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 Relativity. – On the phenomena that occur in the neighborhood of a 
time-line, Note I by ENRICO FERMI, presented by the correspondent G. 
ARMELLINI. 

Translated by D. H. Delphenich 
 
 
 § 1.  In order to study the phenomena that occur in the neighborhood of a time-line 
(i.e., in non-relativistic language, in a portion of space in the space-time manifold that 
possibly varies with time and is always very small with respect to all Euclidian 
distances), one is led to the search for an opportune reference frame such that the ds2 of 
the manifold will take on a simple form in the neighborhood of the line being studied.  In 
order to find such a reference frame, we first discuss a few geometric considerations. 
 Let a line L be given in a Riemannian manifold Vn that is also a metrically-connected 
manifold, in the sense of Weyl (1).  Associate a direction y to any point P of L that is 
perpendicular to L, according to the rule that the way that the direction y + dy relates to 
the point P + dP is deduced from the way that y relates to P in the following manner: Let 
η be the direction that is tangent to L at P.  One parallel-transports (2) y, η from P to P + 
dP and lets y + δy, η + δη be the directions thus-obtained, which will still be orthogonal, 
by a fundamental property of parallel transport.  If L is not geodetic then η + δη will not 
coincide with the direction η + δη of the tangent to L at P + dP, and these two directions 
will characterize a plane at P + dP.  Consider the element of Sn−2 (

†) at P + dP that is 
perpendicular to that plane, and let all of the particles that neighbor P + dP rotate rigidly 
around that Sn−2 until η + δη does not coincide with η + dη.  y + δy will then end up in a 
position that will have y + dy for its direction relative to the point P + dP.  If one fixes the 
direction y at one point of L at will then a process of integration will permit one to know 
it for all points of L. 
 We now look for the analytical expressions that translate the operations that were 
indicated for a Riemannian manifold, which will be identical to the ones that are valid for 
a Weyl metric manifold, provided that one is careful to choose the “Eichung” (††) in the 
form of the length of a segment that one moves rigidly in the neighborhood of L, and 
which is assumed constant.  Let: 
 
(1)     ds2 = ik i j

ik

g dx dx∑   (i, k = 1, 2, …, n), 

 

                                                
 (1) Weyl, Raum, Zeit, Materie, Berlin, Springer, 1921, pp. 109.  
 (2) T. Levi-Civita, Rend. Circ. Palermo, 42 (1917), 173.  

 (†) Translator’s note: Sn was a standard notation in those days for RPn, although they also refer to it as 

“Euclidian space.”  
 (††) Translator’s note: i.e., the gauge.  
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and let yi, y
(i); ηi, η(i) = dxi / ds be the covariant and contravariant systems of components 

for the directions y, η, resp.  Meanwhile, we have: 
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∑ = − Ci. 

 
 Ci are the contravariant components of the vector C of geodetic curvature; i.e., it is a 
vector that has the orientation of the principal geodetic normal to L and a magnitude that 
is equal to its geodetic curvature. 
 On the other hand, one has: 
 

(2)     
( )iy

ds

δ
 = − ( )

,

h k

h k

h k dx
y

i ds

 
 
 

∑ . 

 
 Now, since y is perpendicular to L, the motion by which one deduces y + dy from y + 
δy will be parallel to the tangent to L and will have a magnitude that is equal to the 
projection of δη – dη onto y; that is to say, since y has length 1, it will be equal to the 
scalar product of δη – dη with y, i.e.: 
 

( )( ) i
i i

i

d yδη η−∑ = − ds ( )i
i

i

C y∑ . 

 
 The magnitudes of the contravariant components that one obtains will then multiply 
the contravariant coordinates of the tangent to L, namely, dxi / ds.  In the final analysis, 
one will have – dxi 

( )i
i

i

C y∑ .  It will then result immediately from (2) that: 

 

(3)       
( )idy

ds
 = − ( )

,

h hk i
h

h k h

h k dx dx
y C y

i ds ds

 
− 

 
∑ ∑ . 

