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 § 1. – The theory of electromagnetic mass was studied for the first time by M. Abraham (1) 

before the discovery of the theory of relativity. Thus, it was only natural for Abraham to consider 

the mass of a rigid system of electric charges in the sense of classical mechanics in his calculations 

and found that under the hypothesis that such a system had spherical symmetry, its mass would 

vary with the velocity and be equal to precisely (2) 
2
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3

u

c
 (in which u is the electrostatic energy of 

the system and c is the speed of light) for a velocity that is zero or very small, while for a velocity 

that is comparable to c, some correction terms will intervene that are somewhat more complicated 

and have the order of magnitude of 
2 2/v c . Also before the theory of relativity, Fitzgerald 

introduced the hypothesis that solid bodies will submit to a contraction with a ratio of: 
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−  

 

in the direction of its motion, and Lorentz reprised Abraham’s theory of electromagnetic mass, but 

while considering the systems of electric charge that were subject to that contraction, rather than 

systems that were rigid in the sense of classical mechanics. It would then result that the rest mass, 

or the limit of the mass for zero velocity, would always be 
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u

c
, while the correction terms that 

depended upon 
2 2/v c  would be altered. The experiments of Kaufmann, Bucherer, et al, regarding 

the mass of the  particle of radioactive particles, and that of cathode rays of large velocity, decided 

neatly in favor of Lorentz’s theory of the contractible electron, so to speak, and against Abraham’s 

 
 (*) See my notes on the same argument in Rend. Acc. Lincei (5) 81 (1922), pp. 184, 306. 

 (1) Abraham, Theorie der Electricität; Richardson, Electron Theory of Matter, Chap. XI; Lorentz, The Theory 

of Electrons, pp. 37. 

 (2) One ordinarily says that the electromagnetic mass of a homogeneous spherical electric layer of charge e and 

radius r is 
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. However, if one observes that the electrostatic energy is u = 
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 then one will find that the mass 

is precisely = 2
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theory of the rigid electron. One can then interpret that as saying that it was the first proof that the 

mass of electrons is exclusively electromagnetic in nature, since otherwise one would have to think 

that their masses would have to be constant. When the theory of relativity was discovered, in turn, 

that led to the consequence that all mass, whether electromagnetic or not, must vary with the 

velocity like the Lorentz contraction of the electron in such a way that experiments indicated that 

the question of whether the electronic mass was or was not totally electromagnetic in nature was 

still left unresolved, since they only constituted a confirmation of the theory of relativity. On the 

other hand, that theory of relativity, in the strict sense (and even more so as a result of the general 

one), leads one to attribute a mass of 2:u c  to given system of energy u in such a way that a grave 

discrepancy arose between Lorentz’s electrodynamical theory, which attributed a rest mass of 
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u

c
 to a spherical distribution of electricity, and the theory of relativity, which attributed a mass 

of 
2/u c  instead, and such a difference (3) proves to be particularly serious when one considers the 

great importance of the notion of electromagnetic mass as the basis for the electronic theory of 

matter. 

 I presented that discrepancy in a particularly strident way in two recent notes (4). In one of 

them, on the basis of the ordinary theory of electrodynamics, I considered the electromagnetic 

mass of a system with arbitrary symmetry and found that in general it is represented by a tensor, 

rather than a scalar, that naturally reduces to 
2
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3

u

c
 in the case of spherical symmetry. However, in 

the other one, starting from the general theory of relativity, I considered the weight of that system, 

which was found to be equal to 
2

u
G

c
, in any case, where G is the acceleration of gravity. 

 The present work will show precisely that the difference between the two values of the mass 

that are obtained in the two ways has its origin in the concept of a rigid body, which contradicts 

the principle of relativity, as it applies to the theory of electrodynamics (as well as that of the 

contractible electron) and which leads to a mass of 
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c
, while the notion of a rigid body that is 

better justified and conforms to the theory of relativity will lead to the value 
2/u c . 

 One should further note that the relativistic dynamics of the electron that was developed by M. 

Born (5), which nonetheless started from a viewpoint that is not essentially different from the usual 

one, naturally found that the rest mass was 
2
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3

u

c
.  

