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FOREWORD 
 

 1. – The goal of the modern methods of the resistance of materials is to answer two of 
the most important questions of that branch of applied mechanics: The determination of 
the elastic and caloric deformations, and the calculation of the constraint forces in the 
pieces and hyperstatic systems of pieces. 
 These methods, which are based upon the theorems of vis viva and virtual work, are 
entirely general.  They apply uniformly to all cases that might present themselves.  They 
offer the advantages over the old geometric and kinematic methods of being a more rapid 
application and that they do not necessitate the introduction of auxiliary unknowns into 
the calculations whose elimination is often laborious. 
 Meanwhile, they are not very widely known in France, where, among the numerous 
didactic works on the resistance of materials, there are, to our knowledge, only four that 
mention the modern methods with developments that are thorough to varying degrees. 
 
 The treatise on Statique graphique by Maurice Levy (Part IV, 1886, Note I) contains 
an outline of the method of General Menabrea and that of Mohr for calculating the efforts 
in articulated systems with redundant bars. 
 The French translation (1901) by Hahn of Föppl’s Résistance des matériaux presents 
Castigliano’s general method for determining elastic displacements and forces of 
redundant constraints in the pieces and systems of pieces with mean fibers. 
 The book by Ernst Flamard that is entitled Calcul des systèmes élastiques de la 
Construction (1918), reviews Castigliano’s method and makes numerous and varied 
applications to straight beams, arches, and articulated systems. 
 Finally, the Cours de Mécanique professé à l’École Polytechnique by Léon Lecornu 
(t. III, 1918) gives the general equation for the elasticity of constructions, as well as 
Castigliano’s method, with applications to various hyperstatic systems. 
 
 Furthermore, it seems useful to us to present a discussion of the diverse collection of 
modern methods here, which would be a discussion that we are forced to make as simple 
as possible while striving to highlight the close links that unite those methods.  In the 
name of this second order of business, we shall show that taking caloric deformations 
into account, which has been accomplished only by means of the theorem of virtual work 
up to now, can also be achieved by applying the vis viva theorem.  We shall likewise 
establish that the latter theorem can permit one to prove the beautiful theorem of Betti, 
Boussinesq, and Maurice Levy just as well, and more simply. 
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 It seems interesting to me to appeal to the mathematical theory of elasticity in order to 
shed some light upon the path along which we believe that the research of scholars in 
regard to that theory must be directed, in view of permitting the extension of the modern 
methods to system of isotropic bodies and to thus liberate the calculation of constructions 
from the hypotheses of the resistance of materials.  However, one cannot hide the fact 
that such research is extremely tedious, due to some difficulties that are presented by the 
integration of the partial differential equations of the mathematical theory of elasticity. 
 The methods that are based upon the vis viva theorem have their origins in the paper 
by Clapeyron on the work done by elastic forces (1858) (1) and in that of General 
Menabrea that was entitled “Principe général pour déterminer les pressions et les tensions 
dans un système élastique,” (1868) (2).  The first application of the theorem of virtual 
work to the study of elastic deformations was made by Mohr in the context of articulated 
systems with the title “Beitrag zur Theorie des Bogenfachwerksträger (1874) (3). 
 Since then, these methods have been the goal of the research of numerous scholars 
and engineers.  One will find a very complete history of that, accompanied by detailed 
bibliographic references, in the doctoral thesis that Ernest Flamard presented to the 
Science Faculty at Nancy in 1914 (4). 
 
 

__________ 

                                                
 (1) Comptes rendus de l’Académie des Sciences, t. XLVI, pp. 208. – See also LAMÉ, Leçons sur la 
Théorie mathématique de l’Élasticité des corps solides (1866): Théorème de Clapeyron, pp. 80. 
 (2) See also a note that General Menabrea read at the session of the Academy of Sciences on 31 May 
1858 (Comptes rendus, t. XLVI, pp. 1056).  
 (3) Zeitschrift der Architekten- und Ingenieur-Vereins zu Hannover (1874), pp. 223. 
 (4) Ernest FLAMARD, Inspector of metallic constructions for the railroad company of Orléans, Étude 
sur les Méthodes nouvelles de la Statique des constructions. 
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CHAPTER I 
 

REVIEW OF SOME NOTIONS FROM  
THE MATHEMATICAL THEORY OF ELASTICITY 

AND THE RESISTANCE OF MATERIALS  
 
 

2. – Elastic forces in the mathematical theory of elasticity 
 
 Consider an elastic solid body that is in equilibrium under the action of a system of 
external forces. 
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Figure 1. 

 
 Let (Fig. 1): 
 
 A be an arbitrary point of the body 
 
 x, y, z be the rectangular coordinates of that point before deforming the body 

 
dx, dy, dz be the lengths of the edges (measured before deformation) of an 

infinitely-small parallelepiped that is taken in the body with A for one 
of its summits. 

 
 nx , txy , txz , tyx , ny , tyz , tzx , tzy , nz  
 

be the components of the elastic forces per unit area that are parallel to 
the axes on the three faces of the parallelepiped that have the point A 
for their common summit and are normal to Ox, Oy, Oz, respectively. 
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 In order to specify the signs of these components, we consider the elastic forces to be 
the actions that are exerted by the parts of the body that are situated outside the 
parallelepiped upon the ones that are situated inside the body, and we agree to measure 
them as positive when they have the positive sense of the axes. 
 Following the convention that has been adopted by engineers, we say that n and t are 
the normal fatigue and tangential fatigue, respectively, on three planar elements that are 
mutually rectangular before deformation and drawn through the point A.  From that 
convention, an element will be subject to compression or traction according to whether 
the normal fatigue on that element is positive or negative, resp. 
 One knows that the tangential fatigues on two mutually-rectangular elements, which 
are directed normally to the intersections of those elements, are equal to each other; i.e., 
one has: 

tzy = tyz , txz = tzx , tyx = txy , 
 
which will reduce the number of unknown fatigues on the three rectangular elements 
considered from nine to six. 
 
 

3. – Elastic deformation parameters of an isotropic body 
 
 Letting u, v, w be the components parallel to the axes of the elastic displacement of 
the point A (x, y, z).  The six quantities: 
 

εx = − 
u

x

∂
∂

, εy = − 
v

y

∂
∂

, εz = − 
w

z

∂
∂

, 

 

γyz = − 
w v

y z

 ∂ ∂+ ∂ ∂ 
, γyx = − 

u w

z x

∂ ∂ + ∂ ∂ 
, γxy = − 

v u

x y

 ∂ ∂+ ∂ ∂ 
 

 
define the elastic deformation of the parallelepiped.  We shall call them the elastic 
deformation parameters. 
 εx , εy , εz are the contractions that are felt by the edges dx, dy, dz, resp., of the 
parallelepiped, when referred to the initial lengths of those edges.  According to whether 
the value of ε that corresponds to an edge is positive or negative, there will actually be a 
contraction or elongation, resp., of that edge. 
 γyz , γzx , γxy are the increases that are felt by the right angles that the edges dy and dz, 
dz and dx, dx and dy, resp., defined with each other before deformation.  According to 
whether the value of γ that corresponds to one of those angles is positive or negative, 
there will actually be an increase or decrease, resp., in the angle considered.  The γ bear 
the name of shears or distortions. 
 The six normal and tangential fatigues are expressed as functions of the six elastic 
deformation parameters by way of the formulas: 
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(1)    

( ) 2 , ,

( ) 2 , ,

( ) 2 , ,

x x y z x yz yz

y x y z y zx zx

z x y z z xy xy

n t

n t

n t

λ ε ε ε µ ε µ γ
λ ε ε ε µ ε µ γ
λ ε ε ε µ ε µ γ

 = + + + =
 = + + + =
 = + + + =

 

 
in which λ and µ denote two physical constants of the body considered.  Those constants 
are linked with the longitudinal and transverse elastic moduli that are considered in the 
resistance of materials by the relations: 
 

E = 
(3 2 )µ λ µ
λ µ

+
+

, G = µ. 

 
 Conversely, the expressions for the parameters of the elastic deformation as functions 
of the normal and tangential fatigues are: 
 

(2)   

1
[2( ) ( )], ,

2 (3 2 )

1
[2( ) ( )], ,

2 (3 2 )
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[2( ) ( )], .
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ε λ µ λ γ
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ε λ µ λ γ
µ λ µ µ

ε λ µ λ γ
µ λ µ µ
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 = + − + = +


= + − + =
+

 

 
 

4. – Work done by elastic forces. Internal potential of an isotropic body 
 
 By means of the expressions above for normal and tangential fatigues and the elastic 
deformation parameters, one easily calculates the work done by the elastic forces that act 
on the six faces of the parallelepiped while it passes from its natural state to a state of 
deformation that is defined by either the values of the fatigues or those of the parameters.  
Let ϖ be the quotient of that infinitely-small work by the volume dx dy dz of the 
parallelepiped; that will be the work done by elastic forces per unit volume at the point 
A(x, y, z).  One will find that: 
 

(3)  ϖ = 
1

2 (3 2 )µ λ µ+
[(λ + µ) 2 2 2( )x y zn n n+ +  – λ (nx ny + ny nz + nz nx)] 

   + 2 2 21
( )

2 yz zx xyt t t
µ

+ + , 

 

(4)  ϖ = 
2

λ
(εx + εy + εz) + µ 2 2 2( )x y zε ε ε+ +  + 2 2 2( )

2 yz zx xy

µ γ γ γ+ + . 

 
 The work done by elastic forces for the parallelepiped considered is ϖ dx dy dz.  If 
one then decomposes the body into an infinitude of elementary parallelepipeds by means 



4 Modern Methods in the Resistance of Materials 

of planes that are normal to the coordinate axes then one will see that the total work Π 
that is done by the elastic forces for the entire body is: 
 

(5)      Π = dxdy dzϖ∫∫∫ , 

 
where the triple integral is taken over the entire volume that is occupied by the body. 
 It is clear that this expression for the total force done by elastic forces likewise 
applies to a system of bodies that are coupled to each other in an arbitrary manner and 
deformed by external forces in equilibrium when the integral is taken over the total 
volume that is occupied by the system of bodies. 
 One will immediately verify that if one derives the expression (4) for ϖ with respect 
to εx , …, γxy , in succession, then one will get back to the expressions (1) for nx …, txy , in 
such a way: 

(6)     
x

ϖ
ε

∂
∂

= nx , …, 
xy

ϖ
γ

∂
∂

= txy . 

 
 The partial derivatives of the function ϖ with respect to the six elastic deformation 
parameters of the parallelepiped are then equal to the normal and tangential fatigues at 
the point A (x, y, z).  One then concludes that the elastic forces that are applied to the 
faces of the parallelepiped depend upon a force function and that this function is ϖ dx dy 
dz.  As a result, the elastic forces depend upon the force function Π for the entire body (or 
for a system of bodies. 
 The elastic deformation of an arbitrary parallelepiped gives rise to molecular forces 
inside of it.  Those forces are unknown, but it is easy to evaluate the work that they do 
during deformation.  Indeed, the system of material points that this parallelepiped is 
composed of is at rest before and after the deformation, so the algebraic sum of the works 
done by external and internal forces that act upon that system will be zero, by virtue of 
the vis viva theorem.  As a result, the work done by molecular forces will be equal and 
opposite to the work done by elastic forces.  Its value will then be – ϖ dx dy dz for the 
parallelepiped considered and – Π for the entire body (or system of bodies).  
Consequently, as far as the evaluation of the work done by molecular forces is concerned, 
everything happens as if it depended upon the force function – Π, which amounts to the 
same thing as saying that the molecular forces are derived from a potential Π.  As a 
result, we say that the function Π is the molecular force potential or the internal potential 
of the deformed body (or system of bodies), to abbreviate, provided that if changing the 
sign of that function indeed represents the work done by molecular forces during the 
deformation then it cannot be used to calculate the values of the forces that remain 
unknown. 
 It results from the preceding that the molecular forces form a conservative system.  
The work that they do depends upon only the final state of deformation and not upon the 
intermediate states.  It is exclusively a function of the final values of the deformation 
parameters or the final values of the fatigues. 
 The function Π admits another interpretation, which is: 
 



Chapter I – Review of the mathematical theory of elasticity and the resistance of materials 5 

 Formula (4) shows that ϖ is essentially positive and that it will be annulled when the 
body is in its natural state; the same thing is true for the total potential Π.  The latter is 
then a minimum when the body is in its natural state, which proves (and this should be 
obvious, moreover) that this state is the state of stable equilibrium of the molecules of the 
body.  If one then imagines that the deformed body returns to its natural state as a result 
of suppressing the external forces that determined its deformation then the potential of its 
molecular forces will pass from the value Π to the value zero.  It will then do positive 
work equal to Π when the molecules of the body return to their stable equilibrium 
position.  Now, as one knows (1), the potential energy of a material system that occupies 
an arbitrary position is equal to the essentially-positive work done by the internal forces 
of that system when it passes from that position to its stable equilibrium.  It is then the 
internal potential energy of the deformed body (or system of bodies). 
 
 
5. – Deformation parameters for an isotropic body when it is both elastic and caloric 
 
 Let a free body be subject to the action of an arbitrary system of external forces in 
equilibrium and suppose that its temperature goes up by τ degrees.  Let α be its 
coefficient of linear dilatation.  The deformation that an arbitrary parallelepiped in the 
body submits to can be considered to be the resultant of the superposition of the purely 
elastic deformation that is due to external forces and the caloric dilatation.  Now, that 
dilatation does not modify the angles that the edges of the parallelepiped define with each 
other, which simply submit to elongations that are equal to ατ per unit length.  As a 
result, εx , …, γxy denote the six purely-elastic deformation parameters, as before, while 
the elastic and caloric deformation parameters are: 
 

εx  − ατ, εy  − ατ, εz  − ατ,  γxy , γxy , γxy . 
 
 These expressions remain valid in the case of a decrease in temperature, with the 
condition that τ must be counted negatively in that case. 
 They are likewise valid for the bodies that are not free, since those bodies can be 
considered to be free under the action of forces that are applied to them directly and 
corresponding constraint forces. 
 We remark that the internal potential obviously depends upon the elastic deformation.  
As a result, if the deformation is both elastic and caloric then the expressions for the 
internal potential will remain the ones that were given in no. 4. 
 
 

6. – Remark 
 

 Everything that was just said about isotropic bodies applies immediately to the pieces 
with mean fibers that are considered in the resistance of materials if one adopts the very 
clear and precise viewpoint of General Menabrea and considers those pieces to be semi-
rigid bodies.  That viewpoint permits one to pass from the formulas of the mathematical 

                                                
 (1) Maurice LEVY, Sur le principe de l’énergie, 1888, pp. 9.  
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theory of elasticity to the corresponding ones in the resistance of materials, but it is 
simpler to establish the latter ones directly. 
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Figure 2. 

 
 

7. – Elastic forces in the resistance of materials.  Elements of their reduction. 
 
 Suppose that one has (see Fig. 2) a body with planar or skew mean fiber, and that: 
 

G and G′ are their centers of gravity, with curvilinear abscissas s and s + ds, 
when measured from the origin that is taken on the mean fiber to the 
left of G 

 
Gξ  is the positive tangent to the mean fiber at G 
 
Gη and Gζ are the principal axes of inertia of the section PQ 
 
n, tη , tζ  are the components parallel to the axes Gξ, Gη, Gζ of the elastic force 

per unit area at an arbitrary point A (η, ζ) of the section PQ. 
 
 In order to specify the signs of those components, we shall consider elastic forces in 
the section PQ to be the actions that are exerted by the part of the body that is situated to 
the left of that section on the part that is situated to the right, and we agree to count them 
as positive when they have the sense of the positive coordinate axes. 
 n is the normal fatigue at the point A, and tη and tζ are the tangential fatigues.  From 
the convention that was just made, there will be compression or traction at the point A 
according to whether n is positive or negative, resp. 
 The elastic forces in the section PQ define a system that is equivalent to the external 
forces that are applied to the left of that section.  At the center of gravity of the section 
PQ, one of those two systems, like the other, will be reducible to: 
 
 The normal effort N, which is directed along Gξ 
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 The shearing efforts Tη and Tζ , which are directed along Gη and Gζ 
 
 The torsion couple Mξ along the axis Gξ 
 
 The flexure couples Mη and Mζ along the axes Gη and Gζ, resp. 
  
 The couples Mξ , Mη , Mζ will be considered to be positive when they tend to turn 
their lever-arms in the sense of rotation that one must impose upon the positive parts Gη, 
Gζ and Gξ, resp., of the three coordinate axes in order to bring them into coincidence 
with Gζ, Gξ, and Gη, resp. 
 
 

8. – Elastic deformation parameters of a body with a mean fiber 
 
 Under elastic deformation, the section PQ will tend to the infinitely-close section 
P′Q′ by an infinitely-small relative displacement that is equivalent to a translation that is 
equal to the relative displacement of its center of gravity G and a rotation around an axis 
that passes through the center of gravity. 
 Let: 
 
 1.     ε ds, γη ds, γζ ds 
 
be the components of the translation along the three coordinate axes: 
 

Gξ,  Gη,  Gζ, 
 
which are components that are counted as positive when they have the sense of the 
positive axes. 
 Let: 
 
 2. θξ ds,      θη ds,      θζ ds 
 
be the components of the rotation around those same axes when counted as positive or 
negative under the same condition as the torsion and flexure couples. 
 
 The six quantities ε, γη , γζ , θξ, θη, θζ  define the deformation of the slice of the body 
that is found between the two sections PQ and P′Q′.  They are the elastic deformation 
parameters of that slice: 
 
 ε is the shortening per unit length – or unit shortening – of the element of the mean 
fiber GG′ = ds.  Depending upon whether it is positive or negative, there will be true 
shortening or, in the contrary case, elongation, resp. 
 
 γη , γζ  are the unit shears in the section PQ along the two directions Gη and Gζ 
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 θξ  is the unit angle of torsion 
 
 θη and θζ  are the unit angles of flexure around Gη and Gζ, resp. 
 
 Let: 
 
 Ω  be the area of the section PQ 
 
 Iξ  be its polar moment of inertia with respect to its center of gravity 
 

Iη and Iζ  be its moments of inertia with respect to Gη and Gζ, resp. – i.e., its 
principal moments of inertia 

 
E and G be the longitudinal and transverse elastic moduli 
 

 The six deformation parameters of the slice PQP′Q′ are coupled with the elements of 
the reduction of the elastic forces in the section PQ (or the external forces that are applied 
to the left of that section) by the relations: 
 

(7)    
, , ,

, , .

N E T G T G

M G I M G I M G I
η η ζ ζ

ξ ξ ξ η η η ζ ζ ζ

ε γ γ
θ θ θ

= Ω = Ω = Ω
 = = =

 

 
 The normal and tangential fatigues at an arbitrary point A (η, ζ) of the section PQ are 
given by the formulas: 

(8)     

,

,

.

M MN
n

I I

T M
t

I

T M
t

I

η ζ

η ζ

η ξ
η

ξ

ζ ξ
ζ

ξ

ζ η

ζ

ζ


= + + Ω


 = − Ω

 = +

Ω

 

 
 
9. – Work done by elastic forces and internal potential of a body with a mean fiber 

 
 When the slice PQP′Q′ passes from its natural state to an arbitrary state of 
deformation, the elastic forces that are applied to the two sections PQ and P′Q′ that 
bound that slice accomplish a certain amount of work.  Let ϖ be the quotient of that 
infinitely-small work by the element GG′ = ds of the mean fiber that is found between 
those two sections.  It is the work done by elastic forces at the point G per unit length of 
the mean fiber. 
 ϖ is expressed as a function of the elements of the reduction of the elastic forces that 
are developed in the section PQ by the deformation by the formula: 
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(9)    ϖ = 
2 2 2 2 221

2

T T M M MN

E G G G I G I G I
η ζ ξ η ζ

ξ η ζ

 
+ + + + +  Ω Ω Ω 

, 

 
and as a function of the elastic deformation parameters of the slice by the formula: 
 
(10)   ϖ = 2 2 21

2 ( )E G G G I E I E Iη ζ ξ ξ η η ζ ζε γ γ θ θ θΩ + Ω + Ω + + + . 

 
 The work done by the elastic forces for the slice PQP′Q′ is ϖ ds, and as a result, it 
will be: 

(11)     Π = dsϖ∫  

 
for the entire body, in which the integral is taken over the total length of the mean fiber.  
That formula is obviously applicable to a system of bodies that are coupled to each other 
in an arbitrary manner on the condition that one agrees that the integral is extended along 
the total lengths of the mean fibers of all the bodies that comprise the system. 
 There is planar flexure when: 
 
 1. The mean fiber is a planar curve. 
 
 2. The body has a symmetric structure with respect to the plane of the mean fiber. 
 
 3. The external forces are applied in that plane. 
 
In that case, if one supposes that Gξζ is the plane of the mean fiber then Tη , Mξ , Mζ , γη , 
θξ , θζ  will be zero, and as a result, one will have simply: 
 

(9′)     ϖ = 
2 2 21

2

N T M

E G E I

 
+ + Ω Ω 

, 

 
(10′)    ϖ = 1

2 (E Ω ε 2 + G Ω γ 2 + E I θ 2), 
 
when one suppresses the indices ζ and η that the letters T, M, I, γ, and θ were endowed 
with in formulas (9) and (10). 
 The elastic forces depend upon a force function, just as in the mathematical theory of 
elasticity.  That function will be ϖ ds for an arbitrary slice PQP′Q′.  That will result from 
the fact that if one forms the partial derivatives of the expression (10) for ϖ with respect 
to the six deformation parameters then one will get back to the expressions (7) for the six 
elements of the reduction of the elastic force.  The force function is Π for the entire body 
(or for a system of bodies).  As before (no. 4), one can conclude from this that the 
function Π is the molecular force potential or internal potential of the deformed body (or 
the system of bodies) and that it likewise represents the potential energy of that body or 
system of bodies. 
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10. – Deformation parameters of a body with a mean fiber when that deformation  
is both elastic and caloric 

 
 One will see in the same way as before (no. 5) that the elastic and caloric 
deformation parameters of an arbitrary slice are: 
 

ε – ατ , γη ,  γζ , θξ , θη , θζ , 
 

in which ε, …, θζ denote the purely elastic deformation parameters, α is the coefficient of 
linear dilatation, and τ is the variation of the temperature, which will be positive in the 
case of an increase and negative in the case of a decrease. 
 

