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1. – Introduction. 

 

 The theoretical electrodynamics of superfluous components (“rudimentary concepts”) was 

made more orderly by the work of H. Hertz and E. Cohn, and the entire system of experimental 

facts in the realm of magnetic, electromagnetic, and electric phenomena was summarized in a 

system of six first-order partial differential equations for media at rest and just as many equations 

for the media in motion (1). 

 One must then ask whether the development of the theory of the aforementioned realm of 

phenomena must be considered to be concluded as a result of that. H. Hertz was inclined to believe 

that it would suffice to place the aforementioned system of twelve partial differential equations at 

the forefront of the theory. The theory would then have to solve only the problem of deriving the 

detailed phenomena from those equations and verifying them by experiments. The fact that this 

standpoint is not generally satisfactory is shown by the numerous attempts that have been made to 

base those equations on mechanics. Exactly as one considers the phenomena in other domains to 

be purely processes of motion with advancing knowledge, so must one regard the goal of an 

interpretation of electric phenomena as being likewise the reduction of them to phoronomic 

processes. That must go hand in hand with the elimination of special “imponderable fluids” that 

are still being maintained up to now. 

 The concepts of “electricity” and “amount of electricity” and the amount of “free magnetism” 

that were adopted from the older pictures still enter at the focus of the systematics of electric and 

magnetic phenomena of Hertz and Cohn, since they are necessary in it if one is to define those 

vector quantities that are introduced into it as “electric” (“magnetic,” resp.) forces (2). A further 

question to ask is whether that system of twelve differential equations also actually defines the 

physically-“simplest” expression for those processes that play out where magnetic and electric 

lines of force are found throughout. Finally, methodological considerations require an “intuitive” 

foundation for the theory of electric phenomena. 

 
 (1) H. Hertz, Wied. Ann. 40 (1890), pp. 577 or “Untersuchungen,” pp. 208, 1892, which will be cited as Hertz I 

in what follows. Wied Ann. 41 (1890), pp. 369, or “Untersuchungen,” pp. 256, 1892, which will be cited as Hertz II 

in what follows. E Cohn, Wied. Ann. 40 (1890), pp. 625. 

 (2) Cf., also L. Boltzmann, Vorles. über Maxwell’s Theorie der Electricität und des Lichtes, Part II, J. A. Barth, 

1893, pp. 13, et seq.  
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 In the attempts to go further in that direction, one must reduce either the Maxwell equations 

or their clarified form, namely, Hertz’s equations, to simple processes of motion and stress in the 

ether. What is initially quite striking is the fact that so many mechanical interpretations are possible 

that often starts from the opposite assumptions. The problem is then a multi-valued one. H. 

Poincaré suggested (1) that this was based upon the multiplicity of solutions that the partial 

differential equation: 

f    i

i i

f
q

p




  

 

admits, when we use Helmholtz’s notation and represent the general parameter of the problem by 

pi, while qi = ip  is the rate of change in its velocity, and the prime represents the derivative with 

respect to time. If we look for the infinitesimal transformations (with the terminology of Sophus 

Lie) that this differential equation admits under the more detailed circumstances that are present 

here then the group-theoretic treatment of the equation will also prove itself in the present case to 

be an important reference point for the peculiarities of the system of solutions that correspond to 

electric phenomena in particular (2). 

 Among the possible solutions, the simplest one will offer an advantage from the outset when 

it likewise explains all phenomena in a manner that is free of any objections. That is still not 

entirely the case for the present theories since each of them encounters certain difficulties that the 

authors themselves mostly acknowledge. However, it seems to me that the facts of observation 

themselves point unambiguously to a path that leads to an extremely-simple solution: 

 If we would like to go deeper into the processes that lie at the basis for the equations of 

electrodynamics then we must establish that the magnetic phenomena are reducible to vorticial 

motions that repeat themselves or more generally cyclic motions in the Helmholtz sense. Once 

Maxwell had brought Faraday’s picture of autonomous states that exist in space and advance 

within it into a mathematical form, he sought to find the mechanical foundation for those states. 

Starting from the assumption that vortex motions exist in the neighborhood of the magnetic field 

lines, he explained all phenomena of magnetism and electromagnetism with no further hypotheses 

(3). In that way, to him, the galvanic current was initially just a special form of a system of magnetic 

force lines. 

 It was only in the fundamental work of H. von Helmholtz in the statics of monocyclic systems 

that the properties of those systems have been understood more precisely as repeating motions that 

subsume vorticial motions as a special case, and thus it will not be possible to give a more definite 

foundation to those investigations. I have attempted to give a theory of electric and magnetic 

 
 (1) H. Poincaré, Electricité et Optique, Paris, 1890, pp. IX, et seq. 

 (2) I believe that I will give such a systematic treatment in which numerous special problems shall be treated in 

detail, as well as certain mathematical developments that cannot find their place here, in a special article later. It shall 

also go deeper into the work of Vito Volterra [Atti R. Accad. dei Lincei, Rendiconti (4) 7 (1891), pp. 177 and Il nuovo 

Cimento (3) 29 (1891), pp. 147] and O. Heaviside, as well as discussing the relationships between the individual 

theories and the present one more thoroughly. 

 (3) Cl. Maxwell, Phil. Mag. (4) 21 (1861), pp. 161, 281, 338, and 23 (1862), pp. 12, 85. The logical continuation 

of that attempt at explaining things failed upon reaching the “rudimentary” concepts, which Maxwell still did not 

succeed in eliminating completely. The friction rollers that he embedded between the vortices, and which he identified 

with “electricity,” were an unnecessary complication.  
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phenomena that starts from Helmholtz’s investigations. It assumes only the possibility that 

repeating “cyclic motions” are the carrier for those phenomena. It differs from the first part of L. 

Boltzmann’s book (1) on Maxwell’s theory essentially. We shall derive the basic equations of 

electrodynamics from the theory for bodies that are isotropic, as well as anisotropic, non-

conducting, as well as conducting, homogeneous, as well as inhomogeneous, and at rest, as well 

as in motion. 

 The phenomena of dispersion and absorption can also be classified within that system with no 

further assumptions. 

 That theory can be made accessible to the imagination in a simple way by models. 

 

 

2. – Foundations of the theory. 

 

 Ampère had already assumed that magnetic phenomena are basically something that can be 

regarded kinematically as a system of repeating motions. Later, Sir W. Thomson showed that the 

electromagnetic rotation of the polarization plane of light can only be interpreted as the fact that 

along with the undulatory changes of state in the ether along the polarized light ray, rotational 

recurrent motions along the magnetic lines of force that use the light ray as an axis will enter into 

the magnetic field. Those considerations, which are independent of the sense in which the rotation 

actually results (i.e., whether with or against the current) can be implemented (2). In fact, that 

assumption is at the basis for all theories that seek to explain that phenomenon, as well as the 

closely-related Kerr phenomenon. 

