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 The attempt to reduce magnetic and electric phenomena to phenomena of motion without the 

assumption of an electric fluid that exerts any action at a distance has always pointed to the fact 

(more or less directly in the various cases) that it is the “cyclic motions” (i.e., speaking in full 

generality, systems of motions in which recurring motions are present) that play the most-

important role in those phenomena. 

 In a previous article, I attempted to show that one could derive all of the fundamental equations 

of electrodynamics for media at rest, as well as in motion, from the assumption that magnetic 

phenomena were based in such forms of motion (1). In what follows, I would like to substantiate 

the assumption that was made there that the phenomenon of galvanic current would be based upon 

motions of the (mono-) cyclic type in yet another way and work through some of the consequences 

that would then be implied by that to a greater extent than was found in loc. cit. 

 

 

 1. The electrodynamical law of induction is characteristic of systems of cyclic motions. – 

It can be shown that a law that corresponds to the law of induction is true for all systems of motions 

with one (monocycle) or more (polycycles) recurring motions. (Some examples of polycyclic 

motions are given by several coupled top motions, different bodies with different temperatures in 

contact with each other, the field of several current loops). The aforementioned law can be 

expressed in its most-general form as: 

 

 When increasing the rate of change qr of a general parameter pr (qr = dpr / dt) in a problem of 

motion makes a force Pi increase that strives to increase the parameter pr, a corresponding 

increase in qi will decrease the force Pr that is applied to pr, i.e.: 
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 (1) H. Ebert, Wied. Ann. 51 (1894), pp. 268.  
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 The relationship between the electrodynamical effects and induction phenomena has that form. 

That is because if we understand qr to mean the rate of change of a parameter pr that determines 

the position or form of any current loop in a magnetic field, so Pr is a “ponderomotive” force, qi is 

a quantity that corresponds to the current motion, and therefore Pi will be an “electromotive” force 

then the theorem says: If a certain change in the current motion (qi) seeks to produce a certain 

change in the position or force of the current-carrying body (Pr) then an electromotive force – Pi 

will be induced in the conductor that acts to oppose the aforementioned current motion (qi) when 

the change that is sought is actually effected (by an external force). (Lenz’s rule) 

 That opposition in the effects finds its most intuitive expression for a current in an 

electromagnetic field in the opposition of the so-called left and right-hand rules. If one points one’s 

index finger in the direction of the magnetic field lines (which always start from the South pole of 

the field magnet and converge at the North pole), the middle finger in the direction of the electric 

current, and the thumb in the direction of motion of the conductor in the field then the relationship 

between the three fingers of the left hand will give the direction of the driving motion that a current-

carrying conductor will experience in the field, while the right hand will give the direction of the 

current that is induced by a motion that is performed on the conductor. 

 H. von Helmholtz has given the general condition for that law to be true for a system of 

motions, and as further examples, he cited a similar opposition in the forces of mechanics in the 

example of the top in a Cardan suspension, the relationship between pressure and temperature in 

thermodynamics (when increasing the temperature increases the pressure in a system of bodies 

and increasing compression does the same thing to the temperature), as well as the Peltier effect 

and the thermal relationships in strings (1). We would like to show that this theorem is true for all 

systems of recurring motion, so the validity condition that Helmholtz posed in loc. cit. is always 

fulfilled for it. One finds that it is in the nature of “cyclic systems” that this theorem is true. 

 The fact that the electromagnetic, electrodynamical, and induction phenomena are governed 

by a law that is, in turn, characteristic of cyclic systems of motion seems to me to be a compelling 

argument for the opinion that those phenomena are also actually based in recurring motions. It is 

known that Maxwell sought to experimentally verify the properties of the parameters that 

determine the current motion that are true for such systems. (Treatise II, § 574 and 575). However, 

one will have every right to emphasize that his experimental equipment did not possess the degree 

of precision that would allow him to resolve that question with certainty (2). 

 By contrast, there are many more well-established and long-proven precise applications of the 

law of induction with regard to the cited theorem in much-better-defined ways that gave 

information about the fundamental motions, just like the power of distance in Coulomb’s law was 

deduced with no objection by means of the theorem that “free electricity” at rest would only be 

found on the outer surface of the conductor, which is a law that is characteristic of the second 

negative power. In regard to that more-indirect meaning, it seems to me that the following proof 

might be important: 

 

 Proof of the theorem above for polycyclic systems of motion: If the state of an arbitrary system 

at time t is determined by the parameter p and the velocity q = dp / dt then P will be the force 

 
 (1) H. von Helmholtz, Crelle’s Journal 100 (1886), pp. 163.  

