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can be derived from the Schrödinger equation by a brief elementary calculation without leaving anything 
out, and for a small wave packet that stays small (with m of order 1 g), that says that the acceleration of its 
position coordinates will come about in the sense of Newton’s equations of motion with a position-
dependent force − ∂V / ∂x . 
 
 
 It is desirable to be able to answer the following question in the most elementary way 
that is possible: How does one see Newton’s equations of classical mechanics from the 
standpoint of quantum mechanics?  In a whole series of recent publications, it has been, 
in essence, clarified completely that classical mechanics remains valid for macroscopic 
processes to a high degree of approximation, and in what way that would be true (1).  
However, please permit me to prove briefly a special elementary relation that follows 
exactly from Schrödinger’s equation without leaving anything out, because it will 
perhaps make the connection between wave mechanics and classical mechanics even 
easier to survey. 
 The formulas will be presented for the case of a single degree of freedom, and thus 
for the following form of the Schrödinger equation: 
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 (1) Louis de Broglie, Thèse, 1924; Journ. de phys. et le Rad. (6) 7 (1926), 1, 32; C. R. 180 (1925), 498; 
ibid. 183 (1926), 272. – L. Brillouin , Journ. de phys. et le Rad. 7 (1926), 353. – E. Schrödinger, 
Naturwiss. 14 (1926), 664. – P. Debye, Phys. Zeit. 28 (1927), 170. – W. Heisenberg, Zeit. Phys. 43 
(1927), 172. – E. H. Kennard, Zeit. Phys. 44 (1927), 326. 
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Then, define (1): 
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and calculate dQ / dt and dP / dt with the use of (1) and (2).  By substitution and partial 
integration, one will get immediately (and with nothing left out): 
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However, equation (5) obviously says: Any time that the width of the (probability) wave 
packet ΨΨ* is relatively small (in comparison to macroscopic distances), the acceleration 
(of the center of mass Q) of the wave packet will behave as it would in Newton’s 

equations under the force 
V

x

∂ − ∂ 
 “that acts upon the position of the wave packet.” 

 
 Remarks:  The gradual dissipation of a wave packet was discussed thoroughly by 
Heisenberg, loc. cit..  His calculation for the example of a force-free motion of a material 
point in a one-dimensional space can perhaps be made more familiar with the help of its 
close relationship to known calculations in heat conduction.  For V(x) = 0, Schrödinger’s 
equation has the structure of the heat equation: 
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If one substitutes the general solution (see, e.g., B. Riemann-Weber, Bd. II): 
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in it for the starting state: 
 
                                                
 (1) If one develops Ψ in eigenfunctions: Ψ = /n
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Ψ(0, ξ) = 

2

24

t
i

a tC e
µξ− +

,     (9) 
so 

(ΨΨ*)t = 0 = C2 ⋅⋅⋅⋅ 
2

2

t

e ω
−

     (10) 
 
(µ is an arbitrary real constant), then one will find, just like Heisenberg, that the later 
position and distribution of the “wave packet” will be: 
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and therefore a displacement of the wave packet with the velocity / mµℏ  and an 

increasing dissipation in time.  A doubling of the initial width (i.e., Ω2 = 4ω2) will then 
come about after a time: 
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For m = 1 g, ω = 10−3 cm, one will have T = 1021 sec; by contrast, for m = 1.7 × 10−24 g 
and ω = 10−8 cm, one will have T = 10−13 sec! 
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