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Introduction

Sauter gave the impetus for solving the Dirac equation withagresenting the
Dirac operators and corresponding eigenfunctions by matrio two papers )
Moreover, the eigenfunctions can be represented as loypplex numbers that belong to
the number field that is generated by the Dirac operatOtsziously, that method offers
a mnemonic advantage in that it makes the introductionh® somewhat-abstruse
relationships between the matrices (in particular, thigims) superfluous, and in place of
them, it bases all calculations on the simpler rolesalculation for the Dirac operators.
However, it seemed to emerge from the subsequent igadstis, especially that of
Bechert (%), that the advantage Sauter’s method was already exhausted. Of course, it
offers a great advantage in the derivation of general saltirom the Dirac equation
(such as, say, the treatment of the WKB proced3dajgert, ibid., § 2) to not write down
the ymatrices explicitly, but to employ only the simpédations that exist between them.
However, that way of proceeding is by no means chematit of Sauter’s method. [A
subsequent treatment of the Dirac equation with no Arfeatthe )y matrices was given
by Temple (%) before Sauter’s first paper.] Moreover, what is tgpaf Sauter's method

1) F. Sauter, Zeit. Phys63 (1930), 803 an64 (1930), 295.

O F
(®) K.Bechert, Zeit. Phys79 (1932), 26 and Helv. Phys. Adsg1933), 82.
() G.Temple, “The operational wave equation...,” Proc. Roy. S@7. (1933), 349.
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consists of the fact that one represents dbleitions (not just the equation itself) as
aggregates ofs.

The following examination will show that the methamt only possesses a mnemonic
value, but that it is also suitable as an autonomousngtgoint for general arguments
and special calculations. Indeed, treating the wavetiamas hypercomplex numbers
will offer no essential advantage as long as onericestoneself to imitating those
processes that have proved to be expedient in the maabxient of the Dirac equation.
However, when one overlooks that close historical cotime and gives due
consideration to the spirit of hypercomplex numberfiendhoice of the process applied,
that will imply an advantage in the theory of the emumtas well as its practical
application. The most obvious advantage for the thieatetreatment lies in the
conceptual simplicity and transparency of the metlddch admits, e.g., an especially
simple proof of the Lorentz invariance of the equatiof, (8 6). In order to apply
Sauter’'s method to the practical calculation of wavetions to any advantage, one will
require a systematic process of solution that doesehdhé association of thgs with
the coordinates get lost at any point.

The first part of the following study is dedicated eaiyirto the theory of the Dirac
equation, the second part deals with question of pracaallation, and the third part
should explain the foregoing with some simple and impbréxamples. In order to let
the method of hypercomplex numbers emerge clearly, Wegnore the existence of all
theories that start from the matrix representatioga{ the connections with them only
parenthetically, resp.)

Part I. Theory of the Dirac equation
8 1. Theory of the Pauli equation

In order to make the later discussions of the Da@gation more intuitive and easier
to understand, the most important points shall be euaby using the simpler example
of the Pauli equation for an electron. We shall theefly introduce the derivation of the
Pauli equation, as well as the most important poimtsi interpretation. Naturally, we
must simply copy the Pauli papé} & many points, while we shall ignore those points i
the original paper that are connected with the magapresentation of the Pauli wave
functions as having been agreed upon.

a) Derivation of the equation- The starting point is the classical Hamilton funetio
for an electron with a magnetic moment:

(1) H=Hy+Hq,

in which Hp is the Hamilton function of an electron without rsgincluding pertinent
relativistic corrections), while:

() W. Pauli, Zeit. Phys43 (1927), 601.
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___& _ &
(2) Hh== o agGEp) -5 (& 9)

implements the spectroscopically-known fact that éleetron has a magnetic moment
with a magnitude of one Bohr magnetos.is the unit vector in the direction of the

moment.
In the quantization of equation (1), the problem arsesow to replace the unit
vectors with a suitable vector operator When the commutation relations for moments:

3 m,fm]:—?fm

are applied to the spin moment Mi#20, that will yield:

(4) [0 d=20.

If one observes thak , gy, ¢ can assume only the values + 1 — i.e., that:
(5) ol =02=0? =1,

then after a brief calculation, that will imply tha

(6) X =~ GH=i0k,

and two corresponding equations that arise from b)cyclic permutation of the
coordinates. In that way, the three componenth@bperatow prove to be quaternions
(except for a factoi).

In order for the operatou to actually define a meaningful replacement foe th
classical vectos, one must also be able to ascribe a necessamyraaracter to it. That

means thatd ¢) — viz., the scalar product @f with any unit vector — must possess the
square ge)® = 1, corresponding to equation (5), and that aratign like (6) [e.9..4 0)
(ez 0) =i ([ey ¢] 0)] must be true for any two perpendicular unit west moreover. One

easily convinces oneself that this is, in fact,¢hse, and that one can replace (5) and (6)
with the following known vector relation:

(7) @o) (b g)=(ab)+i(ab] g,
in whicha andb are arbitrary vectors.

b) The numbers of the field of quaternialshave the forrA =ay+a; g1 + a, o +
a3 03, 0ra + (a 0). Thea are ordinary complex numbers. The product:
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{20+ (@ a—(ag}= a)-a°

is a quaternion-free quantity. If it is non-zero themthmberA will possess a reciprocal

[viz.,A‘l :%j. By contrast, ifa?— a® = 0 thenA will be a divisor of zero and
not possess a reciprocal. As one easily convinces lgnsedivisors of zero all have
the form (1 + € 0)), as a right or left factor.¢ {s a unit vector.)

The property of zero divisors that is most importanigas their capacity to “reduce.”
If we multiply, say, the general four-parameter quat@rmomberA on the right by the
zero divisor (1 +) then the productag + a; o1 + ax [ + ag)(1 + o3) will no longer
depend upon the two parametaas< ag) and @; +i ap). If we also multiply on the right
by (1 + o3) then that will yield the one-parameter quantiy € as) O(1 + g3)>. Each
multiplication by (1 +os) has reduced the number of parameters by one-half. arhe s
reduction will come about when one employs any two zi&risors to multiply on the
left and right, instead of (1 &5).

c) Solutions to the equation- The solutions to the Pauli equation, like its
coefficients, must belong to the field of quaterniorowever, a system of solutions of
the equations that is complete in the field of quatemiemot physical useful, with no
further assumptions. The physically-meaningful quantii@ge the formg Mgy, , in
which ¢m is a solution of the Pauli equatiog,, is a solution of the adjoint equation, and
I is a quantity that belongs to the field of quaternidéegturally, in order for a system of
solutions to be physically-useful, all of the expressitmat are formed in that way (in

particular, the quantities that characterize the probalof presence) must have a
guaternion-free relationship to each other; i.e., one hast:

(8) .My, = Pum N,

in which thePnn, contain no quaternions, whild is a quaternionic quantity that is a
universal constant. Only the ratios of 8 enter into the physical interpretation.

The possibility of reduction by zero divisors that wadssed i) will assist one in
fulfilling the requirement (8). If we possess, sagyatem of solutions that is complete in
the total field of quaternions then we multiply g on the right andg, on the left with

any constant zero divisor. The property of theand theg, that they are solutions of

the Pauli equation and its adjoint, resp., will notpgesturbed by that. However, the
totality of quadratic quantitieg/, Ny, will be a one-parameter family, as required by
(8). One can see very easily that the physical esult independent of the special
choice of the two zero divisors. We will provide thengel proof of that later in our
treatment of the Dirac equation (cf.48

Obviously, the Ansatz thap is a column matrix is a special case of the given gepeesacription;
hence:
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w)=(0r )G 3)

R R
is a zero divisor, while the matr|x

00 , W,

the three quaternion matrices. The greater generalibyiioprescription above can be employed to our

advantage in the construction of the theory, as longealsase it upon the hypercomplex number domain,

not just matrices. Namely, whereas when we are wgrkith matrices, the demand that we should use the

simplest matrix representation of tlee as well as they, compels us to ascribe the transformation

properties of spinors to th#s and to accept the difficulties that are linked with therhile leaving theo

invariant (i.e., represent them by the same simplastices in any reference system), the naturalrtreat

of oas a vector and correspondinghas an invariant on the groundsSaiuter's method also proves to be

the most suitable. The basis for that is the fadtiththe field of quaternions, any componentodf (o

e)], like any zero divisor [= (1 +d¢))], exhibits basically the same simple structure.

j is the most general aggregate of the unit matrix and

d) Reality properties— According to (1), the Pauli equation reads:

ho
9 Hy=-——y.
9) Y i atw
The adjoint equation to that is:
« _ho
(92) PH =—-——¢.
i ot

(The asterisk shall suggest a change of sign in the imggionait, while the
differentiations inH" shall act on the left.) It will then follow fronhis directly that one
can get a solution of (9a) from a solutigrof equation (9) replacingwith —i, as well as
inverting the sequence of all factors. (The latter prp8on will become meaningless
when one has written out the solution in a form tbantains the non-commuting
elements — viz., the quaternions — only linearly.)

For anyy, the given prescription will yield the solutioi of the adjoint equation
that is associated with the same statg/as such a way that the density will be defined
as it must be by that prescription (and such that issemtially the only prescription that
will lead to a well-defined density). We can assume, ppe;ithaty has the form:

(10) W=+ (e 9)Q1+ea),

in which ¢’ O e. Any function with a factor of (1 +e(g)) on the right, which will

generally have the forngg + @1 (¢' 0) + @2 (¢ 0) + @3 ([e ¢'] 0)(1 + (¢ 0), can be put
into that form, since:

(t0)(1+€0)=111+( 0)
and

([e €] )1+ )= 91+ E0)

The function that is adjoint to (10) reads:
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(11) g =1+60) W+, Leo));
it will follow from this that:
Y = o5+, 1) (L + € 9°),
which is, in fact, definite.
The Hermiticity of the quadratic forngy My, that belongs to the self-adjoint

operator 'l [or more precisely, the quaternion-free expression twatesponds to
equation (8) that is associated with that operator}iwial consequence of our definition
of the adjoint, as well as its compatibility withethules of calculation (7) for th& The
guantitiesN that appear in (8) can obviously be assumed to be selfafg.g., = (1 +¢

0)?)], so it will follow from:
(. N = PN,
that:
{Pam} adj. = Pmn .

