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Super -energy in general relativity (9.

By ROBERT DEBEVER

INTRODUCTION.

If the problems of the definition of the energy of gratidin and the nature of
gravitational waves are indeed important in the rektitcvtheory of gravitation then one
must admit that the various solutions that have been pegbap until now present
various drawbacks.

The object of this study is essentially that of intli@aa path that one might follow
in defining these problems, not a solution to them.

One may, upon schematizing things, say that the oldegtnasens rest upon an
analogy between classical mechanics and relativity.e €bnserved quantities of
classical mechanics: momentum, moment of momentudhernergy are linked with the
transformations of the fundamental group, namely, spatiatlations, spatial rotations,
and time translations, respectively. Having said this, saes the difficulties that one
might encounter when one transposes such a mode of thatgthe context of general
relativity on a Riemannian manifold, which possesses no guaup, but only a pseudo-
group of isometries. It is precisely this criticisnattiA. Trautmann has brought to light
at the recent colloquium on the relativistic theoradsgravitation that was held at
Royaumont in June of 1959, under the auspices of the GNIR

A new path was introduced by Lichnerowi@,[Pirani [3], and Trautmannd]. It
emphasizes the analogy between the electromagietticand the tensor field that is
defined by the Riemann curvature tensor.

It is Pirani who, in several recent articles, hadstesl on the role and physical
significance of the Riemann tensor, a role and sigmfieahat has been obscured by the
fact that only the Ricci tensor appears in the field egas.

The contribution of Trautmann is based on the mannposihg the boundary-value
problem in special relativity, as well as in generadtieity. Here, we retain the idea of
the analogy that is thus described, and we propose tooseand up to what point one
may pursue it. This analogy has also inspired an emitR. Penrose that will appear,
in which use is made of the spinorial representatiathenstudy of the electromagnetic
field, as well as the Riemann tensor field.

1. The energy-momentum tensor of the electromagnetic fiBjJd The
electromagnetic field is defined by an anti-symmetrisaefield, or 2-form:

Faop=—Fpa, a,3=0,1,2,3, (1.1)
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which is defined, in all that follows, in a Riemannian nf@di of normal hyperbolic
signature +-, —, —; in the sequely,z will denote the metric tensor.
The energy-momentum tensor of the field is given by:

~ Tap=FayFg =5 9adFpoF™) - (1.2)
Nagru Will denote the volume element tensor, and we agiae7tis =+/—4d -
*Fap =4 Napy F* (1.3)

will denote the tensor that is adjoint kg, for the given metric. We shall recall eight
remarkable properties of the ten3gp :

a. Symmetry:
b. Null trace:
Topg¥=0. (1.5)
c. Conservation. In the case of an electromagfietat in the absence of charges:
O0.T% =0, (1.6)
in which [0, denotes the covariant derivative.

d. Its involutive character, and the two types of fieldls [

Td Toy=4Gay!? (1.7)
in which:
42 = (Fpo FP)? + (Fpo* F). (1.8)

The field is non-singular if # 0 and singular if = O.

e. Characteristic isotropic vectors:

1. Non-singular field: there exist two real isotropéctord Y andl (” such that:

17157+ ‘(’Dj (1.9)
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Taﬁ:_ |(gaﬂ—2

in which:

o =10 18, (1.10)

2. Singular field: there exists a real isotropgctor|? such that:



Tap=Tlalp, (1.11)

in which7'is a scalar; one may also say thais a double isotropic vector and that the
vectorsl® and P in the non-singular case coincide in the singular case.
The isotropic vectot§ are also defined by the fact that they are the resdoisic

proper vectors of 43:
Toplfi=+119, i=1,2. (1.12)

f. Geometric interpretation/[: the linear space that is tangent to a point ef th
Riemannian manifold is a centered Minkowski space. If sindies the restriction of
that space to one of its hyperplane sections (“spacafiaity”) then one obtains a
Cayley spaceéC; whose absolute space is the hyperplane section of the-¢gype of
lightlight directions, and is an oval quadric.

Two real null or isotropic direction$are associated with the tensbys namely,

two pointslg of the absolute space. A quadric is associated Tyghand in the non-
singular case, it is characterized by the following fewt: quadricT 45 cuts the absolute
space along the left quadrilateral of the generatriceh@fabsolute space that pass
through the points®™ andI®, and is apolar to the absolute space. ((1.5) exprésses
property of apolarity) (cf. Fig. 1):

Fig. 1.

In the singular case, the quadfigz is formed from the plane tangent to the pint
counted twice.

g. Energy for an observer: The introduction of an obsanagy be accomplished by
introducing a timelike direction that is defined by a uniteegtoru® (uU“u, = 1). Under
these conditions:

Eo=FapU?, Ho=—*Fa (1.13)
are the electric field and magnetic field vectors lfer dbserver. |f:

T(u) = Tapu? P (1.14)



thenT(u) is the energy function of the observer. One has:
T(u) =3 (Ea E* + Ha HY) . (1.15)

T(u) is a positive-definite function.

h. Mariot’s theorem§]. In the case of a singular field the trajectonéshe vector
are isotropic geodesics, and when the conservationtmmd applied to (1.11), one
obtains:

Ia

1904 15=K . (1.16)

2. Energy-momentum tensor and the electromagnetic field. the preceding
section, the emphasis was on the terisgr but the analysis that we carried out may
also be applied to the fielssz . In the non-singular casgqz may always be put into
the form:

Faﬁ: E agpt H *aaﬁ (2.1)
in which:
| @) @) @
aaﬁ:M, (2.2)

|12

andE andH are two scalar field invariants, affd= E* + H%. A well-defined fieldT s
corresponds to the field,s and conversely, a family of fields,s corresponds to the
tensorT,z, since only itself is well-defined. The fieléF 3 is then determined up to a
“duality rotation,” in the sense that if:

Fs=Fapcos@+ *F g5sin 6, (2.3)

F,sandFqs have the same energy-momentum ten8pr [
The vectors’ are also the real isotropic proper vectors gf:

Faplfi=kI1. (2.4)
If the field F oz is singular then, for the directiofi one has both:
Fop 1P =*Fap1P=0 . (2.5)
The tensoF .z and ¥, may then be put into the form:
Fag =laUg—IpUq
*Fog =laVag—IpVa, (2.6)

with:
1F1,=1%Us=19v, =V u,=0, uuy=Vv7v,.



