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 On knows the fundamental role that is played by the particular integral 1 / r in the 
equation ∆u = 0 in potential theory.  One likewise knows some particular integrals of the 
equations of equilibrium of an isotropic elastic body that play a role in that part of the 
theory of elasticity that is entirely analogous to the one that is played by the function 1 / r 
in potential theory.  The aforementioned particular integrals have in common that they 
are homogeneous of degree – 1, and that they have just one real singular point at a finite 
distance. 
 It is natural to propose the question of whether there exist particular integrals of the 
equations of equilibrium for an arbitrary crystalline body that enjoy the same properties 
as the function 1 / r. 
 I hope to give a satisfactory answer to that question with the following results. 
 
 In the first chapter, I shall give a formula that represents all analytic, homogeneous 
integrals of degree – 1 of a partial differential equation with constant coefficients.  Upon 
giving convenient values to the arbitrary elements in that formula, one will find that the 

differential equations of the form , ,f u
x y z

 ∂ ∂ ∂
 ∂ ∂ ∂ 

= 0, where f is a definite form, always 

admit a certain number of integrals that are regular for any real system of variables, 
except for the system x = y = z = 0. 
 With the aid of these integrals, in the second chapter, I shall deduce a formula from 
the known theorem of BETTI that permits one to express the components of the 
deformation inside of a body when one is given those components on the surface, as well 
as the forces that act upon the surface. 
 The aforementioned formula is composed of three types of integrals that are perfectly 
analogous to the integrals in potential theory that represent the potentials of an extended, 
three-dimensional mass, a simple layer, and a double layer.  One will find a study of 
these integrals in the third chapter. 
 In the same chapter, I shall show, moreover, that one can express any homogeneous 
integral of negative integer degree of the equations of equilibrium that is regular for real 
values as a linear function of the derivatives of the regular integrals of degree – 1.  I then 
show, in turn, what the physical significance of the homogeneous integrals of degree – 1 
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is, and I solve the problem of equilibrium for an infinitely large elastic medium that is 
undeformed at infinity. 
 

_____________ 
 
 
 

CHAPTER I 
_____ 

 
§ 1.  Homogeneous solutions of degree – 1 of linear differential equations with 

constant coefficients. 
 

 Homogeneous functions of degree – 1 that satisfy a homogeneous linear differential 
equation with constant coefficients: 

(1)      
1 2 3

, ,f u
x x x

 ∂ ∂ ∂
 ∂ ∂ ∂ 

= 0 

 
can be obtained from the particular integral: 
 

  u = 
1 1 2 2 3 3

1

x x xξ ξ ξ+ +
 

upon forming the expression: 

(2)  u = 
2 1 2 3

( , )

( , )( )

d

f x x x

ψ ξ η ξ
ξ η ξ η+ +∫ . 

 
In that formula, the variables are coupled to each other by the relation: 
 

f(ξ, η) = f(ξ, η, 1) = 0, 
 
f2(ξ, η) denotes the derivative ∂f / ∂η, and ψ(ξ, η) is an integer rational function of η of 
degree n – 1, where n is the degree of f, with respect to which ξ will be an analytic 
function. 
 Having said that, we make the following hypotheses on f(ξ1, ξ2, ξ3): 
 
 1. The coefficient of 2

nξ  is non-zero. 

 2. The factors of f (if it is reducible) are all unequal. 
 
 By virtue of hypothesis 1, we can write: 
 

f(ξ, η) = f0 ηn + f1 ηn−1 + … + fn , 
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in which f0 is certainly non-zero.  By virtue of the second hypothesis, the roots η1, …, ηn 
of the equation f(ξ, η) = will be unequal, in general. 
 If we now substitute these roots for η successively in the expression (2) and take the 
sum of the results then we will have a symmetric function of the roots η, and one will 
obtain its expression as a function of ξ in just the following manner: 
 Decompose the rational function of η: 
 

2 1 2 3

( , )

( , )( )f x x x

ψ ξ η
ξ η ξ η+ +

 

into simple fractions. 
 Provided that the variable ξ has a value that makes the roots ην of the equation f(ξ, η) 
= 0 are all unequal, one will obtain: 
 

(3)   
2 1 2 3

( , )

( , )( )f x x x

ψ ξ η
ξ η ξ η+ +

 = 
1 2 1 2 3

( , ) 1

( , )( )

n

f x x x
ν

ν ν ν ν

ψ ξ η
ξ η ξ η η η=

⋅
+ + −∑ , 

 
where η0 is determined by the equation ξx1 + η0 x2 + x3 = 0. 
 If we now develop the two sides of equation (3) in negative powers of η and write 
that the coefficients of 1 / η are equal then we will get the desired expression: 
 

(4)    
1 2 1 2 3

( , )

( , )( )

n

f x x x
ν

ν ν ν

ψ ξ η
ξ η ξ η= + +∑ = − 0

2 0

( , )

( , )x f

ψ ξ η
ξ η

. 

Now set: 
ψ(ξ, η) = k1 ηn−1 + k2 ηn−2 + … + kn , 

 
with the following values for the coefficients k: 
 
 k1 = f0ψ1 , 
 k2 = f1ψ1 + f0ψ2 , 
(5)     ………………. 
 kn = fn−1ψ1 + fn−2ψ2 + … + f0ψn , 
 
in which the ψ denote indeterminate analytic functions. 
 Upon now forming the definite integral: 
 

(6)     u = − 0

2 0

( , )1

2 ( , )C
d

i x f

ψ ξ η ξ
π ξ η∫ , 

 
where the closed contour C must contain no other singular points that the roots of the 
equation f(ξ, η0) = 0, one will obtain a homogeneous integral of degree – 1 of equation 
(1), which would obviously follow from equation (4).  We shall prove that one can 
choose the indeterminate functions ψν in such a manner that the first n coefficients of the 
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development of u in increasing powers of x2 will be equal to the n corresponding 
coefficients in the development of a homogeneous function of degree – 1. 

 Upon developing the function – 0

2 0

( , )

( , )x f

ψ ξ η
ξ η

 in decreasing powers of η, one will find: 

 

(7)    0

2 0

( , )

( , )x f

ψ ξ η
ξ η

 = − 1 2
2

12

1 n n
n nx

ν
ν

ν

ψ ψψ ψ
η η η η

∞
+
+

=

 + + + + 
 

∑⋯ . 

 
This development converges, provided that one gives η a value that satisfies the 
inequality | η | > R, in which R denotes the absolute value of the largest root in η of the 
equation f(ξ, η) = 0. 
 Let ξ = − x2 / x1 be a regular point for the functions ψ1(x), …, ψn(x), and choose the 
integration contour to be a circle C that has the point − x2 / x1 for its center and a radius ρ 
that is small enough that C contains no other singular point of the functions ψ.  Suppose 
that this condition is verified if ρ < δ, and set ξ = − x2 / x1 + ρ eθ i, from which, one will 
get η0 = − x2 / x1 ρ eθ i. 
 Because the roots of the equation f(ξ, η0) = 0 all become equal to − x2 / x1 for x2 = 0, 
one can choose x2 to be small enough that the circle C contains all of the roots, and at the 
same time, that the modulus of η0 is greater than R. 
 If the preceding conditions are verified then one can integrate both sides of equation 
(7), which will give the result: 
 

 u  = − 0

2 0

( , )1

2 ( , )C
d

i x f

ψ ξ η ξ
π ξ η∫  

(8) 

 = 
1

1 ( 1)3 3 32 2
1 22

1 1 1 1 1 1

1
( 1)

1

n
n n

nn

x x xx x

x x x x n x x
ψ ψ ψ

−
− −     ′− − − + + − −     −     

⋯ + … 

 

However, the coefficient ( ) 3
11

1 1

( 1) 1 x

x x

ν
ν

νν ψ
ν ++

 − − 
 

 of 2xν  in this is a homogeneous function 

of the variables x3 and x1 of degree – (ν + 1), that one can choose arbitrarily if ν ≤ n – 1. 
 Therefore, formula (6) will indeed give us all homogeneous integrals of degree – 1 of 
equation (1) that are developable in increasing powers of x2 . 
 Since one can always perform a linear change of variables in such a manner that a 
function of the type considered here will be regular for x2 = 0 and that hypothesis 1 will 
be verified at the same time, one can consider the problem of finding the analytic, 
homogeneous integrals of degree – 1 of equation (1) as having been solved.  Nonetheless, 
one restriction still remains, namely, hypothesis 2.  However, it is easy to see that this 
restriction has no importance, because the expression (6), which satisfies equation (1) 
identically, does not cease to satisfy that equation if the function f(ξ1, ξ2, ξ3) has, 
perchance, a multiple factor.  Moreover, the development (8) will have the same form 
once more in that case, and the coefficients of the first n terms will be arbitrary functions. 
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 One must then observe that the integrals, whose expressions we have given in the 
form of a definite integral, can be presented in a form that is devoid of any integration 
sign, because one can easily perform the integration in formula (8) by using equation (4), 
and one will find the following sum of residues as the expression for u: 
 

(9)     u = 
1 1 2 2 1

( , )

( , ) ( , )

n

x f x f
ν ν

ν ν ν ν ν

ψ ξ η
ξ η ξ η= −∑ , 

 
where ξν , ην denote the coordinates of the point of intersection of the lines: 
 

f(ξ, η) = 0, ξ x1 + η x2 + x3 = 0, 
 
and f1 and f2 are defined by the formulas: 
 

f1 = 
f

ξ
∂
∂

, f2 = 
f

η
∂
∂

. 

 
 Upon employing homogeneous coordinates ξ1, ξ2, ξ3 in place of ξ and η, one can give 
u a more symmetric form.  Set fv = ∂f / ∂ξv , so one has: 
 

n f(ξ1, ξ2, ξ3) = f1 ξ1 + f2 ξ2 + f3 ξ3 = 0. 
Since we have: 

f1 ξ1 + f2 ξ2 + f3 ξ3 = 0, 
 
we deduce, upon introducing three constants k1, k2, k3 : 
 

1

2 3 3 2x f x f

ξ
−

= 2

3 1 1 3x f x f

ξ
−

= 3

1 2 2 1x f x f

ξ
−

 = 1 1 2 2 3 3

1 2 3

1 2 3

1 2 3

k k k
k k k

x x x

f f f

ξ ξ ξ+ +
. 

