
 

 

 

 

 

 

 

 

 

 

 

 

PART THREE 

 

 

THE THEORY OF RELATIVITY 





CHAPTER EIGHT 

 

FOUNDATIONS OF THE THEORY OF RELATIVITY 
 

 

§ 1. – Space-time symmetry of the equations of electromagnetism. 

 

 In Chap. VI, § 4, we saw that the differential equations for the electromagnetic potential can 

be written in a form that is completely symmetric with respect to the four indices when we combine 

time multiplied by 1c−  = i c as the fourth coordinate x4 with the three spatial coordinates x1, x2, 

x3 and treat the scalar potential multiplied by i as the corresponding component of a four-

dimensional vector potential. In so doing, we have restricted ourselves to the case of a point charge. 

We would now like to examine the case of a continuous distribution of electric charge and current 

with volume densities  (j, resp.). The quantities  and j are known to be coupled with each other 

by the relation: 

div j + 
1

c t




 = 0 , 

 

which expresses the law of conservation of electricity. If we introduce an arbitrary rectangular 

coordinate system X1, X2, X3, then that equation will take the form: 

 

31 2

1 2 3

1jj j

x x x c t

  
+ + +

   
 = 0 , 

or with the notations: 

i c t = x4,      (1) 

i  = j1 ,               (2) 

we can write: 
4

1

k

k k

j

x=




  = 0 .      (2.a) 

 

That equation is entirely analogous to equation (19.a), Chap. VI, which we will write out again 

here for the sake of completeness. With the notation: 

 

i  = A4 ,      (3) 

we will then have: 
4

1

k

k k

A

x=




  = 0 .      (3.a) 

 

The differential equations for the electromagnetic potentials: 
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2A − 
2

2 2

1

c t





A
 = − 4 j , 2 − 

2

2 2

1

c t




 = − 4  , 

 

can now be combined into the system of equations: 

 
24

2
1

k

k k

A

x=




  = − 4 jk  (k = 1, 2, 3, 4).  (4) 

 Moreover, from the formulas: 

 

E = − grad  − 
1

c t





A
,  H = rot A , 

 

we will get the components of the electric and magnetic field strengths: 

 

  Ek = − 
1 k

k

A

x c t

 
−

 
 = 

2

4

k

k

A
i i

x x

 
−

 
 = 4

4

k

k

AA
i

x x

 
− 

  
 (k = 1, 2, 3) 

and 

H1 = 3 2

2 3

A A

x x

 
−

 
, H2 = 31

3 1

AA

x x


−

 
, H3 = 2 1

1 2

A A

x x

 
−

 
. 

 

 It will then be possible to regard the six quantities: 

 

1 23 2 31 3 12

1 14 2 24 3 34

, , ,

, ,

H H H H H H

i E H i E H i E H

= = = 


− = − = − = 
   (5) 

 

as the components of a four-dimensional skew-symmetric tensor that are given by differentiating 

the potential components with respect to the coordinates according to the formulas: 

 

Hkl = l k

k l

A A

x x

 
−

 
 = − Hlk     (k, l = 1, 2, 3, 4).     (5.a) 

 

 We would now like to replace the components of the electric and magnetic field strengths in 

Maxwell’s fundamental equations I and II, § 3, Chap. V, with the tensor components Hkl . 

 That will give the first group, namely: 

 

rot E + 
1

c t





H
 = 0, div H = 0 , 

in the form of: 

3 2 1

2 3

1E E H

x x c t

  
− +

  
= 34 32 23

2 3 4

H H H
i

x x x

   
+ + 

   
 = 0 , 
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31 2

3 1

1EE H

x x c t

 
− +

  
= 43 3114

3 1 2

H HH
i

x x x

  
+ + 

   
 = 0 , 

32 1

1 2

1 HE E

x x c t

 
− +

  
= 24 41 12

1 2 4

H H H
i

x x x

   
+ + 

   
 = 0 , 

  31 2

1 2 3

HH H

x x x

 
+ +

  
=   23 31 12

1 2 3

H H H

x x x

  
+ +

  
   = 0 , 

 

in coordinate notation, i.e., as a unified system of equations: 

 

ik kl li

l i k

H H H

x x x

  
+ +

  
 = 0 ,             (6) 

 

in which i, k, l are three different numbers from the sequence 1, 2, 3, 4. Note that equations (6) 

will also remain valid when two or all three of those numbers are equal to each other. For example, 

for k = l, one will have ik ki

k k

H H

x x

 
+

 
 = 0 and kk

i

H

x




= 0 since Hik = − Hki and Hkk = 0. 

 In the same way, we will get the second group of Maxwell equations, namely: 

 

rot H − 
1

c t





E
 = 4 j ,  div E = 4  , 

in the form: 

3 2 1

2 3

1H H E

x x c t

  
− −

  
= 1312 14

2 3 4

HH H

x x x

 
+ +

  
 = 4 j1 , 

31 2

1 2 3

EE E

x x x

 
+ +

  
= − 41 42 41

1 2 3

H H H
i

x x x

   
+ + 

   
 = 4  , 

i.e.: 
4

1

kl

k l

H

x=




  = 4 jk  (k = 1, 2, 3, 4).      (7) 

 The formulas: 

j = rot M + 
1

c t





P
,  = − div P 

 

can be represented in a completely-analogous way [cf., (21) and (19.a), Chap. V]. In that way, the 

magnetic and electric polarization play the same roles as H / 4 and – E / 4, resp. If one sets: 

 

1 23 2 31 3 12

1 14 2 24 3 34

, , ,

, ,

M P M P M P

i P P i P P i P P

= = = 


= = = 
         (8) 

then one will have: 
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jk = 
4

1

kl

k l

P

x=




 .      (8.a) 

 

Just like Hkl = − Hlk, one can regard the quantities Pkl = − Plk as the components of a four-

dimensional skew-symmetric tensor. Recall that despite their formula analogy and equal 

dimension, they are generally completely different since the quantities Pkl cannot satisfy an 

equation of the form (6). 

 Since the vectors Z and Z (electric and magnetic polarization potential) relate to the vector 

potential A and the scalar potential  in just the same way that P and M (= P) relate to j and , 

resp., one can further set: 

1 23 2 31 3 12

1 14 2 24 3 34

, , ,

, , ,

Z Z Z Z Z Z

i Z Z i Z Z i Z Z

   = = =


= = = 
        (9) 

and 

Ak = 
4

1

kl

k l

Z

x=




 ,      (9.a) 

corresponding to (8) and (8.a). 

 From (20) and (22), Chap. V, the components of the electromagnetic polarization potential that 

arises from combining Z and Z will then satisfy the differential equations: 

 
24

2
1

kl

k k

Z

x=




 = − 4 Pkl .           (9.b) 

 

From (9.a) and (5.a), one can express the components of the electromagnetic field tensor Hkl in 

term of the components of the polarization potential as follows: 

 

Hkl = 
4

1

lh kh

h h k l

Z Z

x x x=

  
− 

   
  .     (9.c) 

 

Those expressions can coincide with (9.b) only when one has lh kh

k l

Z Z

x x

 
−

 
 = lk

h

Z

x




. Those relations 

can be written in the form: 

lh hk lk

k l h

Z Z Z

x x x

  
+ +

  
 = 0 , 

 

which is identical to equations (6). However, in reality, they are not fulfilled since from (9.b), 

corresponding equations for Pkl would then follow from them. 

 The known expression for the total force per unit volume (or the impulse per unit time f =  E 

+ j  H) and the corresponding work l = c j E can be combined into the components of a “four-

vector,” and indeed one has: 
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  f1 =  E1 + j2 H3 – j2 H2 = H12 j2 + H13 j3 + H14 j4 , … 

 

l

c
= j1 E1 + j2 H2 + j3 H2 = − i (H41 j1 + H42 j2 + H43 j3) ,  

or with the notation: 

i l

c
 = f4 ,      (10) 

fk = 
4

1

kl l

k

H j
=

   (k = 1, 2, 3, 4).         (10.a) 

 

 If one substitutes jl = 
4

1

1

4

kn

n n

H

x =




  in that, from (7), then one will have: 

 

fk = 
4 4

1 1

1

4

kl
kl

l n n

H
H

x = =




  = 

1 1
( )

4 4

kl
kl ln ln

l n l nn n

H
H H H

x x 


−

 
  . 

 

Moreover, switching the summation indices will give: 

 

kl
ln

l n n

H
H

x




  = kn

nl

n l l

H
H

x




 , 

 

or due to the fact that Hln = − Hnl and Hkn = − Hnk : 

 

kl
ln

l n n

H
H

x




  = nk

ln

n l l

H
H

x




  = 1

2

kl nk
ln

n l n l

H H
H

x x

  
+ 

  
  , 

 

and ultimately from (6): 

 

kl
ln

l n n

H
H

x




  = − 1

2

ln
ln

l n k

H
H

x




 = − 21

4 ln

l nk

H
x

  
 

  
 . 

 We then get: 

fk = 21 1
( )

4 16
kl ln ln

l n l nn k

H H H
x x 

   
+  

   
  . 

