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Introduction %): Brief report on semi-vectors and semi-tensors. 9

In this paper, the most necessary facts from theryheb semi-vectors shall be
introduced, to the extent that is required for the undedstg of the reader.
Corresponding to the scope of the previous paper, wactestirselves to the space of
special relativity. By the introduction of rectangu@artesian coordinategnf = g2 =
033 = — Qasa = 1, the rest of thgk = 0), we define certain structural tensogs, o, 7= 1,

o 4
Cor =C Qor + Vor, D

where the skew-symmetnig, satisfies the defining-relation®):

) “Semivektoren und Spinoren,” Sitzber. der Preuss. Ak882.

%) We should also be thankful here for the fact thaivere prompted to carry out this investigation by
the urgent request of EHRENFEST that we look for a lolgisathple and transparent analysis of spinors.

3) Noya 1S @anti-symmetric in the indices arghss= 1.

oTUY

Toww = Jo N has atensor character and oneT{&s = % n
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Since \/E =i, from (1), the v,; are complex tensors, and, as) (further shows,

completely determined by three of their components (@gvis, Vig). The most general
Cor that are defined by (1) thus include four complex cotstan

Since thec,; are complex, along with them, and with an equal sigamfte to them,
the conjugate quantities,, also appear, which are, however, different from the ofusst

Cor, because, from (), v satisfies the relation:

Vo = 200V (Vo =-g ). (1)

Now, if twocC's, c,randc

', are given then there exists flomdamentatommutation
law:

c,Cc,=C,.C, . (2)

However, the content of the relation (2) goes furthé c,, = ¢ gor + V., is the most

generalc tensor then the totality of all tensacg, for which (2) is true- so they all
‘commute” with the most generaltensor— coincides with the totality of just these
tensors.

However, it follows from this that the compositiap,c”, of two ¢'s (cor ,C,,) is
again ac-tensor. From (1), one recognizes that, along with ¢, = c,; is also ac-
tensor. Thus, along witty,, c,,c°, is also ac-tensor, and due to the symmetry of these
guantities inr and g, from (1), one must have:

CyC, =P gyp.
By summation = p), one calculate® and obtains the important formula:
Ca'rcgp = (% Caﬂcaﬂ) grp' (3)
If | cor| =A is the determinant of thg,; then (3) gives:

N = (ic c”ﬂ)4. (4)

4 ~ap
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The vanishing of the determinard.g | — i.e., the “degeneracy of tlwgs’ — will then
also be characterized bys c®=0Mh.

If one considers the,s to be a complex transformation matrix then, from (B8),
represents a rotation with a simultaneous dilatafiorThis suggests that we examine the
following “product construction”

agp= C,C,. (5)

Due to (2),aq is real @,,= ag); if one further set€,s c? = 40 then it follows
immediately from (2), (3), and (5) that:

ag a’y =4bdg,,. (5)

When regarded as a transformation matis,means a real LORENTZ rotation with
a simultaneous dilatation. @ = 1 thenc,, is a complex pure LORENTZ rotation and
agp is a real one. Conversely, one also shows thatesly ORENTZ rotatiora,,, when
it can be generated from the identgy, by real infinitesimals (we then call itgoper
rotation) has a representation (5). This representa&ionique, up to the casg, = (-
Cor) (—T',) , which, from (5), is trivial whe, is also a LORENTZ rotation.

The associatioa,, =2 Cgp exists between the elemerts, of the group of proper

LORENTZ rotations and the elemets, of the LORENTZ rotationscgs ¢ = 4), which
is mediated by (5).

However, this association is, as one again sees (2)man isomorphism, and this
represents the mathematical basis for the introduofisemi-vectors and tensors.

If one performs the LORENTZ transformation:

X =a X (6)

of Cartesian coordinates then, by definition,s@mi-vector “of the first kind” p,
transforms according 9
Py =%, 0z, ©)

and asemi-vector “of the second kindJ; transforms according to:

—c?
Oz = ¢/ 0;. (8)

2
) The exact relation betwednandc,zc™is: (4) A= _(%C”ﬁcaﬁ ) .

%) We speak of it briefly as a “generalized” LORENT Zhstormation.

% A singly overbarred (Greek) index characterizes a spraittity of the first kind, while the doubly
overbarred index characterizes a semi-quantity of trengeknd.