 It seems to me that by far the most important argument for the presence of such recurrent 

elementary motion in magnetic fields, which has still not been sufficiently emphasized, was given 

by Helmholtz in his treatises on the general theory of kinematical systems that include recurring 

motions – viz., “cyclic motions” – (static monocyclic systems) (3) and in his treatises on the general 

meaning of the principle of least action (4); some very general properties of electromagnetic 

phenomena were derived in them. We shall abstract the following result from those treatises, which 

shall be fundamental for us: In the cases where the forces that act upon certain coordinates are 

continually equal to zero, we can eliminate the corresponding coordinates from the problem 

completely, so the equations of motion can indeed be brought into the usual form, but the kinetic 

energy is no longer a homogeneous function of degree two in the (cyclic) velocities, as usual, but 

will also include other (e.g., first) powers, in general. If we actually preserve all coordinates then 

Helmholtz called the system a “complete” one. For him, kinetic energy had the form of an 

expression of degree two in the velocities. However, if we carry out their elimination then we will 

get an “incomplete system of equations.” 

 
 (1) L. Boltzmann, Vorlesungen über Maxwell’s Theorie der Electricität und des Lichtes, J. A. Barth, Leipzig, Part 

I, 1891. 

 (2) Cf., Maxwell, Treatise 2, Chaps. 21 and 22, §§ 806-845.  

 (3) H. von Helmholtz, Sitzungsber. d. Preuss. Akad. d. Wiss. Math. naturwiss. Mittheil. (1884), 67-86, 153-160, 

375-380, 693-698. (Crelle-Borchardt’s) Journal für reine und angew. Math. 97 (1884), 111-140, 317-336.  

 (4) H. von Helmholtz, Journal für reine und angew. Math. 100 (1887), 137-166, 213-222. 
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 An example of that type is a rotating body that hangs from a Cardan suspension and rotates 

around its axis (1). If the body rotates very rapidly then we will see nothing from its motion. 

However, if we move the axis from its position then a certain opposing force will act upon each 

coordinate that we are trying to change (viz., rotation of the rings in the Cardan suspension). 

 Helmholtz appealed to the analogy with ponderable bodies in mechanics and called such cases 

cases with hidden motions, and in the cited treatise (cf. 147) he showed that the case of the 

interaction between magnetic and electrical currents belongs to them. The fundamental recurring 

motions here, so the “cyclic” motions, are less accessible to our intuition than they are in the case 

of the rapidly-rotating top, but when we perform, e.g., a change of position for a conductor in the 

magnetic field, we will note the appearance of a so-called “electromotive” force that generates a 

current. Along the lines of magnetic force, there also exist hidden recurring motions. 

 In fact, Helmholtz had derived the electrodynamical law of induction from the equations of 

motion by using precisely the same general argument that gave the relationship between changes 

of angle and the corresponding forces on the top. Indeed, Helmholtz indicated (pp. 142, loc. cit.) 

that it was virtually the investigations into the form of the kinetic potential that Maxwell’s theory 

of electrodynamics requires that would come under consideration that gave him the impetus to 

carry out later incisive investigations into the nature the phenomena here that were very general 

and deep. 

 In conjunction with those results of H. von Helmholtz, we can consider it to have been proved 

that everywhere that magnetic lines of force are found in space, a motion will be carried out that 

is, of course, “hidden” to us, but about which we know only that it is a cyclic motion, i.e., a circular 

or vorticial recurring motion. 

 If we now denote the components of the vector that  gives the magnetic force at each point in 

space by L, M, N and the components of the cyclic velocity of the monocycle that exists there and 

is equivalent to the latter by  ,  ,    (in what follows, primes shall always mean derivatives 

with respect to time) then we must set: 

 

(1)  L = k   ,  M = k  ,  N = k   . 

 

One will have: 

  = 
1

2

w v

y z

  
− 

  
,   = 

1

2

u w

z x

  
− 

  
,   = 

1

2

v u

x y

  
− 

  
 

 

here, if u, v, w are the rectangular components of the velocity. k is an “internal constant of the 

ether” in the Hertzian sense (2). 

 It might seem as though we have to introduce two special assumptions that would compromise 

the generality of our considerations. First of all, we might get the impression that the introduction 

of the constant k would necessitate a more detailed insight into the fundamental processes. 

However, we will show later that it plays no explicit role in electric phenomena but must be 

combined with another similar auxiliary constant l that will be introduced later into the Hertz 

 
 (1) H. von Helmholtz, Journal für reine und angew. Math. 100 (1887), pp. 153. 

 (2) Cf. H. Hertz, I, pp. 583 (Untersuch., pp. 214).  
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constant A (reciprocal speed of light), which will then take on a well-defined physical sense. 

Conversely, certain conclusions about the special nature of the fundamental processes can be 

derived from that. Secondly, it might seem preposterous that we have made L, M, N proportional 

to  ,  ,   , resp. However, that is justified by experiments. It tells us that we have to set the 

energy per unit volume of the magnetically-stressed medium equal to: 

 

T = 2 2 2( )
8

L M N



+ + . 

 

The magnetic energy has the kinetic form, from what was said above. According to Helmholtz, it 

must be homogeneous of degree two in the cyclic velocities (since we have not eliminated any of 

them), and as a result: 

(2)      T = 
2

2 2 2( )
8

k
  


  + + . 

 

We then have a “complete” Helmholtz system (cf., pp. 3). 

 We have thus established the expressions for the magnetic forces and energy. They must give 

the electric force and energy when we consider the experimental facts. 

 Experiments teach us that electric phenomena are always coupled with magnetic ones in such 

a way that the temporal variation of a vector quantity that varies with position X, Y, Z, and which 

we shall call the electric force, is equal to the momentary spatial distribution of the magnetic forces 

L, M, N in the neighborhood of that position. That fact finds its expression in the Hertzian system 

of equations (we would like to call it briefly “the first one”) (1): 

 

(I)  

,

,

.

dX M N
A

dt z y

dY N L
A

dt x z

dZ L M
A

dt y x







 
= −  


 

= −
 
 

= −  

 

 

If we substitute the values in (1) for L, M, N and integrate over time then that will imply that we 

have to make X, Y, Z proportional to expressions like  / z −  / y, etc. (One can always assign 

the special value of zero to the time-independent integration constants.) 

 We then write: 

(3)   X = 
l

z y

 



  
− 

  
 , Y = 

l

x z

 



  
− 

  
 , Z = 

l

y x

 



  
− 

  
 , 

 

 
 (1)  Cf. H. Hertz, I, pp. 584 (Untersuch., pp. 215). 