 

If one introduces the relationships: 

kn = kl L + 
1

4
kl ln

l n

H H


 ,            (11) 
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L = 21

16
ln

l n

H


  = 2 21
( )

8
H E


− ,    (11.a) 

 

kl = 
1 for

0 for

k n

k n

=



       (11.b) 

then one will have: 

fk = 
4

1

kn

n nx=




   (k = 1, 2, 3, 4).   (12) 

 

One can easily convince oneself that the system of formulas that one just obtained is identical to 

the system of formulas: 

f = − 
t





g
 − div 2T , l = − 

t




 − div K , 

 

which were derived in §§ 3 and 4 of the previous chapter. 

 Indeed, the scalar , the vectors g and K, and the three-dimensional tensor 2T are combined 

into a symmetric four-dimensional tensor whose components are given by (11). The following 

relations then exist (cf., Chap. VII, §§ 3 and 4): 

 

 11 = 2 2 2

12 13 14

1
( )

4
L H H H


− + +  = 2 2 2 2 2

3 2 1

1
(2 2 2 2 )

8
H E H H E


− − − +  

 = 2 2 2 2 2 2

1 2 3 1 2 3

1
( )

8
H H H E E E


− − + − −  = − T11 ; 

22 = − T22 ; 33 = − T33 ; 

 

 12 = 13 23 14 24

1
( )

4
H H H H


− +  = 2 1 1 2

1
( )

4
H H E E


− − −  = − T12 , 

23 = − T23 ; 31 = − T31 ; 

 

14 = 12 42 13 43

1
( )

4
H H H H


− +  = 2 3 3 2

1
( )

4
i E H i E E


− − = 1[ ]

4

i


E H  = −

i

c
 K1 = i c g1 , 

24 = −
i

c
 K2 = − i c g2  ; 34 = −

i

c
 K3 = − i c g3  ; 

 

 44 = 
2 2 2 2 2

41 42 43

1 1
( ) ( )

8 4
H E H H H

 
+ − − + +  = 

2 21
( )

8
H E


+  =  , 

 

which can be represented by the matrix: 
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11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

    
 

    
    
 
    
 

 = 

2

1

i c

i c


 − −
 
 
 
 

T g

K
 .            (12.a) 

 

When one considers that matrix, one can write the first three equations in (12) in the form: 

 

 fk = − 1 2 3

1 2 3

k k k kT T T g

x x x t

   
− − −

   
  (k = 1, 2, 3), 

and the fourth one in the form: 

l = − i c f4 = − 31 2

1 2 3

KK K

x x x t

  
− − −

   
. 

 

 The cited representation of the basic quantities and equations of the electromagnetic field, 

which goes back to H. Minkowski, can be interpreted in a purely-formal mathematical way as 

follows: 

 We imagine an (in reality, nonexistent) four-dimensional space that relates to three-

dimensional space in the same way that the latter does to the plane. We further imagine a 

rectangular coordinate system X in that space, i.e., we draw four mutually-perpendicular axes X1, 

X2, X3, X4 . We will clarify the analytical meaning of the “orthogonality” of the four axes in the 

following sections. We shall initially remark that it corresponds to the assumed orthogonality of 

the spatial axes X1, X2, X3, in conjunction with the symmetry of the cited equations relative to all 

four indices. In that way, we use the fourth axis as a “graphical representation” of time, multiplied 

by ic, so the four quantities x1, x2, x3, x4 = ict are collectively the rectangular components of a four-

vector” r that characterized the position and time of any event. We accordingly introduce the 

following four-dimensional vectors: j (four-current), A (four-potential), f (impulse per unit 

volume in four-dimensional space), and the four-dimensional tensors: 2H (skew-symmetric field 

tensor) and 2 (symmetric impulse or stress-energy tensor). Finally, we define the four-

dimensional operator , which corresponds to the ordinary operator , as a symbolic “four-

vector” with the components 
1x




, 

2x




, 

3x




, 

4x




. The basic equations of the electromagnetic 

field can then be represented in a coordinate-free notation as relations between the four-

dimensional vectors and tensors above. 

 Equations (2.a), (3.a), and (4) can be written with no further analysis in the form: 

 

2

0,

0,

4 ,

= = 


= = 
= − 

div 

div 

j j

A A

A j

      (13) 
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which is completely-analogous to the corresponding equations for a time-constant magnetic field 

(and a stationary electrical current). 

 We would like to represent formulas (5.a), (6), and (7) as follows: 

 
2

2

2 2

,

0,

4 .

= =


= 
= = 

 rot 

rot 

div 

H A A

H

H H j

      (13.a) 

 

 Here, the analogy with the corresponding three-dimensional (“time-less”) formulas will be 

spoiled by the fact that a skew-symmetric four-dimensional tensor (in contrast to the three-

dimensional one) is not congruent to a vector. In fact, the tensor 2H is determined by six 

independent quantities, not four, from which its twelve non-vanishing pair-wise equal and opposite 

components Hkl = − Hlk are constructed. Following Minkowski, one cares to refer to it as a six-

vector, i.e., as a vector that is defined by its projections onto the six coordinate planes (X2 X3, X3X1, 

X1 X2, X1 X4, X2 X4, X3 X4), not onto the four coordinate axes (1). 

 The operation div 2H that appears in (13.a) corresponds to the divergence of an ordinary three-

dimensional tensor. In that way, one will have: 

 

(div 2H)k = 
4

1

kl

l l

H

x=




  

(cf., Introduction, § 23). 

 The operation rot 2H corresponds to the rot of a four-vector in the sense that it will take a 

skew-symmetric tensor of rank two to a tensor of rank three whose non-vanishing components are 

on the left-hand side of equations (6). Those four quantities can be regarded as the components of 

a four-vector that is congruent to the aforementioned third-rank tensor. 

 If one introduces a skew-symmetric tensor 2H that is “dual” to 2H by way of the matrix: 

 

12 13 14

21 23 24

31 32 34

41 42 43

0

0

0

0

H H H

H H H

H H H

H H H

 
 
 
 
 
 

 = 

43 24 32

34 41 13

42 14 21

23 31 12

0

0

0

0

H H H

H H H

H H H

H H H

  

  

  

  

 
 
 
 
  
 

 

then one will have: 

23 31 12

1 2 3

H H H

x x x

  
+ +

  
 = 4341 42

1 2 3

HH H

x x x

   
+ +

  
 = (div 2H)4 , 

43 3224

2 3 4

H HH

x x x

 
+ +

  
 = 1312 14

2 3 4

HH H

x x x

  
+ +

  
 = (div 2H)1 , 

 
 (1) Note that in the case of two dimensions, a skew-symmetric tensor reduces to a scalar.  
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13 3441

3 4 1

H HH

x x x

 
+ +

  
 = 23 24 21

3 4 1

H H H

x x x

    
+ +

  
 = (div 2H)2 , 

21 42 14

4 1 2

H H H

x x x

  
+ +

  
 = 34 31 32

4 1 2

H H H

x x x

    
+ +

  
 = (div 2H)3 , 

 

such that the equation rot 2H = 0 can be replaced with: 

 

div 2H = 0 . 

 

 Entirely similar formulas are true for the skew-symmetric tensors 2P and 2Z. We do not need 

to write them out again. 

 According to formulas (8.a), we further have that the components of the four-impulse are: 

 

f = 2H  j ,              (14) 

 

in which the inner product of the tensor 2H and the vector j is defined by analogy with the 

corresponding product of three-dimensional quantities [Introduction (37)]. Finally, equations (12) 

can be written in the form: 

f = div 2 ,           (14.a) 

from which, (9) and (9.a) will imply that: 

 

2 = 2
1

8
(2H  2H) +

1

4
(2H  2H)    (14.b) 

[cf., Introduction (39)]. 

 Note that when one projects four-dimensional vectors onto the time axis, one will get ordinary 

scalar quantities, while projecting onto ordinary space will yield three-dimensional vectors that are 

very closely connected with those scalars physically. The components of four-dimensional tensors 

along the “spatial axes” correspondingly define ordinary three-dimensional tensors, while their 

components along one spatial axis and the time axis define ordinary vectors, and their component 

along the time axis is a scalar [cf., the matrix (12.a)]. 

 In what follows, we will mainly employ the coordinate-wise representation of electromagnetic 

quantities and equations. We have formulated them in a coordinate-free notation only in order to 

highlight their analogy with the ordinary vectorial equations for time-constant magnetic and 

electric field. That formal analogy allows us to treat the electromagnetic phenomena in ordinary 

three-dimensional space that depend upon time as static (i.e., time-independent) phenomena in a 

fictitious four-dimensional space. 
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§ 2. – The Lorentz transformation. 

 

 Ordinary Euclidian space is isotropic, i.e., all directions are regarded as completely equivalent. 

One can also refer to that physical equivalence of the various directions as their relativity in the 

sense that any direction can be determined only relative to other directions that are assumed to be 

known. An absolutely determined direction that is distinguished by special physical properties 

cannot be given at all. 

 It is just that isotropy of space that guarantees the possibility of a coordinate-free formulation 

of the physical laws, and in particular, the laws of electromagnetic phenomena, as relationships 

between vectorial (as well as scalar and tensorial) quantities. If a direction in space were physically 

distinguished (1) then one could formulate the aforementioned laws only with respect to that 

direction. Obviously, it is possible, and in many cases useful, to replace that coordinate-free 

formulation of the physical laws with a coordinate-wise one. In that way, all (three-dimensional) 

vectors will be represented by their components relative to three arbitrarily-chosen axes or 

directions. We have referred to those components as variant scalars in the Introduction since their 

values are determined only relative to the chosen coordinate system and will vary under the 

transition from one coordinate system to another. 

