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Introduction 1): Brief report on semi-vectors and semi-tensors. 2) 
 

 In this paper, the most necessary facts from the theory of semi-vectors shall be 
introduced, to the extent that is required for the understanding of the reader.  
Corresponding to the scope of the previous paper, we restrict ourselves to the space of 
special relativity.  By the introduction of rectangular Cartesian coordinates (g11 = g22 = 
g33 = − g44 = 1, the rest of the gik = 0), we define certain structural tensors cστ , σ, τ = 1, 
…, 4: 

cστ  = c gστ + vστ ,      (1) 
 
where the skew-symmetric vστ  satisfies the defining v-relation 3): 
 

                                                
 1) “Semivektoren und Spinoren,” Sitzber. der Preuss. Akad. 1932. 
 2) We should also be thankful  here for the fact that we were prompted to carry out this investigation by 
the urgent request of EHRENFEST that we look for a logically simple and transparent analysis of spinors. 
 3) ηστµν is anti-symmetric in the indices and η1234 = 1.  

  Tστµν  = g ηστµν  has a tensor character and one has Tστµν  = 
1

g
ηστµν . 
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vστ  = − 1
2 g ηστµν v

µν. g = 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1−

.   (1′) 

 

Since g  = i, from (1′), the vστ are complex tensors, and, as (1′) further shows, 

completely determined by three of their components (e.g., v12, v13, v14).  The most general 
cστ  that are defined by (1) thus include four complex constants. 
 Since the cστ are complex, along with them, and with an equal significance to them, 
the conjugate quantities cστ also appear, which are, however, different from the quantities 

cστ , because, from (1′), vστ  satisfies the relation: 

 

vστ  = 1
2 g vµν

στµνη   ( g  = − g  !).  (1″) 
 
 Now, if two c’s, cστ and cστ′ , are given then there exists the fundamental commutation 

law: 
c cτ

στ ρ
′ = c cτ

στ ρ′  .    (2) 

 
 However, the content of the relation (2) goes further.  If cστ′ = c′ gστ + vστ′ is the most 

general c tensor then the totality of all tensors cστ for which (2) is true − so they all 
“commute” with the most general c-tensor − coincides with the totality of just these 
tensors. 
 However, it follows from this that the composition c cτ

στ ρ
′  of two c’s (cστ ,cστ′ ) is 

again a c-tensor.  From (1), one recognizes that, along with cστ , cστ′ = cτσ  is also a c-

tensor.  Thus, along with cστ , c cσ
στ ρ  is also a c-tensor, and due to the symmetry of these 

quantities in τ and σ, from (1), one must have: 
 

c cσ
στ ρ  = Φ gτρ . 

 
 By summation (τ = ρ), one calculates Φ and obtains the important formula: 
 

c cσ
στ ρ = ( )1

4 c c gαβ
αβ τρ .    (3) 

 
 If | cστ | = ∆ is the determinant of the cστ  then (3) gives: 
 

∆2 = ( )4
1
4 c cαβ

αβ .     (4) 
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 The vanishing of the determinant | cαβ | − i.e., the “degeneracy of the cαβ” – will then 
also be characterized by cαβ c

αβ = 0 1). 
 If one considers the cαβ to be a complex transformation matrix then, from (3), it 
represents a rotation with a simultaneous dilatation 2).  This suggests that we examine the 
following “product construction”: 

aσρ = c cτ
στ ρ .      (5) 

 
 Due to (2), aσρ is real (aσρ = aσρ); if one further sets cαβ cαβ = 4Φ then it follows 

immediately from (2), (3), and (5) that: 
 

aσµ aσ
ν = 4Φ Φ gµν .     (5′) 

 
 When regarded as a transformation matrix, aσρ means a real LORENTZ rotation with 
a simultaneous dilatation.  If Φ = 1 then cσρ is a complex pure LORENTZ rotation and 
aσρ is a real one.  Conversely, one also shows that any real LORENTZ rotation aσρ , when 
it can be generated from the identity gσρ by real infinitesimals (we then call it a proper 
rotation) has a representation (5).  This representation is unique, up to the case aσρ  = (− 
cστ) ( )cτ

ρ− , which, from (5), is trivial when cστ is also a LORENTZ rotation. 

 The association aσρ  �  cσρ exists between the elements aσρ  of the group of proper 

LORENTZ rotations and the elements cσρ of the LORENTZ rotations (cαβ c
αβ = 4), which 

is mediated by (5). 
 However, this association is, as one again sees from (2), an isomorphism, and this 
represents the mathematical basis for the introduction of semi-vectors and tensors. 
 If one performs the LORENTZ transformation: 
 

ix′  = ai
k xk       (6) 

 
of Cartesian coordinates then, by definition, a semi-vector “of the first kind” αρ  

transforms according to 3): 

αρ ′  = c β
α βρ ,       (6′) 

 
and a semi-vector “of the second kind” ασ  transforms according to: 

 

ασ ′  = c β
α β

σ .       (6″) 

 

                                                

 1) The exact relation between ∆ and cαβ c
αβ is: (4′)    ∆ = − ( )2

1
4
c cαβ

αβ . 

 2) We speak of it briefly as a “generalized” LORENTZ transformation.  
 3) A singly overbarred (Greek) index characterizes a semi-quantity of the first kind, while the doubly 
overbarred index characterizes a semi-quantity of the second kind. 
 Later on, whenever the character of an index has been established (as a spatial index or semi-index of the 
first or second kind), we shall omit the inconvenient overbars. 
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 Therefore, the relation (5) exists between the ai
k and the LORENTZ transformations 

cα
β. 