___________ 



CHAPTER II  
 

FIRST METHOD BASED UPON THE VIS VIVA THEOREM  
 
 

11. – Fundamental principle of the methods deduced from the vis viva theorem. 
Clapeyron’s equation. Extension of that equation. 

 
 Consider an elastic body that is isotropic or has a mean fiber or a system such bodies 
that satisfies the following properties: 
 
 That body (or those systems) possesses a certain number of simple supports in the 
form of balls or anchors.  It will then be restricted to those constraints that are called 
support constraints or external constraints.  The bodies that comprise the system are 
coupled with each other in an arbitrary manner.  They will then be restricted to mutual 
constraints, which are called internal system constraints. 
 The external constraint forces are ordinarily called support reactions. 
 One says that a body or system of them is isostatic or hyperstatic according to 
whether the constraint forces can or cannot be calculated by means of pure statics, resp.; 
i.e., by means of the six universal conditions of equilibrium. 
 A hyperstatic body (or system of bodies) can always be made isostatic by suppressing 
some of its constraints without perturbing its equilibrium state, with the reservation that 
one must apply the corresponding constraint forces to the suppressed constraints.  The 
constraints that remain will then be called static constraints and the ones that were 
suppressed will be called redundant constraints. 
 A system of bodies is externally or internally hyperstatic according to whether its 
redundant constraints are external or internal, resp.  Furthermore, a system can be both 
externally and internally hyperstatic. 
 One realizes the suppression of the external redundant constraints by either 
completely suppressing certain supports or replacing a ball support with simple supports, 
or finally replacing the anchor support with a ball support or a simple support. 
 The suppression of the redundant internal constraints is achieved by either 
suppressing a certain number of contacts that exist between the various bodies of the 
system or by some modifications that relate to how those contacts happen. 
 According to the number and nature of the constraints on a hyperstatic body (or 
system of bodies), there will exist only one way of making it isostatic or several of them.  
Hence, there will be no other way of rendering an arch that rests upon two ball supports 
isostatic than to replace one of those two supports with a simple support.  By contrast, 
one can render an anchored arch with its two extremities isostatic by either purely and 
simply suppressing one of the two built-in supports or by substituting a ball support and a 
simple support for them. 
 
 Remark. – In what follows, whenever the direction of a constraint force is unknown 
a priori (which will be the case, for example, for a constraint that is realized by a ball 
support), we shall take the term “constraint force” to mean, not the force itself, but each 
of its components along two arbitrarily-chosen directions.  Indeed, it is important to make 
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only forces with directions that are known in advance enter into the calculation of 
constraint forces. 
 
 
 12. – Apply a system of external forces and couples that are initially zero to a body or 
system of bodies under consideration (whether it is isostatic or hyperstatic is of little 
importance) and then slowly increase them to their final values F and C.  An elastic 
deformation will then result.  The point of application of any one of the forces F will 
experience a certain absolute elastic displacement, and the line aa′ that joins the points of 
application of the two forces that form a couple C will experience a certain absolute 
elastic rotation. 
 Let: 
 

λ be the projection of the elastic displacement of a point of application of 
the force F onto the direction of that force, which is a projection that will 
be regarded as positive when it has the same sense as the force F and 
negative when it has the opposite sense. 

 
ϕ be the projection of the elastic rotation of the line aa′ onto the axis of the 

couple C (here, and likewise in what follows in the present note, one takes 
the term “projection of the rotation” to mean the “projection of the vector 
that represents the rotation,” and that projection will be regarded as 
positive or negative, moreover, according to whether it has the same sense 
an the vector that represents the couple or the opposite sense, resp.). 

 
T be the work done by external forces and couples during the deformation 

 
 The work done by constraint forces is essentially zero. 
 The work done by internal or molecular forces is equal to – Π (no. 4), where Π 
denotes the internal potential of the deformed body or system of bodies. 
 By virtue of the vis viva theorem, one will have: 
 
(12)     T = Π, 

 
where the material points of the body (or system of them) that are initially at rest will 
arrive at a new state of rest. 
 Hence: 
 
 The work done by external forces and couples that are applied directly is equal to the 
internal potential of the deformed body (or system of bodies). 
 
 Consequently, that work will depend upon only the final state of deformation.  It is 
independent of the intermediate states, and as a result, of the way that one varies the 
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external forces and couples (1).  In order to calculate them, one can fix the mode of 
variation of those forces and couples that one deems to be suitable.  Furthermore, assume 
that they constantly keep the same ratios with each other during the deformation, in such 
a way that an arbitrary intermediate state of deformation can be represented by Fρ and 
Cρ, where ρ denotes a positive number that varies from 0 to 1 during the complete 
deformation.  With that same state of deformation, from the principle of the superposition 
of the elastic effects of the force, the projection of the elastic displacement of a point of 
application of the force Fρ onto the direction of that force will be λρ, and the projection 
of the elastic rotation of the line aa′ onto the axis of the couple Cρ will be ϕρ, where 
λ and ϕ denote the values of those projected displacements at the end of the deformation. 
 During the passage from that intermediate state of deformation to the following state 
that is infinitely-close to it, the forces and couples will increase by d (Fρ) and d (Cρ), 
resp., and the corresponding projected displacements by d (λρ) and d (ϕρ), resp.  As a 
result, those forces and couples will do an elementary work dT between those two states, 

which will have a value of: 
 

dT = ( ) ( )F d C dρ λρ ρ ϕρ+∑ ∑ = ( )F Cλ ϕ+∑ ∑ ρ dρ, 

 
up to second-order infinitesimals, in which the sum extends over all forces F and all 
couples C. 
 The total work done for the entire deformation is then: 
 

T = ( ) 1

0
F C d

ρ

ρ
λ ϕ ρ ρ

=

=
+∑ ∑ ∫ = ( )1

2
F Cλ ϕ+∑ ∑ . 

 
Upon substituting this expression for T in the relation (12) that is deduced from the vis 

viva theorem, one will obtain the fundamental equation: 
 

(13)     ( )1

2
F Cλ ϕ+∑ ∑ = Π, 

 
which is nothing by Clapeyron’s equation (2), in a different form.  The proof that was just 
given is, as one sees, extremely simple. 
 
 
 13. – We propose to extend Clapeyron’s equation to the case in which the 
deformation is both elastic and caloric, which we believe has not been done yet.  To that 
effect, consider a system of isotropic bodies, whether isostatic or hyperstatic.  Subject it 
to the action of arbitrary external forces and couples and an elevation of the temperature 

                                                
 (1) In order for that to be true, it is necessary that a given system of external forces and couples can 
correspond to only one state of deformation of the body, which can be considered to be obvious from the 
physical viewpoint and has been proved analytically by Betti, Kirchhoff, and Cosserat (APPELL, Traité de 
Mécanique rationelle, t. III, 1903, pp. 515).  
 (2) LAMÉ, Leçons sur la théorie mathématique de l’Élasticité des corps solides, 1866, pp. 80. 
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that is initially zero and increases slowly up to the final values F, C, and τ. (τ is measured 
by starting from the temperature at which the constraints on the system are realized.)  Let: 
 

1. λ be the projection of the elastic and caloric displacement of the point of 
application of any one F of the external forces along the direction of that force. 

 
2. ϕ be the projection onto the axis of any one C of the external couples of the 

elastic and caloric rotation of the line that joins the points of application of the 
two forces that define that couple. 

 
3.  εx – α τ, εy – α τ, εz – α τ, γyz , γzx , γxy  
 
 be the elastic and caloric deformation of an elementary parallelepiped that is cut 

by planes that are normal to the coordinate axes at an arbitrary (x, y, z) (no. 5). 
 
4.     nx , ny , nz 
 
 be the normal fatigues on the three faces of that parallelepiped that have the point 

(x, y, z) as its common summit (no. 2). 
 
5.    tyz , txz ;  tyx , tyz ;  tzx , tzy 
 
 be the tangential fatigues on the same faces. 
 
6. ϖ dx dy dz and Π be the internal potentials of that deformed parallelepiped and 

the system of bodies, respectively (no. 4). 
 

 These various notations relate to the final state of deformation of the system.  We 
shall preserve them for an arbitrary intermediate state, but with a prime. 
 Consider the infinitely-small deformation that takes the system of bodies from one of 
the two intermediate deformation states to the other, the first of which corresponds to the 
values F′, C′, and τ′ of the external forces and couples and the variation of temperature, 
while the second one corresponds to the values F′ + dF′, C′ + dC′, and τ′ + dτ′ of those 
same quantities.  During that deformation, the work done by external forces and couples 
will be equal to the work done by elastic forces, by virtue of the vis viva theorem.  We 
shall now calculate each of those two works: 
 
 Work done by external forces and couples. – That work is: 
 

F d C dλ ϕ′ ′ ′ ′+∑ ∑ , 

up to second-order infinitesimals. 
 
 Work done by elastic forces. – During the infinitesimal deformation considered, the 
elastic and caloric deformation parameters of an arbitrary parallelepiped vary by: 
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xd dε α τ′ ′− , yd dε α τ′ ′− , zd dε α τ′ ′− , yzdγ ′ , yxdγ ′ , xydγ ′ , 

 
and the potential of that parallelepiped increases by: 
 

d (ϖ′ dx dy dz) = dϖ′ dx dy dz. 
 
The work done by elastic forces, when calculated for the purely elastic deformation of the 
parallelepiped that is defined by the variations dε ′ , …, xydγ ′  of the six elastic 

deformation parameters, is equal to the increase dϖ′ dx dy dz in internal energy.  The 
work done by those same forces, when calculated for the purely caloric deformation that 
is defined by the variation – α dτ′ of the single caloric deformation parameter, is: 
 

− ( )xn dy dz′ α dτ′ dx − ( )yn dy dz′ α dτ′ dy − ( )zn dy dz′ α dτ′ dz 

= − α ( )x y zn n n′ ′ ′+ +  dτ′ dx dy dz, 

 
up to higher-order infinitesimals, since that variation corresponds to elongations: 
 

α dτ′ dx, α dτ′ dy, α dτ′ dz 
 
of the edges of the parallelepiped and that the work done by the tangential elastic is zero, 
while the purely caloric deformation takes place without distortions. 
 Consequently, the work done by elastic and caloric deformation is: 
 

dω′ dx dy dz − α ( )x y zn n n′ ′ ′+ +  dτ′ dx dy dz 

 
for the parallelepiped, and: 
 

d Π′ − ( )x y zn n n d dx dy dzα τ′ ′ ′ ′+ +∫∫∫  

 
for the entire system, where the triple integral is extended aver the entire volume that the 
system occupies. 
 The equation that expresses the equality of the works done by the external forces and 
couples and the work done by elastic forces during the infinitely-small deformation 
considered of the system of bodies is then: 
 

(14)  F d C dλ ϕ′ ′ ′ ′+∑ ∑ = d Π′ − ( )x y zn n n d dx dy dzα τ′ ′ ′ ′+ +∫∫∫ . 

 
 The equality of those two works is likewise true for the complete deformation of the 
system, no matter what the mode of increase in the external forces and couples and the 
temperature might be, moreover.  We then adopt the hypothesis that one has: 
 

F′ = F ρ, C′ = C ρ, τ′ = τ ρ 
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for an arbitrary intermediate state of the deformation, where ρ denotes a positive number 
that increases from 0 to 1 during the deformation, and as a result (and this can be 
considered to be obvious from the physical viewpoint) that: 
 

λ′ = λ ρ, ϕ′ = ϕ ρ, xn′  = nx ρ, yn′  = ny ρ, zn′  = nz ρ. 

 
 Furthermore, under that hypothesis, equation (14) will be written: 
 

( )F Cλ ϕ+∑ ∑  ρ d ρ = d Π′ − ατ ( )x y zn n n dx dy dz + + ∫∫∫  ρ d ρ, 

 
in which one assumes that the elevation in temperature τ is the same at all points of the 
system of bodies. 
 Upon integrating between the limits ρ = 0 and ρ = 1, which correspond to the start 
and finish of the deformation, respectively, and upon remarking that the integral of d Π′, 
when taken over the complete deformation, is equal to Π (namely, the internal potential 
of the deformed system), one will get: 
 

(15)  ( )1

2
F Cλ ϕ+∑ ∑  = Π − 1

2
ατ ( )x y zn n n dxdy dz+ +∫∫∫ . 

 
 That is Clapeyron’s equation, when it is extended to the case in which the 
deformation is both elastic and caloric.  Although it was established for a particular mode 
of variation of the external forces and couples and the temperature, it will be true for any 
final values F, C, and τ of those quantities, whereas the final state of deformation of the 
system is independent of the intermediate states.  However, its left-hand and right-hand 
sides represent the work done by external forces and couples and work done by elastic 
forces only in the case of the particular mode of variation in question.  On the contrary, 
the two sides of Clapeyron’s equation (13) represent those two works no matter what the 
mode of variation of the external forces and couples and the temperature. 
 If the system is subject to a decrease in temperature then it will suffice to measure 
τ negatively in formula (15). 
 When the preceding proof is applied to a system of bodies with mean fibers, that will 
give: 

(16)    ( )1

2
F Cλ ϕ+∑ ∑  = Π − 1

2
ατ N ds∫ , 

 
where N denotes the normal effort on an arbitrary transverse section of any of the bodies, 
and ds denotes the element of the mean fiber that is found between that section and the 
infinitely-close section, and the integral is taken along the mean fibers of the bodies of 
the system. 
 One can pass directly from equation (15) to equation (16) by establishing that one 
has: 

(17)    ( )x y zn n n dxdy dz+ +∫∫∫  = N ds∫  
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for any system of bodies with mean fibers. 
 Here is the proof of that formula that we will use later on. 
 We evaluate the triple integral, first for an infinitely-thin slice between the two 
sections (S) and (S′ ) of an any one of the bodies that are made at two points G and G′ of 
the mean fiber that are separated by a distance of GG′ = ds.  To that effect, consider the 
volume of that slice to be composed of an infinitely-large number of elementary 
parallelepipeds of volume dx dy dz such that one of their two faces dy dz is placed in the 
section (S) and the four edges dx are perpendicular to that section.  Since the bodies with 
mean fibers are, by hypothesis, considered to be rigid in the transverse sense of those 
fibers, the fatigues ny and nz will be zero.  On the other hand, up to second-order 
infinitesimals and the convergence of the two sections (S) and (S′ ) (which is always quite 
weak in the bodies that are considered in the resistance of materials), one will have: 
 

dx = ds. 
As a result, for the slice considered: 
 

( )x y zn n n dxdy dz+ +∫∫∫  = xds n dy dz∫∫ , 

 
in which nx dy dz represents the elastic force on the surface element dy dz of the section 
(S), and the double integral is the algebraic sum of those forces for all of that section, 
which is a sum that is the normal effort N, by definition.  Hence, and always for the slice 
considered: 

( )x y zn n n dxdy dz+ +∫∫∫  = N ds. 

 
 Consequently, one will have: 
 

( )x y zn n n dxdy dz+ +∫∫∫ = N ds∫  

 
for the whole system of bodies, where the latter integral is taken along the entire mean 
fibers of the all bodies in the system Q.E.D. 
 
 

14. – Castigliano’s theorem on the derivatives of work 
 
 The isostatic or hyperstatic body or system of bodies that was considered before (no. 
12) assumed its elastic equilibrium state under the action of a system of external forces 
and couples F and C when those forces and couples are given arbitrary, infinitely-small 
increments dF and dC. 
 Let: 
 

dλ and dϕ be the corresponding (positive or negative) increments in the projected 
displacements λ and ϕ. 
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d T be the corresponding increment in the work done by external forces and 

couples 
 
dΠ be the corresponding increment in the internal potential. 

 
 d T represents the elementary work that is performed by the forces and couples F and 

C when they increase by dF and dC, resp., which are correlated with the projected 
displacements dλ and dϕ, resp.  It will then have the expression: 
 

d T = F d C dλ ϕ+∑ ∑ , 

 
and substituting that expression in formula (12) (no. 12), when differentiated, will give: 
 

d Π = F d C dλ ϕ+∑ ∑ . 

 
 On the other hand, upon differentiating the fundamental equation (13) (no. 12), one 
will have: 

F d dF C d dCλ λ ϕ ϕ+ + +∑ ∑ ∑ ∑ = 2 d Π. 

 
 Upon adding corresponding sides of the last two equations and developing the total 
differential d Π, one will get the relation: 
 

dF dCλ ϕ+∑ ∑  = dF dC
F C

∂Π ∂Π+
∂ ∂∑ ∑ , 

 
which can be satisfied only if one has: 
 

(18)    λ = 
F

∂Π
∂

, ϕ = 
C

∂Π
∂

 

 
separately, since the increments dF and dC are arbitrary.  Hence: 
 
 Theorem. – If an elastic body, whether isotropic or with a mean fiber, or an 
(isostatic or hyperstatic) system of such bodies is subjected to an arbitrary system of 
external forces and couples then: 
 
 1. The projection of the elastic displacement of the point of application of any of the 
forces onto the direction of that force will be equal to the partial derivative of the internal 
potential of the body (or system of bodies) with respect to that force. 
 
 2. The projection of the elastic rotation of the line that joins the points of application 
of two forces of any couple onto the axis of that couple will be equal to the partial 
derivative of the internal potential of the deformed body (or system of bodies) with 
respect to that couple. 
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 That is the theorem of Castigliano (1) that that engineer called the theorem of the 
derivatives of work, which is a term that is justified by the fact that, from formula (12) 
(no. 12), the internal potential is equal to the work done by external forces during the 
deformation. 
 
 
 15. Corollary I. – If two F among the external forces are equal and opposite then the 
elastic increment ∆l in the distance l = AB between their points of application A and B is 
equal to the partial derivative ∂Π / ∂F of the internal potential with respect to F. 
 
 Indeed, first suppose that the two forces are unequal.  Let F′ denote the one that is 
applied to A, and let F″ denote the one that is applied to B.  One can always set: 
 
(a)     F′ = k′ F, F″ = k″ F, 
 
in which k′ and k″ denote two arbitrary positive numbers. 
 Let: 
 

∆′l be the elastic increment in the distance AB = l, which is an increment that 
differs from ∆l, but becomes equal to it in the special case where k′ = k″ = 
1. 

 
λ′ and λ″ be the elastic displacements of the two points A and B, which are 

estimated along the common direction AB of the two force F′ and F″ and 
regarded as positive when the former has the same sense as F′ and the 
latter has the same sense as F″. 

 
One will obviously have: 

∆′l = λ′ + λ″. 
 

However, from Castigliano’s theorem: 
 

λ′ = 
F

′∂Π
′∂

, λ″ = 
F

′∂Π
′′∂

, 

 
in which Π′ denotes the internal potential, which differs from Π, but will become equal to 
Π in the special case where F′ = F″ = F. 
 As a result: 

∆′l  = 
F F

′ ′′∂Π ∂Π+
′ ′′∂ ∂

, 

and upon setting F′ = F″ = F: 

                                                
 (1) CASTIGLIANO, “Nouvelle théorie de l’équilibre des systèmes articulés,” Actes de l’Académie de 
Turin, (1875); Théorie de l’équilibre des systèmes élastiques, Turin, 1879. 
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(b)     ∆l  = 
F F F FF F′ ′′= =

′ ′′∂Π ∂Π   +   ′ ′′∂ ∂   
. 

 
 Now Π, which is a function of F′ and F″, can also be considered to be a function of F, 
since, by hypothesis, F′ and F″ are coupled with F by the relations (a), which will permit 
one to write: 

dF
F

′∂Π
∂

= dF dF
F F

′ ′∂Π ∂Π′ ′′+
′ ′′∂ ∂

= k dF k dF
F F

′ ′∂Π ∂Π′ ′′+
′ ′′∂ ∂

, 

or 

F

′∂Π
∂

= k k
F F

′ ′∂Π ∂Π′ ′′+
′ ′′∂ ∂

, 

 
or rather, upon setting k′ = k″ = 1, which would imply that F′ = F″ = F and Π′ = Π: 
 

F

∂Π
∂

 = 
F F F FF F′ ′′= =

′ ′∂Π ∂Π   +   ′ ′′∂ ∂   
. 

 
 As a result, the expression (b) for ∆l will become: 
 

∆l = 
F

∂Π
∂

. 

Q. E. D. 
 
 Corollary II.  – If four of the external forces are applied at four points a, a′, b, b′, 
which are situated in the same plane, then those forces will be likewise situated in that 
plane, and if the ones that are applied at a and a′ constitute a couple C and the ones that 
are applied at b and b′ constitute a couple that is equal and opposite to the preceding one 
then the line aa′ will submit to an elastic rotation relative to the line bb′ whose projection 
onto the axis of couple C will be equal to the partial derivative / C∂Π ∂  of the internal 
potential with respect to C. 
 
 That corollary drops out of the second part of Castigliano’s theorem and is proved in 
the same manner as corollary I. 
 
 Corollary III.  – In the case of a body with mean fiber or a system of such bodies, if a 
couple C is applied to an arbitrary transverse section then the projection of the elastic 
rotation of that section onto the axis of that couple will be equal to the partial derivative 
of the internal potential of the deformed body (or system of bodies) with respect to that 
same couple.  Furthermore, if there is planar flexure, which demands that the axis of the 
couple C must be normal to the plane of flexure, then that derivative will represent the 
rotation of the section. 
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Φ 
a′ 

ΦS 

 
Figure 3 

 Let (see Fig. 3): 
 

a and a′ be the points of application in the section considered (S) of the two forces 
F and – F constitute the couple C 

 
Γ be the direction of the axis of that couple, which is normal to the plane of 

F and – F, and in turn, to the line aa′ that is contained in that plane 
 
ΦS be the rotation of the section (S) 
 
Φ be the rotation of the line aa′ 
 
ϕ be the projection of the latter rotation onto the direction Γ. 
 

 From the second part of Castigliano’s theorem, one will have: 
 

ϕ = 
C

∂Π
∂

. 

