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On knows the fundamental role that is played by thé&icpdar integral 1 f in the
equationAu = 0 in potential theory. One likewise knows some paldicintegrals of the
equations of equilibrium of an isotropic elastic body fhlat a role in that part of the
theory of elasticity that is entirely analogous te tine that is played by the functionrl /
in potential theory. The aforementioned particulargraés have in common that they
are homogeneous of degree — 1, and that they have justarsngular point at a finite
distance.

It is natural to propose the question of whetheretleedist particular integrals of the
equations of equilibrium for an arbitrary crystalline pdbat enjoy the same properties
as the function 1.

| hope to give a satisfactory answer to that questitintive following results.

In the first chapter, | shall give a formula thapnesents all analytic, homogeneous
integrals of degree — 1 of a partial differential equatidth constant coefficients. Upon
giving convenient values to the arbitrary elements in filmahula, one will find that the

differential equations of the fornf (i 9 iju = 0, wheref is a definite form, always

ox 0y 0z
admit a certain number of integrals that are reguarahy real system of variables,
except for the system=y =z=0.

With the aid of these integrals, in the second chapt@rall deduce a formula from
the known theorem of BETTI that permits one to expré®s components of the
deformation inside of a body when one is given thosepcments on the surface, as well
as the forces that act upon the surface.

The aforementioned formula is composed of three tgpedegrals that are perfectly
analogous to the integrals in potential theory that ssmtethe potentials of an extended,
three-dimensional mass, a simple layer, and a doubé.la@ne will find a study of
these integrals in the third chapter.

In the same chapter, | shall show, moreover, that@an express any homogeneous
integral of negative integer degree of the equations dfilegum that is regular for real
values as a linear function of the derivatives of tlygileg integrals of degree — 1. |then
show, in turn, what the physical significance of the bgemeous integrals of degree — 1
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is, and | solve the problem of equilibrium for an infahjt large elastic medium that is
undeformed at infinity.

CHAPTER |

8 1. Homogeneous solutions of degree — 1 of linear differentequations with
constant coefficients.

Homogeneous functions of degree — 1 that satisfy a homogetieear differential
equation with constant coefficients:

) f[i,i,iju:o
0x, 0%, 0%

can be obtained from the particular integral:

1
u=
$X + &%t & aXg
upon forming the expression:

2) u:j

W& n)dé |
f,(&,m)(Ex 1%+ %)

In that formula, the variables are coupled to eabler by the relation:

f($, ) =1(¢, n, 1) =0,
f2(&, n7) denotes the derivativéf / dn, and (¢, 1) is an integer rational function gf of
degreen — 1, wheren is the degree of, with respect to whick€ will be an analytic

function.
Having said that, we make the following hypothese& ¢, &, &):

1. The coefficient o€, is non-zero.
2. The factors off (if it is reducible) are all unequal.

By virtue of hypothesis 1, we can write:

(& =for +f1 "™ + ... +f,,
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in whichfy is certainly non-zero. By virtue of the second hypashéke rootsy, ..., /n
of the equatiori(¢, 77) = will be unequal, in general.

If we now substitute these roots fgrsuccessively in the expression (2) and take the
sum of the results then we will have a symmetric fioncof the roots, and one will
obtain its expression as a functionéah just the following manner:

Decompose the rational function sf

W& n)
f,(&,m)(Ex +11%+ %)

into simple fractions.
Provided that the variablghas a value that makes the roggf the equatio(é, 7)
= 0 are all unequal, one will obtain:

3) w(&n) 2 w(én,) oL
f(EMEX 0%+ %) 73 G,(E0)EX 0%+ %) -7,

wherer, is determined by the equatidr, + /7o %2 + X3 = 0.
If we now develop the two sides of equation (3negative powers of and write
that the coefficients of 1/f are equal then we will get the desired expression:

4) Zn: wé.n,) - _ w(é.n,)

= (EN)EN NNt X) % T(En)
Now set:

WUE M) =k 7+ ke 72+ L +Kn,

with the following values for the coefficieris

kl = fol//]_
ko =fign +foyp,
©))
kn—fn 11//1+fn 21//2+ .+l ,

in which they denote indeterminate analytic functions.
Upon now forming the definite integral:

VACSUN,
© LX f(<, /70

where the closed conto@ must contain no other singular points that thesad the
equationf(¢, 7o) = 0, one will obtain a homogeneous integral ajréde — 1 of equation
(1), which would obviously follow from equation (4)We shall prove that one can
choose the indeterminate functiogrgin such a manner that the firscoefficients of the



Fredholm — On the equations of equilibrium of a solid,tiel&®dy. 4

development ofu in increasing powers ok, will be equal to then corresponding
coefficients in the development of a homogeneous iomatf degree — 1.

VACSUND,

Upon developing the function—--=" in decreasing powers gf one will find:
X, £(£.170)
(7) [)ll(éT ,70) - (‘/’1 +¢’2+ +¢In +Z¢Irr]1:5j
X (<, /70) n n n" vEn

This development converges, provided that one giyea value that satisfies the
inequality |77 | >R, in whichR denotes the absolute value of the largest rogt o the
equationf(é, n) =0

Let £ = - x2 / X1 be a regular point for the functiogg(x), ..., ¢n(X), and choose the
integration contour to be a cirdethat has the point x, / x; for its center and a radiys
that is small enough th& contains no other singular point of the functighs Suppose
that this condition is verified ip < J, and setf = —x; / X1 + p €’ from which, one will
getno=—x/x pe’

Because the roots of the equati¢f) 770) = 0 all become equal tox, / X, for x, = 0,
one can choose to be small enough that the cir€econtains all of the roots, and at the
same time, that the modulusmfis greater thaR.

If the preceding conditions are verified then cae integrate both sides of equation
(7), which will give the result:

- J’ w(fﬂo) dg(
2m e x, f(&.n,)
(8)
_1 X |_% o _% X% e[ %
1, H__w E R N
x U %) T % [n-1% X
However, the coefficie Vlﬂél’ﬁ?l[ Zj of x; in this is a homogeneous function

of the variabless andx; of degree ¥ + 1), that one can choose arbitrarily& n — 1.

Therefore, formula (6) will indeed give us all hogeneous integrals of degree — 1 of
equation (1) that are developable in increasinggrewfx; .

Since one can always perform a linear change oéblas in such a manner that a
function of the type considered here will be reguidat x, = 0 and that hypothesis 1 will
be verified at the same time, one can considerptiodlem of finding the analytic,
homogeneous integrals of degree — 1 of equatioaghaving been solved. Nonetheless,
one restriction still remains, namely, hypothesist2owever, it is easy to see that this
restriction has no importance, because the expmeg$s), which satisfies equation (1)
identically, does not cease to satisfy that equatfothe functionf(é, &, &) has,
perchance, a multiple factor. Moreover, the dgwelent (8) will have the same form
once more in that case, and the coefficients ofitsien terms will be arbitrary functions.
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One must then observe that the integrals, whose ssiprs we have given in the
form of a definite integral, can be presented in a fthat is devoid of any integration
sign, because one can easily perform the integrati®ormula (8) by using equation (4),
and one will find the following sum of residues as the espion foru:

Y (&,.1,)

9) u= ,
v % 6(E.n,) =% 1(E,.n,)

whereé, , n, denote the coordinates of the point of intersactibthe lines:

f(&,mM=0 <¢x+nx+x=0,
andf; andf, are defined by the formulas:

of of

f]_:—, f2:—

on

Upon employing homogeneous coordinafgst,, & in place ofé ands, one can give
u a more symmetric form. Skt=0f/d¢é,, so one has:

Nf(é, &, &) =&+, L+ 8 =0.

