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FOREWORD 
 

 

 The present textbook on electrodynamics offers some peculiarities in regard to the arrangement 

of the topics, as well as the manner of presentation, that I would like to mention briefly here. 

 As far as the arrangement of the topics is concerned, I have followed the example of theoretical 

mechanics in presenting them. In theoretical mechanics, one first examines the general laws of the 

interaction and motion of material particles, or “points,” which are later applied to certain 

specialized systems that idealize the various material bodies, namely, rigid bodies, elastic bodies, 

fluids, and gases. Accordingly, in this first volume, I will consider only the general laws of the 

interaction and motion of electrically-charged material particles, which are also often treated as 

points, and in that way all interactions between them will come down to their charges. 

 I shall call those particles (or “electric mass-points”) electrons without having to go into the 

detailed consideration of the phenomena that arise from them in material bodies in so doing. 

 The electromagnetic (and optical) properties of material bodies shall first be investigated in the 

second volume, and indeed from a macroscopic viewpoint. 

 It should also be pointed out here that, in analogy with mechanics, the bodies in “electric fluids” 

can be classified as free-moving charges (conductors) and “elastically” bound charges, whether 

bound electrically or magnetically. 

 I hope to be able to treat the microscopic electrodynamics of the simplest material systems 

(atoms and molecules) once I have succeeded in carrying out the necessary quantum-theoretical 

recasting of classical electrodynamics. 

 In the present first volume, phenomena that are independent of time will be considered to begin 

with. In that way, I shall begin by presenting electrostatics, not in terms of isolated electric charges, 

but in terms of the simplest neutral systems, i.e., dipoles. Magnetostatics will not be constructed 

on the basis of fictitious magnetic poles, but on the basis of the somewhat-idealized stationary 

electric currents. In so doing, I shall employ the energy principle as a guideline in order to exhibit 

the basic properties of electric and magnetic fields and their effect on electric dipoles or currents, 

resp. (or their elements). Combining that principle with the equivalence principle between electric 

dipoles and currents (relative to their interaction with each other) will imply the general differential 

equations for time-constant electromagnetic fields, and especially the laws of Coulomb and Biot-

Savart. 

 In Section Two, the laws obtained will be generalized to time-dependent phenomena, and 

indeed, by means of the principle of the relativity of velocity (in an entirely-narrow conception of 

it) and the principle of the conservation of electricity. The Maxwell-Lorentz equations thus-

obtained will then be applied to the determination of the electromagnetic field in the most-

important cases. The foundations of the electromagnetic theory of light will be laid by examining 

the electromagnetic field of an oscillator. 

 Moreover, the concepts of energy, momentum, etc., will be exhibited for arbitrary fields, and 

the classical theory of the force of inertia (i.e., the electromagnetic theory of mass) and radiation 

damping, as well as the theory of the translatory and rotational motion of a spatially-extended 

electron will be developed. In conclusion, that classical presentation will be considered critically. 



ii Foreword 

 

 Section Three is dedicated to laying the foundations of the special theory of relativity and its 

application to electromagnetic effects (i.e., fields) and the equations of motion of the electron. In 

it, the time-dependent processes will be regarded as static phenomena in a four-dimensional 

universe. We shall not go into the general theory of relativity in this book since it is concerned with 

gravitational effects more than with electrical ones. 

 By way of introduction, I have given a brief presentation of the foundations of vector and 

tensor calculus. The reader will find all of the mathematical apparatus that will be used in what 

follows there. In the treatment of tensors and the coordinate-wise representation of vector 

quantities and operations, I have restricted myself to rectangular coordinate systems, for simplicity. 

However, they will be the ones that are used almost always in Section Three. 
 

 This brief overview of the contents of the book shall now be completed by some mention of 

the things that are missing from it. The historical development of the study of electricity is ignored 

completely here. Namely, I believe that the historical and logical viewpoint should not, by any 

means, be confused with each other, at least, not when the branch of science in question has to be 

developed as a closed logical system, which is the case for classical mechanics and classical 

electrodynamics. I have tried to present the modern study of electricity in a way that is as simple 

and systematic as possible without having to recall the history of its development. I would prefer 

to leave the study of that topic to others. 

 In particular, I have ignored the theory of the ether in all of its forms completely. Undoubtedly, 

the ether has played a very important and fruitful role as the working hypothesis in the development 

of electrodynamics. First, since the time of Huyghens, it was the foundation for the theory of 

optical phenomena. Then, since the time of Faraday and Maxwell, it was the bridge between optics 

and electromagnetism. Much later, one sought to make the ether responsible for all physical 

phenomena. However, now is the time to recognize that the ether has played out its historical role 

and that it has the right to a place of honor in only the history of physics. Its introduction, even as 

an auxiliary concept, into the presentation of the modern theory of electricity cannot at all clarify, 

but rather only obfuscate, that theory and burden it with a number of illusory problems, such as all 

problems that relate to the motion of the Earth “in the ether.” 

 Due to the fact that my treatment of the theory of electricity is “ahistorical” from the outset, I 

have refrained from citing any references to the literature, whether textbooks or treatises, and have 

perhaps left many names that are very important in the development of electrodynamics 

unmentioned. 

 In conclusion, I would like to express my heartfelt thanks to Herrn Prof. M. Born for reviewing 

the manuscript. Furthermore, I owe my deepest thanks to Herren Prof. P. Ehrenfest, V. Bursian, G. 

Krutkow, and especially Herrn cand. W. Elsasser for their technical assistance. 

 It is a pleasant duty for me to mention that it was a stipend from the International Education 

Board that made it possible for me to work in a foreign country. 

 In particular, I would also like to thank the publishing house of Julius Springer for their care 

and generosity in every sense of the word. 
 

 Göttingen, September 1926. 

J. Frenkel   

_____________
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INTRODUCTION 

 

FUNDAMENTALS OF VECTOR AND TENSOR CALCULUS 
 

 

A. – Addition, inner and outer multiplication of vectors. 

 

§ 1. 

 

 The various physical quantities are ordinarily arranged into two classes, namely, scalars and 

vectors. The former are determined completely by giving their numerical values. In order to 

specify the other ones completely, one must give their directions, in addition to the numerical 

magnitudes. Some typical scalars that one considers are time, the mass of a body, etc.; some typical 

vectors are velocity, force, etc. Later, we will see that vectors are a special case of quantities of a 

more general type, namely, the so-called tensors. 

 Ordinarily, we will denote the vector quantities by German letters and their magnitudes by the 

corresponding Latin letters, or even by enclosing the vector symbol between two vertical lines. 

For example, | A | = A shall mean the magnitude of the vector A. 

  The simplest vector quantity, which also serves as an intuitive representation of all other 

quantities, is a rectilinear segment that points from one point Q to another P and can be regarded 

as the displacement of a material point. 

 The displacement OP can be replaced with a series of other displacements OA, AB, BC, CP 

that define a broken line and call them the components of OP. When one is given two components 

OA and AP, one can consider the vector OP to be the diagonal of a parallelogram whose sides are 

equal in length and point in the same directions as OA and AP, resp. 

 The replacement of a vector with a number of components (which can obviously be 

accomplished in infinitely-many different ways) is called a geometric decomposition. The opposite 

operation to a decomposition consists of the replacement of a number of arbitrary segments 

(vectors) F1, F2, …, Fn with a single segment F for which they play the role of components and is 

called geometric addition, which will be denoted symbolically by the equation: 

 

F = F1 + F2 + … + Fn = k

k

F .    (1) 

 

The vector F in that is called the geometric sum of F1, F2, etc. It is easy to prove that the geometric 

sum is independent of the sequence of individual summands (i.e., the components) and that the 

addition of an arbitrary number of summands can be replaced with their geometric sum. The 

geometric addition then satisfies the commutative and associative laws, just like the ordinary 

(algebraic) kind. 
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 A vector that is equal in length and oppositely-directed to another one B will be denoted by 

−B . The geometric sum A + (− B) will be written in the simple form A – B and is called the 

geometric difference of the vectors A and B. 

 

 

§ 2. 

 

 If one draws two planes that are perpendicular to a line MN through the endpoints to a segment 

OP then they will cut out a segment O1 P1 from that line that is called the projection of OP onto 

MN. Thus, that projection will be considered to be positive as an ordinary (scalar) quantity when 

the direction O1 P1 coincides with the positive direction of the line MN and negative in the opposite 

case. 

 If one denotes the projection of a vector A onto another B (or a line that points in the same 

direction as B) by AB then from the definition above, one will have: 

 

AB = A cos (A, B) . 

 

The product AB  B = AB cos (A, B) = ABA is called the inner (or “scalar”) product of the vectors 

A and B, and will be denoted by the symbol A  B, or 

simply AB. It is easy to see that the projection of the 

geometric sum of two or more segments (e.g., OQ and QP 

in Fig. 1) onto any line will be equal to the algebraic sum of 

the projections of the individual summands, i.e., (A + B)C = 

AC + BC . If one multiplies that equation by C then one will 

get: 

(A + B) C = AC + BC              (2) 

 

from the definition of the inner product. That formula, which 

expresses the distributive law, can obviously be generalized 

to an arbitrary number of summands in each factor: 

 

p q

p q

  
  
  
 A B  = p q

p q

 A B .    (2.a) 

 

 

 

 

 

 

M 

O 

O1 Q1 P1 

Q 

N 

P 

Figure 1. 



A. Addition, inner and outer multiplication of vectors. 3 
 

§ 3. 

 

 One can regard the (planar) surface that is bounded by a closed, planar line  (to the extent 

that only its orientation and area S are under consideration) as a vector quantity and represent it by 

a segment S that is perpendicular to its plane and has a length that is proportional to S. The double-

valuedness in the direction of S that then arises will 

be avoided by giving a certain sense of traversal along 

the bounding curve  and assigning a unique direction 

to the representative segment for that traversal (or 

orbiting), which is a sense that is ordinarily that of a 

right-handed screw. 

 If one draws lines through all points of the 

bounding curve that are perpendicular to a certain 

plane Q then one will get a curve 1 in that way that is 

referred to as the projection of  onto Q. The surface 

S1 that is bounded by 1 is correspondingly called the 

projection of S onto Q. That projection is considered 

to be an ordinary (i.e., scalar) quantity whose sign can 

be determined in such a way that one chooses a certain 

sense of traversal in the plane Q to be positive. In the 

event that this sense of traversal coincides with the 

sense of traversal along 1, S1 will be positive; in the 

opposite case, it will be negative. As one easily sees, 

S1 is numerically equal to the product of the projected area S with the cosine of the angle  between 

the plane that contains S and the plane Q. When representing the latter (or even better, the chosen 

sense of traversal along it) by the line MN that points perpendicular 

to it in the sense of the right-hand screw rule (Fig. 2), one can 

identify the projection of the surface S onto Q with the projection 

of the segment S that represents S onto MN. 

 If the “boundary curve”  consists of nothing but rectilinear 

segments then one can replace the planar surface S in question with 

a number of other planar surfaces S1, S2, … that define a polyhedral 

surface that is bounded by . The sense of traversal along the 

“curves” (which are polygons, in our present case) 1, 2, … that 

bound the surfaces S1, S2, … shall be chosen in such a way that 

each edge that belongs to two different polygons will be traversed 

in opposite directions, while the sense of traversal on the edges of 

the original “outer” polygon  remains unchanged (Fig. 3). Under those conditions, one can 

obviously assert that the algebraic sum of the projections of the “component surfaces” S1, S2, … 

onto any plane Q will always be equal to the corresponding projections of S. It will follow from 

this that for any type of “decomposition” of S into component surfaces (or of  into component 

Q 1 

S1 

M 

S 

S  

N 

Figure 2. 

Figure 3. 
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curves), the geometric sum of the vectors S1, S2, … must have the same value S. In that sense, 

we will refer to the various polyhedral surfaces that are bounded by  as equivalent. 

 Obviously, a polyhedral surface can also be bounded by a non-planar polygonal curve. 

However, as long the sense of traversal along that “curve” () is given and the sense of traversal 

is established on the individual component polygons (i) according to the aforementioned rule, the 

geometric sum of the component surfaces (or the vectors that represent them) Si will have the 

same value S for all polyhedral surface that are bounded by the same polygonal curve  (1). We 

would like to refer to that vector S, whose magnitude and direction are determined uniquely by 

the form and sense of traversal of the polygon , as the geometric moment of . That definition of 

the geometric moment can be easily generalized to arbitrary closed curves since such a curve can 

be regarded as a limiting case of a polygon with infinitely-small edges. For plane curves, the 

magnitude of the moment is equal to the area, and its direction is associated with the sense of 

traversal along the aforementioned right-hand screw rule. 

 

 

§ 4. 

 

 The simplest plane figure is a triangle or a parallelogram (which can be decomposed into two 

equal triangles). The geometric moment of a parallelogram whose sides are defined by the vectors 

A and B is called the outer product (or “vector product”) of those vectors and will be denoted by 

the symbol A  B. It is then assumed that the segments A and B point away from the same point 

and that the sense of traversal of the parallelogram starts from that point in the direction of A and 

ends up by traversing B in the opposite direction. The inversion of the sense of traversal will then 

correspond to the inversion of the sequence of A and B. That will then imply the equation: 

 

B  A = − A  B . 

 

The magnitude of the outer product is obviously 

independent of the sequence of the two vectors, and as 

is easy to see, it will be equal to A B sin (A, B). 

 Although the commutative law is not true for outer 

multiplication, as opposed to the inner kind, the 

distributive law proves to be valid in both cases. 

Namely, if we construct two parallelograms that are 

determined by the vectors A, C and B, C in such a way 

that the have a common side (C), and extend the figure 

that we get (Fig. 4, in which OP = O P   = A, PQ = P Q  = B, and OO  = PP = QQ  = C) by the 

 
 (1) That will follow immediately when one considers the projections of  and i (i = 1, 2, 3, …) onto any plane.  

Q 

O 

P 

 

 

 

Figure 4. 
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triangles OPQ and O P Q    with opposite directions of traversal and moments then we will get the 

parallelogram OQQ O   whose moment must obviously be equal to the geometric sum of the 

moments OPP O   and PQQ P  . On the other hand, since OQ = OP + PQ = A + B, it will then 

follow that: 

A  C + B  C = (A + B)  C .     (3) 

 

 That equation can be generalized to an arbitrary number of summands, like the corresponding 

equation for inner multiplication: 

 

p q

p q

   
   

   
 A B  = p q

p q

 A B .         (3.a) 

 

 

§ 5. 

 

 If A, B, C are three non-coplanar (i.e., they do not lie in the same plane) segments then the 

double product A (B  C) means the volume of a parallelopiped whose sides are equal to those 

segments and point in the same direction (with the + or – sign). That follows from the fact that the 

magnitude of the outer product B  C is equal to the area of the parallelogram (B, C), which can 

be regarded as the base surface of the parallelepiped (A, B, C), while its direction is perpendicular 

to that surface. Since different surfaces can be chosen to be the base surface of the parallelepiped, 

the expressions B (C  A) and C (A  B) will give the same volume, and indeed with the same 

sign as A (B  C), when the vectors A, B, C are permuted cyclically. For arbitrary vectors, one 

will then have: 

A (B  C) = B (C  A) = C (A  B) .        (4) 

 

 The double outer product A  (B  C) represents a vector that points perpendicular to A in the 

plane of B, C. That is why it can be expressed in the form  B +  C, in which  and  are two 

scalar coefficients between which the relation  (AB) +  (AC) = 0 must exist. If we 

correspondingly set  =  AC and  = −  AB, in which  means a new scalar coefficient, then 

we will have: 

A  (B  C) =  {(AC) B − (AB) C} . 

 

Now, it is easy to show that  = 1, independently of the magnitude and direction of the vectors A, 

B, C, such that: 

A  (B  C) = (AC) B − (AB) C .          (5) 
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We shall skip the proof of the statement above since the identity (5) will be exhibited below in a 

different way. It follows from (5) that: 

 

A  (B  C) + B  (C  A)  + C  (A  B) = 0 ,         (5.a) 

 

in which the individual summands are obtained from each other by cyclically permuting the 

vectors A, B, C. 

 An application of (4) and (5) will then give: 

 

(A  B) (C  D) = C [D  (A  B)] = C [A (B D) − B (A D)] , 

i.e.: 

(A  B) (C  D) = (C A) (B D) − (C B) (A D) . 

 

 

§ 6. 

 

 In conclusion, we would like to briefly consider the coordinate representation of vector 

quantities and operations. 

 We imagine a rectangular coordinate system whose axes OX1, OX2, OX3 point in the directions 

of three unit vectors e1, e2, e3, resp. Along with the orthogonality conditions: 

 

ei  ek = 
1 for ,

0 for ,

i k

i j

=



     (7) 

 

those vectors shall satisfy the conditions: 

 

e2  e3 = e1 , e3  e1 = e2 , e1  e2 = e3 ,         (7.a) 

 

which express the “right-hand screw character” of the coordinate system. 

 Let r be the radius vector OP of a point P relative to the coordinate origin O. Its components 

along the coordinate axes (i.e., the coordinates x1, x2, x3 of the point P) are defined by the vector 

equation: 

r = x1 e1 + x2 e2 + x3 e3 .            (8) 

  

On the other hand, if we construct the projection of r onto any axis (Xi) then, from (2), and 

according to (7) and (8), we will have: 

ri = r ei = xi . 
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The components of the radius vector will then coincide with its projection onto the axes in the case 

considered. Obviously, the same thing must be true for all other vectors such that components of 

a vector A can be defined by the equations: 

 

Ai = A ei ,             (8.a) 

instead of equation (8). 

 The components of a geometric sum A + B + … are obviously equal to the algebraic sum of 

the corresponding components of the individual summands. 

 If we set: 

A = i i

i

A e   and B = k k

k

B e  

 

in the products A B and A  B then, from (7), that will give: 

 

A B = i i

i

A B  = A1 B1 + A2 B2 + A3 B3 .           (9) 

In particular, for B = A: 

A A = 2A  = 2 2 2

1 2 3A A A+ +  .            (9) 

Furthermore: 

A  B = ( )i k i k

i k

A B  e e  = ( )( )i k k i i k
i k

A B A B


−  e e , 

i.e., from (7.a): 

 

A  B = (A2 B3 – A3 B2) e1 + (A3 B1 – A1 B3) e2 + (A1 B2 – A2 B1) e3 ,      (10) 

or 

(A  B)1 = A2 B3 – A3 B2 , (A  B)2 = A3 B1 – A1 B3 , (A  B)3 = A1 B2 – A2 B1 . (10.a) 

 

One can easily exhibit the identities (4) and (5) by means of those formulas. In the case of (5), e.g., 

one will have, from (10.a): 

 

 [A  (B  C)]1 = A2 (B  C)3 – A3 (B  C)2 

  = A2 (B1 C2 – B2 C1) − A3 (B3 C1 – B1 C3) 

 = B1 (A1 C1 + A2 C2 + A3 C3) − C1 (A1 B1 + A2 B2 + A3 B3) 

  = B1 (A C) – C1 (A B) , 

 

which agrees with (5). 
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B. – The differential operations of vector calculus. 

 

§ 7. 

 

 One can regard vectors, just like scalars as variable quantities (in magnitude and direction), 

and indeed, as independent variables (i.e., arguments) or as dependent ones (i.e., functions). 

Therefore, the following four cases can appear: 

 

 1. A scalar function of a scalar argument  (t). 

 2. A vectorial function of a scalar argument A (t). 

 3. A scalar function of a vectorial argument  (r). 

 4. A vectorial function of a vectorial argument F (r). 

 

 For the sake of intuitiveness, we will consider t to be the time and r to be the radius vector of 

various points in space (relative to a “fixed” point O) from the outset. Therefore,  (t), A (t) will 

be functions of time, and  (r), F (r) will be functions of positions, such that the “position” will be 

defined when we are given r. 

 One can illustrate a scalar function of position  (r) by constructing a family of surfaces: 

 

 = c = const. 

 

for equidistant values of c. The curves that are orthogonal to those surfaces at each point will then 

be given by the direction of the most-rapid increase in . 

 One ordinarily refers to the vectorial functions of position F (r) as “vector fields,” and 

illustrates them by constructing a family of lines (“streamlines,” when F is a velocity, “lines of 

force,” when F means a force) that go through each point in the direction of the vector F that 

belongs whose “density” (i.e., number of lines per unit area of the surface that it is perpendicular 

to) is proportional to the magnitude of F (2). 

 

 

§ 8. 

 

 In the case of a vector function of a scalar argument A (t), the “vectorial derivative,” d A / dt 

corresponds to the ordinary derivative d / dt of a scalar function of the same argument and is 

defined to be the limit of the vector: 

 
 (2) When a surface S is not perpendicular to F, but skew to it, the number of those lines that cut the surface per 

unit area will be measured by the projection of F onto the normal to S. 
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1

t
[A (t + t) − A (t)] 

as t → 0. 

 In the case of a scalar function of a vector argument r, the corresponding differential operation 

can be defined as follows: 

 Imagine a closed surface S that includes the point P in question (OP = r). 

 Draw a unit vector n at each point S that points in the direction of the exterior normal. If we 

divide S into infinitely-many elements dS and define the product n  dS, in which n and  refer to 

two arbitrary points of dS, then the geometric sum of the infinitely-small vectors n  dS in the limit 

as dS → 0 will be a vector quantity that is independent of the aforementioned point, which one 

denotes by: 

dS n  

 

and calls the surface integral of the function  (r) (3). We will assume that this function is 

continuous over all of the volume that comes under consideration (4). 

 If one divides the surface integral of  by the volume V that is enclosed by the surface S and 

contracts S to the (always interior) point P then that will give a vector quantity in the limit as S → 

0 that is independent of the form of S or its alterations under the passage to the limit (5). As we will 

see in the next section, that quantity corresponds to the ordinary “derivative” since it determines 

the magnitude and direction of the rate of change in  (r) “at the point P.” One calls it the gradient 

of  and ordinarily denotes it by the symbol grad . One then has: 

 

grad  = 
0

1
lim
S

dS
V


→

  n .          (11) 

 

 One can define two different differential quantities for a vectorial function F (r) that will 

correspond to the gradient of a scalar when the product  n in (11) is replaced with the inner or 

outer product of n and F. In the first case, we will get a scalar differential quantity that is called 

the divergence of F: 

div F = 
0

1
lim
S

dS
V→

  nF     (11.a) 

 

and in the second case, we will get a vector quantity called the rotation (or “curl”) of F: 

 

 
 (3) The circle in the integral symbol means that the surface S is closed.  

 (4) I.e., the ratio of the difference  (r2) –  (r1) between two different points to the distance between those points 

| r2 – r1 | must also remain finite. 

 (5) For the proof of that, see the Remark in § 11. 
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rot F = 
0

1
lim
S

dS
V→

  n F .        (11.b) 

 

One can refer to the divergence as the inner gradient of F and the rotation as the outer one. If one 

introduces the vectorial operator: 

 = 
0

1
lim
S

dS
V→

  n         (12) 

  

and regards it as symbolic vector then the three differential operations (11), (11.a), (11.b) can be 

expressed symbolically by the corresponding multiplication operations: 

 

grad  =  ,  div F = F, rot F =   F .   (12.a) 

 

 

§ 9. 

 

 That manner of expression is often very convenient and very enlightening in the context of the 

analytical properties of the various differential operations. On the other hand, their geometric 

interpretation is expressed more intuitively and directly by the usual terminology. In the case of 

the vectorial differential quantities grad  and rot F, that interpretation can be recognized 

immediately by a simple specialization of the form of S. Namely, let S be the surface of an 

infinitely-small cylinder with the end surfaces S  , S , and a lateral surface . We will denote the 

corresponding exterior normals by n, n, and , resp., and the height of the cylinder by h. We next 

define the projection of the vector dS n  onto the cylinder axis, which points from S   to S  

(so it coincides with n). That projection is equal to the inner product n dS n , or since n is 

constant, to ( )dS  n n . Since  n = 0, the integral above will reduce to the sum of the parts 

that correspond to the two end surfaces, i.e., since n n = − 1, to the difference dS dS    −  . 

By definition, the ratio of that difference to the volume of the cylinder V = S h  = S h in the limit 

as S→ 0 and h → 0 must be equal to the projection of the vector grad  onto n. Since one will 

then have dS dS    −   = ( ) S   − , one will get: 

 

n grad  = gradn  = 
0

lim
h h

 

→

 −
 = 

h




.           (13) 

 

 Therefore: The projection of grad  onto any direction is equal to the rate of increase of  in 

that direction, or in other words, it is equal to the (partial)derivative of  along the corresponding 

rectilinear axis. It follows from this that the vector grad  determines the direction and magnitude 
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of fastest increase in the function  (r). The lines that represent that vector, or rather, the 

corresponding vector field, are the curves that are orthogonal to the surfaces  = const. The 

geometric meaning of the gradient will be explained completely by that connection. 

 In order to clarify the meaning of the vector rot F, we define the projection of the integral 

dS n F onto n, in the same way as before. In that way, (4) will imply that: 

 

n rot F = 
1

( )dS
S h

 
  n n F  = 

1
( )dS

S h


  F n n  = 
1

( )d
S h

 
  F n , 

 

since the outer product n  n will vanish on the end surfaces of the cylinder. As far as the lateral 

surface  is concerned, that outer product will have a length equal to 1 and it will point in the same 

direction as the tangent to the intersecting curve or the generator to the cylinder  towards the side 

that corresponds to the direction of the axis n in the sense of the right-hand screw rule. If we set 

n   =  (“tangent vector”) and d  = h d then we will have: 

 

1
( )d

S h
 

  F n  = 
1

d
S

 
  F , 

and as a result: 

rotn F = 
0

1
lim F d

S





→   .         (14) 

 

 The integral that appears on the right-hand side is generally called the line integral of the vector 

F. In particular, for a closed curve (note the circle in the integral symbol!), one calls it the 

circulation of that vector. That “circulation” is non-zero when the lines that represent the vector 

field F are closed or helical since the tangential projection of F will keep the same sign at all points 

of a closed curve in that case. That will happen, e.g., when F means the velocity of the various 

particles of a rotating solid body or a rotating fluid mass. Those places where rot F is non-zero are 

called vortices of the vector field F (r). The vortex points generally define continuous lines, 

namely, the so-called vortex lines (or vortex filaments), which can be regarded as curved rotational 

axes in the case of fluids. 

 One can easily show by means of the formula (14) that the vector rot F will then point in the 

same direction as the rotational axis, and its magnitude will be equal to twice the angular velocity. 

That explains the choice of the term “rotation.” 

 The expression (11.a) for the divergence cannot be converted by specializing the surface, due 

to the scalar character of the differential quantity. However, its geometric meaning will become 

immediately clear when one illustrates the vector field F by the corresponding “F-lines.” The 

product Fn dS can then be interpreted as the number of lines that go through the surface element, 
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and indeed outwards when Fn is positive or inwards when Fn is negative. The integral nF dS , 

which is called the flux of F through S in the context of that picture (6), will then be equal to the 

excess in the number of lines that enter S over the number that exist it. (Obviously, that excess can 

just as well prove to be positive as negative.) When the divergence of F vanishes inside of S, from 

(11.a), the total flux of the vector F through S must also be equal to zero. That means that the lines 

that represent the vector field F (r) will go through the region that is enclosed by S without 

beginning or ending in it. However, if div F is non-zero at a point or in a region then the flux of F 

through a surface that encloses that point must also be non-zero. In particular, when div F > 0, we 

will have a source of the F-lines inside of S, i.e., a place where they begin and diverge in different 

directions. That explains the choice of terminology “divergence.” Negative values of div F 

correspond to a “sink” (i.e., a “negative source”) of the F-lines to which they must converge in all 

directions. (That is why the quantity – div F is often called the “convergence.”) 

 

 

§ 10. 

 

 We must still mention a differential operation that relates to the vector function F (r) and has 

a close analogy with the gradient of a scalar function. However, one can define that operation only 

when one is given a second vector or a vector function A that is not itself differentiated since it 

only determines the direction in which the differentiation of the function F (r) must proceed at 

each point. We then recall formula (13) of the foregoing section. If we replace  with F in it then 

that will give an operation that we will denote by the symbol (n grad): 

 

(n grad) F = 
0

1
lim ( )
h h→

 −F F  = 
h





F
.    (15) 

 

 Upon inverting the argument by which we arrived at formula (13) from (11), we will get the 

following definition of the new operation, which corresponds to formulas (11), (11.a), (11.b): 

 

(A grad) F = 
0

1
lim ( )
S

dS
V→  An F , 

 

 
 (6) Even when S is not closed. In that case, as usual, the normal n must point in the direction that is associated with 

the sense of traversal along the boundary curve  according to the right-hand screw rule.  
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in which A should mean an initially-constant unit vector, just like n. However, we immediately 

free ourselves of that restriction when we understand the values of A under the integral sign to 

mean the values at the points in question (to which the surface S should contract), i.e., to set: 

 

(A grad) F = 
0

const.

1
lim ( )
S

dS
V→

=

 
 
 


A

An F ,   (15.a) 

 

in full generality. The vector (A grad) F is then equal to the “partial derivative” of F in the direction 

of A, multiplied by the magnitude of A (7). If we consider, e.g., two infinitely-close points r1 and 

r2 and set A = r2 − r1 = d r then the vector (d r grad) F will mean nothing but the vector difference 

d F = F (r2) − F (r1), just as d r  grad  = d =  (r2) −  (r1) . Note that the scalar product gradA

can be reduced to the combined operation that is defined by (15.a) when one replaces the vectorial 

function F with the scalar . Namely, one has: 

 

(A grad)  = 
0

const.

1
lim ( )
S

dS
V


→

=

 
 
 


A

An = 
0

const.

1
lim ( )
S

dS
V


→

=

 
 

 


A

A n  

 = 
0

1
lim
S

dS
V


→

 
 

 
A n  = A  grad  . 

 

When one assumes that F is constant in (15.a), not A, that will give: 

 

0
const.

1
lim ( )
S

dS
V→

=

 
 
 


F

An F = 
0

1
lim
S

dS
V→ F nA = F div A . 

 

 
 (7) In connection with (15.a), one can define two other differential operations of the same type, namely: 

 

0
const.

1
( grad) lim ( )

S
dS

V→
=

 
 =  

 


A

A F A n F , 

 

0
const.

1
( grad) lim ( )

S
dS

V→
=

 
  =   

 


A

A F A n F . 

