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FOREWORD

1. — The goal of the modern methods of the resistanogatdrials is to answer two of
the most important questions of that branch of appliedhanics: The determination of
the elastic and caloric deformations, and the cal@mn of the constraint forces in the
pieces and hyperstatic systems of pieces.

These methods, which are based upon the theorems wlvaand virtual work, are
entirely general. They apply uniformly to all caslest might present themselves. They
offer the advantages over the old geometric and kinemagthods of being a more rapid
application and that they do not necessitate thedaottion of auxiliary unknowns into
the calculations whose elimination is often laborious

Meanwhile, they are not very widely known in Fransere, among the numerous
didactic works on the resistance of materials, tlaeee to our knowledge, only four that
mention the modern methods with developments thatareugh to varying degrees.

The treatise ostatique graphiquéy Maurice Levy (Part IV, 1886, Note I) contains
an outline of the method of General Menabrea andotfigohr for calculating the efforts
in articulated systems with redundant bars.

The French translation (1901) by Hahn of FopRé&sistance des matériapresents
Castigliano’s general method for determining elastic ldcgments and forces of
redundant constraints in the pieces and systems @&eith mean fibers.

The book by Ernst Flamard that is entitl€alcul des systemes élastiques de la
Construction (1918), reviews Castigliano’s method and makes numerousvaned
applications to straight beams, arches, and articu@atsems.

Finally, theCours de Mécanique professé a I'Ecole Polytechnimpé&éon Lecornu
(t. 11, 1918) gives the general equation for the el#@gtiof constructions, as well as
Castigliano’s method, with applications to various hyfais systems.

Furthermore, it seems useful to us to present a discusktbe diverse collection of
modern methods here, which would be a discussion tharevéorced to make as simple
as possible while striving to highlight the close links thaite those methods. In the
name of this second order of business, we shall shatwtaking caloric deformations
into account, which has been accomplished only by mefaihe theorem of virtual work
up to now, can also be achieved by applying wsevivatheorem. We shall likewise
establish that the latter theorem can permit one toeptioe beautiful theorem of Betti,
Boussinesq, and Maurice Levy just as well, and more simply
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It seems interesting to me to appeal to the matherhtt@ary of elasticity in order to
shed some light upon the path along which we believe higatesearch of scholars in
regard to that theory must be directed, in view of peimgithe extension of the modern
methods to system of isotropic bodies and to thus libéhe calculation of constructions
from the hypotheses of the resistance of materialsweier, one cannot hide the fact
that such research is extremely tedious, due to someuttifs that are presented by the
integration of the partial differential equations of thathematical theory of elasticity.

The methods that are based uponuisevivatheorem have their origins in the paper
by Clapeyron on the work done by elastic forces (18%B)iid in that of General
Menabrea that was entitled “Principe général pour détemhés pressions et les tensions
dans un systéme élastique,” (1869) (The first application of the theorem of virtual
work to the study of elastic deformations was made byrNtothe context of articulated
systems with the title “Beitrag zur Theorie des Bogemfsekstrager (1874

Since then, these methods have been the goal oé$karch of numerous scholars
and engineers. One will find a very complete historyhat, accompanied by detailed
bibliographic references, in the doctoral thesis thate&rirlamard presented to the
Science Faculty at Nancy in 191%. (

() Comptes rendus de I’Académie des Sciences, t. XLVI2pp. —Seealso LAME, Lecons sur la
Théorie mathématique de I'Elasticité des corps sol{d886): Théoréme de Clapeyron, pp. 80.

(®) Seealso a note that General Menabrea read at the sesfsthe Academy of Sciences on 31 May
1858 (Comptes rendus, t. XLVI, pp. 1056).

() Zeitschrift der Architekten- und Ingenieur-Vereins zanHover (1874), pp. 223.

() Ernest FLAMARD, Inspector of metallic constructioios the railroad company of Orléartsude
sur les Méthodes nouvelles de la Statique des constructions.
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CHAPTER |

REVIEW OF SOME NOTIONS FROM
THE MATHEMATICAL THEORY OF ELASTICITY
AND THE RESISTANCE OF MATERIALS

2. —Elastic forces in the mathematical theory of elasticity

Consider an elastic solid body that is in equilibriunder the action of a system of
external forces.
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Figure 1.
Let (Fig. 1):
A be an arbitrary point of the body
XY, Z be the rectangular coordinates of that point befof@raeng the body

dx, dy, dz be the lengths of the edges (measured before deformatfoah
infinitely-small parallelepiped that is taken in thedly with A for one
of its summits.

nXl thl tXZl tyXl nYl tyZl tZXl tZYl nZ

be the components of the elastic forces per unitthetaare parallel to
the axes on the three faces of the parallelepipedchtha the poinA
for their common summit and are normalg Oy, Oz respectively.
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In order to specify the signs of these components;amsider the elastic forces to be
the actions that are exerted by the parts of the libdy are situatedutside the
parallelepiped upon the ones that are situatside the body, and we agree to measure
them as positive when they have the positive sengdeeaixes.

Following the convention that has been adopted by engineersay that andt are
the normal fatigueandtangential fatigueyespectively, on three planar elements that are
mutually rectangular before deformation and drawn throdnghpointA. From that
convention, an element will be subject to compressiotraction according to whether
the normal fatigue on that element is positive or negatesp.

One knows that the tangential fatigues on two mutualtyangular elements, which
are directed normally to the intersections of thosmelds, are equal to each other; i.e.,
one has:

tzy = tyz, tyz = tzx, tyx = txy,

which will reduce the number of unknown fatigues on timed rectangular elements
considered from nine to Six.

3. —Elastic deformation parameters of an isotropic body

Letting u, v, w be the components parallel to the axes of the eldsjtacement of
the pointA (x, y, 2. The six quantities:

ou _ov _ow
-, ==, &=-—,
0x oy 0z

(o) () (o000
ay az) T 6z ax) T ax oy

define the elastic deformation of the parallelepiped. $&MNell call them theelastic
deformation parameters.

&, &, & are the contractions that are felt by the eddesdy, dz resp., of the
parallelepiped, when referred to the initial lengths oéhedges. According to whether
the value ofe that corresponds to an edge is positive or negativee thid actually be a
contraction or elongation, resp., of that edge.

%z, Vox, Kyare the increases that are felt by the right an¢ilgtsthe edgedy anddz,
dz anddx, dx anddy, resp., defined with each other before deformationcoAding to
whether the value of that corresponds to one of those angles is positiveegative,
there will actually be an increase or decrease, resthe angle considered. Tleear
the name o$hearsor distortions.

The six normal and tangential fatigues are expressednasidns of the six elastic
deformation parameters by way of the formulas:

& =
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n=A(g +e, +e)+2ue,, t =uy,
(1) n =A(g,+e,+e)+2ue, t,=uy,,
n,=A(e +e,+e)+2ue, t, =uy,

in which A andu denote two physical constants of the body conedleThose constants
are linked with the longitudinal and transversesetamoduli that are considered in the
resistance of materials by the relations:

E:M’ G:,U
A+u

Conversely, the expressions for the parametettseodlastic deformation as functions
of the normal and tangential fatigues are:

- 1 - b
£X—2’u(3/]+2#)[2(/1 +Hn —A(n +n)}, y,= '

——1 - :tﬂ

(2) gy - 2[[ (3A + 2/1)[2(A +/'l) ny A(nz + nx)]1 yzx U '
-1 - _by
fz—m[z(ﬂﬂu)nz A(n+n)l, y,,= "

4. — Work done by elastic forces. Internal potential of an @tropic body

By means of the expressions above for normal angential fatigues and the elastic
deformation parameters, one easily calculates tiv&k Wone by the elastic forces that act
on the six faces of the parallelepiped while itgessfrom its natural state to a state of
deformation that is defined by either the valuetheffatigues or those of the parameters.
Let w be the quotient of that infinitely-small work bhet volumedx dy dzof the
parallelepiped; that will be the work done by a@a&brces per unit volume at the point
A(X, Y, 2). One will find that:

w:;
21 (34 + 2u)

+ i(tzz +t§x+ti) ,
2u -’

3) [(A+ ) (ng+nJ+ 1) —A (nery +nynz + 1z 0]

@  w=larsra) ruEiered + B0y,

The work done by elastic forces for the parallgleg considered igo dx dy dz If
one then decomposes the body into an infinitudelehentary parallelepipeds by means
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of planes that are normal to the coordinate axes dnenwill see that the total worfk
that is done by the elastic forces for the entire hedy

(5) N = [[[wdxdydz,

where the triple integral is taken over the entirkin@ that is occupied by the body.

It is clear that this expression for the total forceneldoy elastic forces likewise
applies to a system of bodies that are coupled th edwr in an arbitrary manner and
deformed by external forces in equilibrium when the irdkgs taken over the total
volume that is occupied by the system of bodies.

One will immmediately verify that if one derives thgpression (4) fotowith respect
to &, ..., Jiy, INn succession, then one will get back to the expnesgib) forn, ..., tyy, in
such a way:

ow ow
6 _:nx, saay _:tx .
(6) oz, oy y

Xy

The partial derivatives of the functiao with respect to the six elastic deformation
parameters of the parallelepiped are then equal toaheah and tangential fatigues at
the pointA (x, y, 2. One then concludes that the elastic forces thatgpéed to the
faces of the parallelepiped depend upon a force functidriat this function isodx dy
dz As a result, the elastic forces depend upon the farmion[T for the entire body (or
for a system of bodies.

The elastic deformation of an arbitrary parallelegigéves rise to molecular forces
inside of it. Those forces are unknown, but it is éasgvaluate the work that they do
during deformation. Indeed, the system of material pdimés$ this parallelepiped is
composed of is at rest before and after the deformat@the algebraic sum of the works
done by external and internal forces that act uponsysiem will be zero, by virtue of
the vis vivatheorem. As a result, the work done by molecwacds will be equal and
opposite to the work done by elastic forces. Its valilkthen be —w dx dy dzfor the
parallelepiped considered and R for the entire body (or system of bodies).
Consequently, as far as the evaluation of the work dgmaolecular forces is concerned,
everything happens as if it depended upon the force funetibhwhich amounts to the
same thing as saying that the molecular forces are defigen a potentiall. As a
result, we say that the functidhis the molecular force potential or timernal potential
of the deformed body (or system of bodies), to abhteyiprovided that if changing the
sign of that function indeed represents the work donenbiecular forces during the
deformation then it cannot be used to calculate the svatdiehe forces that remain
unknown.

It results from the preceding that the molecular ferfigm aconservative system
The work that they do depends upon only the final statiefofrmation and not upon the
intermediate states. It is exclusively a functiontlo# final values of the deformation
parameters or the final values of the fatigues.

The functionm admits another interpretation, which is:
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Formula (4) shows thavis essentially positive and that it will be annulledewlhe
body is in its natural state; the same thing is trudkertotal potentiall. The latter is
then a minimum when the body is in its natural statdch proves (and this should be
obvious, moreover) that this state is the state blestequilibrium of the molecules of the
body. If one then imagines that the deformed body metto its natural state as a result
of suppressing the external forces that determined itsrdafmn then the potential of its
molecular forces will pass from the vallieto the value zero. It will then do positive
work equal toll when the molecules of the body return to their stagjeilibrium
position. Now, as one know})(the potential energy of a material system that oesupi
an arbitrary position is equal to the essentially-pasitvork done by the internal forces
of that system when it passes from that positiongatéible equilibrium. It is then the
internal potential energy of the deformed body (otesysof bodies).

5. — Deformation parameters for an isotropic body when it ioth elastic and caloric

Let a free body be subject to the action of an arlyitsggstem of external forces in
equilibrium and suppose that its temperature goes ug bggrees. Leta be its
coefficient of linear dilatation. The deformation titzan arbitrary parallelepiped in the
body submits to can be considered to be the resultaheuperposition of the purely
elastic deformation that is due to external forces twedcaloric dilatation. Now, that
dilatation does not modify the angles that the edgéiseoparallelepiped define with each
other, which simply submit to elongations that are eqoalr per unit length. As a
result, &, ..., )y denote the six purely-elastic deformation parametardefore, while
the elastic and caloric deformation parameters are:

SX—GT,Sy—aT,SZ—aT, }{(y,}'{(y,}&y.

These expressions remain valid in the case of a deciredeenperature, with the
condition thatr must be counted negatively in that case.

They are likewise valid for the bodies that are meef since those bodies can be
considered to be free under the action of forces dmatapplied to them directly and
corresponding constraint forces.

We remark that the internal potential obviously depends tip® elastic deformation.
As a result, if the deformation is both elastic amadbiic then the expressions for the
internal potential will remain the ones that wereegivn no 4.

6. — Remark

Everything that was just said about isotropic bodies epminmediately to the pieces
with mean fibers that are considered in the resistahosaterials if one adopts the very
clear and precise viewpoint of General Menabrea andidens those pieces to be semi-
rigid bodies. That viewpoint permits one to pass fraemmformulas of the mathematical

() Maurice LEVY,Sur le principe de I'énergjel 888, pp. 9.
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theory of elasticity to the corresponding ones in itbgistance of materials, but it is
simpler to establish the latter ones directly.

Figure 2.

7. — Elastic forces in the resistance of materials. HEents of their reduction.
Suppose that one hasegFig. 2) a body with planar or skew mean fiber, and that:

G andG’ are their centers of gravity, with curvilinear abscissasds + ds
when measured from the origin that is taken on the rfibanto the
left of G

Gé is the positive tangent to the mean fibeGat
GnandG¢ are the principal axes of inertia of the secté)

nt,,ts are the components parallel to the a&ésGr, G{ of the elastic force
per unit area at an arbitrary pol{(, {) of the sectiorPQ.

In order to specify the signs of those componentsshed consider elastic forces in
the sectiorPQ to be the actions that are exerted by the part dbdly that is situated to
theleft of that section on the part that is situated torigjiet, and we agree to count them
as positive when they have the sense of the positivelioabe axes.

n is the normal fatigue at the poif andt, andt; are the tangential fatigues. From
the convention that was just made, there will be p@ssion or traction at the poiAt
according to whethar is positive or negative, resp.

The elastic forces in the secti®@ define a system that is equivalent to the external
forces that are applied to the left of that sectiéu.the center of gravity of the section
PQ, one of those two systems, like the other, will mhiogble to:

Thenormal effort N which is directed alonG¢
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Theshearing efforts JandT., which are directed alor@7 andG{
Thetorsion couple Malong the axi&¢
Theflexure couples IMandM. along the axe&n andGJd, resp.

The couplesM¢, M,;, M will be considered to be positive when they tend to turn
their lever-arms in the sense of rotation that onet imysose upon the positive pafis;,
G and G¢, resp., of the three coordinate axes in order to briaghtimto coincidence
with G¢, G¢, andGr, resp.

8. — Elastic deformation parameters of a body with a mean filve

Under elastic deformation, the sectiB®@ will tend to the infinitely-close section
P'Q by an infinitely-small relative displacement thaeguivalent to a translation that is
equal to the relative displacement of its center afiity G and a rotation around an axis
that passes through the center of gravity.

Let:

1. gds pyds yds
be the components of the translation along the tloesdmate axes:
G Gn  G¢
which are components that are counted as positive whenhhve the sense of the
positive axes.
Let:

be the components of the rotation around those sansevexen counted as positive or
negative under the same condition as the torsionlaxaré couples.

The six quantities, ), , y7, 65 6, 6; define the deformation of trstice of the body
that is found between the two sectid?@ andP'Q’. They are theelastic deformation
parameterf that slice:

€ is theshorteningper unit length — ounit shortening- of the element of the mean
fiber GG’ = ds Depending upon whether it is positive or negativerethell be true
shortening or, in the contrary case, elongation, resp.

Yo Ve are theunit shearsn the sectiolPQ along the two direction&7 andG{
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Os is theunit angle of torsion

6, andg; are theunit angles of flexuraroundGs; andGd, resp.

Let:

Q be the area of the sectiBQ

l¢ be its polar moment of inertia with respect to @ster of gravity

|, andl; be its moments of inertia with respect @G and G¢, resp. — i.e., its

principal moments of inertia
E andG be the longitudinal and transverse elastic moduli

The six deformation parameters of the skRe@P Q” are coupled with the elements of
the reduction of the elastic forces in the secB@nh(or the external forces that are applied
to the left of that section) by the relations:

@) { N=EQe, T =06GQy, T=QQy,

M,=GIl6;,, M, =GI g, M, =GlI,6,.
The normal and tangential fatigues at an arbitrary go{nt, {) of the sectiorPQ are
given by the formulas:

:E+ZM/7+/7MZ’
Q 1, I,
T, M
® =2
Q 1,
T M
=t Me
Q |,

9. — Work done by elastic forces and internal potential of a bgdwith a mean fiber

When the slicePQPQ' passes from its natural state to an arbitrary stéte o
deformation, the elastic forces that are applied ®ttto sectiondQ and P'Q" that
bound that slice accomplish a certain amount of wolkt @ be the quotient of that
infinitely-small work by the elemerdG’ = ds of the mean fiber that is found between
those two sections. It is the work done by elasticds at the poin® per unit length of
the mean fiber.

wis expressed as a function of the elements of thection of the elastic forces that
are developed in the secti®® by the deformation by the formula:
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2 TZ T2 MZ MZ MZ
(9) (U:E N R AT S T S N/ BT 4 ,
2|EQ GQ GQ Gl G| Gl

and as a function of the elastic deformation patamsef the slice by the formula:
(10) w=3(EQ&*+GQy;+GQy;+Gl.6,+ ELG + ELB,).

The work done by the elastic forces for the sk€@P Q' is wds and as a result, it
will be:

(11) n= jmds

for the entire body, in which the integral is tak®arer the total length of the mean fiber.
That formula is obviously applicable to a systenbodlies that are coupled to each other
in an arbitrary manner on the condition that oneeg that the integral is extended along
the total lengths of the mean fibers of all theibedhat comprise the system.

There isplanar flexurewhen:

1. The mean fiber is a planar curve.
2. The body has a symmetric structure with respeetiie plane of the mean fiber.
3. The external forces are applied in that plane.

In that case, if one supposes tG( is the plane of the mean fiber thén Mg, My, )3,
6s, 6; will be zero, and as a result, one will have synpl

, _1( N2 T2 M2

9) w= +——+ :
2lEQ GQ EI

(10) w=1(EQe*+GQ y*+EI6?,

when one suppresses the indi¢esnd 77 that the letterd, M, |, y; and & were endowed
with in formulas (9) and (10).

