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In the year 1872, the Proceedings of the Scientificeé®paf Christiania received a
brief — barely three pages — communication of Sophus Fia: fnvarianten-Theorie der
Beruhrungstranfromationen.” This is noteworthy in mitvan one way. First, due to the
particularly important applications that Lie made of hew theory to the integration of
partial differential equations of first order. Secorghexially for the fact that it treated
the invariants of a special infinite group, the group bé@htact transformations. Before
then, there was, at first, only one example of saichnvariant theory that began with
Gauss, was further developed by Codazzi, Minardi, and @eiltrand became the
invariant theory of quadratic differential forms in sealewvariables by Riemann,
Christoffel, and Lipschitz. Finally, one observes thatdly, Lie’s invariant theory
existed in precisely the same time period in which F. Kdlgiweloped the general ideas
that he laid down in his Erlanger Programm, so Lie haddyrevorked out an important
example of what Klein had proposed as a program fofutiiee. Indeed, Lie knew of
these ideas, for the most part, from speaking with Kkemal, had himself contributed to
its development, but the novelty in these ideas wasfdohdim many realms of existing
mathematics could be described as invariant theoriesoapgy while, on the other hand,

) Talk submitted to the German Society of Mathematiiand excerpts presented at its meeting in
Vienna, September 1913.
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the question of the invariant properties of the transéormicture under a given group
was completely natural to him.

Lie’'s first presentation of his invariant theory ofntact transformations suffered
from the fact that he still was in no position to gavesimple derivation of the formulas
for contact transformations, but based it on the gétieeary of Pfaffian problems. He
did that in 1874 in the great treatise in volume VIllitbé Mathematischen Annalen.
Soon after, Adolph Mayer gave a relatively simpleediirpresentation of the theory of
contact transformations (Gott. Nachr. 1874), but Lieldatill not make up his mind
whether to accept the Mayer approach outright. e peculiarity of Lie himself: He
made it his ambition to found his new theory only in saclvay that he himself had
thought of, and he went out of his way to avoid use ofsamyplifications that originated
with anyone else. By the same inducement, one is odlyi@lso led to the remarkable
fact that Lie made no mention whatsoever of the lalineovariants of a Pfaffian
expression that Lipschity had already given in 1869 and had then been utilized to grea
effect by Frobeniug) in 1877, nor did he use them anywhere. As S. Kantaifigusy
suggested in a 1901 papgrit is precisely with the help of these covariasitshe theory
of Pfaffian problems, and especially the Mayer formalgtas well, by which the theory
of contact transformations can be greatly simplifiedmaly, when one notices in
addition that the Poisson bracket symbol can be pieges a form in plane coordinates
that is covariant to these bilinear covariants.

Since the presentation of the analytical theory aftact transformations that was
given in the second volume dfansformationsgruppenwas also strongly affected by
Lie’s aforementioned peculiarity, it does not seem diymars to me to present the theory
of contact transformations and the associated inviatt@ory as it is now possible to do
by using the modern tools. In general, many things thakraven will also have to be
reiterated. However, it will yield that the generatian of the theory that Lie himself
already had in mind to the case where one does notesasgthing on the contact
transformations for a specific normal form for the@fR&n expression is not in slightest
more difficult. | have the aforementioned paper oK&ntor and another one that was
published in the meantim® to thank for many essential inspirations. Furthermobre
cannot, by any means, claim that the insights of S.dfamere my own. Similarly, |
cannot help but stress that some of the very elevatatiscithat Kantor made seemed
completely unjustified to me. Along with the many good @léaat one finds in the
papers on how to approach matters, one also finds anargber of flawed or outright
false ones, and the lack of organization in the presenthas the effect that overall, it
suffers from a lack of clarity that the reader of plager does not find edifying.

) In the paper: “Untersuchungen in Betreff der ganzendgemen Funktionen vom Differentialen.”
Crelles Journal, v. 70, pp. 7&,seq

2 “Uber das Pfaffsche Problem,” Crelles Journal, v.p§2,230-315.

% “Uber einen neuen Gesichtspunkt in der Theorie dessefaffi Problemes, der Funktionengruppen
und der Beruhrungstransformationen.” Wiener Berichte, Mwturw. Klasse, Bd. CX, Abt. lla,
December 1901, pp. 114&t seq

% “Neue Grundlagen fiir die Theorie und Weiterentwicklungen Ldeschen Funktionengruppen,”
ibid., Bd. CXII, Abt. lla, July 1903, pp. 758t seq Obviously, the paper that follows this one immedyatel
on pp. 678-754 (“Uber eine neue Klasse gemischter Gruppentjgselaith this one, as well.
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8 1. The bilinear covariant.

First, | must briefly discuss the bilinear covarianad#faffian expression.
Let:

® D= a(% %) dx

be an arbitrary Pfaffian expression, and the sarpeession, when formed in another
system of differentialgx; would be denoted b if:

(2) X = @iy, .. V) i=1,...n),

where theg are completely arbitrary functions, and tHDsis converted onto a new
Pfaffian expression in thevariablesys, ..., y::

@) D=3 06 5) A= XA (1) oy
and one thus obtains, by means of (2):
dA-3D=Y (da.dx —da d) +> a (&5 x-5 d3
. 5 =
? = (0A0Y, ~dBly) +Y A -3 o).

On the other hand, however, from (2), one gets:

dx = ) —dy,,
Z;ayk .
S0, as one easily sees:
. 0d.
(5) ddq—ddx:za—ﬂ(déyk—édyk);
k=1 k

from (3), it then follows that:
zai (dox —adx) ZZﬁk(dayk —ody,) ,
i=1 k=1

such that one can deduce from equation (4) that:

(6) Z(dcmxl aa; dx) Z(dﬁk5yk 9B, ayy) -

=1
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With this, one shows that the expression:

n 1..n
7) > (da,0x% —oar dx) = Z[—ga‘ - %‘): jdxﬁx
i=1 iV

is covariant to the Pfaffian expression, and indsedot merely an introduction of new
variables, since under any substitution (2) thections ¢ may or may not be
independent of each other.

In all of the representations that are known to, imee constructs the bilinear
covariant of (1) by regarding the expressidds and ddx in the expressiodA — D as
equal, and one must then verify the covariance gagpy computation. Here, this
property emerges as an immediate consequence dditife fact that from (5) the
expressionsldx, — adx are cogredient to théx and dx . Also, it is important that the
covariance property of (7) is not assured merelyheyintroduction of new independent
variables, but for any arbitrary substitution o florm (2).

It must be further remarked that equation (5),clwHollows from (2), yields:

oF

n i oF
D (ddx —ddx) — = > (ddy, —ddy) —,
i=1 % k=1 0 k

whenF denotes an arbitrary functionxf ..., %, . If one understand$i anddyx here to
mean the increases that thg experience under two arbitrary infinitesimal
transformationsv:f andY-f in yi, ..., Yk then one immediately recognizes td&y, — ddyk

is the increase thak experiences under the infinitesimal transformatiomhich will be
represented by the bracket expression:

(Y]_Yz) f= Y]_Yzf - YzYlf .

Equations (5) thus express the known fact that bineéeket expression represents an
infinitesimal transformation that is covariant toth infinitesimal transformations.

8 2. The integration problem of a Pfaffian equation
and a Pfaffian expression.

Lie’s first paper on the theory of partial diffat&al equationsl¢c. cit) was the one in
which he originally posed the question of Pfaff @nmore, which consisted in the
guestion of whether any manifold in the space;pf.., x, on which the Pfaff equation is
fulfilled could be regarded as an integral manifoté Pfaffian equation:

3,06+, %) dx= 0.
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If one thinks of anm-fold extended manifold as represented rby- m independent
equations:
P(X1, ..., %) =0 k=1,....n—-m)

then it is an integral manifold when and only when anyesysdf values, ..., X,, dx,
..., Ox, that satisfies the equatioss = 0,d®y = 0 also satisfies the equati@na; dx = 0.
On the other hand, if one thinks of the manifold as reptedewith the help om
independent variablas, ..., uyin the form:

X = @i(ug, ..., Un) i=1,..,n

then it is an integral manifold when and only whendbeation. a; dx = 0 becomes an
identity under the substitution= ¢, .

It is convenient to introduce, in a corresponding wag, tbtion of an “integral
manifold of a Pfaffian expression a; dx ,” and understand this to mean a manifold on
which the expressioR a; dx becomes a complete differentigl.

If one recalls the known theorem that a Pfaffiapression is a complete differential
when and only when its bilinear covariant vanishes idengidalkn one immediately
recognizes that a manifold:

X = @i(ug, ..., Un) i=1,..,n

represents an integral manifold of the Pfaffian expressian dx when and only when
its bilinear covariant vanishes identically under the switetn x; = ¢ . However, this, in
turn, yields that a system of equations:

Dy(Xg, ..., Xn) =0 k=1, ..,n-m),

represents an integral manifold when and only when this &ailinevariant vanishes for
all systems of values, dx, Jx that satisfy the equatiod® = 0,d®y = 0, &Py = 0.

Had Lie introduced the notion of an integral manifolé éffaffian expression then he
would have been able to represent a non-trivial part ofnfsstigations much more
conveniently.

8 3. Unions in the space of elemerns, ..., X, P1, ---, Pn -
The integration of those partial differential equadion z, x;, ..., X, in which the

unknown functionz itself does not appear subsumes the problem of finding-fb&l
extended integral manifolds of the Pfaffian expression:

Y I have already been using this formulation in my lectdioe many years. One also finds, moreover,
as | have remarkes after the fact that it was already used by S. Kantor in: “Uber einesgagemischter
Gruppen,’loc. cit, Bd. CXII, Abt. lla, July 1903, pp. 721 in no. 5.
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® > pdx

in the spaceq, ..., X, p1, ..., Ppnthat satisfy one or more given equations betweemjthe
ooy X0y P1, ---5 Pn . We must therefore first say a few things on thegral manifolds of
(8). We then briefly call a system of valugsp; anelement.

It is clear that any family of' elements is an integral manifold of the Pfaffian
expressions (8). Thus, integral manifolds of (8) alwgyshrough any two neighboring
elementsx , pi andx + dx, pi+ dp . On the contrary, if we demand that the integral
manifold still includes a second infinitely close eletmer &, pi + Jpi then, from § 2,
the condition:

©) 3 (dx&p -5 xdp)= 0

i=1

must be fulfilled. When two of the elements pi are infinitely close and fulfill (9), we
would like to say that they areited and accordingly, we would like to briefly say tha
the integral manifolds of (8) araions.

A union now includes the elemerf, p° andm infinitely close elements’+ dx,
p’+dp (k=1, ...,m) that belong to no manifold of dimension less tharfor which
not allm-rowed determinants of the matrix:

(10) ld - dox d p-e- d g k=1, ..m

necessarily vanish. Therefore, one must firsilfalfe equations:

(11) > (dxd p-d pg ¥=0 Ki=1 ..m),
i=1

and secondly, all of the elememtsp; that are infinitely close elements of the unionsimu
satisfy them mutually independent equations:

(12) i(dkxdp—q pdY=0 k=1, ....m).

On the other hand, since (12) possessemtineearly independent solutions:
d>q :dei, dp :dkpi, (k: 1, ...,m),

one then demands that one must hanve n, such that there are no unions of more than
" elements. However, ih< nthen there is always a union«of elements that includes

the elementx’, p° and them given infinitely close elements. Namely, if oregss

dexi =a X, dkpi=bed
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then one has:

when one considers, .., un to be independent variables of such a unipn.
From the previous statements, it emerges that any umitbrbe represented by
equation of the form:

X = ®i(va, ..., Vi), pi = Xi(Vi, ..., Vi) (i=1,..,n),

wherem < n, and among ther2functions®;, X; , m of them are mutually independent.
Among then functions®;, ..., ®,, let exactlyl < m of them be mutually independent, so
one can represent the equatigis @; in the form:

(13) X = @i(ug, ..., w) (i=1,...,n),

of which,| of them can be solved fog, ..., u. Now, should the expression:

> pdx=> pdg
i=1 i=1

be a complete differential, then it could obviously unld no other independent variables
than justu, ..., U, So one must have:

n

> pdg =dQ(uy, ..., w),

i=1
an equation that can be subdivided into the followingson

T  O0u,  0u,

However, it is clear that equations (13) and (14) collettialways represent a union of
«" elements when one chooses the functigns.., ¢, andQ completely arbitrarily and
cares only whether thefunctions ¢, ..., ¢, are mutually independent. Likewise, one
demands that all unions of' elements can be found in this manner. On the other hand,
each union of™ elements|(< m < n), among whose equationsof them of the form
(13) can be found, must belong to a union that is determinezbgtions of the form
(13) and (14), and any family of elements in it that isuded in a union must obviously
define a union in its own right, and with this, the deieation of all possible unions is
achieved. One obtains all of them when one choosefutittionsg, ..., @, Q in the

Y Cf., G. Kowalewski, Leipz. Ber. 1900, pp. @8,seq
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most general manner for all possible values$ (< | < n), and thus adds to equations
(13), in the most general manner, the equations:

(15) pi = Xi(U, ..., U, U, ..., Uy) i=1,..,n

(I £ m<n), such that equations (14) are fulfilled identically.

