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 Abstract: A variational principle for the point mechanics of several electric mass-points is exhibited that is 

invariant under Lorentz transformations and into which the motions of the particles will enter in a completely-

symmetric way by means of an application of retarded and advanced potentials. The form of the conservation laws for 

energy and impulse will be determined and their consequences for the definition of those quantities will be discussed. 

 

 

 Quantum mechanics correspondingly took its starting point from the classical theory of the 

dynamics of a single particle and formulated its laws and methods for the one-body problem in 

connection with Hamilton’s canonical equations. Wherever it brought the interaction of several 

particles under consideration, it nonetheless found no form that the demand of invariance under 

Lorentz transformation might take. In that case, even the previous work in the classical theory was 

absent. 

 It would therefore seem useful to make an attempt to arrive at a foundation for such a theory 

in the form of Hamilton’s variation principle and develop it further (*) when it is concerned 

exclusively with the motions and actions of the particles on each other but does without any 

consideration of a field completely (**). 

 

 If one would like to give a relativistic form to the usual conception of the variational principle 

for a mass-point: 

( )T U dt −  = 0 , 

 

into which the kinetic and potential energy T and U enter, then, as one knows, one must write: 

 

 
 (*) Cf., Physica 9 (1929), pp. 33. 

 (**) W. Heisenberg and W. Pauli started from a consideration of the field recently, Zeit. Phys. 56 (1929), pp. 1. 
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in place of T dt, in which m represents the mass, v represents the velocity of the particle, and c is 

the speed of light. 

 In order to extend the expression U dt to an invariant scalar, one must imagine that the potential 

energy is only the temporal component of a covariant four-vector whose spatial components 

represent the negative components – Ax, − Ay, − Az of an impulse, and by analogy with the energy 

component one might call it a “potential” impulse. Such an extension of the four-vector will make 

it possible for one to write the scalar: 

 

− U dt + Ax dx + Ax dy + Ax dz 

 

in place of – U dt. If one is dealing with the motion of an electrical particle then the covariant 

potential energy-impulse vector will given by the product of its charge and the field potential, in 

which the vector potential is divided by – e. 

 

 The potential at the reference point X with the space-time coordinates: 

 
0x , 

1x , 
2x , 

3x  (=) t, x, y, z 

 

might originate at a charge e whose motion is given by representing its time and space coordinates 
iw  (i = 0, 1, 2, 3) as functions of a parameter u. In order to find the potential, according to Liénard 

and Wiechert, we must look for the “effective” space-time point W of the generating charge from 

which the reference point can be reached at the speed of light. Therefore, we should have: 

 
2 0 0 2 1 1 2 2 2 2 3 3 2( ) ( ) ( ) ( )c x w x w x w x w− − − − − − −  = 2R  = 0  

or 

0 0x w−  = 
r

c
,  r = 

1 1 2 2 2 2 3 3 2( ) ( ) ( )x w x w x w− + − + − . 

 

When the velocity component of the generating charge that points in the radial direction at that 

space-time point is vr, the potentials  and ax, ay, az will be: 
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, etc. 

 

In order to define the covariant vector from this, we write: 
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and correspondingly: 
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Let (R  dw) denote the scalar product of the contact ray: 

 

  iR  = i ix w−   (i = 0, 1, 2, 3) 

 

and let 1dw  denote the four-dimensional element of motion. 

 We have in that the retarded potential at X that is generated by e at W. 

 

 Now let the motions of the charges e2, e3, … be given by their time and space coordinates 

( )iy u , ( )iz v , … as functions of the parameters u, v, … 

 If one would like to determine the motion 
ix  of the mass-point m1 with the charge e1 under 

their influence then from what was said before, one must pose the variational principle: 

 

0 = 1 2 1 2
1 1

( ) ( )

4 ( ) 4 ( )

e e e edx dy dx dz
m c ds

c R dy c S dz


 

  
− − − − 

  
    , 

 

in which ds1 represent the magnitude of the arc-length 

element 
idx , and iR , 

iS , … are the contact rays that connect 

the element 
idx  with the corresponding effective elements 

idy , idz , … and have the magnitude zero (Fig. 1). 

 We would like to establish that we can always make a 

certain elementary division 
idx  of the motion of the charge 

e1 correspond to an infinitesimal division of the other 

charges in such a way that we will continually have: 

 
2R  = 0 ,  

2S  = 0 , etc. 