 (2) G. Wiedemann, Electricitätslehre, 3rd ed., Bd. 4, 1885, pp. 1164. § 1586. 
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(positive when it strives to increase its coordinate), and if H is the kinetic potential (which is equal 

to the potential  minus the kinetic energy L) then: 

 

(1)      i

r

P

q




 = 

( )r

i

P

q

 −


 

when: 

(2)  
2

i r

d H

dt q q

 
 
  

 

 

vanishes, as one will see when one defines equation (1) by using the Lagrange equations of motion 

in the second form (1). We would like to call the expression (2) whose value dictates whether 

equation (1) is or is not true the “characteristic” and denote 2 / i rH q q    more briefly by Air . 

Since the momenta si = L / qi = − H / qi , we will have Air = − si / qr . The Air are then 

negatives of the coefficients in the expression for the kinetic energy L, which is generally a 

homogeneous function of degree two in the q (2). 

 
 (1) Cf., H. von Helmholtz, Crelle’s Journal 100 (1886), pp. 163. – For the derivation, instead of (7) on pp. 162, 

line 3 from below, one should probably consult the formula on the previous page on line 8 from below that was 

provided with the number (9) [cf., also pp. 165, where the same equation was referred to in the derivation of equations 

(9.h)]. Moreover, the two sums over a in that formula should probably be deleted. 

 (2) Remark: From a known theorem from the theory of invariants, in all problems of motion, there are three, and 

indeed only three invariants. One of them is energy, the second is the potential energy (Ergal) of the forces. The third 

one is the functional determinant of the momenta with respect to the velocities: 
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which unfortunately still lacks a special name, despite its great significance in all problems of motion. (Perhaps the 

term “the momental” would not be inapt.) The fact that one actually has an invariant is easy to show in the simple case 

of coordinate transformations. That is because if one transforms the general coordinates p into the coordinates a by 

means of pi = fi (a1, a2, a3, …), such that: 

 

   qi = fi / a1  b1 + fi / a2  b2 + …, in which bk = dak / dt 

 

are the new velocities, then one will have: 
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where D is the modulus of the transformation. However, from the multiplication theorem of functional determinants: 
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so  is an invariant. 

 The determinant of our Air, multiplied by (− 1)z [z = number of parameters], will therefore change under linear 

transformations of the velocities by only a factor that is equal to the modulus of the transformation. 
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 Therefore, in general, one will have: 
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i.e., it is a function of only the parameters. 

 However, in special cases, L can also include first powers of the q, or even powers higher than 

two, inter alia, when the presence of the so-called “hidden motions” allows one to eliminate certain 

parameters (1). H. von Helmholtz has shown that a function H   will always exist then from which 

the forces can be derived in completely the same way using the principle of least action as H, but 

in this case, the A can still include the q. We then have two cases to distinguish: The cases in which 

no parameters are eliminated (“complete systems”) and the cases in which certain parameters are 

eliminated (“incomplete systems”). 

 What values would the Air have in both cases for polycyclic systems of motions? 

 According to Helmholtz, a polycyclic system of motions is characterized by the fact that the 

parameters that determine the motion can be divided into two classes: viz., the rapidly-varying 

ones and the slowly-varying ones. The rapidly-varying ones represent the recurring motions. The 

ratios of the rate of change of the parameter to those of the other ones will decide whether they are 

to be regarded as slowly-varying or likewise fast-varying. Thus, along with the recurring motion 

of Earth’s rotation around its axis, which is regarded as the cyclic variable, the parameters that 

determine the nutation and precession of the Earth’s axis are to be regarded as slowly-varying. In 

the same way, compared to the repetitive motions of gas molecules, the rotation of the Earth, just 

like the motion of a compressed piston, can be regarded slowly-varying. For a galvanic current, 

the “slowly-varying parameters” will determine, e.g., the form and position of the conduction path, 

while the cyclic variables will characterize the rapid, perhaps vorticial, recurring motions, which 

we suggest by the field of force lines for the current. 

 Further properties of those variables and their derivatives can be inferred from that definition 

immediately. 