The union of" elements, on which, as we have seen, all unions mushiist then
be considered in particular.

Let the equations:

(16) ®dUXe, ..o, Xy P1y o, Pr) =0 v=1,...,n

be mutually independent, and i&t, p° be a system of values that satisfies (16) and that
does not make all of therowed determinants of the matrix:

0D, 0P, 0P, 9D,
|ox  0x, 9p  OR

(17) | (v=1, ...n).

vanish. When does the totality of all elements treiria certain neighborhood of the
elementx’, p° and satisfy equations (16) represent a union"aflements?

From 8 2, it is necessary and sufficient that fosgditems of values, p;, dx, dp, ox;,
i that satisfy the equatiods, = 0,d®, = 0,dP, = 0 the equation:

n

9) D (dxdp-dpd ¥ =0

i=1

is fulfilled. Since we restrict ourselves to swdments that lie in a certain neighborhood
of the elementsx’, p’, we can, and would prefer to moreover, considdy soch

elementsk, p; that fulfill (16) and also do not make all of theowed determinants of
(17) vanish. For each elemext p;, the equationsl®, = 0 represenh independent
equations for the differentiats , dp . If then systems of valuedx , dipi (k= 1, ...,n)
are linearly independent systems of solutions ® efjuationsd®, = 0 then then
equations:

18) > (@x5R - d pOY=0 =1, .0

are linearly independent of each other, and siheset equations must be satisfied for all
systems of valuedx , dp that satisfy the equatior®, = 0, this demands that the system
of equations (18) must be equivalent to the syst@m= 0. In this fact, one finds that
the expressions:

n 0P n 0P
(19) dx = > A, —*dt, dp=-> A, —*
= op,

dt
PR
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with the n arbitrary parameters,, ..., A, , represent the most general system of values
that satisfy the equatiordb, = 0. If we therefore set, with the employment of the
Poisson bracket symbol:

(g oy _9g x| _
20 E — == = :
29 i=l[api 0x a)ﬁapj M
then the expressions:

do, = Z‘I)lﬂ(CDﬂCDv)dt
p=

must vanish for arbitrary, ; that is, all expressionspbf, ®,) must vanish for the system
of valuesx;, pi that is considered here.

This condition is now not merely necessary, bsb aufficient. Namely, if it is
fulfilled then obviously for arbitraryl equations (19) represent a system of values that
satisfies the equatiordP, = 0, and indeed, the most general system of vadfig¢his
type; however, by means of (19), one will have:

Y. (dxdp-dpd ¥ =) A0, Mt,
i=1 H©=1

which, due to the equatior®, = 0, must vanish.
Thus, we have the well-known theorem:

If x°, p° is an element that satisfies the n independenatemns (16) and does not

make all of the n-rowed determinants in the maftix) vanish then the manifold of"
elements that is represented(#ig) in the neighborhood of the elemetit, p° is a union

when and only when all of the expressi¢g®,) (1, V=1, ...,n) also vanish for each
element x, p that fulfills (16) and lies in a certain neighborhood of , p°, or, more

briefly, when the equatiorf$, ®,) = Oare a consequence (iI6).

Since we are stuck with the Poisson bracket syrhbmd, it is likewise advisable to
add the important relationship that exists betwdssisymbol and the bilinear covariant
of the Pfaffian expression, a relationship thatewkse seems to have first been
established by S. Kantor, or something close to it.

Namely, if one interprets the quantites, dp as homogeneous point coordinates in a
plane spaceRx,-1 of 2n — 1 dimensions, and if one defines homogeneousepla
coordinates by the equation:

n

Y (udx+ydp=0

i=1

then the covariant form that belongs to the biliredternating form:
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2. (dxdp - dpd ¥)
i=1
reads, in plane coordinates:

i(viu’—w)-

Now, since the derivatives of two functiogsand y with respect tog, pi are nothing but
two such systems of coordinates, the Poisson bracke¢ssion is simply the covariant
constructed from the plane coordinates to the bilinearar@nt of the Pfaffian
expression. Furthermore, since the equation:

©) > (dxdp - dps ¥ =0

represents a linear complex Rn,-1, the demand that the equatios = 0 should
determine a union obviously says that all of the lineshe 6 — 1)-fold extended
manifold:

n (9
(21) v dx +
;[ax §

9D,
on

dpj=0 h=1,..n)

in Ron-1 belong to this complex. However, this means the saimg as saying that the
planar (2 — 2)-fold extended manifolds iRy,-; wWhose intersection is (21) fulfill the
equations®,®d,) = 0.

The importance of this relationship between the biliresariants and the Poisson
bracket expressions rests especially upon the factwithtno further assumptions, it can
be carried over to any Pfaffian expression mvariables that includes the normal form
P1 dxg + ... +Pn dx, .

We have seen that a systenmafidependent equations:

(16) DX, ...y Xny P1y -, Pr) =0 v=1,..,n)

represents a union of" elements when and only when all expressighgsd,) vanish
due to (16). Since each system of equations that is éeptva (16) represents the same
union, it must possess this property, and, in particulamust then be true for every
system of equations that follows by solving (16).

We would like to assume that (16) can be solved for gxacof thep;, so it can take
on the form:

P, +8,00 %0 R, R)=0 W=1...m,
XX, ..., %) =0 k=1, ....,n—-m),
in which we understand, ..., i, to mean any permutation of the numbers 1n...If this

now lets us derive a relation between just #1e ...,x  from the equationgi = 0 —
perhaps:
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)ﬂm +(u()$l,...,)l(m_l): 0,

then the equations of the union can take on such a fantite two equationp, + ¢m =
0, x_+ w= 0 emerge. However, from the equations of the unian/et-hand side of

the expression:
(p,*om % ta)=1

must then vanish, which is impossible. Thus, the questiti , ..., X cannot be

eliminated from then — m equationsyk = 0, and the equations of our unieror, indeed,
any union ofe" elements- can then be put into the form:

p+P, (XX, p v, p)=0
oz [P R R)
)ﬁmﬂ+)(k()gl,...,)$m):0

Here, however, the bracket expressions on the lefi-lsates are functions of only the
X, %+ P, - P and must then be identically zero, since they must hahie to
(22).

When two functionsp and y make the bracket expressiog X) vanish identically,
one says that thdie in involution We can then also express our result in the form:

The equations of a union &f' elements can always be put into such a form:

QX ooy X P2, -, P) =0 (v =1, ...,n)
that the function$l,, ..., Qn lie pairwise in involution.

This shows that there are systems aidependent functions of p that lie pairwise
in involution. IfXy, ..., Xy is such a system then the equations:

(23) XXt -y Xny P1, +-vy Pn) = a0 (v=1, ...,n)

always represent a union ®f elements whose values are also givemby..,a,. One
then has a family of" unions ando" elements, and it is clear that the spaceodf
elements, p is divided into" unions ofe" elements by means of equations (23), such
that any element, p belongs to one, and generally only one, of these unions.

Conversely, if one knows that equations (23), in which Xheare independent
functions, represent nothing but unions then one can ih&grtheX, lie pairwise in
involution if the expressions:

(Xy—au, Xy—ay) = (Xy X))

must always vanish for arbitrasy, due to (23), which is possible only when they vanish
identically.
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One can, moreover, easily form the most generakesysif equations (23) that
representse” unions ofx" elements. One needs only to choose the functipardQ in
equations (13) and (14) to be functiong wériablesu,, ..., u andn parametersy, ..., a,
in the most general way that makes equations (13), (14bledh terms otu, ..., u,, ai,
very @n.

If equations (23) represent unions ®f elements for arbitrary choices of the
constants, , and if®d,, ..., ®, (M < n) are arbitrary functions that are independent only
of each other and th¢, then obviously the equations:

Xi=ag, ..., Xq = an, CDJ_:b]_, ...,cDm:bm

also represent unions for arbitrary values ofahg and indeed, unions of ™™ elements.
Thus, there are certain systems of equation of time: for

(24) FuXa, ..oy X0, P1, -, Pn) =& (v=1,...,n+m0<m<n)

that determine unions for arbitrary values of the vadues The space 6b?" elements,
p will be subdivided by such a system of equations intanaly of ™™ unions ofeo"™
elements in such a way that each elemeptbelongs to one, and generally only one, of
these unions.

Let ¢, ..., ¢h-m be functions of the, p that are independent of each other and~the
e, Frem . If we then set:

(25) WXty oy X0y P1, -ey Pr) = Uk k=1, ..,n-m)

then equations (24), (25) may be solved forxhg and we obtain a new representation

of oure™™ unions from this solution:
- =. U 8 Qe
(26) {x (W lhom 8o Bem) g
P=X (W Yoy @0 8um)
in which theu, ..., u,m are to be regarded as independent variables. The sg$tem

equations (26) may thus be obviously solved for uhenda, and thus again delivers
equations (24) and (25).

Since equations (24) represent unions for arbitrary valtifse a, the expressiod,
X; d@; represents a complete differential in the variabjes one has:

n n-m

A, C0AO(U - U B e
(27) leza_'dq( = Z (U un m q a'&m)duk .
= k=1 OU, k=1 ou,

If we make the substitutioa, = F,, u = yk in this identity, which we would like to
suggest by enclosing them in square brackets, raadine that ;] = x;, [X] = pi then
we obtain an identity in the variablgsp of the form:
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n n nmtm aq> n+m aQ
dx - P dE =]~ |22 | dF,
> o ;p;{%} - = gy ;{aaj V

or, when we set:
[Q] ==X, %, Ry BY)

(28) o oo, | | 00
| —L |- —=|=f e X R, ,
;p[aaj Laj (% % B R
an identity:
(29) nzr:n f,dF, = Zn: pdx +dw,
v=l i=1

which clearly expresses the fact that equationy r@dresent a family ob™™ unions.

Here, the functiom2 is determined by (27) up to an arbitrary, additwection  of
a, ..., 8um, SO one can replaaewith w+XF, ..., Fr+m), from which (29) assumes the
form:

rin( f, +§?§jdﬁ = Zn: pdx + d(w+ 9).

v=l v i=1

It is also easy to see that in this we have founedmost general form for this identity in
the form of (29). Namely, if:

n+m n

> f,dR =) pdx+dw
v=1 v=1

then:

S (7, - 1,)dF, = d(@-a)

v=1

is therefore equal to a complete differential, aimte the~, are independent functions of
thex, p, w- wis a function? of F4, ..., Fr+m ; hence:

T g, O9(F Fo)
oF,

v

(v=1, ...,ntm).

If one has foundw by the aforementioned quadrature, to which cerdiminations
must generally be added, then one finds tfiem the 21 linear equations:

. OF, ow
Z fv =P +—,
b 0% ox,

n+m a aa)

F
f & - 29
;”ap. op
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into which (29) separates. Among these equations, whicbear@nly compatible with
each other, there are exaatlyr m mutually independent ones, due to the independence
of theF, .

Thus, if equation$24) represent unions ab"™ elements for an arbitrary choice of
the a then there always exists an identity of the f¢28), where w must be found by a
quadrature, while the,f are determined after discoverirgby linear equations’)

If we construct the bilinear covariants from the tsides of the identity (29), which
are furthermore identically equal, for self-explanategsons, then we obtain the new
identity:

n+m n

(30) > (df,dF, -of,dR) =) (dpox - dxd p).
v=1 i=1
In this, if we set:
d(i:%cﬁ, d)i:—%gt,
op. 0X;

in which ¢ is understood to mean an arbitrary function, tienyields:
(31) Y ((gF,)df, - (¢ f,)dF) =dg,

v=1

and from this, one further obtains by the substitut

)¢ __9%
dx o dt, dp ox dt,
the identity:
(32) > {(@F)(xf,) - (@1,) (xF,))} = dg.

v=1

Conversely, if (32) is true identically for all fations ¢ and y then obviously (30) is also
fulfilled identically, and there thus likewise etesan identity of the form (29).

If we now assume, in particular, that = O then we consider the case in which
equations (24), or, as we would like to now writerh:

(24) XXty «eey Xy Pry -y Pr) =0 (v=1, ...n),

represent a family ab" unions ofe” elements then alX(, X,) = 0. If we then write the
identity (29) in the form:

(29) S RAX, =3 pdy + dw
v=1 v=1

Y Cf,, Lie, Math. Ann., Bd. XI, pp. 46%t seq
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then forg = X, and¢ = P, the identity (31) delivers this one:

S (RX,)dX, = d,
(33) o (u=1, ...n.

n

> {(RX,)dR-(PP) dX} = dp
v=1
From this, however, it next follows from the indegdence of th&, that:
(PvX) = &uw,
whereg,, = 0 or 1, according to whethgrz vor i = v, resp., so one has, however:
(P,P)=0.

Finally, if we replace of thex, dp in (29) with the expressions that we just employed
then for any arbitrary functiog, one has:

ZP()(X)—ZDV + (X @.