The elastic forces depend upon a force functiost, §s in the mathematical theory of
elasticity. That function will beodsfor an arbitrary slicQPQ'. That will result from
the fact that if one forms the partial derivativéghe expression (10) fao with respect
to the six deformation parameters then one willlgpesk to the expressions (7) for the six
elements of the reduction of the elastic forcee Tdrce function i1 for the entire body
(or for a system of bodies). As before (), one can conclude from this that the
functionl1 is the molecular force potential mternal potential of the deformed bo(y
the system of bodies) and that it likewise represémepotential energyf that body or
system of bodies.
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10. — Deformation parameters of a body with a mean fiber wimethat deformation
is both elastic and caloric

One will see in the same way as before (Bp.that the elastic and caloric
deformation parameters of an arbitrary slice are:

E—ar, ¥, Ve, O, g, 6,
in whicheg, ..., 8; denote the purely elastic deformation parameters the coefficient of

linear dilatation, and is the variation of the temperature, which will beipes in the
case of an increase and negative in the case of eadecr




CHAPTER I

FIRST METHOD BASED UPON THE VIS VIVA THEOREM

11. — Fundamental principle of the methods deduced fromhe vis viva theorem.
Clapeyron’s equation. Extension of that equation.

Consider an elastic body that is isotropic or hasamdfiber or a system such bodies
that satisfies the following properties:

That body (or those systems) possesses a certaibenwhsimple supportsn the
form of balls or anchors It will then be restricted to those constrairttattare called
support constraintor external constraints. The bodies that comprise the system are
coupled with each other in an arbitrary manner. Theytiwdh be restricted to mutual
constraints, which are call@gternal system constraints.

The external constraint forces are ordinarily chdlepport reactions.

One says that a body or system of themsdstatic or hyperstaticaccording to
whether the constraint forces can or cannot be eabxailby means of pure statics, resp.;
i.e., by means of the six universal conditions of élopuim.

A hyperstatic body (or system of bodies) can alwaysbde isostatic by suppressing
some of its constraints without perturbing its equilibrigtate, with the reservation that
one must apply the corresponding constraint forcesdastippressed constraints. The
constraints that remain will then be callsthtic constraintsand the ones that were
suppressed will be calleddundant constraints.

A system of bodies isxternally or internally hyperstatic according to whether its
redundant constraints are external or internal, réjrthermore, a system can be both
externally and internally hyperstatic.

One realizes the suppression of the external redundamsétraints by either
completely suppressing certain supports or replacing augaiort with simple supports,
or finally replacing the anchor support with a ball suppod simple support.

The suppression of the redundant internal constraintaclieved by either
suppressing a certain number of contacts that exist batWe various bodies of the
system or by some modifications that relate to hagelcontacts happen.

According to the number and nature of the constraintsa diyperstatic body (or
system of bodies), there will exist only one way @kmg it isostatic or several of them.
Hence, there will be no other way of rendering an #nekh rests upon two ball supports
isostatic than to replace one of those two suppotis a/simple support. By contrast,
one can render an anchored arch with its two extresnisostatic by either purely and
simply suppressing one of the two built-in supports or tgstuting a ball support and a
simple support for them.

Remark. — In what follows, whenever the direction of a dosist force is unknown
a priori (which will be the case, for example, for a constréghat is realized by a ball
support), we shall take the term “constraint force” ®am not the force itself, but each
of its components along two arbitrarily-chosen digew. Indeed, it is important to make
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only forces with directions that are known in advanceeremtto the calculation of
constraint forces.

12.— Apply a system of external forces and couples tteingially zero to a body or
system of bodies under consideration (whether isdastatic or hyperstatic is of little
importance) and then slowly increase them to theirl fusduesF and C. An elastic
deformation will then result. The point of applicatiof any one of the forces will
experience a certain absolute elastic displacemedith@ninead that joins the points of
application of the two forces that form a couglewill experience a certain absolute
elastic rotation.

Let:

A be the projection of the elastic displacement of mtpaf application of
the forceF onto the direction of that force, which is a projecttbat will
be regarded as positive when it has the same sense &wdbé& and
negative when it has the opposite sense.

@ be the projection of the elastic rotation of the l&@ onto the axis of the
coupleC (here, and likewise in what follows in the present nobe, takes
the term “projection of the rotation” to mean the ‘jetion of the vector
that represents the rotation,” and that projection Wwd regarded as
positive or negative, moreover, according to whethkadt the same sense
an the vector that represents the couple or the opzesise, resp.).

T be the work done by external forces and couples dtinengeformation

The work done by constraint forces is essentiahpz

The work done by internal or molecular forces is edqaal I (no. 4), wherell
denotes the internal potential of the deformed bodgystem of bodies.

By virtue of thevis vivatheorem, one will have:

(12) 7=,
where the material points of the body (or systenthef) that are initially at rest will
arrive at a new state of rest.

Hence:

The work done by external forces and couples that are applied direetyal to the
internal potential of the deformed body (or system of bodies).

Consequently, that work will depend upon only the finalestd deformation. It is
independent of the intermediate states, and as a re$ulie way that one varies the
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external forces and coupley.( In order to calculate them, one can fix the mode of
variation of those forces and couples that one deerbe suitable. Furthermore, assume
that they constantly keep the same ratios with e#tedr @uring the deformation, in such
a way that an arbitrary intermediate state of deftionacan be represented By and
Cp, where p denotes a positive number that varies from 0 to 1 duhegcbmplete
deformation. With that same state of deformatiomynfthe principle of the superposition
of the elastic effects of the force, the projectidrihe elastic displacement of a point of
application of the forc&p onto the direction of that force will b&p, and the projection
of the elastic rotation of the lingd onto the axis of the couplép will be ¢p, where
A and ¢ denote the values of those projected displacements ahthof the deformation.
During the passage from that intermediate state ofmhefon to the following state
that is infinitely-close to it, the forces and coupladl increase byd (Fp) andd (Cp),
resp., and the corresponding projected displacementis(Bby) andd (¢p), resp. As a
result, those forces and couples will do an elementark d7 between those two states,

which will have a value of:
d7=) Fpd(Ap)+Y Cpd(gp)= (3 FA+) .Co)pdp,

up to second-order infinitesimals, in which the sum exdeoer all forced and all
couplesC.
The total work done for the entire deformation isithe

7= (> FA +zc¢)j::pdp: %(Z FA+>Co).

Upon substituting this expression f@rin the relation (12) that is deduced from the
vivatheorem, one will obtain the fundamental equation:

(13) %(Zm +> Cg)=n,

which is nothing by Clapeyron’s equatid, (n a different form. The proof that was just
given is, as one sees, extremely simple.

13. — We propose to extend Clapeyron’s equation to the aaswhich the
deformation is both elastic and caloric, which weéyadihas not been done yet. To that
effect, consider a system of isotropic bodies, whelwstatic or hyperstatic. Subject it
to the action of arbitrary external forces and couplas an elevation of the temperature

() In order for that to be true, it is necessary thafiven system of external forces and couples can
correspond to only one state of deformation of the padiych can be considered to be obvious from the
physical viewpoint and has been proved analytically ki, B€@rchhoff, and Cosserat (APPELLyaité de
Mécanique rationellgt. 1ll, 1903, pp. 515).

() LAME, Lecons sur la théorie mathématique de I'Elasticité des corpsesoli866, pp. 80.
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that is initially zero and increases slowly up to thalfvaluesF, C, andr. (7is measured
by starting from the temperature at which the conssaintthe system are realized.) Let:

1. A be the projection of the elastic and caloric displaent of the point of
application of any on€ of the external forces along the direction of tioatcé.

2. @ be the projection onto the axis of any ddeof the external couples of the
elastic and caloric rotation of the line that joihe fpoints of application of the
two forces that define that couple.

3. SX—O'T, gy_ar, gZ_aTa WZa J’QX! M(y

be the elastic and caloric deformation of an eleargrparallelepiped that is cut
by planes that are normal to the coordinate axes at dragylf, y, 2) (no.5).

4, Ny, Ny, n,

be the normal fatigues on the three faces of thallpkapiped that have the point
(X, Y, 2 as its common summit (ng).

5. tyz, txz; tyx, tyz ; tzx, tzy
be the tangential fatigues on the same faces.

6. wdx dy dzandll be the internal potentials of that deformed paraliptgp and
the system of bodies, respectively (4.

These various notations relate to the final statdedérmation of the system. We
shall preserve them for an arbitrary intermediateestait with a prime.

Consider the infinitely-small deformation that takies system of bodies from one of
the two intermediate deformation states to the otherfirst of which corresponds to the
valuesF’, C’, and 7’ of the external forces and couples and the variatidemperature,
while the second one corresponds to the valuesdF’, C’+ dC’, and 7’ + dr’ of those
same quantities. During that deformation, the work donexbgrnal forces and couples
will be equal to the work done by elastic forces, by vidbi¢he vis vivatheorem. We
shall now calculate each of those two works:

Work done by external forces and couples- That work is:

SEdI+Y.Cdg,

up to second-order infinitesimals.

Work done by elastic forces— During the infinitesimal deformation considered, the
elastic and caloric deformation parameters of an arlyiparallelepiped vary by:
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de,—adr', de —adr, de -adr', dy,, dy,, dy,,
and the potential of that parallelepiped increases by:
d (@’ dx dy dx=dw’dx dy dz

The work done by elastic forces, when calculatedHferurely elastic deformation of the
parallelepiped that is defined by the variatiods', ..., dy,, of the six elastic

deformation parameters, is equal to the increlsédx dy dzin internal energy. The
work done by those same forces, when calculated éptinely caloric deformation that
is defined by the variation & dr’ of the single caloric deformation parameter, is:

—(n, dyd3 adr'dx- (n, dyd adr'dy- (n, dydl a dr'dz
=-a (N +n, +m) dr'dx dy dz

up to higher-order infinitesimals, since that variatiorresponds to elongations:
adr’dx adr’dy, adr'dz
of the edges of the parallelepiped and that the work Hgiike tangential elastic is zero,
while the purely caloric deformation takes place wittdistortions.
Consequently, the work done by elastic and caloric defoon is:
dw'dxdy dz- a (n, +n, + ) dr’dx dy dz
for the parallelepiped, and:

an’ - Hja(n’x+n’y+ ) ' dxdyd:

for the entire system, where the triple integratended aver the entire volume that the
system occupies.

The equation that expresses the equality of th&swdone by the external forces and
couples and the work done by elastic forces duthey infinitely-small deformation
considered of the system of bodies is then:

(14) S FdA+)y Cdg'=dN - [[[a(n +n+r)d dxdyd.

The equality of those two works is likewise troe the complete deformation of the
system, no matter what the mode of increase irefbernal forces and couples and the
temperature might be, moreover. We then adoptypethesis that one has:

F'=Fp C'=Cp, r'=1p
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for an arbitrary intermediate state of the defornmtwwherep denotes a positive number
that increases from O to 1 during the deformation, an@ assult (and this can be
considered to be obvious from the physical viewpoint) that:

U

A=A p, P'=9p, n. =nyp, n, =nyp, n, =n;p.

Furthermore, under that hypothesis, equation (14) will ti¢ern:
(S FA+>.Cp) pdp=dn’ - armj(nx+ n,+n) dxdyd% odp,

in which one assumes that the elevation in temperatigehe same at all points of the
system of bodies.

Upon integrating between the limjts= 0 andp = 1, which correspond to the start
and finish of the deformation, respectively, and upaomar&ing that the integral af ',
when taken over the complete deformation, is equél {oamely, the internal potential
of the deformed system), one will get:

(15) %(ZF)I+ZC¢) =I‘I—%arﬁj(nx+ny+ n) dxdy d.

That is Clapeyron’s equation, when it is extendedthe case in which the
deformation is both elastic and caloric. AlthougWwas established for a particular mode
of variation of the external forces and couples #dredtemperature, it will be true for any
final valuesF, C, andr of those quantities, whereas the final state &rdeation of the
system is independent of the intermediate staké®wever, its left-hand and right-hand
sides represent the work done by external forcescanples and work done by elastic
forces only in the case of the particular mode arfation in question. On the contrary,
the two sides of Clapeyron’s equation (13) repreterse two works no matter what the
mode of variation of the external forces and cosipled the temperature.

If the system is subject to a decrease in tempexahen it will suffice to measure
r negatively in formula (15).

When the preceding proof is applied to a systeioalies with mean fibers, that will
give:

(16) %(ZF/I+ZC¢)ZI‘I—%dTINdS,

whereN denotes the normal effort on an arbitrary trarsyesection of any of the bodies,
andds denotes the element of the mean fiber that isddwgtween that section and the
infinitely-close section, and the integral is takedang the mean fibers of the bodies of
the system.

One can pass directly from equation (15) to equatil6) by establishing that one
has:

(17) Hj mx+ny+ry)dxdyd::J'Nds
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for any system of bodies with mean fibers.

Here is the proof of that formula that we will useetaon.

We evaluate the triple integral, first for an infilyt¢hin slice between the two
sections § and &) of an any one of the bodies that are made at twagG andG’ of
the mean fiber that are separated by a distan@3f ds To that effect, consider the
volume of that slice to be composed of an infinitehgéa number of elementary
parallelepipeds of voluméx dy dzsuch that one of their two facdg dzis placed in the
section §) and the four edges$x are perpendicular to that section. Since the bosdids
mean fibers are, by hypothesis, considered to be rigideirirdmsverse sense of those
fibers, the fatiguesy and n, will be zero. On the other hand, up to second-order
infinitesimals and the convergence of the two sect{§hand §’) (which is always quite
weak in the bodies that are considered in the resistaf materials), one will have:

dx=ds
As a result, for the slice considered:

[[J(n+n,+n) dxdyd: = ds|[ n dyds

in which ny dy dzrepresents the elastic force on the surface eledyedzof the section
(9, and the double integral is the algebraic sunthoke forces for all of that section,
which is a sum that is the normal effd\it by definition. Hence, and always for the slice
considered:

Hj(nx+ n,+n) dxdyd: =Nds
Consequently, one will have:
[[[(n+n,+n)dxdyd= [Nds

for the whole system of bodies, where the lattezgral is taken along the entire mean
fibers of the all bodies in the system Q.E.D.

14. — Castigliano’s theorem on the derivatives of work

The isostatic or hyperstatic body or system ofie@that was considered before (no.
12) assumed its elastic equilibrium state under i®ia of a system of external forces
and couples- andC when those forces and couples are given arbitnafipjtely-small
incrementdF anddC.

Let:

dA anddg be the corresponding (positive or negative) in@ets in the projected
displacementd and ¢.
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d7T be the corresponding increment in the work done by mattéorces and
couples
dr be the corresponding increment in the internal p@atient

d 7 represents the elementary work that is performed bfotises and couplds and

C when they increase bgF and dC, resp., which are correlated with the projected
displacementdA anddg, resp. It will then have the expression:

d7= ZFd/] +ZCd¢,
and substituting that expression in formula (12) ®), when differentiated, will give:
dN=> Fdi+) Cdg.

On the other hand, upon differentiating the fundamesgahtion (13) (nol2), one
will have:

D FdA+) AdF+) Cdp+)> ¢ dC=2dT.

Upon adding corresponding sides of the last two equatichslewveloping the total
differentiald I'l, one will get the relation:

orn o
A —_ _— PR
E dF+E¢dC E dF+E dC,

which can be satisfied only if one has:
(18) A=—, $=—

separately, since the incremedisanddC are arbitrary. Hence:

Theorem. — If an elastic body, whether isotropic or with a mean fiber, or an
(isostatic or hyperstatic) system of such bodies is subjected &wb#tmary system of
external forces and couples then:

1. The projection of the elastic displacement of the point of applicatianyobf the
forces onto the direction of that force will be equal to the partiavdéve of the internal
potential of the body (or system of bodies) with respect to that forc

2. The projection of the elastic rotation of the line that joins the pahépplication
of two forces of any couple onto the axis of that couple will be equéletpartial
derivative of the internal potential of the deformed body (or systetodies) with
respect to that couple.
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That is the theorem of Castigliand) that that engineer called tlieeorem of the
derivatives of workwhich is a term that is justified by the fact thatnirédormula (12)
(no. 12), the internal potential is equal to the work done biemmal forces during the
deformation.

15. Corollary I. —If two F among the external forces are equal and opposite then the
elastic incremend\l in the distance £ AB between their points of application A and B is
equal to the partial derivativell / OF of the internal potential with respect to F.

Indeed, first suppose that the two forces are unequdl.F L@éenote the one that is
applied toA, and letF" denote the one that is applied®o One can always set:

(@ F =K F, F'=K'F,
in whichk' andk” denote two arbitrary positive numbers.
Let:
Al be the elastic increment in the dista#d®= |, which is an increment that
differs fromAl, but becomes equal to it in the special case wkierd" =
1.

A"andA” be the elastic displacements of the two poiatsand B, which are
estimated along the common directidB of the two force="andF" and
regarded as positive when the former has the same ashsSeand the
latter has the same sensd~as

One will obviously have:
ANl=A+A"

However, from Castigliano’s theorem:

in whichT1" denotes the internal potential, which differs frBimbut will become equal to
I in the special case whelfé=F" =F.
As a result:
ANl = al +al ,
oF"  oF"
and upon setting'=F" = F:

() CASTIGLIANO, “Nouvelle théorie de I'équilibre des systés articulés,” Actes de I'’Académie de
Turin, (1875);Théorie de I'équilibre des systémes élastigiesin, 1879.
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() ).
OF" Jeg OF" Jerr

Now 1M, which is a function oF “andF 7, can also be considered to be a functioR,of
since, by hypothesi§;”andF ”are coupled withr by the relationsd), which will permit
one to write:

aldF = aldF’+al dF" = alk’ d|:+al K' dF,
oF oF’ oF" oF’ oF"
or
on :6|'| K+ on K
oF OoF' oF"

or rather, upon setting = k" = 1, which would imply thaE’=F" =F andll’ =11:

o :(a_ﬂ’j {0_”'}
oF oF )or \OF" )y’

As a result, the expressiol) for Al will become:

Al = a_rl
oF
Q. E.D.
Corollary II. —If four of the external forces are applied at fquoints a, § b, b,

which are situated in the same plane, then thosee$owill be likewise situated in that
plane, and if the ones that are applied at a ahdoastitute a couple C and the ones that
are applied at b and'lzonstitute a couple that is equal and oppositdheodreceding one
then the line aawill submit to an elastic rotation relative to thee bd whose projection
onto the axis of couple C will be equal to the éhrterivative oI /oC of the internal
potential with respect to C.