 Since all coordinate systems are regarded as equivalent due to the relativity of directions, it 

would be absurd to ask which values of the components of a certain vector are the “correct” or 

“true” values. The triples of scalars (A1, A2, A3) and 1 2 3( , , )A A A   , which represent the components 

of one and the same vector A relative to two different coordinate systems X and X  , are completely 

equivalent. The only thing that can and must be of interest to us is the relationship between the 

two scalar triples. If the quantities (A1, A2, A3) are assumed to be known and determine the 

directions of the X  -axes relative to X by the corresponding cosines of the angles ii   then the 

quantities 1 2 3( , , )A A A    must be expressible in terms of the Ai and ii   in some way. In other words, 

one must establish only the formulas by which the components of a vector transform under any 

sort of changes in the coordinate directions. 

 Now, the following should be emphasized in particular: The components of different vectors 

transform in the same way (i.e., according to the same formulas), or on other words: The 

corresponding components of the different vectors are covariant scalar quantities. That remark 

initially seems to be entirely trivial and would follow directly from one’s intuition. However, in 

reality, it has a much deeper sense and defines the analytical expression for the principle of the 

invariance of physical laws. By that, we mean: The physical laws can be expressed by equations 

that couple different vector quantities (as well as invariant scalars, tensors, etc.) with each other. 

In a coordinate representation of the vectors, those equations will have the following form: 

 

Ai = Bi , 

 

in which A and B mean two physically-different vectors. We imagine, e.g., that A is the product 

of the mass of a particle with its acceleration, and B is the external force that acts on that particle. 

 
 (1) For example, as one believed the “vertical” direction to be in the Middle Ages. 
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If the components of the acceleration and the force are not covariant quantities then the equation 

above cannot be true independently of the choice of the coordinate directions. Analytically, the 

relativity of those directions, namely, their physical equivalence, means nothing but the covariance 

of the corresponding vector components for all coordinate transformations. The coordinate 

directions are relative, and the vector components are variant. However, the physical laws that 

couple those vector components with each other must be absolute and invariant. That requirement 

will be fulfilled by the covariance of the corresponding vector components. Obviously, the same 

thing is true for not only vectors, but for tensor quantities of arbitrary rank. 

 In what follows, we will restrict ourselves to rectangular coordinate systems. As is known, in 

that way, the components of a vector will coincide with its projections, such that we will not need 

to distinguish between the two (as would happen in the general case of skew coordinate systems). 

We have exhibited the transformation formulas for vector and tensor components for this case in 

the Introduction, § 18. Obviously, those formulas will also remain valid when we fix, e.g., the third 

axis and restrict ourselves to coordinate transformations in a plane (e.g., the X1X2-plane). In that 

way, we can treat the component that bears the index 3 as an invariant scalar and treat the ones 

with the indices 1, 2 as the components of two-dimensional vectors. 

 We would now like to take a step in the opposite direction and consider the transformation of 

the coordinate axes and the transformation of the vector and tensor components in the fictitious 

four-dimensional space of the previous section in an entirely analogous way in which the fourth 

axis (viz., the time axis) can no longer be regarded as fixed. 

 We introduce a new coordinate system 1 2 3 4( , , , )X X X X X      in place of the original coordinate 

system X (X1, X2, X3, X4) according to the transformation formulas [cf., Introduction (32.a) and 

(32.b)]: 

ix 
  = 

4

1

ii i

i

x 

=

 ,     (15) 

xi = 
4

1

ii i

i

x  

=

  ,            (15.a) 

 

which must satisfy the orthogonality condition: 

 
2 2 2 2

1 2 3 4x x x x   + + +  = 2 2 2 2

1 2 3 4x x x x+ + +         (16) 

 

identically. That condition will imply the following relations between the transformation 

coefficients: 

ii 
  = ii   (i, i  = 1, 2, 3, 4),       (16.a) 

4

1

ii i k

i

  

=

 = ii   , 
4

1

ki ki

i

  

=

 = ii   ,   (16.b) 

in which one has: 

ii   = 
1 for ,

0 for .

i i

i i

 =


 
    (16.c) 
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 We define those coefficients in accordance with their intuitive geometric meaning in terms of 

ordinary three-dimensional transformations as the cosines of the angles between the old and new 

axes: 

ii   = cos ( , )i iX X 
  = ii 

 . 

 

 We can imagine that the new system X   arises from a “rotation” of the original axis-cross in 

four-dimensional space that preserves orthogonality. 

 Note that those terms, which are connected with the corresponding terms in ordinary analytic 

geometry, are nothing more than words in the case considered that actually carry no geometric 

meaning. However, in that way, we can imagine the corresponding three-dimensional, or even two-

dimensional, structures, and in that way not only better conceptualize the analytical connections, 

but at the same time, better predict them by reasoning by analogy. The quantities x1, x2, x3, x4 and 

1x , 2x , 3x , 4x , which represent the original (new, resp.) coordinates of the various points in X-

space, need to assume not only real or imaginary values, but entirely-arbitrary complex numbers 

(cf., Chap. VI, § 4). 

 We would like to fix those coordinates as the rectangular components of the four-dimensional 

radius vector r. In that way, we would like to establish that the components of the various four-

dimensional vectors (j, A, f) that we introduced in § 1 transform in accordance with the same 

formulas (15), (15.a) as the components of r (so they are covariant). As far as the components of 

the differential operator  is concerned, its covariance is a direct consequence of the orthogonality 

of the transformation that is represented by those formulas (just like in the three-dimensional case). 

The tensor components Hkl, kl shall transform like the product of the corresponding coordinates, 

so they shall be doubly covariant. 

 One can easily show that under those assumptions the fundamental equations of the 

electromagnetic field (2.a)-(10) remain invariant under the transformations that are determined 

by formulas (15)-(15.c). That means: When one expresses the original components in the old 

equations as functions of the new ones, one will get the equations of the same form in those new 

components from that process. 

 We can easily prove that assertion directly. For example, we consider equations (2.a) and (4). 

Since the symbol k  =  / xk and the quantities Ak transform like the xk, we will get from (16) 

that: 
4

1

k k

k

A
=

 = 
4

1

k k

k

A 

=

 , 

and as a result, due to (2.a): 
4

1

k k

k

A 

=

  = 0 . 

 

Moreover, the square of the operator , i.e., the sum 
4

2

1

k

k =

 , obviously represent an invariant 

operator. If we then substitute: 
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jk = 
4

1

kk k

k

j  

=

  and Ak = 
4

1

kk k

k

A  

=

  

 

in (4) according to (15.a) then we will have: 
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k k
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A
=
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2

1

l k

l

A
=

  = 
4 4
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1 1

kk l k

k l

A  
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   = − 
4

1

4 kk k

k

j   

=

 . 

 

Those four equations (k = 1, 2, 3, 4) can be written in the form: 

 
4

1

kk k

k

y  

=

  = 0 , 

 

and the quantities ky  = 
4

2

1

4l k k

l

A j 

=

 +  can be treated as four unknowns. Since the determinant 

of the coefficients kk   is equal to 1 due to the conditions (16.b), those quantities must vanish 

identically, and we will get: 
4

2

1

l k

l

A 

=

 = − 4 kj 
 . 

 

However, the stated invariance of the fundamental equations can also be recognized in a very 

instructive indirect way, and indeed from their symmetry relative to all four indices 1, 2, 3, 4, in 

conjunction with their invariance for those orthogonal transformations for which the fourth axis 

remains fixed, so ones that correspond to an ordinary rotation of the spatial system of axes X1, X2, 

X3. That “spatial” invariance is a direct consequence, and at the same time, the condition for the 

isotropy of the ordinary three-dimensional space of the relativity of all spatial directions; that is 

why it can be assumed. Due to the aforementioned symmetry property of equations (2.a) to (10), 

one can assert that they will also remain invariant when one performs an orthogonal three-

dimensional transformation of the coordinates x2, x3, x4 (instead of x1, x2, x3) and transform the 

corresponding components of all four-dimensional vectors (and tensors) covariantly. However, 

two successive orthogonal transformations of each of the three coordinates will give a 

transformation of all four coordinates that is also orthogonal, i.e., it fulfills the condition (16). 

 With the use of geometric terminology, we can then say that the fundamental equations of the 

electromagnetic field are invariant under all rotations of the four-dimensional system of axes X. 

However, with that, the property of isotropy, namely, the relativity of directions in ordinary space, 

is adapted to the demands of four-dimensional space. In particular, we can consider the “fourth” 

direction, which carries the time coordinates, to be relative (i.e., undetermined) and treat the fourth 

components of the vectors r, j, A, etc., (i.e., time, charge density, scalar potential, which are 

usually regarded as invariant scalar quantities) as variant, just like the spatial components of 

ordinary vectors. The absolute magnitude, or square, of those vectors, e.g., 2 2 2

1 2 3x x x+ +  (viz., the 

square of the spatial distance) will likewise be variant quantities, and only the sum of the squares 
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of all four components, which we can define to be the square of the corresponding four-

dimensional vector, is actually regarded as invariant.  

 Now, one might ask whether that four-dimensional relativity of direction and the four-

dimensional orthogonal transformations that express it analytically have a well-defined physical 

sense, or are they entirely meaningless from a physical standpoint? 