 The conjugate quantity to a semi-vector of one kind is, by definition, a semi-vector of 
the other kind. 
 If Cστ is any c-tensor and cστ is a LORENTZ-c (cαβ c

αβ = 4) then, from (3), it follows 
from: 

C cτ
στ ρ  = c Cτ

στ ρ ,     (2′) 

after multiplying with c ρ
ν , that: 

Cσν = c c Cτ ρ
σ ν τρ .     (7) 

 
 A comparison with (6′) shows that every Cστ  quantity, as a semi-tensor of the first 
kind, is numerically invariant.  With our semi-index notation, we can also say that briefly 
as: Cσ τ  is numerically invariant. 

 In particular, this is true for gσ τ  (cστ , the transformation matrix of the semi-vector, is 

indeed a LORENTZ transformation). 
 One likewise shows that all Cσ τ  − in particular, gσ τ − are numerically invariant. 

 (The “raising” and “lowering” of semi-indices is done with the metric tensor gστ = 
gσ τ  = gσ τ  of R4.) 

 Along with the numerical invariance of these second-rank tensors, one has the 
fundamental third-rank E tensor rE σ τ , which depends upon four constants a(t) , for an 
example of the simplest such tensor. 
 Its form is: 
 

r s t
E  = grs a(t) + grt a(s) − gst a(r) − g ηrstw a

(w), a(w) = gwt a(t) .  (8) 

 
 If the a(t) are real then (8) gives: 
 

r s t
E = 

r s t
E  (real a(t)).    (9) 

 
 In the present paper, we will examine the most general linear first order system of 
equations for two semi-vectors σψ  and σχ : 

 

,

,

( )

( )

r
rr

r
r r

E i c

E i c

σ τ ν σ
νρ ρ

σ τ ρν
σ σ ν

χ εχ ϕ ψ

ψ εψ ϕ χ∗

− =


− = − 

    (10) 

 
(E, with the constants a(t), E*, with the constants ( )ta∗ ) that is produced by variation of the 

most general HAMILTON function that comes into consideration (§ 1).  In (10), ϕν is the 
electromagnetic potential vector. 
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§ 1.  Hamilton function and field equations. 
 

 The Hamilton scalar of the total field is of the form: 
 

H = H1 + H2 + H3 , 
 
in which H1 means the metric curvature scalar, H2, the electromagnetic field scalar 
(ϕαβ ϕαβ), and H3 means a scalar that we must look for that depends upon the 
electromagnetic potential vector ϕr and two semi-vectors σψ  and σχ .  Thus, H3 proves to 

be determined, by and large, by two conditions: 
 a. It shall be real. 
 b. It shall include the aforementioned quantities in such a way that the resulting 
system of equations becomes linear and of first order relative to the semi-quantities and 
essentially depends upon only the anti-symmetric derivatives of the ϕr (ϕ-condition). 
 These two conditions then lead to the following form for H3, in which we temporarily 
restrict ourselves to the special theory of relativity.  (From the results of our previous 
paper, this restriction is not essential, since it was shown there how one had to construct 
the general-relativistic expressions.)  If A, B are real constants then it is: 
 

3 , ,

, ,

, ,

, ,

( ) ( )

[ ( ) ( ) ]

( ) ( )

[ ( ) ( ) ]

.

i i
i i i i

i i
i i i i

i i
i i i i

i i
i i i i

H E i E i

iA E i E i

E i E i

iB E i E i

C C

σ σ τ σ σ τ
στ στ

σ σ τ σ σ τ
στ στ

σ σ τ σ σ τ
στ στ

σ σ τ σ σ τ
στ στ

σ τ σ τ
στ στ

ψ εψ ϕ ψ ψ εψ ϕ ψ
ψ εψ ϕ ψ ψ εψ ϕ ψ
χ εχ ϕ χ χ εχ ϕ χ
χ εχ ϕ χ χ εχ ϕ χ

ψ χ ψ χ

∗ ∗

∗ ∗

= − + +
+ − − + + + + − 
+ + − −

+ + 

  (1) 

 
 It is therefore important to remark that the “ϕ-condition” (i.e., the invariance of H3 

whenever ϕi, ψσ, χσ are replaced with ϕi +
1

ix

α
ε

∂
∂

, ψσ eiα, χσ eiα in sequence) involves the 

introduction of only a single constant ε. 
 If a(t) = αt + iβt ( ( )ta∗ = t tiα β∗ ∗+ , resp.) is the system of constants in E (E*, resp.) then 

one has: 
iEστ  = ( ) ( )i iE iEστ στα β+  and iEστ  = ( ) ( )i iE iEτσ τσα β− . 

 
The first two rows of (1) then read: 
 
            , ,( )( ) ( )( )i i

i i i iE i E iσ σ τ σ σ τ
στ στα ψ εψ ϕ ψ α ψ εψ ϕ ψ− + +  

    +     , ,[ ( )( ) ( )( ) ]i i
i i i iE i E iσ σ τ σ σ τ

στ στβ ψ εψ ϕ ψ β ψ εψ ϕ ψ− − +  i 

    + , ,[ ( )( ) ( )( ) ]i i
i i i iiA E i E iσ σ τ σ σ τ

στ στα ψ εψ ϕ ψ α ψ εψ ϕ ψ− − +  

    −  , ,[ ( )( ) ( )( ) ]i i
i i i iA E i E iσ σ τ σ σ τ

στ στβ ψ εψ ϕ ψ β ψ εψ ϕ ψ− + +  
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Under variation, the first and last row produce nothing, and can therefore be omitted, 
while the other two rows, when one sets: 
 

γt = βt + Aαt, 
yield: 

, ,[ ( )( ) ( ) ]i i
i i i ii E i E iσ σ τ σ σ τ

στ στγ ψ εψ ϕ ψ ψ εψ ϕ ψ− − + . 