 
 In order to establish the corollary, it will then suffice to show that the projection of 
the rotation ΦS of the section (S) onto the direction Γ of the axis of the couple C is equal 
to the projection ϕ of the rotation Φ of the line aa′ onto that same direction. 
 Now, the rotation ΦS can be decomposed into: 
 
 1. A rotation that is equipollent to Φ and takes the line aa′, which is situated in the 
plane of the section (S), from its initial position to its final position. 
 
 2. A rotation Ψ around aa′, in such a way that one has the equipollence: 
 

SΦ  = Φ  + Ψ. 
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 Project that equipollence onto the direction Γ, where Ψ is normal Γ with a zero 
projection.  Hence, the projection of the rotation ΦS onto the direction Γ is equal to the 
projection ϕ of the rotation Φ onto that direction. 

Q. E. D. 
 
 

16. – Applying Castigliano’s theorem to the calculation of elastic displacements 
 
 In order to apply Castigliano’s theorem to the calculation of elastic displacements in 
isotropic bodies or systems of bodies, it is necessary to define the expression for the 
internal potential as a function of the external forces and couples F and C.  To that effect, 
one must calculate the six fatigues n and t (or the six parameter ε and γ) (nos. 2 and 3) as 
functions of those forces and couples and then substitute them in the general expression 
(3) (no. 4) [or (4), same number] for the potential per unit volume.  Now, in the present 
state of the mathematical theory of elasticity, that calculation is possible only in a very 
small number of particular cases.  It will then follow that (at least, for the time being) 
Castigliano’s theorem is generally impracticable insofar as the isotropic bodies and 
systems of bodies are concerned. 
 By contrast, it is immediately applicable to bodies and systems of bodies with mean 
fibers.  Indeed, from formulas (9) and (11) (no. 9), the general expression for their 
potential is: 

Π = 
2 2 2 2 221

2

T T M M MN
ds

E G G G I E I E I
η ζ ξ η ζ

ξ η ζ

 
+ + + + +  Ω Ω Ω 

∫ , 

 
and if one substitutes that expression into the ones (18) (no. 14) for λ and ϕ then one will 
get: 

(19) λ =
T T T T M M M M M MN N

ds
E F G F G F G I F E I F E I F

η η ζ ζ ξ ξ η η ζ ζ

ξ η ζ

 ∂ ∂ ∂ ∂ ∂∂ + + + + +  Ω ∂ Ω ∂ Ω ∂ ∂ ∂ ∂ 
∫ , 

 

(20) ϕ =
T T T T M M M M M MN N

ds
E C G C G C G I C E I C E I C

η η ζ ζ ξ ξ η η ζ ζ

ξ η ζ

 ∂ ∂ ∂ ∂ ∂∂ + + + + +  Ω ∂ Ω ∂ Ω ∂ ∂ ∂ ∂ 
∫ . 

 
 Furthermore, in order to calculate λ and ϕ, it will suffice to perform the reduction of 
the external forces that are applied to the left of any section to the center of gravity of that 
section (including constraint forces), which will yield N, …, Mζ as functions of F and C, 

and then form the partial derivatives 
N

F

∂
∂

, …, 
M

F
ζ∂

∂
, 

N

C

∂
∂

, …, 
M

C
ζ∂

∂
, and substitute those 

results in formulas (19) and (20). 
 If the body (or system of bodies) is subject to a planar flexure (no. 9) then the 
expression for the internal potential will simplify considerably, and formulas (19) and 
(20) will reduce to: 
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(19′)   λ = 
N N T T M M

ds
E F G F E I F

 ∂ ∂ ∂+ + Ω ∂ Ω ∂ ∂ 
∫ , 

 

(20′)   ϕ =
N N T T M M

ds
E C G C E I Cξ

 ∂ ∂ ∂+ +  Ω ∂ Ω ∂ ∂ 
∫ . 

 
 The preceding formulas yield the projected displacements and projected rotations 
only for the points of application of the external forces and the sections to which the 
external couples are applied.  However, it is easy to extend them to an arbitrary point and 
an arbitrary section by a very simple trick. 
 Hence, one must determine the elastic displacement of an arbitrary point A that is 
projected onto an arbitrarily-chosen direction ∆.  Apply an auxiliary force F of arbitrary 

magnitude to that point along that direction, in addition to the given external forces and 
couples F and C.  Moreover, the elements N, Tη , …, Mζ of the reduction of the elastic 
forces in an arbitrary section (or external forces to the left) at the center of gravity of that 
section will become N + N, Tη + Tη , …, Mζ  + Mζ , if one lets N, Tη , …, Mζ   denote 

what the elements of that reduction would become if only the force F were applied to the 

exclusion of the forces and couples F and C.  When the elastic displacement of the point 
A under the influence of the system F, C, F is projected onto the direction ∆, it will have 

the expression: 
 

λ = 
( ) ( )( ) T T M MN N

ds
E G E I

η η η η ζ ζ ζ ζ

ζ

 + ∂ + + ∂ ++ ∂ + + + + Ω ∂ Ω ∂ ∂  
∫ ⋯

T T M MN N

F F F
, 

 
by virtue of formula (19). 
 In order to get the desired projected displacement, it will obviously suffice to make F 

= 0, which will imply that N = 0, Tη = 0, …, Mζ = 0.  If one observes that N, Tη , …, Mζ 

are independent of F and that, as a result, 
N∂

∂F
, 

Tη∂
∂F

, …, 
Mζ∂
∂F

 are zero then one will 

get: 

(21)   λ = 
T MN

ds
E G E I

η η ζ ζ

ζ

 ∂ ∂∂ + + +  Ω ∂ Ω ∂ ∂ 
∫ ⋯

T MN

F F F
. 

 
 Similarly, the projection of the rotation of an arbitrary section (S) onto an arbitrarily-
chosen direction Γ is expressed by the formula: 
 

(22)   ϕ = 
T MN

ds
E G E I

η η ζ ζ

ζ

 ∂ ∂∂ + + +  Ω ∂ Ω ∂ ∂ 
∫ ⋯

T MN

C C C
, 
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in which M, Tη , …, Mζ are the elements of the reduction of the elastic forces in an 

arbitrary section at the center of gravity of that section when the body (or system of 
bodies) is supposed to be subjected to exclusively an auxiliary couple of arbitrary 
intensity C that is applied to the section (S) and the direction of the axis Γ. 

 In the case of planar flexure, the direction ∆ must be situated in the plane of flexure 
and the direction Γ must normal to that plane, and formulas (21) and (22) will reduce to: 
 

(21′)   λ = 
N T M

ds
E G E I

 ∂ ∂ ∂+ + Ω ∂ Ω ∂ ∂ 
∫

N T M

F F F
, 

 

(22′)   ϕ = 
N T M

ds
E G E I

 ∂ ∂ ∂+ + Ω ∂ Ω ∂ ∂ 
∫

N T M

C C C
. 

 
ϕ is then the rotation of the section (S). 
 
 
 17. – N, Tη , …, Mζ are subject to given forces and couples F and C in the system of 
bodies considered, and the elements of the reduction at the center of gravity of an 
arbitrary section of any of the bodies are subject to external forces that act to the left of 
that section, including constraint forces. 
  M, Tη , …, Mζ are elements of the same nature in that system that are subject to 

either the auxiliary force F or the auxiliary couple C. 

 The calculation of those various elements of reduction demands the prior 
determination of the constraint forces. 
 If the system considered is isostatic then that determination will involve only pure 
statics and will offer no difficulty. 
 If the system is hyperstatic then that determination will demand the intervention of 
the theory of elasticity; we shall treat that question later.  Nonetheless, one can avoid that 
intervention as far as the calculation of the elements M, Tη , …, Mζ is concerned; here is 

how: 
 In an arbitrary hyperstatic system that is acted upon by given forces and couples F 
and C, let Fs be the redundant external and internal constraint forces, which are unknown 
forces.  Consider the isostatic system that is obtained by suppressing all of the redundant 
constraints on the hyperstatic system.  Subject it to forces and couples F, C, and unknown 
forces Fs .  It will take on a state of deformation that is identical to that of the hyperstatic 
system if it were subject to only the forces and couples F and C.  Consequently, instead 
of calculating the projected elastic displacements λ and projected elastic rotations ϕ in the 
hyperstatic system, it would amount to the same thing to calculate them in the isostatic 
system.  Furthermore, in formulas (21) and (22) (no. 16): 
 
 1. The elements M, Tη , …, Mζ  of the reduction become ones that relate to the 

isostatic system when it is subject to either the auxiliary force F or the auxiliary couple C. 
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 2. The elements N, Tη , …, Mζ of the reduction will likewise become ones that relate 
to the same isostatic system when it is subject to the forces and couples F, C, and the 
unknown forces Fs , but the latter elements will have the same values that they would 
have in the hyperstatic system if it were subject to only the given forces and couples F 
and C, since the state of deformation of those two systems will be the same. 
 
 Hence, when one applies formulas (21) and (22) [or (21′) and (22′)] to a hyperstatic 
system, one can consider the elements of reduction N, Tη, …, Mζ (or N, T, M) to be 

attached to the isostatic system that is obtained by suppressing the redundant constraints 
from that hyperstatic system, which will render it calculable by means of pure statics.  As 
for the elements of the reduction N, Tη , …, Mζ , they will be, by contrast, attached to the 
hyperstatic system, and the determination will necessitate the intervention of the theory 
of elasticity. 
 
 
18. – Theorem of General Menabrea.  Determining the redundant constraint forces 

 
 Consider an isotropic body or one with a mean fiber, or more generally, a system of 
such bodies.  That system is hyperstatic.  It is in elastic equilibrium under the action of 
forces and couples F and C that are applied directly, and we suppose (and this is the most 
complex case) that its redundant constraints are external in one case and internal in the 
other.  Make them isostatic (no. 11) by suppressing the aforementioned redundant 
constraints by applying forces to them that correspond to the constraints that are thus 
suppressed, moreover, in order that its state of elastic equilibrium should not be 
perturbed.  Let Fes and Ces be an arbitrary force and couple, resp., of redundant external 
constraints, while Fis and Cis are an arbitrary force and couple, resp., of redundant internal 
constraints.  In relation to a system that has been rendered isostatic, those forces must be 
considered to be forces that are applied directly, as well as the forces and couples F and 
C. 
 Now, from the very fact of the existence of external constraints itself, the projection λ 
of the elastic displacement of the point of application of the force Fes onto the direction of 
that force is zero, and the rotation of the section of application of the couple Ces is 
likewise zero.  From the general formulas (18) (no. 14), one will then have: 
 

esF

∂Π
∂

= 0, 
esC

∂Π
∂

= 0. 

 
 On the other hand, an arbitrary internal constraint, and in particular, a redundant 
internal constraint, ordinarily consists of saying that a point A of one piece P of the 
system is restricted to remain invariably coupled to a point B and another piece Q.  The 
corresponding constraint forces are a force Fis that is applied to A on the piece P and an 
equal and opposite force that is applied to B on the piece Q.  The distance AB between 
those two points, which is zero before deformation, will then once more be zero 
afterward.  As a result, by virtue of the corollary I (no. 15) to Castigliano’s theorem, one 
will have: 
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isF

∂Π
∂

= 0. 

 
 Finally, if the redundant constraints of one piece P with respect to a piece Q consist 
of saying that two points a and a′ of the former are restricted to remain invariably linked 
with two points b and b′ of the latter then the corresponding constraint forces will be 
composed of two equal and opposite forces that are applied at a′ and b′.  If the two forces 
that are applied at a and a′ constitute a couple Cis then the two forces that are applied at b 
and b′ will constitute an equal and opposite couple.  In that case, since the elastic rotation 
of the line aa′ relative to the line bb′ is zero, one will have: 
 

isC

∂Π
∂

= 0, 

by virtue of corollary II (no. 15). 
 In summary, the partial derivatives of the internal potential of the deformed system 
with respect to the forces and couples of the redundant constraints, whether external or 
internal, are zero.  Hence, the values of those forces and couples will render that potential 
a maximum or minimum.  It remains for us to decide between those two alternatives. 
 Let A be the value of any of the forces Fes, which is a value that will consequently 
satisfy the equation: 

esF

∂Π
∂

= 0. 

 
 For any other value that is attributed arbitrarily to the force Fes, the projection of the 
displacement the point of application of the force onto the direction of that force will not 
be zero.  It will have the expression: 

λ =
esF

∂Π
∂

. 

 
Now, it is obvious that if one starts from that arbitrary value of the force Fes and it takes 
on an increment dFes then the corresponding variation dλ of the projected displacement λ 
will have the same sense as Fes (i.e., positive), in such a way that one will have: 
 

esF

λ∂
∂

> 0, 

and as a result: 
2

2
esF

∂ Π
∂

> 0. 
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That inequality, which was established for any value of Fes that is not equal to A, will be 
likewise true for Fes = A, whereas, since the potential Π has degree two in Fes (1), its 
second derivative with respect to that variable will be independent of the value that is 
attributed to it. 
 One shows that the second derivatives of Π with respect to Ces , Fis , and Cis are 
positive in the same fashion.  Certain authors then conclude that Π is a minimum and 
state the theorem of General Menabrea in the following manner (or something that 
approaches it): 
 
 In a hyperstatic system that is composed of isotropic bodies or ones with mean fibers, 
the values that the forces and couples of the redundant external and internal constraints 
take will, in fact, will render the internal potential of the system a minimum when it is 
considered to be a function of those forces and couples. 
 
 That statement is very seductive, but it goes beyond the one that was actually proved.  
Indeed, the condition for Π to be a minimum is that the total differential of that function 
should be positive for the values of Fes , …, Cis that annul the first partial derivatives 

esF

∂Π
∂

, …, 
isC

∂Π
∂

.  Now, one can only establish that the second partial derivatives 
2

2
esF

∂ Π
∂

, 

…, 
2

2
isC

∂ Π
∂

 are positive for those values.  We also believe that one must take the following 

statement into account: 
 
 Theorem. – In a hyperstatic system that is composed of isotropic bodies or ones with 
mean fibers, the values the forces and couples of redundant external and internal 
constraints actually take will annul the first partial derivatives of the internal potential, 
when it is considered to be a function of those forces and couples.  In addition, if one 
replaces those forces and couples with their effective values in that function, except for 
one of those forces or one of those couples, then the function of one variable that is thus 
obtained will be a minimum for the effective value of that force or couple. 
 
 In addition, as far as applications are concerned, the question of knowing whether an 
internal potential is a minimum or not is devoid of interest.  The only point that matters is 
that the effective values of the forces and couples of the redundant constraints annul the 
first partial derivatives of that potential. 
 As one knows, that theorem is a corollary to Castigliano’s theorem.  However, before 
the work of that engineer, it was stated for articulated systems by General Menabrea (2) 
under the name of the “principle of minimum elastic work,” and one can likewise find 
that it was given for an arbitrary system of bodies with mean fibers in that era, since those 

                                                
 (1) It is a function of degree two in the normal and tangential fatigues.   Now, those fatigues are linear 
functions of the external forces that produce them.  Hence, Π is a function of degree two in the external 
forces, and in particular, of the force Fes . 
 (2) MENABREA, “Principe général pour déterminer les pressions et les tensions dans un système 
élastique,” Turin (1868).  See also a note that General Menabrea read at the session of the Académie des 
Sciences on 31 May 1858, Comptes rendus, t. XLVI, pp. 1056. 



28 Modern Methods in the Resistance of Materials 

bodies can be considered to be a particular case of articulated systems (1), according to a 
remark of Mohr and Winkler. 
 We shall indicate the way that one employs Menabrea’s theorem in order to calculate 
the forces and couples of redundant constraints in bodies or systems of bodies with mean 
fibers after we have extended that theorem to the case in which the deformation is both 
elastic and caloric. 
 
 

19. – Extension of Castigliano’s theorem to the case in which the deformation  
is both elastic and caloric 

 
 That extension was made by Ernest Flamard in his previously-cited thesis in the 
context of systems of bodies with mean fibers, by means of the theorem of virtual work.  
We shall do that for the systems of isotropic bodies, as well as the ones with mean fibers, 
by means of the vis viva theorem. 
 Consider a system of isotropic bodies (whether isostatic or hyperstatic) that is 
deformed by some external forces and couples F and C and a rise in temperature τ, which 
is measured by starting from the temperature at which the system constraints have been 
realized. (In the case of a drop in temperature, it will suffice to endow τ with the negative 
sign.  Apply the generalized Clapeyron equation (15) (no. 13) to that deformation: 
 

F Cλ ϕ+∑ ∑ = 2Π − ( )x y zn n n dxdy dzατ + +∫∫∫ , 

in which: 
 

λ is the projection of the elastic and caloric displacement of the point of 
application of any of the external forces F onto the direction of that force 

 
ϕ is the projection of the elastic rotation of the line that joins the points of 

application of the two forces that form an external couple C onto the axis 
of that couple 

 
Π is the internal potential of the deformed system of bodies 
 
nx, ny, nz are the normal fatigues along the three elements that are drawn normally 

to the coordinate axes at an arbitrary point (x, y, z) of the system 
 

 That equation is true no matter what system of values is attributed to F, C, and τ.  As 
a result, the equation that is obtained by differentiating it with respect to those 
independent variables and with respect to the quantities λ, ϕ, Π, nx, ny, nz that it depends 
upon will likewise be true.  One can then write: 
 
(a)  F d dF C d dCλ λ ϕ ϕ+ + +∑ ∑ ∑ ∑  

= 2 dΠ − [ ( ) ( )x y z x y zn n n d d n n n dx dy dzα τ τ+ + + + +∫∫∫ , 

                                                
 (1) Maurice LEVY, La Statique graphique et ses applications aux constructions, Part 4, 1888, pp. 141. 
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and the increments dF, dC, and dτ in that equation are arbitrary. 
 Imagine the infinitely-small deformation that takes the system of bodies between two 
states of deformation, the first of which corresponds to the values F, C, and τ of the 
external forces and couples and the rise in temperature, resp., while the second one 
corresponds to the values F + dF, C + dC, and τ + dτ of those quantities.  During that 
deformation, the work done by external forces and couples is equal to the work done by 
elastic forces; the equation that expresses that fact was established before: It was (14) 
(no. 13), which was: 

(b)    F d C dλ ϕ+∑ ∑ = d Π − ( )x y zn n n d dx dy dzα τ+ +∫∫∫ , 

 
when one suppresses the primes (which is only a question of notation). 
 Subtract corresponding sides of equations (a) and (b).  That will give: 
 

(c)    dF dCλ ϕ+∑ ∑ = d Π − ( )x y zn n n dxdy dzα τ + +∫∫∫ . 

 
 The fatigues nx , …, γxy , and as a result, the internal potential Π, depend upon external 
forces and couples F and C that are applied directly and the constraint forces.  If the 
system is hyperstatic then they will depend upon not only F and C, but also on the 
temperature, so such a system cannot be freely dilatable, in such a way that nx , ny , nz , 
and Π will be functions of F, C, and τ in equation (c).  If the system were isostatic then 
those quantities would be, on the contrary, independent of τ, so such a system would be 
freely dilatable. 
 Having said that, first suppose that the system considered is isostatic, and under that 
hypothesis, develop the total differentials d Π and d (nx + ny + nz) in equation (c).  If one 
assumes that the variation of temperature is the same at all points of the system then it 
will become: 
 
 dF dCλ ϕ+∑ ∑  

  =
( )x y zn n n

dF dC dF dxdy dz
F C F

ατ
∂ + + ∂Π ∂Π+ −  ∂ ∂ ∂ 

∑ ∑ ∑∫∫∫  

  − 
( )x y zn n n

dC dx dy dz
C

ατ
∂ + + 

 ∂ 
∑∫∫∫  

 

  = ( )x y zdF dC n n n dx dy dz dF
F C F

ατ∂Π ∂Π ∂  + − + + ∂ ∂ ∂∑ ∑ ∑ ∫∫∫  

  − ( )x y zn n n dx dy dz dC
C

ατ ∂  + + ∂∑ ∫∫∫ , 

or, upon setting: 

(23)   H = Π − ( )x y zn n n dxdy dzατ + +∫∫∫ , 

 

dF dCλ ϕ+∑ ∑  = 
H H

dF dC
F C

∂ ∂+
∂ ∂∑ ∑ . 
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 In order for the latter equation to be satisfied, it is necessary that one must have: 
 

(24)    λ = 
H

F

∂
∂

, ϕ = 
H

C

∂
∂

, 

 
separately, since the increments dF and dC are arbitrary. 
 Formulas (23) and (24), which were established for isostatic systems, remain valid for 
hyperstatic systems.  Indeed, let Fs be the redundant constraint forces, whether internal or 
external, for a given arbitrary hyperstatic system.  Consider the isostatic system that is 
obtained by suppressing all of the redundant constraints from the hyperstatic system.  
Subject it to the forces and couples F, C, Fs , and the variation of temperature τ; so 
formulas (23) and (24) will apply to it.  Now, its state of deformation is identical to that 
of the given hyperstatic system when it is subject to the forces and couples F and C and 
the variation of temperature τ, and as a result, the various quantities λ, ϕ, Π, nx , ny , nz 
will have the same values in that isostatic system as they do in the hyperstatic system.  
Hence, formulas (23) and (24) will be likewise applicable to the latter system. 

Q. E. D 
 
 The two formulas (24) differ from (18) (no. 14) only by the replacement of the 
function Π with the function H.  Except for that replacement, they will then translate into 
a proposition that is identical to Castigliano’s theorem. 
 When the preceding proof is applied to the case of a system of bodies with mean 
fibers, that will once more lead to the formulas (24), but with: 
 

(25)     H = Π − N dsατ ∫ . 

 
 One can, moreover, pass directly from the expression (23) for H to the expression 
(25), upon remarking that from formula (17) (no. 13), one will have: 
 

  ( )x y zn n n dx dy dz+ +∫∫∫ = N ds∫  

 
for any system of bodies with mean fibers. 
 We note, in passing, that if one replaces Π in formula (25) with its resultant 
expression from formulas (11) and (9) (no. 9) then one will get: 
 

(26)    H = 
2 221

2
2

T MN
N ds

E G E I
η ζ

ζ

ατ
  

− + + +  Ω Ω   
∫ ⋯ . 

