

d x
m

dt
 = − 

V dz dy
e e Y Z

x dt dt

  
+ − 

  
, 

 

and two others that are deduced from it by cyclic permutation. The components of the magnetic 

force (X, Y, Z) satisfy the condition: 

X Y Z

x y z

  
+ +

  
 = 0 . 

 

C. Störmer (**) has remarked that one can write the equations of motion of the corpuscle in the 

form (VI). Those equations will then admit the relative invariant: 

 

VIJ  = 
1

n

i i

i i

W
x U x

x


=

 
 − 

 
  , 

 

and can be immediately written in the canonical form if one sets: 

 

yi = i

i

W
x U

x


 −


, 

 

while preserving the other n dependent variables xi . After that change of dependent variables (no. 

2), the transform will again admit the relative invariant J = 
1

n

i i

i

y x
=

 , with dJ / dt =  [K]. Upon 

setting H = i ii
y x K  −  , the equations of motion will become: 

 

 
 (*) P. Appell, Traité de mécanique rationelle, 3rd ed., 1909. (See pp. 368).  

 (**) C. Störmer, C. R. Acad. Sci. Paris 12 and 26 September 1910. 
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  i

i

dx

H

y





 = i

i

dx

H

y


−



 = dt ,   i = 1, …, n. 

One will easily see that: 

H = 

2

1
2 i

i i

W
y U V

x

 
+ + 

 
 . 

 

 Störmer obtained that reduction in the last of his cited notes. 

 That result can be generalized by considering the equations that admit the relative invariant: 

 

J = 
( , )

i

i i

x t
x U W

x
 




 


−


   . 

 In particular, if: 

( , )x t   = ik i k

i k

m x x   , 

with: 

mik = mki and  = 1 

 

then one will find a canonical system for which the characteristic function is: 
 

H = 1
2 ik i k

i k i k

W W
y U y U V

x x


   
+ + +  

   
 , 

 

in which ik represents the algebraic minor Mik in the determinant m of mik when that minor Mik is 

divided by m. Störmer (*) wrote Mik in the expression for H, but it should be ik . 

 No. 6 of this article applies immediately to the foregoing. The functions ( , )ix x t  define a vector 

field for the corpuscle. In the study of that field, the invariant {J} plays the same role that the 

invariant 
i ii

x x  does in hydrodynamics. The vorticity vector will have components here that 

are one-half of: 

( , )

( , )

i k

k i k i

x x U W

x x x x

   
− −

  
. 

 

Meanwhile, there is one difference: In hydrodynamics, the fluid particles exist simultaneously, 

whereas in the velocity field of corpuscles, they form only lines, surfaces, or volumes whose 

existence is fictitious. As one knows, the same procedure is employed in the study of the electric 

field by means of the potential function. 

2 December 1910.  

 

___________ 

 
 (*) Störmer gave the meaning of Mik in which note on 2 March 1908. (C. R. Acad. Sci. Paris.) 