 
 Therefore, with no loss of generality, one can choose the additional Hamilton term to 
be (up to the factor i): 

, ,

, ,

( ) ( )

( ) ( )

,

i i
i i i i

i i
i i i i

E i E i

E i E i

C C

σ σ τ σ τ τ
στ στ

σ σ τ σ τ τ
στ στ

σ τ σ τ
στ στ

ψ εψ ϕ ψ ψ ψ εψ ϕ
χ εχ ϕ χ χ χ εχ ϕ

ψ χ ψ χ

∗ ∗

− − +
− + + − 
+ − 

  (2) 

 
instead of (1), in which the constants in E (E*, resp.) are now real; in the sequel, they will 
be again denoted by a and a*.  By varying the ψ and χ in (2), we obtain the “Dirac 
equations” 1): 

,

,

( ) ,

( ) .

i
i i

i
i i

E i C

E i C

σ σ σ
στ τσ

τ τ τ
στ τσ

ψ εψ ϕ χ
χ εχ ϕ ψ∗

− = + 
− = − 

   (3) 

 
 One obtains the current vector from (2) by varying ϕi in the form: 
 

Ji = i iE Eσ τ σ τ
στ στψ ψ χ χ∗+ .    (4) 

 As it must be, one has: 
Ji

,i = 0      (5) 
as a consequence of the system (3). 
 
 

§ 2.  The Dirac equations. 
 

 The system § 1, (3): 

,

,

( ) ,

( ) ,

i
i i

i
i i

E i C

E i C

στ τρ
σ σ ρ

στ ρσ
τ τ ρ

ψ εψ ϕ χ
χ εχ ϕ ψ∗

− = + 
− = − 

    (1) 

 
resp., has, along with the constant ε, the eight real constants ai, ia∗  in the E, and four 

more complex constants (C11, C12, C13, C14) that fix the Cρσ on the right-hand sides.  
Along with ε, there are 16 real constants, in all. 
 However, we can reduce this number of constants substantially, if we make use of the 
possibility that, instead of the quantities χτ , we can introduce quantities νχ  by a non-

singular transformation c ν
τ : 

                                                
 1) In these equations, it is essential that the transformation invariant factor C enter on the right-hand 
side.  
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χτ = c ν
τ νχ ,      (2) 

 
and, instead of the quantities ψσ , we can introduce the quantities µψ by a non-singular 

transformation c µ
σ′ : 

ψσ  = c µ
σ µψ′  .     (3) 

 
 A glance at the Hamilton function § 1, (2) shows that E therefore goes to E

ɶ
: 

 
iE µν
ɶ

= iE c cσ τ
στ µ ν′ ,    (4) 

and E* goes to E∗

ɶ
: 

iE µν
∗

ɶ
= iE c cσ τ

στ µ ν
∗ , 1).   (4′) 

 
 Which transformations of the quantities a into a

ɶ
 (a* into a∗

ɶ
, resp.) will be realized 

by such an E transformation (4) [(4′), resp.)]? 
 If one sets i¸µ, τ equal to the values 1, 1, 1; 2, 2, 2,; 3, 3, 3, and 4, 4, 4 in succession 
in the relation: 

iE τ
µ

′ = Eiστ cµσ     (5) 

then one obtains immediately: 

ia′  = cik a
k,     (5′) 

 
where a, a′ are the values of the constants in E, E′.  Likewise, it follows from the relation: 
 

"iE σ
ν  = Eiστ′ cντ ′     (6) 

that there is a relation: 

ia′′  = k
ikc a ′ .     (6′) 

 Thus, one has: 
"iEσν  = Eiµτ cσµ  cντ ,    (7) 

along with: 

ia′′  = k j
ik jc c a .     (7′) 

 
 A transformation (7) thus induces a “generalized” real LORENTZ transformation 
relative to the constants a in the E. 
 We can therefore speak of a “pseudo-vector” (ai), instead of a system of four 
constants (ai), so we think about this situation. 
 Likewise, it seems preferable to speak of space-like and time-like Eiστ, and indeed, E 
might be called space-like (time-like, resp.) when (ai) is space-like (time-like, resp.).  We 
also speak of a singular E when the corresponding pseudo-vector is a null vector (ai a

i = 
0).  Since we are dealing with a proper (generalized) LORENTZ transformation in (7′), 

                                                
 1) Naturally, E

ɶ
 is again numerically invariant, so it is an E quantity of the same structure. 
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we can bring a space-like E into the form Eiστ (1, 0, 0, 0), (ai = δ i1) [Eiστ (0, 0, 0, −1) = − 
Eiστ (0, 0, 0, 1), (ai = δ i4), resp.] by a cσµ transformation (7) 1).  In this paper, we shall 
omit the singular E. 
 Thus, one must distinguish the main cases: 
   I. E and E* are space-like in (2), § 1. 
  II.    “    “ time-like    “    “. 
 III. E is space-like, E* is time-like. 
 
 In this paper, we shall treat the case (I) exclusively, but at various points we shall 
discuss the analogous examinations of cases II and III, and why their physical meaning 
does not come into question for us. 
 
 

§ 3.  The main case: E and E* are space-like. 
First reduction. 