Since we have:
f1&+f & +138 =0,

we deduce, upon introducing three constantk, ks :

é — <5 — $ — ki + K, 2+k39(3.
X f=%f Xfi-xf xf,-xf ko Kk K
X% %
f, f, f,

In order for the last expression to not be illysaris necessary that ttkemust satisfy
the inequality:
ki éi+ka & +ksés# 0.

By introducing the expressiolfs= & / &andn = & 1 &, one will find that:

2 [ & &
£ w[j
w(fﬂ) - g(3 g(3

lez_ X, fl X1f2(§(1’§(21§(3)_ Xzfl(frnge)
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_ WS E)KE KL KE)
k k K |

X % X
f1f2f3

where one letg/ (&, &, &) denote the homogeneous functiéﬁzw[%,%j of degree
3 3

n— 2. The expression farin terms of homogeneous coordinates thus becomes:

(10) u= i AR ’53k)1(k1|:(21 +ki<2§(2+ Kgs) ,
X % XK
iof fg

inwhich &, &, & are the coordinates of the points of interseabibtine lines:

f(é1, &, &) =0, X1 é1+X% &H+X3&=0,

and f;/= 17(¢/,$;.43).

In order to obtain a symmetric expressiondan the form of a definite integral, one
agrees to express the variaBlen formula (6) by an auxiliary variabkin the following
manner:

Define &, &, and&; as functions o$ by the equation:

Ky K, K,
(11) X1ér+Xe +Xx38B=] X % %
asth asth as
that must verified for any values of the quantikigs
We suppose that tha, and b, are arbitrary real constants that are, however,

independent of thi, .
Fork, = x,, formula (11) gives us:

X1 1+ X% &+ X3 & =0.
The expressiod = 1/ & givesrny = & 1 & and:

53d§(1_§(1d§(2

df =
T

which is an expression that will take the form:
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LR
dé=-—2la a, a|ds
*|b b, b

after an easy calculation, or, if we denote the datent by k, a, b):

-_%
dé=--—=2(x,a,b)d
& 52(xa)s

3

Upon introducing these expressions 17, anddé into formula (6), one will finally
find that:

(12 u= | Yt d)@b g
2l T(6.68)

We make the following remarks in regard to thigriata: The contou€ must contain at
least one of the roots of the equati6f, &, &) = 0, since otherwise would be zero.

Suppose that one has fixed an integration cor@out is then clear that one can vary
the arbitrary constants andb, in a continuous manner without that having anjugrice
on the value ofi, provided that none of the zeroesf@f, &, &) cross the contout
during that variation.

It is clear that one can also vary theunder the same condition without the integral
(12) ceasing to represent the same analytic fumctitn particular, suppose that the
contourC is the axis of read and thaff is a definite form. Two systems of values of the
constants, , b, will then give the same value toif one can pass from the one system to
the other by a continuous variation without enceting the system for which there are
real roots of the equatidr= 0. However, if there is a real root of the deuaf = 0 ats
then the corresponding values&f &, & will be & = & = & = 0; in this case, if we set
k, = a, then equation (11) will give us:

ab+tab+aa&=( b x) =0.

The condition &, b, X) = 0 is then necessary in order far O to have a real root at

Upon supposing thay(— x1, — X2, — X3) = X1, X, X3), moreover, we will then seek
what the value ofi(xi, X2, X3) will be when one changes the signs of the vaeghl X,
X3. Since one cannot pass from the poxt Xz, X3) to the point £ x;, — X, — X3) without
encountering values for which one haslf, X) = O, it is necessary to vary the quantities
a,, b, at the same time as thg. Suppose, for example, that the values of ttanties
av, bv are such thata( b, v) preserves the value 1 whea, (X2, Xs) passes from the point
(X1, X2, X3) to the point £ X3, — X2, — X3). Since the functiong/ andf do not change signs
then, one will have:

u(— X1, — X2, — X3) = U(X1, X2, X3).
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8 2. The case in whicl({;, &, &) is a definite form.
Suppose that the forféy, &, &) is a definite form; i.e., that the equation:

f(é1, &, 6) =0

has no real solution other than the obvious solution:
=6£=6=0.

We shall prove that in this case, a certain numbeneohbmogeneous integrals of degree
— 1 enjoy the property of being holomorphic in the neighbattedany real point, except
for only the origin.

The functions that are considered are homogeneoitsyiiosuffice to prove that our
functions are regular for all real values that satisé condition:

XXt =1
Upon giving the values;, a,, as to the quantitieg;, ky, ks, one deduces from (11) that:
aé1 t b +aé=(a b, x),
from which one concludes that the distance from thatgej &, & to the origin is never

less than:
|(@,b,X)|

Suppose (as is always possible) that the nunghebs are chosen in such a manner that
is greater than a given non-zero quantity — say)f we letm denote the minimum of

f(é1, &, &) for the real values that satisfy the equation:

r=

g+&eel =1

then we can affirm that the minimumf¢&,, &, &) for the real values &fis not less than
ud.

The equatiorf(&, &, &) = 0 then admits no real root st Moreover, since the
coefficient ofs" in that equation is:

one can always choos®, a,, az in such a manner that this coefficient will have a
absolute value that is greater than a given pestjwantity — sayA. Since the other

X %

(1% %] | %%
, ’ala‘Z

& & &g
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coefficients are always finite, it is clear thakearan describe a circ@ whose center is at
the points = 0 and whose radiusis independent of;, xz, X3 and large enough that all of
the roots of the equatid(¢;, &, &) = 0 ats are interior taC.

Now take the integration contour in formula (12) taalb®emi-circleC; with radiusp;
that is larger thap and has its diameter along the reakis and its center at the origin. |
then say that the functiarfx, x2, x3) that is defined by the equation:

R GRRACLE
o HEEE)

where / denotes an integer rational function that is homeges of degree — 2, has no
real singularities.

One now sees that the absolute valué&(&f &, &) will not go below the quantity
A(or — p)" whens traverses the curvilinear part f. Let m be the smaller of the
numbersu d” andA(o. — p)"; mis the a lower limit to the absolute values tidt, &, &)
takes whers describes the conto@; . Having said that, one can find two numbers
andm; <min such a manner that the inequality:

| f(xa+hy,Xo+hy, X3 +h3,8) —f (X, X, X3, 9) | <my
is verified for allh, that satisfy the inequalities:
(13) lhy | <h v=1,2 3).