-5-

The tensorsF,s and * .5 are then the coordinates @ of the two lines that are
conjugate and tangent to the absolute space at thel point

3. The tensor of L. Be[10] Main properties. In the sections that follow, we shall
first consider the vacuum Einstein spaces, i.e., angsthat:

Ray = Ra,u'g,u =0 (3.1)

in which Ry, is the Riemann tensor.
L. Bel has introduced the tensor:

Taﬁ/l,u = Z(Rap/IUR,prU'*' Rap,uaR,Bp/l 7= Agaﬁg/l,u) ) (3-2)
in which:
A =1 Ry RPP. (3.3)

This tensor possesses the following symmetry properties:

Topu =Tparp =Tagur = Tauag. (3.4)

I. Robinson has drawn attention to the fact thattémsor is completely symmetric and
L. Bel has communicated a proof to me, and we recallgbentials here.
If:

(RY) apiu =3 Rag ™ Mpory (*R)apru =% Npoap Rap™
(*R*) apru =% Nappo R o (3.5)

then one has, thanks to (3.1):
*R*=-R and R*=*R=R. (3.6)

This being the case, one has the following identity:

g —_
Rap,ua Rﬁp/‘ -R ap/iaR /Jppg = O Gap A. (37)
Indeed:
PUO — 1 Ay Hop'o"ny p
R J: A Rap Myoadll R/J o'
—1 jHd'o" AR P
4 5/1’0’/1 Rap R

B ya"
-1 Ho'R P Aupp U Ao pp
_E(Rap R/J ot Rap R/J a 5/1

0 Ao/

-R

aglo

(3.7) then results, thanks to the identity:

Rap/]gR'f/‘a = 2A gaﬁ . (38)
One thus has:



Tapiy = 2Rapro Re"u + R 1, R £, - (3.9)
Now, one has both:
RapAa + Rp/laa + R/]apa =0 (310)
R ap/ia+ R p/im'r+ R/iapa = O ; (311)

the first identity is true for any tensBgz,, , and the second one results from (3.1).
One may then verify that:

Tapiu = Tarpay (3.12)

and the complete symmetry results from the propgi3ies.
Indeed, thanks to (4.10), one has, in turn:

Rapio Rs“u © = Ripao Rs”u © = Ranpo Rs ",
:%RUAPU(R,B'D/I 7 - Rs U/I'D) = %RaApa Rau re,

Similarly, thanks to (3.11), one has:

p o _ po_1 oo
Rap/iaR,B,u R/ipaaR,B,u _szipaR/J,u )

and, thanks to the identity:

Ra/]pa Rﬁypa+ R MpgRﬂﬂpJ =0 (313)
the relation (3.12) results.
The tensoiT 41, €njoys the following properties:

a) Complete symmetry.

b) Null trace. One has:
o Topu=0. (3.14)

This results immediately froR,, =R ,,=0 .

¢) Conservation. One has:
Ug Tam/, =0. (3.15)

For example, start with (3.9). Thanks to the Biandeintities, and by virtue of
(3.6), one has both:

Ug Ram/, :DaRaﬂM:O . (316)

If one then takes into account (3.10) and (3.11) therobtens:



P Tam/, = Rap/‘a Dﬁ Ra/ﬂ,u + R apAJDH R

apAu !
which is null, thanks to the identity (3.13).

4. Two completely isotropic planes and characteristic isotropic vectd?sirov
classification[11] . A 6x6 matrix is associated with the tendRys, that, from the
hypothesis (3.1), may always be put into the form:

_(al B _
Cre=| 51| AB =126 (4.1)

in an orthonormal frame, in whictt and 5 are symmetric 83 matrices with null trace
(in the sequel, we agree to set: 1 =23,2=31,3=12,453®0,6 =30). In¢
where the absolute equation is:

9apXXP =0, (4.2)

the coordinates of the 2-planes or bivectors:
PP =XTYP-XPY"  orph (4.3)

are the Plickerian coordinates of the line€4n

Cag Is associated with a quadratic complex of lineGdisuch that two quadruples of
complex conjugate lines belong to the absolute. To ttveseuadruples of lines there
correspond two quadruples of completely isotropic 2-planeghwhke qualify with the
termcharacteristic The two quadruples of characteristic lines have foair peints of
the absolute in common, which are also four charatiersotropic vectorslp)].

Indeed, one may map the spdieof lines inC; onto a pair of complex conjugate
Cayley planes by the map:

Z2=pt+iph, Z°=p"+ipt=iZ? @b,...=1,2,3). (4.4
The image of the compleRas is then the conic:

Can=(a—-ip (4.5)
in a plane whose absolute is:
QanZ?Z° =72 +Z7%+72 (4.6)

and the complex conjugate conic in the complex conjugate Caldee. We fix our
attention on the conic (4.6). That conic is the imaige ruling of the quadric (4.2). The
four points that are common to the coni&g andga, are the images of four lines in the
complexCag that belong to the absolute are teneratricesor completely isotropic

characteristic 2-plangswhich we denote byg; and pgf’ in the sequel; there also exist
conjugate generatriceg, and 2-p|ane$)(”if§ :



Iy will denote the points of the absolute that are comtoag) andg, -

Analytically, one may associate the aforementionetions in some detail in the
following manner: First of all, suppose that the foumpdithat are common G,, and
Oab are distinct, so the matr@,y is then diagonalizable:

A, 0 0
Co=| 0 A, 0| Au=ac—-i. 4.7)
0 0 A,

If we represent the conic (4.6) parametrically by:

ZH = 2¢n, Z2=&-1, Z2=i(&+ 1) (4.8)
then the generatricgg are defined by the equation:
A(ZY? + Aoi(Z2)? + As(Z3)? = 0, (4.9)
or also:
(& +nh+287 =0 (4.10)
or:
r=~Az—As3 and s=3A;. (411)
We also set:
A1 =Axp—Ass, Az =Aszz—Ai1, Az =A11—Axn, (4.12)
r=~A; and s=A;-A;. (4.13)

Since the three complex numbéyg andA, have a null sum, one may construct the
following figure: an oriented triangle with verticdsi, Azo, Ass, and the three numbers
A, are equipollent to the sides of the triangle, suchtti@brigin of the complex plane
coincides with the center of mass of the trianglg.(E).