 

 ) The slowly-varying parameters: 

 
(1)pa , (2)pa , …, ( )mpa , …, ( )npa , … 

 

Since they characterize defining data of the system that vary slowly, their derivatives with respect 

to time, namely, the qa, will be small, and the qa  = dqa / dt will be especially small. 

 

 ) The rapidly-varying cyclic parameters: 

 
(1)pb , (2)pb , …, ( )mpb , …, ( )npb , … 

 

 
 (1) H. von Helmholtz, loc. cit., pp. 147.  
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 Since they represent the recurring motions, their main property is that they enter only in the 

form of their time derivatives qb, but they themselves do not play a role in the quantities that 

characterize the motion (e.g., the expressions for the energies). If each particle that leaves its place 

is immediately followed by another one that is equal to it and moves the same way, e.g., as for a 

homogeneous body of rotation that rotates around its axis with a uniform velocity or a fluid that 

moves uniformly in an annular channel, then the individual values of the parameters pb that 

determine the position of a particular particle must be meaningless for the collective motion. 

Hence, for (true) cyclic motions, the pb will not appear at all, but only their derivatives qb with 

respect to time. If the state of the system drifts very little from a certain mean state of motion in 

the course of time then all of the qb  = dqb / dt will be small, in addition (therefore, they are static, 

mono or polycyclic systems, resp.) 

 For polycyclic systems, the phenomena are determined by essentially the pa and the qb, while 

the pb do not appear (1). 

 If one considers that fact, as well as the orders of magnitude of the individual variables for the 

case of polycycles, then that will give the following: 

 

 A. Complete systems. – H includes the q only to degree two, while the Air are functions of only 

the pa. 

 

 If we then construct the “characteristic” (2) on pp. 3 then we will get: 
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here; however, all of the qa are small. Since the A / p are finite quantities, we can set the right-

hand side equal to zero when we neglect first-order infinitesimals, so the validity of the theorem 

(1) is proved for this case. 

 

 B. Incomplete systems. – H includes the q powers that are even higher than two, so the Air will 

include some of the q (qa or qb, or both classes), in addition to the pa . In this case, the characteristic 

will be: 
2

i r

d H

dt q q

 
 
  

 = 
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

m m nir ir ir

m m n
m m n

A A A
q q q

p q q

  
  +  + 

  
  a a b

a a b

. 

 

 According to what was above, each term in this is multiplied by a quantity that is considered 

to be infinitely-small of first order for polycyclic systems. The characteristic will not be 

appreciably different from zero then, and theorem (1) will be proved for this case. 

 
 (1) Cf., on this also: L. Boltzmann, Vorlesungen über Maxwell’s Theorie, 1, Leipzig, 1891, pp. 16.  
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 We can then write, in full generality, for all polycyclic systems: 

 

(6)  
( )

( )

m

n

P

q





a

a

 = 
( )

( )

( )n

m

P

q

 −



a

a

, 
( )

( )

m

n

P

q





b

b

 = 
( )

( )

( )n

m

P

q

 −



b

b

, 
P

q





a

b

 = 
( )P

q

 −



b

a

, 

 

i.e., the relation (1) is true for the slowly-varying parameters, as well as for the forces that are 

applied to the cyclically-varying parameters, and ultimately for the relationships between the 

forces of the two kinds. 

 If only a cyclic motion is present (top, simple current, thermal motion in a body with a uniform 

temperature) then the first and third relations will be true. The law of induction is a special case of 

the third of equations (6). 

 

 

 2. Relationships between magnetic and electric forces and the elementary motions and 

deformations of a continuous medium. – In the previous article, it was shown that when we 

assume that magnetic phenomena are based in the cyclic nature of fundamental processes, the 

expressions for the electric forces are determined uniquely by the facts of experiments, which find 

their most concise expression in Hertz’s system of equations (pp. 275). We will then require only 

one hypothesis. The electric forces are then represented as something that is caused by spatial 

differences in the rotations that take place at the individual points of space. In that form, the 

expressions for those forces can initially give a somewhat strange impression. One often finds that 

it is advantageous to imagine the processes in the electromagnetic field by means of the picture of 

a continuous medium that is deformed in a certain way and to which one ascribes elastic properties 

of one kind or another. It can be shown that the attempt that I made to interpret electric forces can 

also be easily made consistent with that picture since it only requires the natural continuation of 

the conceptual constructions that are introduced into the theory of continuous media. That is 

because in the same way that we arrived rotations from simple deformations, we will arrive at the 

ones that we have set equal to electric forces from the former. In the language of the 

aforementioned theory, they are only deformations of a higher order then, and there is no obstacle 

to giving them an intuitive elastic interpretation. 