 In order for them to possess an actual physical meaning, it is obviously necessary (but still not 

initially sufficient) that the transformed quantities t = 4 /x i c ,   = 4 /j c ,   = 4 /A i , etc., should 

be real, just like the original ones. 

 One cares to refer to the four-dimensional orthogonal transformations that satisfy that relativity 

condition as the Lorentz transformations (1). 

 In order to clarify the question that was formulated above, we would now like to consider a 

simple Lorentz transformation under which the second and third axis will remain fixed, so it 

corresponds to a “rotation” in the X1X4-plane. In that case, the general transformation formulas 

(15) and (15.a) will reduce to: 

1x  = 11 x1 + 41 x4 , 

4x  = 41 x1 + 44 x4 , 

or 

x1 = 11 1 14 4x x  + , 

x4 = 41 1 44 4x x  + , 

and x2 = 2x , x3 = 3x . 

 We imagine, for the moment, that X4 is an ordinary axis that is perpendicular to X1 and imagine 

that the transformation in question is a rotation through an angle of  in the direction from X4 to 

X1. We will then have 11 = 1 1cos ( , )X X   = cos , and: 

 

  14 = 1 4cos ( , )X X   = sin , 41 = 4 1cos ( , )X X   = − sin , 

  44 = 4 4cos ( , )X X   = cos , 

and as a result: 

1 1 4

4 1 4

cos sin ,

sin cos

x x x

x x x

 

 

 = − 


 = + 
     (17) 

or 

1 1 4

4 1 4

cos sin ,

sin cos .

x x x

x x x

 

 

 = + 


 = − + 
     (17.a) 

 

Therefore, if x4 = i c t, 1x  is be real, and 4x  is imaginary (= i c t , where t  means a real quantity) 

then we must define the angle  to be a pure imaginary quantity. However, we do not need to 

consider that angle itself, but only its tangent. Namely, we set: 

 

 
 (1) From H. A. Lorentz, who introduced them for the first time, and indeed in a three-dimensional notation. 
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tan  = − i  = 
v

i c
,     (17.b)) 

 

in which  = v / c is a real quantity (that corresponds to  = i , tan  = − ). From (17), we will 

then have: 

1x  = cos  (x1 – v t) ,  i c t  = 1cos
v

i c t i x
c


 

− 
 

 , 

i.e., due to: 

cos  = 
2

1

1 tan +
 = 

2

1

1 −
, 

we will have: 

1x  = 1

21

x vt



−

−
, t  = 

2

1

2

/

1

t v x c



−

−
,         (18) 

 

and likewise, from (17.a) [or by solving (18) for x1 and t]: 

 

x1 = 1

21

x vt



 +

−
,  t = 

2

1

2

/

1

t v x c



 +

−
.     (18.a) 

 

 In order to ensure the reality of 1x  and t , it still remains to subject the parameter  to the 

condition that  < 1, i.e., to set: 

v < c .      (18.b) 

 

 The quantity v, just like c, obviously means a speed. In the limiting case that is it is very small 

compared to c (= speed of light), formulas (18) will reduce to: 

 

1x = x1 – v t ,  t  = t ,         (19) 

 

i.e., to the usual formulas for the transition from the original spatial coordinate system (X1, X2, X3) 

to another one 1 2 3( , , )X X X  that has the same orientation and moves with a constant velocity v in 

the positive X1-direction relative to (X1, X2, X3). The origins in the two systems O and O  must 

then coincide at the “initial moment” t = t  = 0. 

 We accordingly get the (1, 4)-components of the “four-current” j and the four-potential A from: 

 

1j  = j1 − 
v

c
 ,    =  ,    (19.a) 

1A  = A1 − 
v

c
 ,   =  .    (19.a) 
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 The (approximate) equations that follow from that covariance principle will likewise coincide 

with the usual formulas for the transformation that is determined by (19). 

 We then see that in the approximation in question, the rotation of the “time axis” X4 (with one 

of the “spatial” axes) through an imaginary angle in four-dimensional space means nothing 

physically besides the transition from the rest state of the spatial system of axes to a uniform, 

rectilinear motion of them. 

  Now since the two axes X4 and 4X   have the same right to be the time axis, one must obviously 

have the same right to regard the spatial coordinate system (X1, X2, X3) as being “at rest” and 

1 2 3( , , )X X X  as “moving,” and indeed in the opposite direction. The relativity of directions, and in 

particular, the direction of the time axis in four-dimensional space, thus means nothing beyond the 

relativity of velocity in ordinary three-dimensional space. 

 Recall that we postulated this kinematical relativity principle before in Chap. V as a 

generalization of the “energy equation” rot E = 0 for time-alternating fields, but in a somewhat-

narrower sense. Indeed, there we were dealing with the motion of two current lines relative to each 

other, while the relativity of velocity that we now assert means that the electromagnetic 

phenomena play out in an entirely identical way relative to two coordinate systems that move 

relative to each other uniformly and rectilinearly, such that there is no possibility of inferring which 

system is “actually” moving from those phenomena. In other words, the magnitude of the velocity 

is just as relative as its direction. 

 Now, it seems that this relativity of velocity that would correspond to the isotropy of four-

dimensional space exists only approximately, namely, in the limiting case of speeds that are very 

small compared to the “critical” speed c. If one would like to regard it as a completely rigorous 

and generally-valid physical law then one would meet up with the following difficulties: 

 One must restrict the speeds from the outset by the condition that v < c, i.e., speeds that are 

greater than c are regarded as not only physically impossible, but also impossible, in principle. 

 Moreover, in order for electromagnetic phenomena to play out according to the same laws (i.e., 

according to the same equations) from the standpoint of two observers that are comoving with the 

coordinate systems (X1, X2, X3) and 1 2 3( , , )X X X , the determination of lengths in the direction of 

motion and of times must be carried out according to the Lorentz formulas (18), not the usual so-

called Galilean transformation formulas (19). Therefore, different times must be valid for the two 

observers X and X  . Events that appear to be simultaneous to one of them must be considered to 

be non-simultaneous by the other. In general, the time duration between two well-defined events 

shall be an undetermined variant quantity, just like the distance between the spatial points where 

those events took place. In that way, one must observe the following: The indeterminacy or 

variance of such distances for non-simultaneous events is a fact that has been known for some time 

and seems quite natural. For example, we imagine a stone that is thrown on a moving ship from 

aft to fore. The distance between the initial and final points on its path will be judged by the 

comoving observer in a completely-different way from the way that it is judged by the observer 

that is at rest on the land, who must still consider the displacement of the ship during the flight of 

the stone. That fact is expressed quite clearly by the equations of the Galilean transformation 1x  

= x – v t, t  = t. Namely, if one denotes the spatial and temporal distances between the 

aforementioned events (viz., throwing and dropping of the stone) from the standpoints of the 
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observe at rest and the comoving one by x1, t ( 1x , t , resp.) then according to the formulas 

above, one will have: 

t  = t , 1x  = x1 – v t . 

 

 However, if one is dealing with two simultaneous events at different spatial points then the 

spatial distance will seem to be a well-defined invariant quantity that is independent of the relative 

velocity (t = 0, 1x = x1). 

 By contrast, according to the Lorentz formulas (18), the spatial distance between two events 

will remain a variant quantity even in the case of their “simultaneity.” Obviously, that is connected 

with the fact that aforementioned “simultaneity” has no absolute meaning due to the relativity of 

time, which corresponds to the relativity of the direction of the time axis in four-dimensional space. 

That relativity of time (or more precisely, its variance) is closely connected by the Lorentz 

transformation with the variance of quantities such as charge density, scalar potential, etc., or the 

magnitude of three-dimensional vectors, i.e., quantities that would ordinarily be considered to be 

invariant scalars.  

 

 

§ 3. – Einstein’s relativity principle. 

 

 It is epistemologically clear from the outset that motion is a relative concept, i.e., that the 

motion of any body or the propagation of an action can be defined only relative to a coordinate 

system that one treats quite arbitrarily as being “at rest.” All of the quantities that characterize the 

motion (viz., velocity, acceleration, etc.) must correspondingly be variant ones, i.e., they must 

depend upon the choice of that coordinate system. In the foregoing chapter, we deliberately 

overlooked that fact and treated the velocity as an “absolutely” determined quantity, i.e., we tacitly 

based it upon a coordinate system that was assumed to be “at rest” in an absolute sense of that 

word. 

 If all of space is filled with a continuous material medium (as was previously believed and is 

still asserted many times today when that medium is referred to as the “ether”) whose parts are 

supposed to be in a state of eternal rest relative to each other then one can define the concept of 

rest uniquely from the physical standpoint as being at rest relative to that “ether.” That would not 

be “absolute” rest in the epistemological sense of the word since one would still have to consider 

any motions of the “ether” as a solid entity in space relative to something else. However, such 

motions could be of no interest to the physicist, and rest relative to the “ether” would be equivalent 

to absolute rest for him. 

 However, in reality, there is no rational basis for filling up space with such a medium. The 

material world consists of nothing but electrons that act upon each other through empty space. 