Ebert – On the theory of electric and magnetic phenomena. 6 

 

in which l is an auxiliary constant for which the same thing is true that was true for k above. As 

we see, those values for X, Y, Z follow uniquely from our basic assumption. They depend upon the 

cyclic coordinates themselves. Unfortunately, there is no simple expression for the form of that 

dependency. (In the language of quaternions, one would say that the vector of the electric force 

i X jY k Z+ +  is equal to the vector component of the operator: 

 

 = i j k
x y z

  
+ +

  
 

 

when one lets it act upon the vector of the cyclic (angular) motion ( )i j k dt    + + . That 

statement is equivalent to the statement that the line integral along a closed curve of one vector is 

equal to the surface integral of the other [ vector projection onto the normal times surface 

element], which has the curve for its complete (and only) boundary, or equal to the vector flux 

through the surface). O. Heaviside has introduced the term “curl” for that (1), and we would like 

to preserve it, as well. We will then say that the vector of the electric force is equal to the “curl” of 

the cyclic motion. Mechanically, we would be able to represent the electric force as stresses that 

appear in the ether as a consequence of the positional variations in the rotations that the individual 

neighboring elements have experienced with respect to each other, as one assumes in Mac 

Cullagh’s theory of light and in Sir William Thomson’s quasi-elastic ether (2). 

 As is known, based upon experiments, we have to write: 

 

 = 2 2 2( )
8

X Y Z



+ +  

 

for those “electric stresses.” It would have the character of a potential in the aforementioned 

mechanical interpretation. If we substitute the values from (3) in it then we will get: 

 

 
 (1) O. Heaviside, Electrical Papers, 1, 1892, pp. 199.  

 (2) Remark: Rotations of the ether also play a role in other electromagnetic theories. However, either they would 

explain the magnetic forces [Lord Kelvin 1), E. Padova 2), L. Boltzmann 3)], and assign some other meaning to the 

electric forces, as is done here, or it would, in fact, be the electric forces that are attached to the rotations, but other 

expressions would enter into the magnetic forces than the angular velocities, such as the linear velocities found in A. 

Sommerfeld 4) or R. Reiff 5). Moreover, the rotations of the ether themselves play a role there, but here it is only their 

differences from one location to a neighboring one that play the role. That is how those theories will differ from the 

one developed here, more or less. 

_______ 

 1) Sir William Thomson, Math. and Phys. Papers, 3, art. 99, namely, § 39, pp. 436, 1890. 

 2) E. Padova, Il nuovo Cimento (3) 29 (1891), pp. 225; cf., also Atti della Accad. dei Lincei, Rendiconti (4) 7 

(1891), pp. 204. 

 3) L. Boltzmann, Wied. Ann. 48 (1893), pp. 78 and Vorlesungen über Maxwell’s Theorie, Part II, Leipzig 1893. 

 4) A. Sommerfeld, Wied. Ann. 46 (1892), pp. 139. 

 5) R. Reiff, Ueber Wirbelbew. reibeinder Flüssigkeiten, Mittheil. math. naturw. Vereins in Württemberg, 1893. – 

Elasticität und Electricität, Freiburg i. B. u. Leipzig, 1893. 
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(4)   = 

2 222

8

l l l l

z y x z y x

     

   

          
− + − + −     

           

 . 

 

  itself would depend upon the cyclic variables then (1). 

 Equations (1) to (4) suffice completely for one to be able to derive all equations of 

electrodynamics for non-conductors. 

 In order to exhibit the equation for a conductor, we must observe the following: Up to now, we 

have assumed that the cyclic motions in the ether suffered no loss of energy. However, we know 

that there are bodies in which such losses occur. For elastically-coupled monocycles, which would 

correspond to the present case, that phenomenon will find its mechanical expression in a partial 

differentiation of the mutually-rotated elements and the product of heat that is coupled with it. In 

Hertz’s system of equations, that situation is introduced into the calculations by the addition of 

terms – 4  A X, – 4  A Y, – 4  A Z on the right-hand sides of equations (I) (: 

“conductivity”)(2). Hertz arrived at that conclusion by assuming that the dissipation over time that 

entered into the values of the electric vector as a result of conduction was proportional to the values 

of the vector themselves. In our case, the “curl” corresponds to the cyclic coordinates of that vector, 

so we have to assume equality for them and must therefore also extend the equations that we 

obtained for non-conductors to conductors in such a way that we will add analogous terms. 

 In that way, we will also arrive at the equations for the conductor without having to introduce 

any special assumption about the process of energy conversion that exists in it. Later on (pp. 22), 

some special representations of the mechanical foundations of electrical conduction processes shall 

be given. 

 

 

3. – Deriving the fundamental equations for isotropic media at rest. 

 

 If we set: 

  X = 
l

z y

 



  
− 

  
,  etc., 

 

as in equations (3), then upon differentiating with respect to time, we will get: 

 

dX

dt
  = l

z y

    
− 

  
 , 

 

and when we replace  ,    with the values in (1), we will have: 

 
 (1) The cyclic variables themselves are missing from the expression for energy, and therefore from the kinetic 

potential H =  – T (free energy), as is true for Helmholtz’s monocycles. By contrast, derivatives of the cyclic 

variables with respect to position appear here, which correspond to “elastically-coupled monocycles” in terms of the 

cycles of mechanics, as is easy to verify more generally. 

 (2) H. Hertz, I, pp. 586 (Untersuch., pp. 217).  
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k dX

l dt
 = 

M N

z y

 
−

 
. 

 

If we write the value A for k / l then we will get the first Hertz system: 

 

(I)      
dX

A
dt

  = 
M N

z y

 
−

 
, etc. 

 

for isotropic non-conductors (1). For conductors, according to pp. 7, we must add terms 

4 A X −  , etc., such that we will get: 

 

  
dX

A
dt

  = 4
M N

A X
z y

 
 

− − 
 

, etc., 

 

which is the first Hertz system for isotropic conductors (2). 

 We will get the second Hertzian system, which represents the time variation of the magnetic 

state in terms of the spatial distribution of the electric states, by applying Hamilton’s principle to 

the expressions for the energy. If we substitute the values for T and  that are given in (2) and (4), 

resp., in: 

(H)      
1

0

{( ) }

t

t

T d dt 
+

−

−      = 0 

 

then when we take the variation relative to the cyclic coordinates , , ,  ,  ,    (while 

regarded the factors  and  as constant, although they depend upon x, y, z in inhomogeneous 

media), we will get: 

 

 0 = 
1

0

2

[ ]
4

t

t

k
dt


     



+

−


      +  + 


     

− 
2

4

l l l

z y z y x z x z

       

  

            
− − + − −      

           
 

 + 
l

d
y x y x

   




      
− −   

      

, 

 

in which we imagine that the spatial integral extends far enough that the velocities and rotations 

will be equal to zero at the limits. For any discontinuity surfaces that lie between them, we shall 

apply the “Helmholtz trick,” i.e., we shall assume that our functions , , ,  ,  ,   indeed 

 
 (1) H. Hertz, I, pp. 584, eq. (4.b) (Untersuch., pp. 215).  

