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The transition from the (covariantly-generalized) MAKW. equation to the geometrical optics limit
is discussed in the context of general relativity by adgptie classical series expansion method to the case
of curved space-time. An arbitrarily-moving, ideal medisnalso taken into account, and a close formal
similarity between wave propagation in a moving mediumflat space-time and in an empty,
gravitationally-curved space-time is established by metiasnormal hyperbolic optical metric.

The geometrical optics approximation is, in the partic@lantext of relativistic
cosmology, an important tool for the relatively simplescription of the propagation of
light in gravitational fields [see, e.g.}%}]. However, from the standpoint of the
(covariantly-generalized) MAXWELLian theory, its basis strictly beneath the
corresponding basis for geometrical optics in the daksheory of media at rest in flat
spaces [for the latter, se€”( and the references cited there]. In this publicatiowill
be shown how one can generalize the series developwktite usual classical theory in
a natural way such that they can serve as the jatdic for geometrical optics in
general relativity, and at the same time, one willoafbtain a process for the
determination of higher approximations and the estimati@nror.

The generalization consists of:

a) Admitting arbitrary gravitational fields (non-flatetrics).
b) Allowing arbitrary, non-uniform motion for the martt
c) Not restricting the time-dependency of the fields.
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We hope to show that here, as in the other parts estretlynamics, the four-
dimensional covariant treatment, which emphasizeddwgmometric relations, is both
more general and more transparent than the older methods

One can also derive the laws of relativistic georo@troptics formally by studying
the characteristic discontinuities of MAXWELL'’s eqioats, which takes place at a
different level of generality’(" 9.

In the stationary case — i.e., whg, u® n (see section 1) are invariant under a one-
dimensional group with time-like trajectories — the lawat are formulated in section 3
will be quite similar to then classical ones; a FE&RMprinciple will then be true, as well

().
1. Assumptionsand basic equations

Let W be a (flat or curved) space-time manifold, andglgtbe its metric tensor, with
the signature (+ + +). An arbitrarily-moving medium has the four-veloaify u, u* = -
1. Let the medium be isotropic, transparent, and nspedsive, such that its
electromagnetic properties are characterized by asealar, dielectric constagtand a
corresponding permeability that can both be (continuously-differentiable) funasi@f
the space-time poinf.

Under these assumptions, the two electromagnetic bisded, [= (2B, 2A)) andHqp (=

(9, ©)] will satisfy MAXWELL'’s equations:

Flang = 0, H?®., =0 (1)
and the state equatiory:(

Hap w=¢ Fab Ub, Frab, Uc] = 4 Hiab Ug . (2)
The covariant derivative in (1), which is suggested byr&fers to the RIEMANNian
connection that is defined \W by gap .

GORDON {9 has remarked that eq, (2) can be simplified subsifntivhen one
introduces a second “optical metric”:

O =0apt (1-1 In?) Ua U, 3)

in addition to the metrigap , such that the former metric will be independent @&f th
motion and index of refractiom= ./ gy of the medium. Egs. (2) are equivalent to:

() A. LICHNEROWICZ, Ann. Mathematicd (1960), 1.

() P. M. QUAN, Contribution to the conference on theory of relativity in Royaumont 1959; sees
Théories Relativistes de la GravitatjdParis, 1962, pp. 165.

() B. HOFFMANN (ed.) Perspectives in Geometry and RelativBjoomington 1966; contribution by
J. EHLERS, pp. 127.

() Itis sometimes asserted that eq. (1) and (2) aie imabnly uniformly-moving media. That is false,
as the electron-statistical derivation of these eqnatshows: A. N. KAUFMANN, Ann. Phys. (New York)
18 (1962), 264.

(*% W. GORDON, Ann. Phys72 (1923), 421.



Ehlers — On the transition from wave optics to geoitedtoptics in general relativity. 3

Hab: (1 //j) Ifab, Ifab = gac @bchd- (4)

If we agree to regard,, as the metric oV from now on, and correspondingly define

the manipulation of indices and covariant derivativag] & we regardF,, as field
guantities that are independent of the metric then, thélabbreviation:

e'=(e/ ", (5)
we will get the basic equations:

Fabg =0,  €'F"):p=0, (6)
in place of (1), (2).

Since the optical metric is also normal hyperboliopt (6), the propagation law for
electromagnetic waves in moving media will be forgnallmost equivalent to those in a
vacuum — namely, up to the facel. The optical metric is generally not flat, even do
medium that is embedded in MINKOWSKI space.

Eqg. (6) are conformally invariant, like the vacuum MAXKWL equations. That
means that really it is not the RIEMANNian metgg, itself that is necessary for the
study of eq. (6), but only the conformal structure thatfinds inW [see f), contribution
by F. A. E. PIRANI and A. SCHILD, pp. 291].