 
 In order for the last expression to not be illusory, it is necessary that the k must satisfy 
the inequality: 

k1 ξ1 + k2 ξ2 + k3 ξ3 ≠ 0. 
 
By introducing the expressions ξ = ξ1 / ξ3 and η = ξ2 / ξ3 , one will find that: 
 

1 2 2 1

( , )

x f x f

ψ ξ η
−

= 

2 1 2
3 3

3 3

1 2 1 2 3 2 1 1 2 3

,

( , , ) ( , , )

n

x f x f

ξ ξξ ξ ψ
ξ ξ

ξ ξ ξ ξ ξ ξ

−  
 
 

−
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= 1 2 3 1 1 2 2 3 3

1 2 3

1 2 3

1 2 3

( , , )( )k k k
k k k

x x x

f f f

ψ ξ ξ ξ ξ ξ ξ+ +
, 

 

where one lets ψ (ξ1, ξ2, ξ3) denote the homogeneous function 2 1 2
3

3 3

,n ξ ξξ ψ
ξ ξ

−  
 
 

 of degree 

n – 2.  The expression for u in terms of homogeneous coordinates thus becomes: 
 

(10)    u = 1 2 3 1 1 2 2 3 3

1 1 2 3

1 2 3

1 2 3

( , , )( )n k k k
k k k

x x x

f f f

ν ν ν ν ν ν

ν

ν ν ν

ψ ξ ξ ξ ξ ξ ξ
=

+ +
∑ , 

 
in which 1

νξ , 2
νξ , 3

νξ  are the coordinates of the points of intersection of the lines: 

 
f(ξ1, ξ2, ξ3) = 0, x1 ξ1 + x2 ξ2 + x3 ξ3 = 0, 

 
and f ν

α = 1 2 3( , , )f ν ν ν ν
α ξ ξ ξ . 

 In order to obtain a symmetric expression for u in the form of a definite integral, one 
agrees to express the variable ξ in formula (6) by an auxiliary variable s in the following 
manner: 
 Define ξ1, ξ2, and ξ3 as functions of s by the equation: 
 

(11)   x1 ξ1 + x2 ξ2 + x3 ξ3 = 
1 2 3

1 2 3

1 1 2 2 3 3

k k k

x x x

a s b a s b a s b+ + +
 

 
that must verified for any values of the quantities kv . 
 We suppose that the av and bv are arbitrary real constants that are, however, 
independent of the kv . 
 For kv = xv , formula (11) gives us: 
 

x1 ξ1 + x2 ξ2 + x3 ξ3 = 0. 
 

The expression ξ = ξ1 / ξ3 gives η0 = ξ2 / ξ3 and: 
 

dξ = 3 1 1 2
2
3

d dξ ξ ξ ξ
ξ
−

, 

 
which is an expression that will take the form: 
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dξ = −
1 2 3

2
1 2 32

3
1 2 3

x x x
x

a a a

b b b
ξ

 ds, 

 
after an easy calculation, or, if we denote the determinant by (x, a, b): 
 

dξ = − 2
2
3

x

ξ
(x, a, b) ds. 

 
Upon introducing these expressions for ξ, η0, and dξ into formula (6), one will finally 
find that: 

(12)    u = 1 2 3

1 2 3

( , , )( , , )1

2 ( , , )C

a b x
ds

i f

ψ ξ ξ ξ
π ξ ξ ξ∫ . 

 
We make the following remarks in regard to this formula: The contour C must contain at 
least one of the roots of the equation f(ξ1, ξ2, ξ3) = 0, since otherwise u would be zero. 
 Suppose that one has fixed an integration contour C.  It is then clear that one can vary 
the arbitrary constants av and bv in a continuous manner without that having any influence 
on the value of u, provided that none of the zeroes of f(ξ1, ξ2, ξ3) cross the contour C 
during that variation. 
 It is clear that one can also vary the xv under the same condition without the integral 
(12) ceasing to represent the same analytic function.  In particular, suppose that the 
contour C is the axis of real s and that f is a definite form.  Two systems of values of the 
constants av , bv will then give the same value to u if one can pass from the one system to 
the other by a continuous variation without encountering the system for which there are 
real roots of the equation f = 0.  However, if there is a real root of the equation f = 0 at s 
then the corresponding values of ξ1, ξ2, ξ3 will be ξ1 = ξ2 = ξ3 = 0; in this case, if we set 
kv = av then equation (11) will give us: 
 

a1 ξ1 + a2 ξ2 + a3 ξ3 = (a, b, x) = 0. 
 

The condition (a, b, x) = 0 is then necessary in order for f = 0 to have a real root at s. 
 Upon supposing that ψ(− x1, − x2, − x3) = ψ(x1, x2, x3), moreover, we will then seek 
what the value of u(x1, x2, x3) will be when one changes the signs of the variables x1, x2, 
x3 .  Since one cannot pass from the point (x1, x2, x3) to the point (− x1, − x2, − x3) without 
encountering values for which one has (a¸ b, x) = 0, it is necessary to vary the quantities 
av, bv at the same time as the xv .  Suppose, for example, that the values of the quantities 
av, bv are such that (a, b, v) preserves the value 1 when (x1, x2, x3) passes from the point 
(x1, x2, x3) to the point (− x1, − x2, − x3).  Since the functions ψ and f do not change signs 
then, one will have: 

u(− x1, − x2, − x3) = u(x1, x2, x3). 
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§ 2.  The case in which f(ξ1, ξ2, ξ3) is a definite form. 
 

 Suppose that the form f(ξ1, ξ2, ξ3) is a definite form; i.e., that the equation: 
 

f(ξ1, ξ2, ξ3) = 0 
 
has no real solution other than the obvious solution: 
 

ξ1 = ξ2 = ξ3 = 0 . 
 
We shall prove that in this case, a certain number of the homogeneous integrals of degree 
– 1 enjoy the property of being holomorphic in the neighborhood of any real point, except 
for only the origin. 
 The functions that are considered are homogeneous, so it will suffice to prove that our 
functions are regular for all real values that satisfy the condition: 
 

2 2 2
1 2 3x x x+ +  = 1. 

 
Upon giving the values a1, a2, a3 to the quantities k1, k2, k3, one deduces from (11) that: 
 

a1ξ1 + a2ξ2 + a3ξ3 = (a, b, x), 
 
from which one concludes that the distance from the point ξ1, ξ2, ξ3 to the origin is never 
less than: 

r = 
2 2 2
1 2 3

|( , , ) |a b x

a a a+ +
. 

 
Suppose (as is always possible) that the numbers av, bv are chosen in such a manner that r 
is greater than a given non-zero quantity – say, d.  If we let m denote the minimum of 
f(ξ1, ξ2, ξ3) for the real values that satisfy the equation: 
 

2 2 2
1 2 3ξ ξ ξ+ +  = 1 

 
then we can affirm that the minimum of f(ξ1, ξ2, ξ3) for the real values of s is not less than 
µ dn. 
 The equation f(ξ1, ξ2, ξ3) = 0 then admits no real root at s.  Moreover, since the 
coefficient of sn in that equation is: 
 

2 3 3 1 1 2

2 3 3 1 1 2

, ,
x x x x x x

f
a a a a a a

 
 
 

, 

 
one can always choose a1, a2, a3 in such a manner that this coefficient will have an 
absolute value that is greater than a given positive quantity – say, A.  Since the other 



Fredholm – On the equations of equilibrium of a solid, elastic body. 9 

coefficients are always finite, it is clear that one can describe a circle C whose center is at 
the point s = 0 and whose radius r is independent of x1, x2, x3 and large enough that all of 
the roots of the equation f(ξ1, ξ2, ξ3) = 0 at s are interior to C. 
 Now take the integration contour in formula (12) to be a semi-circle C1 with radius ρ1 
that is larger than ρ and has its diameter along the real s axis and its center at the origin.  I 
then say that the function u(x1, x2, x3) that is defined by the equation: 
 

u = 
1

1 2 3

1 2 3

( , , )( , , )

( , , )C

a b x
ds

f

ψ ξ ξ ξ
ξ ξ ξ∫ , 

 
where ψ denotes an integer rational function that is homogeneous of degree n – 2, has no 
real singularities. 
 One now sees that the absolute value of f(ξ1, ξ2, ξ3) will not go below the quantity 
A(ρ1 – ρ)n when s traverses the curvilinear part of C1.  Let m be the smaller of the 
numbers µ dn and A(ρ1 – ρ)n; m is the a lower limit to the absolute values that f(ξ1, ξ2, ξ3) 
takes when s describes the contour C1 .  Having said that, one can find two numbers η 
and m1 < m in such a manner that the inequality: 
 

|  f (x1 + h1, x2 + h2, x3 + h3, s) − f (x1, x2, x3, s) |  ≤ m1 
 
is verified for all hv that satisfy the inequalities: 
 
(13)    | hv | < h   (v = 1, 2, 3). 
   
In the preceding inequality, one has denoted f(ξ1, ξ2, ξ3) by f(ξ1, ξ2, ξ3, s). 

 It is now easy to see that the development of 
( , , )a b x

f

ψ
 in increasing powers of hv 

converges for all hv that satisfy inequalities (13).  Set: 
 

(14)    
( , , )a b x

f

ψ
 = 1 2 2

1 2 3

1 2 3

1 2 3h h hλ λ λ
λ λ λ

λ λ λ
Φ∑ , 

 
and let G be an upper limit of the values of (a, b, x) ψ for the values of the variables 
considered.  We have shown that the absolute value of f (x1 + h1, x2 + h2, x3 + h3, s) is not 
less than m – m1, and in turn, we find that: 
 

1 2 3λ λ λΦ  < 
1 2 3

1

1G

m m hλ λ λ+ +−
. 

 
Since the development (14) is then uniformly convergent, one has the right to write: 
 

(15)   u = 
1

( , , )
C

a b x
ds

f

ψ
∫  = 1 2 2

1 2 3
1

1 2 3

1 2 3 C
h h h dsλ λ λ

λ λ λ
λ λ λ

Φ∑ ∫ . 
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It then follows that the function u will be developable in the neighborhood of an arbitrary 
real point x1, x2, x3 that satisfies the equation 2 2 2

1 2 3x x x+ +  = 1 and that this development 

will converge for all hv that are less than h.  Let that development be: 
 
     u = 1 2 2

1 2 3

1 2 3

1 2 3u h h hλ λ λ
λ λ λ

λ λ λ
∑ , 

 
so the development of u around a point x1, x2, x3 that satisfies the equation 2 2 2

1 2 3x x x+ +  = 

r2 will be written: 

(16)    u = 1 2 3 1 2 2

1 2 3

1 2 3

1 2 3

u
h h h

r
λ λ λ λ λ λ

λ λ λ
λ λ λ

+ +∑ , 

 
and will converge, in turn, if the hv satisfy the inequality: 
 

(17)    | hv | < h 2 2 2
1 2 3x x x+ + , 

 

and, a fortiori, if 2 2 2
1 2 3h h h+ +  < h 2 2 2

1 2 3x x x+ + . 

