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Relativity. — On the phenomena that occur in the neighborhood of a
time-ling Note | by ENRICO FERMI, presented by the correspondent G

ARMELLINI.
Translated by D. H. Delphenich

8 1. In order to study the phenomena that occur in the neigbbdrof a time-line
(i.e., in non-relativistic language, in a portion of @pan the space-time manifold that
possibly varies with time and is always very small widgspect to all Euclidian
distances), one is led to the search for an opporefeeence frame such that tief of
the manifold will take on a simple form in the neighbarti@f the line being studied. In
order to find such a reference frame, we first discdssvageometric considerations.

Let a lineL be given in a Riemannian manifold that is also a metrically-connected
manifold, in the sense of Weyl)( Associate a directiop to any pointP of L that is
perpendicular td., according to the rule that the way that the direcyie- dy relates to
the pointP + dP is deduced from the way thatelates td® in the following manner: Let
n be the direction that is tangentltat P. One parallel-transport) §y, 7 fromP to P +
dP and letsy + oy, 7 + dn be the directions thus-obtained, which will still béhogonal,
by a fundamental property of parallel transportL I$ not geodetic then + dn will not
coincide with the directiomw + dn of the tangent th atP + dP, and these two directions
will characterize a plane & + dP. Consider the element &, (') at P + dP that is
perpendicular to that plane, and let all of the paditiat neighboP + dP rotate rigidly
around tha§,—; until 7 + dn does not coincide witly + d7;. y + oy will then end up in a
position that will havey + dy for its direction relative to the poift+ dP. If one fixes the
directiony at one point oL at will then a process of integration will permit doeknow
it for all points ofL.

We now look for the analytical expressions thahgfate the operations that were
indicated for a Riemannian manifold, which will be identtcedhe ones that are valid for
a Weyl metric manifold, provided that one is carefuthoose the “Eichung”Tb in the
form of the length of a segment that one moves lyigid the neighborhood of, and
which is assumed constant. Let:

(1) d§:Zgikdxd>§ (,k=1,2,...n),

() Weyl, Raum, Zeit, MaterieBerlin, Springer, 1921, pp. 109.
() T. Levi-Civita, Rend. Circ. Palermd? (1917), 173.

(") Translator's noteS, was a standard notation in those daysRBF, although they also refer to it as

“Euclidian space.”
("M Translator’s note: i.e., the gauge.



Fermi — On the phenomena that occur in the neighbdrbba time-line |I. 2

and lety;, y; 7, 1) = dx / dsbe the covariant and contravariant systems of conmtsne
for the directiony, 77, resp. Meanwhile, we have:

" _ Jhl mdx _ < Jh!] dx, dx
ds ;{i}” ds = 20 [ ds ds

along withdi:id—)g M One thus finds that:
ds dsds ds’

on® —dn® d’x dy dx)__ A
—_r " = + C
ds ds’ ; i [ ds ds)

C' are the contravariant components of the ve€tof geodetic curvature; i.e., it is a
vector that has the orientation of the principal gecdsrmal toL and a magnitude that
is equal to its geodetic curvature.

On the other hand, one has:

5 (1) (h)d_xk
@ z{ } i3

h,k

Now, sincey is perpendicular th, the motion by which one deduces dy fromy +
oy will be parallel to the tangent to and will have a magnitude that is equal to the
projection ofdn — dn ontoy; that is to say, sincg has length 1, it will be equal to the
scalar product odr — dp with y, i.e.:

Y (@7 ~dg)y" =-ds Y Cy".

The magnitudes of the contravariant componentisaha obtains will then multiply
the contravariant coordinates of the tangent,taamely,dx / ds In the final analysis,

one will have -dx > C y" . It will then result immediately from (2) that:

(3) M :_z{h_k} m A% dXzChyn

ds ol ds

If (3) is written fori = 1, 2, ...,n then that will give a system of first-order
differential equations in the unknownsy™”, v, ..., y® which will be determined once
one assigns an initial value to them. One alsdyeaarifies formally from (3) that if the
initial values of they(') satisfy the condition that they must be perpendrcio L then that
condition will remain valid along all of the line.
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8 2. We shall now arbitrarily assignmutually-orthogonal directiong, s, ..., yn to
a pointPy of L with the condition thay, must be tangent tb. The directiongs, y», ...,
Yn Will be perpendicular th and can be transported aldndpy the law that was described
in the preceding 8, which will preserve their orthogonabty should be obvious from
that same definition. In that way, we proceed to asto@ mutually-orthogonal
direction with any point of, such that the last one is tangenk to