In the preceding inequality, one has dend{éd &, &) by (&, &, &, 9).
It is now easy to see that the development(f&pf’ﬂ In increasing powers df,

converges for alh, that satisfy inequalities (13). Set:

(14) @by = z cbalamhfl hgz rgz ,

f /11/1 2/1 3

and letG be an upper limit of the values d, (b, X) ¢ for the values of the variables
considered. We have shown that the absolute dlfié; + hy, X2 + hy, X3 + hg, 5) IS not
less tharm — m, and in turn, we find that:

< G 1
m- rq h]1+/12+/13 '

‘ cD/ﬁ/‘z/ﬁ
Since the development (14) is then uniformly cogeet, one has the right to write:

(15) u= jqwds = > h:heh L ®,,, ds

MAAs
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It then follows that the function will be developable in the neighborhood of an arbitrary
real pointxi, X, X3 that satisfies the equatioxf + 5 + X = 1 and that this development
will converge for alh, that are less tham Let that development be:

u= z UMZAJfl He e

AAAs

so the development efaround a poink;, X, Xs that satisfies the equatiof + X2 + XX =
r? will be written:

u
(16) u= > e

A T

and will converge, in turn, if this, satisfy the inequality:

(17) v <h ¢ +x+ %,
and,a fortiori, if  h*+h>+h <h X +x+X.

It is important to observe that the development (1&)lss uniformly convergent if
one considers it to be a function of the real vaeshl, x;, x3 that is subject to the
condition:

SRR < R,
h

because in this case again each term in the developmentitifbe lower in absolute
value than the corresponding term of a convergent sghese terms are independent of
the terms in the developmentwf

8 3. Application to a system of differential equations.

In what follows, we will have a particular need fotegrals that are homogeneous of
degree — 1 of two systems of differential equations, namel

3 3

(18a) > AL,u, =0, (1®) > ALy, =0,
H=1 A=1

in which theA,, denote the symbols of the operation of the form:

Dy = Z(/]’uj 9 9 (a, =1, 2,3),

2\ agJox, o
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AU
ap
We shall get the desired integrals in the following maniheve eliminate two of the
unknowns from equations (&Bor (1&) then we will get a differential equation that can

be written in the symbolic form:

in which the( j denote constant coefficients.

11 12 13

2 2 23 V:0.

[ >
>N >
(>

31 32 33

That differential equation will be linear, homogeneousixth order, and have constant
coefficients. Leff denote the function that one obtains by replacing the slgmdf the
operation® / 0x1, 0 / 0%z, 0 / 0% with the variables;, &, & .

From the preceding, the desired integrals will be reptesl by the formulas:

3

1 (ab, Xy 1 Y, (&n,)dé
19 a= — | ————2ds == 2 ; !
(19) v IT'[C f > ﬂ-; IC f (&)X +17, %+ %)

which then comes down to the determination of timetion (.
Upon introducing the expressions (19) into equatki®), one will find that:

Zsl .[ Aipwl+AI/2p¢I2+AVL>ﬂ¢I3 d
C

- O = 1, 2, 3 y
= ¢ 1,(E6n,)(EX +n, X+ %) “ )

in which theA,  denote the functions that one obtains by replagih@xi, 0 / 0%z, 0 / 0%

with & 7, 1, respectively, in tha,, .
One sees that one can satisfy the preceding egsdy taking they to be functions
of degree four that depend upon three arbitrargtzoms and are defined by the formulas:

k A, Ay A,k Ay A, A,k
=1k, Dy Dyl Wp=10, K, Ayl ¢s=|0, A, K,
K, Ay Ay, A, ks Ay, A, Ay Kk,

Finally, take the integration conto@ to be the semi-circle that was defined in the
preceding number, so formulas (19) will represategrals of the system (WBwhose
only real singular points at a finite distance de pointx; = x; =x3 = 0. Letf, 5, 5
denote the integrals thus obtained. One will ne@t the analogous integrals of the
system (18) immediately by exchanging the indices of the the expressions for thg
between them. Call these integrais a», as. It results from formula (10), 8§ 1 that these
integralsa and S will be algebraic functions.
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CHAPTER II.

Green’s method.

8 1. Proof of a fundamental theorem.

Consider an arbitrary elastic body. Lef, uw, us be the components of the
displacement of a point of a body, andXgtx,, X3 be the rectangular coordinates of the
same point in the natural state. One then knows tieapdtential for the interior forces
can be expressed with the aid of a definite quadratic fiotthre six variables:

au" dw:gi.{-ai

= ox, X, 0X

: A, uv=1, 2, 3).

Let f be that form, and ledS be the volume elemer@ of the body considered, so the
aforementioned potential is equal to the integ{rdldS when it is extended over the

volumeS
Upon applying the principle of virtual velocities, one gmes another deformation

whose components axg, v, V3, and one considers the integljahds, whereA is the

bilinear form:
_ of av of av2+ of av,

6511 6x 6522 0X, 000X,
+ of %+% of % a_v of 6\4 A
00,,| 0X; 0X, 6531 0X, 0X, 6512 0X, ax

A consideration of the integrélAdS will lead us to the fundamental theorem whose

proof defines the objective of this paragraph.
| first observe that the form is far from being the most general bilinear form that
one can define with the first derivatives of the fumesiu andv. Meanwhile, since the
theorems that | intend to prove still persist in theegahcase, | suppose thatis an
arbitrary bilinear form of the first derivatives of thenctionsus, Uy, Us, Vi, Vo, V3. TO
abbreviate, set:
_ou, _ 0v,
Vv,

We express the fords by the formula:
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7 = 2[ jvm " Wi a, B=1,2,3)

Auap

A
in which the symbol{ ’Z j denote constants, and each of the indices takesorathes
a,

1, 2, 3, independently of the other ones.

We suppose that the six functioms u,, Uz, Vi, V», v3 and their derivatives of the first
two orders are continuous functions in a certain readadoD.

Introduce the quantiti€E,, and¥ s that are defined by the formulas:

oA A

Tha= —=, Tp=
Y “7 du,,

Take a volumeS inside the domaiD that is bounded by a surfacethat possesses a
well-defined tangent plane at every point. detbe the element ab

One now deduces, in a well-known manner, two expresfioribe integranSAdS

A= TV Z ysYup
Aa

from the identities:

namely:

(3) jSAdsz L,ZVAZ cos(mg,)cku—j z \42 Lia ds

and

jSAdS: LZ”#ZTM cos(nx, )dw—jsz q,z(?—”ﬂ ds,
U B U B Xﬂ

in whichn denotes the external normal of the surfa@nd cosf x,) (a =1, 2, 3) denote
its direction cosines.
One derives the following expressions Tk and¥ 3 from equation (1):

5 - £ 2122,

7 m\aljox, (a2)ox, \a3)ox |
(4) ] )
Al S((Au) o (Ao (Au) o
5= s % = 2 as o s (3o
%\ apB = \1B)ox, (28)0%, \3B8)0x |
S0 one has:

30T M) @,
ox, az\aB)ox,ox, "

(5)



Fredholm — On the equations of equilibrium of a solid,tiel&®dy. 14

50T, _ A 9%,
2 _Z[aﬁj

ﬂ:]_ aXﬂ Hﬂ/] 6Xa axﬂ

If one now introduces the symbols of the operations:

A 2
: w3l

& 0x, 0%,
N = A i-{- A i.i. A i
“o\al)ox, \a2)ox, a3)ox,’

(e (o (8
1B )ox, \28)ox, | 38)ox

then one can write formulas (4) and (5) as:

(7)

(8) Tia= Y AU, Tup= Y. 050,
7 A
oT,,
(9a) ZGTA = ZAMU# ’
a a H
0%
(9b) Z ax"ﬂ = ZAMVA .
B B A

| now suppose that the functionsandv, satisfy the systems of differential equations:

(10) >A,u, =Uy, DALY, =V,
7 A

in which the symboldJ, andV, denote continuous, uniform functions. Upon now
forming the difference of the expressions (3), while limgpequations (10), | obtain the
equation:

(11) [ > Uy, -V,u,)ds

:L){ZVAZTM cos(nx, )->. 4> %, cosfy } do.