That corollary drops out of the second part of Castiglis theorem and is proved in
the same manner as corollary I.

Corollary Ill. —In the case of a body with mean fiber or a systeésuoh bodies, if a
couple C is applied to an arbitrary transverse gattthen the projection of the elastic
rotation of that section onto the axis of that deuwill be equal to the partial derivative
of the internal potential of the deformed body ggstem of bodies) with respect to that
same couple. Furthermore, if there is planar flexwhich demands that the axis of the
couple C must be normal to the plane of flexurentthat derivative will represent the
rotation of the section.
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Figure 3

Let (seeFig. 3):

aanda’ be the points of application in the section consid¢gpadf the two forces
F and —F constitute the couplé

r be the direction of the axis of that couple, whichasmal to the plane of
F and —F, and in turn, to the lin@a’that is contained in that plane

ds be the rotation of the sectio8) (
O be the rotation of the lin@a’
@ be the projection of the latter rotation onto thectionl".

From the second part of Castigliano’s theorem, oifidhave:
_on
?=5c

In order to establish the corollary, it will then fsté to show that the projection of
the rotation®s of the section$ onto the directior of the axis of the coupl€ is equal
to the projectiory of the rotatior® of the lineaa’onto that same direction.

Now, the rotatiorbs can be decomposed into:

1. A rotation that is equipollent ® and takes the linaa’, which is situated in the
plane of the sectiorf, from its initial position to its final position.

2. A rotationW aroundaa’, in such a way that one has the equipollence:

D, =D+,
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Project that equipollence onto the directionwhereW is normalll with a zero
projection. Hence, the projection of the rotatgonto the directiorf” is equal to the
projectiong of the rotatior® onto that direction.

Q. E.D.

16. — Applying Castigliano’s theorem to the calculation of elastidisplacements

In order to apply Castigliano’s theorem to the caldmtaof elastic displacements in
isotropic bodies or systems of bodies, it is necgsgardefine the expression for the
internal potential as a function of the externaté&sand couples andC. To that effect,
one must calculate the six fatigueandt (or the six parameterand)) (nos.2 and3) as
functions of those forces and couples and then sutestihem in the general expression
(3) (no.4) [or (4), same number] for the potential per unit volunNow, in the present
state of the mathematical theory of elasticityt tbalculation is possible only in a very
small number of particular cases. It will then follokat (at least, for the time being)
Castigliano’s theorem is generally impracticable iascds the isotropic bodies and
systems of bodies are concerned.

By contrast, it is immediately applicable to bodies aystems of bodies with mean
fibers. Indeed, from formulas (9) and (11) (18), the general expression for their
potential is:

2 T2 T2 MZ MZ 2
n-—j N < Mo M, M ds,
EQ GQ GQ GI EI EI

and if one substitutes that expression into thes ¢h8) (no.14) for A and ¢ then one will
get:

T GT T GT M GM M 0 M, OM
(19) A:J' N aN 4 n IVI//+ 4 4 dS,
EQ@F GQ@F GQ GF GI oF E|,7 oF EIZ 0F

(20) ¢=] NoN, T, 0T, T 90T M oM M oM M oM
EQAC GQAC GQAC GfdC EJdC EJacC

Furthermore, in order to calculadeand ¢, it will suffice to perform the reduction of
the external forces that are applied to the lefirof section to the center of gravity of that
section (including constraint forces), which wilelgd N, ..., M, as functions oF andC,

and then form the partial derivativgé\l—, (BI\/I_( a—N, M , and substitute those
oF oF oC oC
results in formulas (19) and (20).
If the body (or system of bodies) is subject t@lanar flexure(no. 9) then the
expression for the internal potential will simpligpnsiderably, and formulas (19) and

(20) will reduce to:
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(19) A:I NON ToT, MoM ds,
EQJF GQOF EIOJF

(20) P '[ N 6N T 6T M oM ds
EQGC GQGC ELOC

The preceding formulas yield the projected displacemants projected rotations
only for the points of application of the external fescand the sections to which the
external couples are applied. However, it is easytiend them to an arbitrary point and
an arbitrary section by a very simple trick.

Hence, one must determine the elastic displacewieah arbitrary pointA that is

projected onto an arbitrarily-chosen direction Apply an auxiliary forceF of arbitrary

magnitude to that point along that direction, in additio the given external forces and
couplesF andC. Moreover, the element$, T, , ..., M. of the reduction of the elastic
forces in an arbitrary section (or external forcetheoleft) at the center of gravity of that

section will becomdN + N, T, + 7, ..., My + M., if one letsV, 7,, ..., M, denote
what the elements of that reduction would become if tmdyforceF were applied to the
exclusion of the forces and couplesndC. When the elastic displacement of the point
A under the influence of the systdimC, F is projected onto the directidy it will have
the expression:

. f N+N6(N+N) T, +7,0(T, +T) |\/|Z+MZ (M, +M,) ds
GQ  oF El, OF

by virtue of formula (19).
In order to get the desired projected displacemewill obviously suffice to maker

= 0, which will imply that\'= 0,7, =0, ..., M;= 0. If one observes th&k T,, ..., M,

oT oM
are independent of and that, as a resul?ﬂ, .., < are zero then one will
dF ' oF 0F
get:
T, 07, M, oM
(21) - | LA, pooa e O g
EQ 0F GQ 0F El, 0F

Similarly, the projection of the rotation of arbdrary section § onto an arbitrarily-
chosen directiofi is expressed by the formula:

(22) ¢:I{ NN, T, 9T, M, aMZjds,

EQaC GQ aoC El, doC
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in which M, 7,,, ..., M. are the elements of the reduction of the elastic oncean

arbitrary section at the center of gravity of thattisecwhen the body (or system of
bodies) is supposed to be subjected to exclusivelyawdliary couple of arbitrary

intensityC that is applied to the sectio8) (and the direction of the axis

In the case of planar flexure, the directdmust be situated in the plane of flexure
and the directio must normal to that plane, and formulas (21) and (22)&dllice to:

EQJF GQ 6.7: El 6.7:
22) p= (NN, T OT Mo,
EQ oC GQ ac El oC

@ is then the rotation of the sectid®).(

17.—N, T,, ..., M;are subject to given forces and coupteandC in the system of
bodies considered, and the elements of the reductidheatenter of gravity of an
arbitrary section of any of the bodies are subject tereal forces that act to the left of
that section, including constraint forces.

M, T,, ..., M are elements of the same nature in that system tbadubject to

either the auxiliary forcé or the auxiliary coupl€.

The calculation of those various elements of redoctdemands the prior
determination of the constraint forces.

If the system considered isostaticthen that determination will involve only pure
statics and will offer no difficulty.

If the system idyperstaticthen that determination will demand the interventibn o
the theory of elasticity; we shall treat that questaiar. Nonetheless, one can avoid that

intervention as far as the calculation of the elet®&1, 7,, ..., Mis concerned; here is

how:

In an arbitrary hyperstatic system that is acted upogivsn forces and couplds
andC, let Fs be the redundant external and internal constraioefmwhich are unknown
forces. Consider the isostatic system that is nbthby suppressing all of the redundant
constraints on the hyperstatic system. Subject itrteefoand couplds, C, and unknown
forcesFs . It will take on a state of deformation that isntleal to that of the hyperstatic
system if it were subject to only the forces and couplesndC. Consequently, instead
of calculating the projected elastic displacemerasd projected elastic rotatiogsn the
hyperstatic system, it would amount to the same thincatculate them in the isostatic
system. Furthermore, in formulas (21) and (22) L&)

1. The elements\, 7,, ..., M, of the reduction become ones that relate to the
isostatic system when it is subject to either the &uyiforceF or the auxiliary coupl€.
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2. The elementd, T,, ..., M. of the reduction will likewise become ones that eslat
to the same isostatic system when it is subject tddtwes and coupleB, C, and the
unknown forceds , but the latter elements will have the same vathas they would
have in the hyperstatic system if it were subjectrily the given forces and couplés
andC, since the state of deformation of those two systgithe the same.

Hence, when one applies formulas (21) and (22) [0) @1d (22)] to a hyperstatic
system, one can consider the elements of redugtio®,, ..., M. (or N, 7, M) to be

attached to the isostatic system that is obtained by esfipg the redundant constraints
from that hyperstatic system, which will render itccgdible by means of pure statics. As
for the elements of the reductidh T,, ..., M;, they will be, by contrast, attached to the
hyperstatic system, and the determination will necessite intervention of the theory
of elasticity.

18. — Theorem of General Menabrea. Determining the reduraht constraint forces

Consider an isotropic body or one with a mean fibemore generally, a system of
such bodies. That system is hyperstatic. It is istelaquilibrium under the action of
forces and couplds andC that are applied directly, and we suppose (and this istist
complex case) that its redundant constraints arereiten one case and internal in the
other. Make them isostatic (nd.1) by suppressing the aforementionseztiundant
constraintsby applying forces to them that correspond to the constréihat are thus
suppressed, moreover, in order that its state of elasfiglibrium should not be
perturbed. LeFssandCgsbe an arbitrary force and couple, resp., of redundastred
constraints, whilé-s andCis are an arbitrary force and couple, resp., of redundtarnel
constraints. In relation to a system that has lberdered isostatic, those forces must be
considered to be forces that are applied directlyyelsas the forces and couplEsand
C.

Now, from the very fact of the existence of extewwistraints itself, the projection
of the elastic displacement of the point of applmanf the forcd=cs onto the direction of
that force is zero, and the rotation of the sectibrafplication of the couplé€es is
likewise zero. From the general formulas (18) @), one will then have:

a_rl: O, a_rl: 0.
oF,, 0C,,

On the other hand, an arbitrary internal constraang in particular, a redundant
internal constraint, ordinarily consists of saying thapoint A of one pieceP of the
system is restricted to remain invariably coupled to iatf@® and another piec®. The
corresponding constraint forces are a fdfgehat is applied t& on the piecd® and an
equal and opposite force that is appliedton the piec&). The distanc&B between
those two points, which is zero before deformationll thien once more be zero
afterward. As a result, by virtue of the corollarywb (15) to Castigliano’s theorem, one
will have:
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Finally, if the redundant constraints of one pi€ceith respect to a pied® consist
of saying that two pointa anda’of the former are restricted to remain invariably linked
with two pointsb andb’ of the latter then the corresponding constrainteerwill be
composed of two equal and opposite forces that are appledmdb’. If the two forces
that are applied & anda’constitute a coupl€;s then the two forces that are appliedat
andb’will constitute an equal and opposite couple. In thagcsince the elastic rotation
of the lineaa’relative to the lindb’is zero, one will have:

by virtue of corollary Il (no15).

In summary, the partial derivatives of the internaleptial of the deformed system
with respect to the forces and couples of the redunoamgtraints, whether external or
internal, are zero. Hence, the values of thoseefoand couples will render that potential
a maximum or minimum. It remains for us to decide betwhose two alternatives.

Let A be the value of any of the forcBss, which is a value that will consequently
satisfy the equation:

on

—=0.
oF,

For any other value that is attributed arbitrarily te thrceF.s the projection of the
displacement the point of application of the forcéoadhe direction of that force will not
be zero. It will have the expression:

2=
oF,

Now, it is obvious that if one starts from that arbifrealue of the forcé.sand it takes
on an incrementlFes then the corresponding variatida of the projected displacemeht
will have the same sensefs (i.e., positive), in such a way that one will have:

ﬂ > 0,

oF,,
and as a result:

oM

P
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That inequality, which was established for any valuE«gthat is not equal té, will be
likewise true forFes = A, whereas, since the potentfdl has degree two iffes (%), its
second derivative with respect to that variable williiidependent of the value that is
attributed to it.

One shows that the second derivativedloWith respect toCes, Fis , andCis are
positive in the same fashion. Certain authors thewmlaoda thatll is a minimum and
state the theorem of General Menabrea in the fotigwnanner (or something that
approaches it):

In a hyperstatic system that is composed of isotropic bodies omgtiesiean fibers,
the values that the forces and couples of the redundant external and intemsabants
take will, in fact, will render the internal potential of the systa minimum when it is
considered to be a function of those forces and couples.

That statement is very seductive, but it goes beyomanke that was actually proved.
Indeed, the condition fdr to be a minimum is that the total differential oftthanction

should be positive for the values Bfs, ..., Cs that annul the first partial derivatives
2
;I:_l Vo (;’il‘l . Now, one can only establish that the second part'rzmad'wesa—rzl,

2

.., — are positive for those values. We also believe thatroust take the following

IS

statement into account:

Theorem.—In a hyperstatic system that is composed of isatrbpdies or ones with
mean fibers, the values the forces and couplesedtinrdant external and internal
constraints actually take will annul the first p@aftderivatives of the internal potential,
when it is considered to be a function of thosedsrand couples. In addition, if one
replaces those forces and couples with their effectalues in that function, except for
one of those forces or one of those couples, tierfuinction of one variable that is thus
obtained will be a minimum for the effective vabfi¢hat force or couple.

In addition, as far as applications are concernadgtiestion of knowing whether an
internal potential is a minimum or not is devoid demest. The only point that matters is
that the effective values of the forces and coupldteftedundant constraints annul the
first partial derivatives of that potential.

As one knows, that theorem is a corollary to Céatig’s theorem. However, before
the work of that engineer, it was stated for arti@dasystems by General Menabrég (
under the name of the “principle of minimum elastic kyoand one can likewise find
that it was given for an arbitrary system of bodis mean fibers in that era, since those

() Itis a function of degree two in the normal and tatigefatigues. Now, those fatigues are linear
functions of the external forces that produce them. celdn is a function of degree two in the external
forces, and in particular, of the forEg; .

(® MENABREA, “Principe général pour déterminer les prassiet les tensions dans un systéme
élastique,” Turin (1868).Seealso a note that General Menabrea read at the saxfsiba Académie des
Sciences on 31 May 1858, Comptes rendus, t. XLVI, pp. 1056.
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bodies can be considered to be a particular caseicflated systems', according to a
remark of Mohr and Winkler.

We shall indicate the way that one employs Menastdaorem in order to calculate
the forces and couples of redundant constraints irebamti systems of bodies with mean
fibers after we have extended that theorem to the caaéich the deformation is both
elastic and caloric.

19. — Extension of Castigliano’s theorem to the case in whitihe deformation
is both elastic and caloric

That extension was made by Ernest Flamard in his prdyioited thesis in the
context of systems of bodies with mean fibers, by me#tise theorem of virtual work.
We shall do that for the systems of isotropic bodassyell as the ones with mean fibers,
by means of theis vivatheorem.

Consider a system abotropic bodies (whether isostatic or hyperstatic) that is
deformed by some external forces and couplasadC and a rise in temperaturgwhich
is measured by starting from the temperature at whichy$tera constraints have been
realized. (In the case of a drop in temperature, ltswifice to endowr with the negative
sign. Apply the generalized Clapeyron equation (15) 18pto that deformation:

Y FA+> Cg=2M- Hjar(nx+ny+ n) dxdyd;,

in which:
A is the projection of the elastic and caloric displaent of the point of
application of any of the external fordé®nto the direction of that force
@ is the projection of the elastic rotation of theelithat joins the points of
application of the two forces that form an exterm@lpleC onto the axis
of that couple
M is the internal potential of the deformed systdrnaulies

Ny, Ny, N, are the normal fatigues along the three elemdsatsare drawn normally
to the coordinate axes at an arbitrary pont/(2) of the system

That equation is true no matter what system afesls attributed t&, C, andr. As
a result, the equation that is obtained by diffeating it with respect to those
independent variables and with respect to the dgies, ¢, 1, n,, ny, N that it depends
upon will likewise be true. One can then write:

(8 D FdA+> AdF+)> Cdp+) ¢ dC
:2dl‘l—jﬂa[(nx+ny+ n) & +7 d n+ n+ n dxdyd,

() Maurice LEVY,La Statique graphique et ses applications aux construgtas 4, 1888, pp. 141.
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and the incrementd, dC, anddr in that equation are arbitrary.

Imagine the infinitely-small deformation that takbe system of bodies between two
states of deformation, the first of which correspotalshe valuesd=, C, and r of the
external forces and couples and the rise in temperatesp,, while the second one
corresponds to the valués+ dF, C + dC, andr + dr of those quantities. During that
deformation, the work done by external forces and couplegual to the work done by
elastic forces; the equation that expresses thatwastestablished before: It was (14)
(no.13), which was:

(b) ZFd)I+ZCd¢=dI‘I—”Ja(nx+ny+ry)drdxdyd:,

when one suppresses the primes (which is only stigneof notation).
Subtract corresponding sides of equati@s(d b). That will give:

(© ZAdF+Z¢dc:dn—jjjar(nx+ny+nz) dxdy d..

The fatigues, ..., )4y, and as a result, the internal poterfflaldepend upon external
forces and coupleB and C that are applied directly and the constraint fercef the
system is hyperstatic then they will depend upoth oy F and C, but also on the
temperature, so such a system cannot be freelyabléa in such a way thak, ny, n,,
and[ will be functions off, C, andr in equation ). If the system were isostatic then
those quantities would be, on the contrary, inddpahofz, so such a system would be
freely dilatable.

Having said that, first suppose that the systensidered igsostatic and under that
hypothesis, develop the total differentidl§l andd (ns+ ny + n,) in equation €). If one
assumes that the variation of temperature is theesat all points of the system then it
will become:

S AdF +Z¢ dc
-y a4 3 30 dc-arf[][ 3

- ar.m.( Mdcj dx dy d:

a(n +n + nz) jdxdyd

Z—dF zacdc ary. - UH(W n+ 1) dxdydr d
—arz Uﬂ(n +n,+n,) dxdyd% dg,

or, upon setting:
(23) H:I‘I—arﬂj (n +n,+n,) dxdyd,

S AdF+Ygdc = ¥ Thar+ > dc
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In order for the latter equation to be satisfieds necessary that one must have:
(24) A=—, p=—,

separately, since the incremedisanddC are arbitrary.