 
 In the case of planar flexure, the last formula will reduce to: 
 

(26′)    H = 
2 2 21

2
2

N T M
N ds

E G E I
ατ

  
− + +  Ω Ω  

∫ . 
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 20. – The quantity H can be interpreted as follows: 
 
 Let Fs be the redundant constraint forces, whether internal or external, for a 
hyperstatic system of bodies with mean fibers that are subject to forces and couples F and 
C, as well as a temperature variation τ.  Let the forces and couples F, C, Fs , and the 
temperature variation τ act upon the isostatic system that one obtains by suppressing the 
redundant constraints.  It will take on a state of deformation that is identical to that of the 
hyperstatic system that is subject to the given forces and couples F and C and the 
temperature variation.  Imagine that this deformation is achieved over two time intervals 
as follows: 
 
 During the first time interval, the isostatic system is subjected to forces and couples 
F, C, Fs , in such a way that its deformation is purely elastic and that as a result the work 
that is done by elastic forces will be Π. 
  During the second time interval, it is subject to the temperature variation.  The elastic 
forces remain constant, since the isostatic system is freely dilatable, and it will 
accomplish an amount of work whose value is – N ατ ds for a slice of thickness ds and 

N dsατ− ∫  for the entire system. 

 The total work done by the elastic forces during the complete deformation, both 
elastic and caloric, will then be: 

Π − N dsατ ∫  = H, 

 
and if the system is composed of isotropic bodies then one will likewise find that the total 
work done is: 

Π − ( )x y zn n n dxdy dzατ + +∫∫∫  = H. 

 
 Ernest Flamard called the quantity H the total work done by deformation of an elastic 
system that is subject to a temperature variation. 
 It should be pointed out that this terminology is quite conventional.  It is exact only 
with the reservation that the deformation is performed during two time intervals and in 
the order that was indicated above.  Indeed, if, on the contrary, the temperature variation 
precedes the application of the force and couples F, C, Fs then the work done by elastic 
forces will reduce to Π.  If the two actions are simultaneous then the work done by elastic 
forces will be somewhere between Π and H. 
 Formulas (24) nonetheless constitute an extension of Castigliano’s theorem to the 
case in which the deformation is both elastic and caloric. 
 
 
21. – Application of the generalized Castigliano theorem to the calculations of elastic 

and caloric displacements in bodies and systems of bodies with mean fibers 
 
 The general expressions (24) (no. 19) for the elastic and caloric displacements and 
rotations are developed in exactly the same manner as the expressions (18) (no. 14) of the 
purely elastic displacements and rotations in no. 16.  One will then find that: 
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(27)  λ = 
T M dN d d

ds
E d G d E I d

η η η

η

ατ
  

− + + +  Ω Ω   
∫ ⋯

MN T

F F F
 

 

(28)  ϕ = 
T M dN d d

ds
E d G d E I d

η η η

η

ατ
  

− + + +  Ω Ω   
∫ ⋯

MN T

C C C
. 

 
 Those formulas differ from the corresponding ones (21) and (22) (no. 16) only by the 

replacement of 
N

EΩ
with 

N

E
ατ 

− Ω 
.  When one applies them to a hyperstatic system, 

from the caveats that were made before (no. 17, in fine), one must take care to calculate 
the reduced elements N, Tη , …, Mζ , not in the hyperstatic system considered, but in the 

isostatic system that is obtained suppressing the redundant constraints of that hyperstatic 
system. 
 In the case where the flexure is planar, one will have simply: 
 

(27′)  λ = 
N d T d M d

ds
E d G d E I d

ατ
  

− + +  Ω Ω  
∫

N T M

F F F
 

 

(28′)  ϕ = 
N d T d M d

ds
E d G d E I d

ατ
  

− + +  Ω Ω  
∫

N T M

C C C
. 

 
 

22. – Extension of General Menabrea’s theorem to the case 
in which the deformations are both elastic and caloric.   

Determining the redundant constraint forces 
 
 The extension of Castigliano’s theorem implies a corresponding extension of its 
corollary, namely, General Menabrea’s theorem.  That extension is obtained by replacing 
the internal potential Π with the function H in that theorem. 
 In order to apply the theorem, thus-generalized, to the determination of the constraint 
forces and couples of a hyperstatic system, one introduces redundant constraint forces 
and couples into the function H and forms its partial derivatives with respect to those 
forces and couples.  The equations that are obtained by equating those derivatives to zero 
will yield the forces and couples of the redundant constraints.  Pure statics will then 
provide the equations that are necessary to calculate the forces and couples of the static 
constraints. 
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Figure 4. 

 
 

23. – Example of the determination of redundant external constraint forces 
 
 Let (Fig. 4) AB be an arch that is anchored at its two extremities, which signifies that 
the two transverse sections whose centers of gravity are A and B cannot be displaced 
elastically. 
 That arch has a plane curve for its mean fiber and it is structurally symmetric with 
respect to the plane of that curve.  It is subject to arbitrary forces that are situated in that 
plane, as well as a temperature variation τ, which is measured from the temperature that 
is realized at its anchors.  Its flexure is therefore planar. 
 The elementary reaction of either of the two anchors (the one on the left, for example) 
is reducible to a resultant translation at the point A and a resultant couple whose axis is 
normal to the plane of the mean fiber.  Let X and Y be the components of that resultant 
translation along two arbitrary rectangular axes Ax and Ay, and let Z be the resultant 
couple.  Suppressing the anchor on the left will obviously have the effect of rendering the 
arch isostatic, since that anchor constitutes a redundant constraint of that arch (no. 11) 
and as a result, X, Y, and Z will be the two forces and the couple, resp., of the redundant 
external constraint.  By virtue of the generalized theorem of General Menabrea (no. 22): 
 

H

X

∂
∂

= 0, 
H

Y

∂
∂

= 0, 
H

Z

∂
∂

= 0. 

 
 The function H is expressed by the formula (26) (no. 19), which is valid in the case of 
planar flexure: 

H = 
2 2 21

2
2

N T M
N ds

E G E I
ατ

  
− + +  Ω Ω  

∫ , 

 
and in which the integral extends along the total length of the mean fiber of the arch.  As 
a result, the three equations above can be written: 
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(a)    

0,

0,

0.

N N T T M M
ds

E X G X E I X

N N T T M M
ds

E Y G Y E I Y

N N T T M M
ds

E Z G Z E I Z

ατ

ατ

ατ

    ∂ ∂ ∂− + + =   Ω ∂ Ω ∂ ∂   


   ∂ ∂ ∂ − + + =   Ω ∂ Ω ∂ ∂  
    ∂ ∂ ∂ − + + =   Ω ∂ Ω ∂ ∂  

∫

∫

∫

 

 
 Having said that, let ν, θ, and µ be the values that are taken by the elements of the 
reduction N, T, and M, respectively, at the center of gravity G (x, y) of an arbitrary section 
of the external forces that act from the left of the section if the arch is rendered isostatic 
by suppressing its left anchor.  ν, θ, and µ are immediately calculable by pure statics and 
can consequently be considered to be known in what follows. 
 One obviously has: 

(b)     

,

,

,

dx dy
N X Y

ds ds
dx dy

T X Y
ds ds

M Xy Yx Zm

ν

θ

µ

 = + +

 = − +


= − + +



 

and as a result: 

 
N

X

∂
∂

= 
dx

ds
, 

T

X

∂
∂

= − dy

ds
, 

M

X

∂
∂

= − y, 

 

 
N

Y

∂
∂

= 
dy

ds
, 

T

Y

∂
∂

=  
dx

ds
, 

M

Y

∂
∂

=   x, 

 

 
N

Z

∂
∂

=  0, 
T

Z

∂
∂

= 0, 
M

Z

∂
∂

= 1. 

 
 Upon substituting these twelve expressions in equations (a) and letting a and b denote 
the coordinates of the point B, one will find that: 
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(c)  

2 2

2

2 2

2

1 1

,

1 1

dx dy
y dx dy yds ds

X ds Y ds Z ds
E G E I E G ds ds E I

dx dy y
a ds

E ds G ds E I

dx dy
dx dy xy xds ds

X ds Y
E G ds ds E I E G E I

ν θ µτ

    
           + + + − −   Ω Ω Ω Ω  
 
 

 
= + − + + Ω Ω 

    
         − − + + +   Ω Ω Ω Ω  

 

∫ ∫ ∫

∫

,

1
.

x
ds Z ds

E I

dx dy y
a ds

E ds G ds E I

y x
X ds Y ds Z ds ds

E I E I E I E I

ν θ µτ

µ












 
  + 
 



  = − + +  Ω Ω 

 − − =


∫ ∫ ∫

∫

∫ ∫ ∫ ∫

 

 
 These three equations yield the two forces and couple of the redundant constraints.  
One can then calculate the elements of the reduction N, T, and M that are attached to an 
arbitrary section by means of formulas (b). 
 
 

24. – Example of the determination of redundant internal constraint forces 
 
 Consider an arch that is anchored at its two extremities and includes a ball O (Fig. 
5). 

 y T 

N 

M 

B 

x 

X 

A 

Y 
G 

− Y 
− X 

O 

 
Figure 5. 

 
 That arch has a plane curve for its mean fiber and it is structurally symmetric with 
respect to the plane of that curve.  It is subjected to arbitrary forces that are situated in 
that plane, as well as a temperature variation τ, which is measured by starting from the 
temperature that is realized at its anchors.  Its flexure will then be planar. 
 In reality, the arch considered is a system of two anchored arches AO and OB, each of 
which starts from one of the extremities of the arch and is joined to the other at the ball 
O.  The action of the arch AO on the arch OB is that of a force that is applied to its 
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extremity O, and the components of that force along the two rectangular axes Ox and Oy, 
will be denoted by X and Y, resp.  The reaction of the arch OB on the arch AO is equal 
and opposite to that action. 
 It is clear that the system will become isostatic if one suppresses the constraint on the 
two arches at O.  Consequently, X and Y will be two redundant internal constraint forces.  
By virtue of the generalized theorem of General Menabrea, one will then have: 
 

H

X

∂
∂

= 0, 
H

Y

∂
∂

= 0, 

with 

H = 
2 2 21

2

N T M
ds

E G E I
ατ

  
− + +  Ω Ω  

∫ , 

or rather: 

(a)    

,

,

N N T T M M
ds

E X G X E I X

N N T T M M
ds

E Y G Y E I Y

ατ

ατ

    ∂ ∂ ∂− + +   Ω ∂ Ω ∂ ∂   


   ∂ ∂ ∂ − + +   Ω ∂ Ω ∂ ∂  

∫

∫

 

 
in which the integrals are extended along the total length AOB of the mean fibers of the 
two arches. 
 Let ν, θ, and µ denote the values that the elements N, T, M, resp., of the reduction of 
the external forces that act from the left on an arbitrary section of either of the two arches 
take at the center of gravity G (x, y) of that section if the system is made isostatic by 
suppressing the constraint on the two arches at O.  ν, θ, and µ are immediately calculable 
by means of pure statics and can consequently be considered to be known in what 
follows. 
 It is easy to see that, regardless of whether the section belongs to one or the other of 
the two arches, one will have: 

(b)     

,

,

,

dx dy
N X Y

ds ds
dy dx

T X Y
ds ds

M Xy Yx

ν

θ

µ

 = + +

 = − +


= − +



 

and as a result: 

 
N

X

∂
∂

= 
dx

ds
, 

T

X

∂
∂

= − dy

ds
, 

M

X

∂
∂

= − y, 

 

 
N

Y

∂
∂

= 
dy

ds
, 

T

Y

∂
∂

=   dx

ds
, 

M

Y

∂
∂

=    x. 
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 Upon substituting these nine expressions into equations (a) and letting a and b denote 
the projections of the entire mean fiber AOB onto Ox and Oy, resp., one will find that: 
 

(c)   

2 2

2

2 2

2

1 1

,

1 1

dx dy
y dx dy xyds ds

X ds Y ds
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∫ ∫

∫

 

 
 These two equations yield the two redundant internal constraint forces.  One can then 
calculate the elements of the reduction N, T, and M that are attached to an arbitrary 
section by formulas (b). 
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Figure 6. 

 
25. – Another example of the determination of 

redundant internal constraint forces 
 
 As an example, take an articulated straight beam with double lattice that rests upon 
two simple supports (Fig. 6). 
 This beam consists of rectilinear bars whose mean fibers are situated in a vertical 
plane and are concurrent at points that are called nodes.  At each node, the bars are 
assembled together by an articulation axis that is normal to the plane that contains their 
mean fibers. 
 One calls: 
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 The horizontal bars frame elements, 
 The vertical bars uprights, 
 The inclined bars diagonals. 
 
 The part of the beam that consists of two consecutive uprights, along with the two 
frame elements and the two diagonals that are located between those two uprights bears 
the name of a panel.  We shall denote the panels by the ordinal numbers 1, 2, …, i, …, n 
– 1, n, the lower nodes by the numbers 0, 1, …, i, …, n – 1, n, and the upper nodes by the 
same numbers with primes. 
 The beam is subject to vertical loads P0 , P1 , …, Pi , …, Pn−1 , Pn , and loads of 0P′ , 

1P′ , …, iP′ , …, 1nP −′ , nP′  are applied to the upper nodes. 

 The elastic forces in any section of any bar are reducible to a single force that is 
directed along the mean fiber of the bar.  It is the normal effort, or if one uses the term 
that is currently adopted, the effort in the bar (the shearing effort and the flexure couple 
are zero). 
 We propose to calculate the efforts that are produced by the loads in all of the bars of 
the beam. 
 Let: 
 
 Xi and iX ′  be the efforts in the two frame elements (i – 1, i) and (i′ − 1, i′ ).  Ωi and 

i
′Ω   are the transverse sections of those two bars, and a is their common length. 

 
 Yi−1 and Yi be the efforts in the two uprights (i – 1, i′ − 1) and (i, i′ ).  ωi−1 and ωi are 
the transverse sections of those two uprights, and b is their common length. 
 
 Zi and iZ′ , Si and iS′ , c be the analogous quantities that relate to the two diagonals 

( 1, )i i′ − and (i − 1, i′ ). 
 
 Each of those efforts will be considered to be positive or negative according to 
whether the corresponding bar is compressed or tensed, resp. 
 The beam is externally isostatic, but internally hyperstatic.  There exist a large 
number of ways of rendering it completely isostatic.  We shall adopt the one that consists 
of suppressing the diagonal constraints (0, 1′), … (i – 1, i′ ), …, (n – 1, n′) whose lower 
nodes of assembly are 0, …, i – 1, …, n – 1, resp.  Furthermore, those diagonals will no 
longer play a role in the beam.  They will behave as if they were suppressed and will, in 
turn, become a reticulated system.  Now, one knows that such a system is internally 
isostatic. 
 The constraints that are thus suppressed are the redundant internal constraints (no. 
11).  The corresponding constraint forces are – for example, for the diagonal (i – 1, i′ ) – 
two equal and opposite forces that have the same direction as the effort iZ′  in that 
diagonal, and one of them will apply a force to the extremity of the aforementioned that 
has been rendered free and the other one will apply a force to the node i – 1, and those 
forces will be repulsive or attractive according to whether iZ′  is an effort of compression 
or an effort of tension, resp.  One can then say that the redundant internal constraint 
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forces are the efforts 1Z′ , …, iZ′ , …, nZ′  in the diagonals (0, 1′), …, (i – 1, i′ ), …, (n – 1, 

n′).  Those diagonals bear the name of redundant bars. 
 If iZ′  is a redundant constraint force then one will have: 

 

(a)      
H

Z

∂
′∂
= 0, 

 
by virtue of General Menabrea’s theorem, where H denotes the internal potential of the 
beam that is deformed by the loads. 
 That potential is equal to the sum of the potentials of all the bars that constitute the 
beam.  Now, for an arbitrary bar, if one generally denotes its section by Ω, its length by s, 
and the effort in that bar by N then, from formulas (9′) and (11) (no. 9), the internal 
potential will have the expression: 
 

2

0

1

2

s N
ds

EΩ∫  = 
21

2

N s

EΩ
, 

 
since the shearing effort and flexure couple will be zero in any section.  Consequently: 
 

Π =
21

2

N s

EΩ∑ , 

 
in which the sum is taken over all bars of the beam, or rather, if one lets A denote the sum 
of the potentials in the bars that do not belong to the panel (i) and recalls the notations 
that were introduced above in relation to the bars of the panel: 
 

Π = A + 
2 2 2 2 2 2

1

1

1 1 1 1 1 1

2 2 2 2 2 2
i i i i i i

i i i i i i

X a X a X b Y b Z c Z c

E E E E E S E Sω ω
−

−

′ ′
+ + + + +

′ ′Ω Ω
. 

 
 Substitute that expression for the potential in equation (a) and cancel the denominator 
E; one will get: 
 

(b)  1

1

i i i i i i i i i i i

i i i i i i i i i i i i

X X X X Y Y Y Y Z Z SA
E a b c

Z Z Z Z Z S Z Sω ω
−

−

     ′ ′ ′∂ ∂ ∂ ∂ ∂∂ + + + + + +     ′ ′ ′ ′ ′ ′ ′ ′∂ Ω ∂ Ω ∂ ∂ ∂ ∂     
 = 0. 

 
 Now calculate the expressions for Xi , iX ′ , Yi−1 , Yi , and Zi as functions of iZ′  and 

substitute them in the last equation. 
 To that effect, cut the panel by a vertical plane AB that passes through the point of 
intersection C of the mean fibers of the diagonals of the panel (i).  The external forces 
that act from the left of that section (loads and support reactions to the left of the panel) 
are reducible at the point C to a vertical shearing effort Ti that we measure as positive in 
the ascending sense and a flexure couple Mi .  Those two quantities can be calculated 
immediately by means of pure statics, in such a way that we can consider them to be 
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known in what follows.  The four efforts Xi , iX ′ , Zi , and iZ′  in the bar that is cut by the 

plane AB define a system that is equivalent to the force Ti and the couple Mi .  One can 
then write the two equations for the projections onto a vertical axis and a horizontal axis, 
and the equations for the moments with respect to the point C as these: 
 

− Zi cos α + iZ′ cos α = Ti , 

Xi + iX ′  + Zi sin α + iZ′ sin α = 0, 

−
2 2i i

b b
X X′+  = Mi , 

 
in which α denotes the acute angle that is defined by the mean fibers of the diagonal and 
the vertical. 
 On the other hand, since the node i′ – 1 is in equilibrium under the influence of the 
load 1iP−′  and the actions that are exerted upon it by the bars that are assembled at it, one 

will have the following equation for the projections onto a vertical axis: 
 

1iZ −′ cos α + Yi−1 + Zi cos α − 1iP−′ = 0. 

 
 One infers from these four equations: 
 

(c)      Zi = 
cos

i
i

T
Z

α
′ − ,  

 

(d)     Xi = − 
tan

sin
2

i i
i

T M
Z

b

αα′ + − , 

 

(e)     iX ′ = − 
tan

sin
2

i i
i

T M
Z

b

αα′ + + , 

 
(f)     Yi−1 = − 1 1( ) cosi i i iZ Z T Pα− −′ ′ ′+ + + , 

 
and when one changes i into i + 1 in the last of those formulas: 
 
(g)     Yi = − 1 1( )cosi i i iZ Z T Pα+ +′ ′ ′+ + + . 

 
 Upon differentiating the five formulas above with respect to iZ′ , one will have: 

 

(h)    
1

1, sin ,

sin , cos , cos .

i i

i i

i i i

i i i

Z X

Z Z

X Y Y

Z Z Z

α

α α α−

∂ ∂ = = − ′ ′∂ ∂
 ′∂ ∂ ∂ = − = − = −
 ′ ′ ′∂ ∂ ∂
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 If one sets i = 1, 2, …, i – 1, and then i = i + 1, i + 2, …, n, in succession, in formulas 
(c) to (g) then one will see immediately that the efforts in all of the bars of the beam 
besides those of the panel (i) are independent of iZ′ .  As a result, the same thing will be 

true for the internal potential of those bars, and one will have, consequently: 
 

(i)      
i

A

Z

∂
′∂
= 0. 

 
 Upon performing the substitutions in equation (b) that permit one to deduce formulas 
(c) and (i), and taking into account that: 
 

a

c
= sin α, 

b

c
= cos α, 

one will finally find that: 
 

(k)  
3 3

3 3
1 1

1 1

cos 1 1 1 1 1 1 cos
sin cosi i i

i i i i i i i i

Z Z Z
S S

α αα α
ω ω ω ω− +

− −

    ′ ′ ′+ + + + + + +    ′ ′Ω Ω    
 

 

= 
3 2

3 1

1

sin 1 1 1 1 sin 1 1
cos

2cos cos
i i

i i
i i i i i i i

T P
T M

S b

α αα
α α ω ω

−

−

      ′++ + + + + −      ′ ′Ω Ω Ω Ω      
 . 

 
 That equation couples the efforts 1iZ −′ , iZ′ , 1iZ +′  in the three consecutive redundant 

bars (i – 2, i′ – 1), (i – 1, i′ ), and (i, i′ + 1), resp.  Upon successively setting i = 1, 2, 3, …, 
n – 1, n and taking into account the fact that 0Z′ = 0, 1nZ +′ = 0, Tn+1 = (1), one will obtain a 

system of n equations, the first of which will contain 1Z′  and 2Z′ , the second of which 

will contain 1Z′ , 2Z′ , and 3Z′ , the third of which will contain 2Z′ , 3Z′ , and 4Z′ , …, the (n – 

1)th of which will contain 2nZ −′ , 1nZ −′ , and nZ′ , and the nth of which will contain 1nZ −′  and 

nZ′ . 

 Solving that system will yield the efforts in the n redundant bars (0, 1′), (1, 2′), …, (n 
– 2, n′ – 1), (n – 1, n′).  The application of the general formulas (c) to (g) will then give 
the efforts in all of the other bars of the beam. 
 
 

 
 
 
 

                                                
 (1) Which one will see immediately upon supposing that the beam is fictitiously prolonged to the left of 
its left supports by a panel that is indexed by 0 and to the right of its right support by a panel that is indexed 
by n + 1.  The shearing efforts in those two addition panels will obviously be zero, and the same will be 
true for the efforts in their diagonals. 
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26. −−−− Reciprocity principles 
 
 Theorem: 
 
 1. If a force Fλ that is equal to unity is applied to a point A of a body that is isotropic 
or has a mean fiber (or a system of such bodies that is isostatic or hyperstatic) along an 
arbitrarily-chosen direction ∆A and produces an elastic displacement to a point B whose 
projection onto a likewise-arbitrary direction ∆B is A

Bλ  then conversely, if a force FB that 

is equal to unity is applied to the point B along the direction ∆B then it will produce an 
elastic displacement to the point A whose projection B

Aλ  onto the direction ∆A will be 

equal to A
Bλ . 