 

However, those operations are inessential for practical applications of the vector calculus and can then be reduced to 

the previous ones. Indeed, the following identities will be true:  

 

(A  grad) F = (A rot F)  and  (A  grad)  F = A rot F + (A grad) F − A div F . 
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Now, it is easy to show that in the general case when the two quantities A and F are considered to 

be variable, the integral 
1

( ) dS
V  An F  must be equal to simply the sum of the expressions above 

in the limit. In fact, if one sets A = A0 + A and F = F0 + F, in which A0 and F0 mean the values 

of A and F at the point in question, then one will have: 

 

(A n) F = (A0 n) F0 + (A0 n) F + (A n) F0 + (A n) F , 

and furthermore: 

  0 0
0

1
lim ( )
S

dS
V→  A n F = 0 , 

 

0
0

1
lim ( )
S

dS
V→

 A n F = 0
0

1
lim ( )
S

dS
V→  A n F  = (A grad) F , 

 

  0
0

1
lim ( )
S

dS
V→

  A n F  = 0
0

1
lim ( )
S

dS
V→  An F  = F div A , 

 

and since F and A are infinitely-small quantities (due to the assumption that the functions F 

and A are continuous): 

0

1
lim ( )
S

dS
V→

  An F = 0 . 

 As a result: 

0

1
lim ( )
S

dS
V→  An F = (A grad) F + F div A .        (15.b) 

 

 

§ 11. 

 

 We divide the volume V, which is bounded by the (not infinitely small) surface S, into two sub-

volumes V1 and V2 and denote the surfaces that bound those sub-volumes by S1 (S2, resp.). The 

exterior normals n1 and n2 coincide with n on the parts of S1 and S2 that are common to S. They 

are opposed to each other on the surface S1,2 that separates V1 from V2 such that one will have 

either n2 = − n1 or n1 + n2 = 0 on it. 

 It will then follow that the sum of the two integrals 1 1dS n  and 2 2dS n  must be equal 

to the original surface integral dS n  independently of the form of the separation surface S1,2 

(since the integrals 1 1,2dS n  and 2 1,2dS n will mutually cancel). 
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 By continuing that process, one can subdivide V into infinitely-many volume elements Vi that 

are bounded by infinitely-small, closed surfaces Si such that the sum i i

i

dS  n  will always be 

equal to dS n  (8). If we pass to the limit and observe that 
0

1
lim

i
i i i

S
i

dS
V


→  n  = – grad i then 

we will get: 

dS n  = 
0

lim grad
i

i i
V

i

V
→

 , 

 

or when the sum is replaced with a volume integral: 

 

dS n  = grad dV .     (16) 

 

 In the same way, one will get the transformation formulas from (8), (9), and (15.b): 

 

nF dS  = dS nF = div dV F ,       (16.a) 

dS n F  = rot dV F ,    (16.b) 

( ) dS nA F  = (  grad)  divdV dV+ A F F A .    (16.c) 

 

 

§ 12. 

 

 One will get similar transformation formulas for line integrals that are taken along a closed 

curve . Namely, if one replaces  with a net of infinitely-small planar curves i that bound the 

surface elements Si of any surface S that is bounded (so it is not closed) by  and observe that the 

sum of the integrals i id  F  must always remain equal to the original integral d  F  (since 

 
 (8) On the grounds of that theorem, one can easily prove the validity of the statement that we expressed in § 8 in 

regard to the independence of 
0

1
lim
S

dS
V


→  n  on the form of the outer surface S. We imagine that the elements Vi (Si) 

have the same form and size, except for the boundary elements whose number and magnitude relative to the integral 

dS n  will go to zero as the number N of all elements increases. If the surface S itself is infinitely small and N is 

infinitely large then due to the assumed continuity of the function , one can consider all sub-integrals 
i i i

dS n to 

be equal to each other, up to higher-order infinitesimals, and as a result one can set 
i i i

dS n   
1

V
dS n . Since 

one has Vi = V / N, to the same degree of approximation, it will follow that the limiting value of 
1

V
dS n  for a 

vanishingly-small surface S of any form must coincide with the value of 
1

i i i
iV

dS n  for an infinitely-small surface 

of a well-defined form (e.g., a cube), so it will be independent of the form of S. 
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the tangent vectors i point in opposite direction on any separating line between two surfaces 

elements Si) then, from (14), one will get: 

 

d  F  = i i

i

d   F  = roti i i

i

S n F  

in the limit as Si, i → 0, or: 

F d   = rotn dS F ,     (17) 

 

in which rotn F = n  rot F, and n means the normal to dS. Therefore, that normal will point in the 

direction that corresponds to the sense of traversal along the boundary curve  that is defined by 

the tangent vector  and the right-hand screw rule. 

 Formula (16.a) is ordinarily referred to as Gauss’s theorem and (17) is referred to as Stokes’s 

theorem. One can add a similar formula to formula (17) that is obtained by replacing the vector 

function F (r) with a scalar function  (r). As above, that will give the identity: 

 

d    = i i i

i

d    . 

 

The conversion of a line integral i i id    that extends along an infinitely-small curve i, takes 

place most simply in the following way: Imagine that i is the generator of the cylindrical surface 

that we used while deriving formula (13) above, and instead of the inner product dS n n , we 

form the outer product dS n n  (the index i will be dropped later). In that way, we will get: 

 

dS n n  = dS n n  = d  n  = h d   , 

 

just as we did when deriving formula (14), and as a result, from (11): 

 

n  grad S = d   , 

 

or when we reintroduce the index i : 

 

i i id    = ni  grad i Si . 

 

 Upon summing and passing to the limit (Si → 0), we will then get the following formula: 

 

d    =  grad dSn .            (17.a) 
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§ 13. 

 

 Upon applying the differential operations that were considered above to the functions: 

 

 = grad ,  F = div F ,   F = rot F , 

 

which correspond to the usual first-order derivatives, we will get the following five second-order 

derivatives: 

 

()  = div grad  ,   ( F) = grad div F ,     = rot grad  , 

 

 (  F) = div rot F ,   (  F) = rot rot F . 

 

 If the differential operator were not a symbolic vector, but a true one, then the double 

“products”    = (  )  and  (  F) would vanish identically (in  or F, resp.), i.e., the 

following identities would exist: 

rot grad  = 0 ,     (18) 

div rot F = 0 .            (18.a) 

 

Now, it is easy to see that this is actually the case, based upon the transformation formulas above. 

 If we imagine that the surface S is closed in (17) and (17.a) then the bounding curve  will 

reduce to a point, and the corresponding line integral will vanish. In that way, we will get the 

identities: 

 rot  dS n F  = 0 ,  grad  dS n  = 0 , 

 

or upon transforming that according to formulas (16.a) and (16.b): 

 

div rot  dV F  = 0 , rot grad  dV  = 0 . 

 

Since the volume that is enclosed by S is entirely arbitrary the integrands in those volume integrals 

must vanish identically, which will then imply formulas (18) and (18.a). 

 One ordinarily writes the operation  = div grad  in the form 2, where 2 =  is 

called the Laplace operator (it is often denoted by , as well). 

  From the definition of div, one can obviously write: 

 

2 = 
0

1
lim  grad  
S

dS
V


→

 n , 

or since n grad  = (n grad)  : 
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2 = 
0

1
lim (  grad)  
S

dS
V


→  n .     (19) 

 

That formula shows that the operation 2 can be applied to not only scalar functions, but also 

vectorial ones, and indeed, when we replace  with F in (19): 

 

2F = 
0

1
lim (  grad)  
S

dS
V→  n F .           (19.a) 

 

If one reintroduces the symbolic vector  in place of the symbol grad and treats it as an ordinary 

factor (which must, however, always appear in front of the function F to be differentiated) then it 

will follow from the algebraic identity (5) that when one sets A = n, B =  (or conversely) and C 

= F, one will have: 

(n ) F = n ( F) −  (n  F) =  (n F) − n  ( F) .  

Since: 

0

1
lim  (  ) 
S

dS
V→

 n F  = grad ( F) = 
0

1
lim   
S

dS
V→

  n F  

and 

0

1
lim  (  ) 
S

dS
V→

  n F  = rot   F = 
0

1
lim   
S

dS
V→

  n F , 

 

from the equations above, that will yield: 

 

2F = grad div F – rot rot F .         (19.b) 

 

We will prove that identity more rigorously in the next section by means of the coordinate 

representation for the vectorial differential operations. 

 

 

§ 14. 

 

 The simplest way for one to get such a representation is as follows: 

 We consider the function  (r) to be an ordinary scalar function of the three components x1, x2, 

x3 of the vector argument r. From (13), when the vector n is replaced with any of the unit vectors 

e1, e2, e3 that determines the coordinate axes, that will give: 

 

ei grad  = gradi  = 
ix




     (i = 1, 2, 3) .      (20) 
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The components of the vector grad  =  are then equal to the partial derivatives of the function 

 (x1, x2, x3) with respect to the corresponding coordinates. 

 It will then follow that the operator  can be defined quite independently of the nature of the 

function  as a (symbolic) vector with the components 
1x




, 

2x




, 

3x




. When written in the form: 

 

 = 1 2 3

1 2 3x x x

  
+ +

  
e e e ,             (20.a) 

 

it is called the Hamiltonian operator, and can be applied to scalar, as well as vectorial functions 

when the vector argument r of those functions is replaced with the three scalar arguments x1, x2, 

x3. In that way, one will get the following expressions for div F, rot F, and (A grad) F: 

 

div F = F = 1 2 3

1 2 3

F F F
x x x

  
+ +

  
 ,          (21) 

 

rot F =  F = 3 32 1 2 1
1 2 3

2 3 3 1 1 2

F FF F F F

x x x x x x

         
− + − + −     

         
e e e ,  (21.a) 

i.e.: 

rot1 F = 3 2

2 3

F F

x x

 
−

 
, rot2 F = 31

3 1

FF

x x


−

 
, rot3 F = 2 1

1 2

F F

x x

 
−

 
,  (21.b) 

and 

(A grad F)i = A grad Fi = 1 2 3

1 2 3

i i iF F F
A A A

x x x

  
+ +

  
 (i = 1, 2, 3). (21.c) 

 

 One can also derive those formulas immediately from the corresponding defining equations 

(11.a), (11.b) [(14) and (15), resp.] by choosing S to be the surface of an infinitely-small 

parallelepiped whose sides are parallel to the coordinate axes. For example, in the case of div F, 

when those sides are denoted by xi and the surfaces that are perpendicular to them are denoted 

by iS  , iS   (i = 1, 2, 3) (such that iS   refers to the point xi, and iS   refers to the point xi + xi), one 

will have: 

dS nF  =  
3

1

( ) ( )i i i i

i

dS dS
=

     +  n F n F , 

 

or, since i
n = ei and i

n = − ei , i.e., (n F)i = + 
i
F  and (n F)i = − 

i
F  : 

 

dS nF  = ( )i i i

i

F F dS −  = i
i i

i i

F
dS

x





  = i

i i

F
V

x

 
 

 
 , 
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in which V = xi  Si = x1  x2  x3 means the volume of the parallelepiped. Obviously, those 

equations are fulfilled only approximately up to quantities of the same order as the products .iV x   

However, if we pass to the limit xi → 0 then we will get the exact equation: 

 

0

1
lim

ix
dS

V →  nF  = i

i i

F

x




 , 

which is equivalent to (19). 

 Formulas (20) and (21) will give: 

 

div grad  = 
2 2 2

2 2 2

1 2 3x x x

    
+ +

  
 = 

2 2 2

2 2 2

1 2 3x x x


   
+ + 

   
 .  (22) 

 

 One can then, in fact, define the Laplace operator 2 to be the square of the Hamiltonian 

operator (18.a): 

2 = () = 
2 2 2

2 2 2

1 2 3x x x

  
+ +

  
.          (22.a) 

 

 Now, it is easy to convince oneself that the same expression will be obtained for 2 on the 

basis of equation (19.b). Namely, if one constructs the projection of the right-hand side of (19.b) 

onto any axis [e.g., the first one (X1)] then, from (20), (21), and (21.b), one will have: 

 

3 31 2 2 1 1

1 1 2 3 2 1 2 3 3 1

F FF F F F F

x x x x x x x x x x

           
+ + − − + −    

             
 = 

2 2 2

1 1 1

2 2 2

1 2 3

F F F

x x x

  
+ +

  
, 

 

and that is nothing but the first component of the vector 2 F, when 2 is regarded as a scalar 

factor in that way. Note that the projection of that vector onto any direction n is equal to 

div grad ,nF  i.e.: 

| 2 F |n = 2Fn .     (22.b) 

 

 

§ 15. 

 

 Now that we have defined and explained the differential operations of vector calculus, we must 

(as in the usual vector calculus) establish the rules that govern the application of those operations 

to sums, products, and compositions of functions. 

 The “derivative” of a geometric sum of several vector functions of a scalar or vectorial 

argument is obviously equal to the geometric sum of the corresponding derivatives, just like with 

ordinary differentiation. For instance: 

 



C. – Coordinate transformations and tensors. 21 
 

d

dt
{A (t) + B (t)} = 

d d

dt dt
+

A B
,   grad ( + ) = grad  + grad  ,   div (E + F) = div E + div F, 

 

etc. 

 Moreover, one can easily prove that in the case of a product of two functions of a scalar 

argument, the same formulas that are true for scalar functions will still be valid, and indeed one 

has: 

d

dt
( A) = 

d d

dt dt


+

A
A ,      (23) 

d

dt
(A B) = 

d d

dt dt
+

A B
B A ,     (23.a) 

d

dt
(A  B) = 

d d

dt dt
 + 

A B
B A .       (23.b) 

 

 For example, the last formula is obtained as follows: 

 

d

dt
(A  B) = 

0

1
lim

t t → 
[(A + A)  (B + B) − A  B] 

= 
0

lim
t

t
t t t t →

    
 +  +   

    

A B A B
B A  = 

d d

dt dt
 + 

A B
B A . 

 

 The derivative of a product of two factors with respect to a scalar argument is therefore equal 

to the sum of the derivatives that are obtained when each of variables is regarded as variable, while 

the other one is regarded as constant. That rule can be easily generalized to double, and even more 

complicated products, and will also remain valid when one differentiates functions of a vector 

argument (r). That assertion can be proved in the same way for each type of differentiation, as we 

did in § 10 for the two different operations that apply to the expression 
0

1
lim ( )
S

dS
V→  An F . In the 

context of the coordinate representation of the vectorial differential operations, one can also 

consider them to be a direct consequence of the corresponding theorem for scalar arguments. 

 In the simplest case of two factors (which might be scalar or vectorial functions of the vector 

argument r), one must distinguish between four types of products: 

 

  ,  F , E F , E  F , 

 

and six corresponding types of derivatives, namely: 

 

 ( ) = grad ( ) ,   ( F) = div ( F) ,   ( F) = rot ( F) , 

 

  (E  F) = div (E  F) ,   (E  F) = rot (E  F) , 
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and 

 (E F) = grad (E F) . 

 

 One can carry out those differentiations completely by the detour of the coordinate 

representation. However, it is simpler and more convenient to perform the corresponding 

calculations with the help of the vectorial differential operation  directly. In so doing, as was 

stated many times before, the latter can be considered to be an ordinary factor, but it must appear 

immediately before the function to be differentiated. When the last requirement is not fulfilled from 

the outset, the sequence of factors must be first switched by applying the algebraic identities (4) 

and (5). In that way, we will get the following formulas: 

 

 ( ) =   +   , 

 

 ( F) =  F +   F ,   ( F) =    F +   F , 

 

with no further analysis, or with the usual notations: 

 

grad ( ) =  grad  +   ( ) =   +   ,       (24) 

div ( F) =  div F + grad   F ,                (24.a) 

rot ( F) =  rot F + grad   F .               (24.b) 

 

 In the last formula, the sequence of the two factors in the second term on the right-hand side 

might seem initially doubtful. In order to determine the correct sequence, one must revert to the 

original definition of the corresponding operation in this and analogous cases. If one considers F 

to be constant then, from (11.b), one will have: 

 

rot ( F) = 
0

1
lim ( )
S

dS
V


→

 n F  = 
0

1
lim
S

dS
V


→

 
 

 
 n F  = grad   F , 

 

which agrees with (24.b). 

 Moreover, from (4): 

 

{ (E  F)}F = const. = F (  E) , { (E  F)}E = const. = − E (  F) , 

 

and as a result: 

div (E  F) = F rot E – E rot F .    (25) 

 

 By means of the identity (5), when one sets A = , B = E, and C = F, that will give: 

 

{  (E  F)}F = const. = (F ) E – F ( E) , 
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{  (E  F)}E = const. = E ( F) − (E ) F , 

so 

rot (E  F) = (F grad) E – (E grad) F + E div F − F div E ,   (26) 

 

and in the same way, with A = F, B = , C = E, (A = E, B = , C = F, resp.): 

 

{ (E F)}F = const. = (F ) E + F  (  E) , 

{ (E F)}E = const. = (E ) F + E  (  F) , 

i.e.: 

grad (E F) = (E grad) F + (F grad) E + E  rot F + F  rot E .  (27) 

 

 If the functions  or F do not depend upon r directly, but only by way of another scalar function 

of that argument f (r) then their vectorial derivatives grad, div, rot, (A grad) with respect to r (just 

like in the usual differential calculus) will reduce to the corresponding (ordinary, inner, outer, resp.) 

products of the vectorial derivatives, e.g., the gradient of f times the derivative of  or F with 

respect to the scalar argument f. The following formulas will then be true: 

 

 (f) = ( )
d

f
df


 , F (f) = ( )

d
f

df
 

F
,   F (f) = 

d
f

df
 

F
, 

(A) F (f) = ( )
d

f
df


F

A , 

or in the usual notation: 

grad  (f) = (grad )
d

f
df


,             (28) 

div F (f) = (grad )
d

f
df


F

,        (28.a) 

rot F (f) = (grad )
d

f
df


F

,        (28.b) 

(A grad) F (f) = ( grad )
d

f
df

F
A .     (28.c) 

 

 In order to explain those rules of differentiation, we would like to derive formula (28.b) more 

thoroughly. If we set: 

F = F0 + F = F0 + 
0

d
f

df

 
 

 

F
= F0 + 0

0

( )
d

f f
df

 
− 

 

F
 

in 

rot F = 
0

1
lim
S

dS
V→

 n F , 
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in which the index 0 refers to the point considered, then when we recall that: 

 

0 dS n F  = 0 and 0

0

d
f dS

df

 
 

 


F
n = 0 , 

we will have: 

dS n F  = 
0

d
f dS

df

 
 

 


F
n  = 

0

d
f dS

df

 
   

 


F
n , 

and as a result: 

 

rot F = 
0

0

1
lim
S

d
f dS

V df→

 
   

 


F
n = 

0
0

1
lim
S

d
f dS

V df→

  
  

   


F
n = (grad f)  

d

df

F
. 

 

 

§ 16. 

 

 The differentiation of more complicated scalar or vectorial functions of a vector function (r) 

can be reduced to the differentiation of the simplest functions of that type by means of the formulas 

that were cited above. The simplest functions are initially the radius vector r itself, along with its 

magnitude r and its square (rr) = 2r , and the linear functions k r and k   r, where k means a 

constant vector. Indeed, one can calculate the various derivatives of those functions by combining 

the general formulas above. However, a simpler way to achieve that goal is when one starts directly 

from the geometric meanings of those functions and the corresponding operations or employs their 

coordinate representations. 

  For example, one can easily see that the integral dS n r  is equal to three times the volume 

that is bounded by the surface S (since dS is the base surface of a skew cone with height n r), from 

which, it will follow that 
0

lim
S

dS
→  n r  = 3, i.e.: 

 

div r = 3 .      (29) 

 

One will arrive at the same result much more simply by means of the coordinate representation. 

Namely, since ri = xi, from (21), one will have: 

 

div r = 31 2

1 2 3

xx x

x x x

 
+ +

  
 = 3 . 

 One will get the formula: 

rot r = 0            (29.a) 

 

in the same way, and since 2r  = 2 2 2

1 2 3x x x+ + : 
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grad 2r  = 2 r ,              (29.b) 

or since, from (28), grad 2r  = 2r grad r : 

grad r = 
r

r
.           (29.c) 

 

 The gradient of r is then equal to a unit vector that points in the same direction as r. That result 

follows from the defining equation (13) with no calculation. 

 One easily obtains the following formulas in the same way: 

 

grad (k r) = (k grad) r = k ,     (30) 

div (k  r) = 0 ,     (30.a) 

rot (k  r) = 2 k ,               (30.b) 

(A grad) (k  r) = (k  A) .            (30.c) 

 

 For example, from (21.a), one has: 

 

rot1 (k  r) = 3 2

2 3

( ) ( )
x x

 
 − 

 
k r k r  = 1 2 2 1 3 1 1 3

2 3

( ) ( )k x k x k x k x
x x

 
− − −

 
 = 2k1 . 

 

Otherwise, from (26) and (27): 

 

 rot (k  r) = − (k grad) r + k div r , 

  grad (k r) = (k grad) r + k rot r = (f grad) r , 

 

such that one of the formulas (30) will suffice in order for one to derive formula (30.b) and the 

second of (30) by means of (29) and (29.a). 

 In order to explain the rules of differentiation that were presented, we would like to consider 

some even more complicated functions. 

 

 1.  = nr . From (28) and (29.c), we will get: 

 

grad nr  = 
1nn r −
grad r = 

2nn r − r ,    (31) 

 

in which n is an entirely-arbitrary number. 

 

 2. F = nr r. It will follow from (24) and (24.a) that: 

 

div nr r = 
2 ( ) 3n nn r r− +r r , 

i.e.: 
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div nr r = (n + 3) nr ,     (31.a) 

and furthermore, due to (29.a): 

rot nr r = 0 .           (31.b) 

 

 That equation is a special case of the identity (18), since from (31), one will have nr r = 

2

grad
2

nr

n

+

+
.Note that for n = − 2, that formula must be replaced with 2/ rr  = grad ln r. 

 

 3. F = (k r) r (viz., the component of r that is parallel to k). From (24) and (30), one will have: 

 

div (k r) r = 3 k r + r k = 4 k r ,  

   rot (k r) r = k  r . 

  

 4. F = (k  r)  r (viz., the component of r that is perpendicular to k). From (26), one will 

have: 

rot [(k  r)  r] = (r grad) (k  r) – [(k  r) grad] r + (k  r) div r – r div (k  r) , 

 

and furthermore, from (30) – (30.c): 

 

rot [(k  r)  r] = k  r − k  r + 3 k  r = 3 k  r . 

 

Obviously, one will arrive at the same result when one replaces (k  r)  r with (k r) r − 
2r k  using 

(5). 
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§ 17. 

 

 If we go from the original coordinate system (X1, X2, X3) to another one 1 2 3( , , )X X X    that is 

also rectangular and has the same origin O, but with different directions for the axes then we will 

get new values for the coordinates of a point P, i.e., the components of its radius vector OP = r, 

namely: 

  kx  = k
r e   (k = 1, 2, 3), 

 

in which 1
e , 2

e , 3
e are the new “coordinate vectors,” i.e., unit vectors that determine the direction 

of the new axes. If the new coordinate system ( )X   is a right-hand screw system, just like the 

original one (X) (which will always be assumed in what follows) then one can think of it as arising 

from the latter by a rotation. 
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 The relationship between the “original” and “new” components of the radius vector, or any 

other vector A, are determined by the quantities: 

 

cos ( , )i iX X 
  = i i

e e  = ii   (i, i  = 1, 2, 3),  (32) 

 

which one can consider to be the new components of the original coordinate vectors. 

 If one sets: 

A = i i

i

A e  = i i

i

A  



  e  

then one will have: 

iA 
 = i

Ae  = 
i i i

i

A 

 
 

 
 e e  = ( )i i i

i

A 
 e e , 

i.e.: 

iA 
 = 

3

1

ii i

i

A 

=

 ,              (32.a) 

and likewise: 

Ai = 
3

1

ii i

i

A  

=

 .            (32.b) 

Since one has: 

i
e  = ii i

i

  e  and ei = ii i

i

  



 e  

 

from (32), it will follow that the components of an arbitrary vector will transform in the same way 

as the coordinate vectors under a rotation, or covariantly (9). 

 Quantities such as the inner product of two vectors or especially the square of a vector 2A  = 

AA will obviously remain unchanged, or invariant, such that one will have: 

 
2 2 2

1 2 3A A A+ +  = 2 2 2

1 2 3A A A  + + . 

 

 If one expresses the new components in terms of the original ones here by means of formulas 

(32.a) then one will get the identity: 

 

2

i

i

A 



  = ki k li l

i k l

A A  



  
  
  

    = k l ki li

k l i

A A   



 
 
 

  , 

 

from which it will follow that: 

 
 (9) That is true for only rectangular coordinate systems. In the general case of skew coordinate axes, when the 

components of a vector are different from the corresponding projections, only the latter will transform covariantly, 

while the former will transform contravariantly, i.e., the new components will have the same relationship to the 

original ones that the original coordinate vectors have to the new ones. 
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ki li

i

  



 = 
1 for ,

0 for .

k l

k l

=



    (33) 

 Due to the known formula: 

 

ki li

i

  



 = cos ( ) cos ( )k i l i

i

X X X X 



   = cos (Xk Xl) , 

 

those relations express the fact that the coordinates considered are rectangular, and that is why they 

are called “orthogonality conditions.” One will get the reciprocal relations to (33) in the same way: 

 

ik il

i

   = 
1 for ,

0 for .

k l

k l

 =


 
    (33.a) 

 

 Therefore, the relations (33) and (33.a) are not independent but follow immediately from each 

other. 

 

 

§ 18. 

 

 In contrast to ordinary scalar quantities, which are independent of the orientation of the 

coordinate system, the components of a vector have no well-defined values that are independent 

of that orientation, even though they are also scalar quantities. We must then distinguish two types 

of scalars in the coordinate representation of vectors: The ordinary invariant scalars, on the one 

hand, and the variant ones, i.e., the scalars that transform covariantly with the coordinate vectors, 

on the other. The introduction of variant scalars that represent a vector when combined into a triple 

allows us to go further in that direction and construct quantities that relate to the vectors in the 

same way that the latter relate to the ordinary (i.e., invariant) scalars. 

 For example, we can define the products of each pair of components of the vectors A and B. 

In that way, we will get nine quantities in the original coordinate system (X): 

 

A1 B1 , A1 B2 , A1 B3 , 

A2 B1 , A2 B2 , A2 B3 , 

A3 B1 , A3 B2 , A3 B3 , 

 

and nine completely-different quantities in the new coordinate system ( )X  : 

 

1 1 ,A B   1 2 ,A B   1 3 ,A B   

2 1 ,A B   2 2 ,A B   2 3 ,A B   

3 1 ,A B   3 2 ,A B   3 3 ,A B   
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but which correspond to the original ones in the same way that the new components of a vector 

correspond to the original components of the same vector. 

 On those grounds, one can regard the quantities Ai Bk and i kA B 
   as the (scalar) components of 

one and the same composite quantity relative to the coordinate systems (X) and ( )X  . That 

composite quantity, which initially possesses no geometrically intuitive meaning, is the simplest 

representative of the so-called tensor quantities, or more precisely, second-rank tensors. 

 One defines a second-rank tensor in the general case to be a quantity 2T that can be represented 

by 32 = 9 divariant scalars, i.e., nine scalar quantities whose values depend upon the choice (i.e., 

orientation) of the coordinate system in the same way that the values of the product of two 

monovariant (i.e., representing an ordinary vector) scalars (10). Those divariant scalars are called 

the components of the tensor. If they are known for a coordinate system (X), and indeed equal to 

Tik (i, k = 1, 2, 3), then one can calculate them for any other coordinate system by using the 

transformation formulas [cf., (32.a)]: 

 

i kT  
  = ii kk ik

i k

T   .         (34) 

 

Conversely, the original components of 2T can be expressed in terms of the new ones by means of 

the formulas: 

Tik = ii kk i k

i k

T    

 

 ,      (34.a) 

 

which correspond to the formulas (32.b). [Obviously, one can also obtain it by solving equations 

(34) for the Tik directly.] 

 One defines tensors of rank three, four, and higher in a completely-similar way. A tensor of 

rank n nT is then represented in coordinate notation by 3n components that are n-fold variant 

scalars, i.e., scalars that transform like the products of n vector components under coordinate 

transformations (rotations of the original coordinate systems). In that way, one can consider the 

vector components to be monovariant scalars and correspondingly consider vector quantities to be 

first-rank tensors. The ordinary invariant scalars are added to that sequence as the tensors of rank 

“zero.” 

 

 

§ 19. 

 

 We would initially like to treat only the “ordinary” tensors, i.e., the second-rank tensors. Due 

to the linear character of the transformation equations (34) or (34.a), we can conclude immediately 

that the sums (or differences) of the corresponding components of two different tensors define a 

new tensor. That new tensor, which corresponds to the geometric sum (or difference) of two vectors 

 
 (10) In particular, the coordinates of a point.  
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is called the tensor sum (difference, resp.) of the other two 2P, 2Q, and will be denoted by 2P + 

2Q (2P − 2Q, resp.). In general, the equation: 

 
2T = 2P + 2Q + 2R + …         (35) 

 

means that Tik = Pik + Qik + Rik + … (i, k = 1, 2, 3). 

 One can associate any tensor 2T with the components Tik with another one 2T  whose 

components are determined by the condition: 

 

ikT  = Tki .              (36) 

 

That condition means that one will get the components of 2T  when one transposes rows with 

columns in the component matrix of 2T : 

 

T11 , T12 , T13 , 

T21 , T22 , T23 , 

T31 , T32 , T33 . 

 

 It is easy to see that the condition (36) is invariant under coordinate transformations, i.e., that 

the new components of the corresponding tensors that are calculated from Tik and ikT  using the 

formula (34) will satisfy the same condition: 

 

i kT  
  = k iT  

 . 

 

That shows that the quantities ikT  actually define a tensor. That tensor is called the transpose of 

2T. In particular, the following special cases should be noted: 

 

 1. Tki = Tik . The tensor 2T is said to be symmetric and is identical to the transposed tensor 

2T.The number of distinct components of 2T is equal to six. 

 

 2. Tki = − Tik . The tensor 2T is said to be skew-symmetric or antisymmetric and is equal and 

opposite to its transpose (2T + 2T = 0). Since the “diagonal components” of 2T, i.e., T11, T22, T33, 

will vanish in that case, the number of mutually-independent scalar quantities that determine 2T 

will reduce to three, namely: 

 

T23 = − T32 = T1 , T31 = − T13 = T2 , T12 = − T21 = T3 . (36.a) 
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It will then follow that a skew-symmetric tensor 2T must be completely-equivalent to T with the 

components T1, T2, T3 . 

 

 In fact, it is easy to prove that the quantities (36.a) can be just as well considered to be divariant 

scalars as monovariant ones. Obviously, a skew-symmetric tensor can always be constructed by 

means of two different vectors A and B whose components will satisfy the equations: 

 

Ai Bk – Ak Bi = Tik = − Tki 

 

in the original coordinate system. However, from formulas (10.a), the left-hand side of those 

equations are nothing but the components of the vector  A  B, i.e., the outer products of the 

vectors A and B. The scalars T1, T2, T3 are then, in fact, the components of a vector: 

 

T = A  B . 