 
 If (3) is written for i = 1, 2, …, n then that will give a system of n first-order 
differential equations in the n unknowns y(1), y(2), …, y(n), which will be determined once 
one assigns an initial value to them.  One also easily verifies formally from (3) that if the 
initial values of the y(i) satisfy the condition that they must be perpendicular to L then that 
condition will remain valid along all of the line. 
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 § 2.  We shall now arbitrarily assign n mutually-orthogonal directions y1, y2, …, yn to 
a point P0 of L with the condition that yn must be tangent to L.  The directions y1, y2, …, 
yn will be perpendicular to L and can be transported along L by the law that was described 
in the preceding §, which will preserve their orthogonality, as should be obvious from 
that same definition.  In that way, we proceed to associate n mutually-orthogonal 
direction with any point of L, such that the last one is tangent to L. 
 Now, suppose that our Vn is immersed in a Euclidian Sn of a convenient dimension 
We can take the coordinates of a point of Vn to be the Cartesian coordinates of its 
orthogonal projection onto Sn that are tangent to Sn at a generic point P of L that has P for 
its origin, and take the directions y1, y2, …, yn that relate to the point P to be its directions.  
The metric element of Vn at P will take the form ds2 = 2 2 2

1 2 ndy dy dy+ + +⋯  in these 

coordinates.  Moreover, as we can recognize immediately, we will have that it is geodetic 
at P.  That is, one will have gii = 1, gik = 0 (i ≠ k), up to infinitesimals of order greater 
than one, for the coordinate system y that one constructs around P.  It is obvious that one 
can find such a reference system at any point of L. 
 Now, consider a point Q0 of Vn that is referred to the point P0 of L that has the 
coordinate 1yɺ , 2yɺ , …, 1ny −ɺ , 0.  For any other point P of L, we can then determine a point 

Q that has the same coordinates when referred to P0 that Q0 has when referred to P.  The 
point Q will describe a line that is parallel to L.  One now wishes to find the relation that 
couples dsQ to dsP, under the hypothesis that Q is infinitely close to P.  In order to do that, 
observe that the motion that takes Q to Q + dQ is composed of the motions that were 
denoted by δ and d – δ in § 1, of which, the first one will give δsQ = dsP, up to first-order 
infinitesimals, since it is a parallel motion.  The second one is a rotation, as we saw in § 1 
and will give (d – δ)sQ = dsP C × Q – P, in which we have denoted the scalar product 
symbol by × and the vector of origin P and terminus Q by Q – P.  Furthermore, dsQ and 
(d – δ)sQ will both have the direction of the tangent to L.  One will then have dsQ = δsQ + 
(d – δ)sQ ; i.e.: 
(4)      dsQ = dsP [1 + C × Q – P]. 
 
 The trajectory of the point Q defines an (n − 1)-fold infinitude of lines, and therefore 
there will pass one such line through any point M of Vn ; at least, with some suitable 
limitations.  One can characterize M by this fact using the coordinates 1yɺ , 2yɺ , …, 1ny −ɺ , 0 

of the point Q that correspond to the line that passes through M and the arc sQ of the line 
L, when it is considered to be an origin that is arbitrarily close to the point P that 
corresponds to Q  and is coincident with M. 
 If M is infinitely close to L then dsQ will be perpendicular to the hypersurface sP = 
constant.  One will then get: 
     2

Mds = 2 2 2 2
1 2 1Q nds dy dy dy−+ + + +ɺ ɺ ɺ⋯ , 

 
and upon taking (4) into account: 
 
(5)     2

Mds  = (1 + C×M – P)2 2 2 2 2
1 2 1P nds dy dy dy−+ + + +ɺ ɺ ɺ⋯ . 

 
 We will get a simple expression for ds2 in the neighborhood of L from this. 
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 § 3.  Before getting to the physical applications of the results that were obtained, we 
first make a few more geometric observations.  It is immediately obvious that the 
preceding considerations are rigorously complete for Euclidian space, and therefore so is 
formula (5), which is their conclusion, and which is valid only in a neighborhood of L for 
arbitrary manifolds.  We then associate a line L in Vn with a line L* in a Euclidian space 
Sn , in which we shall denote orthogonal Cartesian coordinates by ix∗ .  If we denote any 

symbols that refer to the line L* by an asterisk then we can write the formula that is 
analogous to (5) for Sn : 
 
(5)*  2

M
ds ∗  = (1 + C × M* − P) 2 2 2 2

1 2 1nP
ds dy dy dy∗ −+ + + +ɺ ɺ ɺ⋯  ; 

 
C* is a function of 

P
s ∗  in (5)*, just as C is a function of sP in (5). 