Egs. (6) can be combined into one equation by means odaimplex, self-dual
bivector:

G=e'(F+iF), (G =0), (7
namely:
O0G+0udG=0. (8)

In this, [0 means the covariant differentiation operator, andtasdggests the contraction
over the neighboring indicesF is the (real) bivector that is dual t§ and ais the
complex conjugate ai.

2. Locally-approximate plane waves

In order to study the transition to geometrical optws, consider one-parameter
familiesG(x; &) of bivector fields t*) of the form:

G(X; £) — eiS(x)/sigv KV(X)+ e—iS( @/si‘gv |17( )), (9)
 Os#o. _ (10)

In this, S(X) means a real scalar field, tKg(x) andL,(x) are complex-self-dual [cf., eq.
(7)] bivector fields, an@ is a parameter that varies over an interval€<<e(x).

(Y From now on, the dielectric constant will no longeter explicitly, and we shall taketo be the
symbol of a “small” parameter.
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The Ansatz (9) should express the idea that for acairitly smallg, the fieldsG(x,
&) will be locally-approximate plane waves with the (dpvarying) phaseS / ¢,
propagation vector 14 IS and the (slowly-varying) amplitudég + e Ky + ..., Lo + €
L+ ...

Due to the second term in (8), both series are nageissgd); one needs both terms,
evenin vacuo(u = 0), if one would like to consider all polarizationtsgafrom the outset.

Replacing (9) with (8) formally yields a series of tewhshe type:

eiS/s

—iS/e

}EI&J’ (function ofx, v=-1,01,2, ...
e

We would like to let {} denote the two equations that arise when one setfa¢tar's of

& equal to zero.

If the two series in (9) converge point-wise, and theesdin W) that is point-wise
differentiated with respect toconverges uniformly in a neighborhood then the system o
equation pairs\{} will be equivalent to eq. (8). Namely, since the egiconverge, it will
follow from:

eiS/‘s z gv % — e—iS/s z gv b/
v=-1 v=-1
that:

Igirjg(ezisls a_]_) - b—l ’

which implies thab 1 = b_; = 0 forS# 0, and correspondingly yields the vanishing of all
terms by induction.
We now seek the equations that would result froengquation-pair{y. They look
like:
OSKo=0, 0OSO,=0, £ 1}
0K, +i0S[K,,, +0Oull, =0,

O, -i0OSL,,, +OulK, =0, v=0,1,2,..). 0

It follows from {- 1}, using (10), in a well-known way [see, e.d?),(chap. IX], that:
The hypersurfaceS= const. will be null hypersurfaces:

(09°=0 (11)

(viz., theeikonalequation), anto, Lo are null bivectors to the eigenvector:
k=0S (12)

The consequences of {L} are exhausted with that.

(*?) J. L. SYNGE Relativity: The Special Thegnpmsterdam, 1956.
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Let a solutiorS of (11) be given. The null lines that belong to theteefield k then
define a normal, geodetic congruence — viz., the ray congeuefS. From (11) and
(12),k is constant along the rays:

k Ik = 0. (13)

We extendk to a null vierbein {, t, k, m} that is normalized such that one then has:
tf=kOn=1, (14)

and all remaining scalar products of the bein-vectors am@ zLett andm, like k, be
parallel-displaced along the rays:
k@t =k IIm=0. (15)

The expansio® and shearingr of the ray congruence will then be given by:

©=10[k=10S =t Ik, (16)
o= T IKIT, (17)

and their geometric and optical interpretations are-krewn [see., e.g.™J)].
The null-vierbein {, t, k, m} determines a basis\ U, M} of the linear space of
complex-self-dual bivectors, namelyp [{ Q)an = 2 pra &, cf. (%), Appendix 4]:

V=k"I, U=mn~t, M=l t+kAm. (18)

Due to (13) and (15), these bivectors will be constlmtgathe rays; the scalars that
appear in the developments:
K, =aV+hU+c M,
AT (19)
L =aV+iu+¢M

will then determine the way that the amplitu#gsL, vary along the rays completely.
With the use of the given auxiliary quantities, the nnfation abouto, Lo that is
contained in the equations {L} can be expressed as:

bO:b('):CO:b('):O_ (20)
With these preparations, we turn to the equations {0}, {1}, We substitute the

development (19) intof and multiply the resulting vector equations by the ssdlat ,
m, k, respectively. Equations then arise that take thevialg form [let ( F=k (0()]:

a+0a=Alg. §,¢, a
b1 = Bla, R, ¢.q. ¢l {vt

(* P. JORDAN, J. EHLERS, and R. K. SACHS, Akad. Wist. Mainz Abhandl. Math.-Nat. KI. No. 1
(1961).
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o =Cla, b, 6.3, ¢, v
¢,+200,= D[E,T]. 7R

In these equation#, B, C, D are linear forms in the given argument functions duedt t
gradients whose coefficients are constructed fronb#sis vectors, t, k, m, and their

!

first derivatives. Corresponding equations are validgjarly ,,, C .., G

+1' Zv+lr vt
Due to (20), {0k} is fulfilled identically.
These equations can be solved in succession by theifod process:
One gives an initial hypersurfa® that cuts each ray of the congruence precisely

once (see Fig. 1).