 

 An asymmetric tensor 2T, i.e., a tensor that is neither symmetric not skew-symmetric, can 

always be decomposed into a symmetric and a skew-symmetric part. Namely, if one sets: 

 

2P = 
2 21

2
( )+T T , i.e., Pik = 

1
2
( )ik kiT T+  = Pki 

and 

2Q = 
2 21

2
( )−T T , i.e., Qik = 

1
2
( )ik kiT T−  = − Qki 

then one will have: 
2T = 2P + 2Q . 

 

 Since the statements above suggest that the skew-symmetric tensor 2Q is equivalent to a vector 

Q, one will see that in the general case, a tensor (second rank) can be reduced to a symmetric 

tensor and a vector. 

§ 20. 

 

 The meaning of such a reduction initially emerges in the multiplication of tensors with vectors 

or other tensors. 

 If one defines the following expressions that correspond to the inner product of two vectors: 

 

ik k

k

T F  and ik i

i

T F , 

 

in which F1, F2, F3 are the components of a vector F and observes that those expressions are 

completely equivalent, in regard to their type of transformation (“variance”) with ones that that are 

obtained from them by the Ansatz Tik = Ai Bk, i.e.: 
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i k k

k

A B F = i k k

k

A B F = Ai B F 

and 

i k i

i

A B F = k i i

i

B A F = Bi A F , 

 

then one will see that ik k

k

T F  must be equal to the thi  component of a vector, and ik i

i

T F  must 

be equal to the thk  component of another vector. We would like to denote the first of those vectors 

by 2T F = F 2T and call it the product of 2T and F. The second vector will then seem to be the 

product of 2T  and F, such that: 

2

2

( ) ,

( ) .

i ik k

k

k ik i

i

T F

T F

=



= 






TF

TF
         (37) 

 

 If the tensor 2T is symmetric then the two products (37) will coincide. If one sets 2T = 2P + 

2Q in the general case, where 2P is symmetric = 
2 21

2
( )+T T , and 2Q is skew-symmetric then 

with: 

Q23 = − Q32 = Q1 , Q31 = − Q13 = Q2 , Q12 = − Q21 = Q3 , 

that will give: 

(2T F)i = (2P F)i + (F  Q)i , 

i.e.: 

F  2T = F 2P + F  Q ,    (37.a) 

and likewise: 

F  2T  = F 2P − F  Q . 

 

 The multiplication of a tensor by a vector then reduces to the corresponding multiplication of 

the symmetric part of that tensor and the outer multiplication of the vector that is equivalent to the 

skew-symmetric part by the vector considered (11). 

 Corresponding statements are true for the multiplication of two tensors 2T and 2S. Namely, 

one can define two invariant scalar quantities from the components of 2T and 2S : 

 

ik ki

i k

T S  and ik ik

i k

T S . 

 

 
 (11) Along with the cited “inner” multiplication that was cited, one can also introduce an operation that corresponds 

to the outer multiplication of two vectors. However, it would not give a vector, but a tensor; see below. 
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 One sees the invariance of those quantities under coordinate transformation directly by means 

of the Ansätze Tik = Ai Bk, Sik = Ci Dk, since the first one will reduce to (AD) (BC) in that way, and 

the second one, to (AC) (BD). The first of the aforementioned quantities will be denoted by 

2 2T S  and will be called the scalar product of the tensors 2T and 2S. 

 One will then have: 

ik ki

i k

T S  = 2T 2S = 2S 2T ,    (38) 

and correspondingly: 

ik ik

i k

T S  = 2 2T S  = 
2 2T S. 

 

 As long as one of the tensors 2T and 2S is symmetric, the latter product must coincide with 

(38). In the general case (viz., 2T and 2S are both asymmetric), when 2M means the symmetric 

part of 2S, and 2N means the skew-symmetric part, one will have: 

 
2T 2S = 2P 2M – 2 Q N ,        (38.a) 

and 
2 2T S  = 2P 2M + Q N . 

 

 One cannot get invariant scalars, but divariant ones, from the components of two tensors by 

forming the product and simply summing (relative to one pair of indices), i.e., the components of 

new tensors of the same (i.e., second) rank. One must then distinguish between the following four 

types of products: 

il lk

l

T S , il kl

l

T S , li kl

l

T S , li lk

l

T S , 

 

which we will refer to as the (i, k)-components of the tensor products: 

 

2T  2S , 2T  2S , 
2 2 ,T S  2T   2S , 

 

resp. We will then have: 

(2T  2S)ik = il lk

l

T S .     (39) 

 

 It will follow from that definition (12) that tensor multiplication is not commutative, in general. 

That operation will be commutative only when the two factors are symmetric. 

 Upon decomposing the latter tensors into their symmetric and skew-symmetric parts, from 

(39), that will give: 

 
 (12) Which corresponds to the usual definition of the products of determinants and matrices.  
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2T  2S = 2P  2M + 2P  2N + 2Q  2M + 2Q  2N . 

 

Therefore, 2P  2M = 2M  2P . As far as the other three summands are concerned, they cannot 

be immediately reduced to the corresponding expressions in terms of the vectors Q and N. One 

initially gets the components of 2Q  2N in the form of: 

 

(2Q  2N)11 = Q11 N11 + Q12 N21 + Q13 N31 = − Q3 N3 − Q2 N2 = − (QN) + Q1 N1 . 

 

 (2Q  2N)12 = Q11 N12 + Q12 N22 + Q13 N32 = − Q2 N1 , 

i.e.: 

(2Q  2N)ik = 
( ) for ,

for .

k i

k i

Q N k i

Q N k i

− =


− 

QN
   (39.a) 

 

 The tensor 2Q  2N is then composed from the two vectors Q and N by multiplying their 

components (13). 

 Moreover, one will have: 

 

(2P 2N)11 = P11 N11 + P12 N21 + P13 N31 = − P12 N3 + P12 N2 , 

 (2P 2N)12 = P11 N12 + P12 N22 + P13 N32 =    P11 N3 − P13 N1 . 

 

 We would like to call those expressions the components of the outer product of the vector N 

and the tensor 2P and denote them by: 

 

(2P  2N)ik = (N  2P)ik = − (Pi  N)k .   (39.b) 

 

Therefore, Pi means a vector with the components Pi1, Pi2, Pi3 .  

 To conclude this section, let us point out that the multiplication of tensors with vectors or other 

tensors, as it was defined above, obeys the distributive law, just like the inner and outer 

multiplication of vectors. We will then have: 

 
2T (A + B) = 2T A + 2T B ,  

(2T + 2S) A = 2S A + 2T A ,  

etc. 

 
 (13) If one replaces the radius vector of a point by the corresponding skew-symmetric tensor 2r whose components 

are r23 = − r32 = x1, etc., then the sum over all particles of a rigid body 2M = −  m (2r  2r) (m = the mass of a particle) 

will determine the moment of inertia of that body relative to an arbitrary axis, and indeed, the moment of inertia about 

an axis in the direction of the unit vector n will be equal to the inner product 2M n.  
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§ 21. 

 

 From (37.a), the inner multiplication of the vector (2T A) with another vector B will give an 

invariant scalar quantity that can be written as follows in the general case of an asymmetric tensor 
2T = 2P + 2Q : 

(2T A) B = (2P A) B + Q (A  B) . 

 

 In what follows, we will always set Q = 0, i.e., we will consider only symmetric tensors. The 

product of 2T, A, and B will then be independent of the sequence of factors, which is why we can 

denote it by simply 2T A B. 

 In particular, if we set A = B = r then we will have: 

 

2T r r = 
2 2 2

11 1 22 2 33 3 23 2 3 31 3 1 12 1 22 2 2T x T x T x T x x T x x T x x+ + + + + .  (40) 

 

We will then get a quadratic form in the coordinates x1, x2, x3, in which the components of the 

tensor 2T play the role of coefficients. 

 If one considers that tensor to be a constant quantity and the vector r (i.e., the coordinates x1, 

x2, x3) then the equation: 
2T r r = const.             (40.a) 

 

will determine a second-order surface, and indeed one that is entirely independent of the 

orientation of the coordinate system. That is why one can regard that surface (ellipsoid, 

hyperboloid) as the coordinate-free geometric representation of the tensor in question. 

 One can also introduce a corresponding representation for vectors since they can be considered 

to be first-rank tensors. Namely, instead of representing a vector A by a segment (i.e., by a certain 

value of the radius vector r) that is proportional to it and points in the same direction, one can just 

as well use the plane that is perpendicular to it, i.e., the first-order surface that is defined by the 

equation: 

A r  A1 x1 + A2 x2 + A3 x3 = const. 

 

 If one sets the constant above equal to 1 then the distance from the plane to the coordinate 

origin will be equal to 
2 2 2

1 2 3

1

A A A+ +
 = 

1

A
, i.e., inversely proportional to the magnitude of the 

“first-rank tensor” that represents that plane. One will get a similar result for the geometric 

representation of the (symmetric) second-rank tensor according to (40.a). The “magnitude” of the 

tensor can then be defined by | 2T | = 2 2T T . 
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 As is known, one can transform the surface (40.a) to its “principal” or “symmetry axes” by a 

suitable rotation of the coordinate system, i.e., one can put its coordinate equation into the form: 

 

2T r r  
2 2 2

11 1 22 2 33 3x x x     + +T T T  = const. = 1 .  (40.b) 

 

The corresponding coordinate axes are called the principal axes of the tensor that determines that 

surface (or is represented by it). They are then characterized by the vanishing of the components 

ik
T when i  k. 

 Note that such a “principal axis transformation” is impossible for asymmetric tensor, just like 

the geometric illustration of it that was described above. 

 

 

§ 22. 

 

 The principal axes of a tensor can be defined by saying that the vector 2Tr, which generally 

has a different direction from r, has the same direction as r for the principal axis directions. 

 In fact, the vector 2Tr is equal to the gradient of the scalar quantity 
1
2

2Trr, from which it will 

follow that it has the direction of the outer normal to the surface (40.a) at the point in question that 

is determined by r. 

  If one introduces an undetermined scalar  then the principal axes of the tensor 2T will be 

determined by the vector equation: 
2T r =  r,             (41) 

or the corresponding scalar equations: 

 

11 1 12 2 13 3

21 1 22 2 23 3

31 1 32 2 33 3

( ) 0,

( ) 0,

( ) 0.

T x T x T x

T x T x T x

T x T x T x







− + + = 


+ − + = 
+ + − = 

           (41.a) 

 

That will give the cubic equation for the scalar  : 

 

11 12 13

21 22 23

31 32 33

T T T

T T T

T T T







−

−

−

 = 0       (41.b) 
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whose roots are equal to precisely the principal components 11T  , 22T  , 33T   of T (14). If we develop 

that equation in powers of  then it will assume the following form: 

 
3 (1) 2 (2) (3)T T T  − − −  = 0 ,            (41.c) 

with: 
(1)T  = T11 + T22 + T33 ,          (42) 

 

 (2)T  = 
2 2 2

23 31 12 22 33 33 11 11 22T T T T T T T T T+ + − − − ,       (42.a) 

and 

(3)T  = 

11 12 13

21 22 23

31 32 33

T T T

T T T

T T T

 .       (42.b) 

 

 Since the roots of (41.c) are determined completely by quantities that are independent of the 

choice of coordinates, they must also be true for the coefficients (1)T , (2)T , (3)T . That is why they 

are called invariants, and indeed, linear, quadratic, and cubic, resp., of the tensor 2T. The 

invariance of (1)T  will follow immediately from the fact that for Tik = Ai Bk, one will have (1)T  = 

AB. Similarly, one can recognize the invariance of (2)T  since: 

 

(2)2T  = 2T 2T −
(1) 2( )T . 

 

By contrast, directly establishing the invariant character of (42.b) would require a special 

examination. 

 

 

§ 23. 

 

 Along with constant tensors, one can also consider variable tensors that are functions of time 

or position, i.e., the radius vector (tensor functions, tensor fields). One can define the differential 

quantity that corresponds to the divergence of a vector by the following Ansatz, which is analogous 

to formula (11.a): 

div 2T = 2

0

1
lim
S

dS
V→  Tn .          (43) 

 
 (14) We would like to skip the proof of this here since the question of the principal axis transformation of second-

degree surfaces is discussed in textbooks on analytic geometry. We shall only remark that the most general condition 

for the reality of all three roots to (41.b) is the so-called Hermitian condition: Tki = complex conjugate of Tik . That 

means that when the tensor 2T is complex, and indeed equal to 2A + 1−  2B, its real part 2A will be symmetric, while 

the imaginary part 2B must be skew-symmetric. 



38 Introduction 

 

Since the product 2Tn represents a vector (15), the divergence of a tensor must also be a vector 

quantity. By a suitable specialization of the surface S (viz., a parallelepiped whose edges are 

parallel to the coordinate axes), (43) will imply the following coordinate-wise definition of that 

quantity [cf., (21)]: 

(div 2T)i = 
ik

k k

T

x




 .     (43.a) 

 

One can also define it symbolically as the product of the tensor 2T with the Hamiltonian operator 

. Note that, from (37.a), the divergence of an asymmetric tensor can be decomposed into the 

divergence of its symmetric part 2P and the rotation of the vector Q that corresponds to its skew-

symmetric part: 

div 2T = div 2P + div Q .     (43.b) 

 

It follows from (43) that there is a transformation formula that corresponds to Gauss’s theorem 

(16.a): 
2 dS n T  = 2div dV T .       (44) 

 

One can also define two symbolic tensors by means of the symbolic vector , and indeed a 

symmetric one with the components i k = 
2

i kx x



 
, and a skew-symmetric one 2 with the 

component matrix: 

2 = 

3 2

3 1

2 1

0

0

0

x x

x x

x x

  
− 

  
  

− 
  

  
− 

  

 . 

 

The first of those “tensors” is a second-order differential operator, while the second one is a first-

order operator that is completely equivalent to , which is only a different notation for the 

operations that are determined by . Upon applying that operator to a vector function, according 

to the general multiplication formula (37.a) (in which 2P = 0 and Q = ), we will get: 

 
2  F =   F = rot F .        (45) 

 

 
 (15) Indeed, a vector whose direction coincides will the direction of the outer normal of the surface that represents 

the tensor 2T, so n will play the role of the radius vector. 
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Similarly, the “scalar product” of 2 with a tensor function will be: 

 
2  2T = 2 Q = 2 div Q ,           (45.a) 

in which: 

div Q = 
23 31 12

1 2 3

Q Q Q

x x x

  
+ +

  
. 

 

The right-hand side of that equation is often called the “rotation” of the skew-symmetric tensor 2Q 

and is denoted by rot 2Q (rot 2Q = div Q). 

 An operation that would correspond to the rotation of a vector is not generally applied to tensor 

functions. 

 When applying the operator  to products of tensors with vectors or other tensors, one must 

consider rules of differentiation that are similar to the ones for the corresponding operations of 

vector calculus. We would not like to go into the details of that question here. 

 

 

§ 24. 

 

 In conclusion, we must add a few words about tensors of higher rank. 

 We have already given the general definition of a tensor of rank n, nT, at the end of § 18. We 

can construct such tensors by multiplying or differentiating the components of tensors of lower 

rank (including vectors) (viz., “extension”). Conversely, we can also lower the rank of a tensor, 

and indeed by summing over the components with two equal indices (viz., “contraction”). A third-

rank tensor 3T with the components Tikl will imply, e.g., in that way, three vectors with the 

components 

3

1

ikk

k

T
=

 , 

3

1

kik

k

T
=

 , 

3

1

kki

k

T
=

  (i = 1, 2, 3). The invariant scalar (1)T  = 

3

1

ii

i

T
=

  should be 

mentioned as an example of such a contraction that we know of already. 

 In contrast to ordinary tensors, the asymmetric tensors of higher rank cannot be decomposed 

into completely symmetric and completely skew-symmetric parts. One must halt that 

decomposition when one gets to summands that are symmetric in some pairs of indices and skew-

symmetric with respect to all other ones. 

 A completely-symmetric tensor of rank n, nT, can be illustrated or “represented” by an 

algebraic surface of order n : 
nTrr  r = 

1 2 1 2

1

n n

n

i i i i i i

i i

T x x x  = const. 

 

Therefore, the product nT F will mean a tensor of rank (n – 1) with the components: 
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1 2 3 1

1

3

1
ni i i i i

i

T
=

 F . 

 The tensors: 

1 2 ni i iR = 
1 2 ni i ix x x       (46) 

and 

1 2 ni i iS = 

1 2 n

n

i i ix x x



  
     (46.a) 

 

might serve as the simplest examples of symmetric tensors of rank n ( = any scalar function of r). 

 One can construct more complicated symmetric tensors from them by multiplying by 

invariants scalars and adding. (Obviously, only tensors of the same rank can be added together.) 

 Note that the n-variant scalar (46) can be written in the form: 

 

R (n1, n2, n3) = 31 2

1 2 3

nn n
x x x  (n1 + n2 + n3 = n),      (46.b) 

 

and the number of components of nR that are all equal to R (n1, n2, n3) is equal to: 

 

1 2 3

!

! ! !

n

n n n
. 

 

 Corresponding statements are true for the tensor (46.a) when R (n1, n2, n3) is replaced with: 

 

S (n1, n2, n3) = 
31 2

1 2 3

n

nn n
x x x


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PART ONE 

 

 

TIME-INDEPENDENT 

ELECTROMAGNETIC EFFECTS 



 

CHAPTER ONE 

 

ELECTROSTATIC EFFECTS AND THE ENERGY PRINCIPLE. 
 

 

§ 1. – Electric dipole. 

 

 In the presentation of the foundations of electrostatics, one ordinarily begins with the 

consideration of electrified bodies, which are contrasted from the ordinary neutral bodies that one 

regards as completely “free of electricity.” That juxtaposition is known to be unjustified since any 

neutral body actually contains hidden electric charges of two opposite types in equivalent – i.e., 

mutually-neutralizing – amounts. Under ordinary circumstances, those charges are distributed 

uniformly over the volume of the body such that not only the body as a whole, but also every 

volume element in it that is not too small, will appear to be “neutral.” However, that uniform 

distribution can be perturbed by certain influences, and indeed in such a way that an excess of 

electric charges of the one type will appear in one part of the body, while an equivalent excess of 

charges of the opposite type will appear in the other. Such a spatial separation of opposite electric 

charges in a neutral body expresses itself in the appearance of forces of attraction between the 

body and other neutral bodies in its vicinity, in such a way that a similar spatial separation of the 

hidden electric charges would be “induced” in the latter. 

 A body or sub-body that contains electric charges of one or the other type in excessive amounts 

is called electrified. Since all bodies are neutral in the normal state, the electrification of one of 

them must always be coupled with the opposite electrification of other bodies that were either in 

contact with it to begin with or defined a unified body with it. Conversely: The “neutralization” of 

the body in question, i.e., the vanishing of the excess electric charges of a certain type that were 

included in it, can take place only simultaneously with the neutralization of one or more other 

opposite electrified bodies. 

 It follows from this that the appearance or disappearance of electric forces (i.e., forces of 

electric origin) would always require the spatial separation or unification, resp. (convergence) of 

electric charges of opposite type, but not the “creation” or “annihilation” of those charges. 

 One can then assert that electricity does not represent a random and variable attribute of 

material bodies, but consists of elements – viz., “elementary charges” – that are just as 

indestructible and invariable as the matter itself. As a result of their permanent coupling with 

material bodies, those elementary charges must be considered to be an invariable and inseparable 

property of the elementary particles that the material body is constructed from, in the same way 

that the masses of those particles can be regarded as such a property. From that standpoint, it is 

necessary from the outset to represent the idea that the smallest neutral material particles – viz., 

atoms – are composite structures that consists of even smaller electrified particles. One calls those 

smallest of all material particles that are characterized by not only their mass, but also their electric 

charge, electrons. Obviously, we must assume that there are two types of electrons in any atom 

that have opposite charges of equivalent magnitudes. 
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 Without going into the deeper foundations and further development of the theory of electrons, 

we would like to make the picture that was sketched out above the foundation upon which we will 

build the general principles of electrodynamics. 

 In that way, we will not start with “isolated” electric charges, but with the simplest neutral 

systems, which consist of two opposite charges (i.e., two oppositely-charge particles). Such 

systems are called electric dipoles. We will initially consider the forces that electric dipoles exert 

upon each other. In that way, one can treat an “isolated” charge as one end of an electric dipole, 

the other (opposite) end of which is found at a very large (i.e., practically infinite) distance. 

 The main advantage that way of looking at things has over the usual one (in which it is not 

dipoles, but individual charges, that are treated as the sources or points of application, resp., of 

electric forces) is not only the fact that electricity is always composed of equal and opposite 

charges, i.e., dipoles, but also the methodological advantage that will come to light in the following 

discussions (16). 

 

 

§ 2. – The moment of an electric dipole. 

 

 For the sake of visualization, we will imagine an electric dipole as a small, fixed rod whose 

endpoints are endowed with opposite charges of equivalent magnitudes. The equivalence of the 

charges, i.e., the neutrality of the system that they define, will then be defined by the fact that when 

the length of the dipole vanishes, the forces and torques that it exerts upon other dipoles, just like 

the forces and torques that it experiences as a result of the other dipoles, should also vanish. 

 When the length of the dipole is very small compared to its distance from the other dipoles, it 

will be called elementary. [The mechanics (viz., the “active” and “passive” effects) of an 

elementary dipole must obviously remain unchanged in practice when one displaces it parallel to 

itself, i.e., without changing its orientation, in a spatial region whose linear dimension has the same 

order of magnitude as its length.] It can be easily proved from that principle that: 

 

 1. The mechanical effect of such an elementary dipole is proportional to its length, and 

 

 2. The proportionality factor, which will serve as a measure of the magnitude of the 

corresponding charges, is an additive quantity. 

 

 Let D1 and D2 be two identical and equally-oriented elementary dipoles that are found in a 

very small spatial region V. We ignore the effect of those dipoles on each other and focus our 

attention upon only the interaction of each of them with the dipoles that are found externally to 

them (i.e., at a great distance from V) then those interactions must be approximately equal, and 

independently of the positions of the two dipoles inside of V. That means that the mechanical effect 

of the system that is defined by D1 and D2 will be twice as large as the effect of both parts when 

taken individually in any relative configuration. 

 In particular, we consider the following two configurations: 

 
 (16) That advantage is derived from the fact that the mechanical effects of the dipole can be determined from the 

vector quantities that characterize that dipole, while isolated charges are characterized by scalar quantities. 
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 1. The opposite ends of D1 and D2 coincide with each other (Fig. 5.a). 

 

 2. The same ends – i.e., the two dipoles – 

coincide with each other (Fig. 5.b). 

 

 In the first case, the opposite charges that lie 

next to each other define a dipole of vanishing 

length. We then get a single dipole D with the same 

charges as D1 and D2, but twice the length. With 

that, it is also proved that the mechanical effects of different dipoles are proportional to their 

lengths (1). If we introduce the proportionality factor as a measure for the magnitude of the 

corresponding charge then a consideration of the second case will show that this quantity is 

additive, i.e., that the effect of two charges that are found at the same point is equal to the effect of 

one charge whose quantity is equal to the sum of the quantities of the two individual charges. 

 That additivity, which was established here for only charges of the first type, can be adapted to 

opposite charges when one characterizes them by equivalent magnitudes with opposite signs (− or 

+). The assignment of positive signs on charges of one type or the other remains entirely arbitrary. 

 If that assignment has been established and the unit of charge has been chosen then one can 

state the following theorem: The mechanical effect of an elementary dipole is determined by the 

product: 

p = e l ,      (1) 

 

in which l means its length and e (> 0) means the absolute value of its charges. 

 One can consider the length of the dipole l to be the magnitude of a vector l, namely, the radius 

vector of its positive “pole” (i.e., the positive charge) relative to the negative pole. Since the charge 

e is obviously a scalar quantity, that notion corresponds to the fact that we can characterize an 

elementary dipole by the vector: 

p = e l .             (1.a) 

 

That vector, whose magnitude is given by (1), is called the moment, or the electric moment, of the 

dipole. In conjunction with some other quantities that we will consider later on, it determines not 

only the magnitude, but also the direction, of the forces that act upon an elementary dipole and are 

exerted by it. 

 

 

§ 3. – Systems of elementary dipoles. 

 

 Let D1 and D2 be two elementary dipoles with moments p1 and p2 that are different (in 

magnitude, as well as direction) and found in the same small spatial region V. Since the mechanical 

 
 (1) Strictly speaking, that theorem can be proved for only the special case considered. However, its generalization 

to arbitrary length ratios is quite obvious. 

− 

− 

D1 

D2 

+ 

+ 

(b.) 

D1 D2 + − + − 

(a.) 

Figure 5. 
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effect of any of them when the orientation is fixed depends upon only the moment pi = ei li (i = 1, 

2), but not the charge ei, one can set ei = 1 (i.e., e1 = e2 = 1), and in that way, the difference between 

the dipoles is reduced to merely the difference between their lengths. We now move them together 

in such a way that the positive end of the one coincides with the negative end of the other (Fig. 6). 

The external effects of the corresponding charges must cancel reciprocally then, and the system in 

question will be equivalent to an elementary dipole D with a length l = l1 + l2 , i.e., with a moment 

p = p1 + p2 . 

 That result can easily be generalized to an arbitrary number of 

elementary dipoles. If they are found in a sufficiently-small spatial 

region (1) then that system will be equivalent in regard to its mechanical 

interaction with external (i.e., very distant) dipoles to a single dipole 

whose moment is equal to the geometric sum of its electric moments. 

 Conversely, one can replace a given elementary dipole with a 

moment of p will a system of arbitrarily-many elementary dipoles 

(coupled to each other rigidly) whose moments p1, p2, … satisfy the 

condition: 

p1 + p2 + … = p . 

 

 Obviously, the theorems above still remain valid for non-elementary dipoles (i.e., ones whose 

lengths are not small compared to their distances from other dipoles that they interact with). 

However, in that way, the mechanical effects of such dipoles are still not determined by giving 

their moments. Nonetheless, one can decompose 

a non-elementary dipole into a chain of 

elementary ones that are characterized 

completely by their moments and positions. 

Namely, if one couples the endpoints A and B of 

the dipole in question with the moment e  AB by 

a broken line with infinitely-small rectilinear 

elements A P1, P1P2, …, Pn B, and imagines that 

the charges + e and – e are concentrated at the 

points P1, P2, … then one will get a chain of 

elementary dipoles with the moments e AP1, e P1 P2, etc., (Fig. 7) whose geometric sum is equal 

to e AB. However, in so doing, one must observe that in this case, the individual elementary dipoles 

cannot be displaced independently of each other, at least not in a region whose linear dimensions 

are comparable to the length AB. 

 The form of the broken line A P1 P2, …, B remains completely arbitrary. In particular, one can 

pass to the limiting case of a curve with continuous curvature. Each element d of that curve will 

then be an elementary dipole that is associated with a moment d p = e  d, in which  means a 

unit vector in the direction of d (“tangential vector”). 

 
 (1) With the same linear dimension as its length.  

− 
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− 

D 
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 The problem of determining the interaction of non-elementary dipoles will be reduced to the 

corresponding problem for elementary dipoles by means of that decomposition. In that way, one 

can regard each elementary dipole as simply a point since it is not its length that should come 

under consideration, but only its electric moment. When the moment is fixed, one can always make 

the length arbitrarily small by increasing the charge. The kinematical description of an elementary 

dipole will then reduce to the data of its “position,” i.e., the radius vector r of the point that 

represents it and its “orientation,” i.e., the direction of its electric moment (whose magnitude we 

shall regard as constant). 

 

 

§ 4. – The statics of an elementary dipole. Electric field strength. 

 

 We shall now assume that all of the dipoles that act upon the elementary dipole in question are 

fixed, while the latter can displace and rotate arbitrarily. We now ask how the external force F and 

moment (i.e., torque) M depends upon its position (r) and orientation (p). 

 In order to answer that question, we would like to assume that those force effects have a 

conservative character, i.e., it can be derived a still-undetermined energy function U (r, p). We 

will refer to that assumption, which has fundamental significance for what follows, as the energy 

principle (1). 

 The position of the dipole in question D will initially be fixed. However, it might rotate 

arbitrarily around the point in question P. It will then follow from the energy principle that will be 

oriented in a certain direction that corresponds to a minimum of energy as a function of p (for r = 

const.). It is possible from the outset that there are several such stable equilibrium orientations (2). 

 Now let PQ be one of those 

directions. If the electric moment p of the 

dipole falls in the direction PQ then the 

moment that acts upon it will be equal to 

zero. We now assume that the dipole 

rotates out of that direction through an 

angle  (Fig. 8) and replace it with two 

dipoles D1 and D2 with moments p1 = p 

cos  and p2 = sinp   that are parallel 

(perpendicular, resp.) to PQ. Since D1 experiences no torque, from what said above, the torque M 

that is exerted on D must coincide with the torque M2 that acts on D2. 

 
 (1) The energy principle means that the work that is done under a displacement or rotation of the dipole by the 

forces and torques that act upon it depend upon only its initial and final positions (orientations, resp.), but not upon 

the intermediate positions and orientations.  

 (2) If no equilibrium orientation exists then the work done in returning the dipole to the original orientation would 

generally be non-zero. 

 P 

D2 
D 

 

D1 E Q 

Figure 8. 
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 Obviously, for sufficiently-small values of , D must have the ambition to point in the direction 

PQ, i.e., the moment M must point perpendicular to the plane (D, PQ), and completely 

independent of whether there are or are not other equilibrium directions. However, one can say the 

same thing of the moment that acts upon D2 due to the equality M2 = M. However, since the angle 

between D2 and the line Q PQ  is a maximum, we can conclude immediately that PQ is the only 

stable equilibrium direction, i.e., the only direction that corresponds to the condition U (p) = 

minimum. 

 Obviously, the moment M2 must be proportional to the electric moment of D2, i.e., the quantity 

p sin . If we denote the proportionality factor (which is independent of p and ) by E then since 

M2 = M, we will have: 

M = E p sin .      (2) 

 

The magnitude of the vector M is then equal to the area of a parallelogram that is spanned, on the 

one hand, by the vector p and a line segment of length E that points from P to Q, on the other. 

 As a result, if one considers E to be the magnitude of a vector E that is represented by that line 

segment then one can determine the vector M as the outer product of the vectors p and E by using 

the equation: 

M = p  E .      (3) 

 

The vector function M (r, p) will decompose into two factors as a result of that formula. One of 

them depends upon only p (and indeed linearly), while the other depends upon only r (and in a way 

that is still completely unknown). 

 Now, it is easy to obtain the corresponding decomposition of the energy function. The work 

that must be done against M in order to increase the angle  by d is equal to the product M d. 