V

We then have the well-known:

Theorem: If Xy, ..., X, are independent functions of, X.., Xa, p1, ..., pn that are
pairwise in involution or, what amounts to the samag, if the equations Y& a, (v =1,
., N) represent unions ob" elements for arbitrary g then there exists an identity of the
form:

(29) S RAX, = pdy +da
v=1 v=1

where w is found by a quadrature, while the Rere obtained by solving linear
equations. Between the functions K, and wthere thus exist the relations:

(34) %X)=0, @X)=&, PP)=0 (v=1 ..,n)

and:

(wX;) = Zpﬂap |
(35) (i=1,..n),

(wR) = Zpﬂ Gpﬂ P

and in addition, there is the identity:
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n

(32) 2{RAXN-(XP(BX)}= (2 X,

v=1
in which theg and y may also be functions of the x;'p

From the existence of the relations (34), it fako moreover, that allrl2functionsXy,
..., Xn, P1, ..., Py are independent of each other. Namely, if onen$othe square of the
functional determinant of th&, P relative to thex, p, in which one writes these
determinants in the two forms:

(pl...pn X, X”j
PPy X,
(xl...xn _pl..._pnj

and multiplies the two together then one obtaidstarminant that possesses the value 1,
due to (34).
Conversely, if there exists an identity of thenfo(29) then it is clear that the
equations:
Xy =const, ..., X,=const.

represent unions. Were the functiofis ..., X, not independent of each other then each
of these unions would consist of more thehelements, which is impossible, so we can
conclude thatXi, ..., X, are independent of each other and lie pairwisgvolution.
Then, however, it likewise follows that equatioB4), (35), and (32 are valid.

Finally, if one is given 2 functionsXy, ..., X,, Py, ..., Pnthat satisfy the relations:

(34) X X)=0, ®X)=&, PP)=0 (v=1, ..,n

then, as we have seen, all of these functionsdependent of each other.

One can, as a consequence, express any arbitrastyoin @ of x, p by Xy, ..., Xn, P4,
..., Ph and obtain:

y=9¢ N—l -
(36) @ %) R’ (@ P) X’ (=1, ...n).

If one adds yet a second functignhen one obtains:

) strangely enough, the identity (B8eems to have not been noticed up to now.
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=3 o )
(9X) —;{@5 Xi)axi +(¢ P)aﬁ,}

=y199 0x _ 99 0x
Z|orax ax op)

(37)
i=1
from which, we can also write:

(32) (@X= i{(l?¢)(>§)()—(>§¢)( PY)}-

However, as we recently remarked, the identity @0pws from the existence of (32)
for arbitrary functionsp, x so it follows from (32 that there is an identity:

> (dx8n - dpS ¥ = . (@X SR~ AR5 X)

In this, one sees that the two expressipng dx and X P; dX have the same bilinear
covariants, so they differ only by a complete défaial. As a result, there exists an
identity of the form:

(29) S RAX, =3 p,dy + daa
v=1 v=1

where the functiorwsatisfies the 2 equations:

n oX.
(wX;)= P, —,
ﬂz " op,

o 9P
(wR)=2. P>~ R
; “op,

(35)

through which, its & derivatives are determined. Thus:

Theorem: If the 2n functions X P; satisfy relations of the forr§84), then they are
independent of each other, and there exists antitgleaf the form(29), where the
function wsatisfies equation@5).

The bilinear covariants have already shown ug tpeat utility in the derivation of
the equations (34) from the identity (2%nd it will become even clearer in the proof of
the converse that an identity of the form'§2&n be deduced from equations (34). It was
precisely this proof of the converse that led biestich rather circuitous consideratioBs.

Yy Cf., TransformationsgrupperBd. Il, pp. 126-130.
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8 4. Contact transformations in thex, p.
We refer to any transformation:

(38) X =Xi(Xt, ..., Xn, P1, ---, Pn), p=Pi(Xt, ..., X0, P1, -, Pn), (=1, ...,N)

as a contact transformation in tRep when the Pfaffian expressidn pi dx remains
invariant up to a complete differential, so there exisedation of the form:

(39) D, pdY =" pdx +dafx, p).
i=1 i=1
From (39), it follows that due to (38) an equation of thienfo
(40) Y.(dp o -dxd p) =D (dpdx - dxd p)
i=1 i=1

exists, that, in turn, implies one of the form (39)he contact transformations in tkep
can therefore also be defined as the group ofaikformations in thg, p that leave the
bilinear covariant of the Pfaffian expressinp dxinvariant. Likewise, it is clear that
our contact transformations take each elemept along with two infinitely close ones
+dx, p +dpandx + &, p + & that it is united with, to another such elemeng aach
union of elements to a union, in addition.

If (38) is a contact transformation in thep then an identity of the form (29exists,
and it follows that the functionX;, P;, w are coupled by the relations (34) and (35).
Conversely, however, from pp. ?, the equations (3ly the independently of then2
functions X;, P, and the existence of a relation of the form'(2%here w satisfies
equations (35). Thus, equations (38) represeingact transformation in the p when
and only when they satisfy equations (34). Howew®srwe just said, the identity (37)
follows from (34), and thus, the equation:

(0P Ox 09 0x | _ x| 9P 0x _0pox
Z[api 0x 6>.<69j Z[api’ax axapj’

i=1 i=1

or, written more briefly:

(41) @ X)xo= (& Xxpor -

The contact transformations in the p then leave the Poisson bracket expression
invariant.

Conversely, any transformation in the p under which the Poisson bracket
expression remains invariant is obviously a contiactsformation in the, p. The group
of all contact transformations in thep can therefore also be defined by the invariance of
this bracket expression, which, from the relatigmstf this expression to the bilinear
covariant, would not be surprising.

Now, if:
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x=&d& dp=nd& (=1, ..n

o (_of _ of
Xf= —+ 7T —
Zl(g 0% manj

or:

is an infinitesimal transformation the one has:

AX pi dx) =du(x, p) [,
SO:
S (g +77 dx) = du

i=1
or.

(mdx~& dp)=du-Xpi &) .

n
i=1

If we then set =-2 p; &§ =— U then we will have:

S .t
e = o

from which:

(42) Xf = (Uf).

The functionU can obviously be chosen arbitrarily here, and one has:
(43) XE pdx)=d(Y ny, -U).

From the invariance of the Poisson bracket expressitdren follows that the functiod
is invariantly connected with the infinitesimal transfation Xf with respect to any finite
contact transformation.

We would like to callU the characteristicthat belongs to the infinitesimal contact
transformation and then remark thawill be found by a quadrature from a giv&f so
one has:

n

(44) du=>(&dp -7 dx).

i=1

If we also choose the transformation (38) to be it@gmal with the characteristié
then we have:
xi’:xi+a—vc5t, p;:pi—a—v5t,
op, 0X

so for any functiorfi(x, p) one will have:
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f=fx,p)=f+ VD& = —-(V)y &
Now, however, one has:
UDxp = Uhxp ,
=U -V U)&TF = (V) Dxp
=V p —U'(V U &= ((VU) F)xp &
=U N +H{MU)-UNVH -V UH} &

which then gives the celebrat@adcobi identity:

(45) UV ) - MU ) = (U V),

which is true for arbitrary functionid, V, f of thex, p.
This proof of the identity, which goes back to Lie, olgly cannot be replaced with
a conceptually simpler one.

8 5. Differential equations inxy, ..., Xn, P1, -+, Pn-
Now, let there be given a system of equations:
Fk(Xl, vy Xny P1, ,pn):0 G(: 1,...,|),

and suppose that all of the unionsdfelements that one finds will satisfy this system of
equations, or, more briefly: all of the associated irtlegnions ofe" elements. Then,
from pp. ?, one understands that these unions all satistions of the form:

(FcF)=0 kij=1, ..,

as well. If one finds no contradiction from the constion of these equations and the
ones that follow from them then one ultimately firtiat the problem that we posed
always comes down to the other one, of finding allgrakunions ofe" elements for a
system of the form:

(46) Fu{X1, ..., %, P, .-, Pn) = 0 w=1, ...,

where the £, F,) all vanish, due to (46). However, one calls such gesysf equations
anm-parameter system in involution.

If equations (46) define am-parameter system in involution in that sense then any
equivalent system of equatiots = 0, ...,®,, = 0 has the same property.

In fact, in theRyn-1 of thedx , dp the equationdF; = 0, ...,dF, = 0 represent a (-
m — 1)-fold extended planar manifolitd,- m-1 , and indeed it represents the intersection of
m (2n — 2)-fold extended planar manifolds. If we restrict owesenow to such elements
Xi, pi that satisfy (46) therF, F,) =0 (m, n=1, ...,m); that is, any two planar 2- 2)-
fold extended manifolds; , vi and u’, V. that go throughEzm1 always satisfy the
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equation:Z(\/i y-yy) = 0. On the other hand, the equatiod®; = O, ...,dPy, = 0
represent the same manifditd,.m-1 as only the intersection oh other (2 — 2)-fold
extended planar manifolds; thus, along with the assumpti@t®ne makes o, p;, one
must also require that alb(, ®,) vanish.

If we now think of the system of equations (46) then fam#s, as on pp. ?, that the
solution can be obtained in the form:

-+ oy X =0,
46) X, + 8, (% 0 X))
pi|+k +Xk()§l+1’...’)$m’ RH,...’ P,p -, P ): 0,

whereis, ..., in mean any permutation of the numbers 1, n.., Here, however, the
bracket expressions on the left-hand sides are fre¢ of.., x , p_, ..., p_and must

vanish identically, since, by virtue of (46hey cannot vanish. (?)
Thus, anym-parameter system in involution can be brought intodhe:f

(46" Qu(X1, ..oy % P, -, Pn) =0 w=1,..,m),

such that the functior@, ..., Qn, lie pair-wise in involution.
If one replaces the system in involution (46) with daf/ed form (46) then generally
any possible integral union of' elements that makes the functional determinant:

D= F - K Fa - R
XX R R,

drops away. Since, however, these integral uniongysties equations:
F1=0,...,Fn=0,D=0,

their determination comes down to the integration adtdeast ih + 1)-parameter system
in involution, and one can say, with no loss of geitgrahat the determination of the
integral union ofe" elements of a given system of equation can alway® cmown to the
normal problem:

Integrate a system in involution of the fo(46") when the function®;, ..., Qn lie
pair-wise in involution.

What this normal problem addresses, we would like tsfgatiurselves here with
proving that it possesses complete solutions seotfi&' elements that satisfy (46can
always be arranged int®"™ unions ofe" elements. All integral unions can be found
from just such a complete solution without integration.

It then comes down to the addition of equations:

Qmek(X1, -+ X0y P1, ---» Pr) = & k=1,....,n—-m)
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to the equations (4% such that th& .« are independent o024, ..., Q, and each other,
and likewise lie in involution with th&4, ..., Q, and each other. Now, however, the
equations:

(47) A f=(Quf)=0 w=1,..m
are obviously independent of each other, and from:
Ay AT=A A= (Qu Q1) - Qv (QuF) = Q. Q)f) =0

they define amim-parameter complete system. One then finds a fun€ijga when one
seeks a solution of this complete system that is indep#rofQ;, ..., Qn, such that one
obtainsQ .1 by determining a solution of then(+ 1)-parameter complete system:

(Q1)=0,...,Quaf)=0

that is independent @4, ..., Qn, and so forth.

We further mention that the integration of the syste involution (46) in the case of
| > 0 can always be converted into the integration ofnan- |)-parameter system in
involution in 2 - I) variables.

If one sets:

(48) X, =X +@ A=1,..0)

then one converts the Pfaffian expressiop dx into:

| n-|
z p'a (d){/l - d¢ﬂ)+z 9+k dPI(+k '
=1 k=1

If one then sets:

Xa =X, (k=1---,n=1)
P, =R, (A=1.1)
49 ! 0 :
(49) P =R _Zp ﬂ (j=1--,m- )
J =t e
P, = A, (r=1-,n-m

then equations (48) and (49) collectively represeritansformation under which the
Pfaffian expression>. pi dx indeed remains invariant, and is certainly a otnta

transformation. Since the bracket expressipy)(remains invariant under it, it is clear
that the new form:

X,=0, P+ KX X B BB, e p) =0
A=1,..1,k=1,..m=l),
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which includes the involutive system (16s again am-parameter system in involution.
From this, however, it follows that thig, are free ofpi'l, pi'n such that the equations:

oL X (X, X P )=0 k=1,...m-1),

l
n m+l

which define anr(—1)-parameter system in involution in then(1) variablesx , p, ,

whose integration can be inferred from that of the lumwee system (49.
If | = mthen the determination of tmefold extended integral union of (3Gequires
no integration whatsoever. In the new variables)) ([@&ually takes on the fornx’ =0,

(A=1, ...,1). The Pfaffian expressioE p'dX thus reduces to:

pi’l+k d)<|+k !

1

=}

=
1

and all that remains is to determine all unionso8t elements in the residuah2- 2
variables. However, that is a feasible operation.

8 6. The invariant theory of contact transformations in thex, p.

We have seen that the integration of a system of ieqgain thex, p can always be
converted into the integration of a system in involutiout then, in turn, this can lead to
one looking for solutions of a sequence of complete syste Thus, each of these
complete systems has the form:

47) Q.N=0 w=1,...,m),
where the function®)i, ..., Qn are independent of each other and lie pair-wise in
involution.