 
 The system (1), § 2, now reads: 
 

,

,

( ) ,

( ) ,

r
r r

r
r r

E i C

E i C

στ τρ
σ σ ρ

στ ρσ
τ τ ρ

ψ εψ ϕ χ
χ εχ ϕ ψ∗

− = + 
− = − 

    (1) 

 
where the two E are equal, and in fact, equal to E(1, 0, 0, 0), so the system includes, 
along with the constant ε, only the four mutually independent complex constants (C11, 
C22, C33, C44). 
 A transformation of the ψσ into σψ : 

 

σψ = cσ
µ ψµ      (2) 

 
gives, as one sees immediately from (1), or from the Hamilton function (2), § 1, new 
values for the first Erστ in (1) (for Cρσ, resp.): 
 

rEµν
ɶ

 = rE c cσ τ
στ µ ν ,     (3) 

 
Cµτ
ɶ

= Cστ c
σ

µ ,      (3′) 
 

while the Erστ in the second system in (1) remains unchanged. 
 The new a

ɶ
 in E
ɶ

 are calculated from (3) as in § 2, (7), (7′): 
 

ra = k r j
j kc c a .      (4) 

 

                                                
 1) Eiστ (a1, a2, a3, a4) means:  The values in brackets give the values of the “contravector” ai. 
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 Without giving the general form (1) for E(1, 0, 0, 0), we can now subject any 
generalized LORENTZ transformation cj

k that transforms the aj(1, 0, 0, 0) into ja (± 1, 0, 
0, 0) to further constant reductions. 
 Our demand on the cj

k leads to the equation ra
ɶ

= kr j
jkc c a : 

 
11 21 31 41

11 12 13 14
12 22 32 42

11 12 13 14
13 23 33 43

11 12 13 14
14 24 34 44

11 12 13 14

1 ,

0 ,

0 ,

0 .

c c c c c c c c

c c c c c c c c

c c c c c c c c

c c c c c c c c

± = + + +
= + + + 
= + + + 
= + + + 

    (4′) 

 
 We would like to express the cik in this system by the following four constants: 
 

c11 = a,  c23 = b,  c34 = c,  c42 = d,   (5) 
 
so, from the symmetry properties of the cik, one has: 
 

c12 = i c,  c13 = i d, c14 = − i b, c22 = c33 = − c44 = a. (5′) 
 
 If we introduce (5) and (5′) into (4′) then we obtain: 
 

± 1 = aa bb cc dd+ − − ,     (6) 
 

0 ,

0 ,

0 .

ac ca bd db

ad da cb bc

ab ba dc cd

= − − +
= − − + 
= − + − 

    (6′) 

 
 We next discuss the system (6′).  If: 

a : b ≠ :a b      (7) 
 
then the complex numbers c and d can be represented in terms of a and b: 
 

c = pa + qb, d = ra + sb; p, q, r, s real.   (8) 
 
 The system (6′) then gives: 
 

q + r = 0,  s – p = 0, 1 + rq – sp = 0,  (9) 
so: 

1 – r2 – s2 = 0.     (9′) 
 

 One can then set: r = cos α, s = sin α, p = sin α, q = − cos α, which makes: 
 

c = a sin α – b cos α,  d = a cos α + b sin α.   (10) 
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 It follows from (10) that: 
aa bb cc dd+ − −  = 0,    (11) 

 
in contrast to (6).  Therefore, it is necessary that: 
 

a

b
 = 

a

b
= λ, 

 
where λ is naturally real.  It then follows from the last equation of (6′) that: 
 

c

d
 = 

c

d
 = µ, 

 
with µ real.  We have then reduced the first two equations (6′) to (µλ − 1)( )bd bd− = 0 

and (λ + µ) ( )bd bd− = 0; since µλ = 1 and µ = − λ real is not fulfilled, one must have: 
 

b

d
 = 

b

d
. 

 
 As the single solution of (6′), we then have: 
 

a

a
 = 

b

b
 = 

c

c
 = 

d

d
.     (12) 

 
 From (12), the complex numbers a, b, c, and d lie in one direction of the Gaussian 
number plane.  From (6), the direction also remains arbitrary. 
 In the sequel, we shall fix our attention on the cτσ for which the a, b, c, d are real: 
 

c11, c23, c34, c42  are real.   (13) 
 
 However, for any cτσ that satisfies (13), so (6′) is fulfilled, (6) reads: 
 

± 1 = c11 c
11 + c21 c

21 + c34 c
34 + c42 c

42 = 1
4  cαβ c

αβ .  (13′) 
 

 Such a cτσ is therefore either a complex LORENTZ transformation, or i-times it is 
one. 
 One now has the following two theorems: 
 
 I. If cτk and kcτ′  are two c’s that satisfy the condition (13) then their composition 

cτk 
kc σ′  is such a c. 

 
 II. Any Cτσ has the unique decomposition: 
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Cτσ = 
1 2
C iCτσ τσ+ ,    (14) 

 
where 

1
C τσ  and 

2
C τσ  verify the condition (13). 

 If we set cµ
σ  = ieµ α

σδ  in (2) then E remains unchanged in (3) and only Cρσ is 

multiplied by eiα in (3′).  This means that there is the possibility of replacing Cρσ with 
Cρσeiα in the system (1).  If (14) is the decomposition of the Cτρ on the right-hand side of 
(1) into 

1
C  and 

2
C  with the property (13) then: 

 
Cτρ
ɶ

 = Cτρ e
iα = 

1 2 1 2
( cos sin ) ( sin cos )C C i C Cτσ τσ τσ τσα α α α− + +   (14′) 

 
is the analogous decomposition for Cτρ

ɶ
.  One then has: 

 

1

C τρ
ɶ

 = 
1 2

cos sinC Cτσ τσα α−
ɶ ɶ

.    (15) 

 
 Now, if 

1

C
ɶ

 is singular for any choice of α then one always has: 

 

1 1

C C τρ
τρ
ɶ ɶ

 = 0,     (16) 

so one must also necessarily have: 
 

1 1
C C τρ

τρ = 
2 2
C C τρ

τρ =
1 2
C C τρ

τρ = 0.    (17) 

 
 However, from (14), Cτρ is also singular then. 
 When we thus assume that Cτρ  is non-singular: 
 

Cτρ C
τρ  ≠ 0,     (18) 

 
we know that 

1
C τρ  is also non-singular (possibly under an allowed variation).  We may 

then set: 
cσ

µ = ρ 
1

Cσ
µ      (19) 

 
in (2), (3), and (3′), where the real number ρ is determined from (13′) in the form: 
 