Formulas (23) and (24), which were establishedsfostatic systemsemain valid for
hyperstaticsystems. Indeed, |€ be the redundant constraint forces, whether intennal
external, for a given arbitrary hyperstatic system. @enghe isostatic system that is
obtained by suppressing all of the redundant constraints fhe hyperstatic system.
Subject it to the forces and couplEsC, Fs, and the variation of temperaturg so
formulas (23) and (24) will apply to it. Now, its statedeformation is identical to that
of the given hyperstatic system when it is subject tdfdhees and couples andC and
the variation of temperaturg and as a result, the various quantile®, I, ny, ny, n;
will have the same values in that isostatic systenthay do in the hyperstatic system.
Hence, formulas (23) and (24) will be likewise applicabléneolatter system.

Q.E.D

The two formulas (24) differ from (18) (nd4) only by the replacement of the
functionl with the functionH. Except for that replacement, they will then translate into
a proposition that is identical to Castigliano’s theorem.

When the preceding proof is applied to the case of @&mysf bodies withmean
fibers that will once more lead to the formulas (24), buhwi

(25) H:I'I—aerds.

One can, moreover, pass directly from the exprega8j for H to the expression
(25), upon remarking that from formula (17) (48), one will have:

JJJ (n +n, +n)dxdyd:= j N ds

for any system of bodies with mean fibers.
We note, in passing, that if one repladésin formula (25) with its resultant
expression from formulas (11) and (9) (8bthen one will get:

_ 1| N2
(26) H_EJKEQ

In the case of planar flexure, the last formulf reduce to:

2 2 2
(26) H:EJKN —2mNj+T +£}ds.
2/ EQ

T2 M2
-2arN |+ +...+—< |(ds.
GQ .

GQ EI
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20.— The quantityH can be interpreted as follows:

Let Fs be the redundant constraint forces, whether inteomakexternal, for a
hyperstatic system of bodies with mean fibers thasabgect to forces and coupleésnd
C, as well as a temperature variation Let the forces and couplés C, Fs , and the
temperature variatiom act upon the isostatic system that one obtains by sgipgehe
redundant constraints. It will take on a state of de&tion that is identical to that of the
hyperstatic system that is subject to the given fomed couples and C and the
temperature variation. Imagine that this deformatioacisieved over two time intervals
as follows:

During the first time interval, the isostatic systersubjected to forces and couples
F, C, Fs, in such a way that its deformation is purely elastid that as a result the work
that is done by elastic forces will be

During the second time interval, it is subject totdmperature variation. The elastic
forces remain constant, since the isostatic sysienfreely dilatable, and it will
accomplish an amount of work whose value N &7 dsfor a slice of thicknesds and

—a'rj N ds for the entire system.

The total work done by the elastic forces during the cetaptieformation, both
elastic and caloric, will then be:

I‘I—aerds:H,

and if the system is composed of isotropic bodies tinennall likewise find that the total
work done is:

n- arjﬂ(nx+ny+ n) dxdyd:.=H.

Ernest Flamard called the quantiythe total work done by deformation of an elastic
system that is subject to a temperature variation.

It should be pointed out that this terminologygiste conventional. It is exact only
with the reservation that the deformation is perfed during two time intervals and in
the order that was indicated above. Indeed, ithencontrary, the temperature variation
precedes the application of the force and coup)es, Fs then the work done by elastic
forces will reduce tdl. If the two actions are simultaneous then thekvdome by elastic
forces will be somewhere betwednandH.

Formulas (24) nonetheless constitute an extensio@astigliano’s theorem to the
case in which the deformation is both elastic aaddrec.

21. — Application of the generalized Castigliano theorem to thealculations of elastic
and caloric displacements in bodies and systems of bodiegtwmean fibers

The general expressions (24) (d®) for the elastic and caloric displacements and
rotations are developed in exactly the same maasméne expressions (18) (rigl) of the
purely elastic displacements and rotations inl%o.One will then find that:



32 Modern Methods in the Resistance of Materials

T M, d
(27) /]:'[ i—a’z‘ dN+ U d/Z’+...+_’7ﬂ ds
\Ea " JdF "eadr T E) oF |
I T M, dM, |
(28) ¢:'[ i—az‘ dN+ n dT+...+ n ﬂ ds.
EQ dc GQ & El, &« |

Those formulas differ from the corresponding oridg @nd (22) (nol6) only by the

replacement of% with [%—arj. When one applies them to a hyperstatic system,

from the caveats that were made before {"pin fine), one must take care to calculate
the reduced elementg, 7, ..., M, not in the hyperstatic system considered, but in the

isostatic system that is obtained suppressing the reducdastraints of that hyperstatic
system.
In the case where the flexure is planar, one wilergmnply:

(27) 2= N OV, T dT MM
EQ dF GQ dF EI dF

(28) o= N AN, T T MM
EQ dc GQ & EI « |

22. — Extension of General Menabrea’s theorem to the case
in which the deformations are both elastic and caloric.
Determining the redundant constraint forces

The extension of Castigliano’s theorem implies acare&sponding extension of its
corollary, namely, General Menabrea’s theorem. t Bixéension is obtained by replacing
the internal potentidll with the functiorH in that theorem.

In order to apply the theorem, thus-generalized, talé&ermination of the constraint
forces and couples of a hyperstatic system, one intredetRindant constraint forces
and couples into the functiod and forms its partial derivatives with respect tosth
forces and couples. The equations that are obtainequagieg those derivatives to zero
will yield the forces and couples of tmedundantconstraints. Pure statics will then
provide the equations that are necessary to calculat®tbes and couples of tiséatic
constraints.
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M=

P>
>

Figure 4.

23. — Example of the determination of redundanéxternal constraint forces

Let (Fig. 4)AB be anarch that is anchored at its two extremiti@gich signifies that
the two transverse sections whose centers of grakétyAand B cannot be displaced
elastically.

That arch has a plane curve for its mean fiber angl structurally symmetric with
respect to the plane of that curve. It is subje@rhitrary forces that are situated in that
plane, as well as a temperature variatipwhich is measured from the temperature that
is realized at its anchors. Its flexure is therefdemar.

The elementary reaction of either of the two anslfthe one on the left, for example)
is reducible to a resultant translation at the paiind a resultant couple whose axis is
normal to the plane of the mean fiber. XeandY be the components of that resultant
translation along two arbitrary rectangular aXesand Ay, and letZ be the resultant
couple. Suppressing the anchor on the left will obviously Haeeffect of rendering the
arch isostatic, since that anchor constitutes a gahinconstraint of that arch (nbl)
and as a resul¥, Y, andZ will be the two forces and the couple, resp., ofrdgundant
external constraint. By virtue of the generalized tBeoof General Menabrea (rip):

a_H:O a_H:O, a_H:O
oX oY 0Z

The functiorH is expressed by the formula (26) (48), which is valid in the case of
planar flexure:
2 2 2
H :Ej N" oarN [+ T+ Ml gs,
2 EQ

GQ EI
and in which the integral extends along the t@agth of the mean fiber of the arch. As
a result, the three equations above can be written:
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I_ N ON T 0T, MaM]| ,
- —ar =4+ " =0,
EQ 0X GQIX EIlaX
@ I N 0N, T 0T, MoM| o
\EQ Y GQAY EIdY|
(N ON T 0T MAM|
J' ———aT |—+——+———|ds=0.
\EQ 0Z GQaz EIAZ|

Having said that, let, § andu be the values that are taken by the elements of the
reductionN, T, andM, respectively, at the center of gravidy(x, y) of an arbitrary section
of the external forces that act from the left of feetion if the arch is rendered isostatic
by suppressing its left anchor, 8 andu are immediately calculable by pure statics and
can consequently be considered to be known in what fallows

One obviously has:

N=v+ X%+YQ,

ds ds

(b) T=H—X%+YQ,
ds ds
M =pu—-Xy+Yx+ Zm

and as a result:

ON_dx  oT _ _dy oM __
oX ds’ X ds’ X ’
ON_dy  oT_ o M _
oY ds’ aY ds’ aY ’
a_N: 0’ a_T:O, a_M: l
0z 0z oz

Upon substituting these twelve expressions in equat&@ranf lettinga andb denote
the coordinates of the poiBt{ one will find that:
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xj( J ( J y—ds+YjK1— Jdquds— 52 ds

El EQ GQ)dsd El
=ra+ I X+ 6 dy ’Uyds
EQds GQ ds El
© (‘”J (Y
Xj 1 dxdy_ Xyis +Yj ds) , X ds+Zj.id~
EQ GQ dsds EI @ El E

=Ta—j vV dx 6 dy ’Uyds
Est Gst El

XIE ds— Y—ds— 4— dsj"u ds

These three equations yield the two forces and coupleearedundant constraints.
One can then calculate the elements of the redubtidn andM that are attached to an

arbitrary section by means of formulds. (
24. — Example of the determination of redundaninternal constraint forces

Consider ararch that is anchored at its two extremities and includes a bgFi@
5).

<~

Figure 5.

That arch has a plane curve for its mean fiber ansl structurally symmetric with
respect to the plane of that curve. It is subjectearibirary forces that are situated in
that plane, as well as a temperature variatiowhich is measured by starting from the
temperature that is realized at its anchors. Itaifexvill then be planar.

In reality, the arch considered is a system of tnchared arche8O andOB, each of
which starts from one of the extremities of the aaald is joined to the other at the ball
O. The action of the arcAO on the archOB is that of a force that is applied to its
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extremityO, and the components of that force along the two mgatar axe€Ox andOy,
will be denoted by andY, resp. The reaction of the ar€B on the arctAO is equal
and opposite to that action.

It is clear that the system will become isostédt@ne suppresses the constraint on the
two arches aD. ConsequentlyX andY will be two redundant internal constraint forces.
By virtue of the generalized theorem of General Meralwae will then have:

a_H:O a_H:
ox ay
with
2 2 2
H :E N -arT +T_+£ ds,
2 EQ GQ EI
or rather:
(N ON T dT MAM|
J' — a7 |—+——+——|ds
@ EQ 0X GQoX EloX
a - -

—

N N T 0T MoM]
——ar |—+——+———|ds
(EQ jav GQIY EIOY

in which the integrals are extended along the tetajthAOB of the mean fibers of the
two arches.

Let v, 6, andu denote the values that the elemeMitd, M, resp., of the reduction of
the external forces that act from the left on dnteary section of either of the two arches
take at the center of gravity (X, y) of that section if the system is made isostaic b
suppressing the constraint on the two arch&s ar, 6, andu are immediately calculable
by means of pure statics and can consequently hsidayed to be known in what
follows.

It is easy to see that, regardless of whethesélotion belongs to one or the other of
the two arches, one will have:

N:V+X%+YQ,
ds ds
(b) T=H—X$/+YQ(,
ds ds
M=pu- Xy +Yx

and as a result:

N _ dx a_dy  m_
oX ds’ X ds’ X ’
ON _dy oT _ dx oM _

ay ds’ ay ds’ Y
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Upon substituting these nine expressions into equat@ran( lettinga andb denote
the projections of the entire mean fil#g®B ontoOx and Oy, resp., one will find that:

X] (dsj +(de +Y_2| ds+ YIK 1 _ij%iy_ XVJ d

EQ GQ E EQ GQ)dsds E

:ara+.[ —L%+iﬂl+ﬂ ds
EQds GQ ds EI

(©)

EQ GQJdsds EI @ EI

¥ [ESERCE P (I PEIN

:ara+'[ —L%.{.iﬂ/.{.ﬂ ds
EQds GQ ds EI

These two equations yield the two redundant internal @nsforces. One can then
calculate the elements of the reductnT, andM that are attached to an arbitrary
section by formulashyj.

Ro|R Roa | P P | P

Oy 11 |/_l: | ’ nr _ 1 ny
!

c) F
0 i n
A 1 i—1 i n-14

'B

Po P1 P YPR Pr1 YPn
Figure 6.

25. — Another example of the determination of
redundant internal constraint forces

As an example, take aticulated straight beam with double lattiteat rests upon
two simple supports (Fig. 6).

This beam consists of rectilinear bars whose meansfiaer situated in a vertical
plane and are concurrent at points that are calmtes. At each node, the bars are
assembled together by an articulation axis that is abtothe plane that contains their
mean fibers.

One calls:
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The horizontal barfame elements,
The vertical barsiprights,
The inclined bargliagonals

The part of the beam that consists of two conseeutjwights, along with the two
frame elements and the two diagonals that are locatseebn those two uprights bears
the name of panel We shall denote the panels by the ordinal numbe2s .1,,i, ...,n
—1,n, the lower nodes by the numbers 0, 1,i,..,., n— 1,n, and the upper nodes by the
same numbers with primes.

The beam is subject to vertical lod®ts, P1, ..., Pi, ..., Ps-1, Py, and loads off),

B.,... R, .. P, P areapplied to the upper nodes.

The elastic forces in any section of any bar are ibduto a single force that is
directed along the mean fiber of the bar. It istbemal effort, or if one uses the term
that is currently adopted, tlegfort in the bar(the shearing effort and the flexure couple
are zero).

We propose to calculate the efforts that are producdbebipads in all of the bars of
the beam.

Let:

Xi and X! be the efforts in the two frame elements (,i) and (- 1,i"). Q; and
Q: are the transverse sections of those two barsa @ntheir common length.

Yi-1 andY; be the efforts in the two uprights<{ 1,i’— 1) and (, i"). w-1 anda are
the transverse sections of those two uprights baadheir common length.

Ziand Z/, S and S, c be the analogous quantities that relate to the two didgjon
(i'-1i)and {—1,i").

Each of those efforts will be considered to beitp@s or negative according to
whether the corresponding bar is compressed oedemnssp.

The beam is externally isostatic, but internallypérstatic. There exist a large
number of ways of rendering it completely isostatde shall adopt the one that consists
of suppressing the diagonal constraints (B, .1. ( — 1,i"), ..., (h— 1,n") whose lower
nodes of assembly are O, i.+ 1, ...,n— 1, resp. Furthermore, those diagonals will no
longer play a role in the beam. They will behaseafdahey were suppressed and will, in
turn, become aeticulated system. Now, one knows that such a system isniallg
isostatic.

The constraints that are thus suppressed areethendant internal constraints (no.
11). The corresponding constraint forces are — kamwple, for the diagonal ¢ 1,i") —
two equal and opposite forces that have the samgetwin as the efforz’ in that

diagonal, and one of them will apply a force to éxéremity of the aforementioned that
has been rendered free and the other one will agpfdyce to the node— 1, and those
forces will be repulsive or attractive accordingatbetherz is an effort of compression

or an effort of tension, resp. One can then say the redundant internal constraint



Chapter Il — First method based upon vfeevivatheorem 39

forces are the effortg;, ..., Z', ..., Z, in the diagonals (O,’}%. ..., ( —1,i"), ..., (h—1,

n'). Those diagonals bear the nameeafundant bars.
If Z/ is a redundant constraint force then one will have:

oH _

(@) Z

by virtue of General Menabrea’s theorem, whdredenotes the internal potential of the
beam that is deformed by the loads.

That potential is equal to the sum of the potentilallathe bars that constitute the
beam. Now, for an arbitrary bar, if one generallyades its section b, its length bys,
and the effort in that bar by then, from formulas ($ and (11) (no9), the internal
potential will have the expression:

NZ%s
EQ’

1,s N?

270EQ

ds:E
2

since the shearing effort and flexure couple will be zem@ny section. Consequently:

_v1N°%s
2EQ’

in which the sum is taken over all bars of the beamatier, if one leté& denote the sum
of the potentials in the bars that do not belong to thelggnand recalls the notations
that were introduced above in relation to the batb®panel:

2 12 2
|_|:A+£Xia+1-)§ a+}X-lb+_1iY£b+_1zc+_1iZZ.
2EQ 2EQ 2Ew, 2Ewy 2ES 2 ES

Substitute that expression for the potential in equdapand cancel the denominator
E; one will get:

(b) E%+a£%+ﬁa—x’ +b iY_laiY+i—YaiY+ ;Za_'z.i.'_' =0
oz, 007 907) \9w,07 woz) \ S92 .S

Now calculate the expressions #r, X/, Yi-1, Yi, andZ; as functions ofZ' and

substitute them in the last equation.

To that effect, cut the panel by a vertical pl#ithat passes through the point of
intersectionC of the mean fibers of the diagonals of the panel The external forces
that act from the left of that section (loads and suppactions to the left of the panel)
are reducible at the poid to a vertical shearing effoi; that we measure as positive in
the ascending sense and a flexure cobple Those two quantities can be calculated
immediately by means of pure statics, in such a waywatan consider them to be



40 Modern Methods in the Resistance of Materials

known in what follows. The four effort§, X/, Z , andZ’ in the bar that is cut by the

planeAB define a system that is equivalent to the fofcand the coupl®; . One can
then write the two equations for the projections onteréical axis and a horizontal axis,
and the equations for the moments with respect to th¢ @an these:

-Zcosa+Z' cosa=T,
Xi+ X/ +Zsina+ Z'sina=0,
b b
_x_+ "_ :M.’
"M

in which a denotes the acute angle that is defined by the meas fitbéne diagonal and
the vertical.

On the other hand, since the nade 1 is in equilibrium under the influence of the
load P’, and the actions that are exerted upon it by the batsath assembled at it, one

will have the following equation for the projections onteestical axis:
Z' ,cosa+Yiq+Zcosa- P, =0.

One infers from these four equations:

© Zi = ZiI_L,
cosa
(d) Xi=—Z sina+  tana _ﬂ,
2 b
C) X!= - Zi'sina+Ti tana +%,
() Y ==(Z, +Z)cosa+ T+ P,

and when one changesitoi + 1 in the last of those formulas:
(9) Yi==(Z/+Z,)cosa+T, +P.