However, “adjoint” and “complex-conjugate” mean the satiming for quaternion-free
guantities,, so we can write this as:

PmDn = Pam,

with which the asserted Hermiticity is proved.

8 2. The Dirac equation and itsadjoint. Physical interpretation.
The Dirac equation for the electron reads:

(12) Dy= {i {.ﬁaxi fqnj i%}w:o.

k=1 c

W, V6, V4 W, are the four Dirac operators, which are coupled byelagions:

(13) WK+ WU =20 .

The adjoint equation is defined) (such that it implies a continuity equation in the
following way:

(14 0 =Dy -@OW= D,

It follows from this that the adjoint equation to (12ads:

() SeeA. Sommerfeld, Wellenmechanischer Erganzungsbafi®29), pp. 124.
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— 4 ho e E

15 D = -————®, |-i—2!=0.
(15) @ w{;y{ % G kj C}
That implies:

4

0

(16) —Iny=0

kZIGXk ‘
as a continuity equation, or:

4
(16a) i C =

k:laxk
in whichjy is the four-current:
(17) k=T Yy .

However, it should be remarked thats determined by the continuity equation (16) only
up to an additive divergence-less quantity. (See the erawiplthe iterated Dirac
equation 8l6a.) The precise form of the current expression must daabel from other
conditions.

Along with the four-current, one can introduce other mlaysjuantities® when one
applies the continuity equation to the result of aasle perturbation calculation. Those
guantities are given by the quadratic expression:

(18) Mm=¢, NyY,.,

in which M is the operator that corresponds to the quaptif). Arbitrary (self-adjoint,
see below) operators come into questionfothat belong to the number field that is
generated by the coefficients of the Dirac equatiafi, and ¢ are members of a
“complete” system of solutions to the Dirac equatigihe concept of the completeness
of the Dirac functions will be discussed in more detahe next paragraph.)

The My, can be endowed with physical meaning only when they laaydree
relationship to each other; i.e.:
(29) Mam =Pam N,

in which is free of thg’/s, andN is a universal constant quantity that belongs to #id fi
of the Dirac operators.
8 3. The number field of Dirac operators
The most important algebraic properties of the numieéd that is generated by the

Dirac operators shall now be discussed by way of sexaenples. The proof be will
carried out for the general casengfs in the Appendix.

() Due to the definition of the densijty= gy , the eigenvalue equation that belongs to the operator
M will read )4 M ¢ = p O¢. The quantity@ My represents the-density, whileP corresponds to the

operatory,I, as an individual property of the electron.
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The numbers that arise from )5, )5, )4 by addition, subtraction, and multiplication
all have the form:
(20) A=zaptafitaptagstanhs
+aus Jiot a3 )izt ... a3 Jaa
+ @034 Jo34+ Q134 Yizat Q124 Yizat Q123 )23
+ Q1234 Jiozat ... (yj_z =K D}é, etc.).

Among those numbers, there are ones that possesspeocat — e.g.,)a . Numbers
without reciprocals are zero divisors. The most imponpeaoperty of zero divisors for us
is their ability to reduce. However, the relationshipggween quaternions are more
complicated now, since not all zero divisors possessdime possibility of reduction.

Let us consider, say, the zero divisor (J4) It has the same form as our previous
guaternionic zero divisor and also has the same algebcpenies. Its product with the
general 16-component number (20) still includes eight incigrgrparameters:

AOLl+y)=((aotas) + (et aws) i+ (Bt a) )pt (@t azs) )5
+ (au2 + a129) Y2 + (Bo3+ @23s) Y3+ (us+ @134 Jiza) Vi3
+ (u23 + @1234) Ji23)(1 + ),

while the two-sided product:

(1 +)s) CAOL +)s)
= (a0 + &) + (Au2 + 124) Y2 + (Boa+ B34 o3+ (Aus+ Asar) Jia) (L +14)°

includes only four. Under multiplication, (1)) will reduce the number of independent
parameters oA by one-half. We can characterize that behavioh@fiumber (1 44) by
the number 1/2, which we would like to refer to asrdaction factor r

The product of two commuting numbers witk 1/2 is an even more powerful zero
divisor. Let us consider, say, (14 (1 +i o).

A(l +y4) (l +i}42) :((ao+a4—ia12—ia124) +(a1+a14—ia2—ia24) DM
+(agt+ass—iazs—law) s+ (aus+azs—iax—iasy) Ks) (1 +)s) O1 +ipyo)

includes 4 = 16 / 4 independent parameters, while:
(1+)m) (L +ipia) A(L+a) (1 +ipo) = (o +au—i a2~ i a1od) 01 +)4)° (1 +iph)?

has only 1 = 16 / 4. The reduction factor of our number is thereforel / 4. There is
no stronger reduction in the field of Dirac operatorségx for O withr = 0).

We shall mention only in passing that there is an eajieeveak zero divisor with
=3/4.[E.g., (1 H2) + (1 +i }i2)].

The field of Dirac operator possesses different kirfdsubfields. We shall discuss
the ones that have some practical meaning for us briefly.

A quaternion fieldwill be generated by hypercomplex numbgsfs )42, Jis that will
go to the field that was discussed befor&l{8by the substitutiomk = — y Jio3.
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One constructs kiquaternion fieldrom the eight basic quantities @, )53, )41, K4,
Vou, Vaa, Viaa. It can be decomposed into two quaternion fieRls@ne of those two
fields includes all numbers with the factor (L4¥34), while the second one includes all
numbers with the factor (% J4239. The product of any number of the first kind with any
number of the second kind will be zero. Any of the two euedn fields can be
constructed from one uref =2 (1 + y1239 and three quaternions; [&", )5, (&, ys[E".

The three quantitieg , )5, )4 likewise generate a biquaternion field. It decomposes
into two quaternion fields with the unigs(1 +i 429 and 1 (1 —i}i29).

The simplest subfield of the Dirac field will be gested by a singlgZ— say,js . It
can be decomposed into two fields of the same type asidi@ complex numbers,
namely, thesfree multiples of (1 44) and (1- ys).

8 4. Reduction of the system of solutions.
Independence of the physical results of the special reduction.

The solutions of the Dirac equation are hypercomplex beusn from the Dirac
number domain. Therefore, a complete system woudd tefa system of functions from
which one could develop any function from that number @lom However, such a
system would not fulfill the physical condition (19Jn&e thell,, would be a 16-
parameter manifold. However, it is easy to reduce thgat@meter manifold dil,,to a
one-parameter one with the help of the reduction capabilithe zero divisors that was
discussed in 8.

Let ¢, be a complete system of solutions to the Dirac eguati the Dirac number
fields, and lety, be a complete system of solutions to the adjoint temjua We right-
multiply all ¢, by a zero divisof ; whose reduction factor is= 1/4, and left-multiply
all @, on the left byl , with r = 1/4. The systengq = ¢, 01 and @, =T, W, that
arises is a system of solutions of the Dirac equdtlmeir adjoints, resp.) that satisfies the
requirement (19). Not all functions of the Dirac numbeldfcan be developed in the
solutions¢m,, but only the functions with the right factior .

In that way, along with the concept of a completaesysof solutions in the Dirac
number field, we will also arrive at a concept of phgsmmpleteness, which we would
like to refer to casually as “completeness” in whatofes: A system of functions is
completewhen all functions with the right factdéx can be developed from it.

The physical results will be independent of the spetiaice of zero divisors along
as they only have the reduction facter 1/4. In order to show that, we prove the:

() Here, we employ the word “decompose” in place of the lusn@ of “reduction,” since we have
already used the word “reduce” in a different sense.
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Theorem:

A system of functions that is useful frgh®) will experience no essential change
when one multiplies all/n on the right and all, on the left by a common constant

factor C, (Cy, resp.).

Proof: The ratios of theP,, to each other will not be changed by such a
multiplication; only oneN’ = C; N G will come fromN. (The only case that must be
excluded iC; N G, = 0.) We now imagine that a complete system of fonsthas been
generated by 3, ', . The foregoing theorem says that a further reduatith two
arbitrary factord;, I, will not change the physical results. The same thirigbeitrue

when one further reduces a system that was obtained fdrm by way ofl";, I',. One

sees from this that any physical relation that folldresn eigenfunctions of one system
can also follow from eigenfunctions of the other syst One will then get a one-to-one
correspondence between the two with the help of cetedystems that are obtained
froml4, [ and T}, I, with no change in the physical results; that impiiekependence

of the special choice of the factdrsandl ».

Above and beyond that, it follows from the cited tleeo that any system of
functions that fulfills (19) can be uniquely associatethva subsystem of ours by a
complete system that is obtained by reduction (namdignwone reduces witlhy, I',).
Our reduction process then yields the essentially-unigpletien to the following
problem: Find a system of the largest-possible number mdtibns from the Dirac
number field that satisfy the condition (19).

The condition that one must ha@e N C; # O creates no difficulties. If we would
like to further reduce, say, a system with ndrhy factors 1, > then we would choose
Ci=ci1lM1,Cy=cM2. ¢ andc; can always be chosen such t@afN G is non-zero.

8 5. Forming the adjoints. Reality properties.