S=const.

Figure 1.

In addition, one gives the values of the amplituales, forv=0, 1, ... orl. Due
to (20), equations {@}, i.e.:
a8, +OQa =0, 8 +0a, =0, (21)

determineay and a, everywhere in the domain that is filled by the rays.

If a, ..., ¢, are known already then the equations{will determine by, ..., ¢ ,;
everywhere. In additionMn} should be employed to determing; and ¢,,, on%, and

thus the equation-pairv{l k} will allow one to calculatec.1, C,,, everywhere.
Ultimately, {v + 1t} is coupled with the initial valuea,1, a,,, .

If the series (9) that is defined by the coefficiehtsstdetermined converges, and the
term-wise differentiated series is locally unifornggnvergent then, by constructio@,
will satisfy the equation:

OO0G+0ull =AKk, (22)

in which A is a scalar that vanishes alo®lg (In fact,{v n} is satisfied only on2l.)
However, it follows from (22) that:

OOAK =4 +204= Au, (23)
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soAis indeed equal to zero everywhere, &tulfills MAXWELL'’s equations. (Thec,
thus satisfy the equations {1} everywhere, in such a way that the equation¥}{are
superfluous.)

Even when the series does not converge, one might eké¢dbr sufficiently smalé
the partial sums in (9) will describe MAXWELL fieldpproximately.

3. Thelowest geometrical optics approximation

If a solutionG(x; &) of the form (9) (or an approximate solution in the farha finite
partial sum) is given then for sufficiently small

will be an arbitrarily good approximation f&(x; &).

Due to (19), (20), the behavior of (24) is determined cetafyl by the eikonal
equation (11) and the equations of propagation (15) and (24 Idtr denote a positive
solution of:

f =Or (25)

such that along a ray will vary like the cross-section of a thin ray bunthat surrounds
the originally-stated ray}) then we can write the field strength tenBdhat corresponds
to (24) in the form:

F=(@/r) (ul &k R (€% “[a., t+a T)), (26)

wherea., a-are now complex functions (whose amplitudes have pesitnd negative
helicities) that are constant along the rays.

The energy-impulse tensdr = — F OF that formally belong to (26) — which is
constructed as if the optical metric were the “true'trmogand the field were a vacuum
field — is:

T=kOk(@W2r3) Jule Qla.P+|a P+ 2% [a: a 8°9). (27)

This tensor (precisely) satisfies the “conservalaowi’

OO elu T)=0. (28)

The equations that were given here include the combined geatoal of the laws of
classical geometrical optics of media at rest andrelaivistic geometric optics in the
gravitational vacuum that was announced in the introduction

The last term in (27) drops out when one averages olightaperiod or makes the
transition to a polarization mixture, and from (27) 488), a geometrical-optical field
will behave energetically like an incoherent photon gah the “four-velocity’k and a
density that one can read off from (27).
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After one specializes eq. (26) to a vacuum, in which onkgries along the rays, a
gravitational field will not change the polarization teteof a ray (the degree of
polarization of a mixture, resp.).

From (4), the MINKOWSKI energy-impulse tensor:

Tua” = Fac H® = 2 & Feg H (29)
is connected with the tensor (27) thus:
Tab = /J TMab.

For any observer with the four-velocity one will then have? Tys” ~ K°, in such a way
that the ray velocity will be:

t/K=[¢x 9]/ (¢ D). (30)

The result (30) rests upon the fact that the field prapagalong the geodetic null-lines
of the optical metric, which is a statement thastfibecomes meaningful for laterally-
bounded ray bundles (and not for plane waves, stripéhpling). Whether or ndiy’ is
the physically-correct energy-impulse tensor is entirgklevant to (30); indeed, that
difficult question can hardly be answered adequately thighprimitive model of matter
that was chosen here. (On that, conf&r @ppendix B. This opinion contradicts that of
M. von Laue and W. Pauli; confel, Supplementary Note 11.)

For the observer above, one will also have:

Tab Vb ~ Sa ~ Tmab Vb,

So the spatial part cgf‘b Sp — viz., the wave normal — will be proportionalsox 5.

In conclusion, without going into the higher-order apprations, we would like to
give:
bi=ia,u -2 oga (31)

as an example of one of the equationg}{OFrom (18) and (19), the appearance &f-a
term in (9) means a partial “continuous reflection” of thancipal wave” (26). From
(31), the magnitude df; depends upon just ando. Similarly, the remaining equations
{v} show that the corrections that relate to (26) w#l become larger the faster that
varies in space-time and the more strongly that tlaselnypersurfaceS = const. are
curved, which is to be expected physically.

() V. L. GINZBURG, The Propagation of Electromagnetic Waves in PlasiNasv York, 1964.
(*) W. PAULI, Theory of RelativityLondon, 1958.