 Let K(1), K(2), …, K(n−1) be the contravariant components of C relative to 1yɺ , 2yɺ , …, 

1ny −ɺ , and let K(1)*, K(2)*, …, K(n−1)* be those of C* relative to the y∗
ɺ .  We wish to know 

whether it is possible to determine L′ in such a way that the function K(r)*(sP) will be 
equal to K(r)(sP).  For that reason, we shall commence by setting sP = 

P
s ∗ ; i.e., by 

establishing a one-to-one correspondence between the points of L and those of L* that 
preserves all arc lengths.  Therefore, observe that K(r)* is the projection of C* onto the rth 
direction y*.  In fact, one has:  

(6)     K(r)* = 
2

/ 2
1

n
i

i r
i P

d x
y

ds

∗
∗

=
∑   (r = 1, 2, …, n – 1). 

 
 The K(r) will then be known functions of sP .  The condition K(r) = K(r)* will then lead 
to the n – 1 equations: 

(7)     K(r)(sP) = 
2

/ 2
1

n
i

i r
i P

d x
y

ds

∗
∗

=
∑   (r = 1, 2, …, n – 1). 

 
 On the other hand, when (3) is written for Sn, it will give us n (n – 1) more equations.  
If we add the other one to them, namely: 
 
(8)     2

Pds  = 2 2 2
1 2 ndx dx dx∗ ∗ ∗+ + +⋯ , 
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then we will get a system of n – 1 + n (n – 1) + 1 = n2 equations in the n2 unknowns ix∗ , 

/i ry∗  that will serve to express them as functions of sP .  We can then determine the 

parametric equations ix∗  = ix∗ (sP) of L′.  With that, formula (5)* will become identical 

with (5).  In other words, we have represented a neighborhood of the line L′ as a 
neighborhood of the line L for the sake of applications.  Since L′ is in a Euclidian space, 
we can also say that we have extended a neighborhood of L into a Euclidian space.  To be 
precise, we have found coordinates that are instantaneously geodetic at all points of L. 
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 § 4.  For most of the applications of the preceding results to the theory of relativity, 
we shall assume that Vn is space-time – i.e., V4 – and that L is a time-line in whose 
neighborhood we propose to study phenomena.  If we set dsM = ds in (5) for brevity then 
we will find that in that case: 
 

ds2 = (1 + C×M – P)2 2 2 2 2
1 2 3Pds dy dy dy+ + +ɺ ɺ ɺ . 

 
 In order to avoid the appearance of imaginary numbers and to restore homogeneity, 
we agree to make the following substitutions of variables: 
 

sP = vt,  1yɺ  = ix, 2yɺ = iy,  3yɺ = iz, 

 
in which v is a constant with the dimensions of a velocity, so t will have the dimensions 
of time.  From that, one will get: 
 
(9)     ds2 = a dt2 – dx2 – dy2 – dz2, 
in which: 
(10)    a = v2(1 + C×M – P)2. 
 
 From now on, one will demand that all of the ordinary symbols of vector calculus 
refer to the space of x, y, z.  It is in that sense that one will refer to the scalar products that 
appear in (10), provided that one intends that C should mean the vector whose 
components are the covariant components of the geodetic curvature of the line x = y = z = 
0, and that M – P means the vector whose components are x, y, z.  We call x, y, z the 
spatial coordinates and t, the time coordinate.  For the sake of uniformity, we shall 
sometimes write x0, x1, x2, x3, in place of t, x, y, z, and we shall also denote the 
coefficients of the quadratic form (9) by gik . 
 
 
 § 5.  Let Fik be the electromagnetic field (1), and let (ϕ0, ϕ1, ϕ2, ϕ3) be the first-order 
“potential” tensor of Fik, in such a way that Fik = ϕi,k − ϕk,i .  Set ϕ0 = ϕ , and let u denote 
the vector whose components are ϕ1, ϕ2, ϕ3 .  First of all, one will have: 
 

                                                
 (1) For the notation and Hamiltonian formulation of the laws of physics, see Weyl, op. cit., pp. 186 and 
208.  
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01
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F

F

F







 = grad ϕ  − u

t

∂
∂

,  
23

31

12

F

F

F







 = − rot u,  Fii = 0, Fik = − Fki , 

 
and likewise: 
 

01

02

03

F

F

F







 = 
1

grad
u

a t
ϕ ∂ − + ∂ 

,  
23

31

12

F

F

F







 = − rot u,  F(ii) = 0, F(ik) = − F(ki) , 

 
and therefore: 

1
4

ik
ik

ik

F F∑  = 
2

21 1
rot grad

2

u
u

a t
ϕ

 ∂  − −  ∂   
. 