Now, suppose that o, is immersed in a Euclidiag, of a convenient dimension
We can take the coordinates of a point\@fto be the Cartesian coordinates of its
orthogonal projection ont§, that are tangent t§, at a generic poirf® of L that had® for
its origin, and take the directiogs y», ..., y» that relate to the poift to be its directions.
The metric element o¥, at P will take the formds’ = dy? + dy? +---+ dy in these

coordinates. Moreover, as we can recognize immedjatelyill have that it is geodetic
atP. That is, one will have; = 1,9k = 0 ( # K), up to infinitesimals of order greater
than one, for the coordinate systgrtinat one constructs aroufd It is obvious that one
can find such a reference system at any poiht of

Now, consider a poin@Qp of V, that is referred to the poimy of L that has the
coordinatey,, Y,, ..., ¥,,, 0. For any other poift of L, we can then determine a point
Q that has the same coordinates when referréy tbatQy has when referred t®. The
point Q will describe a line that is parallel to One now wishes to find the relation that
couplesds, to ds», under the hypothesis th@tis infinitely close toP. In order to do that,
observe that the motion that tak@sto Q + dQ is composed of the motions that were
denoted by andd —oin 8 1, of which, the first one will givésg = ds», up to first-order
infinitesimals, since it is a parallel motion. Theesnd one is a rotation, as we saw in § 1
and will give @ — Jso = ds C x Q — P, in which we have denoted the scalar product
symbol byx and the vector of origi® and terminugQ by Q — P. Furthermoreds; and
(d — o will both have the direction of the tangentLto One will then havelsy = d5q +
(d-9)sq; i.e.:
(4) do=ds[1+Cx Q-P].

The trajectory of the poir® defines anr{ — 1)-fold infinitude of lines, and therefore
there will pass one such line through any pdmbf V, ; at least, with some suitable
limitations. One can characterikby this fact using the coordinatgs, y,, ..., ¥,,, 0
of the pointQ that correspond to the line that passes thravigind the arsg of the line
L, when it is considered to be an origin that is arbifreclose to the pointP that
corresponds tQ and is coincident witM.

If M is infinitely close toL thendsy will be perpendicular to the hypersurfage=
constant. One will then get:

ds, = d%+ dy + dy +---+ dy,,
and upon taking (4) into account:
(5) ds, = (L +CxM —P)* dS + dif + dy+---+ dy,.

We will get a simple expression fdg’ in the neighborhood df from this.
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8 3. Before getting to the physical applications of the lteghat were obtained, we
first make a few more geometric observations. Itnisnediately obvious that the
preceding considerations are rigorously complete foridiaaol space, and therefore so is
formula (5), which is their conclusion, and which isidanly in a neighborhood @f for
arbitrary manifolds. We then associate a linie V,, with a lineL" in a Euclidian space
S, in which we shall denote orthogonal Cartesian coatdmbyx”. If we denote any
symbols that refer to the line by an asterisk then we can write the formula that is
analogous to (5) fo%, :

*

(5) ds. = (1 +CxM =P) dS.+ dyf + df+--+ df, ;

C’ is a function ofs_, in (5, just asC is a function o in (5).
Let KV, K@, ..., K" be the contravariant componentsfelative toy,, y,, ...,
V.., and letk®™’ K@ . K" pe those of” relative to they”. We wish to know

whether it is possible to determite in such a way that the functid&"(ss) will be
equal toK™(sp). For that reason, we shall commence by seting s,.; i.e., by
establishing a one-to-one correspondence between thes mdiL and those of.” that

preserves all arc lengths. Therefore, observekftatis the projection o€™ onto ther™
directiony . In fact, one has:

(6) KO = iyﬁr ‘i;fm r=1,2,..n-1).

TheK® will then be known functions & . The conditiork® = KO will then lead
to then — 1 equations:

7) KO(sp) = iyﬁr O('jgm r=1,2,..n-1).

On the other hand, when (3) is written &y it will give usn (n — 1) more equations.
If we add the other one to them, namely:

(8) dsy = dx®+dx*+-o+ dy’,
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then we will get a system of— 1 +n (n — 1) + 1 =n? equations in the? unknownsx’,
y, that will serve to express them as functionssof We can then determine the
parametric equations;’ = x'(sp) of L'. With that, formula (5)will become identical

with (5). In other words, we have represented a neidioloar of the linel' as a
neighborhood of the link for the sake of applications. Sinceis in a Euclidian space,
we can also say that we have extended a neighborhdothiaf a Euclidian space. To be
precise, we have found coordinates that are instantayegraietic at all points @f.
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8 4. For most of the applications of the preceding regalthe theory of relativity,
we shall assume that, is space-time — i.eVs — and thatL is a time-line in whose
neighborhood we propose to study phenomena. If wasget dsin (5) for brevity then
we will find that in that case:

ds’ = (1 +CxM —P)* ds? + dyf + dy + dy.

