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NOTE I. 

 

 § 1. – In order to study the phenomena that happen in the vicinity of a time-line (i.e., in non-

relativistic language, in a portion of space that possibly varies in time, but always very slightly in 

comparison to the divergence from Euclidean geometry of the spacetime manifold), we first agree 

to look for an opportune reference system such that the 
2ds  of the manifold will take a simple 

form in the vicinity of the line under study. In order to find that reference system, we must first 

address some geometric considerations. 

 Let a line L be given in a Riemannian manifold Vn, or also in a metrically-connected manifold, 

in the sense of Weyl (1). Associate a direction y that is perpendicular to L at each point P of L with 

the law that the direction y + dy that relates to the point P + dP is deduced from the y that relates 

to P in the following way: Let  be the tangent direction to L at P. Parallel translate (2) y,  from 

P to P + dP and let y + y,  +  be the directions thus-obtained, which will again be orthogonal, 

from the fundamental property of parallel transport. If L is not a geodetic then  +  will not 

coincide with the direction  + d of the tangent to L at P + dP, and those two directions will 

specify a plane at P + dP. Consider the element of Sn−2 at P + dP that is perpendicular to it and 

rotate all of a particle P + dP rigidly around that Sn−2 until  +  does not overlap with  + d. y 

+ y will then change into a final position that takes the direction of the y + dy that relates to the 

point P + dP. That means the same thing as saying that the y is fixed arbitrarily at a point on L, 

which is a process of integration that will permit one to know it for all points of L. 

 We now look for the analytical expressions that the indicated operations translate into for a 

Riemannian manifold, which are identical to the ones that are valid for a Weyl metric manifold, as 

long as you are careful to choose the “gauge” in such a way that the measure of a segment that 

moves rigidly in the vicinity of L is constant. Let: 

 

 
 (*) Presented by Correspondent G. Armellini at the session on 22 January 1922. 

 (1) WEYL, Raum, Zeit, Materie, Berlin, Springer, 1921, pp. 109.  

 (2) T. LEVI-CIVITA, Rend. Circ. Palermo 42 (1917), pp. 173.  
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(1)      2ds  = 
.

ik i k

i k

g dx dx    (i, k = 1, 2, …, n) 

 

and let yi , 
( )iy ; let i , 

( )i  = dxi / ds be the covariant and contravariant systems of components of 

the direction y, . Meanwhile, we have: 
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ds ds
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. We will then find that: 
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ids ds ds
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 The 
iC  are the contravariant components of the vector C, which is the geodetic curvature, i.e., 

a vector that has the orientation of the geodetic principal normal to L and a magnitude that is equal 

to the geodetic curvature. 

 On the other hand, one has: 

(2)      
( )i

ds


= − 

,

h l

h l

h l dx dx

i ds ds

 
 
 

 . 

 

 Now, since y is perpendicular to L, the displacement that takes y + y to y + dy will have a 

magnitude that is equal to the projection of  − d onto y, i.e., since y has length 1, the scalar 

product of  − d with y, so: 

 
( ) ( ) ( )( )i i i

i

d y −  = − ( )i

i

i

ds C y . 

 

Its contravariant components are then obtained by multiplying its magnitude by the contravariant 

components of the tangent to L, i.e., dxi / ds. In the final analysis, it will then be − ( )i

i i

i

dx C y . 

Now, it will result immediately from (2) that: 

 

(3)     
( )idy

ds
= − ( )

,

h hk i
h

h k h

h k dx dx
y C y

i ds dt

 
− 

 
  . 

 

 When (3) it written out for i = 1, 2, …, n, that will give a system of n first-order differential 

equations between the n 
(1)y , 

(2)y , …, 
( )ny , which will then prove to be determinate once one has 

assigned initial values to them. It will also be easy to formally verify from (3) that if the initial 
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values of the ( )iy  satisfy the condition of being perpendicular to L then that condition will remain 

verified along all of the line. 