On the other hand, it is equal to the corresponding increase in energy dU. From (2), we will then 

get dU = E p sin  d, and as a result: 

 

U = − E p cos  + C , 

 

since   =  + . The potential energy U + U   of the system that is defined by the two dipoles 

(relative to the other “external” dipoles) will then reduce to 2 C. However, since the resultant 

electric moment of that system is equal to zero, it can experience no forces whatsoever. That is 

why the quantity C must also be independent of r. As a result, we can set C = 0. We accordingly 

get the following general expression for the energy as a function of p and r: 

 

U = − p E cos   = − p E .           (4) 
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If one imagines that the form of the function E (r) is given then one can calculate the force F that 

acts on the dipole from (4) using the energy principle. The work done by that force under a 

displacement of the dipole through the line segment d r with its orientation fixed is, in fact, 

determined from the equation: 

 

F d r = − dU = d (p E) = d r  grad (p E) 

 

(see the Introduction, § 10), i.e., due to the arbitrariness in d r : 

 

F = grad (p E) = (p grad) E + p  rot E            (5) 

 

[Introduction, formula (27)]. 

 The vector, or better yet, the vector function E (r), which determines the effect of all “external” 

dipoles on the one in question (if one ignores the presence of the latter at the point in question), is 

called the (external) electric field strength. One can evaluate the direction and magnitude of that 

field strength experimentally using formula (2) by means of a dipole that can be displaced and 

rotated freely. Indeed, the direction of E coincides with the one that the dipole seeks. The 

corresponding magnitude E is equal to the ratio of the largest moment that is exerted on the dipole 

in an orientation that is perpendicular to the latter to its electric moment. 

 It should be noted that the force F vanishes for p ⊥  E ( = 90o) [according to (5)]. By contrast, 

the moment M vanishes for p || E, while F attains its maximum magnitude for the position of the 

dipole in question. In particular, for  = 0, F falls in the direction of the fastest increase of E, for  

= 180o, it falls in the opposite direction, i.e., the direction of steepest descent. The first of those 

orientations (for a fixed position) corresponds to the stable equilibrium, while the second one 

corresponds to the labile one [U = minimum or maximum, resp., according to (4)]. 

 

 

§ 5. – The vortex-free character of the electric field and its effect on isolated charges (poles). 

 

 The forces that act upon a non-elementary dipole in a given electric field can be determined by 

decomposing that dipole into a chain of elementary ones (§ 3). According to the energy principle, 

in order to do that, we need to calculate only the potential of the dipole in question. Obviously, 

that potential energy U is equal to sum of the energies that correspond to the individual elementary 

dipoles (1). If they define a curve  (Fig. 7) then dU = − d p  E = − ( e d E) = − e E d, in 

which E is the electric field strength at the location in question, and E means its projection onto 

d, and as a result: 

 
 (1) In that way, it is obvious that one must deal with their energies relative to external electrical systems, but not 

relative to each other. 
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U = − 

B

A

e E d  .           (6) 

 

The integration is performed from the negative to the positive end of the dipole in question. 

 The force effect that is exerted upon the dipole is obviously composed of two forces fA and fB 

that act on its ends. We now imagine that those ends, i.e., the corresponding poles (with charges 

e−  and + e), are displaced from the points A, B to the neighboring points A , B  . The work that is 

done by that will be fA  fA + fB  fB , where  fA and  fB mean infinitely-small displacements AA  

( BB , resp.). On the other hand, from the energy principle, that work done must be equal to the 

reduction in the potential energy of the dipole, i.e., to the difference –  U = − (U  − U) . Due to 

the arbitrariness of the curves  and   , we can consider the latter to be the lengthening of the 

former that is defined by the line segments AA  and BB  and correspondingly set 

B

A





 = 

A B B

A A B





+ +   = 

B B A

A B A



+ −   (the integrands have been omitted, for the sake of simplicity). We will then have: 

 

−  U = 

B A

B A

e E d e E d  
 

 
 −   = e (EB  rB ) – e (EA  rA ) . 

 

If one compares that expression with the original one: 

 

−  U = fB  fB + fA  fA 

then that will give: 

fB = e EB ,  fA = – e EA . 

 

As a result, the force f that is exerted on an isolated pole with charge e will be equal to: 

 

f = e E .             (7) 

 

That formula corresponds to the usual definition of the electric field strength, namely, the force 

that acts on a unit (positive) charge at the point in question. 

 The energy of the dipole (AB) is a well-defined quantity that must remain independent of its 

decomposition into elementary dipoles, i.e., the form of the integration curve (6). If one connects 

two such curves 1 and 2 into a closed curve  and integrates along 1 in the positive direction 

(from A to B) and along 2 in the negative one (from B to A) then that must always give zero. We 

then reach the conclusion that the circulation of the vector E along any closed curve vanishes, i.e.: 

 

E d   = 0 . 
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It will then follow from Stokes’s formula [(17), Introduction] that the electric field strength must 

satisfy the condition: 

rot E = 0             (8) 

 

in all of space. That condition, which can be regarded as a direct consequence of the energy 

principle, expresses the basic property of the electric field, namely, it is vortex-free. Since (8) is 

fulfilled identically in r, according to [(18), Introduction], one can set: 

 

E = − grad  ,      (9) 

 

in which  means a still-undetermined function that is called the scalar or electric potential. One 

correspondingly refers to the field of vectors E as a vortex-free, or potential, field. 

 The physical meaning of the potential  is clarified by formula (6). Namely, from (9), one has: 

 

E = − grad  = − 
d

d




 , 

and as a result: 

U = e (B – A) = eB B + eA A . 

 

The potential energy of an isolated pole is therefore equal to: 

 

U = e  .      (10) 

 

The electric potential  at any point P is then equal to the potential energy of a unit (positive) 

charge that is found at that point relative to all charges that contribute to that potential. 

 Since the force f that acts upon the pole in question must be equal to the negative gradient of 

its potential energy, we further get f = − grad U = − e grad , or from (9), f = e E, i.e., formula (7). 

 

 

§ 6. – Reducing the effects of dipoles to those of isolated poles. 

 

 In the usual presentation of electrostatics, which starts from a consideration of the interaction 

of isolated poles, formula (7) is cited as a definition from the outset. The energy principle [in the 

form (9)] is derived from the assumption that the force between two electric poles has the direction 

of the line that connects them, i.e., it is a “central force.” The force and torque that are exerted on 

a dipole can then be calculated from the two forces that act upon its individual poles. 

 In the case of an elementary dipole with an infinitely-small length P1 P2 = 1, in the calculation 

of the moment M, one can consider the forces f1 = e1 E1 = − e E1 and f2 = e2 E2 = + e E2 to be 

equal in magnitude, but opposite in direction, and as a result set M = l  e E, where E means the 

electric field strength at any point P of the dipole (Fig. 9). In that way, one will come to formula 
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(3). If one considers the difference between the forces f2 and f1 then that will give the force that 

acts on the dipole as their geometric sum: 

 

F = f1 + f2 = e (E2 − E1) . 

 

Due to the smallness of l, one can then set E2 − E1 = (l grad) E (Introduction, § 10), and as a result: 

 

F = (p grad) E .     (11) 

 

That formula will coincide with (5) when one observes the condition that rot E = 0, which follows 

from the energy principle. 

 As far as the potential energy of an elementary dipole is concerned, it will reduce to the sum 

of the corresponding energies of its two 

ends, i.e.: 

 

U = e1 1 + e2 2 = e (2 − 1) 

= e (l, grad ) = − (p E) , 

 

which agrees with (4). 

 Although that (usual) way of looking at 

things is somewhat simpler than the one that 

we have proposed in the previous sections, 

the latter has the advantage that it can be 

adapted immediately to the action between electrical currents, and in that way the analogy and 

differences between the two types of action will emerge more clearly. 

 

 

_____________
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Figure 9. 



 

CHAPTER TWO 

 

ELECTROKINETIC (MAGNETIC) EFFECTS  

AND THE ENERGY PRINCIPLE 
 

 

§ 1. – Electric currents. 

 

 Any orderly motion of electricity in material bodies under which the opposite charges are 

displaced relative to each other is called an electric current. An electrical current can then be 

created by the motion of opposite charges in opposite directions or by the motion of charges of a 

certain type, while the other ones are in a state of complete rest. The case in which both types of 

charge move in the same direction with different velocities can be regarded as the superposition of 

one of the two aforementioned cases with a collective motion of the material body in question, 

which is a collective motion that remains entirely ineffectual from the standpoint of electricity. 

 If one imagines that the opposite charges are coupled with each other pair-wise into elementary 

dipoles then the current process will reduce to the time variation of the electric moment of those 

dipoles at each moment. 

 Let r1 and r2 be the radius vectors of the ends P1 and P2 of one such dipole relative to a fixed 

point O. If we consider the charges e1 = − e and e2 = + e that define it to be constant then that will 

give: 

d

dt

p
 = e (v2 – v1) = e1 v1 + e2 v2      (1) 

 

for the time derivative of its electric moment p = e P1 P2 = e (r2 – r1), in which v1 = d r1 / dt and 

v2 = d r2 / dt mean the “absolute” velocities of the two charges, and v2 – v1 means their relative 

velocity. 

 In what follows, we would like to call the product of the charge of a particle with its velocity 

the electric impulse of that particle (by imitation of the usual mechanical impulse, which is equal 

to the product of mass and velocity). The content of formula (1) can be expressed as follows: The 

time derivative of the electric moment of a dipole is equal to the geometric sum of the electric 

impulses of the poles that define it. 

 The electric impulse per unit volume of the body in question is called the current density (at 

the point in question). One can also define the density of the electric current J to be the time 

derivative of the electric moment P per unit volume, i.e., the geometric sum of the moments of 

the dipoles that are found in a very small volume at the moment considered, divided by the 

magnitude of that volume element. 

 One will then have: 

J = 
d

dt

P
.      (2) 
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The vector P is ordinarily referred to as the electric polarization of the body at the point in 

question. Its introduction is especially convenient when the positive and negative charges that are 

found in any volume element always remain in the same element, i.e., one cannot separate them 

from each other. That is the case for the so-called dielectric bodies, whose molecules can be 

regarded as dipoles that are composed of inseparable charges. 

 By contrast, for the electrical conductors (such as electrolytes and metals), the individual 

charges (e.g., electrons, ions) drift about independently of each other throughout the entire volume 

of the body. In that case, in order to be able to preserve the concept of polarization and the relation 

(2), one must show that the opposite charges that are coupled with each other into elementary 

dipoles will switch with each other from time to time in order for their mutual distance to always 

remain small (compared to the dimensions of the body). 

 

 

§ 2. – Stationary electric currents. 

 

 If the current density at each point of the body under consideration remains constant in time 

(which can be true for only conductors) then the electrical current is called stationary (or also 

“direct current”). 

 In that case, one can show that the electric charges move in closed curves and that the charges 

that leave from one side of a volume element will be immediately replaced with other ones that 

enter from the opposite side. 

 Imagine that there are N particles with charge e in a unit 

volume, and that they move with the same velocity v. The part of 

the current density that corresponds to those charges is obviously 

equal to N e v. Let dS be a surface element whose normal n defines 

the angle  with the direction of motion (i.e., with v) (Fig. 10). The 

number d of charges of the type in question that go through dS 

during the time interval dt is equal to the product of N with the 

volume of a cylinder with the base surface dS times the height v dt  cos  = (v n)  dt = vn dt. If 

one counts that number as positive when  < 90o and negative when  > 90o then one will have: 

 

d = N (v n) dS dt . 

 

Upon multiplying that expression by e and summing over all types of charges (with different e or 

v) that are found in the body in question (or better yet, they move in it), we will get the total amount 

of electricity that flows through dS in time dt: 

 

dQ =  N e (v n) dS dt = ( N e v) n dS dt . 

 

v dt 

 
n 

v 

Figure 10. 
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Note that the part of the electrical current through dS that consists of positive charges will be 

positive or negative according to whether it moves in the direction of the normal n ( < 90o) or the 

opposite direction ( > 90o), resp. Conversely, the corresponding part that consists of negative 

charges will be negative in the former case and positive in the latter. 

 The sum  N e v is obviously nothing but the current density J that was defined above. The 

amount of electricity dQ / dt that flows through dS per unit time is called the strength of the 

corresponding current. The electrical current strength for an arbitrary surface is expressed by the 

integral: 

I = 
nJ dS .      (3) 

 

 In the case of a closed surface, that current strength must be equal to the decrease per unit time 

in the amount of electricity in the volume V that is bounded by S (as usual, n means the exterior 

normal). That theorem is an immediate consequence of the principle of the indestructibility of 

electric charges (Chap. I, § 1). If we denote the electric charge density, i.e., the sum  e of the 

charges in a unit volume, by , then we can express the aforementioned “conservation law” in the 

form: 

nJ dS  = − 
d

dV
dt

 . 

 

Moreover, by means of Gauss’s formula, we will get: 

 

div dV J  = − 
d

dV
dt

 , 

or since 
d

dV
dt

  = dV
t



 : 

div dV
t

 
+ 

 
 J  = 0 . 

 

Due to the arbitrariness in the volume V, the integrand must vanish identically, such that the law 

of conservation of electric charge can be expressed as the following differential equation: 

 

t




+ div J = 0 .     (4) 

 

In the case of a stationary electric current that is of interest to us, we will have  /t = 0, and as a 

result: 

div J = 0 .          (4.a) 

 

That equation shows that the “current lines,” i.e., the curves that represent the vector field J, are 

source-free, i.e., they have no starting or ending points. As long as the electric current takes place 
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in a bounded space, they must then be closed curves. The set of all such curves that go through an 

open surface S (or the line  that bounds it) can be regarded as a current thread or “tube.” The 

current strengths I =  Jn dS keeps the same value for arbitrary cross-sections of that “tube.” 

 One can then think of any body in which a stationary electric current is found as a set of such 

“current tubes” with infinitely-small cross-sections that play the same role in regard to the current 

distribution that, e.g., the ordinary volume elements (with infinitely-small sides) do in the 

distribution of electric charge (or polarization). We will refer to each infinitely-thin tubular current 

element as a linear electric current. 

 Clearly, there are no linear currents, in the mathematical sense of the word. However, one can 

treat an electric current that flows in a very thin metal wire (as long as its interaction with other 

such currents is considered) as linear in practice, just as we have treated the two poles of a dipole 

as point charges in the previous chapter. 

 

 

§ 3. – The magnetic moment of a linear current. 

 

 The electrical currents, or rather, the bodies in which they circulate, exert certain actions upon 

each other that one refers to as electrokinetic or magnetic. Those actions can be studied most 

simply with linear electric currents, which play the same role in this context that the electric 

dipoles play in the study of electrostatic actions. The 

elementary dipoles then correspond to elementary linear 

currents, which are characterized by the fact that the 

corresponding current lines (which we will think of as 

infinitely-thin rigid wires) are planar and very small 

compared to their mutual distances. 

 We next observe the following completely-obvious fact: 

If the current line contracts to a point then its mechanical (i.e., magnetic) effect must vanish. It 

must likewise vanish when the current line contracts to a “double line” of finite length, i.e., to a 

line that consists of two practically-overlapping halves (Fig. 11), such that the sum of the electric 

impulses in each double element of that line (d) will be equal to zero. 

 One can conclude from this that the geometric quantity that is decisive for the mechanical 

action of an elementary current line is not its length, but the area of the surface that it bounds. 

 We next exhibit two completely-identical elementary current lines of rectangular form that 

have the same orientation and are found next to each other in a region V of roughly the same 

dimensions as their own lengths. The mechanical effect of the system that they define on external 

(distant) electric currents must obviously be twice as large as the corresponding effect of each of 

the two current lines considered, and it must be entirely independent of their relative positions (1). 

In particular, one can place them in such a way that two of their sides coincide (Figs. 12.a, b). 

 
 (1) As long as they remain in the region V.  

d 

Figure 11. 
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Those coincident sides will then define a double current line whose mechanical effect is equal to 

zero. The other six sides define a new 

rectangular current line whose form is different 

in the cases a) and b), but have the same area 2 

S, where S means the area of the two isolated 

current lines. That will then show that the 

mechanical effect of an elementary current line 

is independent of its form and proportional to its 

area (1). 

 Instead of placing the current lines that were 

considered above next to each other, one can 

overlap them, as is suggested in Fig. 12.c. In that 

way, one will, in fact, get an isolated current line 

with the same form and circumference as the 

original one, but with a current strength 2 I that 

is twice as large. 

 We then see that the mechanical effect that 

an elementary current line exerts on an external (distant) current or experiences from such currents 

is proportional to the area S that it encloses and the current strength I, i.e., it is determined from 

the product I S. That product, which corresponds to the electric moment of an (elementary) dipole, 

is called the magnetic moment of the current under consideration (or the current line). 

 When one treats the interaction between electric currents, it is convenient to introduce a new 

unit for current strength that we will first determine later. Let the ratio of that new “electrokinetic” 

unit to the original “electrostatic” one be c. That means that the “electrostatic” strength of a current 

I corresponds to the electrokinetic strength: 

i = 
I

c
.            (5) 

 

 The magnetic moment of a current line is then determined by the formula: 

 

m = i S .          (5.a) 

 

Just as in the case of a dipole, one can consider m to be the magnitude of a vector quantity. We 

define that vector quantity by: 

m = i S n ,          (5.b) 

 

in which n means the normal to the current plane. Its direction shall be associated with the sense 

of traversal on the current line  that is determined by the direction of the current using the right-

 
 (1) That proof is carried out for only current lines of rectangular form here. However, its generalization to current 

lines of entirely-arbitrary form raises no difficulties. Namely, one can decompose any such line into rectangles and 

rectangular triangles (on the boundary). In that way, a triangle will be equivalent to one-half of the corresponding 

rectangle (in regard to its effect). 

J 

S S 

a) 

J 

S 

S 

2 J 

S 

c) 

b) 

Figure 12. 
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hand screw rule. The magnetic moment of a planar current line is then equal to its geometric 

moment S n (cf., Introduction, § 4), multiplied by the current strength i. That definition can be 

adapted directly to arbitrary non-planar current lines (see below, § 4). 

 Note that the opposite direction of current for a given orientation of  must obviously have the 

same consequence as the opposite orientation, namely, the opposite of the direction of the forces 

and torques that act on the current line or by it. From (5.b), that would correspond to the opposite 

sign for m. One then sees from this that the magnetic moment of an elementary current line must 

determine both the magnitude and direction of its mechanical effect (“passive” and “active”) 

completely. 

 

 

§ 4. – Systems of elementary currents. Non-elementary currents. 

 

 Let 1 and 2 be two elementary current lines with magnetic moments m1 and m2 that are 

found in a very small spatial region V. Since the forms of those lines (insofar as it is independent 

of the area) and their current strengths are irrelevant to their mechanical effect, just like their 

relative positions in V, one can replace them with two parallelograms with the same current 

strengths i1 = i2 = 1 that lie next to each other. In that way, we will get the picture that is suggested 

by Fig. 4 (Introduction, § 4). By adding the two “triangular currents” PQOP and P Q O P     with 

equal and opposite moments to the “parallelogram currents” PQQ P P   and OPP O O   being 

considered, we will get a single resultant elementary current that is represented by the 

parallelogram OQQ O O  . The magnetic moment of that current m is obviously equal to the 

geometric sum of the moments of the other two parallelogram currents, i.e.: 

 

m = m1 + m2 . 

 

The result can be easily generalized to an arbitrary number of elementary linear currents, as long 

as the current lines in question are found to be sufficiently close to each other and at a large distance 

from the other currents that they interact with. 

 Just as we had decomposed a non-elementary dipole into a 

chain of elementary ones in the previous chapter (§ 3), we can 

replace a non-elementary linear current, i.e., a current line of 

arbitrary form and magnitude, with a network of elementary 

current lines. That replacement or “decomposition” 

corresponds completely to the decomposition into closed curves 

or the surfaces that are bounded by them that was considered in 

the Introduction (§ 3). We must only imagine that those curves 

are the carriers of electrical currents of the same strength and 

then determine the sense of traversal on each curve from the 

direction of current. 

 

Figure 13. 
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 In that way, the question of the mechanical effect of an arbitrary non-elementary current line 

 will be reduced to the calculation of the corresponding effect of the network of current lines that 

replaces it. One can imagine that this network of current lines spans an entirely-arbitrary surface 

S that is bounded by  (Fig. 13). Therefore, every network of lines, with the exception of , can be 

considered to be a doubled current line, such that the mechanical effect of the entire network of 

currents must always be equal to the effect of the current line . 

 According to (5.b), one can express the magnetic moment of an elementary current line that 

bounds the surface element dS with the normal n by: 

 

d m = i n dS . 

 

The geometric sum of all those moments, i.e., the integral: 

 

m = i dSn ,       (6) 

 

is called the magnetic moment of the current line  in question. That vector is obviously equal to 

the product of the current strength i with the geometric moment of the curve  that was defined 

before (Introduction, § 3). For sufficiently-small dimensions of that curve, the mechanical effect 

of the corresponding current will be characterized completely by the vector m, even when  is not 

a plane curve (so when the current is not “elementary,” properly speaking). Otherwise, in order to 

evaluate the total effect of the current in question, one must calculate the corresponding effects of 

the elementary currents that replace it individually. 

 Since the vector m or  n dS depends upon only , 

but not upon the form of the surface S, it would seem 

reasonable to express it in the form of a line integral that 

is taken along . The conversion is given by simply 

specializing the surface S. Indeed, we would like to 

consider S to be the outer surface of a cone whose vertex 

might lie at an arbitrary O (Fig. 14). 

 Since the normal n keeps the same direction at all 

points of a triangle through O and is determined by d, 

one can take the area of that triangle to be the surface 

element dS. If we further observe that n falls in the 

direction of the outer product r  , where r means the radius vector to a point of  (d, resp.), 

and  means the corresponding tangent vector, then we will have: 

 

n dS = 
1
2 r   d , 

and as a result, from (6): 

O 

r 

n 

 

Figure 14. 

d 
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m = 1
2

i d r  .     (6.a) 

 

That expression has a very illuminating physical interpretation. If we imagine, for the moment, 

that the current line  is replaced with a very thin current thread (e.g., a wire) of cross-section q 

then the current strength can be represented as the product of q with the current density j = (1 / c) 

J. Moreover, since the direction of j coincides with , and the product q d means the volume dV 

of the corresponding element of the current thread, we will get: 

 

 i d = j dV = 
e

c
 v ,        (6.b) 

 

i.e., the “current element”  i d is equal to the electrical impulse of the charges that are present in 

that element (d), when expressed in the electrokinetic units, just like j. One can correspondingly 

define the integral i d r   to be the electric impulse moment or the electric angular 

momentum of the current considered, which corresponds to the usual definition of the mechanical 

angular momentum when one replaces the mass of the material particle with the charge. As one 

can see from the argument that was posed, that electric angular momentum, which must be defined 

relative to any point (O), is independent of the choice of that point. 

 The magnetic moment of a linear electric current is then equal to one-half of the resulting 

electric angular momentum of the moving charges that define that current. 

 

 

§ 5. – The statics of electric currents. The magnetic field. 

 

 Since an elementary electrical current is determined completely by its magnetic moment in the 

context of its interaction with other currents, we can treat that interaction in the same way that we 

treated the elementary electric dipole. Just as we did with the latter, we will ignore the dimensions 

of the current line completely, so we will actually treat it as a point that is characterized 

kinematically by its position (r) and the orientation of the vector m that is coupled with it, and 

statically by the force F and torque M that acts on it. We will further assume that even in that 

case, the two force effects can be derived from an energy function U (r, m) that we will call the 

magnetic energy of the elementary current considered relative to the other currents that it is found 

to interact with. 

 Under those circumstances, one must obviously once more find the same expressions for U, 

M, F that were exhibited in the previous chapter for an elementary dipole when one introduces 

the magnetic moment m in place of p (viz., the electric moment), and replaces E, the electric field 

strength, with the corresponding magnetic vector quantity, namely, the so-called magnetic field 

strength H. We then get the following formulas, which are completely analogous to equations (4), 

(3), and (5) in Chap. I: 
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U = − m H ,      (7) 

M = − m  H ,       (8) 

F = grad (m H) .       (9) 

 

One observes that in so doing, one says absolutely nothing about the relationship between magnetic 

and electric field strengths as functions of r. The vector fields E (r) and H (r) can have an entirely-

different structure from the outset. It is actually easy to derive the fact that a certain contrast exists 

between the two fields in that regard from the energy principle. 

 Namely, one now considers the magnetic energy of a non-elementary current relative to the 

currents in whose field H one finds it. One can obviously determine that energy U from the sum 

of the infinitely-small contributions: 

 

dU = − H d m = − i H n dS = − i Hn dS , 

 

which correspond to the individual elementary currents that replace the current in question (§ 4). 

One will then have: 

U = − 
ni H dS .       (10) 

 The surface integral: 

 = 
nH dS       (10.a) 

 

means the “magnetic flux” through any surface that is bounded by the current line . It plays the 

same role as the line integral of the electric field strength for the energy of a non-elementary dipole 

[Chap. I, formula (6)]. 

 Since the magnetic energy of a given current of the type that one decomposes into elementary 

currents is independent of the choice of the outer surface S that one imagines is spanning the 

network of those elementary currents, in particular, the integral (10.a) must have the same value 

for two different surfaces S   and S . By inverting the normal direction on one of those surfaces, 

one will then get 
n nH dS H dS 

 +   = 0, i.e.: 

 

nH dS  = 0 , 

 

in which S means the closed surface that is defined by S   and S , and n means the corresponding 

exterior (or interior) normal to it. 

 One will get the same result when one contracts the current line  to a point. In that way, the 

surface S in (10) will be closed, and the energy U will obviously be equal to zero. 

 It follows from the fact that the magnetic flux through any closed surface vanishes and Gauss’s 

formula [
nH dS  =  div H dV] that the magnetic field must fulfill the condition: 
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div H = 0           (11) 

 

in all of space. That condition is a direct consequence of the energy principle and corresponds to 

the condition rot E = 0 for the electric field. It means that the magnetic field is source-free, i.e., 

that the “magnetic lines of force” are closed curves in general. 

 Due to the character of equation (11) as an identity with respect to r, one can appeal to the 

identity div rot F = 0 [Introduction, formula (18.a)] and set: 

 

H = rot A,           (12) 

 

in which A means an as-yet-undetermined vector function. We will call that vector function, which 

corresponds to the scalar potential , the vector potential or also the electrokinetic potential. 

 Note that the vector potential is not determined uniquely by the magnetic field strength. That 

is because one can add the gradient of an arbitrary scalar function to A. Since its rotation vanishes 

identically, H will remain unchanged in that way. By a suitable choice of that scalar function, one 

can determine the vector potential in such a way that it will satisfy a given scalar condition, e.g., 

the condition that it is source-free: 

div A = 0 .        (12.a) 

 

 If one substitutes (12) in (10) then, from Stokes’s formula [Introduction, (17)], that will give: 

 

U = − i A d   = − i d A  .    (13) 

 

By means of that formula, the magnetic energy of the current line in question will be expressed as 

a sum of parts that are associated with the individual elementary of that line [and not the elementary 

currents that replace them, as in the original definition by formula (10)]. However, we will see 

immediately that such a decomposition (in contrast to the corresponding decomposition in the case 

of electric dipoles) is not always permissible, with no further conditions. 

 

 

§ 6. – The effect of the magnetic field on isolated current elements and moving charges. 

 

 However, we would next like to attempt to treat the quantity: 

 

dU = − A  i d     (13.a) 
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as the magnetic energy of the current element d (recall that the vector i  d represents the electric 

impulse of the charges that are found in d). The force d F that acts upon that current element 

must then be calculated from the formula d F = − grad (dU), i.e.: 

 

d F = grad (i  d A) = (i  d grad) A + i  d   rot A . 

 

If one sets rot A = H and observes that the vector (i  d grad) A is equal to the difference A2 – 

A1 = d A for the endpoints of the line segment d then one can write the formula above as follows: 

 

d F = i d A + i    H d .            (13.b) 

 

Upon integrating along the current line , the first term on the right-hand side of (13.b) will drop 

out since one obviously has d A  = 0. The total force that acts on that line is then equal to: 

 

F = i d  A . 

 

As long as one considers that total force, it is therefore entirely irrelevant whether the 

corresponding elementary force is defined by (13.b) or by the simpler formula: 

 

d F = i  d  H .     (14) 

 

 We shall now attempt to derive that elementary force from the change in total energy U that 

results from a very small displacement of the current line considered in the magnetic field. In so 

doing, it is not necessary to regard that line as rigid (as we 

did for the elementary currents). Rather, we can treat it as 

a flexible and extensible string. 

 Let the “original” and “displaced” current lines be 

denoted by  and    (Fig. 15), and the corresponding 

energies by U and U  . Moreover, let S   be an arbitrary 

surface that is bounded by   . Since the corresponding 

surface for  can be chosen to be entirely arbitrary, one can 

represent it by adding the surface  that is described by  

under displacement (i.e., spanned by  and   ) (viz., S = 

 + S  ). From (10), one will then have: 

 

U U −  = U = i H d  , 

 

 

 d 

 
 

 

n 

Figure 15. 

d 
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in which  means the normal to d . We would like to take the surface d  to be the surface that is 

described by the line element d, i.e., the area of the parallelogram with the sides  d and  r. 

(We can consider the infinitesimal displacements of the various points of ds to be equal and point 

in the same direction in the first approximation.) Since  d  =  d   r, we will get H d  = 

  H  = ( )d  H r  = − ( )d  r H , and as a result: 

 

− U = ( )i d  H r . 

 

That expression, which represents the loss of energy under the displacement in question, must 

obviously be equal to the total work due to the electric forces that act upon the individual current 

elements. That will give: 

i d   H r  = d  F r . 

 

In that equation,  r is regarded as a very small vector quantity that varies continuously along . 

However, it is otherwise entirely arbitrary since the displacements of the various (non-sequential) 

points of  are independent of each other, by assumption. That is why the individual elements of 

the integral above, or rather, the corresponding factors of  r, are equal to each other. In that way, 

we will get: 

d F = i  d  H , 

 

i.e., the formula (14). The previous formula (13.b) then proves to be false (1). As a result, we must 

recognize that the assumption of a magnetic energy in the individual elements of a current line is 

also false. 

 That “undecomposability” of the magnetic energy of a closed current line is explained by the 

fact that the motion of the individual electric charges that defines the current is not a stationary 

(i.e., time-independent) process, even in the case of stationary currents. However, the electric and 

magnetic energy, as they were defined above, refer to only those mechanical effects that do not 

depend upon time explicitly. 

 For the individual current elements, we must then drop the concept of energy and consider only 

the corresponding elementary force that is determined by the formula (14). We can again represent 

that elementary force as a sum of individual forces that correspond to the individual charges (viz., 

electrons) that define the current element in question. Indeed, according to (6.b), for a particle with 

charge e that moves in the magnetic field with a velocity v, we will get the following “magnetic” 

or “electromagnetic” force: 

f = 
e

c
v  H .          (14.a) 

 

 
 (1) It is easy to see that the integral d  A r  is non-zero, in general. 
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Note that this force can be treated as an electric force that is required by a fictitious electric field 

of strength: 

E = 
1

c
v  H .          (14.b) 

 

 Although the form (14.a) cannot be derived from an energy function, when calculating the total 

energy of the stationary currents (linear and nonlinear) of the individual moving charges (viz., 

electrons), one can however attribute that total energy to a fictitious magnetic energy [cf., (13.a)]: 

 

u = − 
e

c
vA .              (15) 

 

That fictitious energy corresponds to a force: 

 

f = − grad u = 
e

c
(v grad) A + 

e

c
 v  rot A , 

i.e.: 

f = 
e

c
(v grad) A + 

e

c
 v  H ,             (15.a) 

 

whose first (fictitious) term must vanish upon summing over all charges (or also any ones that 

define closed current lines). 