We write down the Dirac equation (12) and its adjoint ,(1&)ile distinguishing
between real and imaginary quantities:

. (hz e o _
(21) IC(TD Em,yj+ TE Vi|y,—-E ¢ =0,

-V y4_Eo =

22) 7 —ic(—_ﬁﬂ—gm,yj+ ho
i c i ot
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We have introduceg, =ict, @4 = (ic/ €) V and®y = 2 for k=1, 2, 3 into this.[J is the

“vector” (iiij andyis the vector g, )5, )4).
0x 0y 0z

The form of equations (21) and (22) shows that one willagsblution to the
adjoint equation (22) from a solutigito the Dirac equation (21) when one inverts the
sequence of all factors and gives the quantitigs )5, )4 the opposite signs. One must
show that a functior that is produced in that way will also be, in fact, gthoint
function to ¢ ; i.e., thaty and ¢ must be associated with the same state. The proof
follows from the fact that the definition that was/en for the adjoint function is
essentially the only one that will lead to a well-defl density@ y,¢. Let ¢ and @,
say, be any solution of the Dirac equation and its agjoesp. As & showed, we can
assume, with no loss of generality, thahas a right-hand factor of (1i+42) (1 + )4)
split off, and has a right-hand factor of (1i#42) (1 + )4) split off. We have chosen
the two basically arbitrary factofg andl, in such a way that they are mutually adjoint.
and@ will then have the following forms:

W= Wb+ n it s st ths pa)(l +i yo) (1 +)a),
g= (L+ip) (1 +y4)(lp0_lp1y1_lp3y3_lp13y19'

We have changed the signsm )5, )4 and inverted the factors everywhere in the
basic quantities4, )5, Jis. The complex quantitie,, &,, @,, @, have still not been

related toyn, YA, s, Yrs. The density will be:
TV = oo+ P+ P+ gy 3 (L +i 12)* (1 + 1),

It follows form this that the density will actually biefined when we sep,= ¢, @,=

W, U= ¢, @,,= ¢, corresponding to the adjoint definition above. Onéhéursees

that this definition is essentially the only one twdt lead to a well-defined density. The
solution that is obtained by that prescription will thereforé maly be a solution of the

adjoint equation to begin with, but it will be, as suttte function that is adjoint tay.
We can say somewhat more generaly (

One will get the adjoint to a quantity when one invémssequence of all factors and
gives the quantities J, )5, )4 the opposite sign. For operators, one must add: One mus

e - - 0 0
change its direction — i.el] must becomel, P must becomea—t, and conversely.

The proof of the Hermiticity of the quadratic expressidhat belong to the self-
adjoint operators is almost a word-for-word transasiptof the proof for the Pauli
equation (81d).

() SeeF. Sauter, “Atomarer Photoeffekt...,” Ann. Phys. (Leipzig35 (1931), pp. 9.
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8 6. Transformation properties

We must remark that the question of the transformapiaperties of theys is
initially a completely meaningless way of speaking. yahke demand that the physical
quantities, namely, the ratios of ti&, [formula (19)], should transform as tensors
according to their physical interpretation has any meanfurther statements about
the ¢/s are pure conventions, since they represent only mattieahtools.

The question of the transformation properties of at&ol is all the more pointless
since it is not even possible to associate that solutith a well-defined coordinate
system in a meaningful way. Suppose that the Dirac eguiegads:

(23) {i( kl),pél)_gq)kj_iEo}w =0

k=1 C

in a coordinate system (1). We introduce new rectangolardinates into (23):

(24) x2 =3 g, X with D ad =i
k i
the converse reads:
(24a) x? =Y a,x?.
k

If we employ ;¥ = > a,)f” as an abbreviation, with)® = > a,)f? as its inverse,
k k

then (23) will imply:
(23a) (Wm0 -2 )iy <0

k=1 C

However, as one can convince oneself (cf., Appendihd y? satisfy the relations

of the four Dirac operators, and (23a) is the Dirac eqoan system (2). The functiapg
will then satisfy the Dirac equation in system (2) ingmely the same way that it

satisfies the Dirac equation in system (1). P are no better or worse than th€’ as

basic quantities, and the relations between themanpletely symmetric, moreover. It
would therefore be completely unmotivated to says the solution to the Dirac equation
in coordinate system (1). Moreover, if tie are to possess any meaning then that
statement must be independent of the coordinate system.

It is likewise meaningless to say that (23) is the®rquation in system (1), but not
in system (2); indeed, (23) and (23a) are identical. AnycDeuation “in any system”
will differ from (23) by at most a change of symbolse-,inot at all.

In this way,Sauter’s method differgjuite essentialljrom the treatment of matrices. If one represents
the ys and they/s by matrices (column matrix, resp.) then there prigballl be some sense to speaking
of a solutiongy™ in system (1), as opposed to a solutipf? in system (2). However, differences of that
kind are always statements about the representatidre gistby matrices. If we would like to solve, e.g.,
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23), on the basis of the coordinate system (1) thewaoved first represeny”, ', v, v* by four
Y p A ; Y

1! 2 !
matrices that are as simple as possible, and assutmg this a column matrix (likewise on the grounds of

simplicity). 1f we would now like to express the”’ in terms of thex” by introduction of those matrices

then we would obtain (23a), but the coefficientsgf — namely, they!” — would no longer be matrices

of the simplest form. If we were to attempt to cotrthis by subjecting the matrices to a suitable
automorphism, in addition, thepr™ would lose its simple form as a column matrix. Witk triginal
matrix representation of thgs and they in (23), we would then have, in fact, established tw@dinate
system (1), since the four Dirac equations would assunresihglest form in that system. However, all
forms of the Dirac equations, such as (23) and (23a), aragstnple in regard to the Dirac number field.

The necessity of reducing the solution raises no diffes, since the prescription:
“all ¢s must have a common right-hand factor of reductioofad/4 split off” is
invariant under Lorentz transformations of e

There is essentiallpnly oneDirac equation, and there @ly onesolution ¢ that
characterizes a certain state, up to an inessemtretant factor. The latter statement
follows from the independence of the results on germl choice of reduction that was
proved in 8. The equation, like its solutions, has a meaning thatlependent of the
coordinate system; a solution can be characterized bytdteethat it belongs to in any
coordinate system. — The crucial issue for the physitatpretation is the continuity
equation and the definition of the current that is requiig the Dirac equation uniquely.

One will then be compelled to associate the currenthén x-direction with the

quantities j"= @ ¢, and the current in the(”-direction with the quantitieg®=

gyPw= dagy y. That is, the Dirac equation compels us to ascribe the
k

transformation properties of a four-vector to the fourent; as would also be physically
necessary. In the same way, the Dirac equation alspe&ls us to ascribe not only the
physical meaning to other quantities, but also the transfanmg@roperties that the

meaning implies. Those transformation properties valkecovered correctly when we

treat( as an invariant andA( )4, )4, J4) as a four-vector.

It might transpire that we could establish some partheftransformation properties of the Dirac
equation without having to speak of spinors. Howeversttgo happens that the introduction of spinors is
completely unmotivated as long as one does not speak dtesatiWhen one works with matrices, one
must choose between two evils: Either allow arblfraromplicated matrix representations for tjie or
ascribe the transformation properties of spinorfi¢g/s. As a rule, one prefers the latter as the lesgér
Since the question of a matrix representation doesxigita all in the application &auter’s method, one
would have no reason to introduce spinors. Furthermioseems to me that the transformation properties
of the currents would also be best examined by basing thematrices without making use of the fact that
the ¢/s transform like spinors, since spinors are only unssmg gimmicks that obscure the simple state of
affairs in that context.

8 7. Normalization condition. Completenessrelation.

The charge density in the staténust be associated with the quaniftyy,y,. For
the true, real charge densply, one will have:
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(25) D, VsWn= oo N,

corresponding to (19), in whidK is the common “norm” of all eigenfunctions. In order
for all statesh to be normalized correctly, one must hfyedr=1; i.e.:

(26) [@,vaw,dr=N.

This norm is invariant under Lorentz transformationshe Tact that the four-current
@.v,y, is divergence-free and the boundary condition at spafiaity guarantees the

invariance oszpn y,@,dr . (26), together with the orthogonality condition:

(27) jwn Yo, dr=0 forn#m,

will imply the possibility of calculating the develogmt coefficients of arbitrary
functions in terms of thgs, . The completeness relation reads:

(28) Zwandr[ﬁwngderDjfy‘lgdr,

with arbitrary {) functionsf andg. (28) is true for continuous eigenfunctions, as well as
discrete ones, as long as one underst@dsto mean an integration over the continuous
n

parameter in the former case.

Part I1. Practical calculation issues
8 8. Rules of calculation

The direct use of the relations (13) is appropriatepfoblems that are treated in
tensor form while maintaining the four-dimensional symmnet For practical
calculations, the fourth coordinate will be distinguishesia rule, and especially with the
introduction of stationary states. The physically-gigeantities will then have the form
of scalars and three-vectors. It is correspondingdctpral to distinguish the fourth
componenty of the ), as well, and combine the first three componepts)t, J4) into a
three-vectory When one further introduces the abbreviatidor )423, one will get:

Four scalars: 1 yu, T s,
(29)
Four three-vectors: y, yr, y, VT 1

as the basic quantities of the Dirac number field, irctvioine has:

() In the sense of the completeness definition4n §
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(30) y=W, 5. %), T= J2s.

In order to be able to calculate with those quantd@s/eniently, the rules of calculation
must be put into vectorial form. One will arrive aattin the most logical way when one
thinks of the Dirac number field as being generated bywestalarsr and y; and the
vector ), which are linked by the relations:

(0 P( ) = (o) + ([oro] ) 7,
(31) T2:—l, yj: 1,
yr=ry, Y+ y=0, T+ 1=0.

(v, o are arbitrary complex vectors.) [If one multiplié tfirst equation in (31) on the

left by 1 = € i 1 and seter=—i yrthen one will get the known vectorial relation for
the Dirac spin matrices.]

The relations of ordinary vector analysis can bdiegpo hypercomplex vectors with
no further assumptions, as long as one only carefullgida the impermissible
permutation of factors. We cite, say, the followintgs:

(32a) (Bb] ¢) = (a [bc]),
(32b) ([ab] [c 0]) = abcd —abed
(32¢) [[ab] c] = aBd —a [Ob ).

Non-commutativity makes it necessary to denote scaldtiptication by lines above or
below the symbols; however, the application of thati@hs will raise no difficulties,
moreover.

The following rules, which can be derived from (31), weful:

y(oy) =v+[v)T,
() =v-[o)T,

yn =3, lyyvl=2yr, (ylyyl) =6r,
(VIyol) =2(vp)1.

(33)

It is convenient to present some formulas with moctofs, as required; we cite the
following especially simple and important one:

(34) ([yellyLyel]) = = 2e (ye) .

Simplifications can be achieved in the calculatiosealf-adjoint expressions. We cite:
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y(vy)+adj= 2,
(35) yopy)ir+adj=-2p,r1],
iyy,+adj=0.

8 9. Change of coordinate system. Normalization issues.