Later on, whenever the character of an index hasdxablished (as a spatial index or semi-index of the
first or second kind), we shall omit the inconvenieverbars.
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Therefore, the relation (5) exists betweenafi@nd the LORENTZ transformations
B
Cd
The conjugate quantity to a semi-vector of one kintyigjefinition, a semi-vector of
the other kind.
If Cor is anyc-tensor andt,; is a LORENTZe (Cyp c® = 4) then, from (3), it follows
from:

Ca‘rérp = 6c'rrC:Tp’ (2)

after multiplying withT,“, that:
Cov=T, GG, (7)

A comparison with (§ shows that everf,, quantity, as a semi-tensor of the first
kind, is numerically invariant. With our semi-index rtaia, we can also say that briefly
as: C_. is numerically invariant.

In particular, this is true fog,. (Cor, the transformation matrix of the semi-vector, is

indeed a LORENTZ transformation).
One likewise shows that &B_. — in particular, g, — are numerically invariant.

(The “raising” and “lowering” of semi-indices is donethvihe metric tensog,; =
9% = 97 of R4)
Along with the numerical invarianceof these second-rank tensors, one has the

fundamental third-ranlE tensor E'°", which depends upon four constaatg , for an
example of the simplest such tensor.
Its form is:

E.r =0s8) * 0t a9~ Gxap — /g swd™,  a¥=g"ay. (8)
If the & are real then (8) gives:
E..=E, (realay). (9)

In the present paper, we will examine the most gerieedr first order system of
equations for two semi-vectogg, and yx:

E7 (X5, —igx;9,) =c"y,
(10)
EY(p,, —iey,8,)=-T” x,

(E, with the constantay, E*, with the constants ) that is produced by variation of the

most general HAMILTON function that comes into caesation (8 1). In (10)p, is the
electromagnetic potential vector.
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8 1. Hamilton function and field equations.
The Hamilton scalar of the total field is of therfor
H=H; +H; +Hs,

in which H; means the metric curvature scalbl;, the electromagnetic field scalar
(¢aﬂ¢aﬁ), and H; means a scalar that we must look for that depends upon the
electromagnetic potential vectgy and two semi-vectorg,, and y,. Thus,H3 proves to

be determined, by and large, by two conditions:

a. It shall be real.

b. It shall include the aforementioned quantities in suckiag that the resulting
system of equations becomes linear and of first ordativelto the semi-quantities and
essentially depends upon only the anti-symmetric deriatfeheg, (¢-condition).

These two conditions then lead to the following foomHs, in which we temporarily
restrict ourselves to the special theory of relativiffzrom the results of our previous
paper, this restriction is not essential, since it wesve there how one had to construct
the general-relativistic expressions.)AJfB are real constants then it is:

H, = B, 7 ~iey @)y + B, (@F +ieq g )y
HA[EL, (@° —iey’g)P" —E, (F°, +ieW’¢ )]

+ ELOF HIER AN +En () ~iex )X ®
HB[E, (X’ +ieX’d) X" —EL (X —iex“8) X']
+CUT¢/U)_(T+C_:UT¢70XT-

It is therefore important to remark that thg-Condition” (i.e., the invariance dis

wheneverg;, ¢, x° are replaced witlp +13—a, ¢’ €% ¥° d”in sequence) involves the
£ Ox

introduction of only asingleconstants

Ifagy =t + 14 (am— a’+iB, resp.) is the system of constantEi(E , resp.) then
one has:

E,, = E,(@)+iE, (D) and = E,(a)-iE, (B).
The first two rows of (1) then read:
En ()W’ — ey d )" +E, (@)@, +iep @ '
+ [EL (B —iep )@ - EL(B)FF, +ie@ @)y'] |

+IA[E, (a)(y°; —iey’ 8)F" —E(a)@F, +ie@$)y']
- AlE (AW’ ~ ey )" + E(D(P°, + g ¢ )]
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Under variation, the first and last row produce nothing] ean therefore be omitted,
while the other two rows, when one sets:

K=5+Aa,
yield:
i[E, (N’ —ieg’ )P —E(@°, +ie@°8)P] .