 

____________ 



 

CHAPTER THREE 

 

THE STRUCTURE OF ELECTRIC AND MAGNETIC FIELDS AS 

IT RELATES TO THE EQUIVALENCE PRINCIPLE 
 

 

§ 1. – The equivalence of elementary dipoles and currents. 

 

 In the foregoing chapters, we have studied the mechanical effects of dipoles and currents only 

in regard to their passive aspects, while the “active” dipoles and currents from which the effect in 

question originated were considered only indirectly by way of the electric (magnetic, resp.) field 

that they generated. 

 In order to solve our main problem – viz., determining the interaction of dipoles or currents, 

i.e., of charges at rest or in motion – we must now examine the question of the structure of the 

fields that they create. Indeed, the assumption that the aforementioned interaction can be derived 

from a mutual potential energy (i.e., the “energy principle”) allowed us to exhibit the general 

properties of those fields − viz., the vortex-free character of the electric field and the absence of 

sources for the magnetic one. However, their determination was still not complete with that, but 

only reduced to a simpler problem, namely, determining the scalar potential  and the vector 

potential A. 

 The energy principle did not allow us to go further. That is why we must complete it by means 

of a different principle. However, before we formulate that principle, we would like to make some 

remarks by way of introduction that will be inessential for our presentation, but important in a 

historical context. The effect that a given magnetic field H has on an elementary electric current 

with the moment m is identical to the effect that an elementary electric dipole with a moment of 

p = m would experience in a fictitious electric field E = H. In place of the fictitious electric field, 

one can imagine a fictitious magnetic dipole that consists of two opposite “magnetic poles”   at 

a very small distance l from each other, in which: 

 

 l = m , 

 

corresponding to the relation e l = p for real electric dipoles. Those “elementary magnetic dipoles” 

or “elementary magnets” (M) shall then react to the real magnetic field H in just the same way that 

the corresponding electric currents (S) should. 

 According to the energy principle, the action on S must be equal and opposite to the reaction 

of the “external” current S   that creates the field H (since both effects will be a result of the same 

“mutual” potential energy). If one would also like to adapt the energy principle to the magnet M 

that “passively” replaces the current S then one must assert that this replacement must also take 

place actively, i.e., that M creates the same magnetic field (H) as S. 
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 If one imagines S   to be a second elementary current, in particular, then one can express the 

assertion above as follows: The interaction of an elementary magnet and an elementary current is 

identical to the interaction of two elementary currents or two elementary magnets with equal 

corresponding moments. 

 Recall that the action of magnetic forces was first discovered in so-called “naturally magnetic” 

bodies or “natural magnets.” Therefore, those magnets were first regarded as real magnetic dipoles 

whose properties were assumed to be identical to the properties of electric dipoles (Coulomb). One 

explains the inseparability of opposite “magnetic charges” in the same way as the inseparability of 

opposite electric charges in dielectric bodies, namely, by the assumptions that the opposite 

magnetic poles should always remain in the same molecules of the body under consideration. 

According to that theory, which goes back to Weber, a natural magnet is regarded as a system of 

elementary “molecular” magnets. 

 Once the magnetic effects of electric currents had been discovered and studied, those Weberian 

“molecular magnets” were later replaced with equivalent molecular currents by Ampére, which 

one now considers to be orbiting electrons and calls magnetons.  

 Thus, the magnetic “poles” and “dipoles” were recognized as fictitious mathematical 

structures. Nonetheless, even today, they have been preserved as a very useful, if not indispensable, 

tool for representing electrokinetic interactions. 

 With those historical remarks, which have no direct relationship to our line of reasoning, we 

would like to again give no attention to the fictitious magnetic dipole and express the following 

equivalence principle between the elementary electric dipoles and electric currents: 

 For a suitable choice of the ratio c between the electrostatic and electrokinetic units, the 

interaction of elementary electric dipoles will be identical to the interaction of the elementary 

electric currents that are found to have the same relative configuration and whose magnetic 

moments have the same (relative) orientation and numerical magnitudes as the electric moments 

of the corresponding dipoles. 

 Since the “passive” equivalence of elementary dipoles and currents with respect to their 

behavior in given external fields was already established above, the equivalence principle means 

that the magnetic field of an elementary current coincides completely (H = E) with the electric 

field of an elementary dipole with the same position, orientation, and a numerically-equal moment 

(m = p). In particular, it must be emphasized that this agreement has an asymptotic character, in 

the sense that it is true for only sufficiently-distant spatial points. Obviously, it can no longer exist 

in the immediate neighborhood of the two structures. However, if one considers those structures 

to be infinitely-small, e.g., point-like, then the domain of validity of the equivalence principle must 

extend to all of space, with the exclusion of such “singular” points. 

 

 

§ 2. – The fundamental equations of electric and magnetic fields in empty space. 

 

 The potential energy U of an elementary dipole D relative to several other dipoles D , D , etc., 

must obviously be equal to the sum of the energies U  , U , etc., that characterize the interaction 

of D with D , D , … individually. If one denotes the electric moment of D by p and the field 
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strengths at the point P where D is found that originate in D , D , … by E, E, …, resp., then 

one will have: 

U   = − (p E) , U  = − (p E) , …, 

and as a result: 

U = U  + U+ … = − p (E + E + …) . 

 

On the other hand, that resultant energy must be equal to (minus) the inner product of p with the 

resultant field strength E. That will imply the (almost-trivial) result that: 

 

E = E + E + …, 

 

i.e., the resultant field strength is composed vectorially from the elementary field strengths. 

Clearly, that result is also true for the magnetic field strengths. 

 One can replace any arbitrary system of electric dipoles or currents with a system of elementary 

(i.e., their dimensions are infinitely small) dipoles or currents as long as the point in question, for 

which the resultant (total) field strength is to be determined, is an external one, i.e., it is not 

charged, and no current flows through it. However, its distance from such “critical” or “singular” 

points can otherwise be arbitrarily small since one can think of the elementary dipole and currents 

as infinitely-small compared to that distance. 

 Outside of the “singular” points, it is therefore possible to consider the total electric or magnetic 

field strengths to be a geometric sum of infinitely-many components that all originate in 

elementary dipoles or currents. 

 From the energy principle, the electric and magnetic field strengths must satisfy the conditions: 

 

rot E = 0 , div H = 0 

 

in all of space, including the singular points. 

 Since: 

rot (F + F + …) = rot F + rot F + … 

and 

div F = div F + div F + …, 

 

it will follow from the equivalence principle that the equations: 

 

div E = 0 ,      (1) 

rot H = 0       (2) 

 

must also be true outside of the singular points, and they are obtained from the energy equations 

above by switching the vectors E and H. 
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 Therefore, the electric, as well as magnetic, field strengths are free of both vortices and sources 

outside of the singular point. However, it can be easily shown that the equations above can no 

longer be fulfilled at such singular points, i.e., that singular points are sources of the electric fields 

and vortices are the sources of the magnetic fields. 

 In order to prove that, we next observe that from the formulas E = − grad  and H = rot A, 

equations (1) and (2) are equivalent to the following equations for the potentials  and A: 

 

 2 = 0      (3) 

(Laplace equation), and: 

rot rot A = grad div A − 2A = 0 . 

 

One can replace the last equation by an equation of the same type as (3): 

 

2 A = 0 ,      (4) 

 

with the condition [cf., Chap. II, formula (12.a)] that: 

 

div A = 0 .      (4.a) 

 

 We now consider the vector  E = −  grad . Since: 

 

div  E =  div E + E grad  = −  2  – E2, 

 

upon integrating over an entirely-arbitrary volume V and applying Gauss’s theorem, we will get: 

 

− 
nE dS  = 2 2dV E dV  +  ,            (5) 

 

in which S means the surface that encloses the volume in question. If we shift that surface to 

infinity, i.e., extend the volume integral over all of space, then that will give: 

 

− lim n
S

E dS
→   = 2E dV , 

 

under the assumption that  remains continuous everywhere and it satisfies equation (3). 

 We now assume that , and as a result E, vanish at infinitely-distant points, and indeed in such 

a way that the surface integral 
nE dS  will tend to zero independently of the form of the surface 

S. Since S drops off in proportion to the square of the distance (R), that assumption must be fulfilled 

when  is inversely proportional to R (and as a result, E is inversely proportional to 2R ) or decrease 

even faster with the distance (see below, § 3). The volume integral 2E dV  must also vanish then, 
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and since 2E  is a non-negative quantity, it must be equal to zero identically. The existence of a 

non-vanishing electric field under the aforementioned assumptions about the potential  and its 

behavior at points at infinity is then incompatible with the identical existence of equation (3), and 

as a result, equation (1). However, since those equations must be fulfilled outside of the singular 

points, they must break down at those points. 

 The corresponding proof for the magnetic field can be performed on the basis of equation (4), 

just like in the case above, when one considers the components of A individually. However, one 

can complete that proof without decomposing A into its components on the basis of the identity: 

 

div (A  H) = H rot A – A rot H . 

 

Namely, if one replaces rot A with H and rot H with − 2A then that will give the following 

formula: 

( )n dS A H  = 2 2( ) dV H dV + A A ,              (6) 

 

which is entirely analogous to (5), and from it, one can infer the same conclusion, and in fact under 

the same assumptions about the vector potential A as in the case of the scalar potential . 

 

 

§ 3. – The fundamental equations of electromagnetic fields for singular points. 

 

 We now suppose that the electric charge e is concentrated in a small volume v that can contract 

to a point Q. Let E be the electric field strength that this charge creates. Moreover, let V be an 

arbitrary volume that includes the volume v (the point Q, resp.), and let S be the surface that bounds 

it. 

 From Gauss’s formula, the following relation will be true: 

 

nE dS  = div dV E , 

or since E = 0 outside of v : 

nE dS  = div dv E . 

 

It will then follow from this that the electric flux through a closed surface that includes the electric 

charge in question will not depend upon the size, form, and position of that surface (relative to v 

or Q). In the limit as v goes to zero, the electric field strength at each point of S will have a well-

defined direction and a magnitude that is proportional to e for a given position of Q, such that one 

can set: 

nE dS  = C1 e ,            (7) 
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in which C1 means a coefficient of proportionality. From the foregoing, that coefficient must be 

independent of the position of the point Q, as long as it remains inside of S (S is now considered 

to be a fixed outer surface). 

 We now imagine that there are several point-like charges inside of S. If one denotes the 

magnitudes of those charges by e , e , …, and the corresponding field strengths E, E, etc., then 

one will have: 

nE dS  = C1 e , 
nE dS  = C1 e , …, 

 

where C1 always means the same coefficient as in (7). 

 On the other hand, we obviously have that the total electric charge inside of S is e = e + e + 

…, and that the corresponding resulting field strength is E = E + E + … Moreover, since one 

has n nE E + +  = En , it will follow upon adding the equations above that: 

 

nE dS  = C1 e , 

 

i.e., a formula with the same form as (7), but with a more-general meaning since now the charge 

that is found inside of S can be distributed throughout the volume V in a completely-arbitrary way. 

 We now imagine, in particular, a continuous volume distribution under which an infinitely-

small volume element dV will contain a likewise infinitely-small charge de =  dV ( = spatial 

charge density). We will then have e =   dV, and as a result: 

 

nE dS  = div dV E = 
1C dV . 

 

Due to the arbitrariness in V, that will give the following differential equation for the electric field 

of singular points: 

div E = − 2  = C1  .             (8) 

 

One can consider that equation to the generalization of (1) [(3), resp.]. Therefore, it will also remain 

valid when  becomes infinite, i.e., in the case of a non-continuous distribution of electricity in 

space. However, in the latter case, it is more advantageous to operate with the corresponding 

integral equation (7), and not with (8). 

 We now move on to consider magnetic fields, and we would first like to imagine that the field 

H is created by a very thin current wire that can contract down to a (closed) line . Upon applying 

the Stokes formula to a closed curve    that is different from  and encircles  once, we will get 

the equation: 

H d 
  = rotn ds H , 
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in which s means the part of an arbitrary surface S that is bounded by    and is cut out from that 

surface by the current wires (since rot H = 0 outside of the current wire). 

 Since one can lay a set of surfaces S through the same cross-section of the wire s that are 

bounded by various lines   , and on the other hand the surfaces that are bounded by the same line 

   can cut the current wire in question at different locations, it would follow from the formula 

above that: First of all, the circulation of the vectors H along a line that encircles one of the current 

wires once will be independent of its quantity, form, and position (relative to ), and secondly, that 

the flux of the vector rot H through various cross-sections of the current wire will have the same 

value. 

 An argument that is completely analogous to the one that led us to exhibit formula (7) for an 

arbitrary charge distribution inside of the closed surface S will give the following formula, which 

is analogous to (7): 

H d 
  = C2 i ,          (9) 

 

in which C2 means a new coefficient of proportionality, and i means the total strength of the current 

that goes through   , i.e., the algebraic sum of the current strengths for the various current wires 

that encircle   with + or – signs according to the direction of those currents relative to the sense 

of traversal on the curve   . 

 If one imagines, in particular, a continuous distribution of the current strength with the finite 

spatial density j then one will have: 

i = 
nj dS , 

i.e.: 

H d 
  = rotn ds H  = 

2 nC j dS , 

 

and as a result, due to the arbitrariness in the surface S : 

 

rot H = − 2 A = C2 j .         (9.a) 

 

One can consider that formula to be the generalization of formula (3) [(4), resp.] to singular points 

of the magnetic field. 

 It should be pointed out that equation (9) is compatible with the identity div rot H = 0, due to 

(4.a), Chap. II, as long as the currents in question are stationary, which was always assumed up 

to now. The aforementioned second consequence of the formula H d 
  = rotn ds H  (viz., the 

independence of rotn ds H  on the choice of current wire cross-section s) corresponds to the 

equality of the current strength i = 
nj dS  for the various cross-sections of those current wires. 
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§ 4. – Relationship between the constants C1 and C2 . Non-elementary currents and double 

layers. Non-elementary dipoles and solenoids. 

 

 Formulas (7) and (9) are coupled with each other directly by the equivalence principle. For that 

reason, one of them must be derivable from the other. Such a derivation would simultaneously 

allow us to determine the relationship between the two constants C1 and C2 . 

 Up to now, we have represented an elementary dipole as a rectilinear line segment with 

oppositely-charged ends, and an elementary current as a closed planar line. The two 

representations, which are quite different geometrically, can be combined into the same geometric 

structure to some extent, namely, a right cylinder whose lateral surface can play the role of the 

current lines, while the end surfaces play the role of the ends of the dipoles. By reducing the lateral 

dimension of the cylinder in comparison to its length, we will get an infinitely-thin rod that 

approaches the original linear picture of a dipole. On the other hand, upon reducing the height of 

the cylinder in comparison to its lateral dimension, we will get an infinitely-thin disc whose band-

like lateral surface approaches the original linear picture of a current. Upon replacing the ends of 

the dipoles with two end surfaces S   and S  for a cylinder, we can think of the corresponding 

charges – e and + e as being uniformly distributed over those surfaces, so we can represent the 

dipole as a double layer with the electric surface density   =  e / S (S = S   = S ). 

 We likewise imagine replacing the current line with the lateral surface of a cylinder that has 

the current distributed uniformly over that surface, i.e., a current of strength k = i / l flows through 

the generating line in a unit of time, in which l means the length of the generator, i.e., the height 

of the cylinder. k is called the surface density of the electric current. 

 The electric moment of such a “cylindrical” dipole p = e l can be correspondingly put into the 

following form: 

p =  S l n = ip S n ,        (10) 

 

in which n = (1 / l) l is the exterior normal to the positive-charged cylinder surface S , and one 

has: 

ip =  l .         (10.a) 

 

The expression (10) for p is obviously identical to the usual expression for the magnetic moment 

of an elementary current with strength ip that circulates around the lateral surface of the cylinder 

(or the corresponding baseline). 

 On the other hand, we consider an actual “cylindrical current” of strength i, such that its electric 

moment m = i S n can be expressed in the form: 

 

m = k l S n = em l ,     (11) 

 

which corresponds to the usual expression for the electric moment of a dipole with length l and 

charge: 

em = k S .       (11.a) 
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 From the equivalence principle, one can identify the magnetic field of an elementary current 

with the electrostatic field of an elementary dipole. We will think of that 

“replacement dipole” as a cylindrical disc that is bounded by the current 

line  and whose (infinitely-small) thickness l is coupled with the surface 

density  m, of the electric charge that covers its two sides by the formula 

(10.a) or (Fig. 16): 

m l = i .  (10.b) 

 

 Conversely, if we consider the electric field E of an elementary dipole 

to be the magnetic field of an elementary current then it would be preferable to represent that 

“replacement current” in the form of an infinitely-thin cylindrical whose length coincides with the 

dipole length l and whose (infinitely-thin) cross-section S, with the surface density kp is coupled 

with the replacement current by the relation: 

 

kp S = e ,       (11.b) 

 

which corresponds to the formula (11.a) ( e are the “true” electric charges of the dipole in 

question). We will refer to a current of that 

form (Fig. 17) as a solenoidal current or 

solenoid. 

 We now imagine a non-elementary current 

line  and initially replace it with a network of 

elementary currents with the magnetic moment 

d m = i n dS, in which S means an arbitrary surface that is bounded by . Moreover, we can replace 

that elementary current with a “disc-shaped” electric dipole with the base surfaces dS  and dS  

that that arise from dS by displacing it in the direction of the negative (positive, resp.) normal n 

through a distance of l / 2. In that way, the surface density of the corresponding replacement 

charges will be determined by the relation (10.b). 

 We would like to assume that the length l is the same for all surface elements dS, for the sake 

of simplicity. The set of all “disc dipoles” that replace the current in question will then define an 

electric double layer of infinitely-small thickness l and infinitely-large charge density m = i / l 

that is bounded by . Outside of that double layer, the electric field E that it creates will coincide 

with the magnetic field H that is created by the current i. However, it should be clear that such a 

coincidence does not exist inside of the double layer. In order to determine the electric field inside 

of the double layer, i.e., between the surfaces S   and S , we next apply the formula (7) to a closed 

surface S that includes a small piece of one of the two layers (e.g., the negative layer) (Fig. 18). If 

we denote the part of S that lies between S   and S  and is parallel to those surfaces by s and the 

other (viz., external) part by s  then from (7), we will have: 

 

n nE ds E ds
 +   = − C1 m s . 

+ 

+ + 

+ + + 

+ + + 

+ + 

+ 

i 
m 

n 
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Since m (due to our assumption concerning l) is infinitely large, while the electric field strength 

E on s  is equal to the magnetic field strength H, and as a result, it must remain finite, we can 

keep the first term in the left-hand side of the equation above and set simply: 

 

nE ds  = − C1 m s . 

 

Due to the arbitrariness of s, it will then follow from this that: 

 

En = − C1 m . 

 

Moreover, it is easy to see that the electric field strength inside 

of the double layer must be parallel to the normal n. That is 

because in the opposite case, the line integral E d 
  would 

need to have a non-zero value for a closed curve    that lies 

partly inside and partly outside of the double layer, which would 

contradict the energy principle. 

 We will then reach the conclusion that inside of the double layer, the electric field strength E 

will be parallel to the normal n and equal to: 

 

E = − C1 m .      (12) 

 

 The negative sign in that formula means that for C1 > 0, the vector E points in the opposite 

direction to the normal. By contrast, for C1 < 0, it must point in the same direction as that normal. 

 Now let    be a closed line that encircles the current line  under consideration once, and as 

a result, it will go through the double layer that replaces it once. We shall denote the part of    

that is included in that layer by i   and the external part by a  . From the energy principle, we will 

then have: 

E d 
  = 

a a i id d      + E E  = 0 .        (12.a) 

 

 Moreover, from (12), we have: 

 

i id  E  = − 
m i id   n  = 1 mC l , 

 

in which the upper sign corresponds to the positive sense of traversal on    relative to , i.e., i n  

> 0 (Fig. 19), and the upper one corresponds to the negative sense. If we choose the positive sense 

of traversal on    then, from (12.a), we will have: 

 

Figure 18. 
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a ad  E  = − C1 m l . 

 

Now, one can replace m l with i on the right-hand side of that equation and replace E with H on 

the left. Moreover, since the integral 
i id  H  must vanish when the thickness l of the double 

layer is infinitely small, one can extend the integral over the entire line   . In that way, we will 

get the equation: 

H d 
  = C1 i , 

 

which will coincide with equation (9) that was exhibited above when C1 = C2. 

 
 One can also prove the equality of the coefficients C1 and C2 in the opposite way, i.e., one can 

replace a non-elementary electric dipole with a solenoidal current that is equivalent to it. 

 Namely, let  be any curve that goes from the negative end of the dipole ( )A  to the positive 

one ( )A  and along which we have a chain of elementary dipoles with the moments d p = e  d. 

If we regard that dipole as a cylindrical rod whose axis is defined by the corresponding line element 

d, and we replace it with a solenoidal current that flows through the lateral surface of that 

cylinder, then that will give a non-elementary current solenoid in the form of an infinitely-thin tube 

that connects the ends of the dipole with each other (Fig. 20). For the sake of simplicity, we would 

like to consider the cross-section of that tube S to be constant. If we then determine the (likewise 

constant) surface density of that replacement current (kp) by way of the relation (11.b) then the 

magnetic field H that it creates outside of the tube would coincide with the electric field of the 

dipole in question (1). 

 As far as the direction and magnitude of the magnetic field inside of the solenoid is concerned, 

one can determine it as follows: 

 
 (1) It is assumed in all of this that the direction of the current corresponds to the positive direction along the axis 

curve  (from A  to A ) in the sense of the right-hand screw rule.  

Figure 19. Figure 20. 
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 Let i + a be a closed line that runs partly inside of the tube parallel to its axis (i) and partly 

outside of it in an entirely-arbitrary way. From formula (9), which we will now consider to be the 

starting formula, we will get in our present case (when the direction of integration along i 

coincides with the positive direction of the curve ): 

 

i ai aH d H d  +   = C2 p i . 

  

Since H is equal to E outside of the solenoid, and as a result, it must remain finite (except in the 

close vicinity of the ends of the dipole), and since the current density kp = e / S is infinitely-large, 

moreover, the equation will reduce to 
i iH d   = C2 p i , or: 

 

i
H = C2 p , 

 

due to the arbitrariness in i . Now, if the vector H has components that are perpendicular to its 

axis () inside of the solenoid then the integral 
nH dS  will need to have a non-zero value for a 

surface (whose projection onto the plane of Fig. 20 will be suggested by the line i + a) that cuts 

the solenoid and runs parallel to its axis in its interior, but that would contradict the energy 

principle. 

 It would then follow from this that inside of the solenoid, the vector H points parallel to its 

axis for C2 > 0 or anti-parallel for C2 < 0 and has the constant magnitude: 

 

H = C2 kp .      (13) 

 

 We now consider a closed surface S  that includes one of the two ends of the solenoid, e.g., 

the one that corresponds to the positive end of the dipole. If we denote the external part of that 

surface by Sa and the internal one (that is cut out by the solenoid) by Si then according to the energy 

principle, we will have: 

i an i n aH dS H dS+   = 0 , 

 

or since 
in iH dS  = − C2 p S = − C2 e (observe that the exterior normal to Si points in the opposite 

direction to the axis curve ) and 
an aH dS  = 

an aE dS  = 
nE dS

 , one will have: 

 

nE dS
  = C2 e . 

 

That formula will coincide with the original formula (7) when one sets C2 = C1. 
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§5. – Determining the electric field from the charge distribution. 

 

 Let the charge e  be concentrated at a point P  . On the grounds of symmetry, it will follow 

that the field E that is created by that charge must possess radial symmetry about the point P   (1). 

In other words, on the surface of a sphere S whose center coincides with P  , E must have a 

constant magnitude and point in the same direction as the external or internal normal. If we apply 

the general formula 
nE dS  = C1 e to our present case then that will give: 

 

E = 
1

24

C e

R


, 

 

in which R means the radius of the sphere, i.e., the distance from the point in question P to P  . For 

1C e  > 0, the vector E points in the same direction as the radius vector P P  = R, whereas for 1C e  

< 0, it points from the point P to P  . 

 By definition, the electric field strength E is nothing but the force that is exerted upon a unit 

positive charge at the point in question (or would be exerted if that unit charge were actually found 

there). In agreement with experimental facts, we would like to assume that the direction of the 

field strength that is created by a positive charge corresponds to a force of repulsion (2). That means 

that the coefficient C1 is positive. However, its absolute value can be chosen quite arbitrarily. The 

magnitude of the electrical unit charge will be fixed by that quantity. Ordinarily, one sets: 

 

C1 = 4 , 

and as a result: 

E = 
3

e

R


R  = 

02

e

R


R ,         (14) 

 

in which R0 = (1 / R) R means the unit vector that points in the direction P P . 

 The force of interaction between two point charges e  and e that are found at a distance R 

from each other is correspondingly expressed by the well-known Coulomb formula: 

 

f = 
2

e e

R


,         (14.a) 

 

in which the case f > 0 corresponds to a mutual repulsion and the case f corresponds to an attraction. 

 
 (1) That symmetry principle means the equal justification of relativity of the various directions in space. If the 

electric field of e  were not symmetric relative to P  then one could not consider the various directions to be 

equivalent. 

 (2) I. e, that charges of the same type mutually repel each other. 
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 In theoretical investigations, one often sets C1 = C2 = 1, following H. A. Lorentz. In that way, 

other so-called “rational” units are introduced in place of the usual electrostatic and electrokinetic 

units. In what follows, we shall employ the usual units (C1 = C2 = 4) exclusively. 

 Let O be an arbitrary fixed point, and let OP  = r, OP = r be the radius vectors from the points 

P   and P relative to O. The radius vectors P P  = R, can obviously be represented as the geometric 

difference between r and r: 

R = r − r .              (15) 

 

When differentiating R or any function of R, either of the vectors r and r can play the role of 

the argument, while the other one can be regarded as a constant parameter. If we consider the 

“source point” P   (i.e., the vector r) to be fixed and the “reference point” P, i.e., the vector r, to 

be variable then we will get “reference-point derivatives,” which we will generally denote by the 

symbol  (grad, div, rot). In order to notate the corresponds “source-point derivatives” (r variable, 

r = const.), we will use primed symbols  (grad, div, rot). Obviously, we will have the relation: 

 

 = −          (15.a) 

 

for any function of R and each type of differentiation. The vector 
3(1/ )R R  is equal to the 

“reference-point gradient” of the function 3

1 1 1
grad

R R R

 
= − 

 
R , as is easy to see. From (14), it 

will then follow that E = − grad , where: 

 = 
e

R


.             (16) 

 

That will be the usual expression for the electric potential of a point charge when one adds the 

“boundary condition” that the potential should vanish at an infinite distance (R = ). 

 The product of  and the quantity e at a point P where charge is concentrated is equal to the 

mutual potential energy of the two charges: 

U = 
e e

R


.          (16.a) 

 

 The negative gradient of that quantity relative to r or r then represents the force that acts on e 

as a result of e  (on e  as a result of e, resp.). From (15.a), those forces are opposite in direction 

and have a magnitude of 
2/e e R . 

 When several charges 1e , 2e , … are present at the points 1P  , 2P  , …, the resultant electric 

field strength E at the reference point P in question is equal to the geometric sum of the vectors 
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Ek = 3

k
k

k

e

R


R  (Rk = kP P ), and the resultant potential of the algebraic sum of the corresponding 

potentials k = /k ke R . If one then imagines replacing the isolated points charges with a continuous 

spatial distribution of electricity and denotes the charge de  that the volume element dV   is 

endowed with then that will give the following integral expressions for E and  : 

 

E = 
3

dV
R


 R ,     (17) 

 = dV
R


 .              (17.a) 

 

While integrating, r is considered to be a constant parameter, and   is regarded as a given 

function of the vector argument r. The integration shall extend over all of space. Clearly, the 

locations where   = 0 will then remain irrelevant to that process. One can easily verify that the 

integral (17) is equal to minus the gradient of the integral (17.a) with respect to r. That follows 

from the fact that differentiating with respect to the vector r can be performed under the integral 

sign, just like the usual differentiation of an integral with respect to a scalar parameter. 

 The formula (17.a) obviously represents the solution of the differential equation (8), namely, 

2 = − 4  . In fact, one can get it by the direct integration of that equation while considering 

the boundary conditions. 

 We next suppose that the charge density  vanishes everywhere except for a certain point P  . 

The potential  at a point P can obviously depend upon only the distance   = R, i.e., it must be a 

function of the magnitude of the vector R, but not its direction. Since grad  (R) = 
1d

dR R


R

[Introduction, (28)], we will have: 

 

2 = div grad  = 
1 1

 div  grad 
d d

dR R R dR

  
+  

 
R R  = 

3 1
    

d d d
R

R dR dR R dR

  
+  

 
, 

or: 

2 = 

2

2

1 ( )d R

R dR


.           (18) 

If one sets: 
2

2

( )d R

dR


 = 0      (18.a) 

 

at all points, with the possible exception of P   (R = 0) then it will follow from integrating twice 

that R  = A R + B, i.e.: 
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 = A + 
B

R
.      (18.b) 

 

The first of the two integration constants is determined from the boundary condition  = 0 for R = 

 (A = 0), while the second one is determined from a condition of the form grad  n dS  = 4 e 

, where e  means the charge that is concentrated at P  , and S is an arbitrary (i.e., infinitely small) 

surface that encloses that charge. Clearly, one will have B = e  in that way. 

 If the point P is found at a sufficient distance from P   then one can replace the latter with an 

infinitely-small volume with the finite charge density  . Due to the linear character of the 

equation 2 = − 4 , that will give its complete solution in the form of the sum of elementary 

solutions (18.b) that originate in the individual elementary charges B = de  =  dV  , i.e., in the 

form of the integral (17.a). In that way, it is assumed that the point P is found “in empty space,” 

i.e., outside of the charged volume. However, one can easily show that this assumption is 

inessential for electric charges with finite volume densities. Namely, let v be an infinitely-small 

volume that includes the “reference point” P in question. If the electric charge density  is finite 

in v then the contribution of all of the charge  v that is contained in v to the potential  at P must 

have order of magnitude 3/v v  = 2/3v , so it will vanish in the limit as v → 0.  

