“Uber eine naheliegende Erganzung des Fundamentes der atigenRelativititstheorie,” Sitz. preuss.
Akad. Wiss. Math.-Phys. Kl. (1921), 261-264.
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As is known, H. WEYL sought to extend the general thedrelativity by adding a
further invariance condition, and in that way he adia a theory that has already
attracted great interest due to its bold and consistatitematical structure. That theory
is based upon two ideas essentially:

a) In general relativity, theatios of the gravitational potential componegis have
significantly more fundamental physical meaning that abmponentsy,, themselves.
The totality of all world-directions that point fromveorld-point and from which light
signals start — viz., the light-cone — seems to bengivenediately with the space-time
continuum. However, that light-cone is determined leyetuation:

ds® = g, dx, dx, = 0,

in which only the ratios of thg,, occur. Above all, only the ratios of thyg, enter into
the electromagnetic equations of the vacuum. By csmtifae quantityls, which is first
determined by the,, themselves, does not express merely a property opteegime
continuum, since one requires a material entity (@eclock) in order to measure those
guantities. For that reason, one must ask the que§tamthe theory of relativity remain
unchanged on the basis of the assumption that ittisheoquantityds itself that has an
invariant meaning, but only tleguation ds* = 0?

b) WEYL's second notion relates to a method of gdizémg the RIEMANNian
metric, as well as to the physical meaning of the newntifiess @, that appear in that
generalization. The idea can be sketched out in perhapway: A metric assumes the
translation of line segments (i.e., yardsticks). RMENian geometry further assumes
that the behavior (i.e., length) of a yardstick at lmgation is independent of the manner
by which one arrived at that location. That then dostthe two assumptions:

I. The existence of translatable yardsticks.
II. The independence of lengths from the path of tatios.
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WEYL'’s generalization of the RIEMANNian metric keepsut drops Il. He allows the
measured length of a yardstick to depend upon an integral:

[ ax,

that is extended along the path of displacement and digrdgpends upon that path, and
in which the @, are spatial functions that accordingly determine théerice In the
physical interpretation of the theory, th@ will then be identified with the
electromagnetic potentials.

With all due admiration for the unity and beauty of WE¥line of reasoning, it still
seems to me that it does not stand up to the test oicphysality. We know of nothing
in nature that would be useful for the purpose of measutenten its relative extension
depends upon its history. The straightest line that WEXtoduced, as well as the
electrical potentials that appear in it, along with theaiemg equations of WEYL'’s
theory, do not appear to possess any direct physical iatation either.

On the other hand, it seems to me that WEYL'’s ide& wWas proposed in a) will
become more pleasing and natural if one cannot also kr@veri whether it might lead
to a useful physical theory. Given that state of effadne can ask whether or not one
will arrive at a clear theory when one drops not onguagption Il, with WEYL, but also
assumption I, from the outset. Now, in what follovisshall be shown that one will
undoubtedly arrive at a theory in which one starts froenehy the invariant meaning of
the equation:

ds® = gy dx, dx, = 0

without making use of the concept of distadser — physically speaking — the concepts
of yardstick and chronograph.

In my endeavors to exhibit such a theory, | was affelst supported by my
colleague WIRTINGER in Vienna. | asked him whethere¢heas a generalization of the
equation of the geodetic line in which only the ratioshefd,, play a role. He answered
me in the following way:

We understand a “RIEMANN tensor” or “RIEMANN invaridrib mean a tensor
(invariant, resp.) under arbitrary point transformatie®se invariance character is true
under the assumption of the invariancedst = g, dx, dx, . We further understand a
“WEYL tensor (“WEYL invariant”, resp.) of weighh to mean a RIEMANN tensor
(invariant, resp.) with the following additional propertyhe value of the tensor
component (invariant, resp.) will be multiplied B) when one replaces th®,, with
A guw, in which A is an arbitrary function of the coordinates. Thatdition can be
expressed symbolically by the equation:

T(A9)=AT(9).

Now, if J is WEYL invariant of weight — 1 that depends upon only ghgand their
derivatives then:
do? = J gy dx, dx, (1)
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will be an invariant of weight O; i.e., an invariantttd@pends upon only the ratios of the
gwv- The desired generalization of the geodetic line@lthen given by the equation:

&{[da}=o0. )

Naturally, the possibility of solving this equation assutiesexistence of a WEYL
invariant of the stated kind. WEYL’s investigations pointkd way to such a thing.
Namely, he showed that the tensor:

Hikim = Rikim — d—]_'z(gil Rim + Gkm Ril = Oim Ra = 9 Rim) + (Gt Okm — Oim O) R 3)

is a WEYL tensor of weight 1. In thiRum is the RIEMANN curvature tensoRim =
g'R,,, is the second-rank tensor that emerges from contgatitn latter onceR is the
scalar that arises from one more contraction, girglthe dimension of the space. That

immediately implies that: _
H = Higm HY™ 4)

is a WEYL scalar of weight — 2. One then has that:

J=JH (5)

is a WEYL invariant of weight — 1. This result, in corgtian with (1) and (2), implies a
generalization of the geodetic line according to the atktthat WIRTINGER gave.
Naturally, the question of whethéris the only WEYL invariant of weight — 1 in which
no derivatives of the,, higher than the second are present has great impertanc
assessing the meaning of that result.

On the grounds of the developments up to now, it is easy to assign a WEYL
tensor to each RIEMANN tensor, and in that way to lekiflaws of nature in the form of
differential equations that no longer depend upon thesrafitheg,, . If we set:

9, =J 0w
then:
do? = g, dx, dx,

will be an invariant that now depends upon only the raifaheg,, . All RIEMANN
tensors that are constructed fralmr as fundamental invariants in the usual way will be
WEYL tensors of weight O as functions of thg and their derivatives. Symbolically,
we express that fact as follows:Tif(g) is a RIEMANN tensor that can depend upon not
only theg,, and their derivatives, but also upon other quantitieg (ea componentg,,

of the electromagnetic field) theh(g') will be a WEYL tensor of weight O when it is
considered to be a function of tigg, and their derivatives. Every law of nature in
general relativity that has the forfng) = 0 will then correspond to a laWw(g') = 0 that
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involves only the ratios of thg,, . Since a factor remains arbitrary in the , it will be
possible to choose it in such a way that one has:

J=J, (6)

in which Jo means a constantg,, will then be equal t@,,, up to a constant factor, and
the law of nature will once more assume the form:

T@=0

in the new theory. The whole innovation in comparismthe original form of general
relativity then consists of the addition of the diffietial equation (6) that thg,, must
satisfy.

Here, we have only proposed a logical possibility vehpsblication might or might
not be of use to physics. Whether one or the otherprases to be true must come from
further investigations, just like the answer to the qoastf whether other invariants

besides the WEYL invariaidt= .,/ K should come under consideration.
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