± 4 = ρ2 
1 1
C C αβ

αβ .    (20) 

From (3′) and (14), one has: 
 

Cµτ
ɶ

= 
1 2 1

( )C iC C σ
στ στ µρ +  = 

2 2 1

1
g iC C σ

τµ στ µρ
ρ

 ± + 
 

 = ± 
3

1
g iCτµ τµρ

+ .  (21) 
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 According to the ± sign in (20) (thus, also in (13′)), the E is reproduced in (3) (E
ɶ

 = − 
E, resp.). 
 With (21), we have thus arrived at the fact that the C23, C34, C42 in the right-hand side 
of the system (1) are pure imaginary.  Therefore, the system (1) either preserves its form, 
or what appears in its place is: 

,

,

( ) ,

( ) ,

r
r r

r
r r

E i C

E i C

στ τρ
σ σ ρ

στ ρσ
τ τ ρ

ψ εψ ϕ χ
χ εχ ϕ ψ

− = 
− = 

   (1′) 

with the current vector: 
Ik = k kE Eστ στ

σ τ σ τχ χ ψ ψ− .    (1″) 
 
 With this, the main case splits into the sub-cases (1) and (1′), so along with ε, there 
are now five remaining constants in the system. 
 In order to clarify the difference between the systems (1) and (1′), in the next 
paragraph we would like to consider those solutions that correspond to the DE BROGLIE 
waves of a particle at rest. 
 
 

§ 4.  The DE BROGLIE waves for the main case of § 3. 
 

 We consider the system: 

,

,

( ) ,

( ) ,

r
r r

r
r r

E i C

E i C

στ ρσ
τ τ ρ

στ τρ
σ σ ρ

χ εχ ϕ ψ
ψ εψ ϕ χ

− = + 
− = − 

   (1) 

in which 
E = E(1, 0, 0, 0), 

and therefore the: 
b = C23,   c = C34, and d = C42 

are real. 
 This case then corresponds completely to the one in which the C23, C34, C42 are pure 
imaginary, since the C in (1) indeed admit the factor eiα.  We choose the simpler 
calculation, due to the aforementioned reality assumption. 
 We then set the DE BROGLIE wave in (1), for a vanishing electromagnetic potential, 
equal to: 

χτ = 4i xeν
τα , ψσ = 4i xeν

σβ ,    (2) 

and obtain 
4

4

,

,

i E C

i E C

στ ρσ
τ ρ

στ ρσ
σ ρ

να β
νβ α

= 
− = 

     (3) 

 
and, more thoroughly (C12 = − ic, C13 = − iα, C14 = − ib, C11 = C22 = C33 = − C44 = a): 
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4 1 2 3 4

3 1 2 3 4

2 1 2 3 4

1 1 2 3 4

,

,

,

,

i a ic id ib

ic a b d

id b a c

i ib d c a

να β β β β
να β β β β
να β β β β
να β β β β

− = + + − 
= − + − + 
− = + + − 
− = − + − 

 (4), 

4 1 2 3 4

3 1 2 3 4

2 1 2 3 4

1 1 2 3 4

,

,

,

,

i a ic id ib

ic a b d

id b a c

i ib d c a

νβ α α α α
νβ α α α α
νβ α α α α
νβ α α α α

= + + − 
= − + + − 
− = − − + + 
= + − − 

 (4′) 

 
and by eliminating the αi, one finally obtains: 
 

2 2 2 2 1 2 3 4

1 2 2 2 2 2 3 4

1 2 2 2 2 2 3 4

1 2 3 2 2 2 2 4

( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( )

aa b c d i a a c i a a d i a a b

i a a c aa b c d a a b a a d

i a a d a a d aa b c d a a c

i a a b a a d a a c aa b c d

ν β β β β
β ν β β β
β β ν β β
β β β ν β

− − − + + − − − − − − =
− + − − − + + + − + − =
− − − + − − − + + − − =
− − − + − − − − − + + = 0.








 (5) 

 
 The matrix of the system (5) is obviously a cστ matrix; its determinant is therefore 
equal to the square of 1

4  cστ c
στ, up to sign, or to: 

 
2 2 2 2 2( ) ( )aa B a a Bν + + + − ,  B2 = b2 – c2 – d2.  (6) 

 
 Therefore, (5) has a system of solutions βσ ≠ 0 that is a singular semi-vector 1) when 
and only when: 

0 = 2 2 2 2 2( ) ( )aa B a a Bν + + + −    (7) 
 
is fulfilled.  Since ( )a a−  < 0, one must have B2 > 0.  We thus obtain the condition: 
 

b2 > c2 + d2.     (8) 
 If we further set: 
 

a = α + iβ, then (7) becomes ν2 + α2 + β2 + B2 = ± 2Bβ,  (9) 
 
and therefore: 

ν2 + α2 + (β ± B) 2 = 0.   (10) 
 
 Therefore, there are no DE BROGLIE waves in this case. 
 In the case (1′), § 3, instead of (1), the system emerges in which the second equation 
of (1) has the sign changed on its right-hand side.  Likewise, the current vector has the 
form § 3, (1″). 
 In the second system (3) and in (4′), calculation yields a sign change on the left-hand 
side, which then again leads to the system (5), but with – ν2, instead of + ν2. 
 The condition (8) still remains valid, while instead of (10), one now has: 

                                                
 1) And indeed the most general spin vector of the type that is given by (5) (for a given ν).  A spin 

vector is then defined to be a semi-vector σβ for which a relation cτσ βσ = 0 is true (naturally, with a 

singular cτσ). 
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ν2 = α2 + (β ± B)2.     (11) 
 