 

 

 § 2. – At a point P0 of L, we then assign n mutually-perpendicular directions y1, y2, …, yn at 

will, with the condition that yn must be tangent to L. The directions y1, y2, …, yn−1 will be 

perpendicular to L and can be transported along L according to the law that was defined in the 

preceding section, which will preserve their orthogonality, as is obvious from their definition. In 

that way, we will associate any point of L with n mutually-orthogonal directions, the last of which 

is tangent to L. Now imagine that our Vn is immersed in a Euclidian SN with a convenient number 

of dimensions. We can then set the coordinates of a point of Vn equal to the orthogonal Cartesian 

coordinates of its projection onto the Sn that is tangent to Vn at a generic point P of L, has its origin 

at P, and its directions are those of y1, y2, …, yn that relate to the point P. With those coordinates, 

the metric element of Vn at P will take the form 
2ds  = 2 2 2

1 2 ndy dy dy+ + + . That is to say, with the 

coordinates y, one can take gii = 1 ; gik = 0 (i   k) in a neighborhood of P, at least up to infinitesimals 

of order higher than one. It is obvious that such a reference frame will exist at any point of L. Now 

consider a point Q0 of Vn that has the coordinates 1y , 2y , …, 1ny − , 0 in the reference frame at the 

point P0 of L. For any other point P of L, we can then determine a point Q that has the same 

coordinates relative to the reference frame at P that Q0 has in the reference frame at P0 . The point 

Q will then traverse a path that is parallel to L. We would now like to find the relation that couples 

the dsQ to dsP under the hypothesis that Q is infinitely-close to P. Therefore, observe that the 

displacement that takes Q to Q + dQ is composed of the displacements that were denoted by  and 

d −  in § 1, and that since the former is a parallel displacement, it will make sQ = dsQ, at least up 

to higher-order infinitesimals. The latter is a rotation that, as we saw in § 1, will give (d – ) sQ = 

( )Pds Q P −C , if  is the symbol for the scalar product, and Q – P is the vector with its origin at P 

and it terminus at Q. In addition, dsQ and (d – ) sQ both have the direction of the tangent to L. We 

will then have dsQ = sQ + (d – ) sQ , i.e.: 

 

(4)  dsQ = dsP [1 + C  (Q – P)] . 

 

 The trajectory of the point Q will form an (n – 1)-fold infinitude of lines, and therefore one 

such line will pass through any point M of Vn, at least with suitable limiting conditions. Therefore, 

M can be characterized by means of the coordinates 1y , 2y , …, 1ny −  of the point Q that 

corresponds to the line that passes through M and the arc-length sP of the line L of contact from an 

arbitrary origin to the point P that corresponds to Q, which is coincident with M. 

 If M is infinitely close to L then dsQ will be perpendicular to the hypersurface sP = constant. 

One will then have: 
2

Mds  = 2 2 2 2

1 2 1Q nds dy dy dy −+ + + +  , 

 

and if one takes (4) into account: 
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(5)    2

Mds  = 2 2 2 2 2

1 2 1[1 ( )] P nM P ds dy dy dy −+  − + + + +C  . 

 

 We have then found a very simple expression for 2ds  in the vicinity of L. 

 

 

NOTE II. 

 

 § 3. – Before we move on to the physical applications of the results that were obtained, we 

would like to make a few more geometric observations. Meanwhile, it is obvious that the preceding 

considerations [and therefore formula (5), as well, which is their conclusion], which are valid for 

an arbitrary manifold only in the vicinity of L, are nonetheless completely rigorous for Euclidian 

spaces. We then associate the line L in Vn with a line L  in a Euclidian space Sn in which 
ix  denote 

the orthogonal Cartesian coordinates. If the asterisk denotes the symbols that refer to the line L  

then one can write the following formula for Sn, which is analogous to (5): 

 

(5*)   2

M
ds   = 2 2 2 2 2

1 2 1[1 ( )] nP
M P ds dy dy dy

     

−+  − + + + +C . 

 

As in (5), C is a function of sP, so C* is a function of sP in (5). 