 It is important to observe that the development (16) is also uniformly convergent if 
one considers it to be a function of the real variables x1, x2, x3 that is subject to the 
condition: 

2 2 2
1 2 3

1
h h h

h
+ +  < 2 2 2

1 2 3x x x+ + , 

 
because in this case again each term in the development of u will be lower in absolute 
value than the corresponding term of a convergent series whose terms are independent of 
the terms in the development of u. 
 
 

§ 3.  Application to a system of differential equations. 
 

 In what follows, we will have a particular need for integrals that are homogeneous of 
degree – 1 of two systems of differential equations, namely: 
 

(18a)   
3

1

uµλ µ
µ=

∆∑  = 0,  (18b)  
3

1

vλµ λ
λ=

∆∑  = 0, 

 
in which the ∆λµ denote the symbols of the operation of the form: 
 

∆λµ = 
x xαβ α β

λµ
αβ
  ∂ ∂
  ∂ ∂ 

∑   (α, β = 1, 2, 3), 
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in which the 
λµ
αβ
 
 
 

 denote constant coefficients. 

 We shall get the desired integrals in the following manner: If we eliminate two of the 
unknowns from equations (18a) or (18b) then we will get a differential equation that can 
be written in the symbolic form: 

11 12 13

21 22 23

31 32 33

∆ ∆ ∆
∆ ∆ ∆
∆ ∆ ∆

 v = 0. 

 
That differential equation will be linear, homogeneous of sixth order, and have constant 
coefficients.  Let f denote the function that one obtains by replacing the symbols of the 
operations ∂ / ∂x1, ∂ / ∂x2, ∂ / ∂x3 with the variables ξ1, ξ2, ξ3 . 
 From the preceding, the desired integrals will be represented by the formulas: 
 

(19)  va =  
( , , )1 a

C

a b x
ds

f

ψ
π ∫

 = 
3

1 2 1 2 3

( , )1

( , )( )
a v

C
v v v

d

f x x x

ψ ξ η ξ
π ξ η ξ η= + +∑ ∫ , 

 
which then comes down to the determination of the function ψ. 
 Upon introducing the expressions (19) into equations (18b), one will find that: 
 

3
1 1 2 2 3 3

1 2 1 2 3( , )( )C
v v v

d
f x x x

ν ν ν
µ µ µψ ψ ψ

ξ
ξ η ξ η=

∆ + ∆ + ∆
+ +∑ ∫ = 0   (µ = 1, 2, 3), 

 
in which the ν

λµ∆  denote the functions that one obtains by replacing ∂ / ∂x1, ∂ / ∂x2, ∂ / ∂x3 

with ξ, ηv, 1, respectively, in the ∆λµ . 
 One sees that one can satisfy the preceding equations by taking the ψ to be functions 
of degree four that depend upon three arbitrary constants and are defined by the formulas: 
 

ψ1 = 
1 21 31

2 22 32

3 23 33

k

k

k

∆ ∆
∆ ∆
∆ ∆

, ψ2 = 
11 1 31

12 2 32

13 3 33

k

k

k

∆ ∆
∆ ∆
∆ ∆

, ψ3 = 
11 21 1

12 22 2

13 23 3

k

k

k

∆ ∆
∆ ∆
∆ ∆

. 

 
 Finally, take the integration contour C to be the semi-circle that was defined in the 
preceding number, so formulas (19) will represent integrals of the system (18b) whose 
only real singular points at a finite distance are the point x1 = x2 = x3 = 0.  Let β1, β2, β3 
denote the integrals thus obtained.  One will now get the analogous integrals of the 
system (18a) immediately by exchanging the indices of the ∆ in the expressions for the ψ 
between them.  Call these integrals α1, α2, α3 .  It results from formula (10), § 1 that these 
integrals α and β will be algebraic functions. 
 

_____________ 
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CHAPTER II. 
____ 

 
 

Green’s method. 
 
 

§ 1.  Proof of a fundamental theorem. 
 

 Consider an arbitrary elastic body.  Let u1, u2, u3 be the components of the 
displacement of a point of a body, and let x1, x2, x3 be the rectangular coordinates of the 
same point in the natural state.  One then knows that the potential for the interior forces 
can be expressed with the aid of a definite quadratic form in the six variables: 
 

δvv = v

v

u

x

∂
∂

, δλµ = 
uu

x x
µλ

µ λ

∂∂ +
∂ ∂

,  (λ, µ, ν = 1, 2, 3). 

 
Let f be that form, and let dS be the volume element S of the body considered, so the 

aforementioned potential is equal to the integral f dS∫  when it is extended over the 

volume S. 
 Upon applying the principle of virtual velocities, one imagines another deformation 

whose components are v1, v2, v3, and one considers the integral dS∆∫ , where ∆ is the 

bilinear form: 

∆ = 31 2

11 1 22 2 33 3

vv vf f f

x x xδ δ δ
∂∂ ∂∂ ∂ ∂+ +

∂ ∂ ∂ ∂ ∂ ∂
 

+ 3 32 1 1 2

23 3 2 31 1 3 12 2 1

v vv v v vf f f

x x x x x xδ δ δ
     ∂ ∂∂ ∂ ∂ ∂∂ ∂ ∂+ + + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

. 

 

 A consideration of the integral dS∆∫  will lead us to the fundamental theorem whose 

proof defines the objective of this paragraph. 
 I first observe that the form ∆ is far from being the most general bilinear form that 
one can define with the first derivatives of the functions u and v.  Meanwhile, since the 
theorems that I intend to prove still persist in the general case, I suppose that ∆ is an 
arbitrary bilinear form of the first derivatives of the functions u1, u2, u3, v1, v2, v3 .  To 
abbreviate, set: 

uµβ = 
u

x
µ

β

∂
∂

, vλα = 
v

x
λ

α

∂
∂

. 

 
We express the form ∆ by the formula: 
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(2)     ∆ = v uλα µβ
λµαβ

λµ
αβ
 
 
 

∑    (λ, µ, α, β = 1, 2, 3), 

 

in which the symbols 
λµ
αβ
 
 
 

 denote constants, and each of the indices takes on the values 

1, 2, 3, independently of the other ones. 
 We suppose that the six functions u1, u2, u3, v1, v2, v3 and their derivatives of the first 
two orders are continuous functions in a certain real domain D. 
 Introduce the quantities Tλα and Tµβ that are defined by the formulas: 

 

Tλα = 
vλα

∂∆
∂

,  Tµβ = 
uµβ

∂∆
∂

. 

 
Take a volume S inside the domain D that is bounded by a surface ω that possesses a 
well-defined tangent plane at every point.  Let dω be the element of ω. 

 One now deduces, in a well-known manner, two expressions for the integral 
S

dS∆∫  

from the identities: 
∆ = T vλα λα

λα
∑ = uµβ µβ

µβ
∑T , 

namely: 

(3)   
S

dS∆∫ = cos( )
S

T
v T nx d v dS

x
λα

λ λα α λω
λ α λ α α

ω ∂−
∂∑ ∑ ∑ ∑∫ ∫  

and 

   
S

dS∆∫ = cos( )
S

u nx d u dS
x

µβ
µ λα β µω

µ β µ β β

ω
∂

−
∂∑ ∑ ∑ ∑∫ ∫
T

T , 

 
in which n denotes the external normal of the surface ω and cos(n xα) (α = 1, 2, 3) denote 
its direction cosines. 
 One derives the following expressions for Tλα and Tµβ from equation (1): 

 

 Tλα = uµβ
µβ

λµ
αβ
 
 
 

∑  = 
3

1 1 2 31 2 3
u

x x x µ
µ

λµ λµ λµ
α α α=

      ∂ ∂ ∂+ +      ∂ ∂ ∂      
∑ , 

(4) 

 Tµβ = vλα
λα

λµ
αβ
 
 
 

∑  = 
3

1 1 2 31 2 3
v

x x x λ
µ

λµ λµ λµ
β β β=

      ∂ ∂ ∂+ +      ∂ ∂ ∂      
∑ , 

 
so one has: 

 
3

1

T

x
λα

α α=

∂
∂∑  = 

2u

x x
µ

αβµ α β

λµ
αβ

∂ 
  ∂ ∂ 

∑ , 

(5) 
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3

1 x
µβ

β β=

∂
∂∑
T

 = 
2v

x x
λ

αβλ α β

λµ
αβ
  ∂
  ∂ ∂ 

∑ . 

 
If one now introduces the symbols of the operations: 
 

(6) ∆λµ = 
2

x xαβ α β

λµ
αβ
  ∂
  ∂ ∂ 

∑ , 

 

 α
λµ∆  = 

1 2 31 2 3x x x

λµ λµ λµ
α α α
     ∂ ∂ ∂+ +     ∂ ∂ ∂     

, 

(7) 

 β
λµ∇  = 

1 2 31 2 3x x x

λµ λµ λµ
β β β

     ∂ ∂ ∂+ +     ∂ ∂ ∂     
 

 
then one can write formulas (4) and (5) as: 
 
(8)   Tλα = uα

λµ µ
µ

∆∑ , Tµβ = uβ
λµ λ

λ
∇∑ , 

 

(9a)    
T

x
λα

α α

∂
∂∑  = uλµ µ

µ
∆∑ , 

 

(9b)    
x

µβ

β β

∂
∂∑
T

 = vλµ λ
λ

∆∑ . 

 
I now suppose that the functions uλ and vλ satisfy the systems of differential equations: 
 
(10)   uλµ µ

µ
∆∑  = Uλ , vλµ λ

λ
∆∑  = Vµ , 

 
in which the symbols Uλ  and Vµ denote continuous, uniform functions.  Upon now 
forming the difference of the expressions (3), while recalling equations (10), I obtain the 
equation: 

(11)    ( )
S

U v V u dSρ ρ ρ ρ
ρ

−∑∫  

= cos( ) cos( )v T nx u nx dλ λα α λ λα αω
λ α λ α

ω − 
 
∑ ∑ ∑ ∑∫ T . 