When one would like to relate two states that argcrileed by two differently-
normalized eigenfunctions, the problem will arise of Howive them a common norm —
i.e., of renormalizing at least one of them. How @0 go about doing that can be
inferred from 884 and7: Let ¢’ be a function that has not yet been normalized in the
desired way, and lef' be its adjoint. If one would like to normalize thdoy N =T, O

2, in which N, as well ad; andl, , possesses the reduction faator 1/4 then one
would formyg = ¢’ [, 2, @ =T1c Oy’ in whichc; andc, are constants that prevent
the vanishing of the product. One will then arrive atddsired normalizations when one
includes a suitable complex normalization factoe;in If one lets, say\N’= jz,Zi’ y,g'dar

then the condition for the correct normalizatiofl vaad:
Fl C1 N/CZ rz =N.

One no longer needs to deal with the functions themselnder renormalization then,
but only with the norniN’ (N, resp.).
One will get an important special case when one clsatigeecoordinate system. Let

a function be given — sayy™® — that is normalized biN® = F()/, ), y®,y®), in
which F is a certain (simple) polynomial in thg" [viz., the components of the four-

vector j, relative to the axes of a coordinate system (1)YjatTunction is renormalized
by appending a right-hand factor in such a way that thenaowill be N® =

F(/2,y2,y2,y?). N® might then emerge frot® in such a way that the index 1 is
replaced with 2 everywhere. One must the form:

(36) w(Z) — w(l) EB, 4Z7(2) -g I:w(l) .

SuitableSandS’ can be exhibited in two different ways. First, we wdikid to carry
out the general prescription in the beginning of this paragr

(38) N=(1+i pi)(1 + ).

We renormalize by multiplyingz® on the right andy® on the left byN®, and then
divide by a suitable real factqf N . We then set:
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(39) 5= o= Ay )A+y”)

) Jn

(37) will then imply that:
1 . ) ) . .
@7a) @ ) A+ Y)Wy )W+ y D)Wy D)y P = Qi)+ y ).

The orthogonal transformatiop™=>"a, )/ exists between thg/" and the y®.
k

Therefore:
(38a) ND =1+ a, /2 +i> a,a, /2 +1D 8, a,8..V -
k k, I

k,I,m

Only terms that include nothing but distingf” will be found in the two-fold and three-

fold products (cf., orthogonality relations, tensor relséer of they, products). From

(37a), only those terms that are endowed withyf), iy2, iy2 wil make a

contribution toN” ; all of those quantities can be replaced with 1. Titityield the
following value forN :

a, a &, &, &,
(40) N=1+ay+ a; a; Tl Ay Byl
' ; q 3, ay

For the case of a purely spatial rotatian, € 1), one will have:

j.

The renormalization will become even simpler whempleys:

a; &,

(40a) N :2[1+
& 8y

(41) N = (1 +i J2)(1 + Jhiozg)

as the norm, sinc@s4 is invariant under orthogonal transformations.f §Ourse, this
norm has the drawback that it not self-adjoint. wdwer, that is not a serious
disadvantage. If one determingsin such a way that it splits off a right-hand fact
(A+iy;,) 1 + piosg then a left-hand factor dfL+iy,,) (1 — J4234 will split off from &.

If one multiplies allZ on the left byys then one will geN as the norm.] Only the factor
must be renormalized; we set:

(42) S=g

_1+i

N

and get from (37):
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%Eﬂlﬂlé?)(lﬂ YY1+ y@) = (+iy2),

from which, it will follow that:
3,
a, Ay

(43) N=1+

The extraordinary simplicity of the renormalizati@nconnected essentially with the
fact that we have employed the zero divisor properfidé oWithout using that, one can
fulfill (37) when one choose®’andSin such a way tha®’S= 1, Sy S= y@ fori = 1,

2, 3, 4. One can then resolve the problem of the real@mation by a spinor
transformation. However, it is clear that the spit@nsformation will generally be
much more laborious than the previous conversion (41), (43), A single quantity
with especially simple properties like our nofhcan naturally be transformed with
much less effort than the totality of all numbers ia Birac field. Generally, one would
like to mean that the spinor transformation perfoamsspecially good service when one

would like to replace aly® in ¢ with y®. However, that advantage is only apparent.
Namely, it is impractical to get back to ti with the help of the spinor transformation
and to thex® by the direct introduction of the Lorentz transformatfrom the y® and

x® . In fact, theys andx, appear ing in an organically-coupled manner, so it would be

reasonable to subject both of them to the Lorentz fbemation directly at the same
time.

This is most obvious in the case of the free eleatrothes-state of the electron in a
central field (cf., 814, end). Nevertheless, in many practical cases, thefuse spinor
transformation for renormalization can be appropriaféhe simple cases of practical
importance, such as simple rotations, also correspondety simple transformation
operatorsS and in addition one can employ the spinor transébion advantageously to

replace they™ with the y/®, if not to the entire eigenfunction then at least the
ptjgpose of reducing the zero divisdrshat were introduced; indeed, one R83[B5=S0O
re,

It must be stressed that the spinor transformatioat twas introduced for
renormalization differs essentially from the usualingp transformation of the
eigenfunctions. Namelyy is usually multiplied by the transformation-operatortbae
left — i.e., on the inner, open, sensitive side. In Wy, the properties of the function
will be changed quite essentially; they will no longdriséathe same equation as before.
Things are different for us: We multiply by the transformation-operator on the right,
hence, on the outer, insensitive side, which is stitlcaed by the factdr. ¢ will remain
a solution of the same equation as before, and its gregpevill not be altered in any
way.
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§ 10. Relations between the physical quantities.

For the applications of the Dirac equation, it is phbipaalways useful to avoid
calculating with the explicit eigenfunctions (to thetemt that there are any) and to
employ relations between the physical quantities thiédvé immediately from the Dirac
equation instead of those eigenfunctions. The ideal gmaildvbe to express all

guantities that appear free of thgin terms of the nornjzﬁ y,dr. Since that ideal

goal cannot always be attained, one can mostly impleegsential simplifications with
the help of the Dirac equation. One can obtain matthat one can use for that purpose
from the Dirac equation:

hz e . ho —
(44) —c(i—D—Em,uyj [—i—a—V}M_Eo ¢, =0

and its adjoint:

(44a) 7. —c[.ﬁﬁ—fm,iy}[ﬂ—V}n— E ly,=0
i c ot

when one multiplies (44) by, ., on the left and (44a) on the right by/) and adds or

subtracts the two equations that then arise. In placdeofstar *, one can use the
quantities 1y, 7, yr, ya, Wa, T4, VT, in sequence. We will get 16 relations (8 scalar and
8 vectorial) in that way that we would like to summariariefly. The quantities that

appear all contain one right-hand factrand one left-hand factag; let those factors
be omitted for the sake of brevity. In addition, wieaduce the following abbreviations:

1a(- -
= ="p-0],
P 2i( j

The 16 relations then read:

@ c(Ap, i —-(@QE, =0 (continuity equation),
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cp —Eil) vtBp, Jr—-E-V)iy=0,
e [ :
c(p —EQ[) _EAE wy—Eoi y=0,

g(Ap,inW(E—\o—Eom:o,

—'—ZcAp r+c[p—(—zﬁl,iy]+AEyry4:0,

e. .
_C(P—EQ[J”"'(E—WM—EOZO,
+3(Ap, i Pry+iMMEOr+E rps=0,

ic (p —=2) rm—E[Ap,iJ/]MJfEAEVT:O'
c 2 2
. C e. .
—i EAp—C[p—EQl,IJ/]T"'(E—W vy =0,
e . i 1
[p—A i Yry+=0p p+ =AEy —-Eo y)s =0,
c 2 2
e i
—c(p—%, ) y+ -AE=0,
c 2
e - i . .
C[p_EQ[,”,]M—'EAp T+ (E-Viyr-Eiyru=0,
—c(p—EQl,iy4) T—ETM—EO r=0,
c 2
e -
c(p—EQl,l;arm+(E—\0 r=0,

C(p—gﬁl)r—g[Ap, A+(E-Viyry—iyrE=0.

21
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8 11. Relations between mean valuesin a stationary state.

If one integrates equations (45) over space then onge&tiltelations between mean
values. In that way, a simplification of (45) willme about, since the integral &g will

vanish. We would like to summarize the formulas timet gets whew, and @, belong
to the same stationary state, and tmusn; AE will also vanish then. That will yield (we

do not indicate the spatial mean explicitly):

(b) c(p—fatm—(E—V)iy:o,
(c) dp—gﬂ%-%iy=a

(d) (E-V)-Ey,=0,

© c[p—fat, iy =0,

(f) —c(p—fat,iy)ﬂE—V)n— E =0,

(9) 74,=0
(46) (h) (E-V)ry,=0, TV

(i) (p—fat)wﬁo,

() —clp==2iyr] +(E-V)yy, =0,

() clp-WiNlyT, +Expy, =0,

(M (p=2Ayy) =0,

() clp-<Ayy]+(E-V) iy7 - iy7y, =0,
© cp-Aiyn)-Er=0,

() c(p= A iNTY+(E-V)T=0,

©) c(p—fat)H(E—V)iym—iyrEO:o_

Liyw

L yLywmiyTtm, T

The equations split into three groups, and th& fyroup of quantities is associated
with 1,iy; ja. The second group contains omly,, for which the mean value will vanish
in any stationary state. The remaining equatiaa&l yelations between quantities that



Franz — The methodology of the Dirac equation 23

are endowed with two-fold and three-fold products of fhe No relations can be
derived between quantities that belong to distinct grougsosk three.

Equations (46) are valid for only those solutions ofvia@e equation whose squares
are integrable over all space. However, they are\aid in the case of plane waves

without spatial integration, sind& = 0 at any location in space for plane wave. Plane
waves can occur whett = 0 and the potentidl is constant [when its changes can be

neglected, resp., and thus, in particular, for free rastor for the electrons that are
scattered by the nucleus or released photo-electriaallyat a large distance from the
nucleus (pure spherical waves)]. The relations (46) lvan be replaced completely by

the following ones, which we would now like to write aatmpletely B = % (E -
V)? = (cp)* EL:
(b) giyy =Boy.y,

(d) Py=\1-F@yy,

9) gry,g=0,

(47)
(9] gyy,w =[B.giyry],
(0) gry =-(B.giyry),

) Giyryw=1-F Wiyry-—L— B giyry).