If one now happens to find not merely one solution toafrieese complete systems,
but several of them, then this raises the questiomwfdne can best exploit this situation
for the resolution of the integration problem. By tleey fact that he posed this question,
Lie was induced to develop his invariant theory of contacisformations.

From the form (47) of the complete solutions, and ftbeninvariance of the Poisson
bracket symbols under contact transformations inxhp, it emerges that all of the
complete systems that appear in (47) are invariantly linkéld the original system of
equations irx, p that is to be integrated by means of contact transfooms. 1If one then
knows several solutions of a such a system (47) thenmqtlestion arises of what
properties the totality of all the known solutions of #ystem (47) might possess with
respect to all contact transformations in xhp.

If one knows for the system (47), not just the seffl@xatory solution®2, ..., Qm,
but also a number of other ones ..., u, that are independent of each other and(zpe
then, first of all, absolutely any arbitrary function@f, ..., Qm, uy, ..., U is likewise a
solution, and secondly, the Jacobi identity:
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((Qu 9)f) = (QuN)P) = (Qu (),

shows that along witlp andf, (¢ f) is likewise always a solution. That is, in fadtet
celebratedPoisson-Jacobi theoremTherefore, all of the expressions:

(Q,Q)), (Qy ), Uk W)

are also solutions of the complete system. Of tisedgtions, clearly theC{,Q,) and
(Qu ue) are identically zero, but the other onegf) are possibly new. If one adds the
new solutions that included among the expressiapsuj — i.e., the ones that are
independent of2y, ..., Qm, Uy, ..., U and each other — 1@, ..., u;, once again applies the
Poisson-Jacobi theorem, and proceeds in that manneotiietwo cases are possible:
Either one finds 2 — m independent solutions of (47), and therefore, all of tlessdhat
are present, or one finds so many new solutigns ..., U, that indeedn +r < 2n—m,
but all of the G u) (k,j =1, ..., r) can be expressed in termsdf, ..., Qm, U, ..., U .

In the first case, the integration of the systennwolution: Q; = ay, ..., Qm = an,
requires only feasible operations, which have generaéiy keaown for a long time fan
= 1, but were first exhibited by Lie in a theorem, upon whibb extension that he gave
of the Cauchy integration method rests. In the secase, @ number of solutions of (47)
are still unknown, and one then tries to take advamédgee solutions that one finds as
much as is possible; for that, it is even necessaegtablish the invariant properties that
the totality of all known solutions, and therefore tbility of all functions oQ4, ..., Qn
, U, ..., U, possess under all contact transformations oxtpe

The system of function®,, ..., Qm, W, ..., U that one arrives at here has the
property that the bracket expression of any two functairthe system is expressible in
terms of functions of the system alone. Howevas, & completely special system of this
type, becaus@y, ..., Qmandu; , ..., U, are in involution with each other. It is a closely
related problem then for us to likewise consider comlylegeneral systems of
independent functions , ..., U of X, p that are arranged so that relations of the form:

(50) Wi w) = an(uy, ...,w) (,k=1,...,n

exist. The totality of all functions of the funct®u, , ..., u, of such a system is what Lie
called arnr-parameter function group i1, ..., Qm, U1, ..., U . The significance of his
brief paper of 1872 that was mentioned in the introductamsists of the fact that all
invariant properties that such arparameter function group possesses relative to the
group of all contact transformations were established in

This is not the place to develop the invariant thedgno-parameter function group,
since that would be essentially a repetition of the ptasien that Lie gave in the second
volume ofTransformationsgruppenl thus content myself with the following remarks:

The fundamental theorem of the theory is that tnreitually independent equations:

(51) uf)=0 k=1, ..r

define anr-parameter complete system with 2 r independent solutions and that the
totality of all solutions of (51), and thus, the totalifyadl functions ofv, .., Von—r , define
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a (2r - r)-parameter function group, namely, the graup..., von that is reciprocal to
the groupuy, .., ur . The two function groups of combined functions aredmsif each
group of functions of the group that is in involution withadlthe functions of the group;
they are called thdistinguished functionsf each group.

The number of parametersof a function group and the number of mutually
independent distinguished functions that the group includegharenly two invariant
properties of the group under all contact transformationso function groups that are
both associated with the same numbeasidm can always be mapped to each other by
contact transformations in txep. The proof of this theorem led Lie to show that eny
parameter function group can be brought to a canonical féfrme, with S. Kantor, call
any system of independent functions of arparameter function group laasisfor the
function group then we can also say: One can determgan@anical basisfor anyr-
parameter function group, which is themdependent functions:

X1 .. Xi,P1...Pi, X+1... Xitm (2+m=r)
that belong to the group and satisfy the canonicaloakt
(52) X X)=0, EPiX)=&, (PiP)=0.

Therefore, the functions o4.1 , ..., Xi+m are distinguished functions of the group; it then
happens that the difference between the number of pamsmetand the number of
independent distinguished functions is always even.

By pursuing the invariant theory of function groups,ip, Lie was then in a position
to establish which invariant properties an arbitrary gsgstem of functions in the p:

O(Xt, ooy Xn s P1y --xs Pr) k=1,...m

possesses under all contact transformations. Onéragty express the result that one
arrives at as follows:
To ¢, ..., §m, One adds all functions:

(& 99, (B 99, B), (B &) (& D)), -,

such that when one forms the bracket expression ofvemgiven functions, it gives only
those functions that can be expressed in terms of onlgitle@ functions. In this way,
one arrives at a system:

1, ooy Gy Pty -, O,

whose functions do not need to be mutually independahtds the property that ai(
@) are expressible in terms of tike, ..., ¢ alone. All of the invariant properties of the
system¢, ..., ¢m Will then be represented by the totality of all relaiothat exist
between thep, ..., gmand @ @) (i, k=1, ...,r). In other words:

If x1, ..., Ym IS a second function system then there is a cotr@tsformation in the
X, p that takes they, ..., xx in the sequence t@,, ..., ¢ if and only if the following
requirement is fulfilled:
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To the y1, ..., Ym, one adds the expressiong X, (xi Xk) X)), ..., in the same
sequence that one defines for the and denotes the corresponding numbepg,as ...,
X:. Therefore, the same relations must exist between., xn» and all & x), (i, k=1,
..., ) that exist between the corresponding quantgies.., ¢ and all @ ¢y).

8 7. Other treatments of the theory of function groups.
Kantor’s generalization of the problem.

Since amr-parameter function group with the basis..., u, consists of the totality of
all functions ofus, ..., Ur, this suggests that instead of defining the group in tefrsisah
a basis, one regards, the 2r)-parameter complete system whose most general solution
is an arbitrary function ofi, ..., ur as given. The difference between these two
viewpoints is precisely the same as when one, onrtaéhand, operates with the roots of
an algebraic equation, while, on the other hand, onedeganly the algebraic equation
as given. In any event, it seems desirable to adsa the theory of function groups from
this new viewpoint.

Lie himself has occasionally assumed this viewpoiftor example, he already
showed in 1877 that when an arbitrary complete systemeisept, one can always
present the complete system in such a way that itsimadutonsist of all functions that
are in involution with the solutions of the given coetplsystent) In particular, when a
function group is defined by a complete system, one canaleays present a complete
system that defines the reciprocal function group. Byrest, Lie did not generally go
into the question that he posed in more detail anywh@rdlantor first placed himself at
the viewpoint of the previously-mentioned papers as undation, and defined the
function groups through complete systems, and then toolashah excuse to generalize
the entire theory in an extraordinary way. We mustter@nourselves with just a few
remarks here.

It is known that there exists a correspondence betwgstems of Pfaffian equations
and systems of linear, homogeneous, partial differeatjahtions of first order. In
variables, anyn-parameter system of the first type is converselp@aated with anr{ —
m)-parameter of the second type, and indeed this is likesgsévalent to whether the
system in question is or is not an integrable or cotagstem.

In the spaceq, ..., X, p1, ..., Pn, ONE can add another type of reciprocity to this
correspondence that is determined by the bilinear covariant

> (dxon - dpo )

of the Pfaffian expression pi dx , or also through the associated covariant:

) Neue Integrations-Methode der Monge-Ampéreschen GieighArchiv for Math. og Naturvid.
Band I, pp. 4.
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2 vy —yy)
i=1
in plane coordinates. In fact, let:
(53) 2. (adx + 4;dp) =0 k=1,...m

i=1

be anm-parameter Pfaffian system, and let:

(54) Zn:[p“ " g;j 0 (=1 ..2-m

be the associatedr{2- m)-parameter system of linear, partial differential ewuns, such
that between the functiom £, p, g, there exist then(2n —m) identities:

(55) Z(akl,oj, Bi0; ) k=1,...mj=1,.., h-m).

If one now imagines that the , g are transformed like the point coordinatis, dp ,
the aii, G, and the derivatives dfwith respect to the andp; are transformed like the
plane coordinates;, v; then one recognizes that the forE(\/i Yy —yy) of the system

(53) is associated with a covariamtparameter system of linear, partial differential
equations:

(53) i[ﬁkii_amij =0 k=1,..,m),

and the forn. (dx Jdpoi — dp ) of the system (54) is associated with a covariamt{2
m)-parameter Pfaffian system:

(54) Zn:(ajidx—pji dp) =0 (=1,.. 27—-m).

i=1

Likewise, it is clear that one also obtains the exyst(53) when one subjects the
derivatives ofg in the equation:

Z[%i %i}

T\ 0p 0x 0x0p
to the relations:

(54) Zn:[pji%+aji %j =0 (=1 ... 0-m),
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while still regarding these derivatives as arbitrary. e@ifso sees, in a corresponding
way, that the system (54emerges from (53) by the use of the equakiofux Jdpi — dp
o) = 0.

That is the general reciprocity between the syst@&®sand (549 and the associated
systems (54) and (53hat S. Kantor first proved.

If the system (54) possesses a solutieuch thau is likewise an integral function of
the Pfaffian system (53) then there is a multipliesuch that:

m

ZXk

n
k=1 i=1

(adx + B,dp) =du.

Then, however, one will obviously have:

an:,)(an‘,[ﬁki

1 i=1

i_a'kiij = (uf);
0% on
that is, the system (53includes the equationu() = 0. Conversely, if (33 includes an
equation of the formu f) = 0 thenu is an integral function of (53), and therefore a
solution of (54). If the system (54) possessesgulationsu;, u, then (53) includes the
two equationsu; f) = 0, . f) = 0, and, when it is, moreover, complete, it uggs the
equation:

(U (U2f)) = (U2 (Usf)) =((UL Uz ) f) = 0.

as well. This comes from the fact that the sohgiof (54), in any case, define a function
group when the reciprocal system'(58 complete.

Should the system (54) define amparameter function group in particular, then it
must havem independent solutiong, ..., uyn, SO it must be complete, and, in addition,
every (,, w) (& v=1, ...,m) must be a solution. Then, however, thgarameter
reciprocal system (5Bincludes than independent equation(f) =0 =1, ...,m), and
likewise, every equation:

((ug w) f) = U () = (U (U f) =0 wv=1,..m),

so it is likewise complete. One can, however, tadethat (54) defines an-parameter
function group when and only when the reciprocatems (54) and (58 are both
complete.

These criteria were already found by S. Kantor.

If (54) has a solution and (53) has a solution then (53) includes the equationi (f)
= 0, and (54) includes the equatianf = 0, and one then has {) = 0. Therefore, (33
is the system of equations that Lie already tawghto address, whose solutions are all
functions that are in involution with (54). Thutswill generally be assumed that (54) is
a (2h —m)-parameter complete system.
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If the system (54) is complete and definesraparameter function group then one
can, as Lie showed, determine a canonical b&sis.., X+, P1, ..., P (2 + k =m) for
this function group, for which the canonical relations:

(52) XiX)=0, EX)=é&, PP)=0
exist. The complete system (bthat the reciprocal group defines can then take the form
X ) =0, Punyf =0, &k=1,....n=l;j=1,...,n—1-=h).

S. Kantor generalized this to the case where theray&é) is completely arbitrary.
He called two equations:

of  of of . of
—+g — | =0, ' +g'— |=0
Z[ o +U'6|qj Z[p' 6><+ '6n'j

conjugatewhen the covariang (po’' -0 Q') vanishes. Thus, if the equations (54) are
not pair-wise conjugate then one can choose an equation:

of of
56 E 0—+0—1|=0
(6) [ O Hj

from this system that is not conjugate to all equationshefsystem, and can then
determine an equation:

o, 0

of the system in such a way that one @mai’ -o,Q)=1. If one has chosen (56) and

(57) in that way then one easily convinces oneselfttisystem (54) includes precisely
2n —m— 2 independent equations that are conjugate to (56), aasv@l). If one treats

this new system just like the original one (54) and tpeteeds, then one ultimately
obtains a representation of (54) in the form:

(58) Xf=0, .. Xenf=0, Pif=0, .. Pf=0 (2 +h=2n—m),

where the covarianZ (po —o ') vanishes for any two equatioKsf = 0 andX, f =0

and any two equatiord f = 0 andPy f = 0, while for any two equation§ f = 0 andPy f
= 0 they have the valug . With S. Kantor, we call (58) @nonical basidor the system
(54), and we calKi f =0, ...,Xi+h f = 0 thedistinguished equationsf the system.