 Upon setting: 
 

Tλ = cos( )T nxλα α
α
∑ ,  Tλ = cos( )nxλα α

α
∑T , 
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to abbreviate, one can write formula (11) in the form: 
 

(12)   ( )
S

U v V u dSρ ρ ρ ρ
ρ

−∑∫  = ( )v T u dλ λ λ λω
λ

ω−∑∫ T . 

 
 This formula is the expression of the fundamental theorem that plays the same role 
for the systems (10) that GREEN’s theorem does for the LAPLACE equation.  In the 
particular case in which ∆ is the variation of the internal potential of an elastic body, the 
fundamental theorem is identical to the known BETTI theorem. 
 
 

§ 2.  Application of Green’s method to the systems: 

∑µ ∆λµ uλ = Uµ , ∑λ ∆λµ vλ = Vµ . 
 
 

 Let u1, u2, u3 be three functions that satisfy the equations: 
 

3

1

uλµ µ
µ=

∆∑  = Uλ , 

 
and suppose that the continuity conditions of § 1 are verified.  Upon taking the functions 
v to be the functions 0 0 0

1 1 2 2 3 3( , , )x x x x x xµβ − − − , we can apply formula (12) of § 1 to the 

condition of excluding part of the domain of integration S that is internal to a close 
surface ω′.  We suppose that ω′ is a sphere with the arbitrarily small radius r and the 
point 0 0 0

1 2 3( , , )A x x x  as its center.  Let σλα and σλ be the functions that are deduced from 

the function β in the same manner that the quantities Tλα and Tλ are deduced from the 

functions v.  Let S′ denote the domain S minus the sphere ω′.  An application of formula 
(12) then gives us: 
 

(13)  ( ) ( )T u d T u dρ ρ ρ ρ ρ ρ ρ ρω ω
ρ ρ

β σ ω β σ ω
′

′− + −∑ ∑∫ ∫  = 
S

U dSρ ρ
ρ

β
′

′∑∫ . 

 
 Now, make the radius r decrease, so the integral: 
 

T dρ ρω
ρ

β ω
′

′∑∫  

 
obviously converges to zero, since the integrals βρ are homogeneous functions of degree 
– 1, and Tρ remains finite for r = 0. 
 We now see what the other part of the integral that belongs to the sphere ω′ becomes.  
It suffices to consider the integral: 
 

J1 = [ ]1 11 1 12 2 13 3cos( ) cos( ) cos( )u nx nx nx dσ σ σ ω′+ +∫ , 
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where n denotes the external normal to the volume S′ − i.e., the interior normal to the 
sphere ω′.  Let αβσ ′  denote the value of the homogeneous function σαβ of degree – 2 on 

the surface of a sphere of radius 1 that is concentric with ω′, and denote the surface 
element of that sphere by dω1.  The values of the functions σαβ at two points along the 
same radius − one of which is on ω′, and the other of which is on ω − are then related by 
the formula: 

σαβ = 
2

1

r αβσ ′ , 

and one will have: 
dω′ = r2 dω1, 

 
moreover.  One can then write: 
 

J1 = [ ]1 11 1 12 2 13 3 1cos( ) cos( ) cos( )u nx nx nx dσ σ σ ω′ ′ ′+ +∫  . 

 
 In that formula, u1 depends upon only r.  Set 0 0 0

1 1 2 3( , , )u x x x  = 0
1u ; due to the continuity 

of u1, we can choose r to be small enough that 0
1 1u u−  is less than some arbitrarily small 

quantity δ.  Moreover, if we let g be the largest absolute value of the quantity in brackets 
in the expression for J1 then we will have: 
 

[ ]
1

0
1 1 11 1 12 2 13 3 1cos( ) cos( ) cos( )J u nx nx nx d

ω
σ σ σ ω′ ′ ′− + +∫  

= [ ]
1

0
1 1 11 1 12 2 13 3 1( ) cos( ) cos( ) cos( )u u nx nx nx d

ω
σ σ σ ω′ ′ ′− + +∫  

< δg 1dσ∫  

< 4π δg, 
i.e.: 

10
lim
r

J
=

 = 0
1 1u d

ω
σ ω

′
′∫ . 

If we set: 
(14)     Lρ = dρω

σ ω
′

′∫ , 

to abbreviate, then we will have: 
 

0
lim
r

u dρ ρω
ρ

σ ω
′=

′∑∫  = 0 0 0
1 1 2 2 3 3L u L u L u+ + . 

 
The integral in the right-hand side of equation (13) obviously preserves a finite value 
when we make r tend to zero, because if we denote the upper limits of | Uρ | and | r βρ | by 
G and g, resp., then we will have: 
 

S
U dSρ ρ

ρ
β

′
′∑∫  < G g 

S

dS

r′

′
∫ . 



Fredholm – On the equations of equilibrium of a solid, elastic body. 17 

However, one knows that the integral in the right-hand side preserves a finite value no 
matter how small r is.  Consequently, it is legitimate to write: 
 

0
lim

Sr
U dSρ ρ

ρ
β

′=
′∑∫  = 

S
U dSρ ρ

ρ
β∑∫ . 

 
 The result of all of these passages to the limit is expressed by the formula: 
 

(15)  0 0 0
1 1 2 2 3 3L u L u L u+ +  = ( )

S
T u d U dSρ ρ ρ ρ ρ ρω

ρ ρ
β σ ω β− −∑ ∑∫ ∫ . 

 
One likewise obtains an analogous formula for the functions vµ , which satisfy the adjoint 
system: 

vµλ µ
µ

∆∑  = Vλ . 

 
Upon letting τρ denote the quantity that is analogous to the σρ that is deduced from the 
integral α, and letting Mρ denote the integral: 
 

Mρ = dρω
τ ω

′
′∫   (ρ = 1, 2, 3), 

 
the formula can be written: 
 

(16)  0 0 0
1 1 2 2 3 3M v M v M v+ +  = ( )

S
v d V dSρ ρ ρ ρ ρ ρω

ρ ρ
α τ ω α− −∑ ∑∫ ∫T . 

 
 Furthermore, imagine the case in which the point 0 0 0

1 2 3( , , )A x x x  is situated on the 

surface ω, and suppose that the surface ω has a well-defined tangent plane at A.  To that 
effect, describe the sphere ω′ with its center at A and let v denote the part of ω is external 
to the sphere ω′.  If we apply the reciprocity theorem to the value S′ then if we let ω′ 
denote the part of the spherical surface ω′ that is internal to S then we will have: 
 

( ) ( )
v

T u d V u dvρ ρ ρ ρ ρ ρ ρ ρω
ρ ρ

β σ ω β σ
′

′− + −∑ ∑∫ ∫  = 
S

u dSρ ρ
ρ

β
′

′∑∫ . 

 
 One proves, as in the preceding, that the limit of the integral on the right-hand side is 
a finite quantity for r = 0.  Similarly, one finds the limit of the first integral to be: 
 

0
lim ( )
r

T u dρ ρ ρ ρω
ρ

β σ ω
′=

′−∑∫  = − 0 0 0
1 1 2 2 3 3u d u d u d

ω ω ω
σ ω σ ω σ ω

′ ′ ′
′ ′ ′− −∫ ∫ ∫ , 

 
in which the integrals in the right-hand side must be taken over the part of the spherical 
surface ω′ that is on the internal side of the tangent plane to ω at the point A.  (The 
internal side of the tangent plane is the one with the interior normal.)  Since the σρ are 
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even functions, it follows that the value of dρσ ω′∫  must be equal to 12 Lρ .  One also 

proves that the limit of the integral: 
 

( )
v

V u dvρ ρ ρ ρ
ρ

β σ−∑∫  

 
is a finite quantity for r = 0.  That limit can then be expressed by the integral: 
 

( )T u dρ ρ ρ ρω
ρ

β σ ω−∑∫ . 

We are thus led to the formula: 
 

0 0 0
1 1 2 2 3 3L u L u L u+ +  = 2 ( ) 2

S
T u d U dSρ ρ ρ ρ ρ ρω

ρ ρ
β σ ω β− −∑ ∑∫ ∫ , 

 
and similarly, to the analogous formula: 
 

0 0 0
1 1 2 2 3 3M v M v M v+ +  = 2 ( ) 2

S
v d V dSρ ρ ρ ρ ρ ρω

ρ ρ
α τ ω α− −∑ ∑∫ ∫T . 

 
Finally, if A is a point that is external to the volume S then I will recall that one has: 
 

 ( )
S

T u d U dSρ ρ ρ ρ ρ ρω
ρ ρ

β σ ω β− −∑ ∑∫ ∫  = 0, 

 ( )
S

v d V dSρ ρ ρ ρ ρ ρω
ρ ρ

α τ ω α− −∑ ∑∫ ∫T  = 0, 

 
because in that case, no singular point will be found inside of ω. 
 We shall calculate the values of the coefficients L and M in the following paragraph.  
Since it will then result that these coefficients are non-zero, formulas (15) and (16) will 
permit one to calculate the values of the functions u and v inside of a volume S if we 
know the values of these functions and certain linear functions of the first derivatives for 
the points (x1, x2, x3) that belong to the surface ω. 
 In particular, these formulas will apply to the theory of equilibrium of an arbitrary 
crystalline elastic body.  In that case, the quantities Tρ will denote the components of the 
pressure on the surface of the body considered.  We shall return to that application in the 
last chapter. 
 
 

§ 3.  Calculation of the coefficients L and M. 
 

 We have defined the coefficient Lρ by the formula: 
 

Lρ = dρω
σ ω∫ , 
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in which the integral must be taken over a certain spherical surface ω.  Meanwhile, if we 
take the functions uλ to have constant values then an application of formula (15), § 2 will 
show us that Lρ is independent of the special form of the surface of integration, in such a 
way that ω can be an arbitrary closed surface that contains the origin, provided that it can 
be converted into the sphere ω by a continuous deformation.  In particular, take ω to be a 
cylinder C that is parallel to the x1-axis, and whose bases have the equations x1 = a and x1 
= − a.  Upon letting ds denote the linear element of the intersection of the cylinder C with 
the x2, x3-plane, one can write the expression for Lρ as: 
 

Lρ = 1

a

s
a

ds dxρσ
+

−
∫ ∫  + B, 

 
in which B is the sum of the two integrals that are taken over the bases of C.  However, if 
one calls the area of the base A and lets σ0 denote the largest absolute value of σρ when x1 
is equal to unity then one will have: 

| B | < 0
2

2A

a

σ
. 