Upon setting:

T)=>.T,, cosfx, ), Ty =3 %, coshx, ),
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to abbreviate, one can write formula (11) in the form:

(12) jSZ(upvp -V,u,) dS = jwz(vm -u,T,) dw.

This formula is the expression of the fundametitabrem that plays the same role
for the systems (10) that GREEN'’s theorem doesHerLAPLACE equation. In the
particular case in which is the variation of the internal potential of dastic body, the
fundamental theorem is identical to the known BETfFEorem.

8 2. Application of Green’s method to the systems:
Z/JAA/J uj :U,u, ZA A/],uVA :V,u-

Let u, W, U3 be three functions that satisfy the equations:

3

ZAMU;/ =Us,

H=1

and suppose that the continuity conditions of elvarified. Upon taking the functions
v to be the functiongB, (x — X, %,— %, x— %), we can apply formula (12) of § 1 to the

condition of excluding part of the domain of intaegon S that is internal to a close
surfacew. We suppose that/ is a sphere with the arbitrarily small radiugand the
point A(X’, %, X) as its center. Letn, and gy be the functions that are deduced from

the functiong in the same manner that the quantitigg and ¥, are deduced from the

functionsv. Let S’ denote the domaif minus the spherey. An application of formula
(12) then gives us:

(13) [ > 6T, ~uo,)do+| 3 (B,T,-yo,)dd = | >U,BdS.
P P P
Now, make the radiusdecrease, so the integral:
L;Zp: B,T,du

obviously converges to zero, since the integflare homogeneous functions of degree
— 1, andT, remains finite for = 0.

We now see what the other part of the integralbleéongs to the sphewe becomes.
It suffices to consider the integral:

'Jl = '[Ul[UnCOS(nXi )+ 012 COS(’]XZ )"0-13 COS(IXS]) d’-j )
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wheren denotes the external normal to the volu&ie- i.e., the interior normal to the
spherew’ Let g,, denote the value of the homogeneous functignof degree — 2 on

the surface of a sphere of radius 1 that is concewtitlt v, and denote the surface
element of that sphere lolen. The values of the functiong,s at two points along the

same radius one of which is onw, and the other of which is a@— are then related by
the formula:

1

Oap = FO-;[?’

and one will have:
da =r?da,

moreover. One can then write:
Ji= j u, [o7,cosx )+ g}, cosqx, ¥ o', coshx,]) v .

In that formulap; depends upon only Setu, (X, X, ¥) = u?; due to the continuity
of u;, we can chooseto be small enough th#aml -u ‘ is less than some arbitrarily small

guantityd. Moreover, if we leg be the largest absolute value of the quantityrachets
in the expression fak then we will have:

3,~ ], [oucosn )+ o, costx, ¥ o' costix]) o]
= [, w-u))[ay,co8(0x )+ 0%, cosx, ) o'y, cosx]) do

<& [do,
<4y,
ie.
limJ, = uy| oddd.
If we set:
(14) L= | o,ddt,

to abbreviate, then we will have:

H — 0 0 0
lim L}Zp:upapdai = Lu + Lud+ Lud.

The integral in the right-hand side of equation)(bBviously preserves a finite value
when we make tend to zero, because if we denote the uppersliafitU, | and | 5, | by
G andg, resp., then we will have:

s
‘js,zp;upﬁpds <Gg L'dT-
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However, one knows that the integral in the right-hadd preserves a finite value no
matter how small is. Consequently, it is legitimate to write:

im [ >"U,B,dS =[ > U,B,dS.
P P
The result of all of these passages to the lsntxipressed by the formula:

(15) Ly + LU+ L = [ > (B,T,-u,0,)dw=| > U,B,dS.
P p
One likewise obtains an analogous formula for theefionsv,, , which satisfy the adjoint
system:
DALV, =V
i

Upon letting 7, denote the quantity that is analogous to dh¢hat is deduced from the
integrala, and lettingVl, denote the integral:

Mp= | 7,dd (0=1,2,3),
the formula can be written:

(16) MV + M2+ M)A = J'wzp: @,%, —vprp)dw—jszp:\/pap ds.

Furthermore, imagine the case in which the poik’, X, XX) is situated on the

surfacew and suppose that the surfadas a well-defined tangent planefat To that
effect, describe the spheté with its center aA and letv denote the part abis external
to the spheraw. If we apply the reciprocity theorem to the vabehen if we letaw
denote the part of the spherical surfag¢hat is internal t&sthen we will have:

L,z(/”pr ~Uu,0,) dof +Jvz('3p\//> —yo,) dv= ,[S'zup'gpds .

One proves, as in the preceding, that the limthefintegral on the right-hand side is
a finite quantity for = 0. Similarly, one finds the limit of the firgttegral to be:

lim L;Zp:(/”pr ~u,0,) df == | oda- | o,d0- [ o,

in which the integrals in the right-hand side miosttaken over the part of the spherical
surface ' that is on the internal side of the tangent plamev at the pointA. (The
internal side of the tangent plane is the one withinterior normal.) Since the, are
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even functions, it follows that the value Eﬁhpdai must be equal tgL,. One also
proves that the limit of the integral:

J'VZ(,Bpr -u,0,) dv
P
is a finite quantity for = 0. That limit can then be expressed by the natleg

[ >(BT,-u,0,) dw.

We are thus led to the formula:
LU+ Lud+ L = 2 3 (B,T,-u,0,)dw-2] " U,B,ds,
P P

and similarly, to the analogous formula:

MM+ M+ M = 2 3 (@,%, -v,7, )dw= 2] Y V,a,ds.
0 0

Finally, if Ais a point that is external to the volu@éhen | will recall that one has:
[ X8, -u,0,) &[T U,8,d8=0,
p P

szp:(aplp -V,7,) dw—J’SZp:\/pap dS =0,

because in that case, no singular point will benébinside ofw

We shall calculate the values of the coefficidnendM in the following paragraph.
Since it will then result that these coefficients aon-zero, formulas (15) and (16) will
permit one to calculate the values of the functiorendv inside of a volumes if we
know the values of these functions and certairalifenctions of the first derivatives for
the points X1, X2, xs) that belong to the surface

In particular, these formulas will apply to thestiny of equilibrium of an arbitrary
crystalline elastic body. In that case, the qui@stT, will denote the components of the
pressure on the surface of the body considered.shk return to that application in the
last chapter.