 

A consequence of that is that with our correlations, we will 

always have: 

 

(R  dy) = (R  dx) , (S  dy) = (S  dx) , etc. 
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Figure 1. 
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If the motions of the charges e1, e3, … are given, and we are supposed to determine the motion of 

the charge e2 with mass m2 then we would make the element idy  of that motion (with the arc-

length ds2) correspond to the element idx , idz , … of the other charge motion by means of the 

contact rays R  , T, … and exhibit the law: 

 

0 = 2 31 2
2 2

( ) ( )

4 ( ) 4 ( )

e ee e dy dy dy dz
m c ds

c R dy c T dz


 

    
− − − −    

    . 

 

We must do something similar for the motion of the third charge, and likewise for the other charges. 

 One might wish to have a single variational principle for the interaction of the whole system 

instead of one for each particle. However, that contradicts the fact that the action integral: 

 

− 1 2 ( )

4 ( )

e e dx dy

c R dy



  

 

indeed accounts for the influence of the motion of e1 by its retarded action on e2, but does not agree 

with the corresponding integral that reproduces the reciprocal influence of the motion of e2 by the 

retarded action of e1. However, one can observe that due to the fact that (R  dy) = (R  dx), when 

the integral is written out in the form: 

− 2 1 ( )

4 ( )

e e dy dx

c R dx



 , 

 

it will reproduce the action of e2 by way of the advanced potential that e1 creates. 

 One might get used to the idea there is something arbitrary about calculating only the retarded 

effects (and this is not the first time that this idea has been emphasized). With an eye towards 

achieving a complete reciprocity of the interaction, it would be appropriate to consider half of the 

action of e2 on e1 as retarded, while the other half is advanced. That would have the consequence 

that in the variational principle for the motion of the first particle, the effect of the second particles 

will be represented by precisely the integral that gives the effect of the first particles on the second 

one in its law of motion. That would make it further possible to exhibit a single variational 

principle for the collective motion, and indeed in the form of: 

 

0 = 
( ) ( )

8 ( ) ( )

i j

i i

e e dx dy dy dx
m c ds

c R dy R dx




   
− − +  

    
     , 

 

in which the first sum extends over the world-lines of the corresponding individual particles, and 

the second sum extends over the interaction integrals that correspond to the particle-pairs. 

 That law is completely invariant under Lorentz transformations. It makes no reference to any 

field. The symmetry and reciprocity in the interactions of the motions are complete. One must say 

that it refers more to the system of motions than to the system of particles. 
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 The concept of a system of particles would demand a certain ordering of its elements of motion. 

One could indeed define that ordering uniquely, but not invariantly, or invariantly, but not uniquely. 

However, it is impossible to simultaneously define the particle system invariantly and uniquely. It 

is also unavoidable that one must regard the phenomenon as a system of motions and not a moving 

system of particles. 

 

 We would now like to perform a variation of the motion of the charge e1 by displacing each 

space-time point ix  of that motion by an infinitesimal space-time segment ix , and in that way, 

calculate the variation of the interaction integral: 

 

− 1 2 ( )

8 ( )

e e dx dy

c R dy






  

 

that corresponds to the retarded action of e2 on e1 . The correspondence that is established between 

the elements idx  and 
idy  must remain preserved under the variation. The contact ray iR  between 

them shall represent a light signal (R = 0), and in order to do that, the variation ix  shall take the 

motion of the charge e2 to itself by a displacement: 

 

iy  = ( )
( )

idy
R x

R dy



. 

 

Nothing about that motion will be changed by it, except that the necessary correspondence between 

the elements of motion of the particle in the varied action integral will be guaranteed by (R  y) = 

(R  x), and therefore 2R  = 0. It must also remain true that (R  dy) = (R  dx) for the corresponding 

elements such that we can take the variation of (R  dx) to be the variation of denominator. 

 We can now write: 

 

( )

( )

dx dy

R dy





 = 

( ) ( ) ( ) ( )

( ) ( ) ( )

dx dy dx dy dx dy R dx

R dy R dy R dx
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

 +   
−

  
. 

 

One can partially integrate that expression and establish that the variation should vanish at the 

limits of the integral. When one considers the value of iy , one will get: 

 

 
,
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Fokker – An invariant variational principle for the motion of several electric mass-points.  6 

 

in the integrand. The expression in the bracket will give the increase in kinetic energy and 

momentum (for i = 0 or i = 1, 2, 3, resp.), so we say briefly that it is the force that is exerted upon 

the first particle. One sees that except for their dependency on velocity, which is neglected in the 

usual derivations, part of the forces will depend upon the acceleration of the active charge and part 

of them will not. That corresponds to the electrostatic action (i.e., the last term) and the so-called 

radiation reaction (i.e., the term in curly brackets, with the following ones). 