 We shall take Hamilton’s principle to be the basis for our considerations, as it is more adapted 

to the study of a problem that is subject to constraints that are somewhat complicated. However, 

our system of electric charges must satisfy a constraint that is, by nature, different from the ones 

that are considered in ordinary mechanics, namely, that depending upon its velocity, it must exhibit 

 
 (3) Naturally, the experiments of Kaufmann, et al, cannot serve to resolve the question of which of the two results 

is correct in this case, because they only permit one to measure the correction terms that depend upon velocity and are 

equal in both theories, while the difference exists between the rest masses. 

 (4) E. Fermi, Nouv. Cim. (6) 22 (1921), pp. 176, 192. 

 (5) Max Born, Ann. Phys. (Leipzig) 30 (1909), pp. 1.  
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the Lorentz contraction as a consequence of the principle of relativity. However, from now on, in 

order to avoid confusion, note that whereas the Lorentz contraction has order 2 2/v c , its influence 

on the electromagnetic mass concerns its principal terms, i.e., the rest mass, and therefore has 

much greater importance, because it is also appreciable for small velocities. 

 

 

 § 2. – Now consider a system of electric charges that is suspended in a rigid dielectric that 

moves with a translatory motion that describes a time-tube in space-time (6) under the action of an 

electromagnetic field that is due, in part, to that system itself and in part to external cases. 

 More precisely, one sees that this implies a rigid translatory motion. Therefore, consider an 

arbitrary Lorentz-Einstein reference system and suppose that a point of the system of charges has 

velocity zero in it at a certain instant. That is equivalent to saying that the timelines of the points 

of our system are orthogonal trajectories to a family of linear spaces, and in fact, in a Lorentz-

Einstein reference system in which space is one of the spaces in the family, and the time axis is 

naturally perpendicular to it, the entire system will be at rest at time zero, because space cuts the 

timeline orthogonally at all points of the system. With that definition of translatory motion, which 

is, in substance, the one that M. Born adopted, the rigidity of the system is expressed by the idea 

that its figure will remain invariable in those spaces that are perpendicular to the tube, or that all 

of the cross-sections of the tube are mutually equal. 

 
 In order to be able to apply Hamilton’s principle to our case, we must perform a variation of 

the motion of our system that conforms to the constraints in the problem, i.e., rigidity, when 

properly interpreted. Now, we can show that if we add the value 
2
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c
, or that of 

2/u c , for the 

 
 (6) In all of what follows, one regards space-time as being Euclidian, since it is intended that the electromagnetic 

fields that exist in it are considered to be sufficiently small in intensity that it will not alter the metric structure 

appreciably. 
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electromagnetic mass, according to whether one takes that variation to be one or the other of the 

two that are illustrated above and will be distinguished by the letters A and B, resp. However, the 

variation A must be discarded, as it contradicts the principle of relativity. Let T be the time-tube 

that is described by the system. In the figure, space (x, y, z) is represented as only one-dimensional 

by way of the x-axis, and the time t is replaced with ict in order to give a definite metric. 

 

 Variation A: One considers a variation that satisfies the constraint of rigidity to be an 

infinitesimal displacement (i.e., rigid in the usual kinematical sense) that is parallel to the space 

(x, y, z) of any section of the tube that is parallel to that space. In the figure, one will then obtain 

such a variation by displacing any section t = const. of the tube parallel to the x-axis by an arbitrary 

infinitesimal segment. If one confines oneself to the consideration of translatory displacements 

then one will have that x, y, z are arbitrary functions of only time, and t = 0. 

 

 Variation B: One considers a variation that satisfies the constraint of rigidity to be infinitesimal 

displacement of any normal section of the tube that is perpendicular to that tube and is rigid in the 

usual kinematical sense. In the figure, one will obtain that variation by displacing any normal 

section of the tube parallel to itself through an arbitrary segment. 

 

 Of those two variations, A obviously contradicts the principle of relativity and must then be 

discarded since it is not even invariant with respect to Lorentz transformations. Indeed, it is 

determined by the particular choice of reference frame (t, x, y, z), so it cannot express any physical 

notion such as that of rigidity. However, the variation B, other than obviously satisfying the 

aforementioned condition of invariance, because it is composed of only elements that are inherent 

to the tube T and things that are independent of the position of the reference axes, is the only one 

that spontaneously presents itself as the one that takes its basis to be a virtual displacement that is 

rigid in the reference system with respect to which the system of charges has zero velocity at the 

instant in question. Now, a superficial observation can nonetheless create the impression that the 

difference between the consequences of the two systems of variation A and B must become 

perceptible only for considerable velocities, i.e., when the tube T has a noticeable inclination with 

respect to the time axis. However, the calculations that we shall develop will show immediately 

that the difference is already perceptible for zero velocity, and that it is precisely A that will give 

the electromagnetic mass as 
2
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3

u

c
, while B will give 

2

u

c
. 