 
It will then follow that lim B = 0 for a infinite.  As a result, one can write: 
 

Lρ = 1lim
a

sa
a

ds dxρσ
+

=∞
−
∫ ∫  = Lρ = 1s

ds dxρσ
+∞

−∞
∫ ∫ . 

 
However, it is clear that one can choose a positive quantity a0 such that the two integrals: 
 

1

a

dxρσ
∞

∫ , 1

a

dxρσ
−∞

−
∫  

 
have values that are less than an arbitrarily small quantity if a is positive and larger than 
a0 .  It then follows that one has the right to invert the order of integrations in the formula 
for Lρ .  First, calculate the integral: 

J(a) = 1

a

a

dxρσ
−

−
∫ . 

 
If we suppose, for the moment, that x2 has a positive value then we can employ the 
expression for βv that we gave in Chapter I, § 3: 
 

βv = 
6

1 2 1 2 3

( , )1

( , )( )C

d

f x x x
ν α

α α α

ψ ξ η ξ
π ξ η ξ η= + +∑∫ , 
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in which the contour C must contain only the zeroes of ξx1 + ηa x2 + x3 whose imaginary 
parts are positive.  One deduces the following expression for σρν [see § 1, form. (8)] from 
that expression for βν : 
 

(1)    σρν = − 
6

1 1 2 2 3 2

2
1 2 1 2 3

1

( , )( )C
d

f x x x

ν ν ν
ρ ρ ρ

α α α

ψ ψ ψ
ξ

π ξ η ξ η=

∆ + ∆ + ∆
+ +∑∫ , 

 
in which the expressions νµρ∆  denote the linear functions in ξ and η that one obtains by 

replacing the symbols ∂ / ∂x1, ∂ / ∂x2, ∂ / ∂x3 with ξ, ηa, and 1, respectively, in the 
expressions (7), § 1. 
 We will have, in turn, an expression of the following form for the integral J: 
 

(2)   J(a) = −
6

2 2 3 3
12

1 2 1 2 3

cos( ) cos( )1

( , )( )

a a a

C
a

A nx A nx
d dx

f x x xα α α

ξ
π ξ η ξ η

+

=−

+
+ +∑∫ ∫ . 

 
If we denote 2 2 3 3cos( , ) cos( , )a aA n x A n x+  by Φ(ξ, ηa), to abbreviate, then upon 

performing the integration over x1 (which is obviously legitimate), we will have: 
 

J(a) = 
6

1 2 2 3

2 ( , )1

( , )( )
a

C

a d

f a x xα α α

ξ η ξ
π ξ η ξ η=

Φ
− + +∑∫ . 

 
However, it is easy to perform the integration in that formula, which will give us the 
result: 

J(a) = 

2 2 3

4 ( , )

( )

a
i

f f
a x a x x

ν ν

ν
ν ν

ν ν

ξ η

ξ η
η ξ

Φ
 ∂ ∂− − + + ∂ ∂ 

∑  

 

+ 

2 2 3

4 ( , )

( )

a
i

f f
a x a x x

ν ν

ν
ν ν

ν ν

ξ η

ξ η
η ξ

′ ′Φ
 ∂ ∂ ′ ′− − − + + ′ ′∂ ∂ 

∑ , 

 
in which one gives values to the ξv, ηv that satisfy the equations: 
 

f(ξ, η) = 0, aξ + η x2 + x3 = 0, 
 
and values νξ ′ , νη ′  to the that satisfy the equations: 

 
f(ξ′, η′) = 0, − aξ′ + η′ x2 + x3 = 0; 

 
ξ and ξ′ must have positive imaginary parts in both cases.  With the aid of these linear 
equations, one can write the expression for J(a) as follows: 
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J(a) = 

2 2 3 2 2 3

( , ) ( , )
2 2

( ) ( )

a a
i i

f f f f
a x x x a x x x

ν ν ν ν

ν ν
ν ν

ν ν ν ν

ξ η ξ η

η η
η ξ η ξ

′ ′Φ Φ+
   ∂ ∂ ∂ ∂ ′− + − − +   ′ ′∂ ∂ ∂ ∂   

∑ ∑ , 

 
and we will have to seek the limit of that function for a = ∞. 
 Since the straight lines that determine ξ, ξ′, η¸ η′ tend to the line ξ = 0 for a = ∞, the 
corresponding values of η will satisfy the equation: 
 

f(0, η) = 0. 
 
 Since the imaginary part of ξ is positive, moreover, and we have supposed that x2 is 
positive, it will then follow that the imaginary part of η must be negative, and that the 
imaginary part of η′ must be positive.  It is true that this line of reasoning supposes that 
the roots of f(0, η) = 0 are finite, but one can always arrange that the aforementioned 
roots are both finite and unequal by a change of coordinates.  Having said that, one easily 
finds the desired limit: 
 

lim ( )
a

J a
=∞

 = 
3 3

1 1
2 3 2 3

(0, ) (0, )
2 2

( ) ( )
i i

f f
x x x x

ν ν

ν ν
ν ν

ν ν

η η

η η
η η

= =

′Φ Φ−∂ ∂ ′+ +
′∂ ∂

∑ ∑ . 

 
However, by introducing the value of Φ, one will find: 
 

1dxρσ
+∞

−∞
∫  = 

3 3
2 2 3 3 2 2 3 3

1 12 2 3 2 2 3

cos( ) cos( ) cos( ) cos( )
2 2

(0, )( ) (0, )( )

A nx A nx A nx A nx
i i

f x x f x x

ν ν ν ν

ν νν ν ν νη η η η

′ ′

′= =

+ +−
′ ′+ +∑ ∑ . 

 
In the deduction of this formula, we have supposed that x2 is larger than zero, but one 
sees that the equality will still persist when x2 is negative, because σρ does not change 
sign when one changes the signs of x2 and x3, and the right-hand side has the same 
property.  We now have to calculate: 

( )
s
J ds∞∫ , 

 
but since the value of that integral does not depend upon the form of the contour s, one 
concludes that 3Aν  and 3Aν ′  must satisfy the relations: 

 

2 3A Aν ν
νη +  = 0,  2 3A Aν ν

νη′ ′+  = 0. 

 
 Upon inferring 3Aν  and 3Aν ′ from these formulas and recalling that n denotes the 

internal normal to s, one will arrive at the formula: 
 



Fredholm – On the equations of equilibrium of a solid, elastic body. 22 

Lρ = − 
3 3

2 2 3 2 2 3

1 12 2 3 2 2 3

( ) ( )
2 2

(0, )( ) (0, )( )S S

A n dx dx A dx dx
i i

f x x f x x

ν ν
ν

ν νν ν ν ν

η
η η η η

′

′= =

′+ ++
′ ′+ +∑ ∑∫ ∫ , 

 
but it is easy to perform the integrations here; one finds that: 
 

2 3

2 3

n dx dx

x x
ν

νη
+
+∫  = 2πi,  2 3

2 3

n dx dx

x x
ν

νη
′ +
′ +∫  = − 2πi, 

and as a result: 

Lρ = 4π 
6

2

1 2(0, )

a

a a

A

f η=
∑ , 

 
in which one must extend the summation over all roots of the equation f(0, η) = 0.  If one 
observes that the sum in the right-hand side is nothing but the coefficient of 1 / η in the 

development of 2

(0, )

A

f η
 in decreasing powers of η then it will be easy to simplify the 

expression for Lρ .  Indeed, we have [see forms. (1) and (2) of this paragraph]: 
 

A2 = 2 2 2
1 1 2 2 3 3ρ ρ ρψ ψ ψ∇ + ∇ + ∇  

 

= 
1 21 31 11 1 31 11 21 1

2 2 2
1 2 22 32 2 12 2 32 3 12 22 2

3 23 33 13 3 33 13 23 3

k k k

k k k

k k k
ρ ρ ρ

∆ ∆ ∆ ∆ ∆ ∆
∇ ∆ ∆ + ∇ ∆ ∆ + ∇ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆
, 

 
from which one infers the following value for the coefficient η5 in A2 by recalling 
formulas (6) and (7), § 1: 
 

1 1 1

2 2

3 3

21 31 11 31 11 21

22 22 22 22 22 22

1 22 32 2 12 32 3 12 22

22 22 22 22 22 22 22 22 22

23 33 13 33

22 22 22 22

k k k

k k

k k

ρ ρ ρ

           
           
           

               
+ +               

               

       
       
       

2

3

13 23

22 22

k

k

 
 
 

   
   
   

, 

 
or, more simply: 
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= kρ 

11 21 31

22 22 22

12 22 32

22 22 22

13 23 33

22 22 22

     
     
     

     
     
     

     
     
     

. 

 
However, the determinant that multiplies kρ here is equal to the coefficient of η6 in f(0, 
η); one will consequently have: 

Lρ = 4π kρ . 
 

Since Lρ  does not depend upon any of the coefficients 
αβ
λµ
 
 
 

, and since one will have 

obtained the value of Mρ by the same calculation, by taking one’s point of departure to be 

the formulas in which one changes 
αβ
λµ
 
 
 

 into 
βα
λµ
 
 
 

, one will conclude that the value of 

Mρ is: 
Mρ = 4π kρ . 

 
 As a result, formulas (15) and (16) of the preceding paragraph will take the forms: 
 

(15a)  0 0 0
1 1 2 2 3 3k u k u k u+ +  = 

1 1
( )

4 4 S
T u d U dSρ ρ ρ ρ ρ ρω

ρ ρ
β σ ω β

π π
− −∑ ∑∫ ∫  

and 

(16a)  0 0 0
1 1 2 2 3 3k v k v k v+ +  = 

1 1
( )

4 4 S
v d V dSρ ρ ρ ρ ρ ρω

ρ ρ
α τ ω α

π π
− −∑ ∑∫ ∫T , 

 
respectively.  In the case where the point 0 0 0

1 2 3( , , )x x x  is a point of the surface ω with a 

well-defined tangent plane, one will have the formulas: 
 

(17a)  0 0 0
1 1 2 2 3 3k u k u k u+ +  = 

1 1
( )

2 2 S
T u d U dSρ ρ ρ ρ ρ ρω

ρ ρ
β σ ω β

π π
− −∑ ∑∫ ∫ , 

 

(18a)  0 0 0
1 1 2 2 3 3k v k v k v+ +  = 

1 1
( )

2 2 S
v d V dSρ ρ ρ ρ ρ ρω

ρ ρ
α τ ω α

π π
− −∑ ∑∫ ∫T . 