 Namely, if: 

 

(1.a)      m, n, o 

 

are the components of a linear, infinitely-small displacement, so: 

 

(1.b)    u = 
dm

dt
, v = 

dn

dt
, w = 

do

dt
 

 

are the components of the rate of deformation, then we will get the components of the rotations: 
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and the rates of rotation: 
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from them in a known way by an operation that we had called “taking the curl,” to borrow from 

O. Heaviside (loc. cit., pp. 276). If we apply the curl operation to the latter once more then we 

will get: 
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y z
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(3.b)    x = 2 u v w
u

x x y z
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 , etc., 

 

in which 2 is the operator − 
2 2 2 2 2 2( / / / )x y z  +   +   . The x, y, z are then deformations of a 

higher order than the simple rotations at a point. 

 In the cited article, it was shown that one carry all of the facts of observation in one’s 

calculations by making the magnetic forces proportional to the  ,  ,   , so to the curl of the 

simple rates of displacement (1.b), and making the electric forces proportional to the x, y, z, so to 

the curl of the curl of the displacements themselves (1.a) (1). That might be the simplest expression 

for the processes that are at the basis for magnetic and electric phenomena in language of the theory 

of continuous medium. 

 If we use rectangular coordinates as our basis, as is done here, then the functional determinant: 

 

D = 
x y z

a b c

 
 
 

 

 

(loc. cit., pp. 286) will have the value 1. For those special values, the general equations (19) and 

(20), pp. 290, of the electromagnetic field will go to the Hertzian equations that are valid for 

rectangular coordinates. They are then characterized by the value D = 1. However, in the theory of 

continuous media, the equation D = constant implies incompressibility (2). If one imagines that the 

electric phenomena are produced by processes in a continuous medium then it must be considered 

 

 (1) In formula (4), pp. 276, only the factor l stood in front of the square bracket, and not 
2

l . Similarly, 
2

l  must be 

replaced by l in the corresponding expressions, pp. 279, and the third formula from the top on pp. 278 is missing the 

factor . 
 (2) H. Hankel, Zur allgemeinen Theorie der Bewegungen der Flüssigkeiten, Kirchhoff, Vorlesungen, 1, 1883, pp. 

163.  
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to be “incompressible,” or when we appeal to Maxwell’s terminology, its “divergence” m / x + 

n / y + o / z must vanish, so (1): 

 

(4)    X = l x = l  2 m ,  Y = l y = l  2 n ,  Z = l x = l  2 o . 

 

 One sees that even in this case, relations will exist that correspond to Poisson’s theorem in the 

theories of action-at-a-distance: The displacements are the vector potentials of the electric forces 

(up to constant factors). However, the main difference lies in the fact that hypothetical fluid 

elements that characterize phenomena of motion will enter in place of the masses. 

 

 

 3. Relationships between the cyclic theory of electromagnetic phenomena and the theory 

of vortices. – In neither the previous article nor in the meantime has it been necessary for us to 

introduce a more definite representation of the nature of the recurring motions that we have based 

electromagnetic phenomena upon. In fact, all of the equations can be obtained from merely the 

most general equations of cyclic motion, and with no special assumptions besides. However, have 

already occasionally referred to the close connection with the theory of vortices, namely, in our 

reference to Poynting’s theory of the migration of electromagnetic energy. A fluid that is filled 

with vortex strings is an example of a polycyclic system of motions, and when all vortex velocities 

can be expressed rationally in terms of one variable q, it will be a monocyclic system of motions. 

The considerations will take on great simplicity when we appeal to fluid vortices as an explanation. 

 First of all, the example of hydrodynamics shows that cyclic recurring motions can exist next 

to each other in a medium without affecting each other reciprocally, and without it becoming 

necessary for us to call upon mediating mechanisms between them, as Maxwell believed that he 

would have to do in his early work. Here, we shall distinguish vortex surfaces, which are composed 

of vortex lines that lie next to each other continuously, from vortex strings whose space is filled 

completely with vortex lines like the way that the space of a magnetic field is filled up with 

magnetic lines of force. A vortex cylinder, i.e., a cylindrical space that is filled with vortices and 

enveloped by them, corresponds to the tube of forces here. The moment of the vortex cylinder 

(mean vorticity q times the cross-section Q) corresponds to the force flux M Q since we have 

made the force M proportional to the velocity q (cf., loc. cit., pp. 273). If no conversion of field 

energy into heat takes place then the moment will be constant along the entire vortex cylinder in 

that case, and here it is the force flux that will be equal at each location along the force tube 

(theorem of the conservation of force flux). 