Upon differentiating the five formulas above with regge Z', one will have:

% = 1’ a_x' = -sing ,
iz oz
(h) .
X' Ay, Y _
— =-SIina, =—-Coxy , — =— Ccogm
oz 9z YA
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Ifonesets =1, 2, ...0i—1,and then=i+ 1,i + 2, ...,n, in succession, in formulas
(c) to (g) then one will see immediately that the effortsalhof the bars of the beam
besides those of the pangl ére independent aZ'. As a result, the same thing will be

true for the internal potential of those bars, andwilidhave, consequently:

. 0A _
() G_Zi'_

Upon performing the substitutions in equatibpthat permit one to deduce formulas
(c) and (), and taking into account that:

a . b
—=sinaq, —=c0saq,
c c

one will finally find that:

(K) co§’az {sm a(—1+—1j+ co§a[—1+—1j+—l+—l}z + cow Z',,
@, Q Q W, @) S 9 @

sinfa (1,1 1 T+P, 1) sidaf 1 1

= —+= |+ T +cosa| —2L+= |+ —-—M, .
2cosa | Q, Q') S cosr o, b (Q O

That equation couples the efforfs,, Z', Z,, in the three consecutive redundant

bars(—2,i"=1),(—1,i"),and {, 1"+ 1), resp. Upon successwely settingl, 2, 3, .
n— 1,n and taking into account the fact tha§= 0, Z!.,= 0, Tns1 = (), one will obtaln a

system ofn equations, the first of which will contaid, and Z,, the second of which
will contain Z;, Z,, and Z;, the third of which will contairZé, Z,,andZ,, ..., the o—
1)™ of which will containZ!_,, Z!_,, andZ!, and then™ of which will containZ!_, and
Z.

Solving that system will yield the efforts in theedundant bars (0,)1 (1, 2), ..., (n

-2,n" =1), —1,n"). The application of the general formulay o (g) will then give
the efforts in all of the other bars of the beam.

() Which one will see immediately upon supposing that #warbis fictitiously prolonged to the left of
its left supports by a panel that is indexed by 0 and toghe aof its right support by a panel that is indexed
by n + 1. The shearing efforts in those two addition panélsotwiously be zero, and the same will be
true for the efforts in their diagonals.
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26.- Reciprocity principles
Theorem:

1. If aforce F that is equal to unity is applied to a point A of a body that is isotropic
or has a mean fiber (or a system of such bodies that is isostatic astatpg along an
arbitrarily-chosen directiom\s and produces an elastic displacement to a point B whose

projection onto a likewise-arbitrary directiohs is A5 then conversely, if a forcesEhat

is equal to unity is applied to the point B along the directigrthen it will produce an
elastic displacement to the point A whose projectignonto the directioma will be

equal toAZ.

2. If a couple Gy that is equal to unity and its two forces are applied at the two
points a and aand its axis has a directioh,y that is chosen arbitrarily from the
perpendiculars to the line agroduces an elastic rotation of a line hose projection
(*) onto a directioTpy that is chosen arbitrarily from the perpendicular to the lingib

aa

.y then conversely a coupledgCthat is equal to unity whose two forces are applied at

b and b and whose axis has a directibpy will produce an elastic rotation of the line
ad whose projectiorg? onto the directiorl o4 is equal tog® .

3. If a couple Gy that is equal to unity and its two forces are applied at the two
points a and aand its axis has a directioh,y that is chosen arbitrarily from the
perpendiculars to the line agproduces an elastic displacement of the point B whose
projection onto an arbitrary directiong is A2 then conversely a forcesFhat is equal

to unity and is applied to B along the directip will produce an elastic rotation of the
line ad whose projectionp?, onto the directiort .« is equal toA2* .

(One should understand that from the viewpoint of homeigenthat rotation is not
measured by its angle, but by the lengths of the ar¢hglsavept out by that angle on a
circumference with a radius of unit length.)

Here is the proof of the first part of that theorem:

Let:

Afand AL be the projections onto the directiohs and As, respectively, of the

elastic displacements that are produced at the paiatglB when the
unit forceFa is applied toA along the directiog

() One should recall that one intends the term “projeatiba rotation” to mean thgrojection of the
vector that represents that rotatigmo. 12).
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Afand A?  be the projections onto those same directions of efstic

displacements that are produced at those same poiets thk unit
forceFg is applied tdB along the directioa

(In these notations, the lower index denotes the ploattsubmits to the displacement
considered, while the upper index refers to the forceptimatuced that displacement.)
Suppose that two forced=, and F;, which differ from unity, are applied

simultaneouslythe former toA along the directiol\a , while the latter is applied tB
along the directiods. Let A, and A, be the projections onto those two directions of the

elastic displacements that they produce at the péirgsd B, respectively. Now, from
the principle of superposition of the elastic effeaftthe forces:
€) Ay = ARFL+AZFL, A= ALF+ASFL,

and by virtue of Castigliano’s theorem (rig):

(b) W= k=0

in which Il denotes the internal potential of the body (or systé bodies) when it is
deformed by the forceB, and F;, acting simultaneously.

Now, analytically, one must have:
o°’n _  o°M
oF,0F, OF,0F,"

and as a result, because of relatid)s (

A, _ 04,
oF, oF,’

or, upon replacing those two partial derivatives withrtkelue that one would deduce
from formulas §):

FREVI Q. E. D.
The same method of proof will apply to the other twogafthe theorem.
The three reciprocity principles that were just staee calledMaxwell’s principles

abroad, although that scholar established only the finst and only for articulated
systems?).

() Clerk MAXWELL, “On the calculation of the equilibriurand stiffness of frames,” Phil. Mag7
(1864), pp. 294.
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27. — Lines of influence

The reciprocity principles lead to a general method determining thelines of
influencein bodies and systems of bodies with mean fibersatesubject to redundant
constraints ). Those lines, which were introduced into the resistasf materials by
Frankel ¢) and were studied in a remarkable way by Winkferagd Maurice Levyj,
play an important role in the calculations for mebaidges or reinforced concrete.
Indeed, they provide the means for determining the maximfartethat are produced in
the various elements of those bridges by the passagewirfigroverloads. However, the
limited scope of the present note does not permit us tadxyg@on that subject.

() BERTRAND DE FONTVIOLANT, “Sur la détermination desrées élastiques et de leurs lignes
d’influence dans les poutres assujetties a des liaissabmwant,” Comptes rendus de I'’Académie des
Scienced 08 (1889), pp. 45.

“Methode générale de determination des lignes d'influelaces les poutres pleines ou réticulaires,
assujetties a des conditions surabondant,” Bulletim &otiété des Ingenieurs civils de France, November
1890, pp. 742.

“Ponts métalliques a travées continues. Methode aleulc satisfaisant aux prescriptions du
Réglement ministériel du 29 ao(t 1891,” Comptes rendus ded&haie des Sciencdd5 (1892), pp. 996
and Bulletin de la Société des Ingenieurs civils de Frdbeeember 1892, pp. 1105.

() W. FRANKEL, “Ueber die ungiinstige Einstellung ein&ystems von Einzellasten auf
Fachwerkungen mit Hilfe von Influenzkurven,” Der Civilingeur 22 (1876), 218, 441.

() E. WINKLER, “Beitrag zur Theorie der Bogentrager gi&chrift des Architekten- und Ingenieur-
Vereins zu Hannovet5 (1879), 199.

(Y Maurice LEVY, La Statique graphique et ses applications aux construgtidag 2, 1886, Part 3,
1887.



CHAPTER IlI

SECOND METHOD BASED UPON THE VIS VIVA
THEOREM. GENERAL EQUATION OF ELASTICITY

28. — The presentation that follows will be noticeably efiént in form, but not in
principle, from the one that was presented in our “Méensur les déformations
élastiques des piéces et des systemes des piécessaniifiyennes planes ou gauches”
(*). It is more general, because it is concerned wathjust pieces, but also isotropic
bodies. Finally, it is simpler and quicker and ne¢atss no integration.

It consists of giving a new proof to the theorem of BE) Boussinesq?, and
Maurice Levy {) that is very elementary and appends a complemehatdheorem that
will imply a general relation between the elastispthcements and the external forces
that produce them.

Upon introducing the caloric displacements into tleddtion (which was not done in
our aforementioned paper), we will then obtain gleeeral equation of elasticityvhich
synthesizes the entire theory of deformations and peumsito determine the elastic and
caloric displacements of an arbitrary construction emdorm the equations that are
necessary for the calculation of the constraintdsrm all cases, and without special
analyses, in bodies and hyperstatic systems of bdté¢site subject to arbitrary external
forces, as well as caloric actions.

One will then find that a new proof of tlggeneral equation of elasticithas been
presented that is based upon ¥f®vivatheorem, and in our paper that relates to),ti
was established by means of the virtual work theorem.

29. — Completion of the theorem of Betti, Boussinesq, andayrice Levy
Consider an isostatic or hyperstatic (@) system of isotropic bodies or ones with
mean fibers. (The case of a single body will be reghedea special case.) Subject it to
the action of a system of arbitrary external forces that we shall ctstem(A), which

are forces that increase slowly from zero up to cefiaal values. Let:

the final value of any of those forces

A

A its point of application

A, its direction

/],:‘ the projection onto the directioh, of the elastic displacement of the pohat

() Comptes rendus de 'Académie des Scierid®%(1888), pp. 383 and Bulletin de la Société des
Ingénieurs civil de France, August 1888, pp. 291 and March 1889, pp. 416.

(®) Betti, Teoria del Elasticita1872.

() BOUSSINESQGCours d’Analyse infinitésimalé. |, fasc. 2, 1887, pp. 127 and 128.

() Maurice LEVY, Comptes rendus de I’Académie des Scieh@@$1888), pp. 414.

() Bulletin de la Société des Ingénieurs civil de Fra@mtpber 1907, pp. 365.Seealso LECORNU,
Cours de Mécanique professé a I'Ecole Polytechnitjud, 1918, pp. 45, 63, 76.
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By virtue of Clapeyron’s equation (13) (ri®), one will have:
= A
(a) 32 Fady =g,
i=1

when one denotes the internal potential of the defdrsgstem of bodies bil . .

Replace the system of force&) (with a second systenB) that is composed af
arbitrary external forces that increase like thd orse. Let:

be the final value of any of those forces

Bi be its point of application

be its direction

A2 be the projection onto the directioh, of the elastic displacement of the
point B;

As before, one will have:

(b) 1Y RS =0,

when one denotes the internal potential of the defdrsgstem of bodies bil . .
Now let:

A2 be the projection onto the directioh, of the elastic displacement of the
point A; under the action of the system of forcB} (

A2 be the projection onto the directioh, of the elastic displacement of the
point B; under the action of the system of forca} (

Consider the deformation of the system of bodiedpnger under the action of only
one of those two system&)(and @), but under the simultaneous action of both of them.
By virtue of the superposition principle, the projectidrite elastic displacement of the

point Ajonto the directiom, will be )I,:‘ +)I§, and the projection of the poiBt onto the
direction A, will be )IE’; +)IEB. That deformation can be realized in two different syay
as follows:

1. First apply the system of force®) (which increase from zero to their final values,
and then apply the syste8)( which increase in the same manner as the lattey dme
The deformation is thus accomplished over two time\als.

During the first interval, the points of applicatidnof the forces in the system)(

experience the projections of the displaceme}jtsonto the directiom, , and the work
done by those forces, which increase from zerg towill be (no.12):
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LR AL
i=1

whereas the pointB; will experience the projections of the displacemeﬁﬁsonto the
direction Ay .

During the second time interval, the poiswill experience the projections of the
displacementsﬂl,‘f onto the directiondd, of the forcesF, , and the work done by those
forces, which remain constant, will be:

1AL,
i=1

whereas the points of applicati@ of the forces in the systerB)(will experience the
projections )IEB of the displacements onto the directiofg of the F;, and the work
done by those forces, which increase from zerBgtowill be:

The total work done by the two systems of fora&sand 8) is the sum of the three
partial works above, and from Clapeyron’s equation (13) 18p it will be equal to the
internal potential of the deformed system of bodiaeden the simultaneous action of
those two systems of forces. If one denotes thanpat by . . then one will have:

(©) 32PN HE AL 3D Fedg= N .

Conversely, when one first applies the system ofe®i®) and then the system of
forces @), that will lead to the equation:

(d) 32 Fadg +32 Fedg +32 Fudi= N, o,

in the same way as before, and that equation diffen fequation ) only by the
permutation of the two systems of force® @nd 8) and the corresponding elastic
displacements.

Upon subtracting equatioa)(and p) from equation ), and then from equatiol)
one will obtain the new equations:

(e) %ZFAAA‘?: nFAvFB_(nFA+nFB)’
i=1
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) %ZFaAQ: e n =M+,

which translate into:

Theorem — If one applies the two systems of for¢&sand (B) in succession to an
isostatic or hyperstatic system that is isotropihias a mean fiber then:

1. The sum of the works done by the forces in theersy@) under the elastic
displacements of the syst€B) will be equal to the sum of the works done by tinees
of the system under the elastic displacementseddytbtentA).

2. The two sums of the works will be equal to thesdifice between the internal
potential of the body (or system of bodies) that b@en deformed by the two systems of
forces (A) and (B) when they are applied simultaneously and the surthefinternal
potentials of the body (or system of bodies) wheg are deformed by each of those two
force systems being applied to the exclusion obther one.

The first part of that proposition is the theoremBetti, Boussinesq, and Maurice
Levy. The second part is the complement that was aceduabove (na28).

Remark. — Among the forces of the two systerdg and @), or only one of those
systems, there can be ones that form couples. Heoppose that the system) (is
composed op forces that do not form couples arglf@rces that forng couples. Let:

a anda be the points of application of the two forces floatm a couple

Caq be the value of that couple

¢§a. be the projection of the elastic rotation thatiieg to the linea g by the

system of forcesB) onto the axis of the couplg, , .

The work done by that couple for the rotational displae®ns C, , ¢§d , and as a result,
one will have:

m p q
32 Fads =32 R A0+ Coufis,
i=1 i=1

i=1

which will permit one to write equatioe)(in the new form:
5 B & B

(29) 32 P +2.C e, =N —(N, +1L),
i i=1

if one would like to exhibit the projected rotatio¢§a, :
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30. — Reciprocity principles
The three reciprocity principles that were establishefdrb (no.26) are particular
cases of the theorem of Betti, Boussinesq, and Maugeg.LThe first one corresponds
to the case in which the systemg and B) are each composed of a single unit force, the
second one, to the case in which they are each composgednitf couple, and the third,

to the case in which system)(is composed of a unit couple and the syst&nig
composed of a unit force.

31. — General relation between the elastic displacemerasd
the external forces that produce them

Let a system consist of bodies that are isotropicawve mean fibers. Suppose that it
is externally and internally hyperstatic (rid). (The case of an isostatic system will be
regarded as a special case, and likewise that of adwogly.) That system of bodies is
deformed by external forcésthat are applied directly.

Let:

1. A1, A2, A3, ...
denote the projections of the elastic displacemdrdascartain number of points:

A, Ao, A, ...

of the system of bodies onto the arbitrarily-chodieactions:

Ay, Dy, A, ..,
and let:

2. @1, P2, @3, ...
denote the projections of the elastic rotations ofreacenumber of lines:
aa, 88, &b3a
that are contained in the system of bodies ontalitleetions:
M, Mol ..,

which are chosen arbitrarily from the directions nakto those lines.
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Now consider the isostatic system that is obtainedsugypressing the redundant
constraints in the given hyperstatic systém (

Call the redundant external constraint forégs and call the redundant internal
constraint forces of the hyperstatic systégm. Among those forces, one can have ones
that form couples, which are of little importance, tseauld be pointless to exhibit those
couples here.

If one subjects the aforementioned isostatic systetine forces, Fes, andFis then it
will take on a state of elastic equilibrium that isntical to that of the hyperstatic system
when it is subject only the forc&s In particular, the elastic displacements of thmtso
Aq, Ao, A, ... and the elastic rotations of the lingsa,, a, &,, a, &, ... in that isostatic
system are the same as the ones in the hyperstsi@s

Suppress the forcds Fos, Fis from the isostatic system, which will no longer be
subject to any forces then, and apply:

1. Some forces of arbitrary magnitude:
F1, Fa, Fs, ...
that one callauxiliary forcesto the points:
A, A, As, ..
of that system along the directions:
A1, N, Dg, ...
2. Some forces that form couples of arbitrary magnitude:
C1,Co,Cs, ...,

which are calledwuxiliary couplesalong axes in the directions:

M, M2, s, ...
at the points:

U U U

a, a4, 8,8, 8,a, ..

Having said that, apply equation (29) (@O, the complete theorem of Betti,
Boussinesq, and Maurice Levy) to the isostatic systdmewne considers the system of

forces Q) in that equation to be composed of auxiliary forces @uplesri, F», Fs, ...,

() It was pointed out before (nbl) that depending upon the number and nature of those catsteai
hyperstatic system can be made isostatic in just olyeowaeveral of them. Here, we shall consider any
one of the isostatic systems that are obtained ire soay.
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C1,C2, C3, ..., and the system of forceB)(to be composed of the forcEsF.s, andFis .
One will get:
FiM+FoAh+F3 A3+ ...,C1¢1+ C2¢2+ C3¢3+

= ﬁF,FeS,FiS,F,C_(ﬁF,F F +I=IF,C)’

es' is

inwhich M., ., A,., M., . .. denote the total internal potential of the isostatic
system when it is deformed by:

1. The given forced and the redundant constraint forcEg and Fis of the
hyperstatic system,

2. The auxiliary forces and coupl&sandC,

3. The totality of all forces and couples,

respectively. (The overbar on the symbbls intended to indicate that those potentials
relate to the isostatic system.)
We write:

(30) ZfA +ZC¢: ﬁFvFestisv]:vc _(ﬁFvFestis+I=I-7:oc) !
to abbreviate.

32. — General equation of elasticity

Suppose that the hyperstatic system of bodies that wasdeoed before (n@1) is
subject to not only some external forcEsthat are applied directly, but also to a
temperature variatiom that is measured by starting from the temperature thatlzed
at its constraints and will be positive for an inceeasd negative for a decrease. The
deformation of that system will then be both elaatid caloric.

Consider a certain number of points and lines in thiesysand let:

1. A be the projection of the elastic and caloric disgaent of any one of those
pointsA onto an arbitrarily-chosen direction.

2. ¢ be the projection of the elastic and caloric rotatd any one of those lines
onto a direction that is chosen arbitrarily from tloemals toad .

Imagine the isostatic system that is obtained by sugipgethe redundant constraints
from the given hyperstatic system. Subject it to #&xternal forcesF, redundant
constraint forced=es and Fis (no. 31) of the hyperstatic system, and the temperature
variation 7. It will take on a state of elastic and caloric defation that is identical to
that of the hyperstatic system when it is subject ty tm forced and the temperature
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variationz. In particular, the values dfand¢ are the same in the hyperstatic system and
in the isostatic one.