 (2) H. Hertz, I, pp. 587, eq. (6.b) (Untersuch., pp. 218). 
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vary quite rapidly from location to location, but still continuously (viz., the “principle of the 

continuity of the transition”) (1). We can then set the surface integral equal to zero that comes about 

by partially integrating the variations by which we converted the previous equation that are 

differentiated with respect to the coordinates. The simultaneous partial completion of the time 

integral in the first part: 

d d

dt dt

 
 

 
 = = 

 
 

 

and the passage to the time element will lead to: 

 

  
2

4

k



  = 

2

4

l l l

y y x z x z

   

  

        
− − −    

        
 , etc., 

 

when we set the terms that are multiplied by those variations equal to zero. However, it will follow 

from (1) and (3) that: 

k dL

l dt


  = 

Z Y

y z

 
−

 
, 

 

or since we have set k / l = A above, that is: 

 

(II)  
dL

A
dt

  = 
Z Y

y z

 
−

 
, etc., 

 

which is the second Hertzian system, which is valid for non-conductors and conductors in the 

same way (2). 

 The constant A is once more an “internal constant of the ether” (cf., supra, pp. 4). If one 

differentiates one of the two Hertzian systems with respect to time and substitutes the values of 

the time derivatives on the right-hand side that one gets from the other system then one will see 

that A is the reciprocal velocity with which periodic changes of state propagate through the free 

ether ( = 1,  = 1) since one will be led to the well-known wave equation. 

 It is very simple to get the extension that the Hertzian equations must experience if they are 

to also encompass dispersion and absorption phenomena: 

 In our way of looking at things, the changes of state at one point are determined by the states 

in its neighborhood. However, that transition cannot result with infinite velocity. Therefore, if the 

changes of state in an electromagnetic field are to happen very rapidly, as they do with light, then 

the time that is necessary for a state of motion at one point to carry over to the other ones must 

come under consideration. If , ,  are the values of the cyclic variables (rotations) in the 

neighborhood of a point then the quantities: 

 

 
 (1) L. Boltzmann, Vorlesungen, Part II, pp. 9.  

 (2) H. Hertz, I, pp. 584, eq. (4.a) and pp. 587, eq. (6.a) (Untersuch., pp. 215 and 219).  
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  l
z y

   
− 

  
, etc., 

will no longer determine a value of X, as it pertains to time t, but as it pertains to a somewhat-later 

time t + dt. When we likewise employ the Taylor development, we must then set: 

 
2

0 1 2

dX d X
X c c

dt dt
+ + +  = 

l

z y

 



  
− 

  
 , 

 

or when only harmonic changes of state of the form 2i m tA e   (m = 1 / T = oscillation number) 

come under consideration (1): 

 
2 4

1 32 4

d X d X
X c c

dt dt
+ + +  = 

l

z y

 



  
− 

  
 . 

 

Differentiation with respect to time will now give: 

 

  
3 5

3 5

dX d X d X
A

dt dt dt
  

 
 + + + 

 
 = 

M N

z y

 
−

 
, etc. 

 

P. Drude, who had inserted the Hertzian system of equations into those equations by hypothesis, 

had already showed that, in conjunction with the second Hertzian system (pp. 9), they could 

represent all dispersion phenomena completely, and that the associated boundary conditions are 

compatible with the energy principle (2). 

 

 

4. – Deriving the fundamental equations for anisotropic media at rest. 

 

 If we now move on to anisotropic media then we must once more make the magnetic forces 

proportional to the velocities , ,  of any cyclic motions that might be present: 

 

(5)     L = r  , M = r , N = r   

 

(r is an auxiliary constant). However, the effect of those cyclic motions is not expressed 

immediately in the phenomena, it will be modified by the anisotropy in the medium. What we 

observe are the magnetic polarizations whose components are linear components of the three 

components of the magnetic forces that emanate from the cyclic motions. We find that the 

relationship between the two vector quantities of force and polarization is determined completely 

 
 (1) That consideration is entirely-analogous to the ones that I had previously posed (Wied. Ann. 48 (1893), pp. 1), 

in which I addressed the problem of extending Maxwell’s system of equations in such a way that dispersion 

phenomena would also find their explanation in that system.  

 (2) P. Drude, Nachr. Gött. Ges. d. Wissensch. (1892), pp. 366. 
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by six quantities that are functions of position for inhomogeneous media in such a way that the 

components of the magnetic polarization L, M, N are coupled with the force by the equations (1): 

 

(6)  

11 12 13 11 12 13

21 22 23 21 22 23

31 32 13 31 32 33

,

,

,

L M N r r r

L M N r r r

L M N r r r

        

        

        

  = + + = + +


  = + + = + +
   = + + = + +

L

M

N

 

 

in which 23 = 32, 31 = 13, 12 = 21 . 

 The kinetic energy has the value: 

 

T = 
1

8
(L L+ M M + N M) 

here, or: 

(7)   T = 
2

2 2 2

11 22 33 23 31 12( 2 2 2 )
8

r
              


        + + + + +  … 

 

 Spatial differences in the “rotations” , ,  will also produce “stresses” in the medium here. 

The anisotropy in the medium will have a certain influence on the stress distribution itself since 

the medium can be stressed differently in different directions. The stresses that are produced are 

those of the dielectric polarization, which are determined uniquely by the three direction quantities 

X, Y, Z, which are referred to the three axis directions for each point. As before, we must then set, 

analogously: 

(8)      

,

,

z y

x z

y z

 

 

 

   
= −  

  
    

= −  
  

   
 = − 

   

X s

Y s

Z s

 

 

(s is an auxiliary constant). However, in addition to representing the stress state of the medium by 

those three direction quantities X, Y, Z, there is yet another way that involves three quantities X, 

Y, Z that are linearly coupled with the first ones. If we set: 

 

(9.a) 

11 12 13

21 22 23

31 32 33

,

,

,

X Y Z

X Y Z

X Y Z

  

  

  

= + +


= + +
 = + +

X

Y

Z

 

 
 (1) H. Hertz, I, pp. 592, formula 9.c (Untersuch., pp. 224).  
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or 

(9.b) 

11 12 13

21 22 23

31 32 33

,

,

,

X

Y

Z

  

  

  

= + +


= + +
 = + +

X Y Z

X Y Z

X Y Z

 

 

in which the  are proportional to the corresponding subdeterminants of the , so one calls X, Y, Z 

the components of the electric force. For anisotropic bodies, it is not directly accessible to 

observation. It is only in isotropic bodies that the X, Y, Z go to the X, Y, Z. For the , one will 

again have: 

23 = 32,  31 = 13,  12 = 21 

 

and as a result, one will also have: 

 

23 = 32,  31 = 13,  12 = 21 . 

 

If the anisotropic medium is inhomogeneous then the  and  will be functions of position. 

 The potential energy  is now: 

 

 = 
1

8
(X X + Y Y + Z Z) 

or 

(10) 

2 222

11 22 33

23 31 12

8

2 2 2 .

s

z y x z y x

x z y x y x z y z y x z

     
  



           
  

           
  = − + − + −     

           


                      
+ − − + − − + − −            

                      

 

 

We would like to assume that the , , and  are independent of time, so the medium will 

experience no variations. 