 One will get the same result in the case where the electric charge is distributed with finite 

surface density  on a surface that goes through P (1) since in that way the contribution to the 

potential  at a point of a surface element s that originates in that element will have order of 

magnitude /s s  = s → 0. However, for a distribution of electricity with finite line density, the 

assumption above (viz., that P is in empty space) will be essential. The potential of a charged line 

at the points of the line does not have a well-defined finite value, just like the potential of a point 

charge at the source point. 

 If the charge distribution in question is restricted to a spatial region of finite extent then one 

can treat the total charge e  = dV   as a point charge at infinitely-distant reference points, and 

approximate its potential by the formula /e R . Therefore, the condition that was posed above (§ 

2) for the vanishing of a “charge-free” electric field will be fulfilled. At the same time, that will 

provide the proof that equation (17.a) represents the only solution to the equation 2 = − 4  for 

all of space that vanishes like /e R  at infinity because one could get any other solution from it by 

merely adding a “charge-free” field. 

 

 

§ 6. – Determining the magnetic field from the current distribution. 

 

 The magnetic field that is created by a stationary electrical current of finite spatial density j 

can be determined from the equations: 

 
 (1) The potential is expressed by the surface integral  = ( / )R dS   in that case. 
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H = rot A , 2 A = − 4 j , div A = 0 . 

 

 We first consider the second of those equations. Due to its complete analogy with the equation 

2  = − 4  for the scalar potential, one can immediately write down its solution in the form 

(17.a), in which  must be replaced with A, and   (viz., the electric charge density) must be 

replaced by the electric current density j (at the point r). 

 However, in order for the expression that is obtained by that: 

 

A = 
1

dV
R

  j      (19) 

 

to represent the desired vector potential of the electrical current considered, it must satisfy the 

condition div A = 0. Now, it is easy to see that this condition is actually fulfilled. Since “div” 

means a differentiation relative to r, and j is a function of the vector r, we will initially have: 

 

div A = 
1

div dV
R

 
  

 
 j  = 

1
grad dV

R
  j . 

 

Moreover, from (15.a), one will have: 

 

j grad 
1

R
= − j grad 

1

R
= − div 

1

R

 
 

 
j  + div

1

R
div j, 

and as a result: 

div A = − 
1 1

div  divdV dV
R R

 
     + 
 

 j j . 

 

 The divergence of j must vanish in the case considered of a stationary electrical current. If the 

spatial region that it streams through is bounded by a surface S   then the vector j, or at least, its 

normal component n
j , must also vanish on that surface. One will then have: 

 

div A = − 
1

div  dV
R

 
   
 

 j  = −
1

n dS
R


  j = 0 . 

 

 We can now calculate the magnetic field strength from (19). Namely, we have: 

 

H = rot A = 
1

rot dV
R

 
  

 
 j  = − 

1
grad dV

R

 
   

 
 j , 



82 Chapter Three – The Structure of Electric and Magnetic Fields. 

 

i.e.: 

H = 
3

1
dV

R
  j R  = 

02

1
dV

R
  j R ,    (19.a) 

 

which is entirely-analogous to the formula (17). 

 The product dV j  represents the electrical impulse of the charges that are found in the volume 

element dV  . In the case of a linear current, as is known, one must replace dV j  with i d  

(where i  means the current strength, while d  means the element of the current line in question). 

In that way, formulas (19) and (19.a) will assume the following form: 

 

A = 
1

i d
R

    ,       (20) 

H = 
02

1
i d

R
   R .    (20.a) 

 

It should be noted that the formula (19) [and as a result, (19.a), as well], or the corresponding 

formula for the surface distribution of electric current, will also remain valid for reference points 

that are found inside of the volume or surface that it flows through (assuming that the spatial or 

surface density, resp., of the current has a finite value), just like in the case of the scalar potential. 

By contrast, formulas (20) and (20.a) are valid for only “external” points, i.e., ones that lie outside 

of the current line. 

 From formula (13) in the previous chapter, one can represent the mutual potential energy of 

two linear currents in the form of a double integral: 

 

Um = − 
1

( )i i d d
R

        = − 
cos

i i d d
R


     ,      (20.b) 

 

in which  means the angle between the line elements d  and d. The symmetry in that formula 

relative to the primed and unprimed quantities corresponds to the fact that the potential energy of 

 relative to    (viz., Um) is identical to the energy mU   of    relative to . One will then have: 

 

Um = − 
ni H dS  = − 

ni H dS
    = mU   .           (20.c) 

 

The elements in the integrals (20) and (20.a), i.e., the vectors 
i

d
R




   and 
02

i
d

R



 R , resp., 

are obviously to be regarded as the infinitely-small potential (d A) and the infinitely-small 

magnetic field strength (d H) that originate in the current element i d   . In that way, we will get 

the well-known Biot-Savart law: 

d H = 
02

i
d

R



 R .           (21) 
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One ordinarily considers that law, which we have derived theoretically on the basis of the energy 

and equivalence principle at the same time as its electrostatic analogue, namely, Coulomb’s law, to 

be a basic experimentally-established fact. 

 If one considers a current element with a charge e  that moves with a velocity of v, so it 

possesses an electric impulse ( / )e c v , then that will give the following expressions for the vector 

potential and strength of the magnetic field: 

 

A = 
e

c R


v  =  

c


v ,              (22) 

H = 02

e

c R


v R  =  

1

c
v E ,          (22.a) 

 

in which  means the scalar (electrostatic) potential, and E means the electric field strength at the 

reference point in question that originates in the same charge. 

 The expression (20.b) for the mutual potential energy of two current lines is obviously equal 

to the sum of the corresponding expressions for the various charge-pairs: 

 

um = − 
1 e e

R c c

 
  

 
v v  = − ( )2

1
u

c
 v v ,          (23) 

 

where u = /e e R means the mutual energy of the charges in question. One can correspondingly 

consider the quantity um to be their mutual magnetic energy. 

 However, that interpretation proves to be incorrect, as was already discussed above (Chap. II, 

§ 6). Namely, the motion of an isolated charge creates a magnetic field that changes in time at any 

fixed reference point, while all of our arguments that were concerned with the energy principle, 

referred to time-constant fields. We can already see the breakdown of the energy principle for 

isolated moving charges from the non-vanishing of the divergence of (22), and indeed we will 

have: 

div 
e

c R

 
 

 
v  = 

1
grad 

e

c R


v  = − 02

e

c R
v R  . 

 

However, that breakdown will emerge clearly when we calculate the forces that the two charges 

exert upon each other from (23). From the formulas: 

 

  f = − grad um = + grad um = − f , 

we will get: 

f = − f = − 
02 2

ee

R c

 vv
R  .        (23.a) 

 

In reality, the force that acts on e as a result of e  is equal to: 
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f = 
e

c
v  H =  02

1e e

c c R

 
  

 
v v R  , 

i.e.: 

f = 
0 02 2

1
( ) ( ) ]

ee

R c


 −[ vR v vv R  ,        (23.b) 

 

and the force on e  as a result of e will be: 

 

f = − 
0 02 2

1
( ) ( ) ]

ee

R c


 −[ v R v vv R  ,       (23.c) 

correspondingly. 

 Those forces do not satisfy the principle of the equality of action and reaction then (which can 

be regarded as an immediate consequence of the energy principle. They will be equal and opposite 

only the case where the velocities v and v are equal to each other or when they are perpendicular 

to the connecting line R. 

 When those two conditions are fulfilled at the same time, formulas (23.b) and (23.c) will reduce 

to (23.a), and we will get: 

f = − f = − 

2

02 2

ee v

R c


R  . 

 

 In this case, the electromagnetic (or “electrokinetic”) forces that are generated by the motion 

of the charges have the opposite direction to the corresponding electrostatic ones and are equal to 

the product of the latter with the ratio 2 2/v c . We then see that two charges (e.g., electrons) that 

move with the same velocity v perpendicular to their connecting line will exert a total force on 

each other of: 
2

2 2
1

ee v

R c

  
− 

 
 

 

that one can interpret as a “weakened” electrostatic force. That total force must vanish for v = c, 

i.e., the electrostatic and electrokinetic forces must mutually compensate each other. 

 That result shows that the quantity c, which was initially introduced in connection with the 

equivalence principle as the ratio of the electrostatic unit to the electromagnetic one, has the 

meaning of a certain “critical” velocity. The actual determination of the ratio above shows that c 

= 3  1010 cm / s = 300,000 km per second. The “critical velocity” then agrees precisely with the 

speed of light. Of course, that agreement is no coincidence. Rather, it relates to the electromagnetic 

nature of light phenomena, on the one hand, and the finite speed of propagation of electromagnetic 

effects, on the other. We will deal with that question in the next part of this book. Here, we shall 

mention only the fact that the formulas above can be regarded as only approximate formulas for 

isolated charges that overlook the time variation of the fields that they create and have meaning 

for only small velocities (v / c  1). 
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§ 7. – The graphical representation of electric and magnetic fields. 

 

 The lines that represent the direction and density of the electric field graphically will be called 

“lines of electric force.” Correspondingly, the lines that represent the magnetic field are called 

“lines of magnetic force.” 

 
 It will follow from the vortex-free character of the electric field, i.e., from the fact that the 

condition rot E = 0 is fulfilled in all of space, that the lines of electric force are not closed lines. 

(For a closed line, the integral E d   =  rotn E dS would have a non-zero value.) For that reason, 

they must begin and end at some sort of point. The number of electric force lines that emanate 

from a volume V or converge inside of it is proportional to the electric flux through the outer 

surface S that bounds that volume, i.e., the integral E d  . (The lines of force that go through V 

will not contribute to that integral.) It follows from the equation E d   = 4 e or its equivalent 

equation div E = 4  that the source points of the electric lines of force will coincide with positive 

charges and the sinks will coincide with the negative charges, and that the number of lines that 

“diverge” from a charge (“converge” to it, resp.) will be proportional to the magnitude e of the 

charge. In “empty space,” the electric lines of force can neither begin nor end. 

 In practice, the electric field in the immediate neighborhood of a point charge is determined by 

that charge exclusively and is independent of other distant charges. We must then find the same 

line-like picture of the force lines here that we had in the case of an “isolated” point charge. The 

force lines will define a “line bundle” that is uniform in all directions. However, at some distance 

from e, they will become curved according to the configuration of the other charges. Opposite 

charges with the same absolute value will correspond to the same number of diverging 

(converging, resp.) lines. Therefore, in the case of a dipole, the force lines that emanate from the 

positive end must all come together at the negative end (Fig. 21). In that case (just like in the 

Figure 21. 
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general case of an arbitrary neutral system of electric charges), the electric lines of force will 

remain “inside” of that system, so to speak; none of them will go to infinity. When the total charge 

of the system is non-zero, a number of lines of force that correspond to that resultant charge must 

go to infinity (or come in from it), and indeed in the same radially-symmetric way as if the system 

considered were converging to a point charge. In fact, such cases cannot occur since matter is 

neutral on the whole. 

 Along with the lines of force, in order to make the electric field more intuitive, one can consider 

the “equipotential” or “level surfaces” that are orthogonal to those lines, i.e., the surfaces  = const. 

The distance between two such surfaces that correspond to two slightly-different values of the 

potential  is obviously inversely proportional to the electric field strengths at the points in 

question (due to the relation E = −  / n, where n means the length of the normal that is included 

between the two surfaces). In the vicinity of the individual point-charges, the level surfaces will 

be spherical. They can deform arbitrarily as the distance increases according to the configuration 

of the other charges. 

 In contrast to the electric lines of force, the magnetic lines of force must always be closed. That 

follows immediately from the source-free character of the magnetic field, i.e., the validity of the 

equation div H = 0 for all of space. The magnetic lines of 

force can possibly go from infinity to infinity, i.e., they can 

close at a “point at infinity.” One does not need to consider 

that case in detail then. Moreover, it follows from the 

relations H d   = 4 i or rot H = 4 j that in the case of a 

stationary electric current the magnetic lines of force will 

always enclose the current lines, which are also closed 

curves, due to the fact that div j = 0. That is because 

otherwise the integral would have a non-zero value along a 

closed line of force that does not enclose any current line, 

while the strength of the current i that flows through those lines would be equal to zero.  In other 

words: One can consider the current lines to be the “vortex axes” of the magnetic lines of force, 

i.e., as annular axes that will be enclosed by the lines of force, say, like the way that a link in a 

chain is enclosed by the neighboring links. 

 In the immediate neighborhood of an element   of a current line   , i.e., at a distance from 

  that is very small in comparison to the length of the element, and at the same time, to its 

radius of curvature, one can treat the element as a “rectilinear vortex axis.” It follows on grounds 

of symmetry that the magnetic lines of force must be circular here. We will then get a family of 

coaxial circles as the graphic representation of the magnetic field. That cylindrical symmetry of 

the magnetic field in the neighborhood of a current element corresponds to the spherical symmetry 

of the electric field in the neighborhood of a point charge. 

 The integral H d   is obviously equal to 2 r H for such a circular line of force with a radius 

of r. (The direction of integral must then correspond to the direction of the current in the sense of 

the right-hand screw rule.) It follows from this that 2 r H = 4 i  , in which i  means the current 

strength, i.e.: 

Figure 22. 
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H = 
2i

r


.      (24) 

 

The magnetic field strength in the immediate neighborhood of a current line is therefore inversely 

proportional to the first power of the distance. One can consider that rule to be the analogue of the 

Coulomb law for current lines (into which the stationary currents can be decomposed). The motion 

of isolated charges (i.e., electrons) does not represent a stationary process, and the law of Biot-

Savart, which determines the magnetic field of such 

charges (or current elements) with no concern for its 

time variation, can therefore be regarded as only an 

approximate law. However, insofar as those current 

elements will be combined into a stationary linear 

current, the geometric sum of their Biot-Savart field 

strengths will be equal to precisely the resultant (time-

constant) field strengths. 

 The formula (24) can be derived from the Biot-

Savart formula (21) for an infinitely-long (compared to 

r) rectilinear current (Fig. 23). Let PO be the altitude 

from the reference point P to the current line MN such 

that we will have OP = r, OP  = r, P P  = R, with our usual notations. From (21), the field 

strength that is created by the current element d  is: 

 

dH = 
2

sin
i d

R


  , 

 

in which  means the angle P P N . Since the direction of d H is the same for all current elements 

(at the point in question, it is perpendicular to the plane of the page that the reader is viewing), the 

geometric integration reduces to the usual one: H =  dH . Since R = r / sin  and r  = − r cot , 

we will have: 

d  = dr  = − 
2sin

r
d


, dH = sin

i
d

r
 


, 

and as a result: 

H = 
0

sin
i

d
r



 

  = 

2i

r


, 

which agrees with (24). 

 The magnetic field considered corresponds to a vector potential of the following form: 

 

A = − 2 ln
r

a
i = 2 ln

a

r
i ,        (24.a) 

 

N 

N 

P 

r 
R 

 i  

dr P   O M 

Figure 23. 
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in which i means a vector whose magnitude and direction agree with the current strength, r means 

the distance from the reference point to the current line (but not from a well-defined point on it), 

and a means an arbitrary constant with the dimension of length. In fact, according to the general 

formula H = rot A, (24.a) will imply that: 

 

H = − 2 i  grad ln
a

r
 = 2 i  

2

1

r
r  = 

0

2

r
i r  . 

 

That vector obviously represents the “cylindrical” field that was considered above. As far as the 

lines that represent the vector potential are concerned, they are the lines parallel to the cylinder 

axis. One sees from this that in the immediate neighborhood of a current line of entirely-arbitrary 

form, the “vector potential lines” define a “thread” that is parallel to it. However, in general, they 

are not suitable for an intuitive representation of the magnetic field. 

 

 

§ 8. – The fields and interactions of elementary dipoles and currents. 

 

 The electrostatic (“scalar”) potential  of an arbitrary dipole 1 2P P   at a reference point P is 

obviously equal to the sum of the potentials of its two ends. If one denotes the corresponding 

charges by e1 = − e  and e2 = + e  and further sets 1P P  = R1, 2P P  = R2 then one will have: 

 

 = 1 + 2 = 
2 1

1 1
e

R R

 
 − 
 

 . 

 

In the case of an elementary dipole whose length 1 2P P   = l is very small compared to the distance 

R1 and R2 one will then have 
2 1

1 1

R R
− = l grad 

1

R
, approximately, and as a result: 

 = p grad 
1

R
 = − p grad 

1

R
,    (25) 

 

in which p = e l  means the electric moment of the dipole, and R means its distance to the 

reference point. Since we have introduced that distance, we must treat the two ends of the dipole 

as a “double point” P   (= 1 2P P ). One also calls such a double point a “double source” of the electric 

field. 

 The differentiations that are suggested by the symbols grad and grad refer to the vectors r = 

OP  and r = OP, in the usual way, where O is an arbitrary fixed point in space (R = r – r). If one 

performs those differentiations then that will give: 
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 = 
3R

p R
 = 0

2R

p R
 = 

2

cosp

R


,    (25.a) 

 

in which  means the angle between p and R (R0 = R / R). 

 From formulas (30) and (31) (Introduction), one further finds that: 

 

E = − grad  = − 
3 5

1 3
( )

R R
 +p p R R , 

i.e.: 

E = 
0 03

1
{3( ) }

R
 −R p R p = 3 2

1 3
( )

R R

 
 − 

 
R p R p .       (26) 

 

One can see from that formula that the electric field strength lies in the plane p, R at the point P. 

Upon inner and outer multiplication of (26) by R0, one will get the radial and azimuthal 

components of the vector E (the latter is in the direction of increase of the angle ): 

 

ER = 
3

2
cos

p

R



,     (26.a) 

E = 
3

sin
p

R



.      (26.b) 

 

The ratio E / ER = 
1
2 tan  is obviously equal to the tangent of the angle between E and R. 

 If one replaces E with H and p with m in formulas (26), (26.a), and (26.b) then according to 

the equivalence principle, they will determine the magnetic field that is created by an elementary 

current with a magnetic moment of m. One can then consider the corresponding field strength H 

to be the (negative) gradient of a scalar magnetic potential: 

 

m = 0

2R

m R
 = − m grad 

1

R
 . 

 

On the other hand, that field strength can be represented in the general form H = rot A, where A 

means the vector potential of the elementary current considered. In order to determine that vector 

potential, one can start from the fact that the differential equation: 

 

rot A = − grad m = grad 
1

grad 
R

 
 

 
m  
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must be satisfied in all of space, with the exclusion of the point P   (where the current is thought 

to be concentrated). When one recalls the formulas (26) and (27) (Introduction), due to the 

constancy of m, one will have: 

 

rot 
1

grad 
R

 
 

 
m  = − (m grad) grad 

1

R
 + m div grad 

1

R
, 

 

grad 
1

grad 
R

 
 

 
m  = (m grad) grad 

1

R
 + m  rot grad 

1

R
. 

 

Now, since the expressions rot grad (1 / R) and div grad (1 / R) = 2 (1 / R) both vanish (the first 

one identically, and the second one, everywhere outside of the point P  ), one will have: 

 

rot 
1

grad 
R

 
 

 
m  = − grad 

1
grad 

R

 
 

 
m  . 

 

A comparison of that equation with the differential equation for A above will give: 

 

A = − m  grad 
1

R
 = 

3

1

R
m  R = 

2

1

R
m  R0 .       (27) 

 

We next observe that d    = d r . Moreover, since the vector grad (1 / r) remains constant (= k) 

during the integration, we will have: 

 

( ) ( )d d   + r r k r r k  = { ( )}d   r r k  = 0 . 

That will give: 

 

( )d   r r k  = − ( )d  r r k  = { ( ) ( )}d d   − r r k r r k  = 1
2

( )d    k r r  = 1
2

d   k r r , 

 

i.e., from (6.a), Chap. II: 

 

A = − ( )i d   r r k  = 
1 1

grad
2

i d
r

     r  = grad 
1

r
  m, 

 

in agreement with (27) (1). 

 

 (1) One can arrive at this formula even more simply by means of the identity d     =  grad  dS  n

[see Introduction, formula (17.a)]. Namely, if one sets  = 1 / R then if    is very small compared to R, that will give: 
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 We now propose that a second elementary dipole (or current) with a moment of p (m, resp.) is 

found at the reference point P. From (26), its potential energy relative to the first dipole U = −pE

can be written in the form: 

 

U = 
3

1

R
{(p p) – 3 (R0 p) (R0 p)} = 3 2

1 3
( )( )

R R

 
 − 

 
pp R p R p , (28) 

 

whose symmetry in regard to p and p corresponds to the equality of the energy of each dipole 

relative to the other one. We will then have U = −pE  =  −p E , in which E means the field 

strength that is created by the second dipole at the point P  . For that reason, we can refer to the 

quantity U as simply the mutual potential energy of the dipoles considered. 

 The moment that acts upon the second dipole can be calculated immediately by using the 

formula M = p  E, and indeed, one will have: 

 

M = 
3

1

R
{3 (p R0) (p  R0) + p  p} .      (28.a) 

 

 The corresponding force is expressed by F = (p grad) E or F = − grad U. If we substitute the 

last formula in the expression (28) then that will give, after a simple calculation: 

 

F = 
5

3

R
(p p) R + 

5

3

R
(R p) p + 

5

3

R
(R p) p – 

7

15

R
(R p) (R p) R 

or 

F = 
4

3

R
{[p p − 5 (R0 p) (R0 p)] R0 + (R0 p) p + (R0 p) p}.        (28.b) 

 

If one replaces the vector R in (28.a) with the opposite vector R = P P = r – r = − R ( 0
R  = 

0−R ) then one will get the moment M and the force F that the second dipole exerts on the first 

one. In that way, one will have M = − M and F = − F, in agreement with the principle of the 

equality of “action and reaction,” which is a direct consequence of the energy principle (1). 

 The same result will be obtained for the interaction of the elementary currents. We would need 

only to replace the electric moments p and p with the magnetic ones m and m in the formulas 

that were just derived. 

 
1 1 1

 grad  grad grad .i d i dS i dS
R R R R





     =    =   n n m  

 (1) It should be noted that according to (28.a) and (28.b), the torque is inversely proportional to the third power of 

the mutual distance, and the force is inversely proportional to the fourth power.  
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 Those formulas will also remain valid, in a certain sense, when one considers isolated 

magnetons instead of the elementary currents, i.e., isolated electrons that orbit around a certain 

center. From (6.a) and (6.b), Chap. II, the magnetic moment of such a magneton is equal to: 

 

m = 
1

2

e

c
 r  v,     (29) 

 

in which r means the radius vector of the path, and v = d r / dt means its velocity. The magnitude 

of the vector 
1
2 r  v is equal to the areal velocity of the electron, i.e., the area that is described by 

the radius vector per unit time. If the motion of the electron takes place under the action of a force 

of attraction that points to the center of the atom O then that areal velocity must remain constant, 

just like the orbital plane. In that case (m = const.), the “magneton” will be completely equivalent 

to a stationary elementary current. One must only understand A, H, etc., to mean the temporal 

means of the corresponding quantities for one or more orbits of the electron in question and leave 

the fluctuations that appear during an orbit out of consideration (cf., Chap. VII, § 9). 

 

 

§ 9. – The scalar potential of a non-elementary linear current. 

 

 The concept of a scalar magnetic potential that we applied to elementary currents above can 

be adapted to non-elementary linear currents. In order to do that, we must first replace the current 

considered ( , )i    with a network of elementary currents. From (25.a), the scalar potential of an 

elementary current with the magnetic moment d m = i dS  n  is equal to: 

 

dm = 
2

cos
i dS

R


  . 

 

The  in that means the angle between the normal n and the radius R that is drawn from dS  to 

the reference point P. The product cos  dSis then equal to the projection of the surface element 

dS  onto a spherical surface with center P that cuts that surface element. The ratio 
2

cos
dS

R


 is 

then nothing but the solid angle d  that dS  subtends at P. As a result, upon integrating, we will 

get: 

m = i  .      (30) 

 

It should be remarked that the sign of d  will be positive (negative, resp.) according to whether 

the corresponding surface element is seen from the positive or negative side, resp. 
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 One can define  independently of the form of the surface S   to be the solid angle that is 

defined by a cone of rays that go from P through the current line   . However, one must observe 

that such a cone actually bounds two complementary solid angles, namely,  and 4 − . In order 

to determine the potential (30), both angles 

must be used, according to whether the surface 

S   lies on one side of the reference point P or 

the other, but with opposite signs. If one then 

replaces the surface S   with another one S  

(Fig. 24) then one must replace the angle  > 

2 with  = (4 ) − −  =  − 4 . That rule 

will also remain valid when one shifts the 

reference point P from one side of a given 

surface S   to the other. Under a shift from the 

negative to the positive,  will jump by an 

amount 4. That corresponds to jump in the 

potential m by 4 i  . If one would like to treat that potential as a continuous quantity then one 

would have to imagine that the transition through the surface S   is obstructed. One would then go 

from the positive side to the negative one only by the detour of an “almost”-closed line  that 

actually surrounds the current line once. Since one would then have: 

 

H d = − grad m d = − d








 = − d , 

 

it would follow that  H d =  d = 4 i  . We have already obtained that result in § 3, and 

especially in § 4, when we considered the electric field of the corresponding electric double layer 

instead of the magnetic field of the current in question. The “discontinuity surface” that was 

introduced above will then be nothing but the “double surface” of that layer. 

 From the formula (12), the electric field strength inside of such a double layer is equal to 4  

(where  means the surface density of the electric charge) and points from the positive to the 

negative side. From (30), the electric field outside of the double layer is obtained from the scalar 

potential: 

 = ei  ,      (30.a) 

 

in which ei  =  l is the electric moment per unit area of the layer. 

 An electric double layer does not need to be bounded by a closed curve   . It can also be 

closed, i.e., it can be defined by two closed surfaces with opposite charges, one of which is inside 

the other. Obviously, one can consider that case to be a limiting case of a vanishing boundary curve 

for a non-vanishing surface S  . It follows immediately from this that the electric field strength 

must vanish outside of the closed double layer. As far as the potential  is concerned, it will be 

equal to zero externally and equal to the constant quantity  4 i internally. The upper sign is valid 

 

 > 2 

S   

P    

S  

 =  − 4 

 
Figure 24. 



94 Chapter Three – The Structure of Electric and Magnetic Fields. 

 

for the case in which the internal surface is positive charged, while the negative sign is valid in the 

opposite case. 

 

 

§ 10. – Electric and magnetic polarization and polarization potentials. 

 

 One can imagine that a neutral system of electric charges that is found in a bounded volume is 

replaced (and indeed in an infinitude of ways, in general) with an equivalent system of electric 

dipoles that also fill up that volume. For the sake of simplicity, we would like to assume that the 

electric charges are distributed continuously in the volume considered V and on the outer surface 

S that bounds it with a density of  (, resp.). The electric moment must be correspondingly 

distributed in the equivalent system of dipoles. The volume density of that moment is called the 

electric polarization. If one denotes it by P then the product P dV will mean the resultant moment 

of the elementary dipoles that are found in the volume element dV. 

 We would now like to exhibit the relationship between  and P. We can do that in two ways, 

namely, first of all, by comparing the effect that a given external field (E) exerts on the two 

systems, and secondly by comparing the fields (E) that they create outside of V. We will denote 

the actual system by C and the replacement (i.e., dipole) system by D. 

 The potential energy of C relative to the external field is expressed by the formula: 

 

U = dV dS    +  , 

 

in which   is the potential of that field. On the other hand, we will have: 

 

U = − dVE P  

 

for the potential of D. If we substitute E = − grad  in that then from the identity: 

 

div   P =   div P + P grad  , 

we will have: 

U = div ( ) div dV dV  − P P  = div nP dS dV  −  P . 

 

In order for C and D to actually be equivalent, the following relations must then exist: 

 

 = − div P ,               (31) 

 =    Pn .            (31.a) 
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We would now like to verify whether the fields that are created by C and D will also become 

equivalent in that way. The volume element dV   (with radius vector r), when considered to be a 

dipole with a moment of P dV  , will create the potential P dV   grad (1 / R) at a reference point 

with the radius vector r, where R = r − r. The complete potential of D is expressed by the integral: 

 

 = 
1

grad dV
R

  P . 

By means of the identity: 

div  
R

 
  
 

P
 = 

1 1
div  grad  

R R
   +P P , 

 

that integral can be represented in the form: 

 

 = 
div nP

dS dV
R R

 
 − 

P
. 

 

However, from (31) and (31.a), that is nothing but the potential of C : 

 

 = 
dS dV

R R

   
+  . 

 

If one further replaces grad (1 / R) with – grad (1 / R) then since P depends upon only r, but not 

upon r, one will have: 

p grad 
1

R
 = − p grad 

1

R
 = − div 

R

P
, 

and as a result: 

 = − div dV
R




P
 = − div dV

R




P
. 

 

We would like to call the vector: 

Z = dV
R




P
      (32) 

 

the electric polarization potential (it is usually called the Hertz vector). The scalar potential  is 

expressed in terms of Z in the same way that  is expressed in terms of P, namely: 

 

 = − div Z .              (32.a) 

 

The polarization potential of an elementary dipole with the moment p is obviously equal to: 
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Z = 
R

p
.            (32.b) 

 

Entirely analogous considerations and formulas can be applied to a system of stationary currents. 

If one replaces  with j (viz., the current density on the surface S) in the foregoing argument and 

replaces  and k (i.e., the current density on the surface S) then that will give: 

 

U = − dV dS  −  A j A k  

 

for the potential energy of the system in question in an external magnetic field H with the vector 

potential A. We now introduce a replacement system D that consists of elementary magnetic 

dipoles that are distributed continuously over the volume V. We denote the “magnetic 

polarization,” i.e., the magnetic moment per unit volume, by M. The potential energy of D must 

then be expressed by the formula: 

U = − ( ) dV H M . 

 By means of the identity: 

 

div (A  M) = M rot A − A rot M 

 

[Introduction, formula (25)], and since rot A = H, we will get: 

 

− ( )dV  H M = − div( ) rot dV dV  − A M A M , 

i.e.: 

U = − rot ( )ndV dS −  A M A M . 

 

 The equivalence of C and D is then guaranteed by the conditions: 

 

j = rot M              (33) 

and 

k = M  n.            (33.a) 

 

[The last formula is obtained when one recalls the identity (A  M)  n = A  (M  n).] 

 The vector potential of an elementary current (or magnetic dipole) with a moment of dV M  

is equal to 
1

graddV
R

  M . As a result, the magnetic field of our replacement system (outside S) 

is determined by the formula: 
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A = 
1

grad dV
R

  M .            (34) 

 

That formula can be easily transformed into the form: 

 

A = 
rot 

dS dV
R R

 
 + 

M n M
,      (34.a) 

 

which coincides with the corresponding formula for the system of currents C, due to (33) and 

(33.a). One can write the expression (34) for A as follows: 

 

A = −
1

grad dV
R

  M  = 
rot 

dV
R




M
 = rot dV

R




M
. 