Let A”and ¢’ denote the values thdtand ¢ would take if the isostatic system were
subject to only the forcds, Fey andFs ; i.e., if the deformation were purely elastic. Let
Ar and @, be the values that those same quantities would take $ystem were subject
to only the variation of temperature i.e., if its deformation were purely caloric.

By virtue of the principle of superposition of elastm caloric effects, one will have:

(@ A=A+ Ar, §=¢'+¢r.

Having said that, we shall examine the aforementionestielaeformation and
caloric deformation separately.

As far as the first one is concerned, from thetiaia(30) (no.31), one will have
immediately:

(b) DFA+YCY =Mep pope (Mg o +150),

in which F and C denote the auxiliary forces that are applied to the pdirdlong the

directionsA and the auxiliary couples whose two forces are appli¢be extremities of
the linesaa’and whose axes have the directibnsespectively.

In order to study the second deformation, imagine thathas suppressed the forces
F, Fes Fis and applied the same auxiliary forces and couples age abothe isostatic
system. The system will take on a certain statbedrmation. Let:

A" be the projection of the elastic displacement of amg of the point#\ onto
the directiom.

@ be the projection of the elastic rotation of any ofi¢he linesaa’ onto the
directionr.

One has:

1 " .
Yzrreses)=n,..

by virtue of Clapeyron’s equation (13) (ri®).

Now, subject the system to the temperature variation It will take on a caloric
deformation that is superimposed with its elastic defoonatin such a way that the
projection of the displacement of any of the potand the projection of the rotation of
any of the linesaa’ will become:

A”+AT, ¢”+¢T1

respectively, and by virtue of the generalized Clapeyron mouét5) (no.13), one will
have:
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%[Zf()l"+)lr)+2(j(¢"+¢r)] =1, —%arﬂj(n’x +n,+ ) dxdyd,

in which ni, n_, and n, denote the normal fatigues that are produced &yatixiliary

forces and coupleg andC on three elements that are normal to the coomlinaes,

when taken at an arbitrary poi ¥, z) of the isostatic system.
Upon subtracting corresponding sides of the tweaggns above, one will obtain:

(c) > FA+Y.Co =-ar|[[(n +n +r) dxdyd.

Add the corresponding sides of the two equatidnsaqd €), while recalling the
relations &). One will finally have:

(31) ZfA +ZC¢: ﬁF,FeS,FiS,]:,c _(ﬁFvFestis+ ﬁfﬂ) —arj”(n; + n'y + rfz) dx dy d..

That is thegeneral equation of elasticity for isotropic systems of bodies.

In the mathematical theory of elasticity, if ongkvs how to form the expressions for
the normal and tangential fatigues, and as a rdsoith formulas (3) and (5) (nd), that
of the internal potential, as functions of the ex# forces that produce those fatigues
then the equation above will permit one to solMeoélthe problems that relate to the
elastic and caloric deformation of constructionshat it being necessary to appeal to
the hypotheses of the resistance of materials. idportant advance would then have
been achieved if one managed to overcome the uliibs that are presented by the
integration of the partial differential equatiorfalee mathematical theory of elasticity.

33. — Upon repeating the preceding proof in the cdse gystem with mean fibers,
one will find that:

(32) Z}—A +ZC¢ = ﬁF,FeS,FiS,F,C _(I:IF,FeS,FiS+I:IF.C)_ar'['['['/\/ds’

in which \V denotes the normal effort that is produced onrhitrary section of any one

of the bodies of the isostatic system that is olethiby suppressing the redundant
constraints of the given hyperstatic system unteraction of the auxiliary forces and

couplesF andC.

One can, moreover, pass directly from equatiof {8 quation (32) by applying the
relation (17) (no13), which will give:

[[[ (i +ri,+ri) dxdyd: = [ A ds

here.
The right-hand side of equation (32) is transfatras follows:
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From formula (11) (nd), one can write:

(a) ﬁFyFeSvFis,]:,C _(ﬁF,F + I=I.7:.C) = J[vaFestisvac _((ﬁF FesF |s+mf’c)]ds’

est is

in which one letso, . . , @, ., @ ¢ . denote the internal potentials per unit length

of the mean fiber of any one of the bodies of thevipusly-definedisostatic system
when one deforms by means of:

1. Forced- that are applied directly and redundant constrantesF.s andFis of
the given hyperstatic system,

2. Auxiliary forces and coupleB andC,

3. The totality of those forces and couples,
respectively. Let:

1. N, T,, Tz, Mg, My, M,
denote the elements of the reduction (at the cemtgravity of an arbitrary section of any
of the bodies) of the elastic forces that are dged in that section by applying the force
F, Fes, andF;s to theisostaticsystem (those elements are identically the same e

hyperstatic system when it is subject to only thredsF).
Let:

2. M 7;7, ,Z'(, M{, M/], M(

be the analogous reduction elements when the igosyatem is assumed to be subject to
the forces and couplegsandC.

By virtue of the superposition principle, if thaystem were subject to the
simultaneous action of forces and coupfesFes , Fis , 7, andC then the reduction
elements would become:

N+ N, T,+7,, T +12, Me+Me,  My+M,,  Mz+M;.

Having said that, from formula (9) (n®), one will have:

2 TZ MZ
o] :E(N + 17 +...+_Zj_

FRsFe” 2| EQ GQ El
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Now, that expression fab; . . is a homogeneous function of degree two in the six
quantitiesN, T, , ...,M¢, and in order to obtain the expressionsdnr, and@; ¢ ¢ .,
it will suffice to replace those six quantities withist of all\V, 7, ..., M., and therN

+N, T,+7,,..,M;+M.. From a property of homogeneous functions of degree two
(*), one will then have:

_ _ — E,F.F FF..F: FF.F
We k. FoFC (wF,F Fi wfc) =N I 2/7 e /\/In I
ON 0 I,7 aMZ

or, upon replacing the partial derivatives with thealues that one deduces from the

expression oo, ¢ . :

_ _ _ N T,

w — (@ +@,. )= N—+T L+
F . Fes:FisiF € ( FFesFis 7‘-5) EQ n GQ

As a result, upon substituting this into formud® One will have:

N +7 T_’7+...+MZ&:|ds,
7

(b) I:IFvFestisv]:vC _(I:IFvFestis+I:I-7:oc) = J{NE g Q

and equation (32) will become:
(33) Zf)l +ZC¢

=[| &~ N o +TT—”+TZL+M§(&+MU M, +MZ—MZ ds,
EQ GQ ‘GQ Gl E| El

n

moreover.
In the applications, it is important to not lose sighthe facts that:

1. The projections of the displacemedtand y; as well as the elemert§ T, ...,
M, of the reduction at the center of gravity of an arbitissgtion of any of the bodies of
the elastic forces that act in that section (or, twdr@aounts to the same thing, of the

() Here is the statement of that property, which veaal#ished by Euler. Let:
f (x,v, ...) be a function that is homogeneous of degree two in @neaylnumber of variables vy, ...
X,y ... be a system of arbitrary values that one attribtdehose variables.

One will have identically:

fI(x+X), y+y, .. )=y ...)+f X, y5 ..)]
_ g Iy yaf(x yo)

L (O, ¥0) yaf()(, Yo,
ox ay ox’ oy
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external forces that are applied to the left of thatiee), relate to the givehyperstatic
system when it is subjected to the given fofees

2. The similar reduction elemem§ 7, , ..., M, relate to thésostaticsystem that is
obtained by suppressing the redundant external and inteynsiraints from the given
hyperstatic system, which is an isostatic systemishatibjected to auxiliary forces and
couplesF and C. The latter elements can be calculated very easihce they are
statically determinate.

It is obvious that equation (33) will remain valid in t@se where the given system is
isostatic. All of the quantities that enter intohien relate to that isostatic system.

34. — Elastic and caloric rotation of an arbitrary section— From the standpoint of
applications, it is useful to introduce into equation (38). 83) the projection onto an
arbitrarily-chosen direction of the elastic and ciglootation of an arbitrary transverse
section § of any of the bodies. Here is how one does that:

Draw a linead in the section considere8)(in a direction that is normal fo. [That is
always possible; in order to see that, it will sudfihatad should be directed along the
intersection of the sectio®)(and a plane normal 9. Apply two forces at anda’ that

form an auxiliary coupl€ whose axis is directed alofg A termC ¢ in equation (33)

will correspond to that that couple whereg denotes the projection of the rotation of the

line ad onto the directio of rotation. Now, one can use the kinematical aersitions
that used already (nd.5) in order to prove Corollary Il of Castigliano’sebrem to
easily establish that this projection is equal to tiidhe rotation of the sectio®)around
the directionl. One can then say that in each of the te€ngs of equation (33).¢
represents the projection of the rotation of an amyiteection § onto an arbitrarily-
chosen directiofi under the conditions that the auxiliary cou@lmust be applied to that

section and that its axis must have the diredfion

35. Case of planar flexure— If the body or (isostatic or hyperstatic) systefn
bodies considered is subject to planar flexure in evertiosethen the elements of the
reduction of the elastic forces will be exclusively amal effortN, a shearing efforT
that is situated in the plane of reduction or of thenrfdzers (viz., the plane of flexure),
and a flexure coupl® with an axis that is normal to that plane. As a ltegguation
(33) (n0.33) will reduce to:

_ N _ T .uM
(33) SFA+Y.Cp = j{N(ﬁ arj+TGQ+M El}ds.

In order to use the latter formula, one applies:
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1. Auxiliary forcesF to points that are situated in the plane of flexureaodg the
directionA that are drawn in that plane.

2. CouplesC to the transverse section whose axes are directadafiprto that
plane.

It will then follow that the quantitied will be the projections of the displacements of
the points considered onto the directidnsand that the quantitigs will be the rotations
of the sections considered.

36. — General expression for elastic and caloric displacemits
in bodies and systems of bodies with mean fibers

We propose to form the general expression for:

1. The projectiom of the elastic and caloric displacement of an abjtpoint A
onto an arbitrarily-chosen directidn

2. The projectior of the elastic and caloric rotation of an arbitrargtiea (S onto
an arbitrarily-chosen axis.

Those two expressions follow immediately from theegahequation of elasticity,
when it is taken in the form (33) (n83).
In order to obtain the first one, it will suffice tntroduce into that equation just one

auxiliary forceF of arbitrary magnitude that is appliedAain the directiomA. One will
then obtain:

T T M, M
(34) A:J' ﬁ i—az‘ +1_ 1 44 % L ds.
7(EQ 7 GQ T EJ,

In order to obtain the second one, it will sufficeititroduce into that same equation
just one auxiliary coupl€ of arbitrary magnitude about an axis in the direcfipmwhich
will give:

T T M, M
(35) ¢:'[ ﬁ i—az‘ +1_ 1 44X L ds.
T\ EQ C GQ C EI

One should not lose sight of the fact that if theesysconsidered is hyperstatic then
the reduction element¥’ 7, , ..., M, must be calculated in the isostatic system that is

obtained by suppressing the redundant constraints from tpatdtgtic system (n83, in
fine).
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Case of a system subject to planar flexure- In that case, the preceding formulas
will reduce to:

(34) A:J' ﬁ i—az‘ +zl+ﬂﬂ ds,
T\EQ IGQ 7 El

(35) ¢:J ﬁ i—az‘ +zl+ﬂﬂ ds.
T\EQ CGQ C EI|

Recall that in the latter case, the axis of the &uxilcoupleC that is applied to the

section considereds must be directed normally to the plane of flexure] thatg is the
rotation of that section.

37. — Ermest Flamard’s formulas

In the general equation of elasticity (32) (88), which relates to systems of bodies
with mean fibers, one can first introduce just one laryi force F and then just one

auxiliary coupleC and obtain the two formulas:

1r=— — _
A :_[I'IFYFSS,FM —(I‘IF’FesyFis+|'|f)—ar.[/\/ds]
(@) .
¢ :E[n FFes.Fis.C _(I-IF,F F

Is+ﬁc)—ar.[/\/ds]
and if the system of bodies is not subject to any tertyreravariation then they will
reduce to:

1

A = _[ﬁ F.Fes.Fis: 7 - (ﬁ F FesF is+ ﬁf):' y
(b) f
¢=2[Merore~(er e, * 0]

just as one can easily verify that if, on the contrémg system is subject to a temperature
variation then one can write the two formulagit the form:

lrs _ _
A :_[HFvFesJ:isf _(HF,FES,FiS+ H]:)]a
() f
¢ :E[HFvFesJ:ist _(HF,FES,FiS+ Hc)]a

when one introduces the functiehthat is expressed by formula (25) (48) and agrees
that "_'F,Fes,as represents the value of the functldrihat is attached to the isostatic system
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that is subjected to the forcés Fes Fis, and the temperature variatian and that
H.. .- and H._ . . represent the values that the same function takes wee

isostatic system is subjected to the auxiliary foFaar the auxiliary coupl€, in addition.

Formulas i) and €) were established by Ernest Flamard in his previously-cited
doctoral thesis, although in a different form from what just indicated. They remain
valid in the case of isotropic systems.

38. — Agreement between the results of the two methods kdsupon
the visviva theorem

Let us compare the general expressions (27) 2dp.and (34) (no.36) for the
projection of the elastic and caloric displacementaaf arbitrary pointA onto an
arbitrarily-chosen directioA:

N N, T dT M dM ]
EQ dZ  GQ dI El, d

A:J' ﬁ i—az‘ +£T_’7+...+&& ds,
7|(EQ 7 GO 7 El

which are expressions that are obtained by the firstseiednd method, respectively,
based on theis vivatheorem.

In those two formulasV, 7, , ..., M. are the elements of the reduction at the center
of gravity of an arbitrary section of any of the boda@sthe elastic forces that are
developed in that section by applying the auxiliary fof¢¢o the pointA along the

directionA, and if the system is hyperstatic then those elentéatsone uses in one or
the other of the two formulas must be calculated eislostatic system that is obtained
suppressing the redundant constraints of that hyperstétias, by virtue of the principle

of superposition of the effects of the forces, thstaldorces in an arbitrary section, and

as a result, the element$ 7, ..., M of their reduction, will be proportional to the
external forceF that produces them. One can then write:

N=alF, T,=bF ..., M;=fF
in whicha, b, ..., f denote six constants that are independeft ofience:

. dT, dM, _

= =b,
dZ dZ dZ

and as a result:
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w_N- 97T, M, _ M

dz 7' dzI I dz 7

which proves the agreement between the two expresd@hsiid (34) for the projected
displacemenil. The agreement between the two expressions (282thand (35) (no.
36) of the projected rotatiog is proved in the same manner.

39. — Determination of the redundant constraint forces in syeams of bodies with
mean fibers. — Equation of redundant constraints

The method of calculating the redundant constrairgef® follows from the general
equation of elasticity. In order to simplify the presgion, we shall suppose that the
hyperstatic system considered, which is deformed by fdfcdmt are applied directly
and a temperature variatian is subject to planar flexure. In that case (89), the
general equation of elasticity will reduce to:

_ N _ T oM
(33) S FA+Y.Cp = j{N(ﬁ arj+TGQ+M El}ds.

The auxiliary forces and couples to be applied togbstatic system that is obtained
by suppressing the redundant constraints of the hypersyatiens considered that we
shall adopt are:

1. ForcesF of arbitrary magnitude that have same points of appicadind the
same direction as the redundarternalconstraint forces of the hyperstatic system.

2. Coupleg of arbitrary magnitude that have the same sections ditappn as the

couples of the redundaeiternal constraint forces of the hyperstatic system, and like
them, they have their axes normal axis of the ptdrikexure.

3. ForcesF’ of arbitrary magnitude that have the same points of @gdpins and the

same direction as the redundarternal constraint forces of the hyperstatic system, and
like them, they are pair-wise equal and opposite.

4. CoupleC’ of arbitrary magnitude that have the same sectionpplication as

the couples of the redundanternal constraints of the hyperstatic system, and like them,
they are pair-wise equal and in the opposite senses,

Moreover, equation (3Bis written:
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' , N T M
@ D FA+YCo+Y F'A+Y C'¢p = j{N(E—GT}T@HVIE}dS.

It is easy to see that its left-hand side is zero.

Indeed, the projections of the elastic displacements of the points of appbn of
the auxiliary forcesF andF’onto the directions of those forces, as well asthationsp
of the sections of application of the auxiliary couplesnd C’, are attached to the

hyperstatic system that is deformed by the fofeesd by the temperature variation
Now:

1. The projections! in the directions of the forceg (which are, by hypothesis,
those of the redundant external constraint forcesyer® by reason of those constraints
themselves, and as a result, the sErrY—“/l will likewise be zero.

2. The rotationsp of the sections of application of the couples of théundant
external constraints are zero by reason of thosdreams themselves, so as a result, the

sum ) C¢ will likewise be zero.

3. By hypothesis, the auxiliary forcgs are pair-wise equal and opposite, in such a
way that any force + corresponds to a force . Now, those two forces #’ and

-F’ are applied at two points, which are constrained toanme in contact in the
hyperstatic system, and consequently, the projected ciispentA will be the same.
Hence, each term £’ A in the sumZ]—“')I will correspond to aterm #’ A, and as a

result, that sum will be zero.

4. The sumZC¢ Is zero for the same reason.

Equation &) then reduces to:
(36) |~ N 7 e mMlgs=o.
EQ GQ El

That is theequation of the redundant constraimtswhich the elements of reduction
N, T, M are attached to the hyperstatic system consideredhushisubject to forceb

and the temperature variatianand thoseV, 7, M of the isostatic system are subject to

the auxiliary forces and couplés C, 7/, andC’that were defined above. That equation

is used in the following manner:
Suppose that one has:
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m forces andh couples of the redundant external constraints
2p forces and @ couples of the redundant internal constraints.

The total number of forces and couples of the reduratargtraints is therefoma + n
+ 2 (p + g). However, the forces and couples of the redundaetnal constraints are
pair-wise equal and opposite, so the number of unknoveegoand couples will reduce
tom+n+p+aq.