Therefore, with no loss of generality, one can ceotive additional Hamilton term to
be (up to the facta):

E,, W ~iey )" ~E° @', +ieP'$)
B (X7 +iX @)X +ERX (X —igx'4) 2)
+Cﬁ¢,0’xl’ — meUXT,
instead of (1), in which the constant=HE*, resp.) are now real; in the sequel, they will

be again denoted by anda’. By varying they and x in (2), we obtain the “Dirac
equations™):

E, (WS —ieyd)=+Cx°, )
E. (X} —iex'¢)=-Cy".
One obtains the current vector from (2) by varygha the form:
I=E P +EXx". (4)
As it must be, one has: _
Ji=0 (5)
as a consequence of the system (3).
8 2. TheDirac equations.
The system § 1, (3):
E s, —ie,$) =+C7X,, (1)
EIUTD(Xr,i - I£Xr¢|) = _Cpgwp’

resp., has, along with the constantthe eight real constangs, a’ in the E, and four

more complex constant<{;, Cia, Ci3 Ci4) that fix the C*° on the right-hand sides.
Along with &, there are 16 real constants, in all.
However, we can reduce this number of constartistantially, if we make use of the

possibility that, instead of the quantitigs, we can introduce quantitie, by a non-

singular transformatioig,” :

1) In these equations, it is essential that the tramsftion invariant facto€ enter on the right-hand
side.
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XT:_TV v (2)

and, instead of the quantitie®, , we can introduce the quantitigg, by a non-singular
transformationc,” :

l//U = Cc"rﬂ lé’,u ' (3)

A glance at the Hamilton function 8 1, (2) shows thaterefore goes té& :

El,uv = Ela'r C’J,UT:TV ! (4)
andE* goes toE":
EL= EqC,T, ) 4)

Which transformations of the quantitiasnto a (@ into a’, resp.) will be realized
by such ark transformation (4) [(3, resp.)]?
If one sets, i, Tequal to the values 1, 1, 1; 2, 2, 2,; 3, 3, 3, and 4, 4, 4 inssigne
in the relation:
E," =E” Cuw (5)
then one obtains immediately:

g =cidS (8)

wherea, &' are the values of the constant&jiE’. Likewise, it follows from the relation:

E°, =E”'T, (6)
that there is a relation:
g =g (6)
Thus, one has: _
E,, =E"Cqu T, (7)
along with:
g =T ca. (7)

A transformation (7) thus induces a “generalized” reaRENTZ transformation
relative to the constantsin theE.

We can therefore speak of a “pseudo-vect@), (instead of a system of four
constantsg), so we think about this situation. _

Likewise, it seems preferable to speak of space-liketiaretlike E'?’, and indeedE
might be called space-like (time-like, resp.) whah i6 space-like (time-like, resp.). We
also speak of a singul&r when the corresponding pseudo-vector is a null veat@ €
0). Since we are dealing with a proper (generalized) LORENdnsformation in (7,

) Naturally, E is again numerically invariant, so it is Brquantity of the same structure.
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we can bring a space-likeinto the formE'®" (1, 0, 0, 0), § = J'1) [E”* (0, 0, 0,-1) =-
E'7" (0, 0, 0, 1), & = J's), resp.] by &, transformation (7). In this paper, we shall
omit the singulak.
Thus, one must distinguish the main cases:
I. EandE are space-like in (2), § 1.
. “ “ time-like “
lIl. Eis space-likeE  is time-like.

In this paper, we shall treat the case (I) exclusjvely at various points we shall
discuss the analogous examinations of cases Il and lll, agdheir physical meaning
does not come into question for us.

8§ 3. Themain case: E and E* are space-like.
First reduction.

The system (1), 8 2, now reads:

1
EraTD(XTYr — ig)(r¢r) — _Cpﬂwp, ( )

E W, ~iey,$,)=+C"x,, }
where the twcE are equal, and in fact, equal &1, O, O, 0), so the system includes,
along with the constant, only the four mutually independent complex constaCiy,
Ca2, Cas, Cas).

A transformation of thel into ¢, :

Y,= Cd Y (2)

gives, as one sees immediately from (1), or from amilton function (2), 8 1, new
values for the firsE'?" in (1) (for C*’, resp.):

E), = E,,¢/T), (3)
Cor = Cor %, 3)

while theE™ in the second system in (1) remains unchanged.
The newa in E are calculated from (3) as in 8§ 2, (7))(7

a=c'g'a. (4)

Y E(a, & & a') means: The values in brackets give the values dttmgravector’a.
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Without giving the general form (1) fog(1, O, O, 0), we can now subject any

generalized LORENTZ transformati@ﬁ that transforms thai(l, 0, 0, 0) intoa! (+ 1, O,
0, 0) to further constant reductions.