The system (83 which is reciprocal to (54), consists of all equatidhat are
conjugate to all equations of (54). As a consequencdalistiaguished equations. f =
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0, ..., Xi+h f = 0 are the only equations that belong to both systéisand (53, and
(53) thus includes a canonical basis:

(59 Xiuf=0,.., X, f=0,Puns2f=0, ...,P, =0, h-l+n—-n—-I—-h=m)
in such a way that then2- m equations:

(60) X;f=0, .. X f=0,P.f=0,...,Pf=0,Pu+1f=0, ...,P,f=0,

are independent of each other.

One can ultimately extend the system (60) by the addafd equations+; f = 0,
..., Pun f=0to a system ofrRindependent equations:

Xif :i(gvi+a}vijzo
v=1 a)ﬂ/ apl/ .
(61) (=1, ..,n),

Rf=2[m%+ui il j:o

va

which represents a canonical basis for thgp@rameter system:

i: O, _._,i: O, i: O, _._,i: O,
0%, 0x, opy op,
for which, the following relations then exist:
z(pivakv - ivpkv) = O'
v=1
(62) > (1,04, ~U,T,,) =0, (,k=1, ...,n).

v=1

n
z (pikav - O-ivrkv) = gik '
v=1

Obviously, one can also apply precisely the samwesiderations to the Pfaffian
systems (53) and (94when one calls two Pfaffian equations:

i(mdx +4dp) =0, i(a{dx +43'dg)=0

conjugateas long as the expressi@ (a.B' - Ba’) vanishes. However, one reaches this

conclusion more quickly, and likewise more compgigtevhen one addsr2mutually
independent Pfaffian expressidds E; such that for any functiointhe equation:
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n

(63) 2. (DRf-EX f) =df

i=1

is satisfied identically to thenZexpression¥; f andP;f in (61), which is always possible,
and in only one way.

Namely, if, in this identity, which is true forlalx, dp and for all values of the
derivatives of, one sets:

L o,

axv Vs apv Vs
then, from (62), alX; f vanish, and likewise aR; f will be equal to zero, except f&x f,
which takes on the value — 1. This then gives:

(64) Dk = Z(pkvdn/ _Ukv d)ﬁ) (k = 1! ...,n),
v=1

and, in a corresponding way:

(64) Ex= Y. (7, dp, —0, d%) k=1, ..,n).

v=1

That is, theD, andEx emerge from th&, f andPi f when one sets the derivativés and
f, with respect to the sequence equaldm and —dx,, resp., and by the opposite

substitution, one obtains th& f andPy f from theDy andE.

On the one hand, it happens that theeguationsD; = 0, E; = O define a canonical
basis for the systenatx = 0,dp =0 ( = 1, ..,n). Moreover, one finds that when one
substitutes the expressions (64),'}6dnd (61) in (63), the quantitigs , ..., also satisfy:

Z (pvi TVk - TVika) = O'
v=1

n

(62) Z (Uviuvk - Uivavk) = O'

v=1

n
z (pviuvk —0, Tvk) =&
v=1

which then follow from the relations as long as Pheequations (61) are independent of
each other.

If one replaces théx, , dp, with —¢, and ¢, in (63), and inverts the sign on both
sides of the resulting equation then this yields:

(65) #D=Y(RIX - X4 P}
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On the other hand, if one replaces the f, in (63) withdp, , - &, , and one denotes
the result of writingd for d in Dy andEx by Ax andEy then it happens that:

(66) > (dxop-dpo ) = Y (DE, ~EA).

The two systems of expressiaXd, P; f andD;, E; are characterized, as the canonical
basis, by the existence of both identities (65) @®). Namely, since, e.g., (65) is true
for arbitrary values of the derivatives gfandf, one can replacg, with Xix and ¢,

with — Xi pi , with which @ f) is converted into f, and sinceXy f mustlikewise appear
on the right-hand side of (65), this implies thiht@ ¢ vanish under the substitution that
was performed and likewise aff ¢, with the exception oPy ¢, which equals 1.
Corresponding statements are true when one replgcesd ¢, with P X and —Px p;,

resp.
The identity (65) shows immediately that the systbat is reciprocal to the system
(58) consists of the equations (59). Namely, for:

(67) X =0, P p=0 k=1, ..1+hi=1 ..

(65) is converted into:

(#0=3 R.PX, -

n-1-h

X+h+i¢|:P«h+i f’

i=1

so (59) is the system of equations that one obtaimsn one demands thag f) must
vanish, while the derivatives gfare only linked by the relations (67).

On the other hand, one recognizes from (63) tiatfaffian system that belongs to
(58) has the form:
(58) E+a1=0,...,.En=0,Di11=0, ...,.D, =0,

and the Pfaffian system that belongs to (59) hasaim:
(59) E;=0, ...EE=0,D;:=0, ...,Di+h = 0;

(66), however, shows that the systems)(&8d (59) are reciprocal to each other relative
to the equatioX. (dx Jpi —dp o) = 0.

The argument that was developed here concerntigrogal systems and canonical
bases for systems of linear partial differentialatppns and Pfaffian systems was already
found, in essence, by S. Kantor, only his pres@mtas less clear and, in particular,
Kantor did not obtains the identities (63), (6®6), while it is precisely the first of these
that makes all of the relations between the syst&Eam obvious.

Kantor coupled this with some remarks on a clasgibn of the system (38) under
the group of all contact transformations, in whibb started with the number of
independent solutions that the systems (58) and (8%sess. However, what he
accomplished was obviously only a primitive stagtpoint for the invariant theory of an
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arbitrary system of linear partial differential equasounder any group, and since the
development of this invariant theory in full generalilgrtainly requires entirely new
lemmas, we would not like to go further into the Kantwgument here. Let it be
nonetheless mentioned that Lie already concerned liimeey early on with the
invariant theory of a complete system under the grougllodontact transformations:
Namely, he carried out investigations into completéesys that are invariant under any
group that is linked with a given function grodp. It would certainly be profitable to
excerpt and present these investigations again.

We now turn our attention to the function groups oncesmor

Let there be given a1(2- m)-parameter complete system in the and let (58) be a
canonical basis that is associated with it. Fromafoeementioned theorem of Kantor,
this complete system defines mrparameter function group if and only if the reciprocal
m-parameter system (59) is also complete. Howevethanproof of this theorem we
employed the solutions of the system (58), as Kansorditl. It is obviously desirable to
avoid this, and thus, to prove Kantor's theorem withow tise of the solutions.
However, in order to do this, we must first derive sogeneral properties of the-2
parameter canonical basis (61).

Since the & equations (61) are mutually independent, they determineoredadit the
form:

(X %) =3 (80, X, f+ b, B 9,

n

(68) (X|Pk)f:Z(a'kpxp f+ l#(,ull:u) D’

H=L

(RR)f=2 (d, X, T+, B9,

n
u=1

where i X)f is written forX; X f — X X f and thesy, , ... are certain functions of thxe
p.

If one now forms the expressiop(f) ¢) by a double application of the identity (65)
then one obtains:

(@0 ¥ =§{ee¢mx+ PXXOR- PRYOX - PHORI W
- SUX RO+ X X ORS- X BYOW- X HOIR} 2,

and the Jacobi identity betwegny, ¢ then delivers the equation:

) “Diskussion aller Integrationsmethoden der partielléfieBentialgleichungen 1. O.” Ges. d. Wiss.
zu Kristiania 1875, pp. 16t seq The theorems that this paper contained on the amatheory of
complete systems are only partially excerpted in thatgreatise in Bd. XI of the Annalen.
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> SHRRPDXy DXy +( X X)p DRy ORY
_(PVPi)¢|:Pi)(D(v¢/—(XVPi)¢D(i)(|:PV¢/}:O,

where the firsp. refers to the cyclic sum over tige x, ¢. If one substitutes the values of
the bracket expressions that follow from (68) and dmnsithat the signs af b, a", b”
change when one exchanges the first two indices, wiuels not need to be the case for
thea, b', then after multiplying by 2 one comes to:

S &l | X B Xox X 4]

siv

+> by |PgPX Py

siv

+§@gﬂﬁ#MX¢Ww4

siv

+ 3 (0 + -~ &,)| RE XX X4 =0.

siv

Here, the function®, y, ¢ are entirely arbitrary, so due to the independenceudi®ns
(61) this identity is therefore equivalent to the faliog relations:

bvis+hsu+bsi/ :O
i T8y + &, =0 :
(69) ) (v,i,s=1, ...,n).
avis_hw+bsi/ :O
b|:'i5+d9/_a'si/ :O

For each canonical bask, f, P, f are then coupled with the coefficients of the
equations (68) by the relations (69); the relations (69) titrmously say nothing more
than the fact that the alternating bilinear differainuotient form:

(70) > (REDX - PYTXG) = (4 1)

implies an identity of the form:

{oxar+{xdor+{ wotxt =0.

Now if Zf is an arbitrary infinitesimal transformation in tkep then the bracket
expressiorZ(g x) — (@, Zx) that is formed from the two infinitesimal transformasZ y
and @ x) contains no derivatives of second ordeypénd the same is true fgr so the
expression:

Z(px)—E&P. X~ (9 2x)
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contains only derivatives of first order gfas well agp. If one evaluates this expression
with the help of (65) then one finds:

(71) Zn:{(z RIS EXX +(Z X)X ORP—(Z X)p URy +( Z Px 0 X},

k=1
which, from (68), will become:

X(¢X)—(.>”(i 6.0 —-@ XX
= 8, (X, DX x = XPOX,X)

+ 570, +8,) (PP X X~ XPRY)

+3'h,,(ROTP, - PHIRY)

P@X) -0 - @ P X
= D A (X, 8 DX X = XPUX, 1)

+ SN0, ~ (XA DX x — XPOXY)
- 3t (RAR - RFTRY).
which, by employing (69), can be written in the gier form:
X @0~ (X80~ @, XX)=-3 B, Xp0Xx
S, (RETX,x - RYTX,0)
+lzn lqqui FI)<¢ EB/Xi
(72) .
R(@X)-(R. X)—(#.RPx)=-2 &, XX x

St e (RO, x - RYOX,)

1--n
+ Z ak,ui FI)<¢ EB/X
ky
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The formulas (72) tell us how the bracket expressip) (behaves when one performs
the infinitesimal transformations f, P; f on it. However, we would also like to establish
how the Pfaffian expressiom , Ex behave under these operations. This leads us to the
identity:

(63) df=> (DR f-EX,f).
k=1
We find, in fact:
X df—d Xf = Z(kakxi f-BE XX

k=1
n

=3 (XD, P - X EDX N+> (QOX Pi- EOX X J,

k=1
or:

> (XD Rf-XEDOX ) == D{D(X,P f-E(XX) },
k=1 k=1
an equation that, due to (68), decomposes intfotloaving ones:

Xi D= _Zn:(bLs Dk - hks Ek)
(73) - G,s=1,...,n).

X E ZZ(dksDk_ 3 B
k=1
In precisely the same way, we obtain:

D Z(tﬁs D + l1ks Ek)
(73) N
Es 2( D + aks

k=1

All of the equations (69), (72), (73), (J3hat were found are true when tikef, P; f
define a canonical basis and tBe E; are the associated canonical basis of Pfaffian
expressions. It would be desirable to know whethek; f, P;f could be characterized as
a canonical basis by these equations; howeverretsgonse to this question does not
seem to be so simple.

We can, moreover, go on to the treatment of fonmctjroups.

The equations:

(58) X1f=0, ... X f=0,P,f=0, ..., f=0

define a complete (2+ h)-parameter system. Should this system definea-(2 — h)-
parameter function group then it would be necesaadysufficient that wheneveérand y
are solutions of (58),4 x) is also a solution. However, since no lineanmbgeneous
relations can exist betwefuni1 @, ..., Xn @, Ps1 @, ..., P, @ if ¢ is a completely
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arbitrary solution of the complete system (58), on antof (72), this demand emerges
from the equations:

b, =0 (k,g=1+h+1.--,n; i=1- |+h)
B, =0 (k=I+1--,n; p=I+h+1L;--n; i=1L. J+h;
(74) bﬁﬂi:O (kK,yg=1+1:--,n; i=21- J+h)
a, =0 (k,u=1+h+21---.n; i=1- |+h)
a, =0 (k=1+1:--,n; p=Il+h+L- n; i=1- |J+h;
a, =0 (K,yu=1+1:--,n; i=21--]+h)

which express nothing but the fact that the systemshatiprocal to (58):

(59) X|+1:0, ...,an:O, P|+h+1f:0, ...,Pnf:O
is a complete (2— 2 —h)-parameter system.

Thus, we again have the Kantor theorem that a coenfilet— m)-parameter system
in thex, p determines am-parameter function group if and only if the reciprogatem
is also complete. The desired proof, in which the salstiwere not employed, is then
achieved.

The fact that the complete system (59) defines a fumgfioup is also implicit. 1§
is a solution of (58) ang is a solution of (59) then, from (65), one obviously (#ag) =
0, so the two function groups are mutually reciprocal.