 In our Ansatz, we have also included the advanced action of e2 in the form of the integral: 

 

− 1 2 ( )

8 ( )

e e dx dy

c R dy






   = − 1 2 ( )

8 ( )

e e dx dy

c R dy






  . 

 

If one treats the variation in the same way here and observes that here one has iR   = i iy x  −  

then one can soon write down the requirement for the vanishing of the variation of the total integral 

in the form: 

 

0 = 1 2
1

1

( ) ( )

8 ( ) ( ) ( ) ( ) ( ) ( )

i i i
i i

dx dy dye e dx dy dx dy
d m c d R d R

ds c R dy R dy R dy R dy R dy R dy

       
+ − + −    
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m
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+ −
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 + 
2

2
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m

m
i i i
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R d dx R
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    
 − +              
  . 

 

One finds some total differentials in the outer bracketed expression, which is minus the covariant 

vector of the increment of kinetic energy and momentum (for i = 

0 and i = 1, 2, 3) that is transferred from e2 to e1. 

 One can interpret that as the potential energy and impulse of 

the charge e1 that is required by the presence and motion of e2 . 

 

 One has a similarly-constructed equation for the motion of the 

second particle under the influence of the charge e1, into which 

two elements of the motion of e1 will enter. If we write out that 

equation for the element 
idy  (Fig. 2), which is coupled with the 

previously-considered element idx  by the correlation R   = 0, and 

coupled with a second element  by the correlation R  = 0, then we 

will have: 

 

0 = 1 2
2

2

( )

8 ( ) ( ) ( )

i i
i

dy dxe e dy dy
d m c d R

ds c R dy R dy R dy
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Figure 2. 
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  . 

  

It is now important to note that the third line in that expression and the last line of the previous one 

collectively represent a total differential. They both refer to the reciprocal action that one finds 

along the contact radius iR between the elements of motion idx  and idy . They collectively yield: 

 

1 2 ( )

8 ( ) ( )
i

e e dx dy
d R

c R dx R dy

 
 

    
 . 

 

 That shows us the path that leads to the form that the law of conservation of energy and impulse 

(i = 0, 1, 2, 3) will take here. For the sake of simplicity, we shall consider the interaction of only 

two particles. 

 We must draw a zigzag chain of contact radii (Fig. 2) that constantly runs back and forth and 

write out the equations for all elements of motion that are coordinated with two neighboring chains 

of that type and combine everything. 

 Every turning point of the zigzag chain will yield a (kinetic) contribution to that sum: 

 

1

1

idx
d m c

ds

 
 
 

 or 2

2

idy
d m c

ds

 
 
 

 

 

according to whether it lies in the motion of e1 or e2, resp., and every contact ray iR  between idx  

and idy  will yield a (potential) contribution: 

 

1 2 ( )

8 ( ) ( ) ( ) ( )

i i
i

dx dye e dx dy
d R

c R dx R dy R dx R dy

  
+ − 

         
. 

 

 When the motion is periodic, the chain will also be periodic or at least almost-periodic, and 

one will extend the aforementioned sum over one period, so it must close upon itself. It will then 

produce a total differential, and there will exist a quantity that will not change when the zigzag 

chain is displaced along the motion. If one divides that constant quantity by the number of pairs 

of contact radii that one can count in the closed period then one will get the energy for i = 0 and 

minus the momentum for i = 1, 2, 3. 

 That corresponds completely to the remark that was made above that energy and momentum 

cannot be defined for the system of particles here, but only for the system of two complete motions. 
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 The situation can then arise in which the motions do not exhibit any periodicity, so one cannot 

assimilate the aforementioned sum into a total differential. There will always be small segments 

that are missing at the limits of the zigzag chain. If one neglects them and once more divides by 

the number of pairs of radii in the chain then one will indeed always be able to define the energy 

and momentum with ever greater precision the longer that one makes that chain, i.e., as one pursues 

the motion of a bigger spacetime, but will mainly still be true that the energy is not definable at a 

particular moment. 

 That is the downside to the fact that the field is excluded from point-mechanical formulation 

of the variational principle. In general, such behavior for energy and impulse does not contradict 

the quantum-mechanical way of looking at things. 

 

 Natuurkundig Labortorium 
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