 It might seem conspicuous that we have made the magnetic force proportional to the angular 

velocity itself and not to its square, as when one makes the centrifugal force of a free rotating body 

proportional to the latter. However, Maxwell had already shown that we must do that in continuous 

 
 (1) If one writes the expressions for the electric polarization  X, etc., in that form, then the similarity between them 

and the expressions f = 1/8 2 m, etc., that R. T. Glazebrook gave in a paper in the molecular theory of 

electromagnetic phenomena [Phil. Mag. (5) 11 (1881), pp. 397] will emerge [Cf., also J. H. Poynting, Phil. Trans. 

175, Pt. II (1884), pp. 361]. The aforementioned work was unknown to me when I was writing up my own. 
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media (1). The tensions and compressions that appear along the lines of force are then proportional 

to the squares of the vorticities. 

 If one imagines that the recurring cyclic motions that are at the basis of the current motion are 

vortex motions along the current conductor enclosing magnetic lines of force then one can further 

derive Poynting’s formula for the migration of the field energy towards the conductor, where it is 

transformed into heat, from the theory of vortices. In Maxwell’s first theory of 1861, in which the 

direct relationship between the lateral pressure of the magnetic force tube and its energy content 

was shown, the expansion and contraction of the force tube around the conductor was implied 

immediately (cf., loc. cit., pps. 270 and 297): If the energy of the force tubes that arrive at the 

conducting material were extracted then to some extent that might give it the ability to resist the 

pressure of the surrounding tubes. Maxwell showed further that the reductions in the vortex 

intensity on the one hand and its increases on the other could be reduced to the driving motions 

that a current conductor experiences that its (concentric) system of force lines will produce in a 

field of magnetic lines of force. One can conclude immediately from the theorem that was proved 

§ 1 that a system of concentric (oppositely-directed) lines of force (vortices, resp.) around the 

conductor will be created (induced) when it is led through field of magnetic lines of force by an 

external force in the sense of the previously-sought motion. 

 However, from the more-recent theory of vortex motion, one will also get a migration of energy 

in the sense of Poynting’s theory. I appealed to Helmholtz’s formulas on pp. 297, but not with 

complete justification because they were derived essentially under the assumptions that dissipation 

of energy would not take place anywhere in the entire field of vortices. 

 By contrast, R. Reiff has investigated vortex motion in viscous fluids and shows that one would 

arrive at a formula for the migration of energy in that way that would be completely analogous to 

Poynting’s fundamental formula (2). 

 

 

 4. The stationary electric current and its relationship with temperature. – If one uses the 

intuitions that were presented here as a foundation then the process of “electrical current” can be 

viewed in an essentially different light from the previous theories. Namely, the concepts of 

“conductivity” and that of “resistance” will take on a different meaning, and even the opposite one 

under some circumstances. It was already shown before by Poynting that this entirely-different 

way of looking at things is a necessary consequence of Maxwell’s theory. 

 In the older theories, electrical current was a phenomenon that essentially played out inside of 

the conductor. One imagined that a fluid actually flowed inside of it and that the terms resistance 

and conductivity would have meanings that would be analogous to their meanings in 

hydrodynamics. 

 The newer intuitions place the process more and more in the space external to the conductor. 

What migrates and flows is the energy that starts from electromotively-active surfaces and 

approaches the conductor between the level surfaces. Those level surfaces are perpendicular to the 

conductor, so when it is in its stationary state, the electric force tubes will run along the conductors 

and will move transversely to the conductor along its entire length. In that way, the energy that is 

 
 (1) J. C. Maxwell, Phil. Mag. (4) 21 (1861), pp. 168.  

 (2) R. Reiff, Mittheilungen des math.naturwissenschaftl. Vereins in Württemberg, Sep.-Abz. (1893), pp. 13. 
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contained in it will be transformed into heat. The number of force tubes that migrate per second 

will determine the current strength. What gives a body the property of being a conductor is, in 

essence, its ability to transform the energy of the electromagnetic field in such a way that the 

pressure from new energy quanta will be created such that a continuing “introduction of energy” 

will come about. In this way of looking at things, the “insulating” gutta percha sheath of a cable 

will be the “conductor.” Its copper core facilitates only the flow of energy by continually 

transforming it. It holds the latter together and indeed it first introduces the migration of energy by 

the aforementioned transformation, i.e., the formation of current (in the older sense) (1). 