 

 

 § 3. – For the sake of convenience, let (t, x, y, z) or (x0, x1, x2, x3) denote the coordinates of time 

and space, let i be the quadri-potential, and let: 

 

Fik = i k

k ix x

  
−

 
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be the electromagnetic field, while E and B are the electric and magnetic force, resp., that are 

deduced from it. 

 Hamilton’s principle, which subsumes the laws of Maxwell-Lorentz and those of mechanics, 

says that (7): The total action, or the sum of the actions of the electromagnetic field and those of 

the material and electric masses, will have zero variation under the effect of an arbitrary variation 

of the i and the coordinates of the points of the timelines of the electric charges that conforms to 

the constraints and is annulled on the contour of the region of integration. In our case, there are no 

material masses, so the only elements that must be varied are the coordinates of the points of the 

timelines of the charges. It will therefore be enough to consider only the action of the electric 

charge, i.e.: 

W = i i

i

de dx   , 

 

in which de is the generic element of electric charge, and the second integral must be extended 

over the arc of the timeline that is described by de and is contained in the quadri-dimensional 

domain G of integration. For any system of variations xi that conforms to the constraints and is 

annulled on the contour of G, one must then have W = 0, i.e.: 

 

(1)      
,

ik i k

i k

de F x dx   = 0 . 

 

 We need to examine separately the results that are obtained replacing the xi with the given 

values of the systems of variation A or B. 

 

 

 § 4. Consequences of the system of variations A. – In this case, the domain of integration 

reduces to simply ABCD, and indeed, the regions BCG, ADH give zero contributions, since all of 

the xi are annulled in them by being zero on the contour of G, and therefore along the line 

segments BG, AH, and will have constant values for constant t, or only parallels to the x-axis. If t1 

and t2 denote the times of A and B, resp., then (1) can be written as: 

 

  
2

1
,

t

k
i ik

i k t

dx
dt x de F

dt
    (i = 1, 2, 3 ; k = 0, 1, 2, 3) 

 

when t = 0 and x, y, z are functions of only time. 

 Since xi are arbitrary functions of t, one will then get the three equations: 

 

k
ik

k

dx
de F

dt
  = 0 

or 

 
 (7) WEYL, Raum, Zeit, Materie, Berlin, Springer, 1921, pp. 194-196. 
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x z y

dy dz
de E H H

dt dt

 
+ − 

 
  = 0 , 

and two analogous ones. 

 If our system has zero velocity in the reference frame (t, x, y, z) at the instant considered then 

the three equations can be summarized in the single vectorial one: 

 

(2)       deE  = 0 . 

 

 We could have arrived at that equation without calculation if (as one does in the ordinary 

treatments and, in substance, as M. Born did in the cited paper) we suppose a priori that the total 

force that acts on the system is zero. We specifically wished to deduce it from Hamilton’s principle 

in order to show the flaw in its origin, since it follows from the system of variations A that it 

contradicts the principle of relativity. The value 
2

4

3

u

c
 for the electromagnetic mass follows 

immediately from (2). Indeed, suppose that E is the sum of a part E(i) that is due to the system 

itself and a uniform field E(s) that is due to external causes. (2) will then give: 

 
( ) ( )i sde de+ E E  = 0 . 

 

 Now, de  = e = charge, and therefore 
( )s deE  = F = external force. On the other hand, in the 

case of spherical symmetry, either direct calculation or the well-known consideration of the 

electromagnetic moment (8) will show that: 

 

( )i deE  = − 
2

4

3

u

c
 , 

in which  is the acceleration. 

 The preceding equation will then become: 

 

F = 
2

4

3

u

c
 , 

 

and when that is compared to the fundamental law of the dynamical of the point, namely, F = m, 

that will give: 

m = 
2

4

3

u

c
. 