(b) and (l) express the currentyy expresses the density, ard, ((0), and () relate
expressions with two-fold and three-fold produdtthe y,to giyry .
Equationslf) and ¢) clarify a difficulty thatSauter () mentioned. NamelSauter

found that, from Dirac (46c), one h& (= ecf iyy ) = \/izzﬁz// for the photo
1-B

current. He concluded from this that one Bas e v Op [that iS,S = eo@ y, ¢ ], as

opposed to the non-relativistic case. Now, (47h@wvever, applicable to the spherical

waves of the photo current (sinke= 0 at great distances from the nucleus, and in
addition terms ~ 1¢° can be neglected, which practically makes a pleaee out of the

spherical wave). (47d) shows that the equa@m%zﬁw andS =ev[ y, ¢ are
1-B8

not mutually exclusive, but are identical.

() F. Sauter, “Atomarer Photoeffekt...” Ann. Phys. (Leipzi§)1931), pp. 246.
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§ 12. Spin averaging.

For( = 0, the Dirac equation of a stationary state of gnErgill reads:

E-V
hc

(48) {—(ym>+ n—%}w: 0.

This equation contains only real quantities, iniaold to the foury, ; it is free of the
imaginary uniti. It then follows that for any solutiogy, the quantities that are endowed
with i and the ones that are not endowed withil satisfy the equation by themselves.

However, it would be false to believe that one ldoobtain a physically-useful
solution without the assistance of the imaginari. uihe solution must indeed include a
right zero divisor withr = 1 /4. However, there are no numbers in the D&alc number
field with r = 1 / 4. Hence, for every solution, there will &¢‘complex conjugate”
solution that is linearly independent of it and eges when one changes the sign of the
imaginary unit in it. One has the following theore

Two complex-conjugate solutions:

1. are orthogonal
2. have everywhere-equal densitiaad
3. have everywhere-opposite currents and opposite gtagmoments.

In order to prove 1., one sets, with no loss afegelity: ¢ = ¢ 1 + y3)(1 +1i }o), In
which ¢ is free ofy; andi. One will then havel"= (1 —i y2)(1 + J4) @ (the asterisk
shall suggest the change of sign in the imaginaity,uand the “transition density”:

Fy,p=0-i )1+ @@L +y)(1+in)=0,

hence, above aIIjz,ZiDy4wdr: 0 (viz., orthogonality). [In order to see thhé ttransition

density vanishes, one must only observe g ¢ is self-adjoint, and can therefore
contain only terms withs and y j4 (indeed, they will be terms endowed with precisely
one factor ofys, sinceg and @ are free o), and that (1 + )4») (1 +i i) =0 and (1 +

ya) (1 +)5) = 0.] One can prove the assertions 2. and 8wike. (On the grounds of
normalizing ¢/, one must only append a right-hand factoi ¢f, , which will also be
done in what follows.) However, one can understdmase theorems directly with the

help of the reality properties of the physical ctt&es: @y, ¢, giyy, giyry, and

gy, ", @°yy", @-iyry" all have real ratios. One will then have, up tooaamon
normalization factor:

Py, w= @) =0yy",

Piyy= @iyy) =-g-iyy",
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and likewise:
giyry=-griyry".
2. and 3. are proved with that.

We would like to call the degeneracy that is given by éxistence of the two
orthogonal eigenfunctiongy and ¢ briefly spin degeneragyalthough that is not entirely
correct.

In many cases, one starts with physical conditiongundhich the two stateg and
¢ will not differ, such that one can speak of a true degeye The physical states
themselves are of no interest then, but only the meses the two states, which we
would like to call brieflyspin averagesand they will be denoted by a double overbar in
what follows. We then set:

gy = %(427...¢/+¢7D...¢/D).

The following relations are true for spin averages:

giyw=ygiyry =giyry,¢ =0,

and from (45), that will imply:

© gepy =0,

(49) () gry¢ =0,

M Tlnyyly =0,

@ gpry =0.

(One must observe from this th@tApi y¢ = 0 will probably follow from@i yy = 0,

but not@piyyw =0.)

The two states that we have assimilated intosphe averageexhibit a difference of
sign in not only their magnetic moments, but also/arious other properties, such as
current, orbital momentum, etc. The directionted magnetic moment by itself does not
represent as trivial a case of degeneracy as @amgehof sign in the imaginary unit.

A more immediate kind of spin average than the thia¢ was introduced above can
be obtained for plane waveg € 0, free electronsy = a 0e®”"" with constante. This
does not fit into the previous schema, since iinidact, complex.a can differ from £ i
c(p Y + E y+ Eg} only by a right-hand constant factor. There as@ independent

reduced solutions that possess opposite magneticemts € i y7). If we average over
those two states then, from (47), all quantitielé wainish, except for:
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Giyw = Buy.w, Oy= ﬁww.

Part 111. Applications.
8 13. Transition from the Dirac equation to the Pauli equation.

The transition from the Dirac equation:
. e
(50) {—Ic(p—gﬂ,VH(E—V)n - Eo}w: 0

to the Pauli equation can result from the followsmdtting of ¢ :

(51) Y=Q+R Y +L-pmy

" andy include only they, J5, J5, but noty; ; (51) implies no loss in generality. We
substitute (51) into (50) and get:

(1+) {—ic(p—gm,y)w‘ +(E-V- Eo)w*}
(52)
+(1- 1) {—ic(p—gﬁl,y)w* -(E-V+ Eo)w_}: 0.

If one multiplies (52) on the left by (1 + j4) then the first (second, resp.) line will

remain unchanged, while the other one will vani§hince the curly brackets are free of
Ja, it will follow that they must vanish individuallyThat will imply the two equations:

(53a) —ic(p—izat,w‘+<E—v—5)w+:o,

(53b) —ic(p—izat,mw—(E—v—@w‘:o.

The equations show that™ > ¢~ in the non-relativistic approximatiotE(— & = W
< Ep). One then eliminateg ~ and represents an equation §bf alone. Withy™ = ¢,
one will get:

hc

(54) {(W—V)(zEg +W-\)- é(p—‘—zm,yf—m

1€ y) io(p——im,y)}¢: 0.
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2
One can calculate the produc{ts—(—zm,yj and €, m(p—gﬂ,ijith the help of the

first rule of calculation (31). (One must obserbattlp A] + [A p] # O, etc., in those
calculations.) With the abbreviatian=—i yr, that will yield:

(55) {(\N—V)(ZEO+W— V) - é(p—gﬁlj +h €1é50)

hce e . € _
+ m((a[é, p——CQl]j—IC(G, p_—CQljJ} =0.

The vectorg, which was initially introduced as an abbreviafieatisfies the relation (7)
for the Pauli spin operators. By making some aased omissions, (55) will go to the
Pauli equation, corrected by the termes ).

The fourth coordinate was singled out by the An$a1), which will then destroy the
four-dimensional symmetry. Nevertheless, an exaztment of equation (55) would
necessarily yield a Lorentz-invariant physics. tdéger, one would be compelled to work
with a very complicated and unattractive equatibnamtinuity, as well as the definition
of the current-density. However, the transitioonfr (50) to (55) will obviously make
sense only when one makes some non-relativistissioms that will actually destroy the
Lorentz invariance of the physical properties. &léhweless, the invariance under spatial
rotation does remain preserved under the transiodhe Pauli equation, not only for the
physical properties, but also for the equationlfiis&ince we transformy, )5, )5) for
fixed )4 like a spatial polar three-vectar,= — i (Js3, )41, Vi2) Will transform like an axial
vector, just like$ and [&, p]; the operator in equation (55) is therefore aramant. The

consideration of the transformation properties led Dirac equation (%) will remain
valid for the Pauli equation when they are adapodtiree dimensions.

8 14. Electron in a central field.

An electron in a central field satisfies the Dieguation:

(56) {—(yD)+E—V“) v —5}40: 0,
hc hc

which does not contain the imaginary unit (a spgemase of §812). We would like to
exhibit a complete system of equations of that 8gaan a systematic way. It is best for
one to initially look for those solutions of (56)at are free of the imaginary unit, just like
the operator in the equation. That will have twilvantages: First, it is precisely those
solutions that contain thg, in a meaningful relationship with the associatedrdinates
that make the evolution of the solution simple amditive. On the other hand, one can
arrive at two orthogonal reduced solutions at alsirblow by multiplying by two
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complex-conjugate reduction factors. (For the time beihg, terms “real” and
“‘complex” are related to the explicit appearance of maginary unit in they,
aggregates here.)

The way to integrate without introducing matrices wapped out bylemple (4.
(Temple generally used his method only to exhibit the radial equatmohits solutions.)
(®). One first determines a complete law of operatbas commute with the Hamilton
function and with each other. The following two wilhgeto achieve that goal:

0
(57) Na=[v O+ 3 42= —+3 )i,

0¢
P={1-CUn3u.

@ is the azimuth around theg-axis, which will make it the axis of a polar coordinate
systenr, &, ¢. s is, up to a constant factor, tkecomponent of the orbital momentum

+ spin momentun® is a kind of square root of the square of that momentunf$unjc
O]+ 1y (PP=—N%+1).
Since we seek solutions of the Dirac equation that dinohtde the imaginary unit,

we can employ only those operators that are freeeofrtiaginary unit and possessal
eigenvalues, in addition. That demand is reasonabl; foy contrast)1; possesses pure

imaginary eigenvalues. For that reason, we will not eyfiipitself, but 917.
We bring both the Hamilton function and the two opesaoand 91 into diagonal
form simultaneously; i.e., we look for thoge for which the Dirac equation (56) is

fulfilled and one has, at the same time:
(58) POy=py,
(59) N2y =-nt y,

in whichp andn? are real eigenvalues. We shall now first integrate temsa(58) and
(59), which are simpler to deal with than (56).

Eigenfunctions of1:.

When the eigenvalue equation is written out, it wilde

B S N O R (O A I O GO
(59a) O_[6¢+2yﬂj +m (6¢+(m+2jyﬂj[é6¢ (m ijlzj.