Our demand on thg* leads to the equatioa = ¢, C & :

120,00+ ,C7 F GiC T
O - Cllle + (‘127322'*’ Q3,_032+ q4—c42’
O - Cll613 + (‘127323'*' Q3,_033+ q4—c43’
0=¢,C*+0,C+ e+ g ™

(4)

We would like to express tlog in this system by the following four constants:
Ci1=4q, Cx3 =D, C34 =C, Cs2 =d, (5)
so, from the symmetry properties of ttfe one has:
Ci2=1ic, Cciz=id, Ciu=-—1b, cCp=cxz=—-cy=a (5)
If we introduce (5) and (pinto (4) then we obtain:
+1 = aa+ bb- ¢e- dd, (6)

O=ac- ca- bd+ dh
O0=ad - da- cb+ bg (6)
0=ab-ba+ de- cd

We next discuss the system)(6lf:

a:bza:b (7)
then the complex numbetsandd can be represented in termsaaindb:
c=pa+gb, d=ra+sb p,q,r,sreal (8)
The system (¢ then gives:
g+r=0, s—-p=0, 1 +rg-sp=0, (9)
Sso:
1-r*-¢=0. (9)

One can then sat:= cosa, s=sina, p = sina, q = - cosa, which makes:

c=asina—-Dbcosa, d=acosa+bsina. (10)
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It follows from (10) that:
aa+ bb- ¢c- dd =0, (11)

in contrast to (6). Therefore, it is necessary that:

E: = A,
b

o I

whereA is naturally real. It then follows from the last etpia of (6) that:

= U,

o ol

<
d

with i real. We have then reduced the first two equatiofsdgu — 1)(bd — bd)= 0
and @ + £) (bd - bd) = 0; sinceu/ = 1 andu = - A real is not fulfilled, one must have:

ool

b
d
As the single solution of ( we then have:
2= ==2==, (12)
C

From (12), the complex numbeasb, ¢, andd lie in one direction of the Gaussian
number plane. From (6), the direction also remaihgrary.
In the sequel, we shall fix our attention on ¢hefor which thea, b, ¢, d are real:
C11, C23, C34, Ca2 are real. (13)

However, for ang,, that satisfies (13), so'{as fulfilled, (6) reads:
+1=cpCt+ 0+ +epc?=1 g, (13)

Such ac;s is therefore either a complex LORENTZ transformatior i-times it is
one.

One now has the following two theorems:

l. If cx and ¢, are twoc's that satisfy the condition (13) then their compositi
cx €', is such a.

g

II.  Any C,; has the unique decomposition:
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N [ O (14)

where(lt o and(ztm verify the condition (13).

If we setc’ = 5*€“ in (2) thenE remains unchanged in (3) and or@y” is
multiplied by € in (3). This means that there is the possibility of repe?” with

C”e% in the system (1). If (14) is the decomposition of@gon the right-hand side of
(1) into(lt and(22 with the property (13) then:

C, =Cp€= (C,cosa-C,, sina }+iC,, sim+C,, cos (14)
is the analogous decomposition f8f,. One then has:
Cc,=C, cosa-C,  sin. (15)
2

0 < 10
1

Now, if C is singular for any choice @f then one always has:
1

=10

»C” =0, (16)
1

S0 one must also necessarily have:

P 1 — »—
CLC7=C,C7=C C 0 an)

However, from (14)C, is also singular then.
When we thus assume tha}, @ non-singular:

C,,C” %0, (18)

we know thatCl: » IS also non-singulafpossibly under an allowed variation). We may
then set:
cu=pC%, (19)

in (2), (3), and (3, where the real numberis determined from (18in the form:

i4zﬁ9wgw. (20)
From (3) and (14), one has:

. . 1 . S 1 .
gpr: p(?a‘r-*-lczm)cl: U _p|:iFgrp+lgaTC1: ;1:| = grp+|grp' (21)

D+
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According to thet sign in (20) (thus, also in (D3, theE is reproduced in (3)E = -
E, resp.).