The use of the equation of the redundant constraintsrdisntbae application (to the
system that is made isostatic by suppressing the redur@asttaints and subtracting the
action of the forcef and the temperature variatigrof:

m auxiliary forcesFy, ..., Fm,

n auxiliary couple<’s, ..., Cm,

2p auxiliary forces#', - F', ..., F,, = F,,
2q auxiliary couplesC;, -(,, ..., C,, —C.

L] q? q?

which are forces and couples of arbitrary magnitude, vithdeforces have the same
points of application and the same directions ageédendant constraint forces and the
couples have the same sections of application as thedaaturonstraint couples.

The corresponding elements of reductidnC, and M for an arbitrary section of any

body of the system are linear, homogeneous functidnhase auxiliary forces and
couples. One can then write:

N=T,a++I,a,+C B+ +C,B,
+Ta et T, @, G+ G B
T=Ly+t +1,y,+C0o+--+C.0,

(@ +I£J/1+"'+I;Vp+ci51+"'+cc'15:q’
/\/l:Il£1+-'-+Im£m+C191+---+Cn9n
+Il'5i+"'+I;5'p+Ci5"1+"'+cé5"q,

in which

aB e a By, 0

are functions of the coordinatesndy of the center of gravity of the section considered.
Substitute those expressions into equation (36) for tdendant constraints and
group the terms that contain the auxiliary forces and esupl

Fiy s Fn Coy ooy G, By ooy Foy Gy oy G

L] q?

respectively, as factors. The equation thus-transfrimeudesm + n + p + g groups,
and in order for it to be satisfied, it is necessdmgt teach of those groups must be
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separately zero, insofar as the auxiliary forces amdples are arbitrary magnitudes.
Moreover, one will have the following + n + p + q equations:

N T M |
j a.|——-ar |+y,——+&,— | ds=0,
EQ GQ El

b
() j{@(i_arj+él+€l— dS:O’
EQ GQ El

(b) .
T

j{ﬁé(g—ar}ﬁ L g M ds=o0.

If one replacedN, T, andM in those equations as functions of thet n + p + q
unknown redundant force and couple constraints then whkyrovide the values of
those forces and couples.

Remark. — Equation lf) expresses the redundant external constraints and etgiatio
(b”) provide the redundant internal constraints.

One can form those equations in a slightly-differemnner that will be more
convenient in certain cases. Hence, in order to fhenfirst of equationgdf, rather than
applying all of the auxiliary forces and couples that wiedécated above to the system
that has been rendered isostatic, it will sufficegplyonly the single auxiliary forc:.

Formulas &) will then reduce to:
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/\/:flal, 72.7:1}/1, M=F &,

and the substitution of those expressions\foZ, and M into equation (36) will give the

first of equationslf). The same procedure is applicable to the successination of
the other equation®.

Similarly, in order to form the first of equations),(it will suffice to apply the two
auxiliary forces 7' and - to the system that has been rendered isostatic,eto th

exclusion of the other auxiliary forces and couples.miadais @) will then reduce to:
N=FRa, T=Fy, M=Fs,

and the substitution of those expressions\foZ, and M into equation (36) will give the

first of equationsl{’). The same procedure is applicable to the successmation of
the other equation® ().

40. — Example of the determination of redundant external castraint forces

Consider tharch that is anchored at its two extremittésit was taken in n@3 (Fig.
4) to be an example of the generalized theorem of @kndenabrea for the
determination of the redundant external constraint forcEhat arch is subject to forces
that are located in the plane of its mean fiber, el @ a temperature variatianwhich
is measured by starting from the temperature that izeedby those anchors.

We have seen that the reactions of the left anateoreducible at the center of gravity
A of the anchored section to two mutually-rectanguacdsX andY and a coupl& with
an axis that is normal to the plane of the mearm fif¢he arch. They are the two forces
and the couple of the redundant constraints. The prableow to determine them.

y T
N

G

F
y M B
I| “I
X

>\

Fx

Q\

Figure 7.

To that effect, following the method that was présénn no.39, make the arch
isostatic by suppressing the left anchor (Fig. 7), and appty two auxiliary forcesFx

and Fy to the pointA with the same directions asandY, resp., to the section whose

point is the center of gravity, and apply a couphose axis is normal to the plane of
the mean fiber (forces and couple arbitrary magnitudes).
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The elements of the corresponding reduct\nZ; and M to the center of gravity
G(x, y) of an arbitrary section of the arch have the folloywexpressions:

dx dy
N=F—+F —,

ds ~7 ds
T:—fxﬂ +fy%,

ds ds

M:_fxy+fyx+c.

Substitute those expressions into equation (36)39 for the redundant constraints
and group the terms that contai, Fy, andC, respectively, as factors. That will give:

f'.[ i—az‘ %—liy—ly ds
“YILEQ ds GQ ds EI

in which #,, F,, andC are arbitrary quantities, so in order for that adun to be
satisfied, it is necessary that one must have:

separately.
If one replacedN, T, andM with their expressionsb] (no. 23) as functions of the

unknownsX, Y, andZ then one will obtain the three equatiogy (same number) that
determine those unknowns.
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41. — Example of the determination of redundant internal cortgaint forces

Recall the example that was considered before i24(@Fig. 5): viz.,an arch that is
anchored at its two extremities and includes a balr@ is subjected to forces that are
located in the plane of the mean fiber, as well denaperature variatior, which is
measured by starting from the temperature that is reladizehe anchors.

We have seen that the arch is, in reality, a systietwo anchored archesO andOB,
each of which has one of its extremities joined toxreenity of the other by the baD,
that the redundant constraint forces are two foxcasdY that are normal to each other,
which are applied to the extremi@ of the archOB and two forces X and -Y that are
applied to the extremityD of the archAO. Those are the two forces that one must
determine.

Figure 8.

To that effect, following the general method of 88.the system is rendered isostatic
by suppressing the bal), which creates the redundant internal constraints. tG@e

applies (Fig. 8) auxiliary force%,, F,, — F«, and— F, of arbitrary magnitude to it,
which have the same point of application and the sdirextion as the redundant
constraint force¥, Y, — X, and -Y. The corresponding reduction elemehfsZ, and M

at the center of gravit§ (x, y) of any section of either of the arch®® andOB will have
the expressions:

dx dy
N= F—+F —=,
ds ~7 ds
T:—fxﬂ +fy2(,
ds ds

M:_fxy'i'fyx.

Substitute those expressions into equation (36)38ofor the redundant constraints
and separate the terms into two groups that corfiaandFy as factors, respectively. In
order for the equation thus-transformed to be satisitied,necessary that each of those
two groups must be zero separately, since the auxiliapgdo-, and F, are arbitrary
guantities. In that way, we will obtain the two equagio
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'[ i—az‘ %—liy—ly ds:O,
EQ ds GQ ds EI

'[ i—az‘ ﬂ/_}_lix_‘_ix ds= 0.
EQ Jds GQ ds El

If one replaced, T, andM in those two equations with their expressidns({i0. 24)
as functions ofX and Y then one will obtain two equations) ((same number) that
determine those unknowns.

42. — Another example of the determination of redundant
external constraint forces

Recall the example that was considered before i2%m(Fig. 6): viz.,a straight beam
with a double articulated latticéhat rests upon two simple supports and is subject to
loads that are applied at the nodes.

Before making use of equation (36) (88) for the redundant constraints, we remark
that in the present case, things can be simplifiédlasvs:

The elastic forces that are produced by the loads irs@ctyon of an arbitrary bar of
the beam are reducible to exclusively the normal effb(the shearing effort and the
flexure couple are zero). Moreover, that normalréfi® the same in all sections of the
bar, and as was said in r&8, it bears the name of tleéfortin the bar. We shall see later

on that, similarly, the elastic forces that are picati by the auxiliary force& in any

section of any bar are reducible to exclusively the abeffort " and that this effort is

the same in all sections of the bar. When one sumsdke term in equation (36) that
relates to the temperature variation, which is not incudee, it will then reduce to:

j/\/idsz 0,
EQ

in which the integral is taken along the total lengthhefinean fiber of any bar.
Now, for a bar of lengtk, sinceN and are constant, as well & one will have:

[N gom NS
CEQ EQ

Consequently, upon letting denote the number of bars that constitute the beamwitine
have:

m NS _
(@) ZNE—O.

1
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Having said that, we saw in n@5 that the redundant constraints on the beam are
constraints on the diagonals (0),1.., ( — 1,i"), ..., (h—1,n"), with the lower attaching
nodes O, ..., — 1, ...,n — 1, and that for the diagonal £ 1,i"), for example, the
redundant constraint forces are two forces of the saagnitude and the same direction
as the effortZ’ in that diagonal, one of which is applied to the exitg of the
aforementioned diagonal that was made free, and the othehich is applied to the
nodei — 1; those forces are repulsive or attractive accordimghegherZ’ is an effort of
compression or tension, respectively.

Or 11 |/_1 | 4 nl _ 1 n:
f’
0 n
A 1 -F/i-1 i n-1A
Figure 9.

Furthermore, according to the final remark in 8@. if the beam is made isostatic by
suppressing the redundant constraints and subtractingtiba atthe loads then apply

an auxiliary forceF to the lower extremity of the diagonal« 1,i") (Fig. 9) that is

directed along the mean fiber to that diagonal and & fef€to the node — 1. It is clear
that:

1. Those two auxiliary forces produce no elastic foneéke bars of the beam other
than the ones of the pané), (in such a way that/= 0 in those bars.

2. In each of the bars of the pangl (he elastic forces that the auxiliary forces
generate in any section are reducible to exclusively ehenal effort\V, and that effort is
constant all along that bar.

The values of that normal effoi// in the six bars of the paneil) (are calculated

immediately by pure statics. They are indicated in gaeond column of the Table
below. The special notations that were adopted ir285a order to represent the efforts
N that are produced in the bars by the loads, as welleakengthss and section®2 of
those bars, are reproduced in the last three colunthatof able.

Each of the six bars in the pangl¢orresponds to a term in the s@ in equation
1
(a). The corresponding terms in the other bars obt#am are zero, sindé = 0 for each

of those bars. As a result, equatiah ¢an be written in the following form, when one
suppresses the common facfoand the common denominater
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—asing | 2+ 2 | _pcosa| Y2+ X |4c S = 0.
Q, Q w @) |§ 8
If one replaced;, Xi, X/, Yi-1, andY; in the latter equation with their expressiogks (

and @) (no. 25) that are obtained by pure statics, and if one takesartount the facts
that:

=sina, = cosa

oo
oloc

then one will recover the final equatidf) (n no.25.

Effort produced by
Type of bar the auxiliary | the load| Length of| Section
forces the bars | of the bars

Fand-F,N| N S Q

Elementsof[ i(— 1, ) ... —Fsina Xi a Qi
the members i(- @, )... — Fsina X! a Q
i-Li'-1 .. — Yi- b _
Uprights {( ) Fcosa 1 W-1
(|,|) — Fcosa Y| b a

i-1i) ... Z; c S

Diagonal{ (_ _,) i

(i-Li") ... F Z c S

a = acute angle between the mean fiber of the diagomhthe vertical




CHAPTER IV

METHOD BASED UPON THE
VIRTUAL WORK THEOREM

43. — The theorem ofirtual work was used for the first time in the resistand
materials by Mohr %) for the determination of the efforts in articulatedtems with
redundant bars.

Since then, the applications of that theorem toother systems that are employed in
c2c>nstruction have been largely developed by various autiadsnotably Muller-Breslau
().

Finally, the same theorem permits us to establisij¢heral equation of elasticity),
to which we just gave a new proof that was deduced frenvithvivatheorem much
earlier (nos32 and33).

44. — General equation of elasticity

Let a system of bodies be isotropic. Suppose that d@xternally and internally
hyperstatic (noll). (The case of an isostatic system will be regarded@sticular case,
and likewise that of a single body.) That system alié®is deformed under the action of
external forces that are applied directly and a teatpee variation of degrees, which is
measured from the temperature that is realized by th@ugaconstraints of the system.

Let:

1. A1, A2, Az, ...

denote the projections of the elastic and caloric a@ghents of a certain number of
points:
Ag, Ag, A, ...

of the system of bodies onto the arbitrarily-chodieactions:
A1, N, Dz, ...

Let:
2. @1, @2, @3, ...

be the projections of the elastic and caloric rotataire certain number of lines:
aa, 88, 8a,

that are contained in the system of bodies ontalitleetions:

() Zeitschrift der Achitekten und Ingenieur Vereins zu Haen@¢1874), pp. 223.

(®) Die Methoden der Festigkeitlehre und der Statik der Baukartibnen 1886.

() “L’équation générale de I'élasticité des constructienses applications,” Bulletin de la Société des
Ingenieurs civils de France, October 1907. pp. 365.
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M, M2, M3, ...,

which are chosen arbitrarily from the directions @& normal to those lines.
Let:

3. &—aT, &—arT, &— a7, ...

be the six parameters of the elastic and caloric deftom (no.5) of an elementary
parallelepiped that is taken at an arbitrary poiny,(2) of the system.

4. Letax be the internal potential per unit volume at the spmit , v, 2).
5. LetFesandFis be the redundant external and internal constraint$aynghe system.

Now consider the isostatic system that is obtainedsugypressing the redundant
constraints from the given hyperstatic system. If suigiects it to the forcds, Fes, and
Fis, as well as a temperature variationralegrees then it will take on a state of elastic
equilibrium that is identical to that of the hyperstaystem that is subject to only forces
F and the variation of temperature. In particular, it thastatic system, the elastic and
caloric displacements of the poirs, Ay, As, ..., the elastic and caloric rotations of the
linesa &, a, &, a, &, ..., and the deformation parameters of an arbitrary lpéepiped

will be the same as in the hyperstatic system.
The internal potential is likewise the same, in suevag that, from formula (4) (no.
4) and the final remark in n®, one can write:

(a) (E.FvFestis: m: =

NN

(e +e,+e) T U e )+ Ly Ly Ly,

upon letting ;. . . denote the internal potential per unit volume xfy, 2) of the

isostatic system that is deformed by the fol€eBes Fis . (The overbar above the letter
awis intended to indicate that this potential relatefi¢oigostatic system.)

Suppose that the action of the foréesFes Fis, and the temperature variation has
been subtracted from the isostatic system and apply:

1. Auxiliary forcesto the points:

A, Az As, .
whose magnitudes:

Fi, F2, Fa, ...

are arbitrary, and which point in the directions:

A1, Dr, A, ...

2. Forces that forrauxiliary coupledo the points:
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a,8, 8,8,a,8, ..,
whose magnitudes:

C1, 2, Cs, ...
are arbitrary and which point in the directions:
M, M2, s, ...

The isostatic system will take on a new state obmeétion under the action of the
auxiliary forces and couples. Let:

A A A, @, @, @, ... be the new values of the projected displacements and
projected rotationd:, A2, As, ..., ¢1, @2, @3, ..., resp.

Er &y &y Vs Vo Vi be the new values of the deformation parameters of an

elementary parallelepiped that is taken at an arbipairst (x, y, 2).

@, . be internal potential per unit volume at the poxay/(2), which is a potential whose
expression, from formula (4) (nd), has the expression:

L

@) @yo = (& tE, +£)+u(£’2+£'2+£’2)+”(1/yz+1/ +y )

N

I:I” be the total internal potential of the system, whicdm formula (5) (no. 4), has the
value:

n, .= szﬁm dx dy d-.

Now, subject the isostatic system, thus-deformed, tartaal deformation that is
compatible with the constraints on that system, andgt oA, , o, ..., o¢,, o@,, op;,

ey O, OF,, Of,, O, O, Oy, be the corresponding virtual variations of the

projected displacements, projected rotations, and defanmaiarameters, resp. The
virtual work theorem immediately gives the equation:

~7:15/]1’+~7:25/]’2+~7:35/]'3+"'+615¢'1+625¢'2+C ﬂ’:

0 0
= J.J.J. ]—'C dE" ]—'C dﬁ" w]—‘c 56" w]—‘C 5y' ]—'ﬁ 5y' ]—'C 5y' dXdde
a ' aVyz ayzx ay
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Indeed, the left-hand side of that equation representgirtib@l work done by auxiliary
forces and couples’)( and the right-hand side, which is the virtual variat@fnthe

internal potentialﬁ”, represents the virtual work, with the opposite sign,edbw

internal forces.

Since the virtual deformation is subject to only beinmgatible with the constraints
of the isostatic system considered, one can take défdrmation to be the actual
deformation that the system experiences under thenagtithe force$, Fes, Fis, and the
temperature variation afdegrees, which implies that:

ON = A1, o, = A, o= s,
op=¢1,  O0p,=¢a,  OP;= @3,
05, = & — 0T, Ot = & — ar, o€, = & — ar,

V2= Wz, V= Vox, V= Koy
and as a result:

(b) .7'—1/]1+.7'—2/]2+.7'—3/]3+...+C1¢1+C2¢2+C3¢3+...

m{aw” ' "+aayxy Y, dedydz—arﬂj(awfxc aifyhagc] dxdyd,

in which one assumes that the temperature variatienthe same at all points of the
system.

Transform the two integrals in the right-hand sidehef equationly). As far as the
left-hand side is concerned, imagine that the isostgstem of simultaneously subjected
to:

1. Forced, Feg, Fis,

2. Auxiliary forces and coupleB andC,

without that system being subjected to any temperaturaticar, moreover. From the
superposition principle, the elastic deformation pararsetet are produced by the set of
all those forces and couples have the values:

&+&, §tE, &Y, KtV VatVe Kyt
y y. y

at an arbitrary pointx( 'y, 2. As a result, upon lettingg. . . .. denote the internal

potential per unit volume at that point of the systemt thas been deformed by the
aforementioned forces and couples, one will have:

() The constraint forces of the isostatic system ihassumed to be subjected to the fotEgsFs, Fs,

., and the couples, C,, Cs, ... do not enter into the expression for work, insofahasvirtual works done
by the constraint forces are zero by reason of thosstraints.
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@”) mF,FeS,FiS,}',C = A [(‘gx +e) + (g +e)) + (& +e, )?