§ 3. Calculation of the coefficientd and M.

We have defined the coefficielnt by the formula:

Lo= J'wapda),
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in which the integral must be taken over a certain sphesicédcecw Meanwhile, if we
take the functions, to have constant values then an application of faar(iLb), § 2 will
show us that, is independent of the special form of the surfacet@gration, in such a
way thatwcan be an arbitrary closed surface that contains thm,oprovided that it can
be converted into the sphesgby a continuous deformation. In particular, tat be a
cylinderC that is parallel to theg;-axis, and whose bases have the equakprs andx;
=—-a. Upon lettingdsdenote the linear element of the intersection otttiader C with
thex,, Xs-plane, one can write the expressionligas:

Lo= L]‘aapdsd>§ + B,

in whichB is the sum of the two integrals that are taken dwetases of. However, if
one calls the area of the basand letsop denote the largest absolute valuegpfvhenx;
is equal to unity then one will have:

2A0,

az

|B|<

It will then follow that limB = O fora infinite. As a result, one can write:
+a +oo
Lp= lim [ Jodsdx =L,= [ o,dsdx.
-a —00
However, it is clear that one can choose a posgjuantityay such that the two integrals:
I o,dx, I o,dx
a

have values that are less than an arbitrarily smahtgyaf a is positive and larger than
a . It then follows that one has the right to invése order of integrations in the formula
for L,. First, calculate the integral:

J@) = _fapdx1 :

If we suppose, for the moment, that has a positive value then we can employ the
expression fog, that we gave in Chapter |, § 3:

- W,(&n,)dé
= (6, EX A%+ %)

1
A=,
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in which the contou€C must contain only the zeroes & + 772 X2 + X3 whose imaginary
parts are positive. One deduces the following expression, [see § 1, form. (8)] from
that expression fo8, :

+A" ¢/2+A" W,
NEX +1, %+ %)

M) _I Z f (E N

in which the expressiond’ ; denote the linear functions gand s that one obtains by

replacing the symbol8 / dxi, d / dxz, 0 / dxz with ¢ 775, and 1, respectively, in the
expressions (7), § 1.
We will have, in turn, an expression of the followiogm for the integral:

21 A cos(nx, )+ A cosfix )
) @)= I J Z L@ Ext s Xy o8

If we denote Alcos(h,x, )+ A cosf,x by ®(& n.), to abbreviate, then upon
performing the integration oves (which is obviously legitimate), we will have:

2a0(£,17,) 0
J - a
@)= I Z &) CaE %+ %)

However, it is easy to perform the integration matt formula, which will give us the
result:
4aq)(g|/ l,7|/)

of

6/7V_X265j( a, +17, %+ %)

J@@) = |2
i

4ad (& .n,)

+'ZV: RN ‘%)
on Fac %+ %

v

in which one gives values to tlfe 7, that satisfy the equations:
f(&m=0ad+nx+x=0,
and values), 77, to the that satisfy the equations:
f($"7)=0, —ad’+17 % +x=0;

& and & must have positive imaginary parts in both cas@sth the aid of these linear
equations, one can write the expressionlfe) as follows:
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Aa)=2Y a®(¢,.n,) +3Y ad (& ,7,) |
e (R I TSP [P

and we will have to seek the limit of that functimm a = co.
Since the straight lines that determifjef’, 7, n’tend to the linef = 0 fora = «, the
corresponding values gfwill satisfy the equation:

f(0, n) = 0.

Since the imaginary part @fis positive, moreover, and we have supposedxhist
positive, it will then follow that the imaginary geof 7 must be negative, and that the
imaginary part of7”must be positive. It is true that this line ofgeaing supposes that
the roots off(0, /7) = 0 are finite, but one can always arrange thatdaforementioned
roots are both finite and unequal by a change ofdinates. Having said that, one easily
finds the desired limit:

: s ®(0,7, 3 ® (047,
I;EQJ(a)ZZIZ af ( ,7) _2 af ( !,7) .
% tX) T (%t %)
an, "’ o, "’

However, by introducing the value ®f one will find:

Tg dx = Zii A cos(nx, )+ A cosfx )_223: A cosfx ¥ A cosfx
- A ROnGXt%) E ROROR %)

In the deduction of this formula, we have suppoted x, is larger than zero, but one
sees that the equality will still persist whenis negative, becausg, does not change
sign when one changes the signsxgfand xs, and the right-hand side has the same
property. We now have to calculate:

LJ(oo) ds,

but since the value of that integral does not depgron the form of the contosr one
concludes that® and A’ must satisfy the relations:

An,+A =0, An,+A =0.

Upon inferring A and A from these formulas and recalling thatdenotes the
internal normal tes, one will arrive at the formula:
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o0 = A(ndx+ dx) 5, A dx+ dy
o Z'L Zl‘ fz(O,m)(mx2+x3)+sz zl £,00/, )@, %+ %)’

but it is easy to perform the integrations here; omasfithat:

[Rderdy o, [t ds o
,7|/X2 + XS VX + XS
and as a result:
6 a
_ A
L,=4mr ,
g Z £,(0,7,)

in which one must extend the summation over all rooteeequatiori(0, /7) = 0. If one
observes that the sum in the right-hand side is nothindghe coefficient of 1 4 in the

A

development ofm in decreasing powers @f then it will be easy to simplify the

expression fot, . Indeed, we have [see forms. (1) and (2) ofghisigraph]:

= O + 050, + 00,

k1 A21 ASl All kl A31 A 11A 21k
= Dfp kz Azz Asz +D220 A12k2A3 +D2ﬁ A 12A 22k |
k3 Aza Ass AlB k3A33 A 13A 23k

from which one infers the following value for theefficient 77 in A, by recalling
formulas (6) and (7), 8 1:

21) (31 11 3 13 ( 2

“122) | 22 23 g 23 23 21 §

e[z (a2 (0 3 %)
22 22/ 22| | 22| 2 2 24\ 22l 22
23) ( 33 13 3 13) (23

“122) | 22 2Q “ 23 22} 22}"3

or, more simply:
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11) (21 ( 31
22)( 22) | 22
12\ (22 ( 32

=k, .
22/ 22) | 22
13) ( 23) ( 33
22/ 22) | 22

However, the determinant that multiplies here is equal to the coefficient ot in £(0,
n); one will consequently have:
Lo =4k, .

a,
SincelL, does not depend upon any of the coefﬁci{n}lt’gj, and since one will have
7,

obtained the value &fl, by the same calculation, by taking one’s point of departo be

a, a
the formulas in which one changéjﬁj into (’f j , one will conclude that the value of
H H

M, is:
M, = 4k, .

As a result, formulas (15) and (16) of the preceding pgpagsé! take the forms:

0 _1 _ 1
(159) ki + o+l = =~ ng(wp u,0,) dw=—— L; U,B, dS
and
1 1
(163-) k1vf + kz\;z) + ks\g = ZTL’Z/,: (Tpap —Vpr) dw—ELZp:Vﬂap dS’

respectively. In the case where the pdit, X0, X0) is a point of the surfaceywith a
well-defined tangent plane, one will have the folasu

(17a) W+l k=L [ 3 (T8, ~u0,) do=L [ SU,, ds,

1 1
(183-) k1vf + kz\;z) + ks\g = ETL’Z/,: (Tpap —Vpr) dw_zjszp:vpap ds.
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CHAPTER III.