 
_____________ 
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CHAPTER III. 
____ 

 
Applications 

 
§ 1.  Application to the theorem of equilibrium of an elastic solid body. 

 
 Let f be a definite quadratic form of the six variables: 
 

δvv = v

v

u

x

∂
∂

,  δλµ = δµλ  = 
uu

x x
µλ

µ λ

∂∂ +
∂ ∂

. 

 

We have already recalled that f dS∫  can represent the potential of the internal forces on 

an elastic body.  Take another system of variables: 
 

εvv = v

vx

υ∂
∂

, ελµ = εµλ = 
x x

µλ

µ λ

υυ ∂∂ +
′ ′∂ ∂

. 

 
I recall that we have (§ 1, Chapter II): 
 

 ∆ = 11 22 33 23 31 12
11 22 33 23 31 12

f f f f f fε ε ε ε ε ε
δ δ δ δ δ δ
∂ ∂ ∂ ∂ ∂ ∂+ + + + +

∂ ∂ ∂ ∂ ∂ ∂
 

  = 11 22 33 23 31 12
11 22 33 23 31 12

f f f f f fδ δ δ δ δ δ
ε ε ε ε ε ε
∂ ∂ ∂ ∂ ∂ ∂+ + + + +

∂ ∂ ∂ ∂ ∂ ∂
. 

 
It then follows that the quantities Tλα are identical to the components of the stress that 
one ordinarily denotes by tλα (see, e.g., CLEBSCH, Theorie d. Elasticität). 
 Let X1, X2, X3 be the rectangular components of the force that acts upon a volume 
element, so the components of the deformation satisfy the equations: 
 

3

1

t

x
λα

λ α=

∂
∂∑  = − Xα   (α = 1, 2, 3). 

 
However, these equations are identical to the differential equations (10), § 1, Chapter II.  
In order to see this, it will suffice to see the relationship between the problems that were 
treated above and the problem of the equilibrium of a solid, elastic body. 
 It remains to prove that the determinant of the functions ∆λµ cannot be zero for any 
system of real values of the variables.  Set uλ = vλ in the expression for ∆, so: 
 

2f = ∆(u, u). 
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If one substitutes this in the equation uµβ = xµ ξβ then one will obtain: 
 

2f = 
, , ,

x xλ µ α β
λ µ α β

λµ
ξ ξ

αβ
 
 
 

∑  = 
, ,

x xλ µ α β
λ µ α β

λµ
ξ ξ

αβ
 
 
 

∑ ∑  = 1 2 3
,

( , , )x xλµ λ µ
λ µ

ξ ξ ξ∆∑  . 

 
That is, if one makes the following substitutions in 2f: 
 

δvv = xv ξv ,  δλµ = xλ ξµ + xµ ξλ  
 

then one will obtain a quadratic form in x1, x2, x3 whose determinant is precisely the 
determinant of the functions ∆λµ . 
 Suppose that this determinant becomes zero for a system of real values of the 
variables – say, ξv = αv – in which one of the quantities αv must be non-zero.  One can 
then find a system of real values xv = av for which one of the quantities av must be non-
zero, and f will be equal to zero.  However, in order for f to vanish, it is necessary that δvv 
= 0, δλµ = 0, or that the following equations must be verified: 
 

av αv = 0, aλ αµ + aµ αλ = 0. 
 

We can suppose that α1 is non-zero; it will then follow that a1 = 0.  Upon substituting that 
value into the other equations, one will find that a2α1 = 0, a3α1 = 0, so one concludes that 
a2 = a3 = 0, which is contrary to the hypothesis.  Thus, the determinant of the functions 
∆λµ  is non-zero for any system of real values for the variables ξv, except for the system ξ1 
= ξ2 = ξ3 = 0. 

Q. E. D. 
 
 

§ 2.  Development into a series. 
 

 We have seen that the functions a and b enjoy the property of being developable into 
power series in the neighborhood of an arbitrary real point a1, a2, a3, with the exception 
of  a1 = a2 = a3 = 0.  Moreover, the development of α (a1 + h1, a2 + h2, a3 + h3) in powers 
of the variables h1, h2, h3 converges for all values of these variables h that satisfy the 
inequality: 

2 2 2
1 2 3h h h+ + ≤ µ 2 2 2

1 2 3a a a+ + , 

 
in which m is a positive quantity that is independent of the quantities av and hv and less 
than unity. 
 Having recalled that, suppose that u1, u2, u3 form a system of integrals of the 
differential equations (7), Chapter II, that verify the necessary conditions for the 
application of BETTI’s theorem in a domain that is bounded by two spherical surfaces 1 
and 2 that have the origin for their centers and ρ1 and ρ2 for radii, resp.  Suppose that the 
inequality ρ2 / ρ1 < µ2 is satisfied, so it will follow that: 
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2ρ
µ

 < ρ1 µ . 

 
Take a point x1, x2, x3 that is situated between the spheres of radius ρ2 / µ and ρ1 µ and let 
ξ1, ξ2, ξ3 be a point on the sphere 2, so the development of: 
 

α (ξ1 − x1, ξ2 − x2, ξ3 − x3) 
 
in powers of the variables ξv will converge if either: 
 

2 2 2
1 2 3ξ ξ ξ+ + < µ 2 2 2

1 2 3x x x+ +  

 
or, upon considering the series to be a function of x1, x2, x3, if: 
 

2 2 2
1 2 3x x x+ +  > 2ρ

µ
. 

 
Let η1, η2, η3 be a point on the sphere 1, so the development of: 
 

α (η1 − x1, η2 − x2, η3 − x3) 
 
in powers of the variables x1, x2, x3 will converge if: 
 

2 2 2
1 2 3x x x+ +  < µ ρ1 . 

 
Thus, the two developments of the functions: 
 

α (η1 − x1, η2 − x2, η3 − x3) and α (ξ1 − x1, ξ2 − x2, ξ3 − x3) 
 
have the space between the two spherical surfaces of radii ρ2 / µ and ρ1µ for their 
common domain of convergence. 
 These developments still converge in the same domain if the point ξ1, ξ2, ξ3 is interior 
to the sphere 2 and the point η1, η2, η3 is exterior to the sphere 1. 
 We now apply the formula (4), Chapter II, to the functions u1, u2, u3 .  If one takes the 
domain S to be the space between the two spheres 1 and 2, and if we let ω1 and ω2 denote 
the surfaces of the two spheres 1 and 2 then we will get: 
 

k1 u1 + k2 u2 + k3 u3   
 

 = 
1 2 331 2

31 21
1 2 3

3
1 2 31 2 3

1 2 3 1
1 , , 1 2 3 1 2 3

( , , )1
( , , )

4

x x x
T d

λ λ λλλ λ
ρ

ρ λλ λω
ρ λ λ λ

β η η η
η η η ω

π λ λ λ η η η

+ +

=

∂ − − −⋅ ⋅
∂ ∂ ∂∑ ∑∫  
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 − 
1 2 331 2

31 21
1 2 3

3
1 2 31 2 3

1 2 3 1
1 , , 1 2 3 1 2 3

( , , )1
( , , )

4

x x x
u d

λ λ λλλ λ
ρ

ρ λλ λω
ρ λ λ λ

β η η η
η η η ω

π λ λ λ η η η

+ +

=

∂ − − −⋅ ⋅
∂ ∂ ∂∑ ∑∫  

 

 + 
1 2 331 2

1 2 3

31 22
1 2 3

3
1 2 31 2 3

1 2 3 2
1 , , 1 2 3 1 2 3

( , , )1
( , , ) ( 1)

4

x x x
T d

x x x

λ λ λλλ λ
ρλ λ λ

ρ λλ λω
ρ λ λ λ

βξ ξ ξξ ξ ξ ω
π λ λ λ

+ +
+ +

=

∂⋅ ⋅−
∂ ∂ ∂∑ ∑∫  

 

 − 
1 2 331 2

1 2 3

31 22
1 2 3

3
1 2 31 2 3

1 2 3 2
1 , , 1 2 3 1 2 3

( , , )1
( , , ) ( 1)

4

x x x
u d

x x x

λ λ λλλ λ
ρλ λ λ

ρ λλ λω
ρ λ λ λ

σξ ξ ξξ ξ ξ ω
π λ λ λ

+ +
+ +

=

∂⋅ ⋅−
∂ ∂ ∂∑ ∑∫ . 

 
 However, it follows from the uniform convergence of the series that one can perform 
the integration by integrating each term; one will then obtain a development of the 
expression k1 u1 + k2 u2 + k3 u3 that is valid in the space between the two spheres of radius 
ρ2 / µ and ρ1 µ .  That development will consist of two parts, one of which is a power 
series and the other of which is a series whose terms are the partial derivatives of the 
functions βv .  The first of these parts converges in the interior of the sphere of radius µ 
ρ1, and the second one converges in the exterior of the sphere of radius ρ2 / µ . 
 Now, consider the developments of some special functions.  First, suppose that u1, u2, 
u3 denote homogeneous functions of negative integer degree – n that verify the necessary 
continuity conditions in all of space, with the exception of the origin.  When the radius ρ1 
tends to infinity, the first two integrals will obviously tend to zero.  In other words, the 
only things that remain will be homogeneous of degree – n, in such a way that one will 
get: 

k1 u1 + k2 u2 + k3 u3 
 

 = 
1 2 3 1 2 3

1 2 3 1 2 33 31 2 1 2

1 2 3 1 2 3

3
1 2 3 1 2 3

1 1 2 3 1 2 3

( , , ) ( , , )x x x x x x
A B

x x x x x x

λ λ λ µ µ µ
ρ ρρ ρ

λ λ λ µ µ µλ µλ λ µ µ
ρ λ λ λ µ µ µ

β σ+ + + +

=

 ∂ ∂
−  ∂ ∂ ∂ ∂ ∂ ∂ 

∑ ∑ ∑ , 

 
in which the values 

1 2 3
Aρ

λ λ λ  and 
1 2 3

Bρ
µ µ µ  are constant coefficients and the indices must 

satisfy the conditions: 

1 2 3

1 2 3

1,

2.

n

n

λ λ λ
µ µ µ

+ + = −
 + + = −

 

 
In particular, suppose that n is equal to unity, so: 
 

k1 u1 + k2 u2 + k3 u3 = A1 β1 + A2 β2 + A3 β3 . 
 