 The derivation of the first Hertzian system of equations is also quite immediate here. If one 

differentiates equations (8) with respect to time, substitutes the values of  ,  ,    in (5) and 

writes the quantity A for r / s then one will get: 

 

d
A

dt

X
 = 11 12 13

dX dY dZ
A

dt dt dt
  

 
+ + 

 
 = 

M N

z y

 
−

 
, 

 

and similarly for the other components. However, that is the Hertzian system of equations for the 

time variation of the electric polarization when it depends upon the instantaneous spatial 

distribution of the magnetic forces for crystalline non-conductors. 
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 For conductors, time variations of the electric polarization state will also appear as a 

consequence of conduction. Due to the anisotropy, that dissipation in electric stress will generally 

be a linear function of the three polarization components again, and therefore of the force 

components. With Hertz, if we then set: 

 

  u = 11 12 12( ) ( ) ( )X X Y Y Z Z    − + − + − , 

 

in which the X  , Y  , Z   are components of electromotive forces of hydroelectric or thermoelectric 

origin that possibly act at certain locations in the medium, then we will get the equations: 

 

  
d

A
dt

X
 = 

M N

z y

 
−

 
− 4 A u , etc., 

 

i.e., equations (9.b) in Hertz for the anisotropic conductor. 

 We can also obtain the corresponding system of equations here that represents time variations 

of the magnetic polarization as something that is required by the distribution of electric forces in 

the neighborhood when we apply Hamilton’s principle to our system of cyclic velocities and curls 

of cyclic coordinates. When we likewise perform the variations that relate to the cyclic coordinates 

(and in that way, the  and , which are indeed functions of the position coordinates x, y, z, will 

remain unvaried), the expression for (H) (pp. 8) will assume the form: 

 

0 = 

0

2

11 22 33[
4

t

r
dt         


−


      +  + 


   

  + 23 23 31 31 12 12 ]                             +  +  +  +  +   

 − 
2

11 22
4

s

z y z y x z x z

       
 



             
− − + − −       

            
 

 +
33 23

y x y y x z y y

       
 

             
− − + − −      

             
 

 + 
23 31

y x x z y x z x

       
 

             
− − + − −      

             
 

 + 
12 12 d

z y x z x z z y

       
  

              
− − + − −       

              

. 

 

 Upon performing the time integral in the first part of that expression and the partial integrations 

over the spatial coordinates in the second part, applying the limiting values as in pp. 8, and setting 

expressions that multiply the variations in them equal to zero, one will get: 
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2

11 12 13[ ]r         +  +   = 2

31 32 33s
y z y x z y x

     
  

            
− + − + −     

            
 

 

 − 
21 22 23

z z y x z y x

     
  

           
− + − + −      

            

 , 

 

or when one recalls (5), (8), and (9.b) and sets r / s = A : 

 

11 12 13

dL dM dN
A

dt dt dt
  

 
+ + 

 
 = 

d
A

dt

L
 = 

Z Y

y z

 
−

 
, 

 

and analogously for the remaining coordinates. Those are equations (9.a) in Hertz, which 

collectively make up the second Hertzian system for the general case of anisotropic homogeneous 

or inhomogeneous bodies. 

 By considerations that are completely analogous to the ones above on pp. 14, one can also 

extend that system in such a way that it will be valid for rapidly-alternating electromagnetic states. 

Higher derivatives of the polarization vectors with respect to time will then appear, and the 

equations will also encompass the phenomena of normal and anomalous dispersion in anisotropic 

media (1). 

 

 

5. – Deriving the fundamental equations for moving media. 

 

 We have the reduced the magnetic and electric phenomena to processes of motion that are 

bound with the positions of the magnetic lines of force and to the “curls” that result from 

inequalities in those motions at the neighboring locations. From the basic hypothesis upon which 

Hertz constructed the electrodynamics of moving media, the individual particles of the medium 

will advance along the lines of force under the motion. That will also be the case when the 

fundamental processes are located completely in the ether since one can likewise assume that it 

moves completely with the material substrate medium without contradicting the facts (2). We must 

then be able to obtain the fundamental equations for moving bodies with no further assumptions 

about the nature of the electromagnetic processes. According to Hertz, we only have to refer the 

magnetic and electric polarizations (forces, resp., i.e., cyclic motions and curls) to the system of 

polarization lines themselves and introduce parameters a, b, c whose various systems of values 

characterize the various particles of the medium as coordinates (3). 

 
 (1) Cf., P. Drude, Nachr. Gött. Ges. d. Wissensch. 1893.  

 (2) H. Hertz, II, pp. 371. (Untersuch., pp. 257).  

 (3) In direct connection with Hertz’s equations, Vito Volterra has shown [Il nuovo Cimento (3) 29 (1891), pp. 53] 

that by introducing such a reference system, it will be possible to put the fundamental equations of electrodynamics 

into such a form that they will be simultaneously valid for bodies in motion, as well as at rest, which is even based 

upon the admissibility of Hertz’s fundamental hypothesis.  
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 We use the term “polarization lines” to refer to lines that give the direction of polarization at 

each point in the same sense as when we speak of lines of force in isotropic media. 

 Let a certain particle of the medium be determined by the parameters a, b, c of its position. The 

a, b, c are mutually independent variables, but they will depend upon time t. We consider the 

rectangular coordinates x, y, z that a particle will have at time t to be functions of a, b, c, and time: 

 

x = f (a, b, c, t) , y = g (a, b, c, t) , z = h (a, b, c, t) , 

 

and denote the functional determinant of the x, y, z with respect to the a, b, c by D : 

 

(11) D = 
x y z

a b c

 
 
 

 = 

x x x

a b c

y y y

a b c

z z z

a b c

  

  

  

  

  

  

 . 

 

We can then consider the a, b, c to be the position coordinates that the individual particles of the 

medium had at time t = 0, just as we do in hydrodynamics when we write the equations of motion 

in the “second Euler form” (1). 

 The square of the line element that is placed arbitrarily in space is then a homogeneous function 

of degree two in the differentials da, db, dc. We would like to denote the coefficients of that 

quadratic function by Hik in such a way that: 

 

(12) 
2 2 2 2

11 22 33

32 31 122 2 2 .

ds H da H db H dc

H dbdc H dc da H da db

 =  +  + 


+  +  + 
 

 

Since Hik = Hki, the determinant of the Hik is equal to 2D , so: 

 

2D  = 

11 12 13

21 22 23

31 32 33

H H H

H H H

H H H

. 

 

We then form the subdeterminants of the determinant and set: 

 

 
 (1) The method for representing fluid motions analytically in such a way that the coordinates x, y, z of any particle 

of the fluid at time t are considered to be functions of time t and its position a, b, c at time t = 0 is ordinarily ascribed 

to Lagrange, but it was already found by Euler in full generality twenty-nine years earlier. [Euler, “De principiis 

motus fluidorum,” Novi comm. acad. sc. imp. Petropolitanae 14 (1769), pp. 358]. We shall then call them the second 

Euler form of the differential equations of hydrodynamics. 
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11 12

21 22

1 H H

H HD
 = ua ,  

21 23

31 33

1 H H

H HD
 = ub ,  

21 22

31 32

1 H H

H HD
 = uc , 

 

12 13

32 33

1 H H

H HD
 = va ,  

11 13

31 33

1 H H

H HD
 = vb ,  

11 12

31 32

1 H H

H HD
 = vc , 

 

12 13

22 23

1 H H

H HD
 = wa ,  

11 13

21 23

1 H H

H HD
 = wb ,  

11 12

21 22

1 H H

H HD
 = wc . 