 

If one defines the vector: 

Z = dV
R




M
            (35) 

 

to be the magnetic polarization potential of the system of currents in question then one can 

determine the ordinary vector potential from that by a formula that is completely analogous to 

(33): 

A = rot Z.           (35.a) 

 

The polarization potentials Z and Z obviously satisfy the differential equations: 

 

2 Z = − 4 P ,      (36) 

2 Z = − 4 M .               (36.a) 

 

It should be pointed out that despite the similarity of the formulas: 

 

 = − div P  and j = rot M 

 

with the corresponding field equations: 

 

div E = 4   (rot H = 4 j, resp.), 

 

the field strengths E and H are generally completely different from the vectors − 4 P and 4 M.  

Namely, one must observe that the latter vanishes outside of the surface S, while the former does 

not. Moreover, E and H satisfy the “energy equations” rot E = 0 and div H = 0, while the quantities 
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rot P and div M remain indeterminate. In fact, the vectors P and M are defined by only the 

equations div P = − , rot M = j, and the boundary conditions Pn = , M n  = k. That is why 

one can add an arbitrary vector of the form rot P to M and an arbitrary vortex-free vector to M 

without the boundary conditions breaking down in that way. It is only in the distinguished case 

where the electric and magnetic field strengths themselves satisfy the following conditions on the 

surface S: 

(E  n) = −   (H  n = 4 k, resp.)    (37) 

 

that one can identify P and M with the corresponding values of – 
1

4
 E and 

1

4
H, inside of S, 

i.e., one can set: 

4 P = − E ,  4 M = H .    (37.a) 

 

___________ 



 

CHAPTER FOUR 

 

REPRESENTING ARBITRARY SYSTEMS BY MULTIPOLES. 

POTENTIAL THEORY. 
 

 

§ 1. – Definition of a multipole. 

 

 Up to now, we have used the concept of the elementary dipole in a somewhat imprecise sense 

since we have assumed that the length of such a dipole was “small” compared to its distance from 

other dipoles. We would now like to replace (or better yet, extend) that imprecise physical concept 

with the following one that is quite precise, but purely mathematical: 

 The length of the dipole (l) shall be infinitely small, and the charges ( e) shall be infinitely 

large in such a way that its moment (p = e l) should have a finite value. In order to distinguish 

them from real physical dipoles, which always have a finite length and consist of charges of finite 

magnitude, we would like to refer to such a dipole as a mathematical dipole. 

 One must then consider a mathematical dipole to actually be a point-like structure – viz., a 

double point – just like an isolated point charge. They differ from each other by simply the fact 

that in the latter case, the point in question is coupled with a scalar quantity (charge), while in the 

former case it is coupled with a vector quantity (moment). 

 One can, in turn, regard two (mathematical) dipoles with equal and opposite infinitely-large 

moments that are found at an infinitely-small distance from each other as a point, and indeed, as a 

quadruple point. Such a quadruple point is called a quadrupole. A mathematical quadrupole then 

arises from four charges of equal or equal and opposite magnitudes  e that define the corners of 

a parallelogram with infinitely-small sides l1, l2 (Fig. 25). In that way, one assumes that the product 

e l1 l2, which corresponds to the moment of a dipole, possesses a finite value. 

 
 

 When one switches the positive charges and the negative ones in a quadrupole, one will get the 

opposite quadrupole. Two opposite quadrupoles that are displaced relative to each other by an 

infinitely-small line segment l3 in such a way that the product e l1 l2 l3 remains finite define an 

octuple point or octupole. 

+ e − e 

+ e 

 

− e 

l2 

l1 

Figure 25. 

+ e 

+ e 

+ e − e 

− e 

− e 

+ e 

Figure 26. 

− e 
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 One can then represent an octupole as an infinitely-small parallelepiped with the charges  e 

at its corners (in the sequence + − + …) (Fig. 26). 

 By repeating the process that was described above, one will arrive at multiple points, or higher-

order multipoles. One can define a 2n-fold point (i.e., a pole of order n, in general) to be a quasi-

point-like system that consists of two opposite poles of order (n – 1) at an infinitely-small distance 

from each other.  If we resolve those poles of order (n – 1) into poles of lower order then we will 

ultimately get 2n infinitely-large charges  e that are displaced relative to each other though 

infinitely-small segments l1, l2, …, ln. The product e l1 l2 … ln must still have a finite value then. 

 The n vectors l1, l2, …, ln can generally have arbitrary directions in space. However, they can 

all lie in the same plane or also on the same line. In the latter case, one calls the multipole in 

question axial. 

 One defines the moment of the pole of order n to be the quantity: 

 

( )1

!

np
n

 = e l1 l2 … ln ,      (1) 

 

which represents the magnitude of a tensor of rank n, as we will see. That tensor is the logical 

generalization of the vectorial moment of a “first-order pole,” i.e., a dipole. It is determined by the 

magnitude ( )np  and the n unit vectors li / li = ai . The lines that point in the directions of those 

vectors are called the axes of the pole in question. One can define a point-charge as a “zero-order” 

pole. 

 

 

§ 2. – The field and energy of a multipole. 

 

 Let P   be the (multiple) source-point of the electric field, and let P be the reference point for 

which the potential  of that field is to be calculated. 

 In the case of a simple point, i.e., a point charge e , we have: 

 

(0)  = 
e

R


. 

 

We now imagine that this charge is displaced to the neighboring point 1P  , while the opposite 

charge − e  is found at P  . In the limit 1P P   = 1
l  = 1 1l a  → 0 and 1e l  = p(1) finite, we will get a 

double point, i.e., a mathematical dipole, whose potential is expressed by the known formula: 

 

(1)  = (0)

1(  grad ) l  = (p(1) ) 
1

R
 = (1)

1

1
( )p

R
  a , 

 

and indeed not approximately, but quite exactly. 
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 If one displaces that dipole from P   to the neighboring point 2P   and at the same time attaches 

the opposite dipole to the point P   then in the limit 2P P   = 2
l  = 2 2l a  → 0 while (1)

2p l   = (2)1
2

p  

= finite, it will be a four-fold point, i.e., a quadrupole. Its potential at P is obtained from (1)  in the 

same way that the latter was obtained from (0) , i.e., by the formula: 

 

(2)  = (1)

1(  ) l  = (2)1
2 12

1
( )( )p

R
      a a . 

 

 If one generally denotes the potential of a well-defined pole ( 1)nD
−  of order ( 1)n −  by ( 1)n

−  

then one will get the following expression for the potential ( )n


 of the pole ( )nD


 of order n , 

which arises by displacing ( 1)nD
−  through the infinitely-small segment n

l  = n nl  
 a  and adding the 

opposite pole at P  : 
( )n


 = ( 1)(  ) n

n 
−


 l ,      (2) 

or, from (1): 

( )n


 = ( )

1 1

1 1
( )( ) ( )

!

n

n np
n R



 −
        


a a a .    (2.a) 

 

One can immediately conclude from that formula that the electric field of an thn -order pole is 

independent of the sequence and the magnitudes of the individual infinitesimal displacements 1
l ,

2
l , …, n

l . It is determined completely by the scalar parameter ( )np  and the set of n unit vectors 

1
a , 2

a , …, n
a  (viz., “axes”). 

 If a charge e is found at the point P then we will get the product: 

 
(0)U  = e  

 

for its potential energy relative to any system of electric charges that creates the potential  at P. 

Upon displacing the charge through the infinitely-small segment l1 and adding the opposite charge 

at P, when e l1 = p1 = (1)

1p a  = finite, we will get a dipole whose energy is expressed by (1): 

 
(1)U  = (0)

1 ( )Ul = (p1 )  = (1)

1( )p a  . 

 

Since  = − E, one can write the formula above in the usual form 
(1)U = − p1 E. If one replaces 

the charge e with a pole of order (n – 1) in this argument then one will get a pole ( )nD  of order n 

with the potential energy: 

 
 (1) Recall that  = grad means a differentiation with respect to r, and  means a differentiation with respect to r, 

where r = OP, r = OP , and R = r – r . 
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( )nU  = ( 1)( ) n

n U −l ,      (3) 

instead of the dipole, or: 

( )nU  = ( )

1 1 0

1
( ) ( ) ( )

!

n

n np
n

−  a a a ,    (3.a) 

 

where ( )np  means the moment of the pole, and a1, …, an are the corresponding “axis vectors.” 

 In particular, from (2.a) and (3.a), that will give the following formula for the mutual potential 

energy of the poles ( )nD


 and ( )nD  when  = ( )n


: 

 

( , )n nU


 = 
( ) ( )

1 1

1 1
( ) ( ) ( ) ( )

! !

n n

n np p
n n R




       


a a a a .   (4) 

 

 Thus, one will have: 

 = − ,      (4.a) 

 

such that the differential operations 1( ) a , etc., can be replaced with − 1( ) a , etc. [or one can 

replace 1( )a  with − 1( )a ] in the actual calculation of 
( , )n nU


. 

 For n  = n = 1, we will get the expression (28), Chap. III, for the potential energy of two 

dipoles that we know already from (4). It differs only by the sign of the potential energy of a point-

charge compared to a quadrupole. (The product 1 1p p  must then be replaced with − (2)p e  or 

(2)p e− .) 

 The expressions (2.a) and (4) can be calculated for arbitrary n  and n with no difficulty by 

means of the formulas: 

 

 (a R) = a (= const.), 
nR−  = − ( 2)nn R− + R , 

 

and the general rule for the differentiation of the product of several factors. In that way, one will 

get a formula of the form: 

( )n  = 
( )

( )

1
( 1)

n
n n

n

Y
p

R +
− ,      (5) 

 

for 
( )n , where ( )nY  means a function that depends upon only the direction (but not the magnitude) 

of the vector R, i.e., only the unit vector R0 = R : R. That function consists of a number of 

summands that are composed of nothing but factors of the type ai R0 = cos (ai, R0) or ai ak = 

cos ( , )i ka a . ( )nY  is a symmetric homogeneous function of degree n relative to the quantities a1, 

…, an . For example, with the abbreviations (ai R0) = I, (ai ak) = ik , one will have: 
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 (1)Y  = 1 , 

 (2)Y  = 1
2

(31 2 − 12) , 

 (3)Y  = 1
6

(151 2 3 − 31 23 − 32 31 − 33 12) , 

 (4)Y  = 1
24

(1051 2 3 4 − 15 (2 3 14 + 3 1 24 + 1 2 34 + 1 4 23 + 2 4 13  

  + 3 4 12) + 3 (14 23 + 24 31 + 34 12) , 

and in general: 

 

 ( )nY  = 
1 2 12 3

1
{1 3 (2 1) 1 3 (2 3)

!
n nn n

n
      − −  −   

+ 
12 34 51 3 (2 5) }nn     −  ,    (5.a) 

 

where 
12 3 n   , etc., means the sum of all the terms that were written out over all 

permutations of the foregoing indices. The proof of (5.a) can be achieved immediately by going 

from ( )nY  to ( 1)nY + , while considering the aforementioned symmetry property. 

 The number of all terms that arise from 12 34 … 2k−1, 2k  2k+1 2k+2 … n by various 

permutations of the numbers 1, 2, …, 2k is obviously equal to 
(2 )!

2 !k

k

k
. The number of terms in the 

sum  12 … 2k−1, 2k  2k+1 … n is therefore equal to: 

 

(2 )! !

2 ! (2 )!( 2 )!k

k n

k k n k


 −
 = 

( 1) ( 2 1)

2 4 2

n n n k

k

− − +


. 

 

In the case of a multipole with n coincident axes (1 = 2 = … = n ; ik = 1), we will then get the 

following expression for ( )nY : 

 

( )nY  = 
2

2

0

1 3 (2 1) ( 1) ( 2 1)
( 1)

1 2 2 4 2 (2 1) (2 2 1)

k n
k n k

k

n n n n k

n k n n k



−

=

 − − − +
−

   − − +
 .        (5.b) 

 

 The functions (5.b) are called Legendre polynomials. One usually calls the more-general 

functions (5.a) spherical functions or also harmonic functions of order n. However, one does not 

consider the arguments of those functions to be the cosines 1, 2, …, n, but the angles , , which 

establish the direction of the radius vector R relative to any spherical coordinate system. ( is the 

angle between R and the polar axis, while  is the azimuth of R in the meridian plane.) If one 

denotes the corresponding angles for the axes of the multipole in question by i, i (i = 1, 2, …, n) 

then from a known formula in spherical trigonometry, one will have: 

 

i = cos i cos  + sin i sin  cos ( − i) 

and 
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ik = cos i cos  k + sin i sin  k cos (i − k) . 

 

 

§ 3. – Representing arbitrary electric systems by multipoles. 

 

 Let S   be a system of electric charges that are found inside of a ball K   of radius a  with its 

center at P  . The electric potential  of S   at a point P that lies outside of the ball can then be 

expressed by the sum: 

S
Q P

 



, 

 

in which Q P  means the distance from the charge   to the reference point P. (In that expression, 

we are using S   for the summation sign over all charges in the system considered.) If we denote 

the coordinates of   relative to P  , i.e., the components of the vector P Q   in a completely-

arbitrary (rectangular) coordinate system, by 1  , 2  , 3  , and the corresponding coordinates of P   

and P by 1x , 2x , 3x  (x1, x2, x3, resp.) then we will have: 

 

2( )Q P  = 
3

2

1

( )i i i

i

x x
=

 + − , 

and as a result, from Taylor’s theorem: 

 

1

Q P
 = 

2 3

, , ,

1 (1/ ) 1 (1/ ) 1 (1/ )

2! 3!
i i k i k l

i i k i k li i k i k l

R R R

R x x x x x x
     

  
     + + + +

          
   , 

 

in which: 

R = 
2( )i i

i

x x −  

means the distance, as before. 

 Upon substituting that expression in  = S
Q P

 



, we will get the following series for  : 

 

 = 
(0) (1) (2) ( )n   + + + + + ,    (6) 

with 

(0)  = 
e

R


, 

(1)  = 
(1/ )

i

i i

R
e

x





 ,  

(2)  = 
2

,

1 (1/ )

2!
ik

i k i k

R
e

x x




  
 , …,  (6.a) 

 

in which the coefficients e , ie , ike , … are defined by the formulas: 

 

e = S   , ie = iS     , ike  = i kS       , …   (6.b) 



§ 3. – Representing arbitrary electric systems by multipoles. 105 
 

 The quantity ( )n  will be called the thn -order potential of the system in question. We will write 

it in the form: 

 ( )n  = 
31 2

1 2 3

1 2 3 1 2 3

1 (1/ )
( , , )

! ! !

n

nn n

R
e n n n

n n n x x x




    
  (n1 + n2 + n3 = n), (7) 

with: 

1 2 3( , , )e n n n  = 31 2

1 2 3

nn n
S         .    (7.a) 

 

For large values of n, that notation is much more convenient than the foregoing one in (6.a) and 

(6.b). 

 Since the point P lies outside the ball that encloses S   (i.e., the distance P Q   is smaller than 

P P  = R), the series (6) must converge absolutely and uniformly. One can regard that series as the 

development of  in negative powers of the distance R. Indeed, ( )n  is proportional to the (n + 1)th 

power of R. We correspondingly set: 

( )n  = 
1

n

n

H

R +
,      (8) 

 

in which Hn no longer depends upon the magnitude of the vector R = P P , but only on its 

direction. That dependency is expressed by the formula: 

 

Hn = 
1 2 3

1 2 3
1 2 3

1 2 3

( , , )
[ , , ]

! ! !n n n n

e n n n
n n n

n n n+ + =


 ,    (8.a) 

in which: 

[n1, n2, n3] = 
31 2

1

1 2 3

(1/ )n
n

nn n

R
R

x x x

+ 

    
    (8.b) 

 

are the simplest functions of the type considered. They can be determined directly in terms of the 

cosines i  = ( ) /i ix x R−  . 

 The parameters (6.b) or (7.a), which determined the electric properties of the system in 

question, might be referred to as the “electric moments” of order n = n1 + n2 + n3 (relative to the 

given system of axes). The zero-order moment is nothing but the resultant electric charge of the 

system ( )e . The first-order moments are the components of a vector that corresponds to the 

moment of an elementary (mathematical) dipole at the point P  . The second-order moments are 

components of a tensor that determines an elementary quadrupole. In the same way, the 
thn -order 

moments mean the components of a symmetric tensor of rank n that corresponds to an 
thn -order 

multipole. 

 According to (2.a), each summand in the expression (7) represents the potential of an 
thn -order 

multipole whose axes all lie along three mutually-perpendicular directions, and whose moment is 
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equal to 1 2 3

1 2 3

!
( , , )

! ! !

n
e n n n

n n n
 . The number of those summands obviously amounts to (n + 2)(n + 

1) / 2. However, due to the identity: 

 
2 2 2

2 2 2

1 2 3

(1/ ) (1/ ) (1/ )R R R

x x x

  
+ +

    
 = 0 , 

 

n (n – 1) / 2 identities of the form 
31 2

2 2

1 2 3

(1/ )n

nn n

R

x x x

−  

    
 = 0 must exist between the functions 

31 2

1 2 3

(1/ )n

nn n

R

x x x



    
 or [n1, n2, n3], i.e.: 

 

  [k1 + 2, k2, k3] + [k1, k2 + 2, k3] + [k1, k2, k3 + 2] = 0  (k1 + k2 + k3 = n – 2). 

 

It is possible to use those relations in order to express the (n + 1) (n + 2) / 2 parameters 1 2 3( , , )e n n n  

that determine ( )n  or Hn in terms of: 

 
1 1
2 2
( 2)( 1) ( 1)n n n n+ + − −  = 2n + 1 

 

of them, and indeed in such a way that (7) will assume the form (5) (for n  = n), i.e., such the Hn 

will be represented in the form of a spherical function of order n (5.a), multiplied by a suitably-

chosen coefficient 
( )( )ne . That is because the number of independent parameters that determine 

the potential of an 
thn -order multipole is equal to precisely 2n + 1 (viz., two parameters for each 

axis k
a , e.g., the angles k, k, and the resultant moment 

( ) )ne . 

 If one then sets: 

( )k
 a  = 

1 2 3

1 2 3

k k k
x x x

  
  

  + +
    

, 

 

in which 
1k , 

2k , 
3k  mean the direction cosines of the unit vector k

a  (so 
1 2 3

2 2 2

k k k    + +  = 1), 

then it will always be possible to determine those direction cosines and the parameter 
( )ne  in such 

a way that the following identity will exist: 

 

31 2

1 2 3

1 2 3

1 2 3 1 2 3

( , , ) (1/ )

! ! !

n

nn n
n n n

e n n n R

n n n x x x+ +

 

    
  = ( )

1 2

1 1
( ) ( ) ( )

!

n

np
n R

        a a a , 

 

i.e., such that one can introduce other moments of the form: 
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p (n1, n2, n3) = 
31 2

1 2 3

( )

,1 ,2 ,3

nn n
n

k k kp         

 

that depend upon only 2n + 1 independent parameters instead of the actual electric moments 

1 2 3( , , )e n n n . 

 One can also express that fact as follows: The electric field of an arbitrary system of electric 

charges outside of a sphere that contains it is completely identical to the field of a system of 

multipoles of different orders that are concentrated at the center of the sphere. 

 The actual determination of those multipoles in terms of the parameters 1 2 3( , , )e n n n is 

generally a very hard problem for n > 1, and we cannot go into the details of its solution here. It is 

simply soluble for only n = 0 and n = 1, and indeed, one will have e = S   , and furthermore: 

  

(1)  = 
(1/ )

i

i i

R
e

x





  = 

1
ie

R
   = 

1
( )

R
 p , 

 

in which p means the vector with the components ie  = iS     , from which it will follow that 

(1)p  = | p | and a = p / | p | . 

 Note that from the theorem that was proved above, a number of arbitrary multipoles of the 

same order that are found at the same point can be replaced with a single “resultant” multipole. 

That theorem is the generalization of the corresponding theorem for elementary dipoles (Chap. I, 

§ 3). However, it is not possible to give a simple prescription for determining the axes and moments 

of a resultant multipole of order n (for n > 1) from the axes and moments of the individual 

“summands.”  

 Moreover, one should note that the electric moments of a given system are not determined 

uniquely, in general, but will depend upon the choice of the center of the sphere ( )P . The moment 

of order n will be independent of that choice only when the moments of all lower orders (i.e., the 

parameters ( 1)np − , ( 2)np − , …, (0)p  = e ) vanish. 

 Similar results in regard to the possibility of representing the field of an arbitrary electric 

system by multipoles of different orders can be derived for the potential energy of such a system 

in a given external field. 

 Let S be a system of electric charges () that are included inside of a ball K. The system S   

that creates the field in question shall then be found outside of K. The potential of the field inside 

of K must satisfy the Laplace equation 2  = 0. 

 The potential energy of S (relative to S  ) is obviously equal to the sum of the corresponding 

energies for the individual charges, i.e.: 

U = S   (Q) , 

 

in which  (Q) means the value of the potential at the point Q that includes the charge . If one 

denotes the coordinates of Q relative to P (i.e., the components of the vector PQ) by 1, 2, 3, and 

develops  (Q) in powers 1, 2, 3 then that will give the following series for U : 
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U = (0) (1) (2) ( )nU U U U+ + + + ,     (9) 

with: 

(0)U  = e  , (1)U  = i

i i

e
x




 , (2)U  = 

2

1
2

,

ik

i k i k

e
x x



 
 , …, (9.a) 

and 

e = S  , ei = S  i , eik = S  i k ,    (9.b) 

 

or in a different notation: 

( )nU  = 
31 2

1 2 3

1 2 3

1 2 3 1 2 3

( , , )

! ! !

n

nn n
n n n n

e n n n

n n n x x x



+ + =



  
 ,     (10) 

with: 

e (n1, n2, n3) = 31 2

1 2 3

nn n
S    .     (10.a) 

 

The parameters (9.b) or (10.a) are the same electric moments of the system in question that 

determine its own field outside of K. Due to the Laplace equation: 

 
2 2 2

2 2 2

1 2 3x x x

    
+ +

  
 = 0 , 

 

precisely the same identities must exist between the thn -order derivatives of  with respect to x1, 

x2, x3 that exist between the corresponding derivatives of R with respect to 1x , 2x , 3x  (cf., supra). 

It will follow that the 
thn -order energy 

( )nU  can be represented in the form (3.a): 

 

( )nU  = ( )

1 2

1 1
( ) ( ) ( )

!

n

np
n R

  a a a , 

 

i.e., it is identical to the potential energy of a multipole of order n at the center of the sphere P, and 

indeed the same multipole that creates a potential that is identical to the thn -order potential of S 

outside of the sphere K. In summary, we can then state the following: An arbitrary system of 

electric charges that can be separated from the other systems by a spherical surface (that encloses 

the former and excludes the latter) is completely equivalent to a number of multipoles of various 

orders that are concentrated at the center of the sphere in regard to its interaction with that system. 

 However, for the actual determination of the interaction of two such systems, it is more 

convenient to not introduce those multipoles explicitly, but to operate with the expressions that 

determine the potential of a system ( )S  and the potential energy of the other (S) as a function of 

the components of their electric moments 1 2 3( , , )e n n n     [e (n1, n2, n3), resp.] (since those moments  

can be regarded as known quantities). 

 If we substitute  = 
(0) (1) (2)  + + +  in (9.a) then, according to (6) and (7), we will get the 

double series for U : 
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U = ( , )n nU


 ,      (11) 

 

in which ( , )n nU


 corresponds to the form that ( )nU  will assume when the potential  is equal to 
( )n


. 

 Due to the relation: 

(1 / )

i

R

x




 = − 

(1 / )

i

R

x




, 

 

we can appeal to the symbols (8.b) and write: 

 

 
( , )n nU


 = 

1 2 3

1 2 3

1 2 3 1 2 3
1 1 2 2 3 31

1 2 3 1 2 3

( , , ) ( , , )( 1)
[ , , ]

! ! ! ! ! !

n

n n n n n n

n n n n

e n n n e n n n
n n n n n n

R n n n n n n



+ + + + = 
 

   + + = 

   −
   + + +

  
 . (11.a) 

 

If we denote the coefficients of 
11/ n nR

+ +
 in the cited equation by 

,n nH   and substitute that in: 

 

,n n

n n k

H 

+ =

 = Ik      (11.b) 

then we will have: 

U = 0 1 2

2 3

I I I

R R R
+ + +        (11.c) 

 

 Recall that U is not merely the energy of S and S  , but at the same time, it also represents the 

energy of S   relative to S. [That fact corresponds to the symmetry of (11.a) relative to the “primed” 

and “unprimed” parameters.] From (11.c), the mutual energy of the two systems is represented in 

the form of an advancing series in negative powers of their mutual distance (more precisely, their 

distances from the center of the spherical surface that enclosed them) whose coefficients depend 

upon the orientation of the two systems relative to each other and to their connecting line (R) 

(except for I0, which is equal to simply the product ee  of the resultant charges of S and S  ). 

 The coefficients Hn,0, 0,nH   are identical to the previously-introduced spherical functions Hn 

( nH  , resp.) [cf., formula (5)]. 

 

 

§ 4. – Harmonically-conjugate systems. Electric potential inside of a ball. 

 

 Two points Q and Q  are called “harmonically-conjugate” relative to the spherical surface K 

when they lie on a line that goes through the center P of the sphere and lie on the same side of P 

in such a way that: 

   = 
2a ,      (12) 
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where  = PQ,   = PQ , and a is the radius of the sphere. 

 As a result, one of the points (e.g., Q) must lie inside of K, while the other one (e.g., Q ) must 

lie outside of it. If one denotes the point where the line PQQ  intersects the surface of the sphere 

by A0 (Fig. 27) then (12) can be written in the form: 

 

0PA

PQ
 = 

0

PQ

PA


. 

 

Upon subtracting 1 from each side of that equation, we will get: 

 

0PA PQ

PQ

−
 = 0

0

PQ PA

PA

 −
, 

i.e.: 

0QA

PQ
 = 0

0

A Q

PA


 

or 

0

0

QA

Q A
 = 

a


. 

 

Now, it is easy to see that this proportion is 

true for not only the point A0, but for any other 

point A on the spherical surface. In order to prove that, we consider the triangles PQA and PQ A . 

Since PA = a, from (12), we will have: 

PQ

PA
 = 

PA

PQ
. 

 

Since those triangles have a common angle (at P), they must be congruent. However, it would 

follow from this that: 

QA

PQ
= 

Q A

PA


, 

i.e.: 

QA

Q A
 = 

a


.           (12.a) 

 

If we then imagine that two charges of the same sign  and   are at Q and Q , resp., and have a 

ratio of: 



 
= 

a


 = 

a


              (12.b) 

 

 

A 

B 

P 
Q A0 

 

Figure 27 
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then their potentials 
Q A


 (

Q A

 


, resp.) must be equal to each other for all points A of the spherical 

surface. 

 Now, let B and B   be two harmonically-conjugate points on the line PA. The equations 

PB PB  = 2a  and PQ PQ  = 2a  imply that: 

 

PB

PQ
 = 

PQ

PB
. 

 

As a result, since the triangles and PQB  and PQ B  have a common angle at P, they must also be 

congruent. Therefore, one will have :QB PB   = :Q B Q P   and :QB PQ  = :Q B BP , i.e., with 

the notations PB = R, PB  = R  : 

QB

Q B




 = 

R






 = 

R


.        (13) 

 

If one further denotes the electric potential of  at B   and   at B by   = / QB   ( = / Q B  , 

resp.) then from (13) and (12.b), one will have: 

 






 = 

R

a


 = 

a

R
.     (13.a) 

 

 That formula shows that the ratio   :  is independent of the direction of the line PA0 on which 

the two “conjugate charges” are found and of the configuration of the latter on that line, as long as 

the relation (12) is fulfilled. If one then considers an arbitrary system S of charges  inside of the 

sphere K and the corresponding “conjugate” system S   of external charges   then the potentials 

 and   that are created by S   at B and S at B  , resp., will have the same relationship (13.a) to 

each other that the potentials of the individual conjugate charges have to each other. 

 According to the results of the previous section, the potential   can be developed in a series 

outside of K: 

  = 0 1 1

2 3

H H H

R R R
+ + +

  
 = 

1

n

n

H

R +
  , 

 

in which H0, H1, H2, … depends upon only the direction of the line PA. Correspondingly, we will 

get: 

 = 
2

0
1 23 5

H R R
H H

a a a
+ + +  = 

2 1

n

n n

R
H

a + ,   (14) 

 

i.e., an advancing series in positive powers of R (for which R < a). For the limiting case of R = R   

= a, the two series will obviously coincide. 
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 From (8.a), the spherical functions Hn are determined by the electric moments 1 2 3( , , )e n n n  = 

31 2

1 2 3

nn n
S     of the “internal system” S. That is because, from (12.b), when 1, 2, 3 , and 1  , 

2 ,   3    mean the components of the vectors  (  , resp.), that will imply that: 

 

31 2

1 2 3

nn n
S     = 

31 22 2 2

1 2 3

nn n

a a a a
S 

   

    
      

        
, 

i.e.: 

1 2 3( , , )e n n n  = 31 22 1

1 2 3

nn nna S


  


−− −+ 
   


.         (14.a) 

 

If one substitutes those expressions in the formula: 

 

Hn = 
1 2 3

1 2 3
1 2 3

1 2 3

( , , )
[ , , ]

! ! !n n n n

e n n n
n n n

n n n+ + =


       (14.b) 

 

then, from (14), one will get a representation of the “internal” potential  that depends directly 

upon the nature of the external system that creates it. In that way, that nature (i.e., the configuration 

and magnitude of the charges  ) can be completely arbitrary since every external system of 

charges can always be associated with a conjugate internal system. 

 Upon replacing (14) in the formulas (9) and (10), where S might mean a completely-arbitrary 

internal system, one will get a new expression for the mutual potential energy of the two systems 

S and S  . That new representation of energy is more general than the previous one, which is given 

by formulas (11) to (11.c) since the series (11) will converge only in the case where S and S   can 

be separated from each other by two non-intersecting spherical surfaces. (The sum of the spherical 

radii a + a  must be smaller than the distance R to its center.) By contrast, the new representation 

(with one spherical surface) will also be valid when the external charges lie arbitrarily-close to the 

spherical surface K, just like the internal ones. 

 If one introduces the parameter: 

 

1 2 3( , , )E n n n  = 31 2

1 2 3

nn n
S


  



−− −
   


    (15) 

 

in place of 1 2 3( , , )e n n n  and replaces the functions Hn with:  

 

hn = ( )2 1n

nH a +
 = 

1 2 3

1 2 3
1 2 3

1 2 3

( , , )
[ , , ]

! ! !n n n n

E n n n
n n n

n n n+ + =


    (15.a) 

 

then one will get the following expression for  : 

 



§ 4. – Harmonically-conjugate systems. Electric potential inside of a ball. 113 
 

 = h0 + h1 R + 2

2h R +  = n

nh R .   (15.b) 

 

 However, in that way, the distance R cannot exceed the radius of the sphere: The series (15.b) 

will then converge only in the region R < a, in general. 