That action-at-a-distance in the modern theory of the electron differs from the actio in distans of 

classical mechanics only by the fact that it is not “instantaneous,” but retarded. The finite speed of 

propagation of electromagnetic actions has given rise to precisely the viewpoint that they are “local 

actions in the world-ether” of the same type as the propagation of sound in air or the elastic 

oscillations in solid bodies. 
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 Now, remember how that “local action” was dealt with in classical mechanics by connecting 

it with the aforementioned “ether theory.” One does not initially consider the body to be a 

continuous medium, but as a system of discrete mass-points (viz., atoms) that are found at finite, 

but very small, distances from each other. The interaction between those mass-points will then be 

treated as an action-at-a-distance, and indeed as an instantaneous action-at-a-distance since the 

force that is exerted upon any particle is determined the simultaneous configuration of the other 

ones, and mainly by the neighboring particles. If one assumes that this force varies in proportion 

to the relative displacement of the particles then one will get a finite speed of propagation for the 

“perturbations” of the normal equilibrium configuration of the particles in a known way. The 

passage to the limit of infinitely-small particles and infinitely-small distances, i.e., to the 

continuum theory, that one makes afterwards represents a mere mathematical fiction. 

 The “local action” of classical mechanics then means nothing but the usual “instantaneous 

action-at-a-distance.” The fact that the latter takes place at very small distances (“small” compared 

to our ordinary macroscopic yardsticks) is basically inessential. 

 The retarded action-at-a-distance of the modern “electromechanics” can indeed be reduced to 

an instantaneous action-at-a-distance quite formally (cf., Chap., § 5), but the corresponding series 

development has no immediate physical sense. That is why it is meaningless and useless to try to 

reduce the retarded electromagnetic action-at-a-distance to anything else. Rather, we can assert 

that all physical forces (to the extent that they represent an interaction between different electrons 

in the final analysis) can be regarded as electromagnetic actions-at-a-distance that propagate in 

empty space with a well-defined speed of c = 3  1010 cm/s. 

 One must recognize that fact as a fundamental principle that neither needs nor admits an 

“explanation.” That is because an “explanation” would have to mean reducing it to something 

simpler and more fundamental. However, such a reduction of the fundamental facts is obviously 

impossible. 

 Since space is empty, except for electrons (which are point-like, in practice), one can speak of 

only relative motion and relative rest. Physical processes must satisfy the same laws when assessed 

in two coordinate systems that move relative to each other. In other words, the equations that 

express those laws and exist between the spatial coordinates and time, on the one hand, and 

different variant quantities that represent the components of certain vectors and tensors, on the 

other hand, must have an identical form in the two systems. We would now like to restrict ourselves 

to those coordinate systems that move relative to each other with a uniform, rectilinear motion, 

i.e., the so-called inertial systems. The general principle of the relativity of motion reduces to the 

principle of the relativity of velocity in this special case. That “special” principle of relativity was 

already recognized since the time of Newton in classical mechanics (1). Its adaptation to 

electrodynamics and the corresponding conversion of Newtonian mechanics was the contribution 

of A. Einstein. It is known that he also succeeded in generalizing the principle of relativity to 

arbitrary motions on the basis of the equivalence of inertial forces that are coupled with an 

accelerated motion and gravitational forces. However, we would not like to go into that general 

theory of relativity in this book since it mainly addresses gravitational effects. 

 The essential difference between the classical and Einsteinian theory of relativity originates in 

the fact in the latter considers the finiteness of the speed of propagation of electromagnetic action-

 
 (1) Although Newton himself spoke of a “space in a state of absolute rest.”   
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at-a-distance, while in the former, that speed of propagation was regarded as infinitely large, so to 

speak. 

 Indeed, it follows from the principle of relativity that this speed of propagation must have the 

same magnitude c in two different inertial systems S (X1, X2, X3) and 1 2 3( , , )S X X X    , and in 

particular, it must have the same magnitude for all directions in each system. 

 For instance, if the last requirement were not fulfilled then one could not assert that the system 

(S) relative to which the light spreads out in all directions with the same speed c is “actually” at 

rest, while the other one relative to which that does not happen “actually” moves, namely, in the 

direction that corresponds to the smallest speed of light. However, since the systems S and S   are 

supposed to be completely equivalent, the process of light propagation must take place in the same 

way relative to both of them, i.e., with the same speed c in all directions. 

 We then see that the critical speed c, although it has only a relative sense, like any other velocity 

(i.e., it can be defined only relative to any reference system that can be regarded as being “at rest”), 

is nonetheless regarded as an invariant quantity. 

 That invariance of the critical speed is obviously incompatible with the usual picture of 

spacetime that one associates with classical mechanics. For example, if one replaces the thrown 

rock with a light or radio signal in the case of a moving ship that was considered above then it 

must propagate with the same speed c relative to the ship, whether forward, backward, to the right 

or to the left, that it has relative to the observer that stands on the shore. Obviously, that can happen 

only when the lengths and times are measured to be different in the corresponding reference 

systems, and in particular, when the concept of simultaneity can be assigned only a relative 

meaning. As long one imagines that the mechanical actions-at-a-distance are instantaneous and 

that they can all be combined with each other in time by the action of one body on the other ones, 

no matter how big their spatial dimensions might be, the “relativization” of simultaneity would 

seem to be physically excluded. However, as long as one considers the retarded character of the 

mechanical action-at-a-distance, that relativization will be not only possible, but indispensable. 

That is because there is no physical possibility of uniquely establishing the simultaneity of two 

spatially-separated events, e.g., on the planets Mars and Jupiter. 

 For some time now, we have been accustomed to ascribing no absolute sense to the spatial 

coincidence of two events that are not simultaneous. We must likewise reject any such absolute 

sense to the temporal coincidence of two spatially-distinct events. True absolute coincidence can 

only mean coincidence in both space and time. 

 In the foregoing sections, we saw that the fundamental equations of electrodynamics can be 

made consistent with the special principle of relativity only when we transform the spatial 

coordinates and time, not with the Galilean formulas (19), but with the Lorentzian ones, that reduce 

to (18) and (18.a) in the simplest case. The cited arguments shall convince us of the physical 

admissibility of those transformation formulas. Note that in that way we do not need to change 

anything at all in regard to our customary conception of space-time, as long as it refers to a well-

defined inertial system. According to Einstein, the Lorentz transformation represents a new and 

unconventional coupling between the usual space-time quantities in two different inertial systems. 

 The invariance of the critical speed is then, so to speak, guaranteed automatically since it plays 

the role of a constant parameter in the formulas that it enters into. 
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 We would now like to show that the Lorentz transformation is a necessary consequence of that 

invariance. However, that transformation can be derived from that invariance and completely 

independent of the general laws of electrodynamics, but while considering the relativity of velocity 

(i.e., for uniform, rectilinear motion). 

 The force-free, uniform, rectilinear motion of any particle relative to the coordinate system S 

is expressed analytically by the linear equations: 

 

1 1

1

x a



−
= 2 2

2

x a



−
= 3 3

3

x a



−
= 0

0

t t



−
, 

  

in which a, , etc., mean constants. 

 When judged from a different coordinate system S   that moves relative to S with constant 

velocity, that force-free motion must also appear to be uniform and rectilinear, i.e., it must be 

likewise determined by the system of linear equations: 

 

1 1

1

x a



 −


= 2 2

2

x a



 −


= 3 3

3

x a



 −


= 0

0

t t



 −


. 

 

 It will follow from this that the quantities x1, x2, x3, t, on the one hand, and 1x , 2x , 3x , t , on 

the other, must be expressed linearly in terms of each other. 

 We assume that the origins of S and S   (O, and O , resp.) coincide at a certain moment t = t  

= 0, and we further imagine that a light or radio signal is sent out from O ( O , resp.) at that moment. 

That signal must propagate in the form of a spherical wave with the same velocity speed c relative 

to S and S  . The center of that spherical wave must then remain at the point O for S, but at the 

point O  for S  . 

 We now imagine that the spherical wave in question meets any particle. Let the coordinates 

and time of that event be x1, x2, x3, t in S and 1x , 2x , 3x , t  in S  . Therefore, the two equations 

must be fulfilled: 
2 2 2 2 2

1 2 3x x x c t+ + −  = 0 , 

2 2 2 2 2

1 2 3x x x c t   + + −  = 0 , 

and as a result the equation: 

 
2 2 2 2 2

1 2 3x x x c t+ + −  = 2 2 2 2 2

1 2 3x x x c t   + + − , 

 

as well, or with the notations i c t = x4, i c t = 4x : 

 
2 2 2 2

1 2 3 4x x x x+ + +  = 2 2 2 2

1 2 3 4x x x x   + + + .         (20) 

 

 We have then seen that the relations between the old and new coordinates (including the fourth 

one) must be linear, i.e., expressed by the formulas: 
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kx 
  = 

4

1

kk k

k

x 

=

  ( k  = 1, 2, 3, 4),         (20.a) 

 

in which kk   are constant coefficients that depend upon the magnitude and direction of the velocity 

v of S   relative to S, and also upon the relative orientations of the two systems. 

 It will follow from this that the two sums 
4

2

1

k

k

x
=

  and 
4

2

1

k

k

x
=

  must also be identical when they 

are non-zero, i.e., when the event in question does not mean the coincidence of the wave that 

mentioned above and a particle, but something else, e.g., the coincidence of two different particles 

with each other. 