Az

Fig. 2.

The Petrov classification amounts to the classe®nicsC,p in the Cayley plane of
the absolut@as [13]. We denote the general case that we just considbgréal



1b will denote the case in which the cofg, is bitangent to the absolute; there are
thus two doubly characteristic 2-planes (and their conjugates two doubly isotropic

vectord).
In the case where the two characteristic valugsare equal, one of the numbéeks
is null, sor = 0, as a result; the characteristic equation (4.10)rddurces to:

Er=0 (4.14)

Ila: the conicCyp is tangent to the absolute and intersects the abswmiutvo more
distinct points. There is thus a doubly characteristiplabe and two simply
characteristic 2-planes (and their conjugates), and thereflso a doubly isotropic

vector|? and two simple isotropic vectdfs. The matrix (4.5) possesses the following
reduced form:

—2A 0 0
Coh=| 0 A-0 o andAz0. (4.15)
0 ic A+o

Equation (4.10) takes the form:
&2 (AP +sE%)=0. (4.16)

Ilb: The conicCy, Is sur-osculating to the absolute, so there is a quadrupl
characteristic 2-plane (and its conjugate) and quadruplsofsiotvectorl” . One then
has the reduced form for the mat@y, that was given in (4.15) witAh = 0 . Equation
(4.16) reduces t§* = 0 .

lll. The conicC,p, is osculating to the absolute and intersects the absilatsingle
point. There is a triply characteristic 2-plane andsimple 2-plane (and their

conjugates), and there is a triply isotropic velt@nd a simple vectdg, .

0 -0 io
Cow=l-0c 0 0], (4.17)
ic 0 O
and equation (4.10) takes the form:
En=0 (4.18)

Finally, observe that the con,, may not coincide with the absolute, due to the
condition of apolarity; however, it may, of course,itentically null.

Remarks on the subject of case 1

Three remarkable cases are worthy of attention:
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a-l. The triangleA:11A22As3 has null area: the three complex numbggsandA, are
proportional, and one has:

A =AGs. (4.19)

0

the same is true for the four isotropic vect@yrs This is a particular case afl, in

which one of the numbe#s,, is null, one of the pairsx, ) is null, and equation (4.10)
takes the form:

a-ll. The four pointZ;, that are common t€,, andga, form a harmonic group, and

E+n'=0; (4.20)
indeeds=0.
0
vectorﬂ(”i‘)do, as well. One has:

a-lll. The four pointZ:, form an equianharmonic group, so the four isotropic

Q1 :Aco{6?+ kz?ﬂj : Be1=A sin(€+ kz?ﬂj , k=0,1,2. (4.21)

5. Isotropic 2-planes and characteristic isotropic tegs. Analytical expressions.
Let:
(X% = (X)? = (X2 - (X)*=0 (5.1)

be the equation of the absoluteGg in an orthonormal frame. One may give it the
parametric representation:
X=&&+mnp, X =&&-mn, (5.2)
Xe=&m+ém, X =i(&m—-amn),

in which (&1, 71) and &, 172) are two complex homogeneous parameters.

If (&, m) and &, 17,) are two complex conjugate parameters then ordehawle the
real points of (5.1).

If &, m are fixed ands,, 77, are variable in (5.2) then one obtains the paratnet
equations of a generatrix of the absolute, and dakulation of its Plickerian
coordinates shows, upon passing to the coordirZtebat ¢, 77;) are the coordinates
of this generatrix in the parameterization (4.8herefore, if&”, 7”2 denotes one of the
roots of the equation (4.10) then the correspondsmropic vector will have
coordinates that are equal to the numbers:

|(?): ENED 4 pOFO (5.3)

that are obtained by replacingi( /1) and &, 72) in (5.2) by &, /Y andf® 70,
respectively.
If a, b is a root of (4.10), which are therefore the camatks of a poinZ® on Cgp,

a

then the four point&;, will have the¢, 77 coordinates:
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(a, b), (b, &), (a -b), (b, -a), (5.4)

equation (4.10) may indeed be factorized into the form:

(& + ') + 817 = (@& + br)(bé + an)(aé —bn)(bé—an) (5.5)

and the four corresponding isotropic vectors will hdaeedoordinates:

aa+ bb,aa-bb,ab +ab,i(@b- ab)
bb + a@a,bb — aa,ba+ ba,i(ba - ba)
aa+bb,aa-bb,-ab-ab,-i(ab —ab (5.6)
bb + a@a,bb — aa, -ba - ba, —i(ba—ba) .
Let:
ay= aa+bb,a = aa-bb,a=ab+ab, as=i(@b-ab) (5.7)

be the coordinates of one of the isotropic vectors. €xsdy verifies that one has, as
result:

azal+ &+
(@ +a)’=16AA,, (2+a’)’=16AA,, (a+a’)’=16A,A,. (5.8)

If r?=A_A are the squares of the moduli of thethen one finds:

A=201+r2+r3)=4p

aA=2(2+r3—r1) =4{P—r1)

A=2(03+r1—r2) =4{-ry) (5.9)
a;=2(1+r2—r3) = 4p-r3)

and the matrix of components of the characteristicopat vectors may be written:

|
L HH P

3,
& i=1 23,4, (5.10)
3,
3

and one finally has:
det(ls)) = 16oaazas = 16x16 S, (5.11)

in which S is the area of the trianglei1A2,As3 .

Particular cases:
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la. I. The four vectors, are coplanar: one has S=0.

la. Il. If A;;=0thenone has,A=A, Azz=— A, A1=2A, Ab=—A As=—-A,r=
2A, s= 0, from which it follows that:

2 0 01 1
._ V20 1-1
©"T V2 0 -1 -1
J2 0 -1 1

(5.12)

if 8 =AA . The four vectors}, are in the plane %= 0 .
la. Il A1p = A, Asx = Ae”™®, Asz= Ae*’®, and one has:

31 1 1

3 -1 1 -1
|&:a‘J_ . (5.13)

v3 1 -1 -1

Y3 -1 -1 -1

Ib. Ai=—2A A=A Axz=—A A =0, A=3A, A3 =-3A,s=0. There are
two distinct isotropic vectors, and:

1 100
1 -100
[2=a 5.14
71 100 (5-19)
1 -100
lla. Starting with equation (4.16), one finds:
8 a a& &
=g P A % TR (5.15)
1 1 0 O
1 1 0 O
in which:
ao =0 +3VAA a1 = - 3VAA, (5.17)

a=io(\BA-\3R), as=-d/3A+3R).