 

We imagine that we have constructed electric and magnetic polarization lines that would coincide 

with the lines of force in isotropic bodies. Analytically, they are represented by the lines of 

intersection of the two families of surfaces: 1 (a, b, c) = E1 and 2 (a, b, c) = E2 for the electric 

polarizations and 1 (a, b, c) = M1 and 2 (a, b, c) = M2 for the magnetic ones. The products of the 

three two-rowed functional determinants will then be: 

 

(19)    

( )
,

( )
,

( )
,

c b

a c

b a

d D U U
A

dt b c

d D U U
A

dt c a

d D U U
A

dt a b

 
= −  


 

= −
 

 
= −  

a

b

c

B

B

B

 

 

(20) 

( )
4 ,

( )
4 ,

( )
4 .

c b
a

a c
b

b a
c

d D V V
A A W

dt c b

d D V V
A A W

dt a c

d D V V
A A W

dt b a







 
= − −   


 

= − − 
 
 

= − −   

a

b

c

U

U

U

 

 

 Those are the electrodynamical equations in their most-general form. They are valid in the 

same form for moving media, as well as ones at rest (1). 

 In order to also derive them from our basic representation, we would like to consider the 

rectangular coordinates x, y, z as functions of the parameters a, b, c whose various systems of 

values characterize the individual particle of the medium. The angular velocities at one location 

are known to have the following values then: 

 

  = 
x x x

A B C
a b c

  
+ +

  
, 

 
 (1) Cf., Vito Volterra, loc. cit., pp. 60.  
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  = 
y y y

A B C
a b c

  
+ +

  
, 

 

   = 
z z z

A B C
a b c

  
+ +

  
, 

 

  A = − 
1

2

x u y v z w

b c b c b cD

      
+ +      

      
, etc. 

 

The , ,  are functions of the a, b, c now. 

 If we again make the magnetic forces proportional to the cyclic velocities then we will have: 

 

  Va = 
x x x

m A m B C
a b c

  
+ +

  
, etc. 

 

 From (17), the components of the magnetic polarization are: 

 

  Ba = M11 Va + M12 Vb + M13 Vc , etc. 

 

The kinetic energy now has the value: 

 

(21)  T = 
2

2 2 2

11 22 33 23 31 12( 2 2 2 )
8

m
M M M M M M        


        + + + + + . 

 

The rotations are now: 

 = 

1

0

x x x
dt A B C

a b c

   
+ + 

   
  , 

 = 

1

0

y y y
dt A B C

a b c

   
+ + 

   
  , 

 = 

1

0

z z z
dt A B C

a b c

   
+ + 

   
  . 

 

For the components of the dielectric polarization, one now has: 
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(22) 

,

,

.

a

b

c

D n
c b

D n
a c

D n
b a

 

 

 

   
= −    

   
= −  

  
   

= −  
  

U

U

U

 

 

One gets the electric forces by solving that system of equations while recalling equations (15): 

 

  Ua = 11 12 13

n n n
A A A

D c b D a c D b a

               
− + − + −     

          
, etc. 

 

The potential energy  now has the value: 

 

 = 

2 2 22

11 22 332

1

8

n
A A A

D c b a c b a

     



           
− + − + −      

          

 

 

+ 
23 31 122 2 2A A A

a c b a b a c b c b a c

                                
− − + − − + − −                             

 . 

 

Upon differentiating that with respect to time, one will get the first generalized Hertzian system 

of equations from the system of equations (22) immediately: 

 

  
( )ad D

A
dt

U
 = b cV V

c b

 
−

 
, etc., 

 

when one sets m / n = A. If currents are present then terms like – 4 A Wa must be added to the 

right-hand side, and one will get: 

 

  
( )ad D

A
dt

U
 = b cV V

c b

 
−

 
– 4 A  Wa , etc., 

 

as above in (20) on pp. 16. 

 One will get the second Hertzian system in a way that is completely analogous to the one 

above by setting the variation of the following integral equal to zero: 

 

1

0

( )

t

dt D T d
+

−

 
−  

 
 

     , 
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in which triple integral is, however, extended over all systems of values for the a, b, c, and the 

definite integrals that are obtained by the partial integrations that must be performs are always 

defined for those variables. One can apply the same reasoning as on pp. 9 above to them, as well 

as the time integral. From a known theorem of Jacobi, the functional determinant D of the x, y, z 

with respect to the a, b, c will appear under the integral when one no longer expresses the volume 

element d in terms of dx, dy, dz now, but in terms of da, db, dc. The calculations take a form that 

is completely analogous to the one on pp. 13, and passing to the time element and setting the terms 

in it that are multiplied by the variations , ,  equal to zero, one will ultimately get:  

 

 11 12 13( )
d

m D M m M m M m
dt

    + +  

  − 2 31 32 33A A A
n

b D c b D a c D b a

                   
− + − + −       

            
 

  − 2321 22
AA A

c D c b D a c D b a

                   
− + − + −       

            
 = 0 , etc. 

 

 However, when one recalls (17), (22), and (15), that is: 

 

  
( )ad D

A
dt

B
 = b bU U

b c

 
−

 
, etc., 

 

i.e., the second generalized Hertzian system. 

 In regard to the phenomena of dispersion and absorption, the two systems of equations admit 

precisely the same extension as the equations on pp. 9. 

 

 

6. – Illustrating the theory. 

 

 Our assumptions about the nature of the magnetic and electric phenomena can be explained 

with the following ether model of George Fr. Fitzgerald (1). A vertical board carries several 

horizontal rows of axles that are arranged vertically above each other and are fixed perpendicular 

to the board. Brass rollers are fixed along those axles that rotate as easily as possible, and four V-

shaped, circular indentations are cut into them. Each roller is coupled with its four neighboring 

ones by rubber bands. From our basic picture, that will explain electromagnetic phenomena since 

it represents an elastically-coupled monocycle. The energy of the brass roller rotating around its 

axle represents the energy of the magnetic forces, and the tensions that appear in the rubber bands 

when neighboring rollers rotate with different speeds (viz., curl) represent the electric forces. In 

that way, one side of the band will be tensed, while the other one will be more or less loosened. 

 
 (1) George Fr. Fitzgerald, Proc. R. Dublin Soc. (New series) 4 (1885), pp. 407. Cf., also Transactions of the Royal 

Society of London 171, Part 2 (1880), pp. 691, where the author derived some formulas from Maxwell’s equations 

that are closely related to the ones that were developed here. 
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The difference in the tensions can serve as a measure of Maxwell’s dielectric change of state (i.e., 

displacement), which is itself proportional to the electric force. 