With (21), we have thus arrived at the fact that thg, Cs4, Cs2 in the right-hand side
of the systeril) are pure imaginary.Therefore, the system (1) either preserves its,form
or what appears in its place is:

B (W, ~iey,,)=C" X, } )
E (x,, —iex,4,) =C”y,
with the current vector:
“= E“" XX, ~E“" g, . (1)

With this, the main case splits into the sub-cg4¢sand (1), so along withe, there
are now five remaining constants in the system.

In order to clarify the difference between thetsys (1) and (), in the next
paragraph we would like to consider those solutibias correspond to the DE BROGLIE
waves of a particle at rest.

84. The DE BROGLIE wavesfor the main case of § 3.

We consider the system:

E (X, ~ieX ) =+C™y,, &
E (¥, —iew,.)=-C%x,,
in which
E =E(1, 0, 0, 0),
and therefore the:
b=C® c=C* andd = C*?

are real.

This case then corresponds completely to the mehich theC?®, C*, C** are pure
imaginary, since theC in (1) indeed admit the facto#®. We choose the simpler
calculation, due to the aforementioned reality agsion.

We then set the DE BROGLIE wave in (1), for a gamg electromagnetic potential,
equal to:

Xe=a,e™,  W,=pe", (2
and obtain

3)

iva, E*" =C7p,,
~ivB,E*" =C"a,,

and, more thoroughlya!?=-ic, C¥*=-ia, C**=-ib,C*=C*?=C¥=-Cc*=2q):
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-iva, =af +icB,+idB,—ibs,, B, =aa, +ica,+ida,—iba,,

va, = _icﬁl +a:32 - bﬁ3+ dﬁm (4) Vﬁs = _ical +taa,+ bas_ d0'4’ )
—va, =idS, +bB,+aB; - cb, , —vB, =-ida, -ba,+aa;+ a,,
-iva, =ibp,-dB,+cB,—ap,, g, =iba,+da,-ca,-aa,

and by eliminating thex, one finally obtains:

(-2 -aa-b+E+ B~ (a- 9 B%- (&= A B>~ (&= pP*=0,
i(@-a)cB +(-v*-aa- B+ ¢+ )B*+(a ap’+(Ca p@g*=0,
i@-a)dsf -(a- g ds°+(-v’- aa B+ é+ d)p°>-("a pe*=0,
i@-a)bs'-(a- 9 ds°+(a- 3 g°~(-v’- ax b+ & §p°=0.

®)

The matrix of the system (5) is obviouslyca matrix; its determinant is therefore
equal to the square ¢f c,, c”, up to sign, or to:

(vi+aa+ B?)?+(a- 9% B, B?=b*-c?-d% (6)
Therefore, (5) has a system of solutigfs# 0 that is a singular semi-vectrwhen
and only when:

0=(W?*+aa+B)°+(a-9° @ (7)

is fulfilled. Since(a-a) < 0, one must havé’ > 0. We thus obtain the condition:

b? > c? + d?. (8)
If we further set:
a=a+if then(7) becomes V+d+fF +B>=+2Bj (9)
and therefore:
V+d*+(B+B)?=0. (10)

Therefore, there are no DE BROGLIE waves in thsec

In the case (), 8 3, instead of (1), the system emerges in wthehsecond equation
of (1) has the sign changed on its right-hand sid&ewise, the current vector has the
form § 3, (1).

In the second system (3) and in)(4alculation yields a sign change on the leftehan
side, which then again leads to the system (5)wiitht— 2, instead of +7.

The condition (8) still remains valid, while inateof (10), one now has:

) And indeed the most general spin vector of the typeishgiven by (5) (for a given). A spin
vector is then defined to be a semi-vecﬁf7 for which a relationc,, & = 0 is true (naturally, with a
singularc,,).
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V= + (B+B)> (11)

Therefore, DE BROGLIE waves appear with two numdgicanishingv, as long as
only S andB are non-vanishing.

One surmises from these results that a further reduct the system (Lis still
possible, since apparently only two of the five remainingstants seem to have a
physical significance. We must then see the validithis conjecture.