 
 2. If a couple Caa′ that is equal to unity and its two forces are applied at the two 
points a and a′ and its axis has a direction Γaa′ that is chosen arbitrarily from the 
perpendiculars to the line aa′ produces an elastic rotation of a line bb′ whose projection 
(1) onto a direction Γbb′  that is chosen arbitrarily from the perpendicular to the line bb′ is 

aa
bbϕ ′

′   then conversely a couple Cbb′ that is equal to unity whose two forces are applied at 

b and b′ and whose axis has a direction Γbb′ will produce an elastic rotation of the line 
aa′ whose projection bb

aaϕ ′
′  onto the direction Γaa′  is equal to aa

bbϕ ′
′ . 

 
 3. If a couple Caa′ that is equal to unity and its two forces are applied at the two 
points a and a′ and its axis has a direction Γaa′ that is chosen arbitrarily from the 
perpendiculars to the line aa′ produces an elastic displacement of the point B whose 
projection onto an arbitrary direction ∆B is aa

Bλ ′  then conversely a force FB that is equal 

to unity and is applied to B along the direction ∆B will produce an elastic rotation of the 
line aa′ whose projection B

aaϕ ′  onto the direction Γaa′ is equal to aa
Bλ ′ . 

 
(One should understand that from the viewpoint of homogeneity, that rotation is not 
measured by its angle, but by the lengths of the arch that is swept out by that angle on a 
circumference with a radius of unit length.) 
 Here is the proof of the first part of that theorem: 
 
 Let: 
 

A
Aλ and A

Bλ  be the projections onto the directions ∆A and ∆B, respectively, of the 

elastic displacements that are produced at the points A and B when the 
unit force FA is applied to A along the direction ∆B 

 

                                                
 (1) One should recall that one intends the term “projection of a rotation” to mean the projection of the 
vector that represents that rotation (no. 12). 
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B
Aλ and B

Bλ  be the projections onto those same directions of the elastic 

displacements that are produced at those same points when the unit 
force FB is applied to B along the direction ∆A 

 
 (In these notations, the lower index denotes the point that submits to the displacement 
considered, while the upper index refers to the force that produced that displacement.) 
 Suppose that two forces AF ′  and BF ′ , which differ from unity, are applied 

simultaneously, the former to A along the direction ∆A , while the latter is applied to B 
along the direction ∆B .  Let Aλ′  and Bλ′  be the projections onto those two directions of the 

elastic displacements that they produce at the points A and B, respectively.  Now, from 
the principle of superposition of the elastic effects of the forces: 
 
(a)    Aλ′  = A B

A A A BF Fλ λ′ ′+ ,  Bλ′  = A B
B A B BF Fλ λ′ ′+ , 

 
and by virtue of Castigliano’s theorem (no. 14): 
 

(b)     Aλ′ = 
AF

∂Π
′∂

, Bλ′  =
BF

∂Π
′∂

, 

 
in which Π denotes the internal potential of the body (or system of bodies) when it is 
deformed by the forces AF ′  and BF ′ , acting simultaneously. 

 Now, analytically, one must have: 
 

2

A BF F

∂ Π
′ ′∂ ∂

= 
2

B AF F

∂ Π
′ ′∂ ∂

, 

 
and as a result, because of relations (b): 
 

A

BF

λ′∂
′∂

= A

BF

λ′∂
′∂

, 

 
or, upon replacing those two partial derivatives with their value that one would deduce 
from formulas (a): 

B
Aλ  = A

Bλ .     Q. E. D. 

 
 The same method of proof will apply to the other two parts of the theorem. 
 
 The three reciprocity principles that were just stated are called Maxwell’s principles 
abroad, although that scholar established only the first one and only for articulated 
systems (1). 

                                                
 (1) Clerk MAXWELL, “On the calculation of the equilibrium and stiffness of frames,” Phil. Mag. 27 
(1864), pp. 294. 
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27. – Lines of influence 
 
 The reciprocity principles lead to a general method for determining the lines of 
influence in bodies and systems of bodies with mean fibers that are subject to redundant 
constraints (1).  Those lines, which were introduced into the resistance of materials by 
Fränkel (2) and were studied in a remarkable way by Winkler (3) and Maurice Levy (4), 
play an important role in the calculations for metal bridges or reinforced concrete.  
Indeed, they provide the means for determining the maximum efforts that are produced in 
the various elements of those bridges by the passage of moving overloads.  However, the 
limited scope of the present note does not permit us to expand upon that subject. 
 

___________ 
 

                                                
 (1) BERTRAND DE FONTVIOLANT, “Sur la détermination des forces élastiques et de leurs lignes 
d’influence dans les poutres assujetties à des liaisons surabondant,” Comptes rendus de l’Académie des 
Sciences 108 (1889), pp. 45. 
  “Methode générale de determination des lignes d’influence dans les poutres pleines ou réticulaires, 
assujetties à des conditions surabondant,” Bulletin de la Société des Ingenieurs civils de France, November 
1890, pp. 742. 
  “Ponts métalliques à travées continues.  Methode de calcul satisfaisant aux prescriptions du 
Réglement ministériel du 29 août 1891,” Comptes rendus de l’Académie des Sciences 115 (1892), pp. 996 
and Bulletin de la Société des Ingenieurs civils de France, December 1892, pp. 1105. 
 (2) W. FRÄNKEL, “Ueber die ungünstige Einstellung eines Systems von Einzellasten auf 
Fachwerkungen mit Hilfe von Influenzkurven,” Der Civilingenieur 22 (1876), 218, 441. 
 (3) E. WINKLER, “Beitrag zur Theorie der Bogenträger,” Zeitschrift des Architekten- und Ingenieur-
Vereins zu Hannover 15 (1879), 199. 
 (4) Maurice LEVY, La Statique graphique et ses applications aux constructions, Part 2, 1886, Part 3, 
1887. 



CHAPTER III 
 

SECOND METHOD BASED UPON THE VIS VIVA 
THEOREM.  GENERAL EQUATION OF ELASTICITY 

 
 

 28. – The presentation that follows will be noticeably different in form, but not in 
principle, from the one that was presented in our “Mémoire sur les déformations 
élastiques des pièces et des systèmes des pièces à fibres moyennes planes ou gauches” 
(1).  It is more general, because it is concerned with not just pieces, but also isotropic 
bodies.  Finally, it is simpler and quicker and necessitates no integration. 
 It consists of giving a new proof to the theorem of Betti (2), Boussinesq (3), and 
Maurice Levy (4) that is very elementary and appends a complement to that theorem that 
will imply a general relation between the elastic displacements and the external forces 
that produce them. 
 Upon introducing the caloric displacements into that relation (which was not done in 
our aforementioned paper), we will then obtain the general equation of elasticity, which 
synthesizes the entire theory of deformations and permits us to determine the elastic and 
caloric displacements of an arbitrary construction and to form the equations that are 
necessary for the calculation of the constraint forces in all cases, and without special 
analyses, in bodies and hyperstatic systems of bodies that are subject to arbitrary external 
forces, as well as caloric actions. 
 One will then find that a new proof of the general equation of elasticity has been 
presented that is based upon the vis viva theorem, and in our paper that relates to it (5), it 
was established by means of the virtual work theorem. 
 
 

29. – Completion of the theorem of Betti, Boussinesq, and Maurice Levy 
 

 Consider an isostatic or hyperstatic (no. 11) system of isotropic bodies or ones with 
mean fibers. (The case of a single body will be regarded as a special case.)  Subject it to 
the action of a system of m arbitrary external forces that we shall call system (A), which 
are forces that increase slowly from zero up to certain final values.  Let: 
 

 
iAF  the final value of any of those forces 

 Ai its point of application 

iA∆  its direction 

i

A
Aλ  the projection onto the direction 

iA∆  of the elastic displacement of the point Ai 

                                                
 (1) Comptes rendus de l’Académie des Sciences 107 (1888), pp. 383 and Bulletin de la Société des 
Ingénieurs civil de France, August 1888, pp. 291 and March 1889, pp. 416. 
 (2) Betti, Teoria del Elasticità, 1872.  
 (3) BOUSSINESQ, Cours d’Analyse infinitésimale, t. I, fasc. 2, 1887, pp. 127 and 128. 
 (4) Maurice LEVY, Comptes rendus de l’Académie des Sciences 107 (1888), pp. 414. 
 (5) Bulletin de la Société des Ingénieurs civil de France, October 1907, pp. 365. – See also LECORNU, 
Cours de Mécanique professé à l’École Polytechnique, t. III, 1918, pp. 45, 63, 76. 
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 By virtue of Clapeyron’s equation (13) (no. 12), one will have: 
 

(a)      1
2

1
i i

m
A

A A
i

F λ
=
∑  = 

AFΠ , 

 
when one denotes the internal potential of the deformed system of bodies by 

AFΠ . 

 Replace the system of forces (A) with a second system (B) that is composed of n 
arbitrary external forces that increase like the first one.  Let: 
 

 
iBF  be the final value of any of those forces 

 Bi be its point of application 

iB∆  be its direction 

i

B
Bλ  be the projection onto the direction 

iB∆  of the elastic displacement of the 

point Bi 
 
 As before, one will have: 

(b)      1
2

1
i i

n
B

B B
i

F λ
=
∑  = 

BFΠ , 

 
when one denotes the internal potential of the deformed system of bodies by 

BFΠ . 

 Now let: 
 

i

B
Aλ  be the projection onto the direction 

iA∆  of the elastic displacement of the 

point Ai under the action of the system of forces (B) 
 

i

A
Bλ  be the projection onto the direction 

iB∆  of the elastic displacement of the 

point Bi under the action of the system of forces (A) 
 

 Consider the deformation of the system of bodies, no longer under the action of only 
one of those two systems (A) and (B), but under the simultaneous action of both of them.  
By virtue of the superposition principle, the projection of the elastic displacement of the 
point Ai onto the direction 

iA∆  will be 
i i

A B
A Aλ λ+ , and the projection of the point Bi onto the 

direction 
iB∆  will be 

i i

A B
B Bλ λ+ .  That deformation can be realized in two different ways, 

as follows: 
 
 1. First apply the system of forces (A), which increase from zero to their final values, 
and then apply the system (B), which increase in the same manner as the latter ones do.  
The deformation is thus accomplished over two time intervals. 
 During the first interval, the points of application Ai of the forces in the system (A) 
experience the projections of the displacements 

i

A
Aλ  onto the direction 

iA∆ , and the work 

done by those forces, which increase from zero to 
iAF , will be (no. 12): 
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1
2

1
i i

m
A

A A
i

F λ
=
∑ , 

 
whereas the points Bi will experience the projections of the displacements 

i

A
Bλ  onto the 

direction 
iB∆ . 

 During the second time interval, the points Ai will experience the projections of the 
displacements 

i

B
Aλ  onto the directions 

iA∆  of the forces 
iAF , and the work done by those 

forces, which remain constant, will be: 

1
2

1
i i

m
B

A A
i

F λ
=
∑ , 

 
whereas the points of application Bi of the forces in the system (B) will experience the 
projections 

i

B
Bλ  of the displacements onto the directions 

iB∆  of the 
iBF , and the work 

done by those forces, which increase from zero to 
iBF , will be: 

 

1
2

1
i i

n
B

B B
i

F λ
=
∑ . 

 
 The total work done by the two systems of forces (A) and (B) is the sum of the three 
partial works above, and from Clapeyron’s equation (13) (no. 12), it will be equal to the 
internal potential of the deformed system of bodies under the simultaneous action of 
those two systems of forces.  If one denotes that potential by ,A BF F′

Π  then one will have: 

 

(c)    1 1 1
2 2 2

1 1 1
i i i i i i

m m n
A B B

A A A A B B
i i i

F F Fλ λ λ
= = =

+ +∑ ∑ ∑ = ,A BF F′
Π . 

 
 Conversely, when one first applies the system of forces (B) and then the system of 
forces (A), that will lead to the equation: 
 

(d)    1 1 1
2 2 2

1 1 1
i i i i i i

n n m
B A A

B B B B A A
i i i

F F Fλ λ λ
= = =

+ +∑ ∑ ∑ = ,A BF F′
Π , 

 
in the same way as before, and that equation differs from equation (c) only by the 
permutation of the two systems of forces (A) and (B) and the corresponding elastic 
displacements. 
 Upon subtracting equation (a) and (b) from equation (c), and then from equation (d), 
one will obtain the new equations: 
 

(e)    1
2

1
i i

m
B

A A
i

F λ
=
∑ = , ( )

A B A BF F F F′ ′
Π − Π + Π , 
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(f)     1
2

1
i i

n
A

B B
i

F λ
=
∑ = , ( )

A B A BF F F F′ ′
Π − Π + Π , 

which translate into: 
 
 Theorem – If one applies the two systems of forces (A) and (B) in succession to an 
isostatic or hyperstatic system that is isotropic or has a mean fiber then: 
 
 1. The sum of the works done by the forces in the system (A) under the elastic 
displacements of the system (B) will be equal to the sum of the works done by the forces 
of the system under the elastic displacements of the system (A). 
 
 2. The two sums of the works will be equal to the difference between the internal 
potential of the body (or system of bodies) that has been deformed by the two systems of 
forces (A) and (B) when they are applied simultaneously and the sum of the internal 
potentials of the body (or system of bodies) when they are deformed by each of those two 
force systems being applied to the exclusion of the other one. 
 
 The first part of that proposition is the theorem of Betti, Boussinesq, and Maurice 
Levy.  The second part is the complement that was announced above (no. 28). 
 
 Remark. – Among the forces of the two systems (A) and (B), or only one of those 
systems, there can be ones that form couples.  Hence, suppose that the system (A) is 
composed of p forces that do not form couples and 2q forces that form q couples.  Let: 
 

ai and ia′  be the points of application of the two forces that form a couple 

 

i ia aC ′  be the value of that couple 

 

i i

B
a aϕ ′  be the projection of the elastic rotation that is given to the line i ia a′  by the 

system of forces (B) onto the axis of the couple 
i ia aC ′ . 

 
The work done by that couple for the rotational displacement is 

i i i i

B
a a a aC ϕ′ ′ , and as a result, 

one will have: 

1
2

1
i i

m
B

A A
i

F λ
=
∑  = 1

2
1 1

i i i i i i

p q
B B

A A a a a a
i i

F Cλ ϕ′ ′
= =

+∑ ∑ , 

 
which will permit one to write equation (e) in the new form: 
 

(29)  1
2

1 1
i i i i i i

p q
B B

A A a a a a
i i

F Cλ ϕ′ ′
= =

+∑ ∑ = , ( )
A B A BF F F F′ ′

Π − Π + Π , 

 
if one would like to exhibit the projected rotations 

i i

B
a aϕ ′ . 
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30. – Reciprocity principles 
 

 The three reciprocity principles that were established before (no. 26) are particular 
cases of the theorem of Betti, Boussinesq, and Maurice Levy.  The first one corresponds 
to the case in which the systems (A) and (B) are each composed of a single unit force, the 
second one, to the case in which they are each composed of a unit couple, and the third, 
to the case in which system (A) is composed of a unit couple and the system (B) is 
composed of a unit force. 
 
 

31. – General relation between the elastic displacements and  
the external forces that produce them 

 
 Let a system consist of bodies that are isotropic or have mean fibers.  Suppose that it 
is externally and internally hyperstatic (no. 11).  (The case of an isostatic system will be 
regarded as a special case, and likewise that of a single body.)  That system of bodies is 
deformed by external forces F that are applied directly. 
 Let: 
 
 1.    λ1, λ2, λ3, … 
 
denote the projections of the elastic displacements at a certain number of points: 
 
  A1, A2, A3, … 
 
of the system of bodies onto the arbitrarily-chosen directions: 
 
  ∆1, ∆2, ∆3, …, 
and let: 
 
 2.    ϕ1, ϕ2, ϕ3, … 
 
denote the projections of the elastic rotations of a certain number of lines: 
 
 1 1a a′ , 2 2a a′ , 3 3a a′  

 
that are contained in the system of bodies onto the directions: 
 
  Γ1, Γ2, Γ3, …, 
 
which are chosen arbitrarily from the directions normal to those lines. 
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 Now consider the isostatic system that is obtained by suppressing the redundant 
constraints in the given hyperstatic system (1). 
 Call the redundant external constraint forces Fes and call the redundant internal 
constraint forces of the hyperstatic system Fis .  Among those forces, one can have ones 
that form couples, which are of little importance, so it would be pointless to exhibit those 
couples here. 
 If one subjects the aforementioned isostatic system to the forces F, Fes , and Fis then it 
will take on a state of elastic equilibrium that is identical to that of the hyperstatic system 
when it is subject only the forces F.  In particular, the elastic displacements of the points 
A1, A2, A3, … and the elastic rotations of the lines 1 1a a′ , 2 2a a′ , 3 3a a′ , … in that isostatic 

system are the same as the ones in the hyperstatic system. 
 Suppress the forces F, F0s , F1s from the isostatic system, which will no longer be 
subject to any forces then, and apply: 
 
 1. Some forces of arbitrary magnitude: 
 
  F1, F2, F3, … 

 
 that one calls auxiliary forces to the points: 
 
  A1 , A2 , A3 , … 
 
of that system along the directions: 
 
  ∆1 , ∆2 , ∆3 , … 
 
 2. Some forces that form couples of arbitrary magnitude: 
 
  C1 , C2 , C3 , …, 

 
which are called auxiliary couples, along axes in the directions: 
 
  Γ1 , Γ2 , Γ3 , … 
at the points: 
  1 1,a a′ , 2 2,a a′ , 3 3,a a′ , … 

 
 Having said that, apply equation (29) (no. 29, the complete theorem of Betti, 
Boussinesq, and Maurice Levy) to the isostatic system, while one considers the system of 
forces (A) in that equation to be composed of auxiliary forces and couples F1, F2, F3, …, 

                                                
 (1) It was pointed out before (no. 11) that depending upon the number and nature of those constraints, a 
hyperstatic system can be made isostatic in just one way or several of them.  Here, we shall consider any 
one of the isostatic systems that are obtained in some way. 
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C1 , C2 , C3 , …, and the system of forces (B) to be composed of the forces F, Fes , and Fis .  

One will get: 
F1 λ1 + F2 λ2 + F3 λ3 + …, C1 ϕ1 + C2 ϕ2 + C3 ϕ3 + … 

 
= , , , , , , ,( )

es is es isF F F F F FΠ − Π + Π
F C F C

, 

 
in which , ,es isF F FΠ , ,Π

F C
, , , , ,es isF F FΠ

F C
 denote the total internal potential of the isostatic 

system when it is deformed by: 
 
 1. The given forces F and the redundant constraint forces Fes and Fis of the 
hyperstatic system, 
 
 2. The auxiliary forces and couples F and C, 

 
 3. The totality of all forces and couples, 
 
respectively.  (The overbar on the symbol Π is intended to indicate that those potentials 
relate to the isostatic system.) 
 We write: 
(30)   λ ϕ+∑ ∑F C = , , , , , , ,( )

es is es isF F F F F FΠ − Π + Π
F C F C

, 

to abbreviate. 
 
  

32. – General equation of elasticity 
 

 Suppose that the hyperstatic system of bodies that was considered before (no. 31) is 
subject to not only some external forces F that are applied directly, but also to a 
temperature variation τ that is measured by starting from the temperature that is realized 
at its constraints and will be positive for an increase and negative for a decrease.  The 
deformation of that system will then be both elastic and caloric. 
 Consider a certain number of points and lines in the system, and let: 
 
 1. λ be the projection of the elastic and caloric displacement of any one of those 
points A onto an arbitrarily-chosen direction. 
 
 2. ϕ be the projection of the elastic and caloric rotation of any one of those lines aa′ 
onto a direction that is chosen arbitrarily from the normals to aa′. 
 
 Imagine the isostatic system that is obtained by suppressing the redundant constraints 
from the given hyperstatic system.  Subject it to the external forces F, redundant 
constraint forces Fes and Fis (no. 31) of the hyperstatic system, and the temperature 
variation τ.  It will take on a state of elastic and caloric deformation that is identical to 
that of the hyperstatic system when it is subject to only the forces F and the temperature 
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variation τ.  In particular, the values of λ and ϕ are the same in the hyperstatic system and 
in the isostatic one. 
 Let λ′ and ϕ′ denote the values that λ and ϕ would take if the isostatic system were 
subject to only the forces F, Fes, and Fis ; i.e., if the deformation were purely elastic.  Let 
λτ and ϕτ be the values that those same quantities would take if the system were subject 
to only the variation of temperature τ ; i.e., if its deformation were purely caloric. 
 By virtue of the principle of superposition of elastic and caloric effects, one will have: 
 
(a)     λ = λ′ + λτ , ϕ = ϕ′ + ϕτ . 
 
 Having said that, we shall examine the aforementioned elastic deformation and 
caloric deformation separately. 
 As far as the first one is concerned, from the relation (30) (no. 31), one will have 
immediately: 
(b)    λ ϕ′ ′+∑ ∑F C  = , , , , , , ,( )

es is es isF F F F F FΠ − Π + Π
F C F C

, 

 
in which F and C denote the auxiliary forces that are applied to the points A along the 

directions ∆ and the auxiliary couples whose two forces are applied at the extremities of 
the lines aa′ and whose axes have the directions Γ, respectively. 
 In order to study the second deformation, imagine that one has suppressed the forces 
F, Fes, Fis and applied the same auxiliary forces and couples as above to the isostatic 
system.  The system will take on a certain state of deformation.  Let: 
 

λ″ be the projection of the elastic displacement of any one of the points A onto 
the direction ∆. 

 
ϕ″ be the projection of the elastic rotation of any one of the lines aa′ onto the 

direction Γ. 
 