() G.Temple, Proc. Roy. Soc. Londat27 (1930), pp. 349.
(®) Sauter has proved the possibility of obtaining all eigenfunctionthat way loc. cit, end of paper
2).
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The number domain that the coefficients of this equdiglong to is isomorphic to
the field of complex numbers. i) = - 1, so p2 is the “imaginary unit” of the number
domain. (59a) possesses the solutions:

(60) w: eylz(m_%)¢ m + e‘Vlz(m‘%V fa,

with half-integerm. a. are integration constants, which might depend upamnd 4, but
not upong. The exponential function is determined by the expoaleseries, or (what
amounts to the same thing) B> = cosa + )i, sina . (The exponential function can be
employed, not only in the number field that is generatedyby but also in non-
commutative number domains; however, one must obskatette rules® Ce” = € is
only true wherab = ba.)

Common eigensolutions of P.

The coefficients of equation (58) belong to the numbenado that is generated by
Y2, V63, V1, andys, which can be decomposed with the help of the uhfist )s). One

obtains two independent equations for two independent typsslutionsy™ and ¢,
which contain the factors 1 and 1 —, resp. [* = (1+ ) Op ¥, whereg * is free of
) L(1- ([0 ) D % =pp*

If one moves the term 1 ¢ * to the right-hand side and then iterates then tHagive:
(61a) FrOP+ 0] ) 3 ¢* = (pFL* "

When one then substitutasl]] )) 7= (p+1) in (61), one will get:

(61b) {r O + (FP)(Fp+D] ¢ *=0.

However, (61b) is precisely the equation of theesjgll functions of indexgp.

Common eigenfunctions 6t; and P.

The two functionsp * must be eigenfunctions 61, and thus possess the form (60).
Hence, one must clearly have:

a, = PTY*(cosd )a,, a-= P"*(coss Y&, .

(&, is independent of.) Substituting this into (61) will give:
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(62) (0] Y 7+ @Ep=1)} (am—l/2éﬁz(m—ll2)¢ ‘i + E?llz gz (M2 é_) - 0.

The differentiations (] can be easily performed on the spherical functiongictp.
The third componentt[[J]s = d / 0¢ can be obtained by differentiating the factors
+y,,(m¥3). One can apply the formula:

(63) (42 [v O]1 — [ O],) P O/t = pAt geretwe

to the other components. [One can infer this fornfiidan, perhapsA. Sommerfeld,
Wellenmech,Erg. Bd. pp. 297, (41a), when one combines the two equatiens and
replaces with i, .] If one multiplies (63) byyi. on the left and then adds it to the
equationy, [ O]s = — i then that will yield:

(64) (kO] p TP Oe/zt? = — u P Oe/2#? + Vi3 P4 erewide

Equation (62) can be split into two terms whose deperydagmon ¢ is due to the factors
g (M2 [eh(m12? “regp]. The two coefficients of these quantities(6@) must

vanish individually. We write down the term wite*(™"?? (the coefficient of

e12(™12? is the same as that ef2(™¥2? yp to a finite factor)

(65) P;:l/z @‘Vlz(mﬂ/ZW{ylS [& +( rn-}-% + p—l) Da} =0.

That is, one then hay;,[&, = (p—-m+3) & . The two independent common solutions
of M2 andP then yield:
(66) Y*=x" o,
with
Xi — {a—slzé/u(m—llzm ($ p- W%)+J/13DE;+1/2 éz(m+l/2)¢} (1 + 1/4).

Common eigensolutions 8t2, P, and the Hamilton function.

The desired solution of the Dirac equation isnadr combination of the two solutions
(66) with radially-dependent coefficiertts. One will get the defining equation for those
coefficients by substituting in the Dirac equat{é6). We first form:

67) (/O)Or

yl[(Dl +y,0) P;;)—l/zeylz(mﬂ/ZW ($ p- m+%) —[. pry2 éz(m—l/2)¢]

3 Fp

= AFy.)
4 +y, [(Dl _ V12D 2) PTn;+l/2é/1z(m+l/2)¢ -0 SD?rF;-l/Z iz (m1/2p ($ p- m_%)]
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The differentiations with respect to the polar asglan be carried out on the basis of two
relations between spherical function) (

(O 1D DR (ke =D, &= e[ 2 12K )

(68)
(0= VT R0 4 0 IR 65 () = P T (ke ) % *1:—kj |

Therefore, (67) will give:

69 (O x*

m! m+! m- _ a 1_
:—(1¢y4){y1[|pip1/2emz( 1/2)¢_V3Eer;1/2éflz( 1/2)¢(+ p+ m_%)}(a++7pj

We now apply the operator of the Dirac equatior) (6Gy ™ :

(70) {—(ym)+ E‘Vn—%}wi =y [Llf—pjys b, +[iﬂ—5jf b

fic or fc fic -

Theb must be determined in such a way that the surheofwwo expressions on the right-
hand side of (70) will vanish; that will imply the&o equations:

(§+EJV3 [ﬂ)i _(iﬂ_EJb’F: 0
r r fc hc

If one sets:
(71) U.=-Db,, U_:ygD)_

then that will yield radial equations that are fof¢he ), :

(72) (i+ﬁ_pjui+(iﬂ+5juxzo_
o r e hc

If we understand th&. to mean solutions of (72) that are free of jh¢hen, from (66)
and (71), the ultimate expression for the desirgdrdunctions will read:

() SeeF. Sauter, Zeit. Phys.63 (1930), pp. 807, (10). We shall use the second and fourth s tho
formulas, in which we have replacedith — 4, .
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L

_ m+1/2 (m+1/2)¢ 1/2 (m-1/2) 1
(g Py 1 G ()

2
(73) Y= (1+)T.
+{ Vis EP;q+1/2e;/lz(m+1/2)¢ + an—l/ze—ylz(m—llz)yﬁ( p- m_%)

iC

I" is an arbitrary constant factor.
One can get two orthogonal reduced solutions from (73)nwiee setsl =
(@+i(ys)r) for one solution andl = (1 -1 (ys) 7)1 (yn) for the other one, in which

andn [0 s are unit vectors. The derivability of these tvadusions from a single one by

multiplying by a constant factor is what we referte in 812 as spin degeneracy. If one
chooses to be the unit vector in the-direction in particular then the resultingwill

possess the eigenvalu®s ¢ = £+ im ¢, while in fact (73) generally possesses only the
eigenvalue-ny for 913.

The y; appear in (73) in an entirely logical manner. Eppearance o#? is then
connected with the fact thgt means the rotation 1. 2, while the appearance ¢f in
isolation goes back to the fact that we have sihglet thexs-axis as the polar axis)(

The coordinate symmetry in (73) is best expregséioes-statesjf = 1,m= 1):

(74) W = {U++U_(y,$j}(l+y4).

The connection between the parametergp and the quantum numbers should be
mentioned. If one choosé&s= (1 —i )4 )5) then one-half the numben is precisely the
magnetic quantum number. We infer the connectetmvéenp and the spin quantum

number fromP?>=- 9%+ 1/4 , i.e.:

(75) (p-2)(p+2) =iG+1), j=Ip|-3.

8§ 15. Remarks on the wave functions of free electrons.

The Dirac equation for the free electron reads:

0 mc| ,
" D

a a

o DY) _
One solves it with the Ansatz=a e~ . It follows thata must satisfy:

() F. Sauter has recently found an especially beautiful solution toKkpler problem for which no
axis is distinguished, and thappear only in scalar products. As he cordially commtadct me, it will
be published soon in Zeit. Phys.
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(77) {iY (V,p,)+mga=0,

and thatp, must satisfy)_ pZ = (mg>.
We would like to show, briefly, how one can exhdmnlutions of (76) in a more direct

way. We seek, say, a solution whose time dependseng™™'" and is independent &

andxs. The Dirac equation for that function reads:

(78) {MQQ+E”+E}¢:0
0x, hc

or also:

oy _ _ Ey,+E
78a == ,
(78a) ox " o Y
with the solution:

Ey +

(79) w:exp[—yl At S,

_ E°-& |, En+tE _[JE-K
{—co{ v D(l} A EZ—EOZSIF P D(lﬂ

One can get two solutions of opposite impulse, ,saimd energy from this when one
multiplies by two “complex-conjugate” (in the sense§ 12) reduction factors. If one

Eyv.+E

hc [E2 - E02

Equation (76) can be solved symmetrically in tharfcoordinates by means of the
Ansatzy = function of > 7, , in which 7z, is a unit four-vector ¥ 772 = 1). (76) will

chooses the factors to tE&ii 4 , In particular, then that will give the plane

waves:

then yield:

_O0y __mc

with the solution:

(81) W= exp —%Z v, Y @y,
a B
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{2 @os(%z‘(ﬂaxﬂ) j—Z(lTHX,,) 61“(%02(%)%) H :

Due to the boundary conditions at spatial infinitg,, 75, 78 must be pure imaginary, and
since ) 772 = 1, one must then have > 1.

Whereasa is a zero divisor, from (77), the solutions (79) and (8&)rarmbers that
possess reciprocals. That is connected with theHHatiite have replaced the eigenvalue

X

a

2
condition zaxiw: po ¢ for the solution (77) with the weaker conditien[hg—wj =
[

a

p2¢ . A similar phenomenon was observed in the Kepler probl The solutions (73)
of r = 1/2 that we presented in18 satisfy the eigenvalue equatiol’y = - m ¢ in
order to satisfy the stronger conditidia ¢ =im ¢, as well, solutions with = 1/4 will be

required. The means: The stronger the eigenvalue canditat is imposed upon the
Dirac equation, the “stronger” (i.e., the more stitgmgduced) that the zero divisor must
be.

§ 16. Iterated Dirac equation.