We will encounter a “canonical representation” ofsiistem (1, for which:

C34=Cs2=0,

andC;; is pure imaginary an@,s is real, moreover.
If we set (in anticipationy andd = O in (4) then (4) splits into:

-iva, =af, —ibg,, -ivB, =aa, -iba,,

-iva, =ib B, -ap,, (12) -ivB, = iE)a1—§a4, (12)
va, =ap, —bp,, VB, =aa,+bhba,,

-va, =bg, + ag, VB, = —ba, +aa,

where the system that corresponds td), (8 3 has the sign changed from the
corresponding system (32 By eliminatinga, we then obtain:

(v:-aa-b)p +i(@a- 9 1p, = 0}
o - (13)
i(@-a)bg +(?-aa- K¥)B, =0,
(v -aa- )8, +i@- g Hp,= 0} (13)
-(@-a)bg, +(v* - aa- §)p,=0.
There are two root& for which one had):
V- aa -b*= +i(@-a)b. (14)
This gives, together with (13p, £ £, =0,i5 + 5 =0, so:
Bi=Fh, B=7FiA. (15)

From (12), we then obtain:

) In the sequel, the two cases will be treated togéthehich two signs enter in one above the other,

such that the upper one relates to the first of thesraotl the lower one refers to the second wener(v;,
resp.).
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-iva, = (b xa)s,
-iva, =(axib)g,

) (16)
va, = (axib)s,,
—va, = (b¥ia) B,
SO
a,=* qq, B=Fiad. (16)
For the current density:
|4 — E407' ag' ar— E4OT ﬁgﬁr,
we obtain, after some calculation:
1“=54(B,B,+ BB, (17)

This proves to be an important result, namely, thaetactricity densities that belong
to the twov possess opposite signs. The two ponderable masseseta (by the usual
interpretation) to be assigned electric charges of af@psigns. This is then the place to
discuss the other two main cases Il and Il of § 2e iifain case (Il), in which two DE
BROGLIE wave do indeed appear, is invalid from the phystahdpoint because the
current densities always have a single sign then: Thatlsleto a theory of
electromagnetism in which only electrical measure dessthat have a definite sign
appear.

In the main case lll, onlgneDE BROGLIE wave exists.

8 5. Thefurther reduction of the Dirac equations.

Up to now, we could arrange that g, in the right-hand side of the Dirac equations
already had the form:
Cas, Cas, Cy2 are pure imaginary.

TheE on the left-hand side would then have the vahliiesd'; as constants.
In this paragraph, it shall be shown that one shbale, additionally:

Cu1 real.

Following the reasoning of § 3, we thus conswmlee c” , whose (1, 1), (2, 3), (3, 4),
and (4, 2) components are real:
¢ meen } ®
C.1» Cy3y Cayy Cyp @re real.
From (3), 8§ 3, one has:
C,.=C,c9 =C,c,é". (2)

= or ™ u
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ForC,;, we would like to assume that it has the form thas arrived at up to now:
Cor =A Qs +iC13m, Areal, (3)

where the(lt .. already fulfill the reality conditions:

911’C23’934’942 real (4)

1

For C

oy

we make a similar assumption:
gqu = quu + |9 [«/73n (5)
where now, in addition t@;: 11 (2:23, (2:34, (2:42 being real, one also has:

C, =0. (6)
This shows that under the assumption:

(1311¢01 AZ#0, 953_934_C1:i2>0

one can find the?, € that correspond to (2) and (1).
If we introduce the quantities (3) and (5) into (2) thenobtain:

Agr,u + icz;l‘r: (Agrr + I?a‘r) CZ,(COSCY'*‘ i siny ): (7)

(Ag,, cosa—g:msim )X, +i(Ag, simr+ lCm cog X, |.

Since the decomposition intoquantities with the aforementioned reality behaiso
unique, one has:

Ag,, = (Ag,, cosa - C,, simr ), (8)
CZJ#, = (Ag,, sina + E:m cosr )C, . (8)

We set:
c/uct = 9’ 9)

Since we first look for, @ # 0 is an assumption that will be justified later dhwe
multiply (8) byc/’ then we obtain:

1 .
® Ac, = Ag, cosa - g:p, siny . (10)

For (8), that gives:
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1 _ . ’ ~ .
EACz:/” =(Ag, sina + 1Ca'r cosr )(Ag®~ com Fﬂ sior ) 1)
= A’g,,sina cowr -C, C’, sir cog+ AC, clgr - AC, Siar
Due to (6), one hag);,;= 0 andC ,C°, = 3C aﬂcll”ﬂ 9,.):
O:(AZ—%Cl:[),ﬂcli""’)sinacosa+ACl:ll(cos2 a—sirf a), (12)
or
O:(AZ—%CllaﬂCll”ﬂ)sinZH +2AC, cos . (12)
This yields the desired angde with which the right-hand side of (16)and thusc,,
—is given, up to a factor.
Under the assumptions that were madeAoaand Cl:ll, this shows that,; is non-
singular.