 However, the better a wire conducts (in the older sense), the less energy will flow per unit 

length in one second. We imagine that a current of the same intensity flows in, e.g., an iron wire 

and a copper wire of exactly the same dimensions, but eight times better conductivity. One can 

also express the fact that the copper wire is eight times better as a conductor as follows: Along the 

same length (e.g., a unit length), the potential drop in it will be eight times less than in the iron 

wire. However, the energy that is converted into heat per unit length per second will be determined 

by the product of that drop with the current strength. If eight times less energy were converted in 

the copper wire then we would also need to introduce only one-eighth as much of it as a 

replacement. If we then relate the concept of conductivity to the energy, which is the only thing 

that actually flows according to our conception of things, then we must say that copper is eight 

times worse than iron as a conductor (2). The migration of energy in the wire will then be more 

allowed as the “conductivity” becomes greater. Since one does not intend to consider that 

migration in the transfer of electrical energy, but one also cannot get around it if an advance of 

field energy is to be possible at all, one would do best to choose “good conductors” in the older 

sense, and even preserve that terminology with regard to the practical purposes, although one must 

actually call then “bad conductors.” 

 In my previous paper, I sought (pp. 296, et seq.) to connect the capacity of a metal to conduct 

energy with the mutual motions of its molecules. It was the likely that this capacity would go away 

to the extent that we restrict the molecular motions (by cooling) and in that way impede the fact 

the energy that is absorbed by the parts that lie on the upper surface will be passed along to the 

lower-lying ones and converted into heat. I referred to the fact that the experiment of Cailletet and 

Bouty, Wroblewski and Dewar seems to me to have proved that this is the case in loc. cit., pp. 

298. They showed that the temperature coefficient  in the formula for the resistance rt = r0 (1 + 

 t) will increase appreciably for sharp drops in temperature, such that the resistance will drop 

faster than the temperature and approach zero. Therefore, with decreasing temperature, the 

conductivity (in the sense of the older theories) will continually increase without one being able to 

say that one can actually produce a conductor of infinite conductivity by cooling it strongly enough 

(3). Therefore, with decreasing temperature, from the foregoing, as far as the streaming of energy 

 
 (1) J. H. Poynting, Phil. Trans. 175, Pt. II (1884), pp. 354. 

 (2) In regard to similar apparent paradoxes that nonetheless only come about because “one declines to say what is 

being conducted,” cf., H. Hertz, Wied. Ann. 37 (1889), pp. 408; Untersuchungen, 1893, pp. 183.  

 (3) Cf., G. Wiedemann, Electricität, 4th ed., 1, 1893, pp. 472.  
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is concerned, the “conductivity” (in the new sense) will be less (1), so that would, in fact, seem to 

be most closely connected with the molecular motions in the conductor. 

 The fact that the thermal motion in the conductor is closely related to its electrical conductivity 

seems to me to further point to the fact that after removing the secondary perturbing influences, 

the resistance rt of the metal will be almost proportional to the absolute temperature (Clausius) 

(2). However, the latter is proportional to the kinetic energy of molecular motion for not only gases, 

but also for all bodies (3), so rt is also proportional to it, as well. 

 Furthermore, the parallelism between electric and thermal conductivity might be mentioned. 

The study of electric valence charges in atoms and molecules might be best suited to justifying the 

relationships that were presented here. 

 

 Erlangen, February 1894. 

 

___________ 

 

 

 

 
 (1) On pp. 298 of my article, that experimental fact was expressed in a way that could easily lead to 

misunderstandings, as Ostwald was kind enough to bring to my attention. In the cited place, it was not clearly specified 

what the word “conducting” was referring to. For the sake of clarity, the words “electric field energy” should be 

repeated once more after “it no longer conducts.” 

 (2)  Cf., G. Wiedemann, Electricität, 4th ed., 1, 1893, pp. 474. Cf., also F. Auerbach, Wied. Ann. 8 (1879), pp. 

479. 

 (3) H. Poincaré, Thermodynamique, 1892, pp. 408.  