 One has: 

( )1

2
λ ϕ′′ ′′+∑ ∑F C = ΠF, C , 

 
by virtue of Clapeyron’s equation (13) (no. 12). 
 Now, subject the system to the temperature variation τ .  It will take on a caloric 
deformation that is superimposed with its elastic deformation, in such a way that the 
projection of the displacement of any of the points A and the projection of the rotation of 
any of the lines aa′ will become: 
 

λ″ + λτ , ϕ″ + ϕτ , 
 
respectively, and by virtue of the generalized Clapeyron equation (15) (no. 13), one will 
have: 
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1
( ) ( )

2 τ τλ λ ϕ ϕ′′ ′′ + + + ∑ ∑F C  = 1
, 2 ( )x y zn n n dx dy dzατ ′ ′ ′Π − + +∫∫∫F C

, 

 
in which xn′ , yn′ , and zn′  denote the normal fatigues that are produced by the auxiliary 

forces and couples F and C on three elements that are normal to the coordinate axes, 

when taken at an arbitrary point (x, y, z) of the isostatic system. 
 Upon subtracting corresponding sides of the two equations above, one will obtain: 
 

(c)   τ τλ ϕ+∑ ∑F C  = − ( )x y zn n n dx dy dzατ ′ ′ ′+ +∫∫∫ . 

 
 Add the corresponding sides of the two equations (b) and (c), while recalling the 
relations (a).  One will finally have: 
 

(31) λ ϕ+∑ ∑F C = , , , , , , ,( )
es is es isF F F F F FΠ − Π + Π

F C F C
− ( )x y zn n n dx dy dzατ ′ ′ ′+ +∫∫∫ . 

 
 That is the general equation of elasticity for isotropic systems of bodies. 
 In the mathematical theory of elasticity, if one knows how to form the expressions for 
the normal and tangential fatigues, and as a result, from formulas (3) and (5) (no. 4), that 
of the internal potential, as functions of the external forces that produce those fatigues 
then the equation above will permit one to solve all of the problems that relate to the 
elastic and caloric deformation of constructions without it being necessary to appeal to 
the hypotheses of the resistance of materials.  An important advance would then have 
been achieved if one managed to overcome the difficulties that are presented by the 
integration of the partial differential equations of the mathematical theory of elasticity. 
 
 
 33. – Upon repeating the preceding proof in the case of a system with mean fibers, 
one will find that: 
 

(32) λ ϕ+∑ ∑F C  = , , , , , , ,( )
es is es isF F F F F FΠ − Π + Π

F C F C
− dsατ ∫∫∫N , 

 
in which N denotes the normal effort that is produced on an arbitrary section of any one 

of the bodies of the isostatic system that is obtained by suppressing the redundant 
constraints of the given hyperstatic system under the action of the auxiliary forces and 
couples F and C. 

 One can, moreover, pass directly from equation (31) to equation (32) by applying the 
relation (17) (no. 13), which will give: 
 

( )x y zn n n dx dy dz′ ′ ′+ +∫∫∫  = ds∫N  

here. 
 The right-hand side of equation (32) is transformed as follows: 
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 From formula (11) (no. 9), one can write: 
 

(a)  , , , , , , ,( )
es is es isF F F F F FΠ − Π + Π

F C F C
 = , , , , , , ,( )

es is es isF F F F F F dsϖ ϖ ϖ − + ∫ F C F C
, 

 
in which one lets , ,es isF F Fϖ , ,ϖ

F C
, , , , ,es isF F Fϖ

F C
 denote the internal potentials per unit length 

of the mean fiber of any one of the bodies of the previously-defined isostatic system 
when one deforms by means of: 
 
 1. Forces F that are applied directly and redundant constraint forces Fes and Fis of 
the given hyperstatic system, 
 
 2. Auxiliary forces and couples F and C, 

 
 3. The totality of those forces and couples, 
 
respectively.  Let: 
 
 1.   N, Tη , Tζ , Mξ , Mη , Mζ 
 
denote the elements of the reduction (at the center of gravity of an arbitrary section of any 
of the bodies) of the elastic forces that are developed in that section by applying the force 
F, Fes , and Fis to the isostatic system (those elements are identically the same as in the 
hyperstatic system when it is subject to only the forces F). 
 Let: 
 
 2.   N, Tη , Tζ , Mξ , Mη , Mζ 

 
be the analogous reduction elements when the isostatic system is assumed to be subject to 
the forces and couples F and C. 

 
 By virtue of the superposition principle, if that system were subject to the 
simultaneous action of forces and couples F, Fes , Fis , F, and C then the reduction 

elements would become: 
 

N + N,  Tη + Tη , Tζ + Tζ , Mξ +Mξ , Mη + Mη , Mζ +Mζ . 
 
 Having said that, from formula (9) (no. 9), one will have: 
 

, ,es isF F Fϖ = 
2 221

2

T MN

E G E I
η ζ

η

 
+ + +  Ω Ω 

⋯ . 
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 Now, that expression for , ,es isF F Fϖ  is a homogeneous function of degree two in the six 

quantities N, Tη , …, Mζ , and in order to obtain the expressions for ,ϖ
F C

 and , , , ,es isF F Fϖ
F C

, 

it will suffice to replace those six quantities with, first of all N, Tη , …, Mζ , and then N 

+ N, Tη + Tη , …, Mζ +Mζ .  From a property of homogeneous functions of degree two 

(1), one will then have: 
 

, , , , , , ,( )
es is es isF F F F F Fϖ ϖ ϖ− +

F C F C
 = , , , , , ,es is es is es isF F F F F F F F F

N T Mη η
η ζ

ϖ ϖ ϖ∂ ∂ ∂
+ + +

∂ ∂ ∂
⋯N T M , 

 
or, upon replacing the partial derivatives with their values that one deduces from the 
expression for , ,es isF F Fϖ : 

, , , , , , ,( )
es is es isF F F F F Fϖ ϖ ϖ− +

F C F C
 = 

T M

E G E I
η ζ

η ζ
ζ

+ + +
Ω Ω

⋯

N
N T M . 

 
 As a result, upon substituting this into formula (a), one will have: 
 

(b)  , , , , , , ,( )
es is es isF F F F F FΠ − Π + Π

F C F C
 = 

T M
ds

E G E I
η ζ

η ζ
ζ

 
+ + + Ω Ω  

∫ ⋯

N
N T M , 

 
and equation (32) will become: 
 
(33) λ ϕ+∑ ∑F C  

= 
T T M M MN

ds
E G G G I E I E I

η ζ ξ η ζ
η ζ ξ η ζ

ξ η ζ

ατ
  

− + + + + +  Ω Ω Ω   
∫ N T T M M M , 

 
moreover. 
 In the applications, it is important to not lose sight of the facts that: 
 
 1. The projections of the displacements λ and γ, as well as the elements N, Tη, …, 
Mζ of the reduction at the center of gravity of an arbitrary section of any of the bodies of 
the elastic forces that act in that section (or, what amounts to the same thing, of the 

                                                
 (1) Here is the statement of that property, which was established by Euler.  Let: 
f (x, y, …) be a function that is homogeneous of degree two in an arbitrary number of variables x, y, … 
x′, y′, … be a system of arbitrary values that one attributes to those variables. 
 One will have identically: 
 
 f [(x + x′), (y + y′, …)] – [f (x, y, …) + f (x′, y′, …)] 

=
( , , ) ( , , )f x y f x y

x y
x y

∂ ∂
′ ′+

∂ ∂

⋯ ⋯

 + … =
( , , ) ( , , )f x y f x y

x y
x y

′ ′ ′ ′∂ ∂
+

′ ′∂ ∂

⋯ ⋯

 + … 
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external forces that are applied to the left of that section), relate to the given hyperstatic 
system when it is subjected to the given forces F. 
 
 2. The similar reduction elements N, Tη , …, Mζ relate to the isostatic system that is 

obtained by suppressing the redundant external and internal constraints from the given 
hyperstatic system, which is an isostatic system that is subjected to auxiliary forces and 
couples F and C.  The latter elements can be calculated very easily, since they are 

statically determinate. 
 
 It is obvious that equation (33) will remain valid in the case where the given system is 
isostatic.  All of the quantities that enter into it then relate to that isostatic system. 
 
 
 34. – Elastic and caloric rotation of an arbitrary section. – From the standpoint of 
applications, it is useful to introduce into equation (33) (no. 33) the projection onto an 
arbitrarily-chosen direction of the elastic and caloric rotation of an arbitrary transverse 
section (S) of any of the bodies.  Here is how one does that: 
 Draw a line aa′ in the section considered (S) in a direction that is normal to Γ. [That is 
always possible; in order to see that, it will suffice that aa′ should be directed along the 
intersection of the section (S) and a plane normal to Γ].  Apply two forces at a and a′ that 
form an auxiliary couple C whose axis is directed along Γ.  A term C ϕ in equation (33) 

will correspond to that that couple C, where ϕ denotes the projection of the rotation of the 

line aa′ onto the direction Γ of rotation.  Now, one can use the kinematical considerations 
that used already (no. 15) in order to prove Corollary III of Castigliano’s theorem to 
easily establish that this projection is equal to that of the rotation of the section (S) around 
the direction Γ.  One can then say that in each of the terms C ϕ of equation (33), ϕ 

represents the projection of the rotation of an arbitrary section (S) onto an arbitrarily-
chosen direction Γ under the conditions that the auxiliary couple C must be applied to that 

section and that its axis must have the direction Γ. 
 
 
 35. Case of planar flexure. – If the body or (isostatic or hyperstatic) system of 
bodies considered is subject to planar flexure in every section then the elements of the 
reduction of the elastic forces will be exclusively a normal effort N, a shearing effort T 
that is situated in the plane of reduction or of the mean fibers (viz., the plane of flexure), 
and a flexure couple M with an axis that is normal to that plane.  As a result, equation 
(33) (no. 33) will reduce to: 
 

(33′)  λ ϕ+∑ ∑F C  = 
N T M

ds
E G E I

ατ
  

− + +  Ω Ω  
∫ N T M . 

 
 In order to use the latter formula, one applies: 
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 1. Auxiliary forces F to points that are situated in the plane of flexure and along the 

direction ∆ that are drawn in that plane. 
 
 2. Couples C to the transverse section whose axes are directed normally to that 

plane. 
 
 It will then follow that the quantities λ will be the projections of the displacements of 
the points considered onto the directions ∆, and that the quantities ϕ will be the rotations 
of the sections considered. 
 
 

36. – General expression for elastic and caloric displacements 
in bodies and systems of bodies with mean fibers 

 
 We propose to form the general expression for: 
 
 1. The projection λ of the elastic and caloric displacement of an arbitrary point A 
onto an arbitrarily-chosen direction ∆. 
 
 2. The projection ϕ of the elastic and caloric rotation of an arbitrary section (S) onto 
an arbitrarily-chosen axis Γ. 
 
 Those two expressions follow immediately from the general equation of elasticity, 
when it is taken in the form (33) (no. 33). 
 In order to obtain the first one, it will suffice to introduce into that equation just one 
auxiliary force F of arbitrary magnitude that is applied at A in the direction ∆.  One will 

then obtain: 

(34)   λ = 
T MN

ds
E G E I

η η ζ ζ

ζ

ατ
  

− + + +  Ω Ω   
∫ ⋯

T MN

I I I
. 

 
 In order to obtain the second one, it will suffice to introduce into that same equation 
just one auxiliary couple C of arbitrary magnitude about an axis in the direction Γ, which 

will give: 

(35)   ϕ = 
T MN

ds
E G E I

η η ζ ζ

ζ

ατ
  

− + + +  Ω Ω   
∫ ⋯

T MN

I C C
. 

 
 One should not lose sight of the fact that if the system considered is hyperstatic then 
the reduction elements N, Tη , …, Mζ  must be calculated in the isostatic system that is 

obtained by suppressing the redundant constraints from that hyperstatic system (no. 33, in 
fine). 
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 Case of a system subject to planar flexure. – In that case, the preceding formulas 
will reduce to: 

(34′)   λ = 
N T M

ds
E G E I

ατ
  

− + +  Ω Ω  
∫
N T M

I I I
, 

 

(35′)   ϕ = 
N T M

ds
E G E I

ατ
  

− + +  Ω Ω  
∫
N T M

I C C
. 

 
 Recall that in the latter case, the axis of the auxiliary couple C that is applied to the 

section considered (S) must be directed normally to the plane of flexure, and that ϕ is the 
rotation of that section. 
 
 

37. – Ernest Flamard’s formulas 
 

 In the general equation of elasticity (32) (no. 33), which relates to systems of bodies 
with mean fibers, one can first introduce just one auxiliary force F and then just one 

auxiliary couple C and obtain the two formulas: 

 

(a)   
, , , , ,

, , , , ,

1
( ) ,

1
( ) ,

es is es is

es is es is

F F F F F F

F F F F F F

ds

ds

λ ατ

ϕ ατ

  = Π − Π + Π −  

  = Π − Π + Π − 

∫

∫

F F

C C

N
F

N
C

 

 
and if the system of bodies is not subject to any temperature variation then they will 
reduce to: 

(b)   
, , , , ,

, , , , ,

1
( ) ,

1
( ) ,

es is es is

es is es is

F F F F F F

F F F F F F

λ

ϕ

  = Π − Π + Π  

  = Π − Π + Π 

F F

C C

F

C

 

 
just as one can easily verify that if, on the contrary, the system is subject to a temperature 
variation then one can write the two formulas (a) in the form: 
 

(c)   
, , , , ,

, , , , ,

1
( ) ,

1
( ) ,

es is es is

es is es is

F F F F F F

F F F F F F

H H H

H H H

λ

ϕ

  = − +  

  = − + 

F F

C C

F

C

 

 
when one introduces the function H that is expressed by formula (25) (no. 19) and agrees 
that , ,es isF F FH  represents the value of the function H that is attached to the isostatic system 
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that is subjected to the forces F, Fes, Fis, and the temperature variation τ, and that 

, , ,es isF F FH
F

 and , , ,es isF F FH
C
 represent the values that the same function takes when the 

isostatic system is subjected to the auxiliary force F or the auxiliary couple C, in addition. 

 Formulas (b) and (c) were established by Ernest Flamard in his previously-cited 
doctoral thesis, although in a different form from what we just indicated.  They remain 
valid in the case of isotropic systems. 
  
 

38. – Agreement between the results of the two methods based upon  
the vis viva theorem 

 
 Let us compare the general expressions (27) (no. 21) and (34) (no. 36) for the 
projection of the elastic and caloric displacement of an arbitrary point A onto an 
arbitrarily-chosen direction ∆: 
 

 λ = 
T d M dN d

ds
E d G d E I d

η η ζ ζ

ζ

ατ
  

− + + +  Ω Ω   
∫ ⋯

T MN

I I I
, 

 

 λ = 
T MN

ds
E G E I

η η ζ ζ

ζ

ατ
  

− + + +  Ω Ω   
∫ ⋯

T MN

I I I
, 

 
which are expressions that are obtained by the first and second method, respectively, 
based on the vis viva theorem. 
 In those two formulas, N, Tη , …, Mζ  are the elements of the reduction at the center 

of gravity of an arbitrary section of any of the bodies of the elastic forces that are 
developed in that section by applying the auxiliary force F to the point A along the 

direction ∆, and if the system is hyperstatic then those elements that one uses in one or 
the other of the two formulas must be calculated in the isostatic system that is obtained 
suppressing the redundant constraints of that hyperstatic.  Now, by virtue of the principle 
of superposition of the effects of the forces, the elastic forces in an arbitrary section, and 
as a result, the elements N, T , …, M of their reduction, will be proportional to the 

external force F that produces them.  One can then write: 

 
N = a F, Tη = b F, …,  Mζ  = f F, 

 
in which a, b, …, f denote six constants that are independent of F.  Hence: 

 
d

d

N

I
= a, 

d

d
ηT

I
= b, …, 

d

d
ζM

I
= f, 

and as a result: 
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d

d

N

I
= 
N

I
, 

d

d
ηT

I
= ηT

I
, …, 

d

d
ζM

I
= ζM

I
, 

 
which proves the agreement between the two expressions (27) and (34) for the projected 
displacement λ.  The agreement between the two expressions (28) (no. 21) and (35) (no. 
36) of the projected rotation ϕ is proved in the same manner. 
 
 

39. – Determination of the redundant constraint forces in systems of bodies with 
mean fibers. – Equation of redundant constraints 

 
 The method of calculating the redundant constraint forces follows from the general 
equation of elasticity.  In order to simplify the presentation, we shall suppose that the 
hyperstatic system considered, which is deformed by forces F that are applied directly 
and a temperature variation τ, is subject to planar flexure.  In that case (no. 35), the 
general equation of elasticity will reduce to: 
 

(33′)  λ ϕ+∑ ∑F C  = 
N T M

ds
E G E I

ατ
  

− + +  Ω Ω  
∫ N T M . 

 
 The auxiliary forces and couples to be applied to the isostatic system that is obtained 
by suppressing the redundant constraints of the hyperstatic system considered that we 
shall adopt are: 
 
 1. Forces F of arbitrary magnitude that have same points of application and the 

same direction as the redundant external constraint forces of the hyperstatic system. 
 
 2. Couples C of arbitrary magnitude that have the same sections of application as the 

couples of the redundant external constraint forces of the hyperstatic system, and like 
them, they have their axes normal axis of the plane of flexure. 
 
 3. Forces F′ of arbitrary magnitude that have the same points of applications and the 

same direction as the redundant internal constraint forces of the hyperstatic system, and 
like them, they are pair-wise equal and opposite. 
 
 4. Couples C′  of arbitrary magnitude that have the same sections of application as 

the couples of the redundant internal constraints of the hyperstatic system, and like them, 
they are pair-wise equal and in the opposite senses, 
 
 Moreover, equation (33′) is written: 
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(a)  λ ϕ λ ϕ′ ′+ + +∑ ∑ ∑ ∑F C F C  = 
N T M

ds
E G E I

ατ
  

− + +  Ω Ω  
∫ N T M . 

 
 It is easy to see that its left-hand side is zero. 
 Indeed, the projections λ of the elastic displacements of the points of application of 
the auxiliary forces F and F′ onto the directions of those forces, as well as the rotations ϕ 

of the sections of application of the auxiliary couples C and C′, are attached to the 

hyperstatic system that is deformed by the forces F and by the temperature variation τ.  
Now: 
 
 1. The projections λ in the directions of the forces F (which are, by hypothesis, 

those of the redundant external constraint forces) are zero, by reason of those constraints 
themselves, and as a result, the sum λ∑F  will likewise be zero. 

 
 2. The rotations ϕ of the sections of application of the couples of the redundant 
external constraints are zero by reason of those constraints themselves, so as a result, the 
sum ϕ∑C  will likewise be zero. 

 
 3. By hypothesis, the auxiliary forces F′ are pair-wise equal and opposite, in such a 

way that any force + F′ corresponds to a force – F′.  Now, those two forces + F′  and 

−F′ are applied at two points, which are constrained to remain in contact in the 

hyperstatic system, and consequently, the projected displacement λ will be the same.  
Hence, each term + F′ λ in the sum λ′∑F  will correspond to a term – F′ λ, and as a 

result, that sum will be zero. 
 
 4. The sum ϕ∑C  is zero for the same reason. 

 
 Equation (a) then reduces to: 
 

(36)   
N T M

ds
E G E I

ατ
  

− + +  Ω Ω  
∫ N T M  = 0. 

 
 That is the equation of the redundant constraints in which the elements of reduction 
N, T, M are attached to the hyperstatic system considered, which is subject to forces F 
and the temperature variation τ, and those N, T, M of the isostatic system are subject to 

the auxiliary forces and couples F, C, F′, and C′ that were defined above.  That equation 

is used in the following manner: 
 Suppose that one has: 
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 m forces and n couples of the redundant external constraints 
 
 2p forces and 2q couples of the redundant internal constraints. 
 
 The total number of forces and couples of the redundant constraints is therefore m + n 
+ 2 (p + q).  However, the forces and couples of the redundant internal constraints are 
pair-wise equal and opposite, so the number of unknown forces and couples will reduce 
to m + n + p + q. 
 The use of the equation of the redundant constraints demands the application (to the 
system that is made isostatic by suppressing the redundant constraints and subtracting the 
action of the forces F and the temperature variation t) of: 
 
 m auxiliary forces F1, …, Fm , 

 n auxiliary couples C1, …, Cm , 

 2p auxiliary forces 1′F , − 1′F , …, p
′F , − p

′F , 

 2q auxiliary couples 1′C , − 1′C , …, q
′C , − q

′C , 

 
which are forces and couples of arbitrary magnitude, while the forces have the same 
points of application and the same directions as the redundant constraint forces and the 
couples have the same sections of application as the redundant constraint couples. 
 The corresponding elements of reduction N, C, and M for an arbitrary section of any 

body of the system are linear, homogeneous functions of those auxiliary forces and 
couples.  One can then write: 
 

(a)   

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

,

,

,

m m n n

p p q q

m m n n

p p q q

m m n n

p p q q

α α β β
α α β β
γ γ δ δ
γ γ δ δ
ε ε θ θ
ε ε θ θ

= + + + + +
 ′ ′ ′ ′ ′ ′ ′ ′+ + + + + +
 = + + + + +
 ′ ′ ′ ′ ′ ′ ′ ′+ + + + + +
 = + + + + +
 ′ ′ ′ ′ ′ ′ ′ ′+ + + + + +

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯ ⋯

N I I C C

I I C C

T I I C C

I I C C

M I I C C

I I C C

 

in which 
α, β, γ, ε, θ,  α′, β′, γ′, ε′, θ′ 

 
are functions of the coordinates x and y of the center of gravity of the section considered. 
 Substitute those expressions into equation (36) for the redundant constraints and 
group the terms that contain the auxiliary forces and couples: 
 

F1, …, Fm , C1, …, Cm , 1′F , …, p
′F , 1′C , …, q

′C , 

 
respectively, as factors.  The equation thus-transformed includes m + n + p + q groups, 
and in order for it to be satisfied, it is necessary that each of those groups must be 
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separately zero, insofar as the auxiliary forces and couples are arbitrary magnitudes.  
Moreover, one will have the following m + n + p + q equations: 
 

(b)    

1 1 1

1 1 1

0,

.......................................................................