Ilb. There are four isotropic vectors whose compon@dnts, 0, 0) all coincide.
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. (1, 1, 0, 0) is the triply isotropic vector and €41, O, 0) is the simply isotropic
vector.

6. Study of the surfacg(X). We set:
T(X) = Tapiu XTXPXAXH (6.1)

We place ourselves in casely starting with the reduced form (4.1). One has:

Toooo= T1111= T2222= Tazs3 (6.2)
Toooo=2(a7 +az +ai+ B2+ B3+ B2) (6.3)
= Z(Al];ll-i_A 25 22+A ﬁ_ 31) = %(Alﬂl-i_A 2& 2+A 5%
T1122= — Tooss= 412 + BiF) = —4AA +1T g0 (6.4)
Ta233= = Toor1= 40205 + Boffs) = ~4AA +3T 000 (6.5)
T3s11= — Tooz2= 4@s01 + BB) = —4AA ,+1T 000 (6.6)

Towzz=3(B — P+ s — 3o + 13— a3 f31)
:%(Azﬂg_p_‘ﬁ ) :%S'

These are the only non-null components of the tehggy, .

THEOREM. — The surface T(X) intersects the absolut€oih two quadruples of
complex conjugate generatrices, which are the charstategeneratriceg; andg. .

One has:
T(X) = Toood(X°)* + (X)* = (X3 + (X3
+ 6Ta12d (X H(X3)? = (XHHXZ)] + 6T22sd (X (X3)? = (X)H(XY)?]
+ BTaa1 (X 3)?(XH? = (X)A(XA?] + 24To123 XO X X2 X3, (6.8)
or further:
T(X) = Toood (X°)? = (X1)? = (X = (X7
=BAA[(X1(X)? = (XDA(X3?] + -BAA, [(X(XH)? = (X)H(X?)]
=8AA[(XHA(X?)? = (X9H%(XH?] + 64S XX X2 X3, (6.9)
On the absolute, taking (5.2) into account, one has:
T(X) =8AA, (& +n) (& +n3)
+ 2(A2A2_A£3_A2A3+'K‘2A3)(§(14 +’714) 522/722

+2(AA,-AA+AA-AAL)(E +n)) Ent (6.10)
+4(2A A+ 2AA ;A A ) ENE En?
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= 8[A(&' +11)) + 2(As — A) EP [ AL (& +m3) + 2(A, =R ) &n3l.
On the absolute, the condition T(X) = 0 is therefayeiealent to the two systems:

(& +f) + 2560 7= 0
T(& +nf)+ 25ET= 0,

which define the generatricgsandg. precisely.

An analogous proof is possible in the other cases.giMeas of two quadruples
of generatriceg; andg; projectively determine the surface T(X) thanks to thedians
of “apolarity” (3.14). This will be the subject of thallbwing paragraph.

7. Expression for the tensdr,g,, with the aid of the characteristic isotropic vectors
[14]. 1If 10are the characteristic isotropic vectors then org teanks to (3.8) and
(5.10):

JESE
= [(X%? = (XY= (2= (X [ag (X9 *=al(X ) = a{X § >~ afX } ]

+ (@ +a)(X)X) =X FEX VF+(as +a)[(X) (X ) *-(X J XY F (7.0
+@+ &)XY AX I (X} X ¥ T - Bagawaeas X° X' X* X°,

and, modulo the absolute, one further has:

ﬁ (19X =16A A [(X%)7(XH? = (XH*(X®)?T +16A,A,[(X*(X?)? = (XHA(X%)F
_ +16A,A,[(X9)%(X3)? = (XN (X?)?] — 8x16S X X X* X3 = T(X) . (7.2)

The same is true in all the other cases.
Having said this, we set:

Lopu=4% [ 12144 &, (7.3)

1,2,3,4

in which the sum is taken over all 24 permutatibthe sequence 1, 2, 3, 4. One has:

4
L) = Lagy XXX X =[] 0X) (7.4)

Furthermore, let:
L, = L% L=L%. (7.5)

aiu !

Thanks to (7.2):
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LaﬂA,u = Ta,&,u modulogaﬁ . (76)

From this, it results that one may write, i#L0:
c 96
Tapu = o (9ap b2y + Qi Bap + Gar bgu + 9gu Bar + Yap b1 + 91 Dy R Lags),  (7.7)

in whichbg, is another undetermined tensor a@rid a scalar that is also indeterminate.
The conditions (3.14):
9% Tapu =0
give:
12

b/l,u :T I—A,u —Qw - (78)

Therefore, by starting with the scatarthe tensor ¥z, is completely determined by
the given of the characteristic isotropic vectfts

One will observe that the tensors that figure in (7.@)irdependent of the choice of
the isotropic vectol$’, up to a choice of factor.

If:

Iij =ga/;l(‘i’)l(/j”) (79)

then one verifies, by starting with the definitions (a8 (7.5), that:

1
L ::—3 (ln2lza + 113l24 + 114l 23) , (7.10)

SO one has:
L # 0 in the casesl Ib, lla. (7.11)

If L = 0 then one will have:

1
Tapu=X [—5 (GapLlay +Oulap * 9l +9aular +Qaulpm +9srlay)

+ Logiu] (7.12)
in which x is a scalar that depends upon the choice of the isotvepior I, for the
tensor Ty -

In the case b, one has, moreover:
Ly, =0, (7.13)

and:
Tapu=Xlalplaly. (7.14)
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In conclusion, generalizing the situation that was deedrin paragraph I, Fig. 1, the
surface T(X) intersects the absolute in two quadruplescarhplex conjugate
generatrices that pass through the polgjs and the surface T(X) is projectively
determined by this situation of one adds the conditioriapaflarity” (3.14), Fig. 3.

The various cases that were prevdicted by the Petasgifitation are the limiting
cases of the general case.