However, our argument proves even more. Namely, Wvallknow of the system
(58) is that its (B — 2 — h)-parameter reciprocal system is complete then weavides
know that the equations (74) are valid, but then from (72 implies that the
expressions:

Xi(é X) (=1, ..1+h)

Pd(é X) k=1,..,0

always vanish wheg and y are solutions of the system (58). We then obtain d&nt
theorem once more:

If the systen{58) has solutions then the totality of these solutions defines a function
group whenever the reciprocal systé€s8)is complete.

Once again, let the system (59) be complete, so thdi@uu#74) are valid. If we
link them with (69) then this yields the following:
From (74), one has, in particular:

(,m+l+1, .. l+hk=1+h+1 ..n)

from which, due to the penultimate equation (69), one asmik), = O for all of these
values ofi, k, . On the other hand, from (74), one has:

by =0 k=I+1,..ni=I+1,..1+h)
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and therefore alsb, = - bk, = 0. From the first equation (69), it then followsttha, =
0 for the values ofs, i, k in question. In this, and when one recalls (74), more@wer,
sees that the distinguished equations:

(75) X+1f=0, ... X4 f=0

of the system (59) define &parameter complete system, in their own right.

For that reason, we are only starting from the recial system (59), because we have
the conditions (74) for the completeness of this syst¢ hand. Now, since this
reciprocal system is just as general as the systemdb8)obviously has the theorem:

If a complete system in the x, p includes distinguished equationghéhéotality of
them again defines a complete system

If the system (58) and (59) are both complete, so dieéipe two reciprocal function
groups, then, from the theorem that was just proved, emsafi’'5) likewise define a
complete system; this is actually self-explanatory hgiree (75) determines the totality
of all equations that are common to two complete systeThis system (75) possesses
2n —h independent solutions, and on the other hand, will tisfisd by all solutions of
(58) and all solutions of (59). One may show that it pgs&seno other solutions, so all of
its solutions are expressible in terms of (58) and (59).

One sees this most quickly when one goes over to th#iaPf systems that
correspond to our complete systems. In fact, the cmpystems (58) and (59)
correspond to the two unrestricted, integrable Pfaffistesys:

(58) D|+1:0, ...,DnZO, E|+h+1:0, ...,EnZO,
and:
(59) D]_: 0, ...,D|+h: 0, E]_:O, ...,E| :0,

and the integral functions of (58are, for example, the solutions of (58}hat is, the
functions of the function group that is defined by (58). tmother hand, the complete
system (75) corresponds to the unrestricted, integrabfédef system:

D. :O’ ... D :O,
(751) { 1 n

Elzo’ E:O, E+h+1:O1 quor

that arises from the union of (%&nd (59). Now since, of ther2— 2 —h+ (2 +h) = 2n
equations (58 and (59), precisely 8 — h mutually independent ones are present
namely, the equations (75- so it is clear that the system that consisth@folutions of
(58) and (59) contains precisely 2 h mutually independent functions, and therefore
exactly as many as there are mutually independent solatidis).

The solutions of (75) are then all of the function$ tizen be expressed in terms of the
functions of the two function groups that are defined 38) @nd (59). However, the
totality of these functions, in turn, obviously defineiaction group so this implies that
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the complete system (75), in turn, defines @a €2h)-parameter function group. From
this, it finally follows that the system reciprocal(#b):

(76)

I
(@]

X, f=0, - X f=0,
Rf=0, - Rf=0, P, f=0 - Rf

is complete and, in turn, defines a function group.

(75) is the smallest function group that includes botrowf reciprocal function
groups (58) and (59), and (76) is the function group that cordistt of the functions
that are common to each reciprocal function group;ratbe expressed: (76) consists of
the distinguished functions of each of the two recipr@eoadtion groups. The solutions
of (76) are therefore pair-wise in involution.

The fact that (76) is also a complete system hastbelconsequence that a complete
sequence of the coefficiendg, , ... in (68) vanishes. | managed to prove the vanishing
of these coefficients in yet another manner from dhe described. Namely, it also
follows from equations (69) and the conditions for thenpleteness of the systems (58)
and (59).

In order to bring the theory of function groups in tiew treatment to a complete
conclusion, we must still show that two completstegns that define function groups
with an equal number of parameters, and which likewise indgdally many equations,
can always be converted into each other by a contagsfarmation in the, p. We
would therefore not like to go into this examinationt bnly add some remarks on the
invariant theory of arbitrary complete systems.

If the system (58) is complete, while its solutions dg however, define a function
group, then one can define a complete system that iariaov under all contact
transformations in the, p as follows: One seeks the complete system thatfdrags
solutions, first, all solutions of (58) and second, afiressions ¢ x), whereg and y are
arbitrary solutions of (58).

Any equation of the new system belongs to the syss&nand thus has the form:

I +h

|
Zf:;aixif+k_1,[>l’l?f =0.

We now need only to determine the functienss in the most general way such that the
expression defined with the help of (72):

Z(px)— P X)— (@20

always vanishes identically, as longgaand y are completely arbitrary solutions of (58).
That gives a number of linear, homogeneous equation$éomt 5 , so the extended
complete system can always be constructed. If na @ihetion groups are defined then
one can treat it similarly, and thus ultimately arat the complete system that is defined
by the function group that is generated by the solutio{S§8)f The associated reciprocal
system subsumes the reciprocal system (59) to (58), dhd smallest complete system
of the form (1, f) =0 w =1, ...,r) in which (59) is included.



Lie’s invariant theory of contact transformations #isdextensions 40

In the treatise “Neue Grundlagen, etc.” Wiener BeacBd. CXIl, Abt. lla, pp. 782,
Kantor spoke of the largest function group that contdiastotality of all solutions of a
complete system. It is then in no way certain thath a largest function group always
exists.

Of especial interest are the complete systems whalséions represent a family of
unions when equal to arbitrary constants. Should (58u.ble @ complete system, it is
necessary and sufficient that the associated Pfaffimtem (58, together with the
system:

(58") A|+1 = 0, ...,An = 0, E|+h+1 = 0, ...,En = 0,

make the bilinear covariands (dx Jdp —dp ) vanish. Due to (66), however, one will
have, by means of (58and (58):

3 (dxdn - dpay) =) (DE ~EA),

which vanishes only wheln= 0. The general form for a complete system efdlven
character is then:

(77) Xf=0, .. %f=0 h<n),

in which we understand; f, ..., Xnf, P11, ..., P, f to be a particular canonical basis.
The associated unconstrained integrable Pfaffiatem has the form:

(77) D:1=0,..,Dn=0, Eni=0,..E =0,

and its reciprocal system is:
(78) D;:=0, ...,.Dp=0.

Thus, (78) will be integrable if and only if thelgtons of (77) define a function group,
as well.

In the invariant theory of the family of unionsfied by (77), as is self-explanatory,
the Pfaffian system (78) plays a significant role.

Since our family of unions can also be definedHgyPfaffian system (7); it must be
possible to determine certain functioas, S such that there exists an identity of the
form:

n n n-h
(79) ZD.dX: zaiDi+Zﬁ<Eh+k+dw
i=1 i=1 k=1

If one replaces the arbitrary differentials , dp here with the increment that and p;
experience undex,f andP,f then one finds:
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> P =X, (=1, ,h),
i=1
(80) Y PP =B+ X (k=1---,n-h),
i=1
szTVI :aV+F|)/a) (V:]‘l 1n)
i=1

Thus, wis to be determined from the equations:
(81) Xy 0= PP, w=1,..,h
i=1

that emerge from a completigparameter system in tha 2 1 variablesq, pi, w If wis
determined then the,, S8, are known with no further assumptions. If onewsadhe
solutions of (77) then one findsby a quadrature.

The theorem that was proved on pp. ? is theredatived in a new way.

Actually, we would now have to treat the homogersecontact transformations and
their invariants, but we would like to forego thamd turn to another generalization of the
invariant theory of contact transformations.

8 8. The invariant theory of contact transformations,
as carried over to Pfaffian expressions inr2variables.

It was known to Lie that for any Pfaffian expressin 2 variables:
2n
(82) 20X, %) X
i=1

which can take on the normal fonoa dx + ... +p, dx,, an entirely similar theory of
invariants can be developed, but he did not amivihe actual demonstration of this. S.
Kantor has indeed already treated this generalizago it seems appropriate for me to
briefly present it.

First, let the Pfaffian expression (82) be congdieairbitrary and let:

1--2n

(83) > a,dx dx,

be its bilinear covariant, where one sets:

_0a; 0a,

84 = L .
(84) ai ox,  ox
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We further employ the notations that Jacobi introducéenwe understand, ..., iom to
mean any numbers from the sequence 1, n,.n@mely,a;, = (iv) and the symbol{, ...,
im), Which is generally defined as:

1
(2m)!

= Zn(lllv)(i |/+1”.i 2ni1 2I V—l);

(il"'izm): zialz)(EA)( 21—i11>|)’

(85)

therefore, the sum + is defined in such a way that one permites., ionin all possible
ways and gives each even permutation the + sigike wach odd one gets the — sign. In
particular, we would like to set:

(86) 1,2,..,8=A

and would like to define the quantitids, through the formulas:
2n
A=>a,A, (i=1,..2)
v=1
such that#y, + A, = 0 and one has, in general:
2n 2n
(87) da,A, =D a A = aA (,k=1, ..., D).
v=1 v=1

Fori < v, one then has, in particular:
A, = (1)1 @,..i-1i+1,..,v=1v+1, .. 2)

We then remark that the expression that is defiremd Ay in precisely the same @s
is defined from thex has the valua™™.

We then inquire about the integral manifolds o2)(8and thus, the manifolds on
which (82) becomes a complete differential, andstaes identically as a result of (83).

If % is a point of such a manifold amd+ dx an infinitely neighboring point then any
other infinitely neighboring point must satisfy teguation:

(88) i{imvdx}dx,: 0.

v=1 Li=1

Therefore, if thedx satisfy the equations:

(89) iaquxzo v=1,...,n)
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then this yields no condition on tldg, . However, since:
2n 2n
:E: lskv :E: Cnv(j)$ = /\ (j)& ’
v=1 i=1

eqguations (89) can be true without all of thevanishing only wher = 0. On the other
hand, if (82) can be given the normal foppdx + ... +py dx, then the bilinear covariant
2 (dx opi — dp ox) will vanish for arbitrarydx, Jp; , only when aldx, dp are set equal
to zero, so it is clear that this normal form is agry not possible foA = 0.

Therefore, letA # 0, moreover, so we would like to restrict ourselveshosé
integral manifolds of (82) on which generally possesses a value that is different from
zero.

Such a manifold includes, in addition to the pomtst whichA does not vanish, also
m infinitely neighboring points + dx that do not belong to any flam(— 1)-fold
extended manifold through, in such a way that not all of tme-rowed determinants in
the matrix:

(90) |dk X1, ..., DkXon | k=1, ...m

vanish. Then, one first obtains the equations:

(91) i{iaiude}dj)szo kj=1,..m),

v=1 Li=1

and then any other poirt+ ox that is infinitely close to the point of the manifold must
satisfy them equations:

(92) i{iawdkx}é&:O k=1, ....m).

v=l Li=1
However, if we set:

> a,d. % =dcu, (n=1, .., 2)
i=1

here then these equations can be solvedifar, ..., dc X, , and since not atlih-rowed
determinants of the matrix (90) vanish, certainly notnalowed determinants of the
matrix:

|de1, ---1de2n| (k: 1, ...,m)

vanish either. As a consequence,rthequations (92) for theéx are independent of each
other, and possess exactly 2 m linearly independent solutions. From (91), however,
they already possessof them, so one haa< 2n—mandm<n. That is, the Pfaffian
expression (82) certainly possesses no integral manifaldhednsion greater thanthat
makesA vanish.

Now, let:
(93) Fu(Xa, ..., %2n) =0 h=1,....n
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be ann-fold extended integral manifold of (82) that does not makenish, if such a
thing is possible. Every system of valugsdx, ox that satisfies the equatiorfs, = O,
dF, =0,d, = 0 must also satisfy (88).

However, ifdx (k= 1, ...,n) aren linearly independent systems of values that satisfy
the equationsglF; =0, ...,dFR, = 0 then then equations:

i{iaivde}é)%zo k=1,..m)

v=l Li=1

are linearly independent and therefore must define amy#tat is equivalent to the
system oh equationsd; =0, ..., = 0. From this, for any system of valubsg = 0,
., d%, = 0 that fulfillsdF;, =0, ...,dFR, = 0 there ar@ multipliersAs, ..., Am such that:

2n n aF

(94) Z%dX = Z)lﬂ—“dt (v=1, ..., D),
i=1 = 0X,

and since these equations are soluble fodhe

n

(95)

H=1 vl

it is clear that when one regards theas parameters (95) represents the most general
system of valueslx that satisfieslF; = 0, ...,dF, = 0. However, from this it follows
that since thel, are arbitrary:

2n - OF
(96) Ay 0F 0%, =

yM=1, ....n).

ko A 0% 0% Lu )
These equations must then be a consequence of (93) if (@& am-fold extended
integral manifold of (82).