 
 Let dω be the hyper-volume element of V4 .  We have: 
 

dω = 1 ikg−  dx0 dx1 dx2 dx3 = a dt dτ, 

 
in which dτ = dy dy dz is the spatial volume element. 
 We also have: 
 

i i
i

dxϕ∑ = ϕ dt + u dM,  dM = (dx, dy, dz). 

 
 If we omit the action for the metric field (whose variation will be zero, because we 
regard it as having been given a priori by (9)) then the action will take on the following 
form: 

W = ( )1
4

ik
ik i ie m

ik i

F F d de dx dm ds
ω

ω ϕ+ +∑ ∑∫ ∫ ∫ ∫ ∫  

 
 the element of electric charge,

 the element of mass.

de

dm

= 
 = 

 

 
 If one introduces the notations that were indicated above then one will find that: 
 

(11)  W = 
2

21 1
2 2rot ( )L

u
u grad a dt d u V dt d

t
ϕ τ ϕ ρ τ

 ∂  − − + + ×  ∂   
∫∫ ∫∫  

     2
Ma V k dt dτ−∫∫ , 
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in which ρ, k are the densities of electricity and matter, respectively, in such a way that de 
= ρ dt, dm = k dτ, VL is the velocity of the electric charges, and VM is that of the masses. 
 The integrals on the right-hand side can be taken over an arbitrary region τ between 
two arbitrary time points t1, t2 .  One will then have the constraint that all of the variations 
must be zero on the contour of the region τ and at the two times t1, t2 . 
 Except for that constraint, the variations of ϕ and u are completely arbitrary.  By 
contrast, the variations of x, y, z, when they are considered to be the coordinates of an 
element of charge and mass, can be subject to further conditions that translate into the 
constraints of the particular problems that one is studying.  Meanwhile, if one writes 
down that δW is zero for an arbitrary variation δϕ of ϕ then one will find that: 
 

0 = − grad  grad 
u dt d

dt d
t a

τϕ δ ϕ δϕ ρ τ∂ − × + ∂ 
∫∫ ∫∫ , 

 
and since δϕ is arbitrary, one will get the equation: 
 

(12)    ρ + div 
1

grad
u

ta
ϕ

 ∂  −  ∂   
 = 0. 

 
 In an analogous fashion, if one varies u then one will find that: 
 

(13)  ρVL + rot ( a  rot u) − 1
grad

u

t ta
ϕ

 ∂ ∂ −  ∂ ∂   
 = 0. 

 
 These last two equations permit us to determine the electromagnetic field once we 
have specified the charge and its motion. 
 Another group of equations can be obtained by varying the trajectories of the charges 
and masses in W.  Let δPM be the variation of the trajectories of the masses and let δPL be 
that of the masses.  In addition, we assume that u is a vector function of the point and V is 

a vector, such that ( )
u

V
P

∂
∂

 is the vector whose components are x x x
x y z

u u u
V V V

x y z

∂ ∂ ∂+ +
∂ ∂ ∂

, 

and analogous expressions.  If we write down that the variation of W is zero then we will 
find, with the usual tricks, that: 
 

(14) grad ( ) ( )L L L L L

u u u
P P V V V

t P P
δ ϕ δ δ ∂ ∂ ∂  × − + + + ×  ∂ ∂ ∂  

∫∫  ρ dt dτ 

+ 
grad

2M M

dt a d dt
P V

ds dt ds
δ   × +  

  
∫∫ k dt dτ = 0. 

 
 If the δP do not depend upon their values at one time point then the coefficient of dt 
in (14) must be zero for all other times.  One will then get: 
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(15)  grad ( ) ( )L L L L L

u u u
P P V V P

t P P
δ ϕ δ δ ∂ ∂ ∂  × − + + ×  ∂ ∂ ∂  

∫  ρ dτ 

+ 
1

grad
2M M

dt d dt
P a V

ds dt ds
δ   × +  

  
∫  k dτ, 

 
which must be satisfied for all systems of δP that satisfy the constraints. 
 
 
 
 