In order to avoid the appearance of imaginary numbeatd@mestore homogeneity,
we agree to make the following substitutions of variables

Sp =W, Y, =X, Y, =1y, Y= iz,

in whichv is a constant with the dimensions of a velocityt sall have the dimensions
of time. From that, one will get:

(9) ds’ =a df —d¥ —dy? —dZ,
in which:
(10) a=V41 +CxM —P)%

From now on, one will demand that all of the ordinayybols of vector calculus
refer to the space afy, z It is in that sense that one will refer to tlalar products that
appear in (10), provided that one intends tkatshould mean the vector whose
components are the covariant components of the geanetiature of the ling=y=z=
0, and thatM — P means the vector whose componentsxare z. We callx, y, z the
spatial coordinates antl the time coordinate. For the sake of uniformity, steall
sometimes writeXo, X1, X2, X3, In place oft, x, y, z and we shall also denote the
coefficients of the quadratic form (9) by.

§ 5. Let Fi be the electromagnetic field)(and let ¢o, 1, @2, ¢3) be the first-order
“potential’ tensor ofFi, in such a way thdx = @gix — ¢i . Setgo = ¢, and letu denote
the vector whose components &ke ¢», ¢;. First of all, one will have:

() For the notation and Hamiltonian formulation of faws of physics, see Wewlp. cit, pp. 186 and
208.
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FOl au F23
Fo, ¢ = grad¢ _E’ F;, ¢ =—rotu, Fi =0,Fk=-F«,
F03 12
and likewise:
For 1 du Fag § . .
Foo | = —(—grad¢ +—j, F,,  =—rotuy, F =0,F = -4
a ot
F03 F12

and therefore:

1 1 ou’)’
1Y R F" = ={rotu-=| gradp-— | ;.
4 — ik 2{ a(g d¢ atj }
Let dwbe the hyper-volume element\&f. We have:

dw= [1-] g, | d% dx dx dxs = /adt dr,

in whichdr = dy dy das the spatial volume element.
We also have:

2 4dx=gdt+udm dM = (dx, dy, d2).

If we omit the action for the metric field (whosariation will be zero, because we
regard it as having been givarpriori by (9)) then the action will take on the following

form:
W= %L; FikF‘"‘)daHLdejZ@ dx+[ dnj d

de=the element of electric charg
dm=the element of mass.

If one introduces the notations that were indidaeove then one will find that:

u

(11) W= %jj{rotzu—-;(gradqp—g—tjz}ﬁ dtcr+jj(¢+ w Y)p dtd

[[a-Vii kdtar,
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in which p, k are the densities of electricity and matter, respelgti in such a way thate
= pdt dm=k dr, V_ is the velocity of the electric charges, afglis that of the masses.

The integrals on the right-hand side can be taken averbitrary regiomr between
two arbitrary time points, t> . One will then have the constraint that all & tariations
must be zero on the contour of the regiand at the two times, t,.

Except for that constraint, the variations g¢ofand u are completely arbitrary. By
contrast, the variations of y, z, when they are considered to be the coordinates of an
element of charge and mass, can be subject to furtmelitions that translate into the
constraints of the particular problems that one isystigd Meanwhile, if one writes
down thatdW is zero for an arbitrary variatiodg of ¢ then one will find that:

dtdr

—J‘J‘(grad¢——j><5 gradp +H5¢,0dtdr

and sincedg is arbitrary, one will get the equation:

. 1 ou)| _
(12) p+ div {ﬁ(graw—aj} =0.

In an analogous fashion, if one vanethen one will find that:

(13) OV + rot (\/a rotu) —%{%(graw—g—?ﬂ = 0.

These last two equations permit us to determieeetbctromagnetic field once we
have specified the charge and its motion.

Another group of equations can be obtained byingrihe trajectories of the charges
and masses W. Let &Py be the variation of the trajectories of the massesletdP, be
that of the masses. In addition, we assumeutigg vector function of the point aitlis
ou, v + 9% ou, V.
ay 7 9z °
and analogous expressions. If we write down th@tvariation oW is zero then we will
find, with the usual tricks, that:

. ou
a vector, such thag% (V) is the vector whose components agfvx +—=

Ju adu ou
(14) H(cﬂ:{xgra@—cﬂ:{ (E+6_PM)j+\{X_P6\{)j pdt dr
+II5P {dtgrada d(dt j}kdtdl' 0
ds 2 dt\ ds "

If the &P do not depend upon their values at one time pgbe the coefficient odit
in (14) must be zero for all other times. One ti#n get:
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Jdu odu Ju
15 oP dg-O0P | —+— +Vx—OP d
(15) J{ , xgradg L[at 6F,(\/L)} anpﬁL)}p '

1dt d( dt
+ | OR, x{=—grada+—| —V, k dr,
j M {stg dt( dij}

which must be satisfied for all systemsdfthat satisfy the constraints.