[(SX +£x) + (‘gy +£y) + (‘SZ +£z) ]

+ g[(wzﬂ/yf 002+ By +V)

The expressiorg] for @, . ¢ . is a homogeneous function of degree two of the six

quantitiess, ..., Ky, and in order to pass from that expression to the @eand @")
for @, , andw; ¢ ¢ ., resp., it will suffice to replace those six quansitiérst, with

Er - Vo @nd then with & +¢£0), ..., (ky+V,,). Consequently, by virtue of the

property of homogeneous functions of degree two thatredilbefore in no33, one will
have:

0w 0w

F.C FC - =

& Tt Vi = Wrk Fore ((DF FESF,S+(U}',C)
0g, )

Upon multiplying the two sides of that identity iy dy dzand integrating over the
total volume that is occupied by the system of bodies vat get:

0 0 _
© m( Llg 4o ijxyjdxdydﬁ Frarre ~Mep e +50).

That is the transformed expression for the firstgrdaein the right-hand side of
equation ), which is an expression in Whidﬁp,pes,pis’ M., and Me e r represent the
values of the total internal potential of the isostatistem, when it is deformed by:

1. Forces, Fes Fis
2. Auxiliary forces and coupleB andC,

3. The totality of all those forces and couples,

respectively.
As for the second integral in equatida), (by virtue of formulas (6) (na4), one can
write:

awf ¢, wf ¢ 0., . o _
@ m{ 0% o= oy 1) oy
in which n,n_,n, denote the normal fatigues on three mutually-reqtéar elements

that are drawn through an arbitrary poirt ¥, z) of the isostatic system when it is
subjected to the auxiliary forces and coupgtesnd(.
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Upon replacing the two integrals on the right-hand sidequfation i) with their
expressionsd) and ¢) and writing the left-hand side in the abbreviated foomg will
finally get:

B7) YFA+YCP=Mep o po~(Opp e+, ) -ar|[[(m +ri+r) dxdyd.

We thus recover the general equation (31) @®). of elasticity for systems of
isotropic bodies.

Upon repeating the preceding proof in the casa sfystem of bodies with mean
fibers, one will likewise recover equation (32) (88), whose development will lead to
the general equation (33) (same number) of elagtmi the systems in question:

N T M
(38) DFA+YCH ZJ{N(E—aTJ+TOG_’7Q+...+Mz?ZI ds.

The application of the latter equation to the glaton of displacements and elastic
and caloric rotations, as well as the determinatibthe constraint forces in hyperstatic
system, was presented before (18%and39to 42); it shall not be repeated.

45. — Variants of the general equation of elasticity

I. Case of systems of isotropic bodiesln order to establish the general equation
(37) of elasticity for systems of isotropic bodiasno. 44, we considered thisostatic
system that was obtained suppressing the redumgastraints in the given hyperstatic
system, and we applied the virtual work theorerth&d system, which is assumed to be

subjected to auxiliary forces and coupfeandC whose magnitude is arbitrary, by taking

the virtual displacements to be the actual displesgs that will result from the
deformation of the hyperstatic system when it igjscted to the given forcdsand the
given temperature variation

If one repeats that proof exactly, while considgrinot the isostatic system, but the
givenhyperstaticsystem, then one will get the following variantegjuation (37):

(39) DFA+YCH=Me =M +N, ) —ar[[[(n+n+ ) dxdyd,
in which n{, n’, n denote the fatigues that are normal to the treeangular elements
that are drawn through an arbitrary poirt Y, z) of the hyperstatic system when it is
subjected to the auxiliary forces and couptesndC, resp.

Finally, if one recalls that same proof once mavkjle considering thénternally-
isostatic and externally-completely-fresystem that is obtained by suppressing the
redundant internal constraints aaltl of the external constraints on the given hypeicstat
system and supposing that the system is not sebje¢otauxiliary forces and couples of

absolutely-arbitrary magnitudes, but to auxiliaoycdes and coupleg andC, resp., that
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are restricted by the condition of equilibrium on thattem then one will get the second
variant:

(40) XFA+YCP=Mepp o= Mepe +0 ) -arf[f(n+ )+ ) dxdyd:

in which ﬁF,Fe,FiS’ M,., and IEIFYFSVEJ’C denote the total internal potential of the
internally-isostatic and externally-completely-fr@estem when it is deformed by:

1. The given forceB, all of the external constraint forcEsof the given hyperstatic
system, and the redundant internal constraigtsf the latter system,

2. Auxiliary forces and coupleB andC,

3. The totality of those forces and couples,

respectively.
n

m m

., N7, nyare the normal fatigues on three rectangular elesntrat are drawn

through an arbitrary pointx(y, 2) of the internally-isostatic and externally-conplg-
free system that is subject to the auxiliary foraed couplesr andC.

II. Case of systems of bodies with mean fiber$he two variants of the general
equation (37) (no44) of elasticity for system of isotropic bodies thegre just pointed
out correspond to two variants of the general equngB8) (same number) of elasticity
for systems of bodies with mean fibers.

The last two variants show that in equation (28)e can, if desired, consider the

elements of reductiowV, 7,, ..., Ms to be the resultant of either the application of
auxiliary forces and couples andC, resp., of arbitrary magnitude to tisestaticsystem

that was defined before or the application of aarl forces and coupleg and(C, resp.,

that are restricted by the condition of equilibriton that system to theternally-
isostatic and externally-completely-fregstem that was defined before.

It was the last of those three viewpoints thatadepted in our previously-cited paper
on thegeneral equation of elasticity and its applicatioridere, we have adopted the first
one, because it attaches the second method, wiaistbased upon thes vivatheorem,
to the method that is based upon the virtual whdotem in a more direct manner. As
far as ease of application is concerned, the twveovpoints are absolutely equivalent,
moreover. Essentially, no matter whether one cd®ase or the other, the reduction

elementsV, 7,, ..., Mg will always be statically-determinate, and as sulte they can

be easily calculated.
The second viewpoint has only a purely-theoretitarest.
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46. — Completion of the theorem of Betti, Boussinesq, andadrice Levy

That theorem follows immediately from the generplation of elasticity. Consider a
system of bodies that are isotropic or have meansfib&uppose that it is hyperstatic.
(The case of an isostatic system will be regardedpastular case, and likewise, that of
a single body.)

Apply a first system of forceg\f to it. Let:m be the number of forcesf, , any one
of them, A, its point of applicationd; , its direction, and lef1. be the total internal

potential of the system of bodies that are deformetihdse forces.
Replace the system of forces) (with a second system of forceB)( Letn be the

number of forces of that second systefy, any one of then;, its point of application,
A, its direction, andrl,_, the total internal potential of the system of bodlest is

deformed by those forces.
Let:

)I,‘f denote the projection of the elastic displacemetih@fpointA; under the action of the
system of forcesH) onto the directior, .

)IQ denote the projection of the elastic displacemetibh@fpointB; under the action of the
system of forcesA) onto the directior .

Mg, g Or Mg ¢ denote the value that the total internal potentiahefsystem of bodies

will taken when it is deformed by the two systems ofcésr &) and B) acting
simultaneously.

Having said that, if one annuls the variation of tempeeat which does not relate to
the present question, and one likewise annuls the auxtarglesC then the variant (39)
(no.45) of the general equation of elasticity will reduce to:

Z}—A: rIF,}'_(rIF +I—I}')'

When that equation is applied to the deformation ofgygem of bodies by the
system of forcesH), that will immediately give:

m

(@) ZFA/]/i :nF,}'_(nF+n}')i

i=1

if one takes the auxiliary force'Sto be the forces of the systén

When it is applied to the deformation of the systédnbadies under the system of
forces A), that same equation will give:
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n

(b) zFa AQ = I_IFA,FB_(I_IFA+I_IFB)’

i=1

if one takes the auxiliary forces to be the forcethefsystemHg).
The two relationsd) and @) are precisely the ones)(@nd ) (no.29) that translated
into the complete theorem of Betti, Boussinesq, and Mauugvy.

47. — Application of the general equation of elasticity to
the graphical statics of elastic arches

In his masterful treatise on graphical statics, Mautiegy presented some very
remarkable graphical methods for the calculation of thstie arches that are restricted
by redundant constraints and subject to external fdhegsact in the planes of their mean
fibers, as well as a temperature variation.

Those methods take into account only the elastic defns that correspond to a
flexural couple. They neglect the ones that corresdponthe normal and shearing efforts.
They are based upon the property that is possessdittibpus forcesthat are
mutually-parallel and are applied to each elengs@f the mean fiber of the arch and are
equal to M / El) ds whereM denotes the moment of flexure in the section whose

curvilinear abscissa is, | is the moment of inertia of that section, aBdis the
longitudinal elastic modulus of the matter that comprigesarch. Those properties,
which are particular to each type of arch, result fitwe conditions to which they are
restricted during its elastic deformation by the facttefredundant constraints. In the
treatise of Maurice Levy, they were established by themg¢rical and kinematical
methods of the calculus of deformations. Furthermitvey are deduced more simply
from the equation of redundant constraints @9). or (which basically amounts to the
same thing) the general equation of elasticity foresystof bodies with mean fibers:

N T M
@ Z]—“)I+ZC¢ ZJ{N(E_WJJFT@JFME}OIS’
which will reduce to:
(b) SFA+Y Co :—arj/\/ds+j/\/l% ds,

when one suppresses the terms that correspond to thendgéms that are due to the
normal effortN and the shearing effoit

The degree of approximation that one obtains by neglethoge deformations can
often be considered to be sufficient. However, inagertases — notably when one is
dealing with lowered archesircs surbaiss§s— that will no longer be true, and it will
become necessary to take into account at least tbemkgions that are due to the normal
effort, if not the ones that are due to the shearffggtewhich are always the weakest.
One can arrive at that fact by means of some verglsigorrections that alter nothing in
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the structure of the graphical methods, but permit onevolve either just the latter
deformations or likewise just the ones that are duddashearing effort, if desired)(
Here is how:

Figure 10.

48. Introduction of deformations due to normal effort.— If r denotes the radius of
gyration of an arbitrary sectioip)(of the arch around the axis that is drawn through the
center of gravityG of that section (Fig. 10) normal to the plane of treamfiber, which
lies along the intersection of that plane with thenglaf the sectionSj, then:

GH’=GH"=r.
Call:

The two pointsH” andH”, which are nothing but the two summits of the central
ellipse of inertia of the sectionpnjugate pointselative to the sectioryy.

The two lociA’B"andA” B” of pointsH”andH ” that relate to all sections of the arch
conjugate lines. Each elementls of the mean fibeAB of the arch corresponds to two
elementgds’andds” of conjugate lines.

The two sums of moments with respectH6andH” of the elastic forces that are
developed in a sectio®) (or external forces that act to the left of thett®n)conjugate
momentghat relate to the section.

The values of those moments in the hyperstatic avokidered, when it is subjected
to given external forcels and a temperature variatianM “andM ”.

The values of those same momeMt$ and M" in the isostatic arch that is obtained
by suppressing the redundant constraints from the hyperataticand subjecting it to
auxiliary forces and coupleB andg.

One will have immediately:

() BERTRAND DE FONTVIOLANT, “Mémoire sur la Statique giasique des arcs élastiques,”
Comptes rendus de I'’Académie des Scierddgs(1890), pp. 697 and Bulletin de la Société des Ingenieurs
civils de France, April 1890, pp. 403.
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M’=M + Nr, M”=M —Nr;
hence:

N = M'-M | M = M'+M .

2r 2r
Similarly:

I_ n I+ n

/\/:M /\/l’ M:M /\/l.
2r 2r

Now, when one suppresses the terms that correspond defimenations that are due to
the shearing effort, the general equatian((o.47) can be written:

N M
FA+Y Cp =—ar | Nds+ || N—+M—| ds.
SFAeE e = ar [Nosr [ N gg gy
Upon replacing the normal efforts and moments of flexarthe second integral with
their expressions above and keeping in mind the relatiof r?, after some reductions,
one will get:

SFA+DCo :—aerds+j[M' M~ ar M j ds,

2E| 2E |

in which the integrals extend the whole length of tleamfiberAB of the arch.
Set:
1= 2
and agree to represent (indistinctly):

One or the other of the two conjugate momémtandM “by M’
One or the other of the two conjugate momevitsand M" by M',

One or the other of the elemenis and ds' of the two conjugate lines that
correspond to an elemeats of the mean fiber bgs.

In that way, one can write:

_ , M'" ds
(© S FA+Y o _—arj/\/ds+j/\4 T ae ds,

in which the second integral extends along the wholgtleaf the two conjugate lines
A'B' andA"B".

Upon comparing equatiom)( (no. 47), which neglects the deformations that are due
to the normal effort, with equation)( which takes them into account, one will see that in
order to pass from the former to the latter, it wilffige to replace the moments of

flexureM andM with the conjugate momenké’and M/, the moment of inertibwith |
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= 21, and to regard the second integral as extending, norl@hgeg the total length of
the mean fiber, but indeed the total length of the twgugate lines.

One can, moreover, imagine (without entering intogreof, which is given in our
paper on “Statique graphique des arcs élastiques”) that:

In order to introduce the deformations that are due to the normal effartthe
methods of graphical statics that neglect them, it will sufficeepdace the fictitious
parallel forces(M / E 1) ds that are applied to the various elements ds of the mean fiber
of the arch considered in those methods with the fictitious forces:

M dsje- M 4o
EI'ds  EI

which are parallel to the first ones and appliedetach element dsf the two conjugate
lines.

Figure 11.

49. Introduction of deformations due to normal and shearing #orts. — Call the
three pointsH’, H", H’*, which are situated in plane of the mean fiber and have
coordinates referred to the tangéhtand normalGy to that fiber:

2 2
oo W ,_ 16

5 :
X" :—r\/z, y"=0,

in which a denotes the ratio of the longitudinal modulus lakgcity E to the transverse
modulus of elasticitys, conjugate pointselative to an arbitrary sectio)(whose center
of gravity isG (Fig. 11).

X =
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Furthermore, by analogy with what was said beforeatibh admitghree conjugate
lines AB', A"B", A"B'", and each elememts of its mean fiber corresponds to three
elementds, ds’, andds” of the conjugate lines. Moreover, any secti®ncprresponds
to three conjugate moments.

Let:

M’ M”, M’”be the values of those moments in the hyperstaticcanesidered when it is
subject to external forcésand a temperature variatian

M, M", M'" be the values of those same moments in the isostatidlzat is obtained
by suppressing the redundant constraints from the hyperatatiovhen one subjects
it to auxiliary forces and couplesandC.

One will have immediately:

M:M+hﬂig¥H{? 
M”:M—NrJE+T“Eg,

2
M"”=M-Try/2a,

from which, one will infer that:

MI_M"
N=— "
rJ6
T _ MI+MII_2MI"
Ff2ma
M : M,+M"+M"’ .
3
Likewise:
N:M—M’
rJ6
T _ MI+MH_2MI’I
3 2a ’
M= A

Upon substituting these values for the normalreffehearing effort, and moment of
flexure, resp., in the second integral of the geheguation &) (no. 47), when it is
written in the form:
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Z]—“)I+ZC¢ = —ar.[/\/’ds+j( —+T@ M Elj ds,

and upon taking into account the facts @atE / G andl = Q r?, one will get:

! M n M m
FA+)> Co = —ar ds+ + M + M" ds,
EFAvECH = ar] dos [t e g
in which the integrals extend along the whole lengtthefmean fibeAB of the arch.
Set:
=3
and agree to represent (indistinctly):

Any one of the three conjugate momelit$ M ”, andM ” by M,
Any one of the three conjugate momenss, M", andM"™ by M’,

Any one of the three elemends, ds’, ds"” of the three conjugate lines that correspond to
an elementdsof the mean fiber bgs .

Furthermore, one can write:

- _ M’ ds
(d) SFA+Y.Cp = arj/\/ds+j/\4 dgdé

in which the second integral extends along the wholgtleaf the three conjugate lines
A’B,A”B”, andA”’ B"".

That equation has exactly the same form as equatidnd. 48), and one concludes,
as before, that:

In order to introduce deformations that are duethte normal and shearing efforts
into the methods of graphical statics that negldam, it will suffice to replace the
parallel fictitious forceqM / El) ds that are applied to each element ds of the rfiean
of the arch in those methods with the fictitiousés:

M dshe- M g,
BT E

which are parallel to the first ones and appliedetach element dsf the three conjugate
lines.

We add that, as we established in our previously-cited paection of an arch does
not correspond to just one system of three conjugate pbirtsndeed, to an infinitude of
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them, and as a result, an infinitude of systems \hitbet conjugate moments, and that an
arch will consequently admit an infinitude of systemstloke conjugate lines. The
proposition above applies to any one of those systbatghe most convenient of three,
for the sake of applications, is the one that wasddfabove.




COMPARING THE THREE METHODS

50.— The following remarks emerge from the preceding expose:

The methods that were presented are in complete agnéeand all three of them
take into account, not just the effects of externaldsybut also the caloric effects.

Although there are close relationships between théey have neither the same
significance nor the same theoretical character:

The first method, like the other two, leads topeatity principles that are particular
cases of the theorem of Betti, Boussinesq, and Mailaey. However, in its current
state, it will not permit one to either establishttbaautiful theorem directly or the
general equation of elasticity, which is a synthesithefentire theory of deformations.
In that regard, it is less satisfactory than the tagi. From the standpoint of the
presentation, the first method based uponvibeivatheorem is very delicate, at least the
part of it that relates to caloric deformations, whiclcessitates the extension of
Clapeyron’s equation that was made here.

On the contrary, the second method, which was likedeshkiced from theis viva
theorem, is simple and elementary.

The third method, which is inferred from the virtual wohledrem, appeals to the
most advanced notions from general mechanics, but it {seaone to take into account
the caloric and elastic deformation from the outset@imultaneously.

The third method has been criticized for the fact thaests upon a basis that is
hardly solid, because, as we said, there exists nocouggeroof of the theorem of virtual
work. Without entering into a discussion of that subjeat would find no place here,
we believe that we must recall that in one of theesoin Lagrange’s celebrated
Mécanique analytiqug'), one of the most sophisticated mathematicians ef last
century, Joseph Bertrand, expressed it thus: “Therfgstous proof of the principle of
virtual work was due to Fourier (J. de I'Ecole Polytechniquell, year VII).”
Nonetheless, in the numerous applications that have teele of it, to my knowledge,
the virtual work theorem has never been found to bengyrand as is clear from the
present Note, the results to which it leads, as fah@<alculation of the deformation is
concerned, in particular, are in complete agreemeiht tvé ones that are deduced from
vis vivatheorem.

() CEuvres de Lagranggpublished with the attention of J.-A, Serret and GaStarboux), t. X!, 1888,
pp 263.