 The coefficients of that series hn are spherical functions of order n, i.e., from (5.a), they are 

polynomials of degree n in the direction cosines  of the vector R = PB. It will then follow that 

n

nh R  is an entire homogeneous function of degree n in the components of that vectors, which we 

would like to denote by x1, x2, x3 . (The fact can also be recognized directly when one observes 

that, by definition, one has: 

[n1, n2, n3] = 
31 2

1

1 2 3

(1/ )n
n

nn n

R
R

x x x

+ 

  
.) 

 

 Since the derivatives 
31 2

1 2 3

n

nn n
x x x



  
 in (10) refer to the center of the sphere (x1 = x2 = x3 = 0), 

one can replace  in it with the single term n

nh R . The other terms (of lower and higher order) will 

give no contribution to the derivatives of order n. Therefore, from (10) and (15.a), that will imply: 

 

( )nU  = 
1 2 3

1 2 3

1 2 3 1 2 3
1 2 3 1 2 3

1 2 3 1 2 3

( , , ) ( , , )
[ , , ; , , ]

! ! ! ! ! !n n n n

n n n n

e n n n E n n n
n n n n n n

n n n n n n+ + =

  + + =

   
  

  
  ,  (16) 

with: 

1 2 3 1 2 3[ , , ; , , ]n n n n n n    = 
1 1 1

1 1 1

2 1

1 1 1 1 1 1 0

(1/ )n n
n

n n n n n n

R

R
R

x x x x x x

+

 

=

    
           

.  (16.a) 

 

The cited representation for the energy (U = 
(0) (1) )U U+ −  initially has the advantage over the 

previous one that the dependency of the energy upon the configuration of the system S, i.e., the 

center of the sphere that encloses it, does not need to be expressed. In the event that the system in 

question can be displaced as a whole inside of that sphere (i.e., without colliding with the external 

system), that dependency can be determined as follows: One imagines that S is enclosed by a 

sphere K that is as small as possible. Now, let the center of that sphere be P, and let the center of 

the larger sphere that includes it be O. If one refers the coordinates of the external charges to O, as 

before, and those of the internal ones to P then the parameters 1 2 3( , , )E n n n     will remain unchanged, 

while the quantities: 
31 2

1 1 2 2 3 3( ) ( ) ( )
nn n

S x x x   + + +  

 

must be introduced in place of the constant parameters 1 2 3( , , )e n n n . Those functions are 

polynomials of degree n in x1, x2, x3 (viz., the coordinates of P relative to O) whose coefficients 

are equal to the new (constant) values of the electric moments of S, except for numerical factors. 
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 As we saw above, we can replace an “internal system” of electric charges with a number of 

multipoles at the center of the sphere. It is correspondingly possible to replace the conjugate 

external system S   (relative to the field that it generates inside of the sphere) with a number of 

infinitely-distant charges that are harmonically conjugate to the ordinary multipoles. In that way, 

a multipole of order n that creates the field: 

 

  = ( )

1 2

1
( ) ( ) ( )n

np
R

  


a a a  = ( )

1
( 1)n n n

n

Y
p

R +
−


 

 

outside of the sphere K will correspond to a system of infinitely-distant charges that create the 

field: 

  = ( )

2 1
( 1)

n
n n n

n

Y R
p

a +
−  

inside of K. 

 For example, a mathematical dipole corresponds to two opposite charges that lie along the 

same diameter (in opposite directions) and require the potential: 

 

 = 
3a

p R
 

 

inside of the sphere. In that expression, p means the electric moment of the dipole, as usual. Note 

that this potential will correspond to a homogeneous field of strength E = − p / 3a . 

 

 

§ 5. – Equivalent surface charge. 

 

 From the results of the last two sections, one should now observe the following fact: A certain 

electric field can be created inside or outside of a closed surface by different charge distributions 

outside (inside, resp.) that surface. 

 That theorem is true in general for entirely-arbitrary closed (or infinite) surfaces (1) and is a 

direct consequence of Coulomb’s law or the Laplace equation, which is equivalent to it. One can 

further prove that for any (real) distribution of electric charges on one side of the surface K in 

question (i.e., it creates the same field on the other side), a distribution of electricity will exist on 

that surface itself. The mutual energy of two electric systems S and S   that are separated from 

each other by K can then be always calculated to be the mutual energy of two charged surfaces 

that coincide with K. 

 That theorem is quite simple to prove in the special case of a spherical surface. Let S and S   

be two harmonically-conjugate systems (internal and external). The potentials that they create (  

externally and  internally) will then coincide on the spherical surface itself. One can then say that 

those potentials will go over to each other continuously when one crosses the surface. It is therefore 

 
 (1) An infinite surface, e.g., a plane, can be treated as a surface that is closed at infinity.  
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possible to regard them as the external and internal values of the potential of one and the same 

system of electric charges . Moreover, since one has the equation 2  = 0 outside of the sphere 

and 2  = 0 inside of it, those charges can lie on only the boundary surface K. Their presence 

must express itself as a jump in the normal (i.e., radial) component of the electric field when one 

crosses K. By applying the general formula nE dS = 4 e to an infinitely-small cylinder that 

includes the element dS of the spherical surface and whose lateral surface is perpendicular to it 

(Fig. 28), for a fixed dS and a vanishing height of the cylinder, we will get: 

 

n nE E −  = 4  ,     (17) 

 

in which  = de / dS means the surface density of electricity on the 

element dS, E and E are the electric field strengths on the external and 

internal surface of dS, and n is the normal that points from inside to 

outside, i.e., in the direction of the radius vector R (1). Since E = − 

   and E = − , one can write formula (17) as follows: 

 

   = 
1

4 R R aR R

 

 = =

  
− 

  
.    

 

Upon substituting the series (14) for  and the corresponding series for  , we will get: 

 

 = 
2

2 1

4
nn

n

n
H

a +

+
 .        (17.a) 

 

That is the desired equivalent surface distribution of electric charge, and indeed for each of the two 

conjugate systems S and S   in the corresponding spatial regions. In particular, for n = 0, H0 = e 

(viz., a zero-order pole), that will give  = 
2/ (4 )e a , i.e., a uniform distribution of charge e. We 

then get the known result that a uniformly-charged spherical surface will exert the same action 

externally as if all of the charge were concentrated at its center (2). For n = 1 and H1 = p cos  (viz., 

a dipole with the moment p, where  is the angle between p and R), one will likewise have: 

 

 = 
2

3 cos

4

p

a




.     (17.b) 

 

The total charge dS  is therefore equal to zero. 

 
 (1) Cf., formula (12), Chap. III, for the electric field strengths inside of a double layer.  

 (2) The external potential   = /e R will then correspond to the internal one  = e / a = const. 

n 

E 

E 

dS 

 

Figure 28. 
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 We now assume that the systems S and S   are not conjugate, but completely independent of 

each other, so the internal one is characterized by the spherical functions Hn, and the external one 

is characterized by nH  . One can represent their mutual energy in the form: 

 

U = dS , 

 

in which the integral extends over the spherical surface. 

 Moreover, by means of the formulas (17.a) and  = 
1

n

n

H

a



+


  (for R = a), we will get: 

 

U = 
2 1

1 2 1

4
n nn n

n n

n
H H dS

a a
+ +



+
  .          (18) 

 

That representation of energy must obviously be identical to the representation that was cited in 

the last section [see formula (16)]. However, it follows from this that the double series (18) can be 

reduced to the simple series: 

U = 
2 2 1

1 2 1

4
n nn

n

n
H H dS

a a +

+
  ,    (18.a) 

i.e., that one has: 

n nH H dS  = 0     (18.b) 

 

for n   n. That relation, which can be easily verified directly, expresses the “orthogonality 

property” of the spherical functions of different order. 

 If one chooses an arbitrary sequence of spherical functions H0, H1, H2, … that are normalized 

in such a way that: 

2

2

1

4
nH dS

a   = 1        (19) 

 

then one can develop an arbitrary given distribution of electricity on the sphere  into those 

functions, i.e., one can represent it in the form: 

 

 = 
0

n n

n

C H


=

 ,            (19.a) 

 

in which the coefficients Cn can be calculated from the formula: 

 

2

1

4
nH dS

a


   = 
2

0 4

n
n n

n

C
H H dS

a



=

  , 

i.e.: 
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Cn = 
2

1

4
nH dS

a


  .     (19.b) 

 

 We shall now go on to the proof of the general theorem that was formulated at the beginning 

of this section. 

 Let S be a closed surface, and let   be the potential that an internal system of charges creates 

outside of S. Let the value of   on the surface itself be denoted by  . 

 In order for   to be regarded as the potential of a distribution of electricity on S with the 

surface density , a function  (r) must exist that represents the potential of that same charge 

distribution inside of S. Obviously, that function must satisfy the following conditions: 

 

 1. Inside of S, it will remain continuous, along with its first derivative ( = minus the electric 

field strength), while second derivative vanishes (2 = 0). 

 

 2. On the surface S,  assumes the given value   (i.e., the corresponding value of   on the 

surface). 

 

 Now, one can prove that such a function can always be found (for an arbitrary form of S and 

arbitrary values of  ), and indeed uniquely (viz., Dirichlet’s principle). 

 If one substitutes F =    in the general formula nF dS  =  div F dV then one will have: 

 

n dS   = 
2 dV dV    +    .    (20) 

 

In the special case of  = , we will get the formula (5), Chap. III, that we already used before: 

 
2( ) dV  = + 

2

n dS dS    −   ,    (20.a) 

 

which will imply that: 

 = 0 

 

in the entire volume V, since 2 = 0 and   = 0. 

 We shall initially overlook the condition that 2 = 0 and consider the charge J that the 

integral J = 
2( ) dV  will experience when the function  is replaced with  + . 

 It will follow from the identity: 

 

[ ( + )]2 = ()2 + 2    + ()2 

that 

J = 
22 ( )dV dV    +   , 
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or from (20), with  =  : 

 

J = 
2 2( ) 2 2 ndV dV dS     −  +    .   (20.b) 

 

 If one now sets 2 = 0 inside of the surface S and compares  with only those functions  + 

 that assume the same value   as  on S, i.e., ones for which one has   = 0, then one will get 

an essentially-positive value for J. The condition 2 = 0, which defined the desired potential 

function above, is then completely equivalent to the following one: The function  shall make the 

integral J a minimum. The fact that such a function will exist at all among all functions that assume 

the given boundary value   on S can be regarded as a very illuminating fact. The fact that there 

is only one such function can be seen as follows: If  +  were another function of the same type 

then one would need to have   = 0 and 2 () = 0. However, from (20.a), it would follow from 

this (when  is replaced with ) that () and  would have to vanish in the entire volume V. 

 If the function  has been found then one can define the desired surface density of the 

electricity on S by the formula (17), just as one did in the case of the spherical surface that was 

considered above. However, the actual determination of that function in general (i.e., for an 

arbitrary form of S and an arbitrary boundary value  ) defines a very complicated problem 

analytically. 

 

 

§ 6. – Green’s function. 

 

 However, that problem can be reduced to a simpler one, namely, determining an auxiliary 

function that depends upon only the form of the surface S, but not on the boundary values  . The 

potential  can be represented in the form of a surface integral over S by means of that function. 

 Let P  be any point inside of S and let  be a very small surface that enclosed that point. 

 If one extends the volume integration that was suggested in formula (20), not over the total 

volume V, but only over the part V 
 that lies between S and  then that will give the difference: 

 

n dS d    −     

 

on the left-hand side of (20), where  means the external normal to . 

 If one switches the functions  and  in (20) and further assumes that both of them remain 

finite inside of V 
, along with their gradients and second derivatives, then one will get: 

 

( ) d     −    = 
2 2( ) ( )n n dS dV         −  −  −    (21) 

 

upon subtracting them. In the special case in which 2 and 2 vanish inside of V 
, that will 

then imply that: 
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( ) d     −    = ( )n n dS    −  .   (21.a) 

 

Obviously, that equation is also valid when the auxiliary function  becomes infinite inside of the 

surface , just like  and 2. For example, we can set  = 1 / R, where R means the distance 

from the point P  to any point P of the volume V  . In fact, if we consider  to be a function of 

the radius vector r of P then it will remain finite inside of V  , along with its gradient , while 

2 = 0. We shall now go on to the case in which the surface  contracts to the point P . We will 

then have: 

lim d    = 0 

 

since  will then decrease quadratically in R, and furthermore: 

 

lim d    = 
1

lim d
R

     = − 4  
, 

 

since 1 / R can be considered to be the potential of a unit charge at P (1). From (21), we will then 

get: 

   = 
1 1

4 4

n
ndS dS

R R

 

 


−   .        (21.b) 

 

The first term on the right-hand side of that formula represents the potential of a surface charge of 

density 
4

n




, and the second one represents the potential of a double layer whose electric moment 

per unit area amounts to  / 4 (see Chap. III, § 9). It is easy to see that such a system would create 

a zero potential in the external space (i.e., no electric field). That is because if one replaces P  

with a point P   that lies externally to S then the function  = 1 / R (R = distance P P ) must remain 

finite and continuous in all of the volume V that S encloses. However, in that case, the left-hand 

and right-hand sides of (21) would vanish since the integrals n dS   and n dS   would 

be two equivalent transformations of the volume integral ( )dV   . One can also interpret 

that fact physically by saying: When one crosses the double layer with the moment  (per unit 

area), the potential will jump by an amount 4 . Now, if: 

 

 =    and  = 
4




 

 

on the inner side of S then one must have   = 0 on the outer side. 

 

 (1) 


 means the value of  at the point P

. 
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 The formula (21.a) is not entirely suitable for representing the potential  inside of S, on the 

grounds that it must include not only the boundary values of  (which must be equal to the 

corresponding boundary values of the external potential  ), but also the boundary values of the 

gradient  inside of S, while those boundary values can be regarded as known only outside of S. 

In order to free oneself from those unknown boundary values, one replaces 1 / R in (21) with 

another function  of the two arguments r (radius vector of the point P) and r, which will become 

identical to 1 / R when the distance PP  becomes infinitely small (up to terms that will remain 

finite, and are thus irrelevant), satisfies the Laplace equation 2 = 0 for all r, just like 1 / R, and 

vanishes for those r that belong to the points on the surface S. In place of (21.a), one will then get 

the formula: 

 (r) = − 
1

( , )
4

n dS 


 r r ,    (21.c) 

 

which can serve to calculate the potential inside of S from its boundary values (1). The function 

( , ) r r  is called the Green function of the surface S. One can easily prove that it is symmetric in 

both arguments r and r, just like 1 / R. In order to prove that we consider the integral: 

 

1 2( , ) ( , ) dV     r r r r , 

 

in which 
1

r , 
2

r  mean two points that lie inside of S, and V   is the volume that is bounded by S, 

on the one hand, and the small surfaces 1 and 2 that enclose that point, on the other. By means 

of the transformation (20), instead of (21), that will give the equation: 

 

1 1 2 21 2 2 1 1 1 2 2 1 2( ) ( )d d           −   +  −     = 1 2 2 1( )dS     −  , 

 
 (1) In the simplest case where the external potential   is replaced with a point-charge e that is found at the point 

P (r) inside of S, we will have   =   = e / R  (R = P P

) such that the formula (21) will reduce to: 

 

1
( ) ( , )

4
n

e
dS

R
 



= − r r r . 

 

That corresponds to a surface distribution of electricity with a density of: 

 

( , )
4

n

e
 



= −  r r . 

 

Therefore, the total value of the equivalent surface charge: 

 

( , )
4

n

e
dS dS 



= −   r r  

will be equal to e, as is easy to see. 
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in which we have set 1 = 
1( , ) r r  and 2 = 

2( , ) r r , to abbreviate. The integral on the right-

hand side vanishes due to the boundary condition 1  = 2  = 0, and the one on the left reduces to 

the difference: 

4 2,1 − 4 1,2 = 
2 1 1 24 [ ( , ) ( , )]     −r r r r   

 

in the limits of 1 → 0 and 2 → 0. One will then have: 

 

 (r2, r1) =  (r1, r2) .       (21.d) 

 

In the special case of the spherical surface, the Green function will have the following form: 

 

 (r1, r2) = 
1

1 1a

R r R
−


, 

 

in which a means the radius of the sphere r1 means the radius vector that points from the center of 

the sphere to the point P1, R means the distance P1 P2, and R   means the distance 1 2P P . Therefore, 

1P   denotes the point that is conjugate to P1 and lies outside of the spherical surface. In fact, P2 lies 

on S, so  (r1, r2) must vanish, from (12.a) (since QA = P1 P2, Q A  = 1 2P P , and  = r). Moreover, 

 satisfies the Laplace equation (2 = 0) as a function of r2 and coincides with 1 / R as r2 → r1, 

in practice. With the use of the relation 1
r  = 

2

12

1

a

r
r  [cf., (12.b)], one can easily convince oneself of 

the symmetry relative to r1 and r2 . 

 In the general case of an arbitrary surface S, the determination of the Green function in the 

form of a closed, analytical expression is impossible. However, if it is known then one can calculate 

the effective charge density on S by means of the formula (§ 17): 

 

 = 
1

( )
4

n n 


 − = − 
2

1 1
( , )

(4 ) 4
n n ndS  

 

    −  r r . 

 

Therefore, the potentials   and  can be represented by the same surface integral ( / )R dS . 

 In the foregoing, we have assumed that the external potential was known and sought to replace 

internal system of charges that created it with a surface charge. In the opposite case, when the 

potential  is given inside of S and the external charges that create it are to be replaced with an 

equivalent surface charge, we must initially look for a potential function   in the external space 

that satisfies the equation 
2  = 0 and is identical to  on S. In that way, that problem can be 

reduced to the one that was considered before, in which one imagines that S is enclosed within a 
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very large external surface S   that will later be shifted to infinity, while the surface  contracts to 

the (external) point P  in question. However, we cannot go further into those questions here. 

 

 

§ 7. – Equivalent surface currents. 

 

 In the previous sections, we spoke of electric charges and electric fields. However, the results 

obtained will also remain true for magnetic fields when we imagine that the latter are created by 

fictitious magnetic poles. However, it is easy to rid ourselves of that fiction and replace the 

magnetic poles with equivalent electric currents. 

 In the case of a multipole, it suffices to, e.g., exclude “zero-order” poles and treat “first-order” 

poles, i.e., mathematical dipoles, as the elementary currents. In that way, one can replace the scalar 

potential of an 
thn -order multipole ( )n  with an equivalent vector potential A(n). If ( )n  can be 

represented in the form 
( )n = ( 1)( ) n

n  −a , where 
2 ( 1)n −  = 0, then that will give simply: 

 

A(n) = ( 1)n

n  −a ,     (22) 

 

since one will then have rot A(n) = − 
( 1)n −  (cf., § 8, Chap. III). 

 However, the introduction of the vector potential in place of the scalar potential is usually 

inappropriate. 

 When considering the magnetic field outside (inside, resp.) a closed surface S that is created 

by an internal (or external) system of currents, one can introduce an equivalent surface current 

instead of the equivalent surface distributions of “magnetic charges.” The surface density of that 

current can be determined in the same way as the density of surface current. If one applies the 

general formula: 

dS n H  = rot dV H  = 4 dV  j  

 

to an infinitely-small cylinder that includes the element dS of the surface in question and whose 

base surfaces are parallel and equal to that element then one will get: 

 

4 k = n  (H – H)           (23) 

 

in the limiting case of vanishing height of the cylinder. In that equation, k means the surface density 

of the electric current (according to dS k  = dV j ). H and H are the magnetic field strengths on 

the outer and inner sides of dS. 

 Note that relationship between H and H that is at the basis for formula (23) is completely 

different from the corresponding relationship between the electric field strengths E and E. In fact, 
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since the magnetic field satisfies the equation div H = 0 in all of space, the inner product must 

satisfy: 

n  (H – H) = 0 ,     (23.a) 

 

i.e., the normal components of the magnetic field strengths cannot make a jump upon crossing the 

surface S. By contrast, equation (17) will be valid for the electric field strength in that case, which 

we can also write in the form: 

n  (E – E) = 4  ,     (23.b) 

as well as the equation: 

n  (E – E) = 4  ,     (23.c) 

 

which corresponds to the vanishing of the rotation of the vector E in all of space and expresses the 

fact that the tangential component of the electric field strength can possess no discontinuity on S. 

 If one would then like to interpret the given external field H that is created by an unknown 

internal system of currents as the field of a surface current that is distributed on S then the field 

inside of S must be determined in such a way that the condition (23.a) is fulfilled. 

 When the external field can be represented by means of a scalar potential  (1), one can also 

derive the corresponding “conjugate” internal field H from a scalar potential . In that way,  must 

satisfy the Laplace equation (2 = 0) inside of S and the condition that: 

 

n  = n        (24) 

 

on the surface itself, which now replaces the previous condition that   =  . Since the magnetic 

field is source-free, moreover, the integral must be: 

 

n dS  = 0 .     (24.a) 

 

As far as the condition   =   is concerned, it cannot exist in the case considered, i.e., the 

potential must suffer a jump (Chap. III, § 9): 

 

 −  = 4 im       (24.b) 

 

on the surface S. That corresponds to a magnetic double layer with a density (i.e., moment per unit 

area) of im. If that quantity were known then one could represent the two potentials  and   by 

the integral: 

1
m ni dS

R

 
  

 
 .     (24.c) 

 
 (1) That is always the case when the magnetic lines of force do not close outside of S.  
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 Here, we would like to treat only the simplest case in which S is a spherical surface. We can 

then represent   in the form: 

  = 
1

n

n
n

H

R +
 ,     (25) 

 

in which the coefficients Hn are regarded as known. If we correspondingly set: 

 

 = 
2 1

nn

n
n

H
R

a +


      (25.a) 

 

then the initially-unknown coefficients nH   can be obtained from the relation: 

 

1

2 1

nn

n

n H
R

a

−

+


  = − 

( 2)

( 1) n

n

n H

R +

+


 , R   = R = a , 

 

which follows from (24), i.e.: 

nH   = − 
1

n

n
H

n

+
 .     (25.b) 

 

From (24.b), that corresponds to the formula 4 im = −
1

2 1
nn

n
H

n a +

+
 . If (25) reduces to the first-

order term (so (0)  must always be equal to zero), i.e., if one has: 

 

  = 
3R





mR
 

then from (25.b) and (25.a), one will have: 

 = −
3

2

a

mR
. 

 

It will follow from this that a homogeneous magnetic field H = 
32 / am  prevails inside of the ball, 

while one has: 

H = 
3

1

R
[− m + 3 R (m R)] 

 

outside of it. From (22), the scalar potentials   and  correspond to the vector potentials: 

 

A = 
3

1

R



m R , A = 

3

1

a
m R , 
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resp. We get the surface density k of the current at a point on the sphere with the radius vector a 

from (23): 

k = 
4

3

4 a
m a . 

 

That formula shows that the field in question can be generated by rotating the spherical surface, in 

the event that the latter is uniformly charged. In fact, if we denote the angular velocity by o and 

the (constant) surface density of electric charge by  then the current density at the point a must 

be expressed by the formula: 

k = 
c


o a  

 

(since o  a is the linear velocity of the corresponding surface element). A comparison of that 

formula with the foregoing one will give the relation: 

 

m = 44

2
a

c

 
o , 

 

which says nothing but the fact that m is the resultant magnetic moment of the rotating charged 

sphere. Indeed, by definition, one will have: 

 

m = 1
2

dS a k , 

 

which is identical to the cited formula since k = 
c


o a  and a k  = 2{ ( ) }a

c


−o ao a . 

 

 

§ 8. – Induced electric and magnetic moments. 

 

 To conclude this chapter, we must briefly consider the question of what sort of changes the real 

electric (magnetic, resp.) system will suffer under the action of external fields. We understand a 

“real system” to be one that consists of any material bodies or bodies that are composed of a 

number of positive and negative electrons. As we have seen above, such a system can always be 

replaced with a set of multipoles of varying order. Up to now, we have treated those multipoles as 

having been “given,” i.e., unchanging, or fixed. However, just as the real fixed body is not 

absolutely fixed in a mechanical context but will suffer small deformations under the influence of 

external forces, they are also not absolutely fixed in an electric (and magnetic) context. If one 

introduces any body into an external electric field then the opposite charges that are stuck in that 

body must experience oppositely-directed forces. Those forces must produce small displacements 
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of the charged particles up to the point that the internal electric forces that they would require (in 

analogy with elastic stresses) attain equilibrium with the external forces. 

 One cares to call the “electric deformation” of a body that was just suggested polarization. 

Phenomenologically, one can characterize it by the change in the electric moment of the body 

1 2 3( , , )e n n n  or by the additional multipoles of various orders that must be added in order to produce 

the altered, “deformed” multipole. 

 Ordinarily, one considers only the change in the first-order moment (or multipole). In that way, 

one assumes that the additional or “induced” electric moment is proportional to the electric field 

strength E (of the external field), in analogy with Hooke’s law for elastic deformations. 

 Since the first-order electric moments e1, e2, e3 are nothing but the components of the dipole 

moment, which corresponds to a first-order multipole, one can consider the aforementioned 

additional moments, which we will denote by m1, m2, m3, to be the components of the induced 

dipole moment p that measures the electric polarization of the body in question. The simplest 

linear relation between p and E is expressed by the formula: 

 

p =  E .             (26) 

 

That formula says that p has the same direction as the vector E and is proportional to it. Therefore, 

it will be assumed that the “polarization coefficient”  is an essentially-positive quantity. That 

means that the positive and negative charges will be shifted in the direction of the external force 

that acts upon them. 

 Formula (26) corresponds to Hooke’s law for ordinary isotropic bodies. A body for which that 

formula is valid is called “electrically isotropic.” In the general case of an electrically-anisotropic 

body, one must replace (26) with the formula: 

 

pi = 
3

1

ik k

k

E
=

   (i, k = 1, 2, 3),           (26.a) 

 

where the ik represent the components of the so-called “polarization tensor” 2 relative to the 

coordinate system in question. For a coordinate system that is fixed in the body, those components 

are regarded as constant parameters that characterize the body. 

 The polarization tensor can generally be treated as symmetric. Correspondingly, the coordinate 

system can always be chosen in such a way that the non-diagonal components of 2 will all vanish 

(cf., Introduction). In that way, (26.a) will reduce to: 

 

p1 = 11 E1 , p2 = 22 E2 , p3 = 33 E3 .   (26.b) 

 

 The potential energy of a fixed dipole with a moment of p relative to the system that creates 

the field E is known to be equal to – p E. If the moment p is induced by the field itself then one 

must also consider the work that is done by the internal forces. Since those internal forces increase 
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linearly with p and compensate for the field E, the aforementioned work is expressed by the 

formula (1): 

U   = 1
2

 p E . 

 

One can interpret the quantity U   as the internal energy of the polarized body. It corresponds to 

the internal elastic energy of a mechanically-deformed body. If one would like to calculate the 

additional mechanical effect that originates in the polarization then the energy function will not be 

− p E, as with fixed dipoles, but the sum − p E + U  , i.e.: 

 

U = − 1
2

 p E = − U  .     (27) 

 

That can also be seen directly when one starts from the expressions for the torque p  E or force 

( grad)p E , which are also valid here, and defines the corresponding energy function in the usual 

way while considering the proportionality between p and E. If one sets p =  E, for the sake of 

simplicity, then one will have: 

 

( grad)p E  =  (E grad) E = 21
2

grad E = − grad U , 

 

from which it will follow that: 

U = − 21
2

E .           (27.a) 

 

Note that the torque vanishes in this special case (viz., electric isotropy). In the general case, when 

the principal components of the polarization tensor 11, 22, 33 are different from each other, from 

(26.b), the components of the rotational moment can be expressed by: 

 

  (p  E)1 = (22 − 33) E2 E3 , etc. 

 

As an example, we shall imagine that a small spherical particle whose normal electric moments 

are all equal to zero is found at a distance R from another charged particle. If the charge of the 

latter is equal to  then one will have E = 
2/ R , and as a result: 

 

U = − 
2

42R

 
. 

 

That energy function corresponds to a force of attraction: 

 
 (1) We imagine that p is the length of a dipole that consists of a fixed negative charge – 1 and a displaceable 

positive charge + 1. The internal electric force E that acts on the latter is proportional to the displacement p. We will 

then get   E dp = 1
2
Ep for the work done by polarization. 
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f = − 
2

5

2

R

 
, 

 

which is inversely proportional to the fifth power of distance. One has to deal with such forces in 

the elementary experiments regarding the attraction that a charged body exerts on a neighboring 

neutral body. If the field E is created by a body that possesses no charge, but a natural dipole 

moment m, then from (26.a) and (26.b), Chap. III: 

 

2E  = 
2

2

6
(1 3cos )

m

R
+ , 

from which it will follow that: 

U = − 
2

2

6
(1 3cos )

2

m

R


+ , 

and since: 
2 2cosm   = 

2 2( ) / RmR  = (m R0)
2, 

one will have: 

f = − 2

0 0 0 07

3
[ 4( ) ( ) ]m

R


+ −R mR R R m m  , 

or ultimately: 

f = − 2

0 0 07

3
[ ( ) 4( ) ]

R


  −m R m mR R  . 

 

In this case, which can be realized, e.g., by the action of an elementary current (or magnet) on iron 

filings, we then have a force of attraction that is inversely proportional to the seventh power of 

distance. 

 Note that, no matter what the nature of the system that creates the field, the force f = 

( )21
2

grad E must always correspond to an attraction, and indeed in the direction of the most-

rapid increase in 2E  (assuming that  > 0). That direction does not generally coincide with the 

direction of the radius vector R. 

 Formula (26) can be written in the form: 

 

pi = − 
ix







. 

 

It seems natural to generalize that relation to induced moments of higher order as follows: 

 

p (n1, n2, n3) = − 
31 2

( )

1 2 3

n
n

nn n
x x x






  
.    (28) 
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The derivative of the potential on the right-hand side is calculated for the point P of the body 

considered relative to which the moments e (n1, n2, n3) and p (n1, n2, n3) were determined. 

 However, that Ansatz is hardly permissible since the induced moments of various orders (just 

like the natural ones) must be coupled with each other by certain relations that depend upon the 

structure of the system in question. Those relations can be taken into consideration by the general 

Ansatz: 

p (n1, n2, n3) = − 
31 2

1 2 3

1 2 3 1 2 3

, , 1 2 3

( , , ; , , )
n

nn n
n n n

n n n n n n
x x x






 
  


  

  
 ,       (28.a) 

 

in which the coefficients 1 2 3 1 2 3( , , ; , , )n n n n n n     define a polarization tensor of rank n + n = n1 + n2 

+ n3 + 1 2 3n n n  + +  . Both expressions (28) and (28.a) for the components of the “polarization of 

order n” must correspond to an energy: 

 

U = 
31 2

1 2 3

1
1 2 332

1 2 3

( , , )
n

nn n
n n n n

p n n n
x x x



+ + =



  
 .           (28.b) 

 

 However, we cannot go further into that topic at this point. 

 

__________
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