 In fact, by substituting the expressions (20.a) in 
4

2

1

k

k

x 

=

 , we will get a quadratic form in the 

coordinates x1, x2, x3, t that vanishes along with 2

kx 
 . However, from (20), the quadratic form 

2

kx  must also vanish as a result. For that reason, the two forms can differ from each other by 

only a constant proportionality factor. That factor A can depend upon the magnitude, but not the 

direction, of the relative velocity v of S   relative to S. Now, the velocity of S relative to S   is 

obviously equal and opposite to the velocity of S   relative to S. As a result, when one has 2

k

k

x 



  

= 2( ) k

k

A v x , one must also have 2

k

k

x = 2( ) k

k

A v x 



 . One will then have A (v) = 1. That proves 

that equation (20) will remain true for arbitrary xk and kx 
 . We have then once more discovered 

the orthogonality condition that is true for the general Lorentz transformation. If we then add the 

reality condition for 1x , 2x , 3x , and t  = 4 /x i c  then the equations (20.a) must produce a Lorentz 

transformation. 

 Instead of deriving the Lorentz transformation from the fundamental equations of the 

electromagnetic field, as we did in § 2 following Minkowski, we can obtain it directly from the 

relativity principle, in conjunction with the retarded character of the electromagnetic action-at-a-

distance (or, as one usually says, with the constancy of the speed of light). That is how Einstein 

presented it in 1905. The possibility then arises of reversing Minkowski’s process, i.e., of deriving 

the electrodynamical fundamental equations from the relativity principle (while recalling the 

covariance property), or in any event, to make it plausible without having to appeal any other 

principles. 

 We can also employ the relativity principle in order to generalize those physical laws that relate 

to the special case of static phenomena to phenomena that depend upon time arbitrarily, as we 

already did in Chap. V, but in a much simpler and more systematic way. For example, if we 

consider the equation for stationary electrical currents 2A = − 4 j as having been proved then it 

will follow immediately from the relativity principle that the general equation must have the form
24

2
1

k

l l

A

x=




  = − 4 jk (k = 1, 2, 3, 4). Finally, the relativity principle or the Lorentz transformation 
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can always be applied when the influence of the velocity on any phenomenon that is known in the 

rest state of the electrical system considered is supposed to be exhibited. 

 In what follows, we will learn about some such methodological applications of the principle 

of relativity. Note that its fundamental significance to physics lies in precisely that direction and 

not in any epistemological criticism of the concepts of space and time. The principle of relativity 

(combined with the invariance of the speed of light) begins with the “relativization” of quantities 

that were regarded as invariant scalars up to now (e.g., time, charge density, the magnitude of an 

ordinary vector, etc.). However, we will then incorporate those variant quantities as the 

components (or projections) of four-dimensional vectors and tensors, and that will finally show us 

how we can obtain quantities and equations from them that are truly invariant and express the laws 

of nature for time-varying phenomena. 

 The center of mass of the theory of relativity lies precisely in that “constructive,” 

methodological aspect of it, and not in its “destructive,” critical aspect. Its main result is not the 

variance of the usual scalars and spatial vectors, but in the possibility of treating them as 

“temporal” (“spatial,” resp.) projections of invariant four-dimensional “spacetime vectors.” In that 

sense, one would have every right to refer to the theory of relativity as an “absolute theory.” 

 

 

§ 4. – Graphical representation of motion and a new derivation  

of the Lorentz transformation. 

 

 Before we go on to discuss the transformation formulas (18), we would like to derive them 

once more from Einstein’s relativity principle in an intuitive, geometric way that is connected with 

the usual graphical representation of motion. 

 As is known, the motion of a particle (or the propagation of an action) in a plane E (X1, X2) can 

be illustrated geometrically by means of a spatial coordinate system X, Y, Z, such that the plane E 

is represented by the XY coordinate plane, and time t is represented by the third axis Z. Therefore, 

the latter does not necessarily need to be directed perpendicular to the XY-plane (which we will 

refer to as “horizontal”). For the sake of simplicity, we will restrict ourselves to rectilinear motions 

that are parallel to the X-axis (or more precisely, to the line X1 that is represented by that axis) and 

overlook the Y-axis. In order for the two coordinates x and z to have the same dimensions, we will 

set z = k t, where k means a coefficient with the dimension of a velocity that is initially completely 

arbitrary. 

 We denote the angle XOZ by  (Fig. 35). The motion of a particle parallel to the line X1 is 

represented graphically by a line in the XZ-plane. A uniform motion with a velocity of v then 

corresponds to a straight line: 

0x x

v

−
 = 0z z

k

−
. 
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We fix the coordinates x and z as the components (but not the projections!) of the radius vector 

OQ, which points from the “origin” x = z = 0 to the “spacetime point” Q under consideration. In 

the case where x0 = z0 = 0, we will have: 

v

k
 = 

x

z
 = 

OP

PQ
 = 

sin

sin ( )



 −
, 

i.e.: 

v = 
sin

sin ( )
k



 −
,   (21) 

 

in which  means the angle of inclination of the 

“kinematical line” OQ that represents the motion with 

respect to the time axis OZ. Obviously, that formula also 

remains valid when the aforementioned line does not go through the origin. All uniform motions 

that have the same velocity will then be represented by parallel lines whose inclination with respect 

to the Z-axis will increase with velocity. 

 The representation of motions in the plane E, and in particular, along the line X1, corresponds 

to a certain coordinate system S (X1, X2) that is regarded as being at rest. When assessed from 

another coordinate system 1 2( , )S X X    that moves uniformly in the X1-direction, that same motion 

will be represented differently relative to the system, of axes X, Y, Z. Indeed, any event that is 

represented by the point D when assessed in S will be replaced with another point D  when 

assessed in S  . If, e.g., S   moves relative to S with the same velocity v as the particle considered 

above then we must replace the line OQ with a line OQ  that coincides with the time axis OZ. 

 Now, one can easily show that the same events and motions in the plane E can be represented 

by the same points and lines in the coordinate space X, Y, Z when assessed from different 

kinematical standpoints in the event that one introduces new axes as the representative of the 

“moving” system S  , which are suitably inclined with respect to the old ones and possibly have a 

new scale of measurement. In fact, the coordinates of the spacetime point D (x, z) and ( , )D x z    

(y = y ) that are referred to the original coordinate system must be coupled with each other by 

linear relations (since a motion that appears uniform and rectilinear in S must also remain so in 

,S   cf., § 3). However, one treats those linear relations as the transformation formulas that 

determine new axes X Z  , in such a way that the coordinates (x, z) and ( , )x z   are associated with 

the same point (1). 

 The new Z  -axis must obviously coincide with the line OQ that represents the motion of S   

relative to S. Conversely, the old axis OZ must represent the motion of S relative to S  , so a motion 

with the velocity v  = − v (in the X1-direction). That relationship between v  and v (which can 

perhaps be regarded as a special “coupling principle”), in conjunction with the formula (21), will 

imply a relation between the two coordinate angles  and   ( X O Z  ). Namely, if one sets   

= −  then, from (21): 

 
 (1) Such a transformation will be called “affine,” in general.  

O 

 

 

Z 
Q 

 

 

X 
P 

Figure 35. 
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v = 
sin

sin ( )
k



 




 −
 = − 

sin

sin ( )
k



 


 +
, 

i.e., since: 

v  = − v = − 
sin

sin ( )

k 

  −
, 

one will have: 

k

k


 = 

sin ( )

sin ( )

 

 

 +

−
. 

 

The coefficients k and k  depend upon the units of measurement for the length and time (or more 

precisely the ratios of those units of measurement) that one uses in XZ ( X Z  , resp.). However, 

due to the complete equivalence of the reference systems that are considered to be “at rest” and 

“moving,” we must set k = k . That will lead to the equation: 

 

sin ( )

sin ( )

 

 

 +

−
 = 1,     (21.a) 

 

which has two and only two solutions, namely: 

 

  =  – 2       (21.b) 

and 

  =  = 
2


.       (21.c) 

 

We must rotate the X-axis through an angle of  while rotating the Z-axis through the same angle, 

and indeed in either the opposite or the same direction. In the latter case, the original coordinate 

system, and therefore the new one, as well, must be rectangular. 

 We would first like to consider that second solution. In that way, we will get a very intuitive 

relationship between the “kinematical” and the “geometric” relativity principle, i.e., the relativity 

of velocity and the relativity of direction, resp. In the original XZ coordinate system, we have 

referred to the X-axis as “horizontal.” We must accordingly represent the time axis by a vertical 

line OZ. The vertical direction then has the meaning of “rest,” or a “motion in time” for a space at 

rest. The transition from the “rest” coordinate system X1 X2 to the “moving” one 1 2X X   is 

expressed geometrically by a rotation of the “vertical-horizontal” coordinate system XZ into the 

“inclined” configuration X Z  . The question of which of the two systems X1 and 1X   is actually 

moving then remains just as absurd as the question of which of the two systems XZ and X Z   is 
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actually inclined. We can just as well treat the new time axis OZ  as vertical and the old one OZ 

as an inclined line as we can treat the opposite case. That relationship between the concepts of 

“rest” or “moving,” on the one hand, and “vertical” or inclined,” on the other, refers to the fact that 

quantities such as length and time duration, i.e., the spatial and temporal distances between two 

events, are regarded as relative or variant in the same sense as the horizontal and vertical 

components of the connecting line between two different points in space. 