The iterated Dirac equation will arise when one mlgt§p the two commuting
operators:

il ho e . E,
82 D™= — 0, x>
(82) Zyk [ ¢ k}
with each other; it will then read:
(83) 0 =Dy=D"[D .

a) Adjoint equation and current expressioA.The definitions of the current and
adjoint for the wave equatioiis ¢ = 0 are obtained from the equation:

(84) gDy -gD*Y=DivFjy,

which must be true for arbitragyand & .

j* is the operator of the four-current, which is generalf§ned by (84) only up to an
additive divergence-free quantity, as we have remarkeatdefThe continuity equation
for D' D~ can be inferred directly from (84):

g (Dy)-gD (DY) =DivFj (DY),

(@D )Dy-(@D")Dy=Div (@D")jy,
Adding gives:
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(85) g(D'D )y -g(D'D )y=DivP(j'D +D*j ).
Hence:

(86) D=D'D =D'D"

and

(87) j=j"D"+D"j.

j is determined completely frojh andj~ when one stipulates thpt j* for D* = 0, and
j =] forD¢=0.
If one substitute®* from (82) and used, =  then that will yield:

Lohl 90| jey A0, 0
(88) Jk= i{axk an} Z[GXIJrOX}ykyI

The associated expression for the current has the k@msaon form ¥):

89)  d=djw- iﬁ(wgradw— grady }%emkw?zaxi Oy

The continuity equation would also be satisfieel; se if one dropped the last term —
viz., thepolarization current- since it is divergence-free. However, that teemnot be
omitted if one does not wish to lose the agreenveitit the current definitionJ, =
@,y for the linear Dirac equation. One can infer tifed current definition is precisely
correct from the perturbation of eigenvalues byeketromagnetic field?).

The expressiorD in (86) does not emerge immediately from the adjdefinition
that applies to the linear Dirac equation; namelythat prescription, the sequence of
factors D* and D~ must be inverted. HoweverD*and D™, like D* and D~

(coincidentally), commute, such that in spite ofémthing, D is adjoint toD according
to the old prescription. Therefore, the definitiohadjoint that is valid for the linear
Dirac equation can also be preserved fonthee functionsf the iterated equation. That
is in no way obvious; rather, it lies in our spéd@m for the Dirac equation. If the
equation were written in the asymmetric Dirac form:

i e e . c
D™= zak(pk —Eq’kjil(prz%j—aoEE

c

(o ak+ ak a = 2 )

then the adjoint definition would have to be chahgeder the transition to the iterated
equation, sinc®’* andD’~ do not commute.

() W. Gordon, Zeit. Phys50 (1928), pp. 630.
(®) | am grateful to Herrn DiScher zer for the proof of this.
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b) Conversion to quaternions: When the iterated Dirac equation is written out, it
will read:

(90) Dy= {—C(P—g@lj +(E-V)* - B -hed(5, VT)+(€,VV4)]}¢/ =0.

The coefficients belong to the domain of biquatensj whose units are even-number
products of they, 5, )4 4 . That number domain is decomposable (cf3).8 The
equationD ¢ = 0 decomposes into two independent equations:

NI AANADN, W @+ yivoyayad _

2 2
(91)
AN, W @=ryayavd _
2 2
We set:
(92) fzw, ot =—iyrt

2
to abbreviate.o™ are quaternion quantities, for which one has:
(93) @o*)(a o) =(ab) O +i([ab] o) and (£)?=1.

Sinceyys " =+ i o*, we will get two independent quaternion equatifomgy* = 017,
instead of (90):

2
(94) {—C(p—g@[j +(E-V)’ - E+hedH= 'ez,ai)}wi_ 0.
The two equations (94) will be essentially diffearas long as one does not hatve O.
Namely, the sign of is established by the Ansafz = _ﬁﬁ andE = - Ei That
i

[
essential difference will persist even in the cak® = 0, since therrelations (93) are
not invariant under a change of signaf The fact that the two equations coincide in the
case of¢ = 0 should not be surprising since (90) is in factady a quaternion equation
then.

Kramers (') derived equations (94) directly from classicaleimenical
considerations.

¢) Reduction issues: The treatment of physical problems on the bafsike iterated
Dirac equation is impossible in the case of nonslang electric fields in the number

() H.A.Kramers, Zeeman-Festschrifs’Gravenhage, 1935, pp. 403.
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field of bigquaternions, since there is no unique reductionah field. The uniqueness
proof of 84 breaks down in the field of biquaternions at the auxil@myditionC,; N C; #
0, which cannot always be fulfilled by a choicecpfandc, (see the end of 8). There
are two essentially different reductions that corredpmnthe two systems of solutions
(94). That difficulty can be eliminated only extending fledd to the complete Dirac
field by the addition of an independent hypercomplex quantiityy that extension, the
reduction will be unique. That will therefore mean tha¢ needs thentire number field
of thelinear equation for the application of the iterated Dirac eiQnatven though the
coefficients of the equation are all contained in aisitf

Although one has to calculate only in the quaternioresyst for the solution of the
iterated Dirac equation (the necessity of basing things tip@rentire Dirac field first
comes to light in theeduction of solutions, while one can naturally get by with the
biguaternions in the purely-mathematical solution of theated Dirac equation), | do not
know whether the use of equations (94) for the exhibitiogigenfunctions of electrons
has any advantage. For the calculation of eigenfunctibtise electrons in the central
field, it is simplest for one to start with the limesquation directly in any case, as we did
in §14.

d) Conversion of the solutions to the solutions of two linear equatioitie most
general solution of the iterated Dirac equation is afim®mbination of the solutions of
the two linear equations. One sees that very easily whe integrates the equation:

(95) D' =0

in two steps. We can initially regard (95) as a linepragion for the functionl§ )
and then write:

(96) D y=y",
in which ¢ " is any solution of the linear Dirac equation:
(97) D'y =0.

(96) is an inhomogeneous equation fior SinceD ¢ ™ = - 2i (Eo/ ¢) ¢™ [cf., (82)], that
will imply a particular solution of (96)y :% @ = *. The most general solution
differs from the particular one by an integral bé thomogeneous equation; i.e., ¢+
@* +~. The statement is proved with that.

It follows from this, in particular, that the itet@d Dirac equation will yield no other
energy levels than the linear orf@he “neutron solution” of the Kepler that Temglave
(%) is not permissible, since it exhibits a singujadt the 0-point that will continue to
exist when the singularity of the potential vansi@Z - 0).]

() G.Temple, Proc. Roy. Soc. Londat45 (1934), pp. 344.
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Appendix
Algebra of Clifford numbers.

n quantitiesy that satisfy the equation:

(1) W+ WU =20&

and are independent, moreover, generate a numberHalave would like to denote with
the abbreviationC, , in honor of its discovere€lifford (). The numbers that are
contained irC,, have the form:

(2) a0+zaiyi+zakyiyk+---+3123._,n14_}éy3...}{1.

izk

The a's are ordinary complex numbers, while the O-fold, H-fo2-fold, ..., n-fold
products of the variougs define the basic quantities of the systefine number of basic

quantities is2". There are therECj products on(Cj =(1+1)=2" One will see
v=0
even more simply that the number of basic quantited by induction; namely, when
one adds the quantity to C,-1 , one will double the number of basic quantities.
Addition, subtraction, and multiplication of the nibens inC, is defined uniquely;
The operations that one uses in calculations will abdestd back to numbers that belong
to C, . (That is the definition of the number field that‘generated” by then ys.) C,
differs from the field of ordinary complex numbers vegsentially in two points: First,
the commutative law of multiplication is not true,(&$ shows. Secondly, not every non-
zero number possesses a reciprocal. The numbers twithcprocals are called zero
divisors; there are different types of them. In whkatows, we will show that the
numbers inC,, belong to (2 + 1) different types. Discovering and characterizingého
types shall be the problem in the following three sections

a) Theorem of Clifford on the construction of they, Grom quaternions.
Isomorphism of & with the2n-rowed matrices— We shall next prove the theorem of
Clifford that Cy, can be generated Inycommuting quaternion fields. One can define a
guaternion field to be a number field that is generated byatwticommmuting quantities
with complex squares. (“Complex” shall mean: “not hgpenplex.”)

We prove Clifford’s theorem by inductio@; is obviously identical with the field of
quaternions.Cy, arises fronCyn-1) by the addition of the quantitieg: )5... sn-1) D1
and yi )5... Yhe-1) Oy ; they both anticommute and have a real square, eso whl
generate a quaternion field. In addition, they will cartenwith Cy-1y .  Clifford’s
theorem is then proved.

() Clifford, “Applications of Grassmann’s extensive algebra,” Am.Math. 1 (1878), pp. 350.
Clifford proves that &, would be generated lycommutating systems of quaternions.
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The generalization follows immediately from Cliffésdtheorem, which is also
proved directly by induction: A number of commuting Cliffofidids Ci\ generates a

CZW'
It is now easy to prove the isomorphis®) 0f Cz, with the field of &-rowed
matrices. Addition and multiplication of matriceghen defined in a known way by:

(33) @B = QA B,

(3b) Ai) + Bix) = (A + Bi) .

We prove the isomorphism by induction. For= 1, the isomorphism can be
exhibited by the associations:

R 1 0 0 1 0 1
“lo 1) =lo 1) 2=11 o) nr=1_ of

and its inverse:

10) 14y (0 1)  prpy, (00)  p-py, (0 0) 1-y
00 2 "loo 2 110 2 'lo 1 2

We now assume that we have represe@gdby 2" matrices. From Clifford’s
theorem,Cy, is a quaternion field with coefficients @ n-1), so the coefficients and the
basic quantities will commute. Since the quatersican be represented uniquely by
two-rowed matricesC,, can be represented two-rowed matrices whose eterbefong
to Cyr-1), SO the induction assumption will imply that thegn be represented by 2
rowed matrices; the numbers@a, are then isomorphic to th8 2rowed matrices.

b) Numbers types in £ . Rank. Possibility of reduction- The most fundamental
property of numbers in the matrix field is theimkaR. It is invariant under all
automorphisms of the field. Now, from the previamestion,Cy, is isomorphic to the
field of 2n-rowed matrices. It follows from this that the robens of C;, can be
characterized uniquely by the rank of those matribat are associated with them by an
isomorphism of that sort. (The fact that rank isuatty independent of the special
representation of th€,, is obvious. Namely, an automorphism would othsenbe
possible as a way of getting arou@g , and under that automorphism, two matrices of
different rank would be associated with each oyh@ve can then classify the numbers of
Can into (2' + 1) types whose rank is equal to 0, 1, 2, 3, ".., Blowever, the type
classification is not useful for us in the givemnfofor two reasons: First, we would like
to characterize the type directly by its algebrb&havior, and not indirectly by a
complicated isomorphism. In addition, the raRks not the quantity that is given to

() We understand “isomorphism” to mean the possibilitgstfblishing @ne-to-onecorrespondence.
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characterize the type, since that number would contmioe associated with differeRt
when one considers it to belong to differ@at. For example, the number 1 has the rank
R=1inCy (= field of complex numbersR = 2 in C, (= quaternions), and generally,
rankR=2"in Cy, .