 Moreover, we know that the functions b depend linearly upon the constants k in such 
a way that one can write: 

βρ = k1 βρ 1 + k2 βρ 2 + k3 βρ 3 , 
 
so the following expressions will result for the functions u: 
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uv = A1 β1v + A2 β2v + A3 β3v   (v = 1, 2, 3). 
 
If we set uv = av in these formulas then if we observe that Aρ = kρ in that case, we will 
obtain: 

αv = k1 β1v + k2 β2v + k3 β3v   (v = 1, 2, 3). 
 
Upon equating the coefficients of the constants kv in this formula and setting: 
 

αν = k1 αν 1 + k2 αν 2 + k3 αν 3 , 
one will get the relation: 

αλµ = βνλ , 
 
with the aid of which one can write the expression for the functions u in the following 
manner: 

uν = A1 αν 1 + A2 αν 2 + A3 αν 3  (v = 1, 2, 3). 
 

It results from this formula that the functions αν are the only integrals of equations (7), § 
2 that are homogeneous of degree – 1 and have the property of being uniform and 
continuous, along with their derivatives of the first two orders, for all real values of the 
variables. 

 
 

§ 3.  Some properties of the integrals in the fundamental formulas. 
 

 In the fundamental formula (15), Chapter II, we let Tρ denote certain linear functions 
of the first derivatives of the functions u1, u2, u3 .  We now leave aside that definition of 
the quantities Tρ and suppose only that they are functions of the parameters that fix the 
position of a point on the surface ω that are finite and generally continuous. 
 Let x1, x2, x3 be the coordinates of a real point A that is arbitrary moreover, and let ξ1, 
ξ2, ξ3 be the coordinates of a point A′ on the surface ω. 
 Consider the integral: 
 

(1)    ϕ = k1 ϕ1 + k2 ϕ2 + k3 ϕ3 = 
1

4
T dρ βω

ρ
β ω

π ∑∫ ; 

 
we show that ϕ is a continuous function for any system of real values for x1, x2, x3 .  Since 
it results immediately from what we said in the preceding paragraph that ϕ is continuous 
for points exterior to ω, we shall take a point A on ω. 
 Describe a sphere s of radius ε with A as its center; let ϕ0 be the part of the integral ϕ 
that is extended over the part ω0 of ω that is interior to s and let ϕ denote the rest of it ϕ – 
ϕ0 .  ϕ′ is then a continuous function at A.  However, we know that one can determine a 
finite and positive quantity gin such a manner that: 
 

| βρ | < 
g

r
, 
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in which r is the distance AA′.  Furthermore, let G be an upper limit of the functions Tρ , 
so one has: 

| ϕ0 | < 
0

3

4

d
G g

rω

ω
π

⋅ ∫ . 

 
However, one knows from the elements of potential theory that the value of the integral 
in this inequality converges to zero with the radius ε.  Therefore, one can determine ε to 
be small enough that the difference of the two values of ϕ0 at points interior to s is less 
than an arbitrarily small quantity, so it will indeed result that ϕ = ϕ0 + ϕ′ is a function that 
is continuous at A. 
 Now, pass on to the integral: 
 

ϑ = k1 ϑ1 + k2 ϑ2 + k3 ϑ3 = 
1

4 S
U dSρ ρ

ρ
β

π ∑∫ , 

 
in which Uρ is a continuous function of the variables ξ1, ξ2, ξ3 . 
 It is clear that ϑ is a continuous function, along with its derivatives, for the points 
A(x1, x2, x3) that are exterior to the volume S. 
 In order to establish the continuity of ϑ for the points that belong to S, one only has to 
repeat the well-known proof of the continuity of the potential of an extended, three-
dimensional mass. 
 One also establishes the continuity of the first derivatives of ϑ by the same method. 
 Now, return to formula (15a) of Chapter II.  We have seen that the expression: 
 

(2)     
1 1

( )
4 4 S

T U d U dSρ ρ ρ ρ ρ ρω
ρ ρ

β σ ω β
π π

− −∑ ∑∫ ∫  

 
represents the function k1 u1 + k2 u2 + k3 u3 for the points A that belong to the volume S, 
and if the point A is found to be on ω then the expression (2) will be equal to 1

2 (k1 u1 + k2 

u2 + k3 u3), and finally, if A is outside of S then it will be equal to zero.  However, from 
what we proved about the continuity of the integral ϕ and ϑ, it will follow that the brief 
changes in the expression (2) are due to the integral: 
 

ϖ = k1ϖ1 + k2ϖ 2 + k3ϖ 3 = 
1

4
u dρ ρ

ρ
σ ω

π ∑∫ . 

 
 Let s be a point on the surface ω.  Let ϖ s denote the value of ϖ at the point s, let ϖis 
denote the limit of ϖ when the point A(x1, x2, x3) tends to s while staying inside of the 
surface, and let ϖes denote the limit of ϖ when the point A tends to s while staying 
outside of the surface.  One then has the two relations: 
 
 ϖis = ϖ s − 1

2 (k1 u1 + k2 u2 + k3 u3), 

(3) 
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 ϖes = ϖ s + 1
2 (k1 u1 + k2 u2 + k3 u3). 

 
Therefore, if u1, u2, u3 are the values of three functions of the variables ξ1, ξ2, ξ3 on the 
surface ω, and if the functions have continuous derivatives of the first two orders then 
formulas (3) will inform us of the discontinuity in the integral ϖ. 
 However, we shall prove that the formulas still persist under slightly more general 
conditions. 
 Let u1, u2, u3 be functions of the parameters that fix the position of a point one ω.  
Suppose that these functions admit finite derivatives of first order, and take a point s in ω 
where the curvature is finite.  Describe a sphere of radius ε whose center is at s and which 
cuts out a curve γ on the surface ω.  If one lets ϖ′ be the part of the integral that relates to 
the area ω0 that is interior to γ then one will have: 
 

ϖ′  = 
0

1

4
u dρ ρω

ρ
σ ω

π ∑∫  = 
0 0

1 1
( )

4 4
u d u u dρ ρ ρ ρ ρω ω

ρ ρ
σ ω σ ω

π π
′ ′+ −∑ ∑∫ ∫ . 

 
However, since σρ is a function that is homogeneous of degree – 2 and is regular outside 
of the point s, if one lets r denote the distance form s to another point of ω then one can 
set: 

σρ = 
0

2r
ρσ

, 

 
in which 0

ρσ  is a function whose modulus has a finite upper limit, namely, g.  One then 

has: 

0

1
( )

4
u u dρ ρ ρω

ρ
σ ω

π
′−∑∫  = 

0

0u u d

r r
ρ ρ

ρω
ρ

ωσ
′−

⋅∑∫ . 

 

However, there exists a finite upper limit to 
1

( )u u
r ρ ρ′− , no matter how small r is; let u be 

that limit, so one can write: 
 

0

( )u u dρ ρ ρω
ρ

σ ω′−∑∫  < 
0

3
d

gu
rω

ω
∫ . 

 
However, in potential theory, one shows that the integral has an absolute value that is less 
than: 

0

2

cos

πε
γ

, 

 
in which γ0 denotes the largest angle between a normal to ω0 and the normal at s. 
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 The integral 
0

1

4
u dρ ρω

ρ
σ ω

π
′∑∫  is no longer larger than 1 1 2 2 3 3k u k u k u′ ′ ′+ + .  We can 

then write the following inequality: 
. 

| ω′ | < 1 1 2 2 3 3
0

3

2cos

gu
k u k u k u

ε
γ

′ ′ ′+ + + , 

 
so it will then results that one can choose the radius ε to be small enough that the integral 

0

( )u u dρ ρ ρω
ρ

σ ω′−∑∫  has an absolute value that is less than an arbitrarily small quantity 

δ. 
 Since the integral ϖ − ϖ′ is continuous in the neighborhood of s, one concludes that 
the integral: 

0

( )u u dρ ρ ρω
ρ

σ ω′−∑∫  

 
is continuous at the point s.  One deduces equations (3) from this immediately. 
 Since the right-hand sides of equations (3) are independent of the coefficients in the 
differential equations that define the functions β, one sees (see pp. 23) that formulas (3) 
also persist for the functions that are defined by the integral: 
 

1 1 2 2 3 3

1
( )

4
v v v d

ω
τ τ τ ω

π
+ +∫ . 

 
We have established that the functions ϕ are continuous; on the contrary, their first 
derivatives present discontinuities, whose nature we shall exhibit under the hypothesis 
that the Tv are functions that have derivatives of first order. 
 Since τρ denotes a linear function of arbitrary constants k, one can show, by writing: 
 

τρ  = 1 2 3
1 2 3k k kρ ρ ρτ τ τ+ + , 

 
in which the ν

ρτ  are linear functions of the direction cosines of the normal to ω: 

 
ν
ρτ  = cos( )nxν

ρα α
α

τ∑ , 

 
that one can deduce the following expression for ν

ρατ  (see formula (8), Chapter II, § 1 and 

Chapter III, § 2): 
ν
ρατ  = α

ρµ µν
µ

α∆∑ . 
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With the aid of these notations, we can substitute the following statement for formulas 

(3): v dλ
αω

τ ω∫  is a continuous function of (x1, x2, x3) if λ is unequal to α; on the contrary, 

if λ = α then the integral will present a discontinuity that is defined by the formulas: 
 

is

s
v dα

αω
τ ω 

 ∫  = − 2π vs , 
es

s
v dα

αω
τ ω 

 ∫ = 2π vs . 

 
Upon now differentiating the expression for ϕµ with the aid of the functions α: 
 

ϕµ = 1 1 2 2 3 3

1
( )

4
T T T dµ µ µω

α α α ω
π

+ +∫ , 

one will obtain: 
 

 α
λµ µ

µ
ϕ∆∑  = − 1 1 2 2 3 3

1
( )

4
T T T dα α α

λµ µ λµ µ λµ µω
µ

α α α ω
π

∆ + ∆ + ∆∑∫  , 

  = − 1 2 3
1 2 3

1
( )

4
T T T dλα λα λαω

τ τ τ ω
π

+ +∫ . 