 We imagine any two events, e.g., the throwing and 

dropping of a stone in the example of the moving ship 

that was considered above. Let those events be 

represented graphically by the points Q and Q1 (Fig. 36) 

relative to an XZ-coordinate system with a horizontal 

length axis OX and a vertical time axis OZ. The spatial 

distance between the two events will then be 

represented by the line segment QC =  (viz., the 

“horizontal distance” between Q and Q1). The 

corresponding time distance , i.e., the duration of the 

flight, is then represented by the “height” of Q1 relative 

to Q, multiplied by 1 / k, so by 1

1
CQ

k
 = 

1

k
 . 

  From the standpoint of the comoving observer, those 

quantities must have different values   and  , and 

indeed everything will happen for him as if he had considered the line segment QQ1 from a 

different point on the globe where the vertical OZ  was inclined with respect to OZ (in the 

direction of motion) by an angle of  . The relationships between  and , on the one hand, and 

and  , on the other, obviously read [cf., (17) and (17.a)]: 

 

  =  cos  – k  sin  , k   =  sin  + k  cos  . 

 

Now, from (21), and due to the fact that  =  / 2: 

 

tan  = 
v

k
. 

If one then sets cos  = 
2 2

1

1 /v k+
 then one will have: 

 

  = 
2 21 /

v

v k

 −

+
,   = 

2

2 2

/

1 /

v k

v k

 +

+
.    (22) 

 

 Let the speed of the stone (or more precisely, its horizontal component, which we assume to 

be constant) relative to the observer at rest be u =  / , and let it be u  = /    relative to the 

comoving one. Upon dividing both equations (22), we will get: 

 
 

Z 
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N M 
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O 

Figure 36. 
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






 = 

2/

v

v k

 

 

−

+
 = 

2

/

1 /

v

v k

 

 

−

+
, 

i.e.: 

u  = 
21 /

u v

u v k

−

+
.     (22.a) 

 

One can also derive those relations between the two velocities directly from (21) without the use 

of the transformation formulas (22). Namely, if one denotes the inclination of the line QQ1 with 

respect to OZ by  and its inclination with respect to OZ  by    then that will give: 

 

   =  –  , 

and as a result: 

tan    = 
tan tan

1 tan tan

 

 

−

+
, 

i.e., from (21): 

u

k


 = 

2

/ /

1 /

u k v k

u v k

−

+
. 

 

In order to make formulas (22) and (22.a) consistent with the usual “classical” spacetime picture, 

one must obviously set k = . In that case, they will reduce to the usual formulas   =  – v ,   

= , u  = u – v. Recall that the coefficient k means a velocity. The Ansatz k =  will then correspond 

to the “classical” picture in which mechanical action-at-a-distance propagates with an infinitely-

large speed. However, in reality, that speed of propagation (viz., c) is finite, and therefore invariant, 

according to the relativity principle. If one then considers the propagation of a light or radio signal, 

instead of the motion of a thrown rock, then one must have u = u  = c. 

 Now, that invariance condition can actually be fulfilled by formula (22.a) when one sets: 

 
2k  = − 2c            (22.b) 

in it. In that way, formulas (22) will go to: 

 

  = 
2 21 /

v

v c

 −

−
,   = 

2

2 2

/

1 /

v c

v c

 −

−
,    (23) 

 

i.e., they will be identical to (18), while (22.a) will assume the form: 

 

u  = 
21 /

u v

u v c

−

−
.     (23.a) 

 

 Note that the imaginary character of the coefficient k is closely linked with the causality 

principle (in its usual conception). That is because although the time interval between events is a 
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variant quantity, the sequence of those events must remain invariant as long as one of them can be 

regarded as the cause of the other ones. If k were a real number then one could invert the sequence 

of two arbitrary events by a sufficiently-large relative velocity between two inertial systems. For 

example, for a sufficiently-large inclination of the Z  -axis with respect to the Z-axis in Fig. 36, 

the point Q would lie higher than Q1 relative to X O Z  . However, that would mean that the 

dropping of the stone would precede its being thrown. Such an illogical situation would exclude 

the possibility that k is imaginary. Namely, if one sets  = u  in the second formula in (23) then 

one would see that the causality principle, which can be expressed by the inequality: 

 






 > 0 , 

 

will always remain respected if and only if the inequality: 

 

2

u v

c
< 1 

 

is fulfilled. That means that the magnitudes of the two velocities u and v must remain smaller than 

the invariant speed c. 

 That limiting character of the speed of propagation of electromagnetic actions (or more 

concisely, the speed of light) is actually ensured by Einstein’s superposition law for velocities, 

which is expressed by formula (23). That is because, from (23), the superposition of two velocities 

that are not greater than c will yield a resultant velocity that again satisfies that conditions. If one 

substitutes, e.g., u = c in (23.a) then one will have 
21 /

c v

c v c

−

−
 = c. Note that in Einstein’s theory of 

relativity, velocity is not an additive quantity, as it is in the classical theory. One sees that most 

clearly when one recalls the second (direct) derivation of formula (22.a): In it, we subtracted the 

angles from each other, but not their tangents, which are proportional to the velocity. 

 Due to the imaginary character of k, the foregoing relations (22) and (22.a) will lose the 

intuitive geometric meaning that we used as the starting point in their derivation. Nonetheless, we 

can preserve the geometric way of expressing things above in a purely-formal way. Rather, we can 

also use the corresponding graphical representation without having to worry about the fact that the 

coefficient k is imaginary. One needs to consider its imaginary character only in the final result 

(i.e., one has to set k = i c in it). 

 

 

§ 5. – Spatial and temporal distances in the theory of relativity. 

 

 We once more return to Fig. 36 and first note that the length s of the segment QQ1, which we 

would like to define to be the kinematical or spacetime distance between the corresponding events, 

must be an invariant quantity. Since 2

1QQ  = 2

1QC CQ+ , it will follow that 
2s = 

2 2 2k + , i.e.: 
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2s = 2 2 2c − .     (24) 

 

The segments QC and CQ1 represent the horizontal and vertical components (projections), resp., 

of the vector QQ1. We can correspondingly treat  and i c t (or simply ) as the spatial and temporal 

components or projections of the spacetime vector s. 

 For 2s  < 0, there is always a speed u < c such that  can be represented as a product u  . That 

is the speed of the uniform, rectilinear motion that connects the events in question, i.e., the 

spacetime points Q and Q1, so to speak. 

 The inequality 2s  < 0 must always be fulfilled then when Q1 is a consequence of Q. In the 

limiting case u = c, which occurs only under the propagation of electromagnetic actions, it will go 

to the equation 2s  = 0. If one substitutes v = u (< c) then one will have: 

 

  = 0 ,   = 
2 21 /u c − . 

 

 The first equation means that from the standpoint of the comoving observer, the two events 

occur at the same spacetime point, which agrees with our usual conception of things. However, in 

contrast to that picture, the time interval between them has been shortened by the ratio 

2 21 / :1u c− . One can then say that the temporal distance between two events (that are causally 

connected with each other or can be) will appear to be smallest in the inertial system relative to 

which those events coincide spatially. 

 By contrast, if 2s  > 0 then one cannot speak of a causal relationship between Q and Q1. It is 

likewise impossible to make them spatially coincident. However, in that case, one can define an 

inertial system relative to which the two events appear to be simultaneous. Namely, that system 

S   must move with a velocity relative to the original one that is also determined by the equation 
2/v c −  = 0. If one substitutes the associated value of v in the first of equations (23) then one 

will get   = 
2 21 /v c − , so once more, a smaller value, and indeed it will be the smallest one 

possible. Obviously, it must coincide with s. Therefore, if  = 0 then one will have  = s. By 

contrast, for 
2s  < 0,   will remain non-zero. However, one can set   = 0, and one will then get 

i c  = s. 

 Those relationships can be summarized in the following formulas: 

 

2 2 2
min

22 2

min

1 / ( 0),

( 0).1 /

s i c u c i c s

ss u c

 

 

= − =  


= − = 

   (24.a) 

 

One must then regard length and time duration as the spatial and temporal projections of a 

“spacetime” distance and correspondingly treat them as variant quantities that depend upon the 

speed of the observer in the same way as the horizontal and vertical projections of a segment onto 

the vertical direction of the observer. In both cases, that variance does not depend upon the choice 
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of units at all. The two observers can use the same units of length and time, i.e., they can be 

provided with identical yardsticks and clocks. A relative motion cannot affect those yardsticks and 

clocks in any way, just like a rotation of the vertical cannot affect the length of a meter. 

Nonetheless, the spatial and temporal distances between the same events that are determined by 

those identical measuring instruments do not need to be identical. 

 One must make it quite clear that one is not dealing with a measurement of length by well-

defined material bodies or the history of a well-defined clock. In reality, one is dealing with the 

determination of the distances between various separated points in empty space in which certain 

events have occurred and the intervals between the corresponding time points. 