We would now like to establish the algebraic meaningefainkR of a numbef . It
will be true for matrices, and therefore fox,, as well. If:

(4) A=) =X0+ D XK+ XY K+ X DA J5 .. Jon

i+k

is the general number of the field, which depends ugbingependent parametexa
(%o, X4, ..., resp.), then:
(5) M, OA O, will depend uporR; [R, parameters.

If 1 (T2, resp.) possesses rarki@ this thenAl'; (Al,, resp.) can be replaced wii)
and it will follow that:

(6) A andArl" will depend upon 2[R parameters.

That shows that a right-hand (left-hand, resp.) faofoF will reduce the number of
independent parameters, and indeed by the rafo@f : 2". We shall call that ratio:

(7) reduction factor ZZ_F: :

r characterizes the type of any Clifford numberso it will be independent of which
specialC,, one embed§ in. The proof of the last assertion flows out of fhet that
Con+my Can be generated froi@,, by adjoining quantities that commute wiGy, .
(Clifford’s theorem.)

The following theorems in regard to the isomorphism \widtrices seem obvious:

1. The numbers with= 1 possess reciprocals, and only those numbers.
2. Numbers withr < 1 are zero divisors and therefore do not possessaealpr

[One will make all theorems about matrix products, sagkhe ones cited above and
(5), (6), easy to understand when one regards thevwad matrices as homogeneous
affine transformations of"adimensional space. A matrix of raRkwill then mean a map
to a subspace of dimensi® One proves Theorem 2, say, by the argument that aomap
a subspac® < 2" (corresponding to < 1) and a subsequent projection onto a line that is
perpendicular to the subspace will yield a map of theeespace to the origin.]

(2" + 1) types of numbers are containedin, namely, the nullr(= 0) type, then (2

2 3 Z-1 ,
—,—,-—— |, and finally thenondegenerate
2" 2 2 j y g
numbersi(= 1), which possess reciprocals.

The numbers oF,, withr = 1 / 2' all have essentially the form:

— 1) types of zero divisorEr =2i,

n
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. . . 1
(8) F=@Q+i )@ +ipp ... (L+iYna o) {r=§}-
(i 5 5)( 15 14) ... (I yon-1 Jon) Can also be replaced with any other independemhauting
guantities with squares equal to 1.
One gets the numbers of the other types by adiiffeyent commuting zero divisors
of typer=1/2 ;e.q.:

9 F=Q+ip)p)+ (1 +i)pm)+ ... +(1+ sna o)

n

has the reduction factor=

n

¢) Number types in £C,, C4 . — From the foregoing, the number type€nC,, C,4
are easy to establish.

Co is the field of complex numbersther than zeror (= 0), Cy contains nothing but
nondegenerate numbersH1). The general numbgrof the domain has one parameter.

C, is the field of quaternionsAlong with zero ( = 0) and the numbers € 1), C,
containsonetype of zero divisorr(= 1/2). The general numbArof the domain contains
four parameters. The number of parameters witieldeiced to two by a simple reduction
with one zero divisor and to one by a two-sidedioctidn.

C4 is the Dirac number system Here, along with zero and the nondegenerate

numbers, there are already three types of zereafw(r 2%,%,%) . r = 1/4 corresponds

to numbers of the form (LiH4 5) (1 +i )5 )a) = (1 +i 1 )5) (1— K )6 )6 )4). The sixteen
components of a general numi#ewill be reduced to four by those quantities inree-0
sided way and to one in a two-sided way. Numbérthe typer = 1/2 are already
contained inC, . From (9), an example of=3/4 isl" = (1 +i Ji2) + (1 +i J44). Al and
I"A contain twelve parameters, whil&l' contain nine parameters.

d) Decomposability’) of Gns1 . We generally seek tho& that are decomposable
— i.e., they decompose into two sub-domai@s £ C” + C®) — and indeed in such a
way that each number in the first domain will gav@roduct of zero when it is multiplied
by any number in the second one. We then seekkitown way?), the possible units of
the subsysters™, €?, for which one then hag® ¢ = ¢ &= C”, and in addition
(€W)? =M ?)? =? W d? = 0. Thee” must clearly commute with all numbers in
C .
We first determine the numbers @ that commute with all numbers @, . The
complex numbers belong to them in any event. WFer2n + 1, )4 )5 J4... K will also
commute with all/s, and therefore with all d@, . Now, one easily sees that there are no
other commuting quantities, in general. Namelgrauct ofys that does not contain all

(*) Seerem. 1 on pp. 10.
() See, perhap&nz. d. math. Wissensdhl, A, 4 (Study) (1898), pp. 165.
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ys will always anticommute with at least onethat is either included in it or not
(according to whether it contains an even or odd nuiwibgs as factors, resp.).

It follows immediately from the foregoing that ti&, cannot be decomposed.
Namely, only the numbers that are freg/sfwill commute withCy,, such that only they
can be considered as possible units. However, sinceersrthat are free gfs cannot
be zero divisors, the conditi&? [E* = 0 cannot be fulfilled.

In Czn, Nnumbers of the forra + b Oy )5 J4... Jones COMeE into question as units. The
zero divisors among them are the numiaefs+i" Oy )5 J5... Jsne1). There are two units
among them:

1" G, 3y By

(20) € = 5

They fulfill the conditione” 0" = 0 and are therefore suitable for the decomusibif
Con1 . Obviously, one certainly has+ e = 1, so one will have:

(12) F=Fe +rE=r"+r-,

with I* =T @&, for any quantity” in Con+1 .

The quantitie$s™ andlr™ define a closed number field by themselves. Eddhose
fields is aC,,. Namely, it can be generated by &iticommuting quantities with real
squares (relative to the unis), say, byy Oe', 1 O, ..., Jsn 0. psns1 0" can be
expressed in terms of them, singd®" Oy & ... s, B Opsne CE differs frome® only
by a complex factor.

Due to decomposability, every equation @ can be replaced with two
independent equations @,. Let, say, the equation:

(12) LOy=0

be given. We append a factor of £=+ € toL, as well agy, and get:

(12a) Ly=L(e"+e)y(e +e)=(LE)ye)+Le)ye)=L "y +L ¢ .

If we multiply the equation bg" then the second term will drop out, while thetfoae
will remain unchanged; an analogous situation woline about under multiplication by
e . That will yield the equations:

(12b) L*¢*=0, L ¢ =0.

It would now be easy to classify the number<in.1 into types according to their
capability of being reduced. However, aside frdma fact that such a classification
would have no practical interest due to the decaabitity ofC,n+1 , it would also not be
“typical” in any way. For example, €3, one must ascribe different types to the
numbers (1 44) and (1 H )i )5 )5) [namely, (1 +}4) A (1 + }4) has two components and
@ +ippr) A@D +iKy has four], although they are obviously algebraica
equivalent.
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The decomposability o€Cy.+1 is essentially linked with the fact that one allows
complex coefficients, and not just real ones. If aelgl coefficients were allowed then
the properties of th€, would change very considerably. Al arereal-irreducible. In

addition, one easily sees th&;?, is isomorphic to C2™'™. (J )6 ... Yanss is the
imaginary unit ofC;*%,.) Likewise, Ci3, is isomorphic toCoi¥***. [For the meaning of

4n+

Q, seee) below.] Cx* is an irreducible domain of a complicated structureer@tare no
numbers of ranR = 1 in C*'for n > 1.

€e) Quaternions and biquaternions. One can derive complete sub-fields@fin
various ways. The most important case is th@vay geometric algebra” tha&tlifford
gave, for which we would like to use the symil. Q, consists of those numbers@j
that contain only even-number productg/sf

(13) a0t D aVht Y VS Ve t -

izk ikln

Clearly, Q, andC,-; are isomorphic. One can in fact think@f as being generated by
then — 1 anticommuting, but otherwise independent, quantiies, 4 )5, ¥ V4, ..., K
. Nevertheless, we would like to preserve both efttto symbol<,-; andQ, , since
in practical applications the geometric meaning, and tberethe transformation
properties of the two systems to be defined, are not diffakent. One thinks o€,-; as
being generated hy— 1 equivalent quantities, between which, no relationst besides
commutation relations. By contrast, one must thino&s being generated oydn —
1) / 2 equivalent quantities (that are all two-fold prodwdts ys), between whichn(—
1)(n — 2) / 2 relations will exist in addition to the comntiga relations. C,-; is linked
with the geometry ofr(— 1)-dimensional space, whi@, is linked with the geometry of
n-dimensional space.

Q: is the Gaussian complex numbers, as long as onesatioly real coefficients in
C.

Qs is the field of quaternions, not only in regard to the puaédebraic properties of
C,, but also in regard to the symmetry in the way thatioragines the basic quantities.

Clifford referred toQ, as thebiquaternions It corresponds to the rotations in four-
dimensional space and defines the number field of éhatéd Dirac equation. Since it is
isomorphic toCs, it can be decomposed in the same wags;as

f) Isotropy of the Clifford number domain, C— The quantitieg/ that arise from
the y by an orthogonal transformation:

(14) V= ak K with Zaik & =

will satisfy the same relations as tjag namely:

(15) VetV =
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That invariance of the condition equations under orthabtransformations is probably
the most important property of Clifford numbers for dpplications. It allows one to
associate tha y’s with ann-dimensional coordinate space in an isotropic way. Namel
if one associateg« with the x«-axis then the coordinate axes will be in no way
distinguished, so any direction with the unit vectocan be associated witly ¢) =

Zek Y, in a completely isotropic way. One can then thinktled Clifford number
k

domainC, as being generated by a symbaligector ythat possesses the componemts (
¢) in a directione, and those components will then transform like vectimmonents

(while yitself will take on a meaning that is independent of thedinate system).