 
If we multiply both sides of this by cos (n xα) and take the sum with respect to the index 
α then we will have: 

(4)   cos( )nx α
α λµ µ

α µ
ϕ∆∑ ∑  = − 1 2 3

1 2 3

1
( )

4
T T T dλ λ λω

τ τ τ ω
π

+ +∫ . 

 
 Now, the integral in the right-hand side has the same form as the integral that defines 
the function ϖ, so we can account for the discontinuity in the expression (4) by means of 
the following formulas: 

 cos( )

is

s

nx α
α λµ µ

αµ
ϕ

 
∆ 

 
∑ =   1

2 Tλ , 

 

 cos( )

es

s

nx α
α λµ µ

αµ
ϕ

 
∆ 

 
∑ = − 1

2 Tλ . 

 
 Now, recall the study of the integral ϑ, while supposing that the functions Uρ admit 
continuous first-order derivatives.  By virtue of that hypothesis, one can write, upon 
applying a well-known formula of potential theory: 
 

xα

ϑ∂
∂

 = 
1 1

cos( )
4 4 S

U
U nx d dS

x
ρ

ρ ρ α ρω
ρ ρ α

β ω β
π π

∂
−

∂∑ ∑∫ ∫ . 

 
 Upon equating the coefficients of kµ in the two sides of this equation and replacing 
the functions βρµ with the equivalent expression αµρ , one will find that: 
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x
µ

α

ϑ∂
∂

 = 
1 1

cos( )
4 4 S

U
U nx d dS

x
ρ

ρ µρ α µρω
ρ ρ α

α ω α
π π

∂
−

∂∑ ∑∫ ∫ . 

 
If one takes the derivatives of both sides with respect to xβ then one will get: 
 

2

x x
µ

α β

ϑ∂
∂ ∂

 = 
1 1

cos( )
4 4 S

U
U nx d dS

x x x
µρ ρ µρ

ρ αω
ρ ρβ α β

α α
ω

π π
∂ ∂ ∂

−
∂ ∂ ∂∑ ∑∫ ∫ , 

 
in which the last term is a continuous function. 

 Upon multiplying both sides of the equation by the coefficient 
λµ
αβ
 
 
 

 and summing 

over the indices α and β, one will find that: 
 

∆λµ ϑµ = 
1

cos( )
4

U nx d
x

µρ
ρ αω

α ρ β β

αλµ
ω

αβπ
∂ 

  ∂ 
∑ ∑ ∑∫  + a continuous function. 

 
 If one recalls the formula: 

x
µρ

β β

αλµ
αβ

∂ 
  ∂ 

∑  = − α
λµ µρα∆  

 
then one can write the expression for ∆λµ ϑµ : 

 

∆λµ ϑµ = − 1
cos( )

4
U nx dα

ρ λµ µρ αω
α ρ

α ω
π

∆∑ ∑∫  + a continuous function. 

 
If we sum over µ then we will get: 
 

λµ µ
µ

ϑ∆∑ = − 1
cos( )

4
U nx dα

ρ λµ µρ αω
α ρ µ

α ω
π

∆∑ ∑ ∑∫  + a continuous function. 

 
However, one has the formula: 
 

cos( )nxα
λµ µρ α

α µ
α∆∑∑ = ρ

λτ , 

 
with the aid of which, one will get: 
 

λµ µ
µ

ϑ∆∑ = − 1

4
U dρ

ρ λω
ρ

τ ω
π ∑∫  + a continuous function. 

 



Fredholm – On the equations of equilibrium of a solid, elastic body. 34 

 We have proved that the integral that appears in this formula will experience a brief 
reduction that is equal to Uλ when the point A(x1, x2, x3) passes from the interior to the 
exterior of the surface ω.  However, we know that λµ µ

µ
ϑ∆∑  is equal to zero for the 

points that are exterior to S; as a result, one will have: 
 

λµ µ
µ

ϑ∆∑  = Uλ   (λ = 1, 2, 3). 

 
 It results from this that we have proved that the functions ϑ give us the solution to the 
following problem: 
 Determine the state of deformation of an unbounded elastic medium when that 
medium is subject to forces that act upon the volume elements that are interior to a 
certain surface and that one can suppose the deformation is zero at an infinite distance. 
 In particular, if one takes the volume S to be infinitely small then one will find that: 
 

ϑ = − 
1

4 S
U dSρ ρ

ρ
β

π ∑ ∫ , 

 

so, upon setting 
S
U dSρ∫  = − Xρ , one will deduce: 

 

ϑv = 
1

4π
(X1 β1v + X2 β2v + X3 β3v). 

 
It is then clear that these functions ϑ represent the components of the deformation in the 
bounded case, in which the medium is subjected to a force whose components are X1, X2, 
X3 at just one point. 
 
 

§ 4.  Use of compensating functions. 
 

 By taking one’s inspiration from GREEN’s ideas, one can reduce the general problem 
of the equilibrium of an elastic body to some particular problems of the same nature. 
 First, envision the case in which one is given the components of the deformation on 
the surface ω of a body S, and the forces that act upon the volume elements of the body. 
 If one can resolve the problem of equilibrium in the particular case in which the 
components of the deformation on the surface ω are equal to the functions αv (ξ1 – x1, ξ2 
– x2, ξ3 – x3), and the interior forces are equal to zero then one can also solve the general 
problem.  Let γ1, γ2, γ3 denote the components of the deformation in the particular 
problem and the components of the pressure on the surface by Γ1, Γ2, Γ3 .  BETTI’s 
theorem then gives us: 
 

0 = 
1 1

( )
4 4 S

T u d U dSρ ρ ρ ρ ρ ρω
ρ ρ

γ ω γ
π π

− Γ −∑ ∑∫ ∫ . 



Fredholm – On the equations of equilibrium of a solid, elastic body. 35 

One will find the solution to the general problem upon forming the difference between 
this expression and the right-hand side of equation (15a), § 3, Chap. II: 
 

k1 u1 + k2 u2 + k3 u3 = 
1 1

( ) ( )
4 4 S

u d U dSρ ρ ρ ρ ρ ρω
ρ ρ

σ ω α γ
π π

Γ − − −∑ ∑∫ ∫ . 

 
 Consider the second problem, in which the forces that act upon the surface are 
known; let Tρ denote the components of these forces; Let U1, U2, U3 denote the 
components of the force that act upon a volume element of S.  One then knows that the 
body S must be in equilibrium under the influence of these forces, which implies the six 
conditions: 

S
T d U dSρ ρω

ω +∫ ∫  = 0, 

 

( ) ( )
S

T T d U U dSλ ρ ρ λ λ ρ ρ λω
ξ ξ ω ξ ξ− + −∫ ∫  = 0. 

 
 The solution of this equilibrium problem is not unique.  If one lets u1, u2, u3 be 
functions that give a solution then one will obtain all of the other ones from the formulas: 
 

uλ + aλ + pµ xν − pν xµ , 
 
in which aλ and pµ denote constants. 
 The deformation that is defined by the functions α1, α2, α3 corresponds to 
components of the pressure that are equal to τ1, τ2, τ3 .  We have already found that 

dρω
τ ω∫  = 4π kρ .  Upon substituting linear functions for the u in formula (15a), Chapter 

II, one will find that: 

( ) dλ ρ ρ λω
ξ τ ξ τ ω−∫  = 4π (xλ kρ – xρ kλ). 

 
 Now, take the origin to be the center of gravity of the surface ω, and take the axes to 
be the principal axes of inertia for the surface ω. 
 Apply forces to the surface ω whose components are: 
 

tλ = bλ + cµ xν – cν xµ   (λ, µ¸ ν = 1, 2, 3). 
 

 If we write down the conditions for the forces – t and τ to bring about equilibrium 
then we will have: 

t dλω
ω∫ = bλ ⋅⋅⋅⋅ d

ω
ω∫  = 4π kλ , 

 

( )t t dλ ρ ρ λω
ξ ξ ω−∫  = cµ ⋅⋅⋅⋅ 2 2( )dλ ρω

ξ ξ ω+∫  = 4π (xλ kρ − xρ kλ). 

 
One sees that the values of the coefficients b and c that satisfy these equations are linear 
functions of the variables xν .  Provided that the coefficients b and c are chosen in such a 



Fredholm – On the equations of equilibrium of a solid, elastic body. 36 

manner that they satisfy the equilibrium conditions, and one makes the hypothesis that 
the problem of equilibrium is possible, one can solve that problem in the particular case 
in which the forces that act upon ω are equal to: 
 

τρ – tρ . 
 
 In that particular case, let δ1, δ2, δ3 denote the components of the deformation, and let 
Λ1, Λ2, Λ3 denote the components of the corresponding pressure.  One has, in turn, the 
relations: 

τρ – Λρ = tρ 
for the points on the surface ω. 
 Moreover, BETTI’s theorem gives us: 
 

0 = 
1 1

( )
4 4 S

T u d U dSρ ρ ρ ρ ρ ρω
δ ω δ

π π
− Λ −∑ ∑∫ ∫ , 

 
and formula (15), Chapter II gives us: 
 

k1 u1 + k2 u2 + k3 u3 = 
1 1

( )
4 4 S

T u d U dSρ ρ ρ ρ ρ ρω
α τ ω α

π π
− −∑ ∑∫ ∫ , 

 
so, upon taking the difference, one will get: 
 

k1 u1 + k2 u2 + k3 u3 = 
1 1

( ) ( )
4 4

T d U dρ ρ ρ ρ ρ ρω ω
δ α ω τ ω

π π
− − − Λ∑ ∑∫ ∫  

− 
1

( )
4 S

U dSρ ρ ρα δ
π

−∑∫ . 

 
However, the second integral here is equal to a linear function of the variables xν that 
takes the form: 

k1 u1 + k2 u2 + k3 u3 + 
1 2 3

1 2 3

1 2 3

k k k

p p p

x x x

, 

 
and which, in turn, represents a simple displacement of the body.  Upon supposing that 
this function is equal to zero, we will get the solution: 
 

k1 u1 + k2 u2 + k3 u3 = 
1 1

( ) ( )
4 4 S

T d U dSρ ρ ρ ρ ρ ρω
δ α ω α δ

π π
− − −∑ ∑∫ ∫ . 

 
 

________________ 
 