Conversely, if (96) is a consequence of (93) then obviowslyarfbitrary A, (95)
represents a system of values that satisfles= 0, ...,dF, = 0, and indeed, the most
general system of values of this type, then conver&dly follows from (95), and from
equations (94), there follow exactly and no more, equations that are fredof..., A, ,
if, as is self-explanatory, we assume that not ahefi-rowed determinants in the matrix
of derivatives of, ..., F, with respect to, ..., Xon Vanish by means of (93). From (95),
one finally obtains:

S agdxox, =34, Al Awakn Ot

k, =1 H©=1 v=1lk,r=1
= Zn:)l#z 4 5xvdt
H=1 V= 1

which vanishes for all systems of valu®s that satisfyd~1 =0, ...,d, = 0.
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Should the n mutually independent equati(®®), by means of which, A does not
vanish, represent an integral manifold (8R) then it is necessary and sufficient that the
equationg96) should follow from them.

In particular, should the n mutually independent equations:

(97) Fv(xl, ceey X2n) =ay (n =1, ...,n)

represent integral manifolds B2) for arbitrary values of the constants &en it is
necessary and sufficient that the expressions:

n - OF
Ziﬁ—ﬂ (,m=1, ...n)
o A 0x 0

vanish identically.

In this, we freely admit that the existence of sodbld extended integral manifolds
has still not been shown.
Therefore, let:

(98) X = ®i(X1, ..., Xon) i=1,...,n

be a transformation that leaves our Pfaffian exprasijoa; dx invariant, up to an
additive complete differential, such that, by mean®8j,(an equation of the form:

2n 2n

(99) zalldx :za|dx+da)()ia"', )gﬁ)
i=1 i=1

Then, from 8 1, one likewise has:

2n 2n
(100) >a, (@, ®,)dD,dD, = > a,dxIx,

iv=l iv=l
for all values of thelx, ox .

If one regards thdx , &, in the equatior®. a;, dx ox, = 0 as homogeneous point
coordinates of aRx,-1 then one has a duality that associates each gemith a (7—2)-
fold extended plane iRxn-1. If one considers the as plane coordinates in the equation
2. U & = 0 then one has equations of the form:

2n
(101) u,dt= Y a;,dx

i,v=1

for the transition from planes to point coordinat@s when solved:

2n A&z
(101) dx, = vauvdt.
v=1
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From this, it follows that for any functioh:

(102) do = Z A” aq’
Hy=1 ;1
and, in addition:
2n 2n
(103) > a,dxd% = u,0xdt,
iv=1 v=1
or, when sets:
2n
=SBy ot
v=1 A
one has:
2n A&z
(104) > a,dxoy, z

iv=1

From the identity (100), it now follows that:

(105) iaw(qal, -, ® )Z A aq’ uatb Zu ox, ,

i,v=1 k,j=1

for arbitraryu, andox, although, in addition:

2n A( 0P, A, 00, 2n Aﬂ
(106) a, (o, P,) Ar v, = “u,V,
i,vzzl ! z1 A 0x 1121 A 0% a1 A g

for arbitraryu, andv, . Conversely, the validity of (106) implies (105) and (100).
If one sets thes andv in (105) and (106) equal to the derivatives of two arbitrary
functions ofxy, ..., Xon , and employs the abbreviation:

(107) 2 ’Z g"’ ;’X x|

then one obtains the following identities from (105) and (106)

(103) 22 a, (O, D,) | D@ |5, =
(106) Zri a, (P @,) | PP [P, x = | PX |

Conversely, if (109 is true for arbitraryp, x then (106) is true for arbitrany,, v,, and
therefore (100) is also true for arbitraty , Jx; .
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If one setsp = @y in (108) and considers thap,, ..., P, are independent functions
then this yields:

2n
(108) D0, (@ ®,) | PP, | = en (v k=1, .., D)
iv=1
from which:
(109) &y By | = el Purr: Pon) (.k=1, .. )
A(ch’ ' ,¢2n)

where the denominator on the right certainly dogsvanish identically. Finally, if one
thinks of@ andy in (108) as being expressed in termsiyf ..., Py then it becomes:

A, (P) 6¢
Ak zlqw l ZA(cb) 20,
from which:
(106") ox1=S A(@,--P,) 0 O

o= AD,---D,) 0D, 0D,
That is, under the transformation (98), there exisé equation:

(110) o xk=10 Xk,

which states that the bracket symb@ly | remains invariant.
Ultimately, if one sets the expressions ()01 place of thelx, and the derivatives of
@, for theu, in the identity:

2n 2n
D (P, P, )dD, = D ardx + dw
i=1

i=1

then one obtains then2Zdentities:

3 2 g A 0D
| wdy | = zai(cpl,...,cpm”q)iq)k |- ZI—AV k
i=1 iv=l A ax,

or:

A(®) & a (A (R ID, .
111 bl = (0] k=1, ...,
(1) lo®] = Zf’( a®) 2 A ox ( )

which determine therRderivatives ofw

Conversely, now letr2functions®s, ..., ®,, be given, of which we assume that they
satisfy relations of the form (109), although itsslf-explanatory thafA(®;, ..., ®2,)
vanishes identically. The functioAgx) andAi(x) shall thus be the expressions that we
just now derived from thei(X).

We define the expression:
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1

m + |q31q32 | |CD3CD4| IcDZn—chZn |,

in which we think of the numbers 1, ...n As being permuted in all possible ways and
the+ as being chosen in the well-known way. This becomes:

L0P, 00, 9D, 0P,
0%, 0%, 0%, 0%

2n 1
Z W'A&ﬁﬂz A)zaua'“ A‘m—luznZ

My Hon=1

Here, the only terms that remain in the inner Sum are the ones in which, ..., t&n
take on all of the numbers 1, ..n,20 we can write our expression:

D, D, 1
o S e A

On other hand, due to (109) our expression will be equal to:

1 Zi Alz(q))' B Am—l,zh(cb)
(2n)! [A®)]" |

However, as we mentioned on pp. ?, the expression:

1
mziplzp‘m”' Am—l,:n

has the valuA™™?, so this finally yields:

(112) (q)l"'q)znj — A(>(1"')(2n) .
X Xon A(ch"'chn)

With that, it is proved thatr2functions®,, ..., ®,, that satisfy the equations (109) and
do not makeA(ds, ..., d2y) vanish are always independent of each othesuch that the
equations:
(113) X =®i(Xq, ..., Xon) i=1,..n
then represent a transformation.

Moreover, it follows from (109) that for two arta@ity functionsg, y of xi, ..., Xon :

2 A (P D,) 0p X .
(114) I¢)(I=i;li((¢lm¢2 )) aqf. aq)a( ,

) The argument that was just carried out shows thauthetibnal determinant that was considered on
pp. ? has the value + 1.
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that is, our transformation leaves the expressigry | invariant. In addition, it follows
that:

2n
(108) 20 (B D,) | DD, | = e,
i=1
and thus:
2n _ aX
;aiv(q)l”'q)m)lq)iq)k | = T‘DV’
which yields:
2n A&w(cb) a¢ 2n
= —>a ()P x|,
| ¢ x| ﬂ;l AD) aqaﬂ; L(®) | D x|
that is:
2n a¢
lox1=) —I®, x],
250 1%
and therefore:
2n
(106) 1px|= D a, ()P, p]®,x |
Hy=1

From this it follows, as we recently remarked, that
2n 2n
Y@, (x)dxdx =) a(X) dx +dafx),
i=1 i=1

where wsatisfies equations (111).

The equationsx = ®i(x) thus represent a transformation that leaves the Pfaffian

expression>, a; dx invariant, up to a complete differential, when and only whéh; A
..., Pon) # 0and the equationEl09)are valid.

We can also characterize these transformationkeasnes that leave the expression
|@ x| invariant.

We still need to determine the infinitesimal tfansations of the type that are
considered here.

If:

2n af
Xf=>»&—
25
is an infinitesimal transformation for which thexgists an identity of the form:

X [ia’i de = dU(X]_, vy X2n)

then one must have:
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3" Xadx+3 a d =du
i1 i=1
SO:

S (Xag & ) = d[u—iaiaj,

i=1
or:

zznalwgvdx = d(u_zznalglj

iv=1
If we then set:
2n
(115) u->aé=U
i=1
then this yields:

2n a aU
za’ivgv_ axl )

v=1
in which:
2n A aU
f = _HZz=
g zl A 0x
and:
(116) Xf=|Uf|,

whereU remains completely arbitrary, and where:
(117) XZadx d[mzAﬂ |, j
i,u=1

We call the functiotJ thecharacteristicof the infinitesimal transformatioxf. If we
introduce new variablesx into Xf by means of a finite transformation of the

aforementioned type then this gives:
| Uf b= [Uf |,
then the characteristio is invariantly linked with the infinitesimal trafegmation Xf

relative to any finite transformation of any sort.
If we introduce new variableg into Xf by means of an infinitesimal transformation:

X = + ZAﬂ VN 5 i=1,..2)

with the characteristi¥ then this makes:

f=f+|Vf|&, f=f — |V d,
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SO.
|Uf| = |U'F |+ | UF |V | &

However, on the other hand, one has:

|UF| = [Uf k= |U' + [UV e & F + [V e Al
= |Uf ke +{| UV Ik +|U1f vV k)&

from which, it emerges that:

(118) U IVE=[VIUT[[=]UVIT]
or:
(119) UV W]+ [|JUV W] +[JUV |W]|=0

which is the generalization of the Jacobi identiy.
The symbol PV | then has the important property that the identity (isl@ue. With
Kantor, we remark that any alternating bilinear expression

(120) Zn: a, (X, a¢g—>){ (an + awi = 0)

i k=1
possesses a trilinear covariant:

(121) ixar+{x{wo+{ ¢v{g x}}

In this:
{o{x it —{x{oy}

is free of the second derivatives @f and since § {¢ x}} includes nothing but first
derivatives ofy, then only the first derivatives @¥ enter into (121), and naturally, only
the first derivatives of and ¢, as well. The symbolgy | is therefore distinguished by
the fact that its trilinear covariant (121) vanishaentically.
It is, moreover, trivial to prove that our Pfakpeession>. a; d% actually possesses a

family of n-fold extended integral manifolds of the form (9Namely, the functiong;,

., Fn must be independent of each other and pair-wisef\séhe relation i F, |=0. If
we then choosE; arbitrarily and seF;, equal to an arbitrary solution of the equatiéf|
| = 0 that is independent Bf thenF; must satisfy the two equations:

Alf:|F1f|=0, Azf:|F2f|=0
However, these are obviously independent of eaoéroand since:

A]_Azf —AzAlf = IF]_ | sz ||— | Fz | Flf ”

) This identity (119) was already found in Clebsch’s sddpeatise on the Pfaff problem. Crelle, Bd.
61 (1863).
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= |[FF2f|[=0

is a complete two-parameter system with-22 independent solutions, of which two
namely,F; andF, — are already known. We therefore choéseequal to a solution of
this complete system that is independenEp&ndF; and proceed in that way until we
have foundh independent functions,, ..., F, with the desired characteristics. The only
solutions to the complete-parameter systemH; f | = 0 { = 1, ..., n) can then be
expressed in terms &1, ..., F, alone.

With this, we have shown how one can find the most rgéri@mily of «" n-fold
extended integral manifolds that fills up the entire space., X2, exactly once.

One knows one such family ef' integral manifolds (97) and understatds ..., W,
to mean two arbitrary functions that are independeatioh other and tHg . If one then
sets:

(122) Wi(X, ..., Xon) = Ui i=1,..,n

and thinks of the equations (97) and (122) as having been ot x then one has:
(123) X = @i(Ug, ..., Un, &, ..., &) i=1, .. 2),

and these equations represent integral manifolds farampvalues of they, so under
the substitution (123} a; dx becomes a complete differential in the

(124) Z_n:a'i (B2 Do )Zn: gfu ZOQ(U a) du,

If one makes the substitution (97), (122) then geiks:

ﬁq(&,...,&)dxsdg(w,m z{aQ(ua Z aav}aFdF”’

v=1 i=1
u=y

so there exists an identity of the form:
2n n

(125) 2 a(x)dx= 3 f(x)dR(X +dafx),
i=1 i=1

where wcan be found by a quadrature.
From (125), it now follows that:

Zaw dx,dx = Z(dfaF dFo f)

i,v=1

or, when one sets (cf. (1907and (103)):
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o = Z AX‘ gf o,
one gets the identity:
(126) 49 = 2 Fgldi-1 1910F},
from which, in turn, when one sets:
dx = ZA” a)( dt
it follows that:
(127) lox|= iZ:,{I Foll fix|-1fo [IFx [}

The identity (126) yields, when one sets= 0 and imagines thé,, ..., F, are
independent of each other, and that Bilffx | = O

| Fifc| =&,
and then, wheg =fy:
|fi fkl =0

Thus, the B functionsF;, fi in (125) are coupled together by the relations:
(128) IFiF«|=0, [Fifc|=ak, [fifc|=0 k=1, ...,n),

from which, in the same way as on ppet’seq. we can conclude that they are mutually
independent.