8. Involutive character of the tensdtz,,. We propose to establish that:

Taﬁ/\/ITyﬁ/w = 2Kday, (8.1)
in which K is a scalar.
We have not found a direct tensorial proof of that priypeom starting with the
tensorial definition of F, .
Meanwhile, if L# O then a very long calculation that starts withéRpression (7.7)
gives us that:
Tapu T/ =5 (1 - )00y, (82)
in which:

=1 20 0 ) H I (° 6.9
(IZJ 14+| lIE; 24+I 12 3)

If L = 0 then one painlessly verifies, by starting withl2) and (7.14), that:
Tapu T/ #=0. (8.4)
In the casezone may, moreover, easily verify, on starting wikbressions (6.2) to
(6.7) for the components of4,, that one indeed has (8.1).
Furthermore, one has:

Toas, To ™ = (Toood)” + 3(Too1)? + 3(Too29? + 3(Toozd” — 6(To129° .  (8.5)

Thanks to (5.8) and (5.10), one verifies that one has:
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|24:|13: 32A1§1’ |12:|34: 32A2AZ, |14:|23: 32A353, (86)
which permits us to put expression (8.3) Kanto the form:
k= 165 (8.7)

CAAFAA LA A)?
One thus obtains:

16,, ~ — —
Toas To ™ :5(A1A1+A AL+AA) (1-%). (8.8)
If we compare (8.2) and (8.8) then:
8, ~ — — 8
c=t (AA AR A R) =2 (i +agal+ BB+ BY) . (B9)

If one refers back to the definitions, to (7.7), and, faneple, to the expression
(6.3) for Toooo , then one sees that there is good reason to adoptdign in (8.9). One
thus has:

2dc=-1L. (8.10)

If we refer to the definition (3.9) then we have:

Toooo = 2(RopoRo0” + R ,0,R )

= 2(Roaob Ro%0® + R 5,00 R o2 2), (8.11)
due to the fact that:
Roaob = = @ab , and R =" 5. (8.12)
One thus obtains:
Toooo = 2@ (5)” + Z(G)°) = 2EAA). (8.13)

One will observe thatohoois always positive and it is null only if g, is identically
null.
The expression (8.7) fdrpermits us to geometrically verify, for example, that:

(8.14)

Wik

k# O if the vectork], are four in number, distinct, and linearly independent.

k = 1/3 corresponds to the case in which the triangl&AAs3 is equilateral, i.e., in
which the vectorig, form an equi-anharmonic group (casell).

Finally:
K=64>>" [(Qanab~ LuBr)” + 4(@anBan)’] (8.15)
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and:

K = (Rapiy RP™2 + (R, R P2, (8.16)

afiu

9. The tensoiT 451, and the Petrov classificationin this paragraph, we propose to
assemble all of the formulas and geometric interpogtsthat relate to the various cases
of the Petrov classification.

la. One has:

3

Lwymmm———qwh (9.1)

in which:
LI I

fi —_i ik'il , 92
I (9.2)

in whichi, j, k, | forms the sequence 1, 2, 3, 4.
The surface T(X) passes through the pdjfitsand its tangent planes are isotropic at
these points.

Ib. Letl? andl’ be two doubly isotropic vectors. One has:
Tapiu I(I)I(,)I =0, i=1,2 (9.3)
Tapiu I(I)I L __EI(I)l 0 (9.4)

The pointsl® andI® of T(X) are biplanar singular points: the surfaxfetangent
directions at these points is composed of isotrpfsices that are tangent to the absolute
at these points, counted twice. If one sets:

| D@ 4] @ @
tap=Qup— 2L 2 F (9.5)

|12
then one obtains:

C
Tapiu = 3 (9o 92 9 + Do I — Jtaptiy — aatgy — tautas)  (9.6)
and:

T(X) =:—; o((9(X)* - 3¢(X))?) - (9.7)

T(X) is a combination of the absolute, counted &yiand the quadrit(X), counted
twice.
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lla. Letl®®be a doubly isotropic vector and ligtand® be simply isotropic

vectors.
One has:
9 Ll i i=2or3
Tam,,l(l)l(,)l(f‘ 8Cll_|” , {i’:30r2 (9.10)
"
and:
Tapiu I(,)I(,)I h=0 (9.112)
c
Topiu g )= —Elf,l)l o (9.12)

The tangent planes are isotropic at the padifitand!®, and the point™® is biplanar
singular.

IIb. Letl, be the quadruply isotropic vector:

Topu=Clalglily (9.13)
Topu 1 =0. (9.14)

The surface T(X) is composed of an isotropic plama is tangent to the absolute,
counted four times.

llIl. Letl® be a triply isotropic vector, and I&? be a simply isotropic vector. One

has:

Tom )= 7 X AU LA (9.16)
)( @
Taﬁ/‘# |(2)| (2 (2) (llz) | (9.17)
One has:
L, —Ellzlj')lfj (9.18)
3

T(X) = x(1'(X))* [1*(X) I*(X) - a(x)] . (9.19)

The surface T(X) degenerates into a product of tywadrics, one of which is
composed of a plane tangent to the absolute atctimel™, counted twice.

10. Trajectories of multiple isotropic vectorg:irst of all, consider casé.| Starting
with the relations (9.4), and taking (3.15) inte@ant, one has:

1404 == I‘”Daclg)— 190) 2. (10.1)

ﬂﬂﬂ (l) a (1)
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Thanks to (9.6):

T oy = [50"(1) +0ul0 + o5 - (l ot H P 0+ PE . (10.2)

Upon substituting this expression into (10.1), aading into account the fact
thatl Y andl(? are isotropic, one finds that:

120 I‘l):l‘l)[—%Daclg) =108 £, (10.3)

O—au
12

which proves that the trajectories of the vetfbare isotropic geodesics; an analogous

calculation shows that the same is truelfor L. Bel [15] has shown that this
proposition is also valid in the caseslIH-b, and IIl. One thus has:

THEOREM. — The trajectories of multiply isotropieators are isotropic geodesics.

[16], [27].

11. The tensor€,s andHgp [17]. Characterization of the characteristic isotropic
2-planes. Set:
Eap = Roa o u (11.1)

Haﬂ:_ a/]ﬂﬂu uﬂ

in whichu” is a vector of length 1.
It results from (3.9) that one has:

T(u) =% (Eap E? + HagH?) ; (11.2)

T(u) defines thesuper-energyor the observeu’ .

It is a positive-definite function. Indeed, we bavbserved in (8.13) thatyobo IS
always positive, so Ty is positive in the time direction. One sees, enoker, thanks to
(6.2), that the same is again true in the spatiactions, as well. Meanwhile, T(X) is

annulled in the real isotropic directidijs.