0,

0,

...............

m m m

N T M
ds

E G E I

N T M
ds

E G E I

N T M
ds

E G E I

α ατ γ ε

α ατ γ ε

β ατ δ θ

  
− + + =  Ω Ω  

  
− + + =  Ω Ω  

  
− + + =  Ω Ω  

∫

∫

∫

........................................................

0,

.......................................................................

n n n

N T M
ds

E G E I
β ατ δ θ















   

− + + =   Ω Ω  



∫

 

 

(b′)    

1 1 1

1 1 1

0,

.......................................................................

0,

0,

......

p p p

N T M
ds

E G E I

N T M
ds

E G E I

N T M
ds

E G E I

α ατ γ ε

α ατ γ ε

β ατ δ θ

  ′ ′ ′− + + =  Ω Ω  

  ′ ′ ′− + + =  Ω Ω  

  ′ ′ ′− + + =  Ω Ω  

∫

∫

∫

.................................................................

0.q q q

N T M
ds

E G E I
β ατ δ θ
















   ′ ′ ′− + + =   Ω Ω  
∫

 

 
 If one replaces N, T, and M in those equations as functions of the m + n + p + q 
unknown redundant force and couple constraints then they will provide the values of 
those forces and couples. 
 
 Remark. – Equation (b) expresses the redundant external constraints and equations 
(b′ ) provide the redundant internal constraints. 
 One can form those equations in a slightly-different manner that will be more 
convenient in certain cases.  Hence, in order to form the first of equations (b), rather than 
applying all of the auxiliary forces and couples that were indicated above to the system 
that has been rendered isostatic, it will suffice to apply only the single auxiliary force F1.  

Formulas (a) will then reduce to: 
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N = F1 α1 , T = F1 γ1 , M = F1 ε1 , 

 
and the substitution of those expressions for N, T, and M into equation (36) will give the 

first of equations (b).  The same procedure is applicable to the successive formation of 
the other equations (b). 
 Similarly, in order to form the first of equations (b), it will suffice to apply the two 
auxiliary forces 1′F  and − 1′F  to the system that has been rendered isostatic, to the 

exclusion of the other auxiliary forces and couples.  Formulas (a) will then reduce to: 
 

N = 1 1α′ ′F , T = 1 1γ′ ′F , M = 1 1ε′ ′F , 

  
and the substitution of those expressions for N, T, and M into equation (36) will give the 

first of equations (b′ ).  The same procedure is applicable to the successive formation of 
the other equations (b′ ). 
 
 

40. – Example of the determination of redundant external constraint forces 
 

 Consider the arch that is anchored at its two extremities that was taken in no. 23 (Fig. 
4) to be an example of the generalized theorem of General Menabrea for the 
determination of the redundant external constraint forces.  That arch is subject to forces 
that are located in the plane of its mean fiber, as well as a temperature variation τ, which 
is measured by starting from the temperature that is realized by those anchors. 
 We have seen that the reactions of the left anchor are reducible at the center of gravity 
A of the anchored section to two mutually-rectangular forces X and Y and a couple Z with 
an axis that is normal to the plane of the mean fiber of the arch.  They are the two forces 
and the couple of the redundant constraints.  The problem is now to determine them. 

 y T 
N 

M 
B 

x 

C 

A 

G 

Fx 

Fy 

 
Figure 7. 

 
 To that effect, following the method that was presented in no. 39, make the arch 
isostatic by suppressing the left anchor (Fig. 7), and then apply two auxiliary forces Fx 

and Fy to the point A with the same directions as X and Y, resp., to the section whose 

point is the center of gravity, and apply a couple C whose axis is normal to the plane of 

the mean fiber (forces and couple arbitrary magnitudes). 
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 The elements of the corresponding reduction N, T, and M to the center of gravity 

( , )G x y  of an arbitrary section of the arch have the following expressions: 
 

 N = Fx 
dx

ds
+ Fy 

dy

ds
, 

 

 T = − Fx
dy

ds
 + Fy

dx

ds
, 

 
 M = − Fx y + Fy x + C. 
 
 Substitute those expressions into equation (36) (no. 39) for the redundant constraints 
and group the terms that contain Fx , Fy , and C, respectively, as factors.  That will give: 
 

 x

N dx T dy M y
ds

E ds G ds E I
ατ

  
− − −  Ω Ω  

∫F  

 

 + y

N dy T dx M x M
ds ds

E ds G ds E I E I
ατ

  
− + + +  Ω Ω  

∫ ∫F C  = 0, 

 
in which Fx , Fy , and C are arbitrary quantities, so in order for that equation to be 

satisfied, it is necessary that one must have: 
 

 
N dx T dy M y

ds
E ds G ds E I

ατ
  

− − −  Ω Ω  
∫  = 0, 

 

 
N dy T dx M x

ds
E ds G ds E I

ατ
  

− + +  Ω Ω  
∫ = 0, 

 

 
M

ds
E I∫  = 0, 

separately. 
 If one replaces N, T, and M with their expressions (b) (no. 23) as functions of the 
unknowns X, Y, and Z then one will obtain the three equations (c) (same number) that 
determine those unknowns. 
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41. – Example of the determination of redundant internal constraint forces 
 

 Recall the example that was considered before in no. 24 (Fig. 5): viz., an arch that is 
anchored at its two extremities and includes a ball O and is subjected to forces that are 
located in the plane of the mean fiber, as well as a temperature variation τ, which is 
measured by starting from the temperature that is realized at the anchors. 
 We have seen that the arch is, in reality, a system of two anchored arches AO and OB, 
each of which has one of its extremities joined to an extremity of the other by the ball O, 
that the redundant constraint forces are two forces X and Y that are normal to each other, 
which are applied to the extremity O of the arch OB and two forces – X and – Y that are 
applied to the extremity O of the arch AO.  Those are the two forces that one must 
determine. 

 y 
T 
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Fy 
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Fy 
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− Fy 
− Fx 

O 

 
Figure 8. 

 
 To that effect, following the general method of no. 39, the system is rendered isostatic 
by suppressing the ball O, which creates the redundant internal constraints.  One then 
applies (Fig. 8) auxiliary forces Fx , Fy , − Fx , and − Fy   of arbitrary magnitude to it, 

which have the same point of application and the same direction as the redundant 
constraint forces X, Y, − X, and – Y.  The corresponding reduction elements N, T, and M 

at the center of gravity G (x, y) of any section of either of the arches AO and OB will have 
the expressions: 

 N =   Fx 
dx

ds
+ Fy 

dy

ds
, 

 

 T = − Fx
dy

ds
 + Fy

dx

ds
, 

 
 M = − Fx y + Fy x . 

 
 Substitute those expressions into equation (36) (no. 39) for the redundant constraints 
and separate the terms into two groups that contain Fx and Fy as factors, respectively.  In 

order for the equation thus-transformed to be satisfied, it is necessary that each of those 
two groups must be zero separately, since the auxiliary forces Fx and Fy are arbitrary 

quantities.  In that way, we will obtain the two equations: 
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N dx T dy M y

ds
E ds G ds E I

ατ
  

− − −  Ω Ω  
∫  = 0, 

 

 
N dy T dx M x

ds
E ds G ds E I

ατ
  

− + +  Ω Ω  
∫ = 0. 

 
 If one replaces N, T, and M in those two equations with their expressions (b) (no. 24) 
as functions of X and Y then one will obtain two equations (c) (same number) that 
determine those unknowns. 
 
 

42. – Another example of the determination of redundant  
external constraint forces 

 
 Recall the example that was considered before in no. 25 (Fig. 6): viz., a straight beam 
with a double articulated lattice that rests upon two simple supports and is subject to 
loads that are applied at the nodes. 
 Before making use of equation (36) (no. 39) for the redundant constraints, we remark 
that in the present case, things can be simplified as follows: 
 The elastic forces that are produced by the loads in any section of an arbitrary bar of 
the beam are reducible to exclusively the normal effort N (the shearing effort and the 
flexure couple are zero).  Moreover, that normal effort is the same in all sections of the 
bar, and as was said in no. 23, it bears the name of the effort in the bar.  We shall see later 
on that, similarly, the elastic forces that are produced by the auxiliary forces F in any 

section of any bar are reducible to exclusively the normal effort N and that this effort is 

the same in all sections of the bar.  When one suppresses the term in equation (36) that 
relates to the temperature variation, which is not included here, it will then reduce to: 
 

N
ds

EΩ∫N = 0, 

 
in which the integral is taken along the total length of the mean fiber of any bar. 
 Now, for a bar of length s, since N and N are constant, as well as Ω, one will have: 

 

0

s N
ds

EΩ∫ = 
N s

EΩ
N . 

 
Consequently, upon letting m denote the number of bars that constitute the beam, one will 
have: 

(a)      
1

m N s

EΩ∑N = 0. 
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 Having said that, we saw in no. 25 that the redundant constraints on the beam are 
constraints on the diagonals (0, 1′), …, (i – 1, i′ ), …, (n – 1, n′ ), with the lower attaching 
nodes 0, …, i – 1, …, n – 1, and that for the diagonal (i – 1, i′ ), for example, the 
redundant constraint forces are two forces of the same magnitude and the same direction 
as the effort iZ′  in that diagonal, one of which is applied to the extremity of the 

aforementioned diagonal that was made free, and the other of which is applied to the 
node i – 1; those forces are repulsive or attractive according to whether iZ′  is an effort of 

compression or tension, respectively. 
 

0 
1 i–1 i n − 1 

n 

0′ 1′ i′−1 i′ n′ − 1 n′ 

− F 

F 
α 

 
Figure 9. 

 
 Furthermore, according to the final remark in no. 39, if the beam is made isostatic by 
suppressing the redundant constraints and subtracting the action of the loads then apply 
an auxiliary force F to the lower extremity of the diagonal (i – 1, i′ ) (Fig. 9) that is 

directed along the mean fiber to that diagonal and a force – F to the node i − 1.  It is clear 

that: 
 
 1. Those two auxiliary forces produce no elastic forces in the bars of the beam other 
than the ones of the panel (i), in such a way that N = 0 in those bars. 

 
 2. In each of the bars of the panel (i), the elastic forces that the auxiliary forces 
generate in any section are reducible to exclusively the normal effort N, and that effort is 

constant all along that bar. 
 
 The values of that normal effort N in the six bars of the panel (i) are calculated 

immediately by pure statics.  They are indicated in the second column of the Table 
below.  The special notations that were adopted in no. 25 in order to represent the efforts 
N that are produced in the bars by the loads, as well as the lengths s and sections Ω of 
those bars, are reproduced in the last three columns of that Table. 

 Each of the six bars in the panel (i) corresponds to a term in the sum 
1

m

∑ in equation 

(a).  The corresponding terms in the other bars of the beam are zero, since N = 0 for each 

of those bars.  As a result, equation (a) can be written in the following form, when one 
suppresses the common factor F and the common denominator E: 
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− a sin α i i

i i

X X ′
+ ′Ω Ω 

– b cos α 1i i i i

i i i i

Y Y Z Z
c

S Sω ω
−   ′

+ + +   ′   
= 0. 

 
 If one replaces Zi, Xi , iX ′ , Yi−1, and Yi in the latter equation with their expressions (c) 

and (g) (no. 25) that are obtained by pure statics, and if one takes into account the facts 
that: 

a

c
 = sin α, 

b

c
 = cos α 

 
then one will recover the final equation (k) in no. 25. 
 

  
Effort produced by 

 

  

 
Type of bar 

 
the auxiliary  

forces 
F and – F, N 

 
the load 

 
N  

 
Length of  
the bars 

s 

 
Section  

of the bars 
Ω 

– F sin α Xi a Ωi Elements of ( 1, )

the members ( 1, )

i i

i i

′−
 ′ ′−

…

…

 
– F sin α iX ′  a 

i
′Ω  

– F cos α Yi−1 b ωi−1 ( 1, 1)
Uprights

( , )

i i

i i

′− −
 ′

…

…

 
– F cos α Yi b ωi 

F Zi c Si ( 1, )
Diagonals

( 1, )

i i

i i

−
 ′−

…

…

 
F iZ′  c 

iS′  

 
α = acute angle between the mean fiber of the diagonal and the vertical 

 
 
 

____________ 
 



CHAPTER IV 
 

METHOD BASED UPON THE  
VIRTUAL WORK THEOREM  

 
 43. – The theorem of virtual work was used for the first time in the resistance of 
materials by Mohr (1) for the determination of the efforts in articulated systems with 
redundant bars. 
 Since then, the applications of that theorem to the other systems that are employed in 
construction have been largely developed by various authors, and notably Müller-Breslau 
(2). 
 Finally, the same theorem permits us to establish the general equation of elasticity (3), 
to which we just gave a new proof that was deduced from the vis viva theorem much 
earlier (nos. 32 and 33). 
 
 

44. – General equation of elasticity 
 

 Let a system of bodies be isotropic.  Suppose that it is externally and internally 
hyperstatic (no. 11). (The case of an isostatic system will be regarded as a particular case, 
and likewise that of a single body.) That system of bodies is deformed under the action of 
external forces that are applied directly and a temperature variation of τ degrees, which is 
measured from the temperature that is realized by the various constraints of the system. 
 Let: 
1.      λ1, λ2, λ3, … 
 
denote the projections of the elastic and caloric displacements of a certain number of 
points: 

A1, A2, A3, … 
 
of the system of bodies onto the arbitrarily-chosen directions: 
 

∆1 , ∆2 , ∆3 , … 
 Let: 
2.      ϕ1, ϕ2, ϕ3, … 
 
be the projections of the elastic and caloric rotations of a certain number of lines: 
 

1 1a a′ , 2 2a a′ , 3 3a a′ , … 

 
that are contained in the system of bodies onto the directions: 

                                                
 (1) Zeitschrift der Achitekten und Ingenieur Vereins zu Hannover (1874), pp. 223.  
 (2) Die Methoden der Festigkeitlehre und der Statik der Baukonstructionen, 1886. 
 (3) “L’équation générale de l’élasticité des constructions et ses applications,” Bulletin de la Société des 
Ingenieurs civils de France, October 1907. pp. 365. 
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Γ1 , Γ2 , Γ3 , …, 
 
which are chosen arbitrarily from the directions that are normal to those lines. 
 Let: 
3.     εx − ατ, ε2 − ατ, ε3 − ατ, … 
 
be the six parameters of the elastic and caloric deformation (no. 5) of an elementary 
parallelepiped that is taken at an arbitrary point (x, y, z) of the system. 
 
4. Let ϖF be the internal potential per unit volume at the same point (x, y, z). 
 
5. Let Fes and Fis be the redundant external and internal constraint forces on the system. 
 
 Now consider the isostatic system that is obtained by suppressing the redundant 
constraints from the given hyperstatic system.  If one subjects it to the forces F, Fes, and 
Fis, as well as a temperature variation of τ degrees then it will take on a state of elastic 
equilibrium that is identical to that of the hyperstatic system that is subject to only forces 
F and the variation of temperature.  In particular, in that isostatic system, the elastic and 
caloric displacements of the points A1, A2, A3, …, the elastic and caloric rotations of the 
lines 1 1a a′ , 2 2a a′ , 3 3a a′ , …, and the deformation parameters of an arbitrary parallelepiped 

will be the same as in the hyperstatic system. 
 The internal potential is likewise the same, in such a way that, from formula (4) (no. 
4) and the final remark in no. 5, one can write: 
 

(a)   , ,es isF F Fϖ = ϖF = 2 2 2 2 2 2( ) ( ) ( )
2 2x y z x y z yz zx xy

λ µε ε ε µ ε ε ε γ γ γ+ + + + + + + + , 

 
upon letting , ,es isF F Fϖ denote the internal potential per unit volume of (x, y, z) of the 

isostatic system that is deformed by the forces F, Fes, Fis .  (The overbar above the letter 
ϖ is intended to indicate that this potential relates to the isostatic system.) 
 Suppose that the action of the forces F, Fes, Fis, and the temperature variation has 
been subtracted from the isostatic system and apply: 
 
 1. Auxiliary forces to the points: 

A1 , A2 , A3 , … 
whose magnitudes: 

F1 , F2 , F3 , … 

 
are arbitrary, and which point in the directions: 
 

∆1 , ∆2 , ∆3 , … 
 
 2. Forces that form auxiliary couples to the points: 
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1 1,a a′ , 2 2,a a′ , 3 3,a a′ , …, 

whose magnitudes: 
C1 , C2 , C3 , … 

 
are arbitrary and which point in the directions: 
 

Γ1 , Γ2 , Γ3 , … 
 
 The isostatic system will take on a new state of deformation under the action of the 
auxiliary forces and couples.  Let: 
 

1λ′ , 2λ′ , 3λ′ , …, 1ϕ′ , 2ϕ′ , 3ϕ′ , … be the new values of the projected displacements and 

projected rotations λ1 , λ2 , λ3 , …, ϕ1 , ϕ2 , ϕ3 , …, resp. 
 

xε ′ , yε ′ , zε ′ , yzγ ′ , zxγ ′ , xyγ ′  be the new values of the deformation parameters of an 

elementary parallelepiped that is taken at an arbitrary point (x, y, z). 
 

,ϖ
F C

 be internal potential per unit volume at the point (x, y, z), which is a potential whose 

expression, from formula (4) (no. 4), has the expression: 
 

(a′ )  ,ϖ
F C

 = 2 2 2 2 2 2( ) ( ) ( )
2 2x y z x y z yz zx xy

λ µε ε ε µ ε ε ε γ γ γ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + + + + + . 

 

,Π
F C

 be the total internal potential of the system, which, from formula (5) (no. 4), has the 

value: 

,Π
F C

= , dx dy dzϖ∫∫∫ F C
. 

 
 Now, subject the isostatic system, thus-deformed, to a virtual deformation that is 
compatible with the constraints on that system, and let 1δλ′ , 2δλ′ , 3δλ′ , …, 1δϕ′ , 2δϕ′ , 3δϕ′ , 

…, xδε ′ , yδε ′ , zδε ′ , yzδγ ′ , zxδγ ′ , xyδγ ′  be the corresponding virtual variations of the 

projected displacements, projected rotations, and deformation parameters, resp.  The 
virtual work theorem immediately gives the equation: 
 

1 1 2 2 3 3 1 1 2 2 3 3δλ δλ δλ δϕ δϕ δϕ′ ′ ′ ′ ′ ′+ + + + + +⋯F F F C C C  

 

 = , , , , , ,
x y z yz zx xy

x y z yz zx xy

dxdy dz
ϖ ϖ ϖ ϖ ϖ ϖ

δε δε δε δγ δγ δγ
ε ε ε γ γ γ

 ∂ ∂ ∂ ∂ ∂ ∂
′ ′ ′ ′ ′ ′+ + + + +  ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ 

∫∫∫
F C F C F C F C F C F C . 
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Indeed, the left-hand side of that equation represents the virtual work done by auxiliary 
forces and couples (1), and the right-hand side, which is the virtual variation of the 
internal potential ,Π

F C
, represents the virtual work, with the opposite sign, done by 

internal forces. 
 Since the virtual deformation is subject to only being compatible with the constraints 
of the isostatic system considered, one can take that deformation to be the actual 
deformation that the system experiences under the action of the forces F, Fes , Fis , and the 
temperature variation of τ degrees, which implies that: 
 
 1δλ′ = λ1 , 2δλ′ = λ2 , 3δλ′ = λ3 , …, 

    1δϕ′ = ϕ1 , 2δϕ′ = ϕ2 , 3δϕ′ = ϕ3 , …, 

 xδε ′ = εx − ατ,  yδε ′ = εy − ατ,  zδε ′ = εz − ατ, 

 yzδγ ′ = γyz ,  zxδγ ′ = γzx ,  xyδγ ′ = γxy ,  
and as a result: 
 
(b) F1 λ1 + F2 λ2 + F3 λ3 + … + C1 ϕ1 + C2 ϕ2 + C3 ϕ3 + … 

 

= , , , , ,
x xy

x xy x y z

dx dy dz dx dy dz
ϖ ϖ ϖ ϖ ϖ

ε γ ατ
ε γ ε ε ε

   ∂ ∂ ∂ ∂ ∂
′ ′+ + − + +      ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂   

∫∫∫ ∫∫∫⋯

F C F C F C F C F C , 

 
in which one assumes that the temperature variation τ is the same at all points of the 
system. 
 Transform the two integrals in the right-hand side of the equation (b).  As far as the 
left-hand side is concerned, imagine that the isostatic system of simultaneously subjected 
to: 
 1. Forces F, Fes , Fis , 
 
 2. Auxiliary forces and couples F and C, 

 
without that system being subjected to any temperature variation, moreover.  From the 
superposition principle, the elastic deformation parameters that are produced by the set of 
all those forces and couples have the values: 
 

εx + xε ′ ,      εy + yε ′ ,      εz + zε ′ ,      γyz + yzγ ′ ,      γzx + zxγ ′ ,      γxy + xyγ ′  

 
at an arbitrary point (x, y, z).  As a result, upon letting , , , ,es isF F Fϖ

F C
 denote the internal 

potential per unit volume at that point of the system that has been deformed by the 
aforementioned forces and couples, one will have: 

                                                
 (1) The constraint forces of the isostatic system that is assumed to be subjected to the forces F1, F2, F3, 

…, and the couples C1, C2, C3, … do not enter into the expression for work, insofar as the virtual works done 

by the constraint forces are zero by reason of those constraints. 
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(a″ ) , , , ,es isF F Fϖ
F C

 = 
2

λ
[(εx + xε ′ ) + (εy + yε ′ ) + (εz + zε ′ )]2 

 + µ [(εx + xε ′ )2 + (εy + yε ′ )2 + (εz + zε ′ )2] 

 + 
2

µ
[(γyz + yzγ ′ )2 + (γzx + zxγ ′ )2 + (γxy + xyγ ′ )2] . 

 
 The expression (a) for , , , ,es isF F Fϖ

F C
 is a homogeneous function of degree two of the six 

quantities εx , …, γxy , and in order to pass from that expression to the ones (a′) and (a″) 
for ,ϖ

F C
 and , , , ,es isF F Fϖ

F C
, resp., it will suffice to replace those six quantities, first, with 

xε ′ , …, xyγ ′ , and then with (εx + xε ′ ), …, (γxy + xyγ ′ ).  Consequently, by virtue of the 

property of homogeneous functions of degree two that utilized before in no. 33, one will 
have: 

, ,
x xy

x xy

ϖ ϖ
ε γ

ε γ
∂ ∂

+ +
′ ′∂ ∂

⋯

F C F C  = , , , , , , ,( )
es is es isF F F F F Fϖ ϖ ϖ− +

F C F C
 . 