Conversely, if 8 functionsfy, ..., f,, Fy, ..., F, are present that satisfy the relations
(128) then they are certainly independent of edbbro Furthermore, if (126) is true for
any functiong then one has for arbitraty anddx, :

Zud& AP ( df -2 dEJ%-

i=1 yy=1
If one sets:

2n
u, &= a,,0x,
k=1
then one gets:

ZG,Wd)gé)g( Z(dfaF dFaf)

k=1

for all dx, ox, so the existence of the relations (128) impliasidentity of the form
(125).
If one substitutes the expression:
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ZnA&Wa¢
dx, = Y = dt
P rery

in (125) then one obtains the identity:

(129) S B8 St g+,
Hy=1 A 6)9 i=1

which delivers the following fop = Fx and¢ =1 :

Wk, |=AF
(130) {l 1 “ k=1, ...n),
|t |= Af, = £,
where the expression:
2n a
(131) Af = z AP O ,
g A0X

which, under the assumptions that we made hergiclgrdoes not vanish identically, is
the symbol of an infinitesimal transformation.

Since theF;, fi are mutually independent, the same is true foaggps (130); they
thus determine the functics@by a quadrature. The existence of relations (428)(130)
is thus necessary and sufficient for the existeri¢be identity (125).

As one learned on pp. & seq.the expression:

(132) Algxl-1Ag xI-1¢ Axl

includes only the first derivatives gfand y. From (129), however, one has:

Ag =D 6 IR Igx 11+ |l gxl
IAB x1= S0 Rl + Il IFig I+ 1l cap | x|,

16, AX1= D {RISIFEXI+1fi [ IXFi b+ 14| axll.
i=1
From this, by the use of the identity (119), (182)ds the value:

St FXI -1 x| IFig = 1gx],
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from (127). Therefore, the infinitesimal transformat&f has the following relationship
with respect to the symbagy |:

(133) Algx|=[Ad, x|+ 1o, Ax|-Igx|
which can also be written:
(133) A|Uf|-|U, Af|[=|AU-U,f]|,

and from this, it emerges thaff leaves the totality of all infinitesimal transforneats
|UA].
The fact that things must be this way can be obtained muickly in another way.
Namely, ifXfis an arbitrary infinitesimal transformation theredras the equation:

2n 2n 2n
(134) XY a,dx = > a,&dx, +dY a,é,,
v=1 iv=1 v=1
S0, in particular, foXf = Af:
2n 2n a. o . 2n
(135) A a,dx, = Z”'—;\A“dx, => a,dx,,
v=l iv=1 v=1

and one realizes that, in faéf, is the only infinitesimal transformatioff for which. a,
X, vanishes identically, and verifies the relation (135l
If one sets Uf | =Xf from now on then, from (117), one has:

2n
(117) XY a,dx =d(U -Au),
v=1

and thus, when one sets, for the moment:

A |Uf |- |U, Af | =A Xf—X Af = (A X) = Zf
one gets:

2n
2> a,dx = d(AU — AAU) —d(U — Au),
v=1

=d(AU —U — A(AU —U));

that is,Zf has the formVf |. By comparison, in this way, one generally deduogstbat
the characteristi¥/ of Zf satisfies the equation:

V—AV =AU —U —A(AU —U),

but not that it has the val#dJ — U, as we just saw.

We now ask, in particular, whether an identity of fibven (125) can also exist when
wis equal to zero.

For this, it is necessary and sufficient that, ini#miol to equations (128), one also has
these:
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(130) AF =0, Afk :fk (k =1, ...,n).

However, it already suffices if one can determinadependent functior;, ..., §» that

satisfy the equations:
(136) |S. Sk|:0, A&:O @,k: 1, ...,n).

Namely, if one ha® such functions then, as we saw on pp. ?, et seq., ¢h@ts an
identity of the form:

(137) Sadx= 31,5 +dd
and one has: ) )
|Si Sk | =0, ISi T | =&« , [fi fc| =0,

|8k =A%k =0,  [Ffk]| =Afk—f«.

Sincegi, fi are mutually independent here, one can thin& a$ being expressed in terms
of these 8 functions, and obtain:

0 09
—=0, — = Ak~ fk
o, 03,

such that? becomes a function of onf§, ..., §n . The identity (137) thus possesses the
form:

(137) iaidx = Zn:AfV [dg, ,

which is then the desired one.
It still remains for us to show that one can sate&fuations (136) with independent
functiongs, ..., §n . However, one can now, at least, winer 1, always determinm

independent functiongy, ..., §»such that the equations:

|Fu3v]=0, AF,=0 Wwv=1,..m
are fulfilled. Them equations:
| 5.5 | =0, w=1, ..,.m

are then certainly independent of each other and, duketadentity (119), define a
completem-parameter system. However, thet 1 equations:

(138) 5,51=0, @=1,..,m AG =0,
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are also independent of each other, as long a%. Namely, if they were not then there
would exist 2 identities of the form:

ZnaiAv=m ZnAvaﬁ
z A _ZpﬂzAax’

i=1 p=l =l

from which, it would follow that:

m 68’
a= ) p,—=,
;;”an
SO.

2n m
2. adx = 30,0,
k=1 H=1

and the equation§, = const. f/ = 1, ...,m) would represent a family of 2- m)-fold

extended integral manifolds of the Pfaffian expres3iom, dx, , which is impossible for
m < n. Finally, it follows from the identities (119) and (1B&at them + 1 equations
(138) define a completen(+ 1)-parameter system that possessesi@a — 1 independent
solutions. Now, since§i, ..., §m are independent solutions of (138), under the

assumptions that we made, the system (138) certainly gs@ssea solution that is
independent of4, ..., §m as long asik—m-— 1 >m; that is, as long am<n.

If one applies this theorem repeatedly, after onefireisdetermined a solutiof; to
the equatiolAF = 0, then one ultimately arrives atindependent functiongs, ..., §m

that satisfy (136), which was to be shown.
We then have the theorem:

In order for an identity of the form:
2n n
(139) D adyg =) f,dF,
i=1 v=1

to exist, it is then necessary and sufficient that equationg128) and (130) must be
true. If one has n independent functions.E, F, that satisfy the equations:

(140) IFiFc|=0, AF =0 i,k=1,...,n

then there always exists an identity of the f¢39), and one findsif ..., f, by solving
linear equations.

Since the & functionsf;, F; are independent of each other, it is likewise shdwan if
A does not vanish identically then the expressi@n dx can be brought to the normal
form pidX+ ... + p,dX, by a transformation:
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X =F, p = i=1,..,n).

It is now very easy to draw upon the theory of fiarctgroups in the case of a
Pfaffian expressioR a; dx with non-vanishingA.

We say thatm independent functionsy, ..., un of X3, ..., Xon determine anmm
parameter function group when relations of the form:

| Ui U | = a(ua, ..., Un) (i,k=1,...,m)

exist. All of the discussion pertaining to reciprocal fiort groups, distinguished

functions, and the construction of a canonical badied exactly the same form as it did
for the function groups in the p. The same thing is also true of the theorem thattwo

parameter function groups can be converted into each bther transformation that

leavesX.a; dx invariant, up to a complete differential, if and onlyhéy have the same

number of parameters and same number of distinguishetidns.

It is not necessary to go through everything in detaisuffices to refer to chapter 13
of the second volume dfransformationsgruppernwhere the required developments of
almost everything were, in fact, carried out, althoughriylea completely different
problem was being treated there.

We only mention thatrRindependent function®s, ..., ®,, that have the relationship
(109) determine arparameter function group. In order to find the most gdne
function systens, ..., ®,,0f this type, one must first construct a canonical basithis
function group. IfF, ..., Fn, f1, ..., f; @are such functions of that obey the canonical
relations (128) then the expressidngP, ..., Py, fi(Ps, ..., P2n) are such a canonical
basis. Finally, if§1, ..., $n f1, ..., fn IS the most general system of functionsxdhat

fulfill the canonical equations (128) then the equations:
Fi(®) =3, fi(®) =7 (i=1,..,n)

determine the most general function graup ..., ®2, that satisfies (109).

Now, some suggestions might be made, as Kantor did inxtéaston of the theory
of function groups for the present case.

We call two Pfaffian equations:

2n 2n
D Adx =0, D Adx =0
i=1 i=1
conjugatewhen the equation:
2n
(141) > Ay A, =0
iv=1 A

is fulfilled. Likewise, we call two linear partial défrential equations:
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&, of &, | of
p— = 0, pi'_: 0
2 ox 2 o
conjugatewhen the equation:
2n
(142) > a,pp0,=0
i,v=1
is verified.

If we now have a system aof independent linear partial differential equations then
we can always determine a canonical basis for thigsyst

2n
Xifzzlawi:o (i=1:--1+h),
v=1 a)ﬂ/
(143) (A +h=m),

2|
Pkf:ZUkV%ZO (k=1 1),
=1

such that any two of these equations are always conjufate assumes onlff and
Pd (k=1, ...,I) are known, for which one always has:

(144) Zzn a,0,P, =1 k=1, ...10).

iv=1
The totality of all equations that are conjugate to éhgaations (143) defines the
reciprocal system to (143), which has (2 m) parameters, and for which we can
determine a canonical basis of the form:
(143) X|+1f = 0, veey an = 0, P|+h+1f = 0, Pnf =0.
Finally, we can chood@.f, ..., P« f in such a way that alllequations;f = 0,P,f =0

are mutually independent and define a canonical basis.
From now on, there ara2iniquely determined Pfaffian expressidhs E; such that

(145) df=> (DRf-EX f).
i=1
If one replaces thg_in this identity with:

2n
zpkva,uv (lU:l' ’21)
v=1

then all of theX; f vanish, and likewise all of th@ f, except foP f, which equals 1, and
one obtains:
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2n
(146) Di =Y a,p0,d, k=1, ...,n),
v=1
and one similarly finds:
2n
(147) E=)a,0,dx, k=1, ...,n),
v=1

where from now on thBy, Ex, in turn, can be regarded as a canonical basis, so any tw
of them will be conjugate, with the exception of any it Ex (k = 1, ...,n) for which
one has:

2n A&w 2n
Z T z apnaknavrpkr = za’nra-knpkr: 1.
Hy=1 mr=1 mr

If one then sets:

2n

d)(v = Zi% dt

= A 0X,

in equation (145) then one gets:

(149) #11= Y (RODX 1= X4,

and finally obtains, when one substitutes:

2n
>0, 0%,
v=1
in (145) forfxﬂ , the identity:
2n n
(149) Z al,uvdx,ua)‘/ = 2(E|A| - D|E| ) .
Hv=1 i=1

Everything now takes exactly the same form asidt @h pp.?-?, except that the
symbol () must be replaced with | | everywherer éxample, this yields that a complete
m-parameter system (143) defines a (2 m)-parameter function group when the
reciprocal system (14Bis also complete, and so on. Briefly, it behawvesuch a way
that for an arbitrary Pfaffian expression for wh&lkloes not vanish identically the entire
theory is completely analogous to what it implies the expressiol pi dx, and just as
simple.

Appendix

On pp. ?.et seq. | proved that, in general, as long as (58) ar®) gre complete
systems, (76) is also such a system, but the methpof that was employed there does
not apply in the context of the newer foundatioffisthee theory of function groups.
Technically, it must be shown that when (58) an@)(are complete systems the
equations that exist between the coefficients 8§ @ e linked to equations (69) in such a
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way that (76) is also a complete system as a resilave shown this just recently, so |
would thus like to take up the argument that led me to thid.proo
If (58), as well as (59), is a complete system thenfiostehashy, = O for:

k u=1,...1+h; i=l+1,..,n,
and
k u=1+1,..,n; i=1,..l1+h,
so one haby,; = b« = 0 for:
k=1, ..., u=1+1 ...1+h; i=l+1,..,n,
since, howevem« = - biy«, SO one obtains from (69) that for the same valugskpn,

b, also vanishes.
One further has, = 0O for:

k=1, ..., +h; u=1 ...l i=l+h+1,..,n
and for:
k=1+1, ...,n; Hu=l+h+1 ....n; i=1, ...l
from which:
al’<,u|: a;d,u :0
for:
k=I+1,...,I+h;, u=l+h+1,..n; i=1, ...l

and then, due to (69):
b,Zik: al’<,ui_ al’d,u =0
for the same values ¢f i, k.
Finally, ax,; = O for:

ku=1,...1+h; i=l+h+1, ..,n
and:
k u=1+1,..,n; i=1, ...l
so it follows from (69) that for the same valueskpfs, i, one likewise had), = b, .

However, one hab, =0, moreover, for:

u=1 ... 1+h; i=1, ...l k=1+1,..,n
and for:

H=1+1 ....n; i=l+h+1,...,n; k=1, ..1+h,
soh,, =0 for:

i=1, ..l k=I+1,..,n u=1+1 ..1+h,

and for:
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i=l+h+1,...,n; k=1,..]l+h; U=1+1, ..., +h

In this lies the fact that (76) is also a completeesys

Now, since the system (75) that is reciprocal to (gd)kewise complete, (75) and
(76) define two reciprocal function groups, and indeed, (76)istsnsf all functions that
are common to both function groups (58) and (59), while (db¥ames both function
groups, but only includes such functions that are expressiblerms of both function

groups.

Giessen, 25 November 1913.