 That is because, for Maxwell, the dielectric polarization (i.e., displacement) is not produced 

by opposing displacements of something substantial (so polar differentials), but generally refers to 

the state of a medium in which polar opposite states are found on opposite sides of an element, 

which is precisely like the tensing and loosening of the elastic couplings between rollers in 

Fitzgerald’s model. The direction of the “displacement” has the same place in the model then that 

the perpendiculars to direction of the magnetic forces (i.e., roller axles) has in the theory. 

 Fitzgerald (loc. cit.) showed in detail how one can use the model to illustrate electromagnetic 

processes in the free ether, and above all, the advancement of electromagnetic waves, as well. 

 The dissipation of stress in or on conductors corresponds to the partial slippage of the rubber 

bands, which is coupled with friction and therefore the production of heat. O. Lodge called that 

process “slip” in the elementary motions on conductors, in contrast to the “spin” of the rotations 

in free ether that result with no loss of energy (Modern Views of Electricity). 

 However, it seems to me that the most important property of this model, which has still not 

been emphasized since then, is that it makes the basic ideas of Hertz’s theory immediately intuitive 

and also allows one to easily find Hertz’s fundamental equation for the case of the isotropic media 

at rest without having to employ Hamilton’s principle. That is because it shows how the time 

variation of one of the quantities that determines the electromagnetic state is caused by the 

positional variation (viz., the “curl”) of the others. If neighboring rollers rotate equally fast, so no 

difference in the magnetic force will then exist, then the tensions that might exist in the elastic 

bands will not change. That will first occur when some rollers are rotating faster than the ones in 

their neighborhood. Conversely, the state of motion of one roller can be changed only in such a 

way that immediately beforehand, the stress relationships between the rubber bands that are 

attached to the roller will be different in different directions. If we formulate those two statements 

then we will get the two Hertzian systems of equations. 

 The first system of equations (I) on pp. 5 is obtained immediately from the consideration of 

the time variation that the tensions experience as a result of positional differences in the rotations 

that was just described. If we recall the notations that were introduced into equations (1) and (3) 

on pps. 4 and 5 then we will get: 

(I)  
dX

A
dt

  = 
M N

z y

 
−

 
, etc., 

 

In order to obtain the second system of equations (II) on pp. 9, we imagine that the large, widely-

separated rollers of the model are replaced with a large number of small and densely-packed rollers 

that are coupled to each other with rubber bands. We consider the processes on a surface patch 

dy dz  that includes one roller. (The plane of the board is thought of as being the yz-plane, where 

the y-direction shall run parallel to a series of rollers and the z-direction shall run parallel to the 

series that is perpendicular to it.) Y is then the difference in tensions on one side of the roller, Y + 

(Y / z)  dz is the tension on the opposite side, Z and Z + (Z / y)  dy are the tensions in the pair 

of bands that are perpendicular to it, and: 
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Z Y
dy dz

y z

  
− 

  
 

 

is the algebraic sum of all tension differences all around it [the line integral of the vectors Y and Z 

around the surface dy dz , the “version,” as Heaviside called it (1)]. However, since every impulse 

that changes the motion of a roller is present immediately beforehand as a difference in tension in 

one of the rubber bands that supplies it, the total state of tension in all bands that exists at an instant 

all around a roller will determine the time variation  dL / dt of the state of motion of the roller 

that results immediately afterwards. The same consideration will be valid when the surface patch 

includes not just one, but several rollers. The state of tension on the periphery that is caused by the 

motion of the rollers that lie outside of it will then determine the mean variation of the state of 

motion, which must exist on the surface immediately afterwards: A  (dL / dt) dy dz. (We shall 

denote the mean value by an overbar.) If we imagine that the rollers are very small and very densely 

packed, so the surface dy dz will be likewise very small, then /dL dt , viz., the mean of  dL / dt 

over a surface, will go to the value at a certain location. It is then equal to: 

 

Z Y
dy dz

y z

  
− 

  
, 

so we will get: 

dL
A dy dz

dt
  = 

Z Y
dy dz

y z

  
− 

  
, 

 

and if we divide both sides by the surface elements then the second Hertzian system of equations 

will follow: 

(II)  
dL

A
dt

  = 
Z Y

y z

 
−

 
,  etc. 

 

Analogous equations are valid for the other coordinate plane. 

 We can similarly explain the relationships and derive the equations on pp. 10 in the more-

complicated case when we include the finite speed of propagation of the changes of state in our 

calculations, and in that way we will obtain the equations that imply the dispersion phenomena. If 

a roller rotates rapidly through a certain angle then initially only the neighboring bands will be 

tensed. It is only when the tension wave reaches the next rollers that they will also be set in motion, 

etc. 

 

 

 

 

 

 
 (1) Heaviside, Electrical Papers, 1, 1892, pp. 211.  
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7. – Mechanical meaning of electrical conductivity. 

 

 A certain difficulty in the theories up to now is raised by the question of how the intrinsic 

nature of a conductor differs from that of a non-conductor. One says that the conductor holds the 

field energy, but obviously that expresses only a fact of experience. According to Poynting, we 

can define a conductor in full generality as a body, whether solid, liquid, or gaseous, that is in a 

position to continually give rise to a partial conversion of energy of the field into the energy of 

disordered motions, so into heat. Whereas in the free field, the individual particles of the ether will 

be pulled into cyclic (vortex) motion, on the boundary surface of the free ether, something will 

oppose such things that is connected with the molecules of a solid, liquid, or gaseous body, which 

corresponds mechanically to a sliding motion, and with how it is coupled with a transformation of 

energy in a high state of order into energy of a lower state of order, so into thermal motion. 

However, it in just that way that the conductor will take on the property that it can carry the energy 

of organized motion (e.g., the electromagnetic field) over long distances with minor dissipation, 

such as would be possible by, e.g., free radiation, so the conductor would become a “leader” of the 

energy. 

 If we believe in the basic picture that is developed here then the field energy of a current-

carrying conductor will have the form of the kinetic energy of the ether particles that might orbit 

around its concentrically-enclosed magnetic field lines in a vorticial motion. In fact, the work that 

is necessary to construct the field by way of a current that is ultimately brought up to the current 

strength J is equal 21
2
L J , in which L denotes the coefficient of self-induction of the current path, 

is completely analogous to the way that the (kinetic) energy 21
2
M q  will be present in a monocycle 

whose cyclic velocity has achieved the value q, when M denotes the total moment of inertia. 