 
 Upon multiplying the two sides of that identity by dx dy dz and integrating over the 
total volume that is occupied by the system of bodies, one will get: 
 

(c)  , ,
x xy

x xy

dx dy dz
ϖ ϖ

ε γ
ε γ

 ∂ ∂
+ +  ′ ′∂ ∂ 

∫∫∫ ⋯

F C F C = , , , , , , ,( )
es is es isF F F F F FΠ − Π + Π

F C F C
. 

 
 That is the transformed expression for the first integral in the right-hand side of 
equation (b), which is an expression in which , ,es isF F FΠ , ,Π

F C
, and , ,es isF F FΠ  represent the 

values of the total internal potential of the isostatic system, when it is deformed by: 
 
 1. Forces F, Fes, Fis , 
 
 2. Auxiliary forces and couples F and C, 

 
 3. The totality of all those forces and couples, 
 
respectively. 
 As for the second integral in equation (b), by virtue of formulas (6) (no. 4), one can 
write: 

(d)   , , ,

x y z

dxdy dz
ϖ ϖ ϖ

ε ε ε
 ∂ ∂ ∂

+ +  ′ ′ ′∂ ∂ ∂ 
∫∫∫

F C F C F C  = ( )x y zn n n dx dy dz′ ′ ′+ +∫∫∫ , 

 
in which xn′ , yn′ , zn′  denote the normal fatigues on three mutually-rectangular elements 

that are drawn through an arbitrary point (x, y, z) of the isostatic system when it is 
subjected to the auxiliary forces and couples F and C. 
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 Upon replacing the two integrals on the right-hand side of equation (b) with their 
expressions (c) and (d) and writing the left-hand side in the abbreviated form, one will 
finally get: 
 

(37) λ ϕ+∑ ∑F C = , , , , , , ,( )
es is es isF F F F F FΠ − Π + Π

F C F C
− ( )x y zn n n dx dy dzατ ′ ′ ′+ +∫∫∫ . 

 
 We thus recover the general equation (31) (no. 32) of elasticity for systems of 
isotropic bodies. 
 Upon repeating the preceding proof in the case of a system of bodies with mean 
fibers, one will likewise recover equation (32) (no. 33), whose development will lead to 
the general equation (33) (same number) of elasticity for the systems in question: 
 

(38)  λ ϕ+∑ ∑F C  = 
T MN

ds
E G E I

η ζ
η ζατ

  
− + + +  Ω Ω  

∫ ⋯N T M . 

 
 The application of the latter equation to the calculation of displacements and elastic 
and caloric rotations, as well as the determination of the constraint forces in hyperstatic 
system, was presented before (nos. 36 and 39 to 42); it shall not be repeated. 
 
 

45. – Variants of the general equation of elasticity 
 

 I. Case of systems of isotropic bodies. – In order to establish the general equation 
(37) of elasticity for systems of isotropic bodies in no. 44, we considered the isostatic 
system that was obtained suppressing the redundant constraints in the given hyperstatic 
system, and we applied the virtual work theorem to that system, which is assumed to be 
subjected to auxiliary forces and couples F and C whose magnitude is arbitrary, by taking 

the virtual displacements to be the actual displacements that will result from the 
deformation of the hyperstatic system when it is subjected to the given forces F and the 
given temperature variation τ. 
 If one repeats that proof exactly, while considering, not the isostatic system, but the 
given hyperstatic system, then one will get the following variant of equation (37): 
 

(39)  λ ϕ+∑ ∑F C = , , ,( )F FΠ − Π + Π
F C F C

− ( )x y zn n n dx dy dzατ ′′ ′′ ′′+ +∫∫∫ , 

 
in which xn′′ , yn′′ , zn′′  denote the fatigues that are normal to the three rectangular elements 

that are drawn through an arbitrary point (x, y, z) of the hyperstatic system when it is 
subjected to the auxiliary forces and couples F and C, resp. 
 Finally, if one recalls that same proof once more, while considering the internally-
isostatic and externally-completely-free system that is obtained by suppressing the 
redundant internal constraints and all of the external constraints on the given hyperstatic 
system and supposing that the system is not subjected to auxiliary forces and couples of 
absolutely-arbitrary magnitudes, but to auxiliary forces and couples F and C, resp., that 
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are restricted by the condition of equilibrium on that system then one will get the second 
variant: 
 

(40) λ ϕ+∑ ∑F C = , , , , , , ,( )
e is e isF F F F F FΠ − Π + Π

F C F C
− ( )x y zn n n dx dy dzατ ′′′ ′′′ ′′′+ +∫∫∫ , 

 

in which , ,e isF F FΠ , ,Π
F C

, and , , , ,e isF F FΠ
F C

 denote the total internal potential of the 

internally-isostatic and externally-completely-free system when it is deformed by: 
 
 1. The given forces F, all of the external constraint forces Fe of the given hyperstatic 
system, and the redundant internal constraints Fis of the latter system, 
 
 2. Auxiliary forces and couples F and C, 
 
 3. The totality of those forces and couples, 
 
respectively. 
 xn′′′ , yn′′′ , zn′′′ are the normal fatigues on three rectangular elements that are drawn 

through an arbitrary point (x, y, z) of the internally-isostatic and externally-completely-
free system that is subject to the auxiliary forces and couples F and C. 
 
 II. Case of systems of bodies with mean fibers. – The two variants of the general 
equation (37) (no. 44) of elasticity for system of isotropic bodies that were just pointed 
out correspond to two variants of the general equation (38) (same number) of elasticity 
for systems of bodies with mean fibers. 
 The last two variants show that in equation (38), one can, if desired, consider the 
elements of reduction N, Tη , …, Mξ to be the resultant of either the application of 

auxiliary forces and couples F and C, resp., of arbitrary magnitude to the isostatic system 

that was defined before or the application of auxiliary forces and couples F and C, resp., 

that are restricted by the condition of equilibrium on that system to the internally-
isostatic and externally-completely-free system that was defined before. 
 It was the last of those three viewpoints that we adopted in our previously-cited paper 
on the general equation of elasticity and its applications.  Here, we have adopted the first 
one, because it attaches the second method, which was based upon the vis viva theorem, 
to the method that is based upon the virtual work theorem in a more direct manner.  As 
far as ease of application is concerned, the two viewpoints are absolutely equivalent, 
moreover.  Essentially, no matter whether one chooses one or the other, the reduction 
elements N, Tη , …, Mξ  will always be statically-determinate, and as a result, they can 

be easily calculated. 
 The second viewpoint has only a purely-theoretical interest. 
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46. – Completion of the theorem of Betti, Boussinesq, and Maurice Levy 
 

 That theorem follows immediately from the general equation of elasticity.  Consider a 
system of bodies that are isotropic or have mean fibers.  Suppose that it is hyperstatic. 
(The case of an isostatic system will be regarded as a particular case, and likewise, that of 
a single body.) 
 Apply a first system of forces (A) to it.  Let: m be the number of forces,  

iAF , any one 

of them, Ai , its point of application, ∆i , its direction, and let 
AFΠ  be the total internal 

potential of the system of bodies that are deformed by those forces. 
 Replace the system of forces (A) with a second system of forces (B).  Let n be the 
number of forces of that second system, 

iBF , any one of them, Bi , its point of application, 

iB∆ , its direction, and 
BFΠ , the total internal potential of the system of bodies that is 

deformed by those forces. 
 Let: 
 

i

B
Aλ denote the projection of the elastic displacement of the point Ai under the action of the 

system of forces (B) onto the direction 
iA∆ . 

 

i

A
Bλ denote the projection of the elastic displacement of the point Bi under the action of the 

system of forces (A) onto the direction 
iB∆ . 

 

,A BF FΠ  or ,B AF FΠ  denote the value that the total internal potential of the system of bodies 

will taken when it is deformed by the two systems of forces (A) and (B) acting 
simultaneously. 
 
 Having said that, if one annuls the variation of temperature τ, which does not relate to 
the present question, and one likewise annuls the auxiliary couples C then the variant (39) 

(no. 45) of the general equation of elasticity will reduce to: 
 

λ∑F = , ( )F FΠ − Π + Π
F F

. 
 
 When that equation is applied to the deformation of the system of bodies by the 
system of forces (B), that will immediately give: 
 

(a)     
1

i i

m
B

A A
i

F λ
=
∑  = , ( )F FΠ − Π + Π

F F
, 

 
if one takes the auxiliary forces F to be the forces of the system A. 

 When it is applied to the deformation of the system of bodies under the system of 
forces (A), that same equation will give: 
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(b)     
1

i i

n
A

B B
i

F λ
=
∑  = , ( )

A B A BF F F FΠ − Π + Π , 

 
if one takes the auxiliary forces to be the forces of the system (B). 
 The two relations (a) and (b) are precisely the ones (e) and (f) (no. 29) that translated 
into the complete theorem of Betti, Boussinesq, and Maurice Levy. 
 
 

47. – Application of the general equation of elasticity to  
the graphical statics of elastic arches 

 
 In his masterful treatise on graphical statics, Maurice Levy presented some very 
remarkable graphical methods for the calculation of the elastic arches that are restricted 
by redundant constraints and subject to external forces that act in the planes of their mean 
fibers, as well as a temperature variation. 
 Those methods take into account only the elastic deformations that correspond to a 
flexural couple.  They neglect the ones that correspond to the normal and shearing efforts. 
 They are based upon the property that is possessed by fictitious forces that are 
mutually-parallel and are applied to each element ds of the mean fiber of the arch and are 
equal to (M / EI) ds, where M denotes the moment of flexure in the section whose 
curvilinear abscissa is s, I is the moment of inertia of that section, and E is the 
longitudinal elastic modulus of the matter that comprises the arch.  Those properties, 
which are particular to each type of arch, result from the conditions to which they are 
restricted during its elastic deformation by the fact of its redundant constraints.  In the 
treatise of Maurice Levy, they were established by the geometrical and kinematical 
methods of the calculus of deformations.  Furthermore, they are deduced more simply 
from the equation of redundant constraints (no. 39) or (which basically amounts to the 
same thing) the general equation of elasticity for systems of bodies with mean fibers: 
 

(a)   λ ϕ+∑ ∑F C  = 
N T M

ds
E G E I

ατ
  

− + +  Ω Ω  
∫ N T M , 

 
which will reduce to: 
 

(b)   λ ϕ+∑ ∑F C  = − M
ds ds

E I
ατ +∫ ∫N� M , 

 
when one suppresses the terms that correspond to the deformations that are due to the 
normal effort N and the shearing effort T. 
 The degree of approximation that one obtains by neglecting those deformations can 
often be considered to be sufficient.  However, in certain cases – notably when one is 
dealing with lowered arches (arcs surbaissés) – that will no longer be true, and it will 
become necessary to take into account at least the deformations that are due to the normal 
effort, if not the ones that are due to the shearing effort, which are always the weakest.  
One can arrive at that fact by means of some very simple corrections that alter nothing in 
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the structure of the graphical methods, but permit one to involve either just the latter 
deformations or likewise just the ones that are due to the shearing effort, if desired (1).  
Here is how: 

 

A′ 
A 

A″ 

B′ 
B 

B″ 
H′ 

G 

H″ 

 
Figure 10. 

 
 
 48. Introduction of deformations due to normal effort. – If r denotes the radius of 
gyration of an arbitrary section (S) of the arch around the axis that is drawn through the 
center of gravity G of that section (Fig. 10) normal to the plane of the mean fiber, which 
lies along the intersection of that plane with the plane of the section (S), then: 
 

GH′ = GH″ = r. 
 Call: 
 
 The two points H′ and H″, which are nothing but the two summits of the central 
ellipse of inertia of the section, conjugate points relative to the section (S). 
 
 The two loci A′ B′ and A″ B″ of points H′ and H″ that relate to all sections of the arch 
conjugate lines.  Each element ds of the mean fiber AB of the arch corresponds to two 
elements ds′ and ds″ of conjugate lines. 
 
 The two sums of moments with respect to H′ and H″ of the elastic forces that are 
developed in a section (S) (or external forces that act to the left of that section) conjugate 
moments that relate to the section. 
 
 The values of those moments in the hyperstatic arch considered, when it is subjected 
to given external forces F and a temperature variation τ, M′ and M″. 
 
 The values of those same moments M′ and M″ in the isostatic arch that is obtained 

by suppressing the redundant constraints from the hyperstatic arch and subjecting it to 
auxiliary forces and couples F and G. 

 
 One will have immediately: 
 

                                                
 (1) BERTRAND DE FONTVIOLANT, “Mémoire sur la Statique graphique des arcs élastiques,” 
Comptes rendus de l’Académie des Sciences 110 (1890), pp. 697 and Bulletin de la Société des Ingenieurs 
civils de France, April 1890, pp. 403. 
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M′ = M + Nr,   M″ = M − Nr ; 
hence: 

N = 
2

M M

r

′ ′′−
,  M = 

2

M M

r

′ ′′+
. 

 Similarly: 

N = 
2r

′ ′′−M M
, M = 

2r

′ ′′+M M
. 

 
Now, when one suppresses the terms that correspond to the deformations that are due to 
the shearing effort, the general equation (a) (no. 47) can be written: 
 

λ ϕ+∑ ∑F C  = − ατ 
N M

ds ds
E E I

 
+ + Ω 

∫ ∫N N M . 

 
 Upon replacing the normal efforts and moments of flexure in the second integral with 
their expressions above and keeping in mind the relation I = Ω r2, after some reductions, 
one will get: 

λ ϕ+∑ ∑F C  = − ατ 
2 2

M M
ds ds

E I E I

′ ′′ ′ ′′+ + 
 

∫ ∫N M M , 

 
in which the integrals extend the whole length of the mean fiber AB of the arch. 
 Set: 

I′ = 2I 
and agree to represent (indistinctly): 
 
 One or the other of the two conjugate moments M′ and M″ by M′, 
 
 One or the other of the two conjugate moments M′ and M″ by M′, 
 

One or the other of the elements ds′ and ds″ of the two conjugate lines that 
correspond to an element ds of the mean fiber by ds′. 

 
 In that way, one can write: 
 

(c)    λ ϕ+∑ ∑F C  = − ατ 
M ds

ds ds
E I ds

′′ ′+
′ ′∫ ∫N M , 

 
in which the second integral extends along the whole length of the two conjugate lines 
A′B′ and A″B″. 
 Upon comparing equation (b) (no. 47), which neglects the deformations that are due 
to the normal effort, with equation (c), which takes them into account, one will see that in 
order to pass from the former to the latter, it will suffice to replace the moments of 
flexure M and M with the conjugate moments M′ and M′, the moment of inertia I with I′ 
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= 2I, and to regard the second integral as extending, no longer along the total length of 
the mean fiber, but indeed the total length of the two conjugate lines. 
 One can, moreover, imagine (without entering into the proof, which is given in our 
paper on “Statique graphique des arcs élastiques”) that: 
 
 In order to introduce the deformations that are due to the normal effort into the 
methods of graphical statics that neglect them, it will suffice to replace the fictitious 
parallel forces (M / E I) ds that are applied to the various elements ds of the mean fiber 
of the arch considered in those methods with the fictitious forces: 
 

M ds
ds

E I ds

′ ′
′ ′

= 
M

ds
E I

′
′

, 

 
which are parallel to the first ones and applied to each element ds′ of the two conjugate 
lines. 

 

A′ 

A 
A″ 

B′ 

B 
B″ 

H′ G 

H″ 

A″′ 

B″′ 

x′ 

H″′ 

y′ 

y x 

 
Figure 11. 

 
 
 49. Introduction of deformations due to normal and shearing efforts.  – Call the 
three points H′, H″, H′″, which are situated in plane of the mean fiber and have 
coordinates referred to the tangent Gx and normal Gy to that fiber: 
 

 x′ =   
2

2

r a
, y′ = −

6

2

r
, 

 x″ =   
2

2

r a
, y″ =   

6

2

r
, 

 x″′ = − 2r a , y′″ =  0, 
 
in which a denotes the ratio of the longitudinal modulus of elasticity E to the transverse 
modulus of elasticity G, conjugate points relative to an arbitrary section (S) whose center 
of gravity is G (Fig. 11). 
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 Furthermore, by analogy with what was said before, the arch admits three conjugate 
lines A′B′, A″B″, A″′B′″, and each element ds of its mean fiber corresponds to three 
elements ds′, ds″, and ds′″ of the conjugate lines.  Moreover, any section (S) corresponds 
to three conjugate moments. 
 Let: 
 
M′, M″, M′″ be the values of those moments in the hyperstatic arch considered when it is 

subject to external forces F and a temperature variation τ. 
 
M′, M″, M′″ be the values of those same moments in the isostatic arch that is obtained 

by suppressing the redundant constraints from the hyperstatic arch when one subjects 
it to auxiliary forces and couples F and C. 

 
 One will have immediately: 

 M′ = M + 
6 2

2 2

r r a
N T+ , 

 M″ = M − 
6 2

2 2

r r a
N T+ , 

 M′″ = M − 2Tr a , 

 
from which, one will infer that: 

 N  = 
6

M M

r

′ ′′−
, 

 T  = 
2

3 2

M M M

r a

′ ′′ ′′′+ −
, 

 M  = 
3

M M M′ ′′ ′′′+ +
. 

 Likewise: 

 N  = 
6r

′ ′′−M M
, 

 T  = 
2

3 2r a

′ ′′ ′′′+ −M M M
, 

 M  = 
3

′ ′′ ′′′+ +M M M
. 

 
 Upon substituting these values for the normal effort, shearing effort, and moment of 
flexure, resp., in the second integral of the general equation (a) (no. 47), when it is 
written in the form: 
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λ ϕ+∑ ∑F C  = 
N T M

ds ds
E G E I

ατ  
− + + + Ω Ω 

∫ ∫N N T M , 

 
and upon taking into account the facts that a = E / G and I = Ω r2, one will get: 
 

λ ϕ+∑ ∑F C  = 
3 3 3

M M M
ds ds

E I E I E I
ατ

′ ′′ ′′′ ′ ′′ ′′′− + + + 
 

∫ ∫N M M M , 

 
in which the integrals extend along the whole length of the mean fiber AB of the arch. 
 Set: 

I′ = 3I 
and agree to represent (indistinctly): 
 
Any one of the three conjugate moments M′, M″, and M″′ by M′, 
 
Any one of the three conjugate moments M′, M″, and M″′ by M′, 
 
Any one of the three elements ds′, ds″, ds″′ of the three conjugate lines that correspond to 

an element ds of the mean fiber by ds′ . 
 
 Furthermore, one can write: 
 

(d)    λ ϕ+∑ ∑F C  = 
M ds

ds ds
E I ds

ατ ′′ ′− +
′∫ ∫N M , 

 
in which the second integral extends along the whole length of the three conjugate lines 
A′ B′, A″ B″, and A″′ B″′. 
 That equation has exactly the same form as equation (c) (no. 48), and one concludes, 
as before, that: 
 
 In order to introduce deformations that are due to the normal and shearing efforts 
into the methods of graphical statics that neglect them, it will suffice to replace the 
parallel fictitious forces (M / EI) ds that are applied to each element ds of the mean fiber 
of the arch in those methods with the fictitious forces: 
 

M ds
ds

EI ds

′ ′
′ ′

= 
M

ds
EI

′
′

, 

 
which are parallel to the first ones and applied to each element ds′ of the three conjugate 
lines. 
 
 We add that, as we established in our previously-cited paper, a section of an arch does 
not correspond to just one system of three conjugate points, but indeed, to an infinitude of 
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them, and as a result, an infinitude of systems with three conjugate moments, and that an 
arch will consequently admit an infinitude of systems of three conjugate lines.  The 
proposition above applies to any one of those systems, but the most convenient of three, 
for the sake of applications, is the one that was defined above. 
 

___________ 



COMPARING THE THREE METHODS  
 
 

 50. – The following remarks emerge from the preceding expose: 
 
 The methods that were presented are in complete agreement, and all three of them 
take into account, not just the effects of external forces, but also the caloric effects. 
 Although there are close relationships between them, they have neither the same 
significance nor the same theoretical character: 
 
 The first method, like the other two, leads to reciprocity principles that are particular 
cases of the theorem of Betti, Boussinesq, and Maurice Levy.  However, in its current 
state, it will not permit one to either establish that beautiful theorem directly or the 
general equation of elasticity, which is a synthesis of the entire theory of deformations.  
In that regard, it is less satisfactory than the last two.  From the standpoint of the 
presentation, the first method based upon the vis viva theorem is very delicate, at least the 
part of it that relates to caloric deformations, which necessitates the extension of 
Clapeyron’s equation that was made here. 
 On the contrary, the second method, which was likewise deduced from the vis viva 
theorem, is simple and elementary. 
 The third method, which is inferred from the virtual work theorem, appeals to the 
most advanced notions from general mechanics, but it permits one to take into account 
the caloric and elastic deformation from the outset and simultaneously. 
 
 The third method has been criticized for the fact that it rests upon a basis that is 
hardly solid, because, as we said, there exists no rigorous proof of the theorem of virtual 
work.  Without entering into a discussion of that subject that would find no place here, 
we believe that we must recall that in one of the notes in Lagrange’s celebrated 
Mécanique analytique (1), one of the most sophisticated mathematicians of the last 
century, Joseph Bertrand, expressed it thus: “The first rigorous proof of the principle of 
virtual work was due to Fourier (J. de l’École Polytechnique, t. II, year VII).”  
Nonetheless, in the numerous applications that have been made of it, to my knowledge, 
the virtual work theorem has never been found to be wrong, and as is clear from the 
present Note, the results to which it leads, as far as the calculation of the deformation is 
concerned, in particular, are in complete agreement with the ones that are deduced from 
vis viva theorem. 
 

___________ 
 

                                                
 (1) Œuvres de Lagrange (published with the attention of J.-A, Serret and Gaston Darboux), t. XI, 1888, 
pp 263.  