Applications

8 1. Application to the theorem of equilibrium of an elast solid body.

Letf be a definite quadratic form of the six variables:

We have already recalled thﬁtf dS can represent the potential of the internal forces on
an elastic body. Take another system of variables:

v, ou, L 9U,

Ew = . ) gAyZSyA:_

X, x, 9%

| recall that we have (8 1, Chapter II):

_of of of of of of
A Ent Ept Egst P € at 1
00, = 00, T 005 = 00, © 005 © 00y,
of of of of of of

= + + 0.+ + 0.+ .
0g,, = 08, T 084 O 08, g, L 0E, ¢

It then follows that the quantiti€E,, are identical to the components of the stress that
one ordinarily denotes hy, (see, e.g., CLEBSCH,heorie d. Elasticitgt

Let X3, X2, X3 be the rectangular components of the force that gms a volume
element, so the components of the deformation sdhisfequations:

3
> %e —_, @=1,23).
A=1 an

However, these equations are identical to the differeequations (10), § 1, Chapter II.
In order to see this, it will suffice to see the tielaship between the problems that were
treated above and the problem of the equilibrium oflid,selastic body.

It remains to prove that the determinant of the flonstA,, cannot be zero for any
system of real values of the variables. &et v, in the expression fak, so:

2f = A(u, u).
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If one substitutes this in the equatiap = x,, {gthen one will obtain:

A A

Aua.B

That is, if one makes the following substitutionsi:

Ov =% &, O =X &+ X%y &)

then one will obtain a quadratic form ¥, X,, X3 whose determinant is precisely the
determinant of the functiors;,, .

Suppose that this determinant becomes zero foysterm of real values of the
variables — sayé, = a, — in which one of the quantities, must be non-zero. One can
then find a system of real valugs= a, for which one of the quantitie’s must be non-
zero, and will be equal to zero. However, in order fdo vanish, it is necessary that
=0, 9, = 0, or that the following equations must be vedf

ayay =0, aya,+a,a;=0.

We can suppose that is non-zero; it will then follow thad; = 0. Upon substituting that
value into the other equations, one will find thgdn, = 0,aza1 = 0, so one concludes that
a, = ag = 0, which is contrary to the hypothesis. Thig determinant of the functions
Ay, is non-zero for any system of real values fonttweablesé,, except for the systef
=&=46=0.

Q. E.D.

§ 2. Development into a series.

We have seen that the functianandb enjoy the property of being developable into
power series in the neighborhood of an arbitragy peinta;, ay, as, with the exception
of a4 =ap =az = 0. Moreover, the development@f{a; + hy, a; + hy, ag + hs) in powers
of the variabled, hy, hs converges for all values of these varialtethat satisfy the

inequality:
VR s p[drda,

in whichm is a positive quantity that is independent of go@ntitiesa, andh, and less
than unity.

Having recalled that, suppose that u,, us form a system of integrals of the
differential equations (7), Chapter II, that verifite necessary conditions for the
application of BETTI's theorem in a domain thabsunded by two spherical surfaces 1
and 2 that have the origin for their centers andnd o, for radii, resp. Suppose that the
inequalityp, / o1 < /£ is satisfied, so it will follow that:
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P < op.
2

Take a poinii, X, X3 that is situated between the spheres of radidg/ andpo, 1 and let
&, &, & be a point on the sphere 2, so the development of:

a (éL— X, &2 = X, &3 = Xa)

in powers of the variable§ will converge if either:

JEHE+E<UIX+X+ X

or, upon considering the series to be a function,06, Xs, if:

2yl > P2
XERE% >

Let 771, 172, 13 be a point on the sphere 1, so the development of:

a (m =X, 2= X2, 3= X3)

in powers of the variables, x, X3 will converge if:

NX %X <Up.

Thus, the two developments of the functions:

a(Mm—Xy, f2—X, M3—X%) and  a (L —xi, &2— X2, &3~ Xa)

have the space between the two spherical surfaceadofp, / ¢ and o for their
common domain of convergence.

These developments still converge in the same domdia gainté,, &, & is interior
to the sphere 2 and the poipt 172, 175 is exterior to the sphere 1.

We now apply the formula (4), Chapter I, to the fiowas$ u;, Uy, us. If one takes the
domainSto be the space between the two spheres 1 and 2, aadefa and ap denote
the surfaces of the two spheres 1 and 2 then we will get:

kiup + ko Up + ks Us

1 3 Xfl D(;Z D€3 a/‘1+/‘2+/‘3ﬁ (_,71,_,72’_,73)
=—— T,(17,175:175) £ d
4nqu; T 3422@ |4 A A onponzons “
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X ¢ O¢s 0% B (=11, =175, —175) d
j Z (01,/72,03))1;)3 AL ansortort 2}

/11 Ay /13 9t X,
ol ST S T i P % %)

My |_|_|_ (9Xi1 6)(';2 6)(;3

da,

- 5 2 Ay 6/11+/12+/130. (Xl’ Xz’ )%)
el u,(&,$,, 1yhtAetAs 2L : . d
j Z e 53)«%5 ) |_1|_2|_3 aook

However, it follows from the uniform convergendetloe series that one can perform
the integration by integrating each term; one whkn obtain a development of the
expressiork; u; + ky Up + k3 us that is valid in the space between the two sphafresdius
Pl pand oy 1. That development will consist of two parts, afewhich is a power
series and the other of which is a series whosest@re the partial derivatives of the
functions3, . The first of these parts converges in the iotesf the sphere of radiys
o1, and the second one converges in the exteridreo$phere of radiys, / 1« .

Now, consider the developments of some specialtimms. First, suppose that, u,,
uz denote homogeneous functions of negative integgreg —n that verify the necessary
continuity conditions in all of space, with the eption of the origin. When the radips
tends to infinity, the first two integrals will olmwusly tend to zero. In other words, the
only things that remain will be homogeneous of degrn, in such a way that one will
get:

kiup + ko Up + ks Us

_ Zs: z 6/11+/12+/13ﬁp(x1, X,, )%) _ z B° 6/11+l12+l130-p()$’ %, é) |
g adaxroxy L, M oo ok

in which the valuesA}, , and Bj  ~ are constant coefficients and the indices must

HaloH3
satisfy the conditions:
{ A+A,+A,=n-1,
Myt U= n-2.

In particular, suppose thatis equal to unity, so:

klul+k2u2+K°,U3:A1,31+A2,32+A3@-

Moreover, we know that the functiobsdepend linearly upon the constaktis such
a way that one can write:

Bo=kKi Bo1 + ka Bo2 + ks B3,

so the following expressions will result for then@ionsu:
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W=A L +A B+ As By v=1, 2, 3).

If we setu, = a, in these formulas then if we observe thgt= k, in that case, we will
obtain:

av:klﬁ1v+k2ﬁ2v+l%ﬁsv (V:1,2,3).