 Let (1)K , (2)K , …, ( 1)nK −  be the contravariant components of C relative to 1y , 2y , …, 1ny − , 

and let (1)K  , (2)K  , …, ( 1)nK −   be those of C* relative to the y 
. Now see if one can determine 

L  in such a manner that the functions ( ) ( )r

PK s  will be equal to the ( ) ( )r

PK s . One then begins 

by setting sP = 
P

s  , i.e., by establishing a bijective e correspondence between the points of L and 

those of L  that will preserve the arc-lengths. Next, observe that ( )rK   is the projection of C* onto 

the thr  direction y
. That is, one has: 

(6)      ( )rK   = 
2

/ 2
1

n
i

i r

i P

d x
y

ds




=

    (r = 1, 2, …, n – 1). 

 

 The ( )rK  are known functions of sP then. The condition ( )rK  = ( )rK   will then lead to the (n – 

1) equations: 

(7)      ( ) ( )r

PK s  = 
2

/ 2
1

n
i

i r

i P

d x
y

ds




=

   (r = 1, 2, …, n – 1). 

 

 On the other hand, when (3) is written for Sn, that will give n (n – 1) other equations. If one 

adds this other one to them: 

 

(8)      2

Pds  = 2 2 2

1 2 ndx dx dx  + + +  
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then one will find a system of n – 1 + n (n – 1) + 1 = 2n  equations in the 2n  unknowns 
ix , 

/i ry  

that serve to express them as functions of sP . One can then determine the parametric equations 
ix  

= ( )i Px s  of L . With that, formula (5*) will become identical to (5), i.e., one will have represented 

the things that apply to the neighborhood of L  as things that apply to the neighborhood of L. Since 

L  is in a Euclidian space, one can also say that one has stretched out the neighborhood of L into 

a Euclidian space or that one has found coordinates that are geodetic for all points of L 

simultaneously. 

 

 

NOTE III. 

 

 § 4. – In order to show how the preceding results apply to the theory of relativity, suppose that 

Vn is the spacetime V4 and that L is a time-time in the neighborhood of which one proposes to study 

the phenomena. If one sets dsM = ds in (5), for brevity, then one will that in that case: 

 
2ds  = 2 2 2 2 2

1 2 1[1 ( )] P nM P ds dy dy dy −+  − + + + +C  . 

 

 In order to avoid the appearance of imaginaries and to establish homogeneity, we agree to 

make the following substitution of variables: 

 

sP = v t , 1y  = i x , 2y  = i y , 3y  = i z , 

 

in which v is a constant with the dimensions of a velocity, in such a way that t will have the 

dimensions of a time. One will then get: 

 

(9)   
2ds  = 

2 2 2 2a dt dx dy dz− − − , 

 

in which: 

 

(10) a = 
2 2[1 ( )]v M P+  −C . 

 

 From now on, the ordinary symbols of the vector calculus are meant to be referred to the space 

of x, y, z, and the scalar product that figures in (10) should be interpreted in that sense, provided 

that C means the vector whose components are the covariant components of the geodetic curvature 

of the line x = y = z = 0, and M – P means the vector whose components are x, y, z. Call x, y, z the 

spatial coordinates and call t the time.  For uniformity, we sometimes write x0, x1, x2, x3 instead of 

t, x, y, z, resp., and call gik the coefficients of the quadratic form (9). 
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 § 5. – Let (3) Fik be the electromagnetic field, and let (0, 1, 2, 3) be the first-order tensor 

“potential” of Fik , in such a way that Fik = ik – ki . Set 0 = , and call u the vector with 

components 1, 2, 3 . Meanwhile, one will have: 

 

 

01

02

03

F

F

F







 = grad  − 
t





u
 ,  

23

32

12

F

F

F







 = − rot u, Fii = 0 , Fik = − Fki , 

 

and likewise: 
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(03)

F

F

F







 = 
1

grad 
a t
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− + 
 

u
 , 

(23)

(31)

(12)

F

F

F







 = − rot u, ( )iiF  = 0 , ( )ikF  = − ( )kiF , 

 

and therefore: 

( )1
4

,

ik

ik

i k

F F  = 

2

21
2

1
rot grad 

a t


   
− − +  

   

u
u  . 