Geometrically, B andHzdefine two cones with vertexi), which are the quadratic
cones that are formed from lines that belong togieedratic complexes of lines that are

associated with B, andR , ., , respectively, and pass througi. (
If:

R'=R+iR (11.3)

R =R-iR (11.4)
and:
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K;ﬂ: Eaﬂ'l' iHaﬂ! K;ﬂ: Eaﬂ_ iHaﬂ! (115)
then one has:

T(u) :%K;ﬂ K=~ (11.6)

The cones Kand K may be constructed in the following manner: the polanglbf
the point () intersects the absolute in a cogjand the four generatricgshave points
P, in common with that quadric. The cone of vertewhose four generatrices aug,
and which is apolar to the absolute is one of the c&nesd the other is obtained by

starting with the generatricgs.

On the absolute, the con&iﬂ andK ;degenerate into a pair of planes.

If I; denotes a point of the absolute that is the inteéoseatf g andg; then at the
point the cones & and Hyz degenerate into the isotropic plane that is tangepaital a
second plang; that is conjugate to the first one with respect to iehite.

For example, one has: -
Eap (1) =1215 +1%", . (11.7)

This property permits us to give a characterization ofggweratriceg; andg. , as
well as the associated completely isotropic 2-plaa@sl, in turn, the characteristic
vectorsl®),

Ifl; andl- are two points of the same generagixand if:

P =1 A (11.8)
Q= Ragy |71 (11.9)
; a . a A
Q=R I71K

are the components of the infinitesimal rotations of tlurvature and the mixed
curvature in the direction of the plap# then one has:

THEOREM. — Ifn" is a vector that is situated in the 2-planféthen the vectors:
n=Q%n’, n"“=Q,n’, (11.10)

are also situated in the 2-plangs .

The completely isotropic characteristic 2-planes sweh that the infinitesimal
rotations of the curvature and mixed curvature preserve thesanes.
Indeed: ifn" is contained in the 2-plan#” then one has:
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n’=alf +blZ. (11.11)
Thanks to (11.7), this yields:

N =Q%n’ =R, (alf +bl2)IA«
a ik

a(lu”p;'j +13 p2 )14+ b(17 p +qf I;"I“ ) (11.12)
=-a(lf(£p})+ b'.k(|.fp'4k))-

ij ik

Thus, n""also belongs to the 2-plapg’. An analogous calculation is valid upon

starting withR ;..

THEOREM. — The characteristic vectdf$are real isotropic vectors such that:

Ram,, 1216t =K1Y (11.13)

BLe =k |®
R a6 kI

for any isotropic vecton’ such that'1®) = 0.

Since this statement is a direct consequence opréeeding theorem, the bivector
(1%, ¥ actually determines a generatrix of the absolute.

In conclusion, we have recovered the equivalentT{gy, of all of the properties of
the tensor Jzthat were stated in paragraph 1.

12. Irreducible components of the Riemann terjd8t. Suppose, for the moment,
that the Riemann tensor is not subject to any atgelrondition. In this case, B
admits a decomposition into irreducible components:

Ropiu = Copip + Eapiy + Gopip- (12.1)

Caopu is the conformal curvature tensor of H. Weyl:

Copry = Rapiy +5 (9ar Rau + 90 Roa — 9o Rer — 91 Rayr)
+35ROa 951 — 91 Yo (12.2)

in which R =g” R is the scalar curvature.

Caopu = 0 is the necessary and sufficient conditiortiier Riemannian manifold to be
conformally Euclidian.

Eapiu is a tensor that was introduced by Einstein. If:

Sep=Rap— 2R gag, (12.3)
then one has:
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Eapu = =2 (9ar Spu + 9puSar = Yau Spr — 91 Saur) - (12.4)
The conditions Egi, = 0 and g = 0 are equivalent. Finally:
Gapin = 15 R(0a01 981 — Yo 91 ) - (12.5)
In the case of the gravitational vacuum, one has:

R,w =0 ) qug/]/, =0 , Qrﬁ/],u =0 y Rq,&,u: Caﬁ/l,u- (12-6)

All of the algebraic considerations that were developethé preceding paragraphs
are applicable if one replaces the tensgs R with the tensor i,
Therefore, in any Riemannian manifold of hyperbolic norsighature there exist

four real isotropic characteristic vecttifs which are defined by:

Capp 1§50 = kI (12.7)

A
Copnliliy 0 =K1G
for any vectom® such than’1{’=0 .

One may, with L. Bel, introduce the tensor:

Tapu = Rapro REW + Raguo RE Y.
+ (*R*) apAo (*R*) ﬂp,ua + (*R*) apuo (*R*) ﬂp,ua_ ZAga,B g/l,u ’ (12-8)

a tensor that no longer has complete symmetry, athenparticular case of the
gravitational vacuum, but enjoys the symmetry properties:

Tagiu = Tagur = Tgaru = Tauap - (12.9)
We therefore set:

Vapiu =5 (Tapiy + Taagu + Taupr ) (12.10)

which we call thesuper-energy tensor
If one takes (12.1) into account, along with the debnsi and properties (3.5) and
(3.6), then one findsLp]:

Vagiu =V(Clapiu + V(E)apru + V(Gapu (12.11)

in which each term of the right-hand side is calcul&tgdtarting with formulas (12.8)
and (12.10) and replacing R with C, E, and G, respectively.

By virtue of the properties that were established in papgB, which also apply to
the tensor C, T(G)i, possesses complete symmetry, and one has:

V(C)apru = T(Capiy - (12.12)
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The same is not also true for V(E) and V(G).
One has:

V(E)apru =5 (Sap Siu + Sor Sgu + S Sar)
=3 (9as Wau + 9ar Wy + 9o War + 9au Wan + 9oy Wr + 91 Way ), (12.13)

in which:

One must remark that ¥ = 0 in the case where  Rrepresents the energy-
momentum tensor of an electromagnetic field.
Finally:

V(G) apiy =2 RAQap D + 9an G + Gau 91 - (12.15)

13. Weyl tensor and the Petrov classificatiorkrom the foregoing, the tensor
T(C)epi that is associated with the Weyl tensor plays a inlethe conformal
transformations of the Riemannian metric. This results particular, from the
properties that were described in paragraphs 2 through 11.