The quadratic condition § 3, (33hen gives:
legpc®=+1, so  ®=1in(9), (13)

since indeed the two sub-cases of our main case | ateansformable into each other
due to the vanishing behavior relative to the DE BROGWHye. (A DE BROGLIE
wave naturally still exists under oatransformations of the.)

Equation (13) ultimately serves to determine the faétan (10).

In the next paragraph, we will arrive at ttegluction to normal formAll that will
remain in the Dirac equation are two constathis:real G, and the pure imaginary £&.
8 6. Thenormal form for the Dirac equations.
The last form that we arrived at for ti&¥" on the right-hand side of the Dirac
equations was:

C™ pure imaginaryC?3, C**, C* real. (1)

We now seek to determine two- thusc and € - that correspond to the conditions
(13), (13) of 8§ 3 and satisfy the relations:

Cas CP= G, " )

where the reality behavior (1) is true orand C, and one ha€,, = C,, = 0, moreover.
Since the quadratic relations ()L8f § 3 are true foc and ¢:
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ic,C% = +i¢ ¥ =+1, (3)

so it follows from (2), after multiplying bg¢,, , that:

C,y = £€,,C,C™. (4)
As long as (2) is fulfilled, we can then go from thead equations with th€,, to the
ones with thef:pr by simultaneously transforming the two semi-quantities.

The system (2) is again true for all combinations ofvdaes ¢, @) when it exists for
(1, 1), (1, 2), (1, 3), (1, 4). This gives four equations:

¢, C"+ ¢, C*+ G,C'+ ¢, C"= G¢% Gy é% Gié+ G &
C,C" +6,C+ 6, C+ 6,C'= G+ G ¢ Giéw G €& 5)
C,,C" + ¢, C'+ ¢, C'+ ¢, C'= G G é% G éh G, &
c,C*+G,C* +¢,,C*+ ¢, C"= C, ¢+ C,¢% G;¢%+ G &

We convert (5), using therelations:

C12 :—iC34, C13:—iC42, C14:_iC 22} (6)
Cll - C22 - C3 -Cc
and get
c,C" - ,C" - ¢,C%- ¢,C%= Gie- Gi¢- G ¢ G ¢
ic, C* +ic, C*+ic,.C*?+ ic,CP=—iC,t™ iC,c** iC,t*% iC c% @)
—ic,,C* —ic,,C*+ic C*- ic, C®=-iC,t"- iC, £+ IC,c**iC, %,
ic,.C" +ic,,C* —ic, C*+ic, C*?= |C2;c“+ iC, % iCc*% iC.c?
Due to the reality behavior, the system splite:int
C11C11: c::11~ 12 C34C34+ C42C42_ C23C23: :Cszcgf :C4~2C42_ :Cgch
CS4Cll: S:ll~ 34 (8) C11C34+ C23C42_ C42C23: A‘C:SZCH-.*- ~C2;C42 ~C;2C2 (8)
C42C11: C~:11~ 42 C23C34_ C11 2" C34C23: - C4;C1i+' C2~3034 ~C;4C2
(‘23C1]_: ll~ 23 C42 34 C34 42" C11C23: C:23(:1 C4;C34_ C;4C?4
When one arrives at:
Cu= c_:11’ 9

it then follows from (8) that:
Caﬁ: Caﬂ . (10)
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(Due to (3), this can reads =+ C,,, but if one fixes (9) then (10) is true.)
Since one has,z ¢ = é,,ﬂé”/”, the transformation of the equations in énto the

ones in theC is linked with either no change of sign in t&di.e., in the equations) or a
simultaneous change of sign; naturally, this changes no#tiay] regarding the type of
the Dirac system. With consideration to (10)) (®comes:

_ng(czs_ c~:23) + C34( C34_ ~Ca) + C4£ C42_ ~C4)z: 0,

Cll(C34_ c::34) + C23( C42+ ?4) N - C4£ Cz3_ ~C2)3: 0, (11)
C11(C42_ ?42) - Cza( C34+ Caz) + C3£ Czé*’ ~C2)3 ~ =0,
Cn(czs_ C23) + C34( C42+ C4) - C4§ C34_ C?)nt: 0.