 

 Let d be the hypervolume element on V4 . One has: 

 

d = 0 1 2 3|| ||ikg dx dx dx dx−  = a dt d , 

 

 in which d = dx dy dz is the volume element on space. 

 One also has: 

i idx  =  dt + u  dM , dM = (dx, dy, dz) . 

 

 If one overlooks the action of the metric field, whose variation is zero since one regards it as 

given a priori in (9), then the action will take the following form: 

 

W = ( )1
4

,

ik

ik i i

i k ie m

F F d de dx dm ds


 + +       

 

 element of electric charge

 element mass

de

dm

= 
 

= 
 . 

 

 When one introduces the notations that were defined, one will find that: 

 

 
 (3) For the notations and the Hamiltonian deduction of the laws of physics, see WEYL, loc. cit., pp. 186 and 208. 



Fermi – On the phenomena that happen in the vicinity of a time-line. 7 
 

(11) W = 
2

2 21
2

1
rot grad ( )L Ma dt d d dt a V k d dt

a t
     

   
− − + + +  + −  

   
  V

u
u u , 

 

in which , k are the densities of electricity and matter, respectively, in such a way that de =  d, 

dm = k d , while VL is the velocity of the electric charge, and VM is that of the mass. 

 The integrals in the right-hand side can be extended over an arbitrary region  between two 

arbitrary times t1, t2 . One then has the constraint that all of the variations must be zero on the 

contour of the region t, and for both times t1, t2 . 

 Aside from those conditions, the variations of  and u are completely arbitrary. By contrast, 

further conditions can be imposed upon the variations of x, y, z, which are considered to be the 

coordinates of an element of charge or mass, and those conditions are translations of the constraints 

in the particular problem under study. Meanwhile, if one writes that W is zero for an arbitrary 

variation  of  then one will find: 

 

0 = − grad grad 
dt d

dt d
t a


     

 
−  + 

 
 

u
. 

 

If one transforms the first integral with an appropriate application of Gauss’s theorem and takes 

into account the fact that  is annulled on the contour then one will find that: 

 

0 = 
1

div grad dt d
ta

   
    

+ −   
     


u

, 

 

and since  is arbitrary, one will have, at the same time, the equation: 

 

(12)    
1

div grad 
ta

 
  

+ −  
   

u
 = 0 . 

 

 In an analogous fashion, if one varies u then one will find that: 

 

(13)   
1

rot (  rot ) grad LV a
t ta

 
   

+ − −  
    

u
u

 = 0 . 

 

 The last two equations will permit one to determine the electromagnetic field once one has 

assigned the charges and their motion. 

 Another group of equations can be easily obtained by varying the trajectories of the charge and 

mass in W. Let  PM be the variation of the trajectory of the mass and let  PL be that of the charge. 

In addition, if u be a vector function of the point and  V is a vector then let (u / P) (V) denote 
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the vector whose components are x x x
x y z

u u u
V V V

x y z

  
+ +

  
, and analogously. If one writes that the 

variation of W is zero then one will find, with the usual devices, that: 

 

(14)  grad ( ) ( )L L L L LP P P dt d
t P P

     
     

 − + +       
 V V

u u u
 

+ 
grad

2
M M

dt a d dt
P k dt d

ds dt ds
 

  
 +   

  
 V  = 0 . 

 

 If the value of P at one time does not depend upon its values at other times then the coefficient 

of dt in (14) must necessarily be zero. One will then find that: 

 

(15)  grad ( ) ( )L L L L LP P P d
t P P

     
     

 − + +       
 V V

u u u
 

+ 
grad

2
M M

dt a d dt
P k d

ds dt ds
 

  
 +   

  
 V  = 0 , 

 

which must be verified for all systems of P that satisfy the constraints. 

 

___________ 

 