 

 

 
 (8) Richardson, loc. cit.  
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 § 5. Consequences of the system of variations B. – In that case, the same considerations as 

in the preceding § will show that the domain of integration reduces to ABEF, or the region that is 

found between two normal sections of the tube T. One decomposes it into an infinitude of layers 

of infinitesimal thickness by means of an infinitude of normal sections, and in order to calculate 

the contribution of one of them to the integral (1), one refers it to the rest frame and takes the space 

of (x, y, z) be parallel to the layer. From that, one will then have t = 0, while x, y, z will be 

arbitrary constants. In addition, one will have dx = dy = dz = 0, because the velocity of any of its 

points is zero, while dt = thickness of the layer, which varies from point to point, because the layer 

is based upon two normal sections that are not generally parallel. If O is a point of the layer that is 

fixed, but generic (for example, the coordinate origin) at which dt has the value dt0, and K is the 

vector that is oriented along the principal normal to the timeline that passes through O and has a 

magnitude that equals the curvature of the timeline then one will obviously have: 

 

dt = dt0 [1 – K  (P – O)] , 

 

if dt is the thickness of the layer at the generic point P. 

 Since the velocity is zero, one will have simply: 

 

K = − 2: c , 

and therefore: 

dt = 0 2

( )
1

P O
dt

c

 − 
+ 

 


 . 

 

 If we substitute those values then we will find that the contribution of our layer to the integral 

(1) is: 

 

− 
0 2 2 2

( ) ( ) ( )
1 1 1x y z

P O P O P O
dt x E de y E de z E de

c c c
  
  −  −  −      

+ + + + +      
      
  

  
 . 

 

 That expression must be annulled for all values of x, y, z, so we will get three equations 

from it that can be summarized in the single vectorial one: 

 

(3)      
2

( )
1

P O
de

c

 − 
+ 

 
 E


= 0 . 

 

 A correct application of Hamilton’s principle has then led from (3) to (2), instead. It is then 

easy to examine the consequences. Indeed, if one sets: 

 

E = E(i) + E(s) 

then one will find that: 
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( ) ( ) ( ) ( )

2 2

( ) ( )i i s sP O P O
de de e de

c c

 −  −
+ + +  E E E E

 
 = 0 . 

 In that case of spherical symmetry, one will have: 

 

( )i deE  = − 
2

4

3

u

c
 , 

 

as above. If one substitutes that in the preceding equation then one will find that E(s) is composed 

of only terms that contain . If one then neglects the terms (9) in 2 then one can neglect the last 

integral, and one will get: 

 

(4)     − ( )

2 2

4 ( )

3

iu P O
de

c c

 −
+E F


+  = 0 . 

 

 In order to calculate the integral that once more figures in (4), observe that E(i) is the sum of 

the Coulomb force, which is: 

= 
3

P P
de

r

−
  

 

( P   is the point where the charge de  is located, and r = PP ), and a term that contains , which 

can be neglected because it will give a contribution that contains 2. Our integral will then give: 

 

3 2

( )P P P O
dede

r c

−  −



, 

 

or if we switch P with P   (which will change nothing) and takes one-half the sum of the two values 

thus-obtained: 

1
2 3

[ ( )]
P P

P P de de
c r

−
  −   . 

 

 Observe that in our approximation,  is constant for all points, so it can be taken outside of the 

integrals. Therefore, the x-component of the preceding integral will be: 

 
2

2 3 3 3

1 ( ) ( ) ( ) ( ) ( )

2
x y z

x x y y x x z z x x
de de de de de de

c r r r

     − − − − −
   + + 

 
    . 

 

Now, since the system has spherical symmetry, any segment PP  will correspond to an infinitude 

of other ones that are distinguished only by their orientations. We can then replace: 

 

 (9) Properly speaking, the magnitude of the squares that one neglects is 
2

/l c , in which l is the maximum length 

that enters into the problem. It is obvious that such an approximation is more than justified in the common cases. 
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2( )x x− , ( ) ( )x x y y − − , ( ) ( )x x z z − −  

in the three integrals with their mean values over all possible orientations of PP , which are: 21
3

,r

0, 0. 

 With that, the x-component will become: 

 

2

1

3 2

x dede

c r


 . 

 Now observe that the expression: 

1

2

dede

r


  

 

is nothing but the electrostatic energy u. If we then revert to the vectorial notation, we will find 

that the integral that figures in (4) is expressed by: 
23

u

c
 . (4) will then become: 

 

(5)       
2

u

c
  = F , 

 

which expresses precisely the idea that the electromagnetic mass is 
2/u c . 

 

____________ 

 