Maxwell already showed that the centrifugal forces of that vortex would suffice completely (1) to 

explain the lateral pressure that the ether masses exerted upon each other while in their vortical 

motions that Faraday required, as well as the tensions along the force lines themselves (2). The 

force lines then seek to contract together around the conductor like extended rubber bands. If the 

vortices that lie on the outer surface were initially devoid of any energy then they would have to 

contract since, according to H. von Helmholtz, the product Q k  l of the vortex intensity (cross-

section Q times the vortex velocity k) with the length l is a constant. At the locations that become 

free, some of them will push together, while other ones push apart, in the way that the theory of 

vortices would indicate. Thus, purely-mechanical sources will imply the migration of energy 

through the field that takes place perpendicular to the surface of the conductor that Poynting 

showed would be included as an essential component of Maxwell’s theory, as well as the 

phenomenon of the advance of field energy. The dissipation of energy that takes place in the 

molecules of the surface of the conductor will be the guiding principle for the energy. A cable of 

purest copper at a temperature of – 273o will lose its capacity to transform energy of ordered 

motions into heat motion, since its molecules will no longer displace with respect to each other, so 

it will no longer serve as the guiding principle for electrical field energy; we say that “it no longer 

 
 (1) Cl. Maxwell, Phil. Mag. (4) 21, pp. 165, et seq.  

 (2) Cf., also L. Grätz, who showed that one could arrive at entirely-plausible values for the diameters of those 

molecular vortices, as well as for the density of the ether that is connected with them. Wied. Ann. 25 (1885), pp. 165. 
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conducts.” (Cf., the attempt of Cailletet and Bounty, Wroblewski, and Dewar, which came more 

or less close to showing that.) For ordinary solid or liquid conductors of galvanic currents, we shall 

point out only the final result that a transformation into heat motion will take place without giving 

any insight into the mechanism of that transformation, just as we cannot track the conversion of 

visible kinetic energy into heat energy in a collision. Above all, we will not see whether 

(luminescent) motions in the molecules will be excited, which are initially only intramolecular 

ones, essentially, and which will then be first converted into thermal motions, or whether the latter 

are the primary ones. The behavior of gases will give us information about that, and it shows that 

the former is the case. For dilute gases, under favorable conditions, that transformation of energy 

will produce light, and we can then observe those processes that make a body into a conductor, 

i.e., the guiding principle for field energy, directly. Here, I shall refer to the experiment that E. 

Wiedemann and myself have described (1). There, one will see, e.g., how a process of scattered 

radiation whose energy has a sufficient magnitude will draw the field lines over to locations 

whether they can never intersect themselves, according to the laws of electrostatics or those of the 

spreading of rapid electrical oscillations. 

 The fact that certain substances (above all, the conductors of the first class and electrolytes, to 

some degree) are capable of converting electromagnetic energy and attracting it can be connected 

with the property that ionization will take place in them under the influence of electric forces. For 

metals, the ease with which that can exist in the form of isolated atoms might affect that. That is 

the case when we already have free ions present from the outset. The capacity of the molecules to 

dissociate also seems to play a major role for gases (2). 

 

 

8. – Application to gas discharges. 

 

 It seems to me that the theory of electrical current that was developed here also tells us that we 

are forced to ascribe a certain direction to the electric current, which finds its expression, above 

all, in the phenomena of gas discharges between anodes and cathodes. 

 H. von Helmholtz has shown that a vortex ring will always advance in the sense in which its 

particles advanced through its opening and that a vortex ring that impinges upon a wall will not be 

reflected by it but will remain attached to it and spread across it (3). If we then create electric 

stresses at the ends of a discharge tube that is equipped with metallic electrodes then, from our 

basic assumption, and complete agreement with Maxwell, those stresses cannot be constructed at 

the individual points of the field at all without rotational motions, i.e., magnetic motions or 

vortices. (In Fitzgerald’s model, the previously-unstressed rubber bands in the dielectric can be 

put into a stressed state only when the individual rollers are rotated.) The time variation that 

produces polarization (i.e., displacement) in dielectrics is equal to the distribution of the rotation 

 
 (1) H. Ebert and E. Wiedemann, Wied. Ann. 50 (1893), pp. 1, and in particular, pp. 18, et seq.  

 (2) H. Ebert and E. Wiedemann, Wied. Ann. 50 (1893), pp. 22. Cf., also J. J. Thomson, Recent Researches in 

Electricity and Magnetism, Oxford, 1893, in particular, pps. 54 and 56. 

 (3) In that way, those vortex rings will differ essentially from elastic rings, with which they otherwise have many 

similarities. Moreover, it seems to me that this forms the basis for an essential difference between the purely-

kinematical theory that was presented here and those theories that consider the ether to be a more or less elastic 

medium, if not quasi-elastic. 
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around it (pp. 6). Therefore, a vortex ring will be formed that encircles each particle of the medium 

that is put into a stressed state by the source of electricity, and its plane will be perpendicular to 

the direction of the electric force. 

 In dilute gases, vortex rings can drift unperturbed over considerable distances from the anode 

to the cathode, accumulate on the cathode, and produce continuing motions, and even before the 

actual discharge begins. If the latter is triggered then different phenomena must take place at the 

anode and cathode when the gas pressure is sufficiently low that those continuing motions will 

remain for a long time and can draw together sufficiently-extended parts in their neighborhoods in 

during the process of their motion. If we rapidly apply electric forces whose magnitudes and 

directions alternate, e.g., Hertzian oscillations, then we will get two cathodes (1). The cathode does 

not need to consist of metal. Characteristic cathode phenomena will be produced at each wall (e.g., 

glass, sealing wax) that is exposed to the impacts of molecular vortices (2). That will explain a 

whole series of gas discharge phenomena on the basis of the same assumption that led to all other 

phenomena of electrodynamics [e.g., the appearance of continuing motions and accumulation 

phenomena that might lead to the heating or sputtering of the cathode material (3)], the influence 

of the supply of electricity, and a series of phenomena in a volume of space that is filled with dilute 

gas and exposed to a high-frequency electric field that were described by E. Wiedemann and 

myself. We will soon communicate further details regarding other phenomena that are connected 

with that and explain them in terms of the picture that was developed here. 

 

_____________ 

 

 

 We have occasionally called our derivation of the fundamental equations of electrodynamics a 

“mechanical” one. However, what we have mainly employed are the expressions for energy (2) 

and (4) on pps. 5 and 6. We were just as well able to introduce the so-called forces as mere factors 

from which the energy is composed. Our derivation would then be a purely “energetic” one, in the 

Ostwald sense, and as long as it could remain purely energetic, we would also not have to deal 

with the special nature of the processes and the intuitive interpretation of the energy factors. 

 In any event, that would seem to show that one could arrive at a complete, and therefore simple, 

interpretation of magnetic and electric phenomena by a rational implementation of the cyclic 

theory of them. 

 

 Erlangen, October 1893. 

 

____________ 

 

 

 
 (1) H. Ebert and E. Wiedemann, Wied. Ann. 50 (1893), pp. 33. 

 (2) Loc. cit., pp. 41.  

 (3) I shall go no further into the meaning of the electrical oscillations for the cathode phenomena at this point (cf., 

E. Wiedemann and H. Ebert, Sitzungsber. der Physikal.-med. Soc. zu Erlangen, Session on 14 Dec. 1891.) 