 Therefore, DE BROGLIE waves appear with two numerically vanishing v, as long as 
only β and B are non-vanishing. 
 One surmises from these results that a further reduction of the system (1′) is still 
possible, since apparently only two of the five remaining constants seem to have a 
physical significance.  We must then see the validity of this conjecture. 
 We will encounter a “canonical representation” of the system (1′), for which: 
 

C34 = C42 = 0, 
   
and C11 is pure imaginary and C23 is real, moreover. 
 If we set (in anticipation) c and d = 0 in (4) then (4) splits into: 
 

4 1 4

1 1 4

3 2 3

2 2 3

,

,

,

,

i a ib

i ib a

a b

b a

να β β
να β β
να β β
να β β

− = − 
− = − 
= − 
− = + 

 (12)  

4 1 4

1 1 4

3 2 3

2 2 3

,

,

,

,

i a ib

i ib a

a b

b a

νβ α α
νβ α α
νβ α α
νβ α α

− = − 
− = − 
− = + 
= − + 

 (12′) 

 
where the system that corresponds to (1′), § 3 has the sign changed from the 
corresponding system (12′).  By eliminating α, we then obtain: 
 

2 2
1 4
2 2

1 4

( ) ( ) 0,

( ) ( ) 0,

aa b i a a b

i a a b aa b

ν β β
β ν β

− − + − =
− + − − = 

   (13) 

 
2 2

2 3
2 2

2 3

( ) ( ) 0,

( ) ( ) 0.

aa b i a a b

a a b aa b

ν β β
β ν β

− − + − =
− − + − − = 

   (13′) 

 
 There are two roots v2 for which one has 1): 
 

v2 − aa  − b2 = ( )i a a b± − .    (14) 
 
 This gives, together with (13), β1 ± β4 = 0, iβ2 ± β3 = 0, so: 
 

 β4 = ∓ β1, β3 = ∓  iβ2 .    (15) 
 From (12), we then obtain: 
 

                                                
 1) In the sequel, the two cases will be treated together in which two signs enter in one above the other, 
such that the upper one relates to the first of the roots and the lower one refers to the second one (v1 or v2, 
resp.).  
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1 1

4 1

3 2

2 2

( ) ,

( ) ,

( ) ,

( ) ,

i ib a

i a ib

a ib

b ia

να β
να β
να β
να β

− = ± 
− = ± 
= ± 
− = ∓

     (16) 

so 
α4 = ± α1, α3 = ∓  iα2 .    (16′) 

 For the current density: 
I4 = E4στ ασ ατ – E4στ σ τβ β , 

 
we obtain, after some calculation: 
 

I4 = 2 2 1 14( )β β β β+∓ .     (17) 

 
 This proves to be an important result, namely, that the electricity densities that belong 
to the two v possess opposite signs.  The two ponderable masses then seem (by the usual 
interpretation) to be assigned electric charges of opposite signs.  This is then the place to 
discuss the other two main cases II and III of § 2.  The main case (II), in which two DE 
BROGLIE wave do indeed appear, is invalid from the physical standpoint because the 
current densities always have a single sign then: That leads to a theory of 
electromagnetism in which only electrical measure densities that have a definite sign 
appear. 
 In the main case III, only one DE BROGLIE wave exists. 
 
 

§ 5.  The further reduction of the Dirac equations. 
 

 Up to now, we could arrange that the Cστ in the right-hand side of the Dirac equations 
already had the form: 

C23, C34, C42 are pure imaginary. 
 
The E on the left-hand side would then have the values ai = δ i1 as constants. 
 In this paragraph, it shall be shown that one should have, additionally: 
 

C11 real. 
 
 Following the reasoning of § 3, we thus consider one cστ , whose (1, 1), (2, 3), (3, 4), 
and (4, 2) components are real: 

11 23 34 42

,

, , ,  are real.

ic c e

c c c c

στ στ α =



    (1) 

 From (3′), § 3, one has: 
Cµτ
ɶ

= C cσ
στ µ  = iC c eσ α

στ µ .    (2) 
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 For Cστ , we would like to assume that it has the form that was arrived at up to now: 
Cστ  = A gστ  + 

1
iC στ ,  A real,    (3) 

 
where the 

1
C στ  already fulfill the reality conditions: 

 

11
1
C , 23

1
C , 34

1
C , 42

1
C  real.    (4) 

 
For Cσµ
ɶ

, we make a similar assumption: 

 
Cσµ
ɶ

 = 
2

Ag iCσµ σµ+
ɶ

.     (5) 

 
where now, in addition to 11

2
C , 23

2
C , 34

2
C , 42

2
C  being real, one also has: 

 

11
2
C  = 0.      (6) 

This shows that under the assumption: 
 

11
1
C  ≠ 0,  A ≠ 0, 2 2 2

23 34 42
1 1 1
C C C− −  > 0 

 
one can find the cσ

µ eiα that correspond to (2) and (1). 
 If we introduce the quantities (3) and (5) into (2) then we obtain: 
 

2 1

1 1

( ) (cos sin )

( cos sin ) ( sin cos ) .