In particular, we emphasize the following propositibmesults from the remarkable
fact that was expressed by (11.2) that:

T(C)apiy =0 (13.1)
is a condition for a space to be conformally Euclidi&m this paragraph, we propose to
carry out an analysis for Weyl tensor that is simiathe one that was carried out in
paragraph 2 for an electromagnetic field. We shall ibekss limit ourselves to the
singular case in the Petrov classification.

Ib. In this case, if one refers to (4.7) then one matewr
CapZ7 2P ==3(a-iB(Z) + (@-iB((Z) + (D) + (Z)?) . (13.2)

If 1 and ¥ are doubly isotropic vectors that are associated wigh,Cand:

|0 @ @ O
alp la p

baﬂ = (133)
|12
and:
b;ﬂ = baﬁ+ | *baﬁ (134)
C;ﬂﬂﬂ: Cam/,—iCaW (13.5)

then one will have:
Copu= —3(a—1P,b;, + (@—ib)(Qapiy —iNapiu ) (13.6)
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(9apru = 9ap 92 — Yo 91 ) -

From this, one deduces that:

Capru = 30 (Dap bay = *bap*bau) + @ Yapiu
- 3,8 (baﬂ*b/l,u + *baﬂ b/l,u) - ,8/757,8/1/1 . (13.7)

One then has the following characteristic propertigkigicase:
Capru I(I)I{,‘ 2a 1910 (13.8)
C ﬂ|/1 —2ﬁ|(l)|(l

H/J'ﬂ/l (ON0)

The cones Eg and Hys that are associated with the poitfs are composed of the
tangent planes to the absolute at these points, counted t

IIb. One has, by virtue of (4.15), when A = 0O:
CopZ2° 2P =- a(Z' -i Z%)°. (13.9)

Supposé“ is a quadruply isotropic vector, ancgndv are two vectors such that:

U la=v7ly=uv, =0, U us=Vv7v,, (13.10)
and that:
Agp = la Uﬁ—|ﬁ Uy (13.11)
Agp = Ia Vﬁ—|ﬁVa (13.12)
and:
8,5 = Aap—1 *agp—la Wp—IlpWo (13.13)
W wW,=0. (13.14)

Thea,,are therefore the coordinates of one generatrix of dheolute or a
completely isotropic 2-plane. (13.9) thus permits us ftewr

Copiu=agpauy — *agp* iy, (13.15)
and one has:

Capiy |/1:Camﬂ|,u =0. (13.16)

One says that,, is a 2-form that is singular fof and Gy, is a double 2-form that is
singular forl? [20].

lll. One has, thanks to (4.17):

CopZ2° 2P = 20742° -7 . (13.17)
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Copipy may then be put into the form:

Copru = agpbay + &, bap — *ags* by, — *ay,* bop (13.17)
and ifl}, is a triply isotropic vector arg is a simply isotropic vector then:
| @ _| @) @
ags= 1P us— 19 uq, baﬁ:%. (13.18)
One has: ’
Capul§) &) = *CW|{;)| 4 =0 (13.19)
Capiu )= l12 845 1, E:Wﬂlg) =112 *ags I!‘}). (13.20)

lla. The expression for £, is easily obtained by adding the corresponding
expressions that were given i land 11l. Indeed, let{” be a doubly isotropic vector,

and let® and ¥ be simply isotropic vectors. If:

|| @ @
a ' B a

Agp= |,E,l) Ug— |[(,l) Ug , Dap= | (13.21)
23
then one has:
Copiu = 30 (Cop Ciy = *Cap*Cay) + O Qapry — 3B (Cap™ Cay — *Cap Cay) (13.22)
=3B (Cap*Caut *CopCiy) — B Napru + Aapdiy— *8gp*any.
One has, moreover:
Copiu I{l’)l o =2a | o C[Wﬂl{l”)l =20 | o, (13.23)

We finally remark that if* is a simply isotropic characteristic vector of (11.®rth

*

Comu 1P 1¥ =1apr+11pa; Copa ¥ =lath+1100, (13.28)
in whichl“p;=19g,=0.

14. Weyl tensor and the tens®(C)z:,. Duality rotations. As in the case of the
energy-momentum tensor of the electromagnetic fidld, diven of the tensor 4,
entails that of a well-defined tensor T¢g), . Conversely, to a given tensor T{g),,
there corresponds a family of tensorggf, that are determined up to a “duality
rotation.” If:

" Trans. note: (sic).
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Copiy= Capru CcOSE + C ) SiNG (14.1)

then all of the tensof3

o, NAVe the same tensor T(C), and:

T(C’ )aﬂ/]ﬂ = T(C)a&,u . (14.2)

Indeed, it suffices to recall that:

T(C)apiu= 2(CamoCHhu” +C 11 C 577D, (14.3)

If one refers to the analysis that was carried opliragraph 4 then one sees that the
effect of a duality rotation of the triangle A22As3 is to turn it around its center of mass
in the complex plane without changing geometric elemimatisenter into the expression
for the tensor T(Gy [cf. 6.2 through 6.7].

15. Conservation conditions. Returning, for the moment, to the case of the
electromagnetic field, the Maxwell equations, in theesize of charges, may be written:

O, FF =0 (15.1)
O, *FF=0. (15.2)

In the presence of charged matter, the first equatimarsely, (15.1), are replaced
with:
Da Fﬁa = Jﬂ, (15.3)
in which % is the electric current vector. The second equatid@3s2) remain
unchanged.