Upon equating the coefficients of the consténia this formula and setting:

av:kl avl+k2 av2+K°>av3,
one will get the relation:

aA,u = ,BV/l y

with the aid of which one can write the expressiontfer functionsu in the following
manner:
uw=Aray1+Aa,2+Asav3 v=1,2,3).

It results from this formula that the functioas are the only integrals of equations (7), 8
2 that are homogeneous of degree — 1 and have the propdmsingf uniform and
continuous, along with their derivatives of the finsbtorders, for all real values of the
variables.

8 3. Some properties of the integrals in the fundamentabfmulas.

In the fundamental formula (15), Chapter Il, weTlgtdenote certain linear functions
of the first derivatives of the functions, u,, us . We now leave aside that definition of
the quantitiesT, and suppose only that they are functions of the paraméeréix the
position of a point on the surfacethat are finite and generally continuous.

Let X1, X, X3 be the coordinates of a real pofthat is arbitrary moreover, and &t
&, & be the coordinates of a poston the surfaceu

Consider the integral:

(1) b=ki d +ko ¢2+"°’¢3:%7 ngwﬂ dw;

we show thap is a continuous function for any system of redliga forxy, X, X3. Since
it results immediately from what we said in theqa@ing paragraph that is continuous
for points exterior tay we shall take a poi# on w

Describe a spheeof radiuse with A as its center; lepy be the part of the integral
that is extended over the pag of wthat is interior tes and letg denote the rest of i —
@do . @’is then a continuous function At However, we know that one can determine a
finite and positive quantitgin such a manner that:

|ﬁp|<%
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in whichr is the distanc@A”. Furthermore, leG be an upper limit of the functiofis, ,
S0 one has:

3 dw
| do | <ETGEQJ.%T'

However, one knows from the elements of potentiadbphéhat the value of the integral
in this inequality converges to zero with the radsusTherefore, one can determia¢o
be small enough that the difference of the two vabfeg, at points interior tes is less
than an arbitrarily small quantity, so it will indeeduleshatg = ¢o + ¢’is a function that
IS continuous aA.

Now, pass on to the integral:

_ _ 1
I=ky S +ke S +ks S5 = ITjszp“up,@pols,

in whichU, is a continuous function of the variabl@s &, & .

It is clear that? is a continuous function, along with its derivasy for the points
A(x1, X2, X3) that are exterior to the volunte

In order to establish the continuity 8ffor the points that belong § one only has to
repeat the well-known proof of the continuity oetipotential of an extended, three-
dimensional mass.

One also establishes the continuity of the fissivditives off by the same method.

Now, return to formula (1& of Chapter Il. We have seen that the expression:

1 1
(2) ijzp:(Tp,@p -U,0,) dw_ﬂrjszp: U,B, ds

represents the functidq u; + k; Uy + ks us for the pointsA that belong to the voluntg
and if the poinfA is found to be orwthen the expression (2) will be equabt¢k: u; + ko

U2 + ks u3), and finally, ifA is outside ofSthen it will be equal to zero. However, from
what we proved about the continuity of the integfalnd 7, it will follow that the brief
changes in the expression (2) are due to the mitegr

_ 1
=Kyt + Kot + Katos = ZTI Zp:upap dw.

Let s be a point on the surfaze Let ws denote the value ab at the point, let s
denote the limit oo when the poinA(xi, X2, X3) tends tos while staying inside of the
surface, and letms denote the limit ofw when the pointA tends tos while staying
outside of the surface. One then has the twoioek:t

Ws = Ws— 5 (ki ug + ko U + k3 Ug),

3)
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Whs= Ws+ 5 (K1 Us + ko U + k3 Ug).

Therefore, ifu;, uy, us are the values of three functions of the varialgles,, & on the
surfacew and if the functions have continuous derivatives effitist two orders then
formulas (3) will inform us of the discontinuity ihe integrako.

However, we shall prove that the formulas still ggrander slightly more general
conditions.

Let u;, Uy, Uz be functions of the parameters that fix the positbma point onew
Suppose that these functions admit finite derivativassiforder, and take a poistn w
where the curvature is finite. Describe a spheradiiss whose center is atand which
cuts out a curvgron the surfacea If one letsw’ be the part of the integral that relates to
the areaw that is interior toythen one will have:

,_ 1 1 , 1
v ZTLbZp:upa-pda) - ZT'[%Zp:upUpdw*-ZTLpr:(up - up)ap .

However, sinceg, is a function that is homogeneous of degree —Risnegular outside
of the points, if one letsr denote the distance forato another point otuthen one can
set:

in which 02 is a function whose modulus has a finite uppeitlimamely,g. One then

has:
u, -4,

1 !
ZTJ'%Zp:(uﬁ_up)Upda) = -[%;—Ugdjri).

r

However, there exists a finite upper Iimit%c(up —Uu,), no matter how smailis; letu be
r

that limit, so one can write:
, dw
I%Zp:(up -u))o,dw| < IBQUJ.%T .

However, in potential theory, one shows that thegral has an absolute value that is less
than:
271

cosy,

in which )4 denotes the largest angle between a normad tind the normal &
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The integral%j ZU;Upda) is no longer larger thaku + k,u,+ ku. We can
@
then write the following inequality:

3gue
2cosy,

| /| < |k + kU + k| +

so it will then results that one can choose thausagito be small enough that the integral
J' Z(up -U,)o,dw has an absolute value that is less than an arlyitsmall quantity
ah
P

o.
Since the integralv— @’is continuous in the neighborhoodfone concludes that

the integral:
J'%Zp:(up -u))o,dw

is continuous at the poist One deduces equations (3) from this immediately.

Since the right-hand sides of equations (3) adependent of the coefficients in the
differential equations that define the functighsone sees (see pp. 23) that formulas (3)
also persist for the functions that are definedhgyintegral:

1
ETL)(VJ1 +V,T,+ VI ) dw.

We have established that the functiopgare continuous; on the contrary, their first
derivatives present discontinuities, whose natueeshall exhibit under the hypothesis
that theT, are functions that have derivatives of first order

Sincer, denotes a linear function of arbitrary constantsne can show, by writing:

Tp = K, + KT, + ki,

in which the r; are linear functions of the direction cosineshaf hormal toc
) = Y24, cospx, ),
a

that one can deduce the following expressiorrfgr(see formula (8), Chapter II, § 1 and
Chapter lll, § 2):

v —_ a
Toa = zApﬂaﬂV .
7
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With the aid of these notations, we can substitutefdhewing statement for formulas
(3): J' vrldw is a continuous function ok{, Xz, Xs) if A is unequal tax, on the contrary,

if A = athen the integral will present a discontinuity thadedined by the formulas:
Uwv r;j’da)]S =— 271V, Uwvr;j’dw}esz 27TV .
Upon now differentiating the expression fiyr with the aid of the functiona:

1
¢/1 = ETJ.(‘)(Tlaﬂl + Tza,uZ + Tg,u?) Ch)’
one will obtain:

a 1 a a a
ZA/V/¢# = _ZTJ'(‘)Z (Tl A/Lual,ul +T2A/1pa;12+ TA/Lua,ua) Ch) '
H H

1
== e Tl + T,) Q.