Ag iC Ag iC c i

Ag C c i Ag C c

σ
τµ µτ στ στ µ

σ σ
στ στ µ στ στ µ

α α

α α α α

+ = + + = 


− + + 

ɶ   (7) 

 
 Since the decomposition into c quantities with the aforementioned reality behavior is 
unique, one has: 

Agτµ
ɶ

 = 
1

( cos sin )Ag C cσ
στ στ µα α− ,    (8) 

 

2
C µτ  = 

1
( sin cos )Ag C cσ

στ στ µα α+ .     (8′) 

 We set: 
cσ

µ cρ
µ = Φ δρ

σ.     (9) 
 
 Since we first look for c, Φ ≠ 0 is an assumption that will be justified later on.  If we 
multiply (8) by cρ

µ then we obtain: 
 

1
AcρτΦ ɶ

 = 
1

cos sinAg Cρτ ρτα α− .   (10) 

 For (8′), that gives: 



Einstein and Mayer – The Dirac equations for semi-vectors                               17 

2 1 1

2 2 2

1 1 1 1

1
( sin cos )( cos sin )

sin cos sin cos cos sin

AC Ag C Ag C

A g C C AC AC

σ σ
ρτ στ στ µ µ

σ
τµ στ µ µτ τµ

α α α α

α α α α α α

= + − Φ 
= − + −


ɶ  (11) 

 
 Due to (6), one has (11

2
C = 0 and 

1 1
C C σ

στ µ  = 1
4 1 1
C C gαβ

αβ τµ ): 

 
0 = (A2 − 1

4 1 1
C C αβ

αβ ) sin α cos α + A 11
1
C (cos2 α – sin2 α),  (12) 

or 
0 = (A2 − 1

4 1 1
C C αβ

αβ ) sin 2α  + 2A 11
1
C  cos 2α .  (12′) 

 
 This yields the desired angle α, with which the right-hand side of (10) − and thus cρτ  
− is given, up to a factor. 
 Under the assumptions that were made for A and 11

1
C , this shows that cρτ is non-

singular. 
 The quadratic condition § 3, (13′) then gives: 
 

1
4 cαβ c

αβ = + 1, so Φ = I in (9),  (13) 

 
since indeed the two sub-cases of our main case I are not transformable into each other 
due to the vanishing behavior relative to the DE BROGLIE wave.  (A DE BROGLIE 
wave naturally still exists under our c transformations of the ψ.) 
 Equation (13) ultimately serves to determine the factor A

ɶ
 in (10). 

 In the next paragraph, we will arrive at the reduction to normal form: All that will 
remain in the Dirac equation are two constants: the real C11 and the pure imaginary C23 . 
 
 

§ 6.  The normal form for the Dirac equations. 
 

 The last form that we arrived at for the Cστ on the right-hand side of the Dirac 
equations was: 

C11 pure imaginary, C23, C34, C42 real.   (1) 
 

 We now seek to determine two c – thus c and c  − that correspond to the conditions 
(13), (13′) of § 3 and satisfy the relations: 
 

cαβ C
αβ = C cβτ

αβ
ɶ ɶ ,     (2) 

 

where the reality behavior (1) is true for C and Cɶ , and one has 34Cɶ  = 42Cɶ  = 0, moreover. 

 Since the quadratic relations (13′) of § 3 are true for c and cɶ : 
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1
4 c cαβ

αβ  = 1
4 c cαβ

αβ± ɶ ɶ = ± 1,     (3) 

 
so it follows from (2), after multiplying by cγτɶ , that: 

 

Cαγ
ɶ = c c Cβτ

αβ γτ± ɶ .     (4) 

 
 As long as (2) is fulfilled, we can then go from the Dirac equations with the Cρσ to the 

ones with the Cρτ
ɶ by simultaneously transforming the two semi-quantities. 

 The system (2) is again true for all combinations of the values (τ, α) when it exists for 
(1, 1), (1, 2), (1, 3), (1, 4).  This gives four equations: 
 

11 21 31 41 11 21 31 41
11 12 13 14 11 12 13 14

11 21 31 41 11 21 31 41
21 22 23 24 21 22 23 24

11 21 31 41 11 21 31 41
31 32 33 34 31 32 33 34

11
41

,

,

,

c C c C c C c C C c C c C c C c

c C c C c C c C C c C c C c C c

c C c C c C c C C c C c C c C c

c C c

+ + + = + + +
+ + + = + + +
+ + + = + + +
+

ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ

21 31 41 11 21 31 41
42 43 44 41 42 43 44 .C c C c C C c C c C c C c






+ + = + + + 

ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ

  (5) 

 
 We convert (5), using the c-relations: 
 

12 34 13 42 14 23

11 22 33 44

, , ,

,

c ic c ic c ic

c c c c

= − = − = −


= = = − 
    (6) 

and get 
11 34 42 23 11 34 42 23

11 34 42 23 11 34 42 23
11 34 42 23 11 34 42 23

34 11 23 24 34 11 23 42
11 34 42 23 11 34 42

42 23 11 34 42 23 11

,

,

c C c C c C c C C c C c C c C c

ic C ic C ic C ic C iC c iC c iC c iC c

ic C ic C ic C ic C iC c iC c iC c

− − − = − − −
+ + + = − + + +

− − + − = − − +

ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ

ɶ ɶ ɶɶ ɶ ɶ 23
34

11 34 42 23 11 34 42 23
23 42 34 11 23 42 34 11

,

.

iC c

ic C ic C ic C ic C iC c iC c iC c iC c




− 
+ − + = + − + 

ɶ ɶ

ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ

  (7) 

 
 Due to the reality behavior, the system splits into: 
 

11 11 11 11

34 11 11 34

42 11 11 42

23 11 11 23

,

,

,

,

c C C c

c C C c

c C C c

c C C c

=
= 
= 
= 

ɶ ɶ

ɶ ɶ

ɶ ɶ

ɶ ɶ

    (8)  

34 34 42 42 23 23 34 34 42 42 23 23

11 34 23 42 42 23 34 11 23 42 42 23

23 34 11 42 34 23 42 11 23 34 34 23

42 34 34 42 11 23 23 11 42 34 34 42

,

,

,

.

c C c C c C C c C c C c

c C c C c C C c C c C c

c C c C c C C c C c C c

c C c C c C C c C c C c

+ − = + −
+ − = + − 
− − = − + − 

− − = − + − 

ɶ ɶ ɶɶ ɶ ɶ

ɶ ɶ ɶɶ ɶ ɶ

ɶ ɶ ɶɶ ɶ ɶ

ɶ ɶ ɶɶ ɶ ɶ 

    (8′) 

 
 When one arrives at: 

C11 = 11C ,      (9) 

it then follows from (8) that: 
cαβ = cαβɶ .              (10) 
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 (Due to (3), this can read cαβ = ± cαβɶ , but if one fixes (9) then (10) is true.) 