In the case of vacuum, i.e., equations (15.1) and (15.2)erkegy-momentum
tensor satisfies the conservation relations:

0.TF =0, (15.4)
and in the presence of charged matter, one has:

There exists a completely similar situation in theecas Riemannian manifolds.
The Riemann tensor satisfies the Bianchi identities¢chvbine put into the form:

Da (*R*) a,g,]lu = 0 s (156)

for example. In the case of the gravitational vacuum:
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RA/I =0 and Bﬁ/\/l =- (*R*) apAu - (15.7)

Therefore, one also has:
OsR%i,=0, (15.8)

By contrast, in general, the relations (15.8) become:
Do R =0uRp — iRy = Jiy - (15.9)
In the theory of Riemannian manifoldg,,J plays the role of a super-current.
Let us then see what happens for the super-energy tensothe Icase of the
gravitational vacuum ¥z, = T(C)agiy = Tapi and:
0oV =0a T% (15.10)
We shall now establish the equivalent of (15.5) in the géase. Set:
G(*R*) aﬁ/]yv = |:||/ (*R*) aﬁ/]y + D/] (*R*) aﬁyy + D/I (*R*) aﬁy/] . (1511)

One easily verifies that one has:
G(*R®) apyuv =% Napoo My 377 . (15.12)

If we start with the expression (12.8) for the tensgyi dthen it results from (15.6) that:

Oa T = JpoeRAL7 + id. + R 04 Rppuo + id.
+ (*R*) %7 U (*R¥) gouo + id. — 205A g, (15.13)

in which “id.” denotes terms that are derived from thec@déeng term by a permutation
of Aandyu .
Thanks to the Bianchi identities, which may be writtdR)Yaz1,» = 0, one has:

R™)? Oa Raguo =3R™3? (Oa Raouo — Up Rpapo )
=1R%)° OsRapo (15.14)
and thanks to (15.11):

(*R*) ap/‘a Da (*R*) Bouc
:% (*R*) ap/‘a Dﬁ (*R*) apuc +% (*R*) ap/]UG(*R*) Loap - (1515)

Upon collecting the various terms of (15.13), and taking atcount the identity:

Raﬁ/w Raﬁ/w + (*R¥) aﬁ/w (*R*) aﬁ/w =4 Agz , (15.16)
one obtains:
Oa Tpu = JpoRE, + id. +3 (R*) 4% G(*R*) ougp + id. (15.17)
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Thanks to the definition (3.5), as well as (15.12):
(*R*) %1% G(*R*) oapp = — I°° (Rgtab + 2010 Ramwy) . (15.18)
One thus obtains:
Ua Taﬁ/l,u =2 'JMUR[fyU +id. - Jyab Rpab 9ay - (15.19)

M# =R + RES (15.20)

If one sets:

one then finds that:

Oa Vo =% 37 (Rgeb 9 + Rytab Gus + Rigab 9
+ 2Mgyib Gar + 2Maym Gay + 2Myyan Gag) (15.21)

namely, a relation of the form:
Dav"my: J’abvyabm,,, (15.22)
which generalizes (15.521].

16. Case in which there exists an electromagnetic fi&ltk now address the case in
which there exists a pure electromagnetic field (wittayt motion of charged matter).

First of all, consider the case in which the field iagsiar, and lel® be the
associated isotropic direction, and let:

Taﬂ:Tlalﬁ, (161)

be the expression for the energy-momentum tensoleofremagnetic field. One thus
has:
Rog= Tog. (16.2)

It is natural to assume that the tensegGpossesses the vectidras a quadruply
isotropic vector, wherever it is identically null. Omeis has:

Raﬂ/l,u |,u: (R*)aﬁ/l,u |,u =0. (163)

A. Lichnerowicz P2] has called a space that satisfies conditions (163nte of
pure total radiation

It is then possible to put the tensaysR, into the form:

Ropi =8 a)al)) i,j=1,2 (16.4)

in which:
=4, a@=*al, aglf=*a,l’=0. (16.5)

One has:



-30-

T=- (a1 +a). (16.5)
If 7= 0 then one is concerned with a state of pure grauitatiadiation. One then has:

Vaﬁ/ly:4/1|a|,8|/l |/1, V(C)am/, :2(U— deta;,-) Ialﬂl/l |/1, (166)
V(E)opry =27 lalglyly,

andy 222(81] ).

One has:
Ug [V(E)alg,]lu— V(C)am/,] 0. (16.7)
Now:
V(E) g — V(CY gy = =T 171515 1,. (16.8)

If one assumes, moreover, that the electromagfietd is of integrable typé, =
0.f, then it results from (16.8) that:

Oa[(u-T9171=0, (16.9)
and under the same conditions, by virtue of thesepration of T,5 one has:

O, (719)=0. (16.10)
In the conformally Euclidian case:
y="T? and det; = 0. (16.11)

Some states of pure total radiation of integrayye tare:
1) The Bondi solutionZ3]:
ds =€ (df — d¥) — (& dy? + 7 dZ) , (16.12)
in which ¢, £> 0,1 > 0 are three functions af€x) .
2) The solutions of J. Helg4:
9ap= Oap+ laUs+ Ugla, (16.13)

in which:
Uy =als+ 0,b, (16.14)

" Translators note: [sic].
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190 ,a

and ifg =
a 1+199,b

thenq is a function of(,x").

3) There also exist conformally Euclidian solutions:
ds’ = u(df® — d¥ - dy? — d7), (16.15)

in which u is a function of { — x), for example. In this latter case, the space nay
represent a pure gravitational state without being Eaclidi

We now address the case of a non-singular field. &hddse, there exists a pair of
isotropic vectors, namell’ andl¥. One has the field equations:

[ Q@ 4@ O
Ras = {2”"'—”"— gaﬂj . (16.16)

12

It is then natural to assume that the tensggCpossesses two characteristic
isotropic vectors, so it is of type,lor of type lll, or identically null. Since typdl

makes the two field$!” and ?’ play different roles, we assume thaisf; is of type & .

Copiy is then given by (13.3), d&gi, is known, thanks to (16.16), and4g, = 0 . One
may then put Bs;, into the form:

Ropie =a, b))+ AQap Qi + B Napiy (16.17)

with:

| @ _| ) @
g == ——, b =*b%2), (16.18)
12
| =3 (11 +a2), A=l(an-a2), B=lan. (16.19)
One has:
Vapiu = C(RapRiu + Roa Rgu + Ry R )

] = D(9ap9u *+ 904 9pu + Qe I ) (16.20)

and:

C :??Z[Zz(ai)zj , D %{Zz(qj )Zj -2 deta).  (16.21)

One must remark that there is good reason to tdkeaccount the Bianchi identities
and the Maxwell-Rainich equations of the electronedg field in order to further
couple the functions; to the electromagnetic field.

An example of such a space is provided by the Nmyassolution; L. Witten has
given another exampl@6].

The Riemann tensor that was given in (16.17), alemdp (16.18), is entirely
characterized by the conditions:
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R=0, RW/I'(%WF%'S)'E),
(*R*) B |£|(;|1 — ail 65322 (|)| (i) (16.22)
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