If we multiply both sides of this by cosa ;) and take the sum with respect to the index
a then we will have:

o 1
(4) > coshix, D AP, =~ ETL(Tl T+ T+ 1) dw.
a U

Now, the integral in the right-hand side has e form as the integral that defines
the functiona, so we can account for the discontinuity in thpregsion (4) by means of
the following formulas:

> coshx, N8, | = 1Ta,
L au

s

-jes

D coshx, N8, | =-1T,.
L au

s

Now, recall the study of the integr&] while supposing that the functioks, admit
continuous first-order derivatives. By virtue dfat hypothesis, one can write, upon
applying a well-known formula of potential theory:

99 _1 T
o 4ﬂjwzp:upﬁp cosfx, )dw 4ﬂjszp: o B, ds.

Upon equating the coefficients kf in the two sides of this equation and replacing
the functionsB,, with the equivalent expressian,, one will find that:



Fredholm — On the equations of equilibrium of a solid,tiel&®dy. 33

1
67 ——j ZUp a,,cosfx, )dw- o B ds

If one takes the derivatives of both sides with respmecs then one will get:

0%9 oa ou, oa
- :ij‘ > U,—~cosfx, )da)— j Z —# ds,
ox, 0%, A« 0, axa 0%,

in which the last term is a continuous function.

A
Upon multiplying both sides of the equation by the coieiﬁt:( H

j and summing
ap

over the indicesr and 3, one will find that:

Dy Sy = —j Z Z pZ( j # cosfix, )dw + a continuous function.

If one recalls the formula:
Au\oa "
Z( j—ﬂp == 050,
7 \ap) 0x,
then one can write the expression&qy, 4, :

Dy Sy = ——j z ZU ,05.a,, cosfix, )dw + a continuous function.
If we sum ovelu then we will get:

ZAM = jz ZUpZAM a,, cosfix, )dw + a continuous function.

However, one has the formula:
ZZAM Ho COS@XH ): Tﬂp’
with the aid of which, one will get:

1
z o ;,‘— jZU 77 dw + a continuous function.
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We have proved that the integral that appears in thisulermill experience a brief
reduction that is equal td, when the poinfA(xi, X2, X3) passes from the interior to the
exterior of the surfaceu However, we know thatZA P, 1S equal to zero for the

U

points that are exterior 1§ as a result, one will have:

>A,8, =U, A1=1,2,3).
U

It results from this that we have proved that thetions # give us the solution to the
following problem:

Determine the state of deformation of an unbounded elaséidium when that
medium is subject to forces that act upon the volureenehts that are interior to a
certain surface and that one can suppose the defornmtaero at an infinite distance.

In particular, if one takes the volurdo be infinitely small then one will find that:

_ 1
9=- EZp:ﬁpJ'SUpdS,

S0, upon setting'SUpdS =-X,, one will deduce:

0= (X B+ Xo o + Xa ).
4

It is then clear that these functioflgepresent the components of the deformation in the
bounded case, in which the medium is subjectedféoce whose components akg Xz,
X3 at just one point.

8 4. Use of compensating functions.

By taking one’s inspiration from GREEN’s ideasgaran reduce the general problem
of the equilibrium of an elastic body to some autar problems of the same nature.

First, envision the case in which one is givendbmponents of the deformation on
the surfacewof a bodyS, and the forces that act upon the volume elenadritse body.

If one can resolve the problem of equilibrium e tparticular case in which the
components of the deformation on the surfacare equal to the functions (& — X1, &
— X2, &3 —X3), and the interior forces are equal to zero thesm @an also solve the general
problem. Lety, 5 )5 denote the components of the deformation in theicodar
problem and the components of the pressure onutface byl I';, 's. BETTI's
theorem then gives us:

1 1
= ijzp:(ypr -T,u,) dw_?rjszp: U,y ds.



Fredholm — On the equations of equilibrium of a solid,tiel&®dy. 35

One will find the solution to the general problem upon forntimg difference between
this expression and the right-hand side of equatioa)(E53, Chap. II:

_ 1 1 _
ki Us +ko Up + kg Ug = ijzp‘,(rp -o,)u, dw—ZTjSZp: U,(@,-y,)ds.

Consider the second problem, in which the forded tct upon the surface are
known; let T, denote the components of these forces; Ugt U,, Us denote the
components of the force that act upon a volume et¢rafS. One then knows that the
body S must be in equilibrium under the influence of ghésrces, which implies the six
conditions:

[ T,dew+[ U,ds=0,

[ @T,-&T) dw [ (£,U,-€,U) ds=0.

The solution of this equilibrium problem is notigue. If one letsu;, W, us be
functions that give a solution then one will obtalhof the other ones from the formulas:

U/]+a/l+p,uxv_pvx/1,

in whicha, andp, denote constants.
The deformation that is defined by the functioas @, a3 corresponds to
components of the pressure that are equahta,, 3. We have already found that

j r,dw =4k, . Upon substituting linear functions for then formula (1%), Chapter

[, one will find that:
jw(fﬂrp —&,7,)dw = 471(x4 ko — X, k).

Now, take the origin to be the center of gravityhe surfacew and take the axes to
be the principal axes of inertia for the surfage
Apply forces to the surfac@whose components are:

th=by+CcuX,—CuXy A, v=1 2 3).

If we write down the conditions for the forced and 7 to bring about equilibrium
then we will have:

[ tdw=b[ dw = 4mk;,

[ @, -& 1) dw =c,0 (& +&)dw = 47(x) ko~ X, k).

One sees that the values of the coefficibnamdc that satisfy these equations are linear
functions of the variables, . Provided that the coefficientsandc are chosen in such a
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manner that they satisfy the equilibrium conditioasgd one makes the hypothesis that

the problem of equilibrium is possible, one can soha problem in the particular case
in which the forces that act upemare equal to:

T—1.

In that particular case, |&, &, d; denote the components of the deformation, and let
N1, N2, N3 denote the components of the corresponding pressure.ha3nen turn, the
relations:

r,—Np=1,
for the points on the surface

Moreover, BETTI's theorem gives us:

1 1
0= ELZ(@T[) -A,u,) dw_ﬂjsz U,dg, ds,

and formula (15), Chapter Il gives us:

_ 1 1
kiui+kop + ks Uz = EL}Z(Tpap —-u,7,) dw_IT-[Sz U,a, ds,

S0, upon taking the difference, one will get:

1 1
Kiup+ko U + ks Uz = EL}ZT[](@, -a,) da)—Z_[L)Z U,(r,-A,) dw

1
- Ejszup(ap—dp)ds.

However, the second integral here is equal to a lingactibn of the variableg, that
takes the form:

k Kk kK
kKiup+kop + ks us + Pp B, B,

X % X

and which, in turn, represents a simple displacemetiteobody. Upon supposing that
this function is equal to zero, we will get the solution:

1 1
kiU +ko Up + kg Ug = ZTLZTp(ap -a,) dw—ZTjSZ U,(a,-3d,)ds.