 Since one has cαβ c
αβ = c cαβ

αβɶ ɶ , the transformation of the equations in the C into the 

ones in the Cɶ  is linked with either no change of sign in the E (i.e., in the equations) or a 
simultaneous change of sign; naturally, this changes nothing at all regarding the type of 
the Dirac system.  With consideration to (10), (8′) becomes: 
 

23 23 23 34 34 34 42 42 42

11 34 34 23 42 42 42 23 23

11 42 42 23 34 34 34 23 23

11 23 23 34 42 42 42 34 34

( ) ( ) ( ) 0,

( ) ( ) ( ) 0,

( ) ( ) ( ) 0,

( ) ( ) ( ) 0.

c C C c C C c C C

c C C c C C c C C

c C C c C C c C C

c C C c C C c C C

− − + − + − =
− + + − − = 
− − + + + = 
− + + − − = 

ɶ ɶ ɶ

ɶ ɶ ɶ

ɶ ɶ ɶ

ɶ ɶ ɶ

  (11) 

 
 Should this system be fulfilled with cστ ≠ 0, the determinant of (11) must then vanish.  
This (∆) is: 

∆ = − 2 2 2 2 2 2 2
23 23 34 34 42 42[( ) ( ) ( )]C C C C C C− − − − −ɶ ɶ ɶ .  (12) 

 
 We fulfill ∆ = 0 by way of: 
 

2
23Cɶ  = 2 2 2

23 34 42C C C− − ,  34Cɶ  = 42Cɶ  = 0.   (13) 

 
 For the cστ in (11), one then easily calculates that cστ c

στ  ≠ 0.  We have thus fulfilled 

the system (4) with the calculated cστ , cστɶ , and Cστ
ɶ , and exhibited the normal form 1). 

 
 
 
                                                
 1) We have also arrived at the reduction of the Dirac equations for semi-vectors in a second way when 
we converted the Hamilton function H3 by a c-transformation of the Cστ into gστ at the first step.  We then 

had only the eight real constants ai ( i
a∗ , resp.) (i = 1, …, 4) left in the E (E*, resp.). 

 Any further transformation ψσ = cα
σ αψ , σχ = c σ β

β χ′  of the ψσ , 
σχ  into σψ , σχ  must then leave 

ψσ 
σχ invariant.  This gives the condition c cσ α

β σ
′ = α

βδ ; i.e., the transformations of the ψ and χ must 

involve mutually inverse matrices. 
 The second step then brings the one E in H3 into normal form; e.g., E(1, 0, 0, 0), when it is “space-like.” 
 However, that still allows all transformations of this E into itself – i.e., all c-transformations for which χ′i 
= j k

i j k
c c χ  is a rotation around the χ1-axis. 

 One can then arrive at the final form in which – e.g. – only the first and fourth “components” a*k are non-
zero. 
 Thus, according to whether E* is space-like or time-like, one will have: 
 

2 2

1 4
( ) ( ) 0a a∗ ∗ >

<
− . 

 
 The normal form that one arrives at in this way is completely equivalent to ours, on the basis of 
symmetry, but in this paper we preferred the final form that we developed. 
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§ 7.  Summary and physical interpretation. 
 

 In the foregoing, we have presented a field theory in which, along with the metric and 
electromagnetic field quantities, two semi-vectors ψ and χ appeared as new field 
quantities.  In the Hamilton function, in addition to the curvature scalar and the 
electromagnetic field scalar, a scalar entered in that is quadratic in the ψ and χ, as well as 
their first derivatives.  Along with the gravitational field equations and Maxwell 
equations, completed with the electrical current density, a system of generalized Dirac 
equations for the semi-vectors appeared. 
 It was shown that the original 17 arbitrary constants that entered into this system of 
equations could be reduced to three real ones, namely, ε, a, and b.  One thus obtains the 
normal equations of § 3, (I′), (I″).  In these normal equations, the four E-constants a1 to a4 
have the value (1, 0, 0, 0), and the (covariant) matrix of the Cστ in the right-hand side has 
the form: 

0 0

0 0

0 0

0 0

ia ib

ia b

b ia

ib ia

−

−
−

. 

 
 By neglecting the electromagnetic field (i.e., the limiting case), the equations admit 
two solutions that correspond to a special species of elementary particles at rest whose 
DE BROGLIE frequencies (particle masses, resp.) are determined by the equations: 
 

2
1ν  = (a + b)2,  2

2ν  = (a − b)2. 

 
The electrical charge densities that correspond to these two DE BROGLIE waves are of 
opposite sign.  This therefore seems to be the first time that an explanation was given for 
the fact that there are two electric elementary particles of different masses whose 
electrical charges possess opposite signs.  It is further essential that only one constant 
with the dimension of an electrical charge enters into the equations, which is given by ε, 
up to a universal factor.  This is obviously connected with the fact that there is only one 
elementary electrical charge (in absolute value). 
 The fact that negative, along with positive, values entered into v as measurement 
constants is perhaps connected with the apparent appearance of “positive electrons,” 
which were generally to be regarded as electronegative particles of negative ponderable 
mass.  Correspondingly, one would expect that the theory also applies to protons. 
 It is clear that such a field theory cannot admit BORN’s probability interpretation of 
the ψ field, and in the meantime there thus remains an open question of whether such a 
theory admits an interpretation of the atomistic structure of matter that is free from 
contradictions to begin with. 
 

___________ 
 