Should this system be fulfilled witty, # O, the determinant of (11) must then vanish.
This @) is:
A=- [(szg - C223) =( C§4_ Cg) =( Ciz_ Ci)] g (12)

We fulfill A = 0 by way of:

C~:223 = C223 _C32.4_ Ciz’ C34 = C~:42 =0. (13)

For thec,; in (11), one then easily calculates thatc® # 0. We have thus fulfilled
the system (4) with the calculateg, ¢,,, and Cm, and exhibited the normal forth

T !

) We have also arrived at the reduction of the Digueaéions for semi-vectors in a second way when
we converted the Hamilton functidts by ac-transformation of th€,; into g, at the first step. We then

had only the eight real constalats(alu, resp.)i(=1, ..., 4) left in th& (E, resp.).
Any further transformationy, = c;¢,, x°= c;”)_(” of the ¢, X¥° into ¢,, x, must then leave

Yo x°invariant. This gives the condition,’c’ = J;; i.e., the transformations of thg and y must
involve mutually inverse matrices.

The second step then brings the Brie H; into normal form; e.gE(2, 0, 0, 0), when it is “space-like.”

However, that still allows all transformations ofgkiinto itself — i.e., alc-transformations for whicly;
— ~imk ; ; ;
= ¢/'T x, is arotation around thg-axis.

One can then arrive at the final form in which — e.gnly the first and fourth “components’™ are non-
zero.

Thus, according to whethEr is space-like or time-like, one will have:

CORICHE S

The normal form that one arrives at in this wayc@npletely equivalent to ours, on the basis of
symmetry, but in this paper we preferred the final ftnat we developed.
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§ 7. Summary and physical interpretation.

In the foregoing, we have presented a field theory irchytalong with the metric and
electromagnetic field quantities, two semi-vectagsand y appeared as new field
quantities. In the Hamilton function, in addition toetlturvature scalar and the
electromagnetic field scalar, a scalar entered inishguadratic in they and y, as well as
their first derivatives. Along with the gravitationaikelfl equations and Maxwell
equations, completed with the electrical current denaitgystem of generalized Dirac
equations for the semi-vectors appeared.

It was shown that the original 17 arbitrary constané entered into this system of
equations could be reduced to three real ones, nagmayandb. One thus obtains the
normal equations of 8 3,'Y] (I"). In these normal equations, the f&iconstants; to as
have the value (1, 0, O, 0), and the (covariant) mafrtke C,; in the right-hand side has
the form:

ia 0 0 -ib
Oiab O
0 bia O
ib 0 0 -ia

By neglecting the electromagnetic field (i.e., thmiting case), the equations admit
two solutions that correspond to a special species ofeglamy particles at rest whose
DE BROGLIE frequencies (particle masses, resp.) arerdieited by the equations:

V2 = (a+h)? V2 = (a-h)>

The electrical charge densities that correspond ®eth@o DE BROGLIE waves are of
opposite sign. This therefore seems to be thetimg that an explanation was given for
the fact that there are two electric elementaryigag of different masses whose
electrical charges possess opposite signs. It is fuebgential that only one constant
with the dimension of an electrical charge enters the equations, which is given gy
up to a universal factor. This is obviously connected withfabethat there is only one
elementary electrical charge (in absolute value).

The fact that negative, along with positive, valueteeed intov as measurement
constants is perhaps connected with the apparent appearffigesitive electrons,”
which were generally to be regarded as electronegativEelparof negative ponderable
mass. Correspondingly, one would expect that the tresoyapplies to protons.

It is clear that such a field theory cannot admit BORRprobability interpretation of
the ¢ field, and in the meantime there thus remains an opestiqu of whether such a
theory admits an interpretation of the atomisticuduire of matter that is free from
contradictions to begin with.