 We imagine, e.g., something more concrete, namely, two phenomena, one of which occurs on 

Jupiter and the other of which occurs on Saturn, and which are observed by terrestrial and Martian 

astronomers. We will then address the determination of the following quantities: First of all, the 

distance between the spatial point P where Jupiter is found at the moment T when the first event 

occurs and the spatial point P1 where Saturn is found at the moment T1 when the second event 

occurs, and secondly, the interval between the time-points T and T1 . However, there are no such 

things as “well-defined spatial points” (and we should have accepted that fact long ago). They are 

determined only relative to a certain coordinate system, which is a coordinate system that is 

assumed be “at rest” quite arbitrarily. In astronomy, one ordinarily employs a coordinate system 

that is linked with the Sun (or the center of mass of the solar system). When assessed from that 

coordinate system, the distance PP1 must appear to be identical for both terrestrial and Martian 

astronomers, as long as they both use the same unit of length. However, due to the relativity 

principle, they would have the same right to assess the events in question in any other inertial 

system, and in particular, the ones relative to which they themselves are at rest. (For the sake of 

simplicity, we have ignored the rotation of the Earth and Mars and considered their translational 

motion to be unaccelerated.) Let that terrestrial inertial system be S and let the Martian one be S 

. Obviously, it is also clear now that from the standpoint of the classical theory of relativity, the 

distance PP1 must appear to be completely different in S and S  , in the event that the two events 

are not simultaneous. However, it was a prejudice of the previous mechanistic picture of the 

universe that the simultaneity of two spatially-separated events was considered to be something 

that was determined absolutely. We saw above that this prejudice had its roots in the picture of an 

instantaneous action-at-a-distance. However, physical actions-at-a-distance are retarded. Due to 

the relativity principle, we must treat their finite speed of propagation, and especially the speed of 

light, as a relative, and at the same time invariant, quantity. In order to establish the location and 

time of the events under consideration, the terrestrial and Martian astronomers must not only 

observe, but also calculate. Indeed, they must consider the fact that what they observe now on 

Jupiter and Saturn happened somewhat earlier, in reality. However, in order to determine that 

delay, they must calculate the distance from the effective spatial points P and P1 to their telescope. 

If the motion of the two planets (Jupiter and Saturn) is known relative to the inertial systems S and 

S   then that calculation will encounter no fundamental complications (cf., Chap. VI), but only in 

the case where the speed of light is also known relative to S and S  . It will follow from the relativity 

principle that they are identical in S and S  . The spatial and temporal distances PP1 and TT1 will 

actually be determined on the basis of that principle. However, it is no wonder that this must 

produce different results for the latter, as well as for the former. 
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 The time of a certain event is therefore not considered to be something that is given a priori, 

but it must first be defined on the basis of the principle of the invariance of the speed of light. The 

length of the time interval between two spatially-distinct events can be determined only a 

posteriori, accordingly. The spatial and temporal distances between two events are mutually-

dependent quantities that can be invariant only when they both vanish. 

 That connection between them is, by its nature, entirely analogous to the connection between 

the horizontal and vertical measurements of a line segment, e.g., on a building. What does one 

mean by “the height” of a tower? One often cares to define it to be the distance from its foundation 

to its top. However, it is clear that this definition would be incorrect when the tower is inclined 

slightly away from the vertical. One would then define its height to be the projection of the line 

segment that points from the foundation to the top onto the vertical, and that is the most-general 

definition. However, the vertical is not an absolute concept. The vertical direction must already be 

different for neighboring points of the Earth’s surface, strictly speaking. That is why the “height” 

of a tower, in the exact sense of the word, is an ill-defined, variant quantity, just like its length, i.e., 

its projection onto the horizontal plane. Obviously, one can consider the “natural height” of the 

tower to be its maximum height, which one will get when the line that points from its floor to its 

top proves to be vertical. Obviously, its length must vanish in that way. We can define the smallest 

time interval between two events that was defined above to be their “natural” time interval in the 

same entirely-conventional sense of the term or define the smallest spatial distance between two 

events that cannot be connected causally to be the “natural” distance. From (24.a), those natural 

distances are precisely the invariant spacetime distances that can be determined from the formula 
2s  = 

2 2 2c −  when one chooses any inertial system as a basis, just like the “natural” height of 

an inclined tower can be determined from its actual height and length by means of the well-known 

Pythagorean formula. 

 When one believed some time ago that the Earth was flat and the vertical direction was 

determined absolutely, one treated height (and correspondingly, the horizontal distance) as an 

invariant quantity. One continued to believe that about time and spatial distance up to 1905. In the 

year 1905, that idea was known to be an irrational prejudice for the first time by Einstein, and the 

coupling of time and space determination in different inertial systems was established on the basis 

of the relativity principle (and the invariance of the speed of light). In that way, the older physics 

of three-dimensional space and one-dimensional time was converted into the modern physics of 

four-dimensional spacetime manifolds or the four-dimensional world, according to Minkowski. 

 We have often said that in order to treat the determination of spatial distances in the theory of 

relativity, one must refer them to empty space and not to material objects. Then again, how can 

one measure the length of a rod, and how can one define it at all? The general definition reads as 

follows: The length of a rod is the distance between those spatial points where its two ends are 

found at the same instant. However, since the concept of simultaneity is relative, the length of the 

rod that was determined by the definition above must be different in different inertial systems. 

 Therefore, we can refer to one of the lengths l that are given in the inertial system relative to 

which the rod is at rest as the “natural” or “rest length.” In that way, it is distinguished by the fact 

that the aforementioned simultaneity condition is inessential for its determination. That is because 

if one considers two events that occur at the ends of the rod in question at different times then that 

will always give the same value for their spatial distance. One sees that from Fig. 36, where the 
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aforementioned events might be represented by the points Q and Q1. The rod shall be at rest relative 

to the inertial system that goes through XZ such that the “motion” of its ends will be represented 

by the two (dotted) lines that are parallel to the time axis OZ. The “rest length” of the rod l is then 

equal to MN (or QC). From the definition that was cited above, its length l  relative to a different 

inertial system that goes through X Z   will be determined by the segment M N   on the new X 

-axis (where M   and Nmean its intersection points with the dotted lines). Now, one obviously 

has l  = l / cos , i.e., from cos  = 
2 21/ 1 /v k+ : 

 

l  = 
2 21 /l v k+ , 

 

or ultimately, due to the fact that 2k  = − 2c : 

 

l  = 
2 21 /l v k− .        (25) 

 

The rod that moves with the speed v then seems to have been shortened by the ratio 
2 21 / :1v c−

(in the figure, M N   is bigger than MN since it actually corresponds to a real value of k). That 

result initially seems to be in complete agreement with the Lorentz contraction hypothesis (cf., 

Chap. VII, § 6). However, that is by no means the case since under that hypothesis, the moving 

(relative to what?) electron should actually be shortened in the direction of motion, while 

according to the Einsteinian relativity principle, that shortening should pertain to not only the 

electron (the rod, resp.) itself, but also to the “distance between the spatial points where its ends 

are simultaneously found.” 

 If one considers the time duration of a phenomenon that takes place relative to the inertial 

system that is represented by XZ at a fixed spatial point (e.g., one end of the rod), instead of the 

length of a rod, then one will find the following relationship between the “rest duration”  and the 

corresponding time interval   in the “moving” coordinates system by the same geometric process: 

 

  = 
2 21 /v c



−
,     (25.a) 

 

which agrees with the first of formulas (24.a), which was derived in a different way, namely, on 

the basis of the transformation equations (23). Obviously, one can derive it from (25) in the same 

way. We have preferred the geometric method, due to its intuitiveness. 

 The problem with this method obviously consists of the fact that the coefficient k is imaginary. 

However, there is a second method that is free from that drawback. It corresponds to the other 

solution of equation (21.a), namely,   =  – 2 . One will have to simply set k = c, as is easy to 

see. In fact, since the two axes X and Z will be rotated in opposite directions, so for positive v, they 

must coincide for a certain limiting value of v. 
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 If the original system is rectangular ( = 

90o) then that will happen for  = 45o. We will 

then find from (21) that: 

 

c

k
 = 

o

o o

sin 45

sin (90 45 )−
 = 1 , 

i.e., k = c. 

 The spatial and temporal components of the 

spacetime distance s between the events Q and 

Q1 (Fig. 37) from the standpoint of the 

“moving” inertial system that is represented by 

X Z   are, in this case, coupled with the 

corresponding components of the segment 

QQ1 by the formulas: 

 

  = 
1

QC


 ,  c   = 
1

C Q


 , 

 

in which  means a “gauge factor” that is not equal to 1. Now, it follows from the figure that: 

 

QC = 1cos sinQC C Q  + ,  CQ1 = 1sin cosQC C Q  + , 

i.e.: 

 = cos ( )v    + ,  t = 
2

cos
v

c


  

 
 + 

 
 , 

since one has: 

tan  = 
o

sin

sin (90 )



−
 = 

v

c
. 

 

 In order for those formulas to be identical to the transformation formulas (23) or rather, the 

reciprocal formulas: 

 = 
2 21 /

v

v c

  +

−
,  = 

2

2 2

/

1 /

v c

v c

  +

−
, 

 

it will obviously suffice to set  cos  = 
2 21/ 1 /v c− , or since one has cos  = 

2 21/ 1 /v c+  in 

the case considered: 

 = 
2 2

2 2

1 /

1 /

v c

v c

+

−
.     (26) 

 

 

 
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X 

Figure 37. 
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That coefficient can be determined graphically to be the length of the segment OM   = ON , which 

is cut out from the new axis X Z   by the hyperbolas (Fig. 38): 

 
2 2x z−  =  1 .             (26.a) 

 

By solving that equation, in conjunction with the equation z = (v / c) x of the X  -axis, we will, in 

fact, get the coordinates of the point of intersection M  : 

 

2x  = 
2 2

1

1 /v c−
, 2z  = 

2
2

2

v
x

c
 . 

As a result, we will have: 

2OM   = 
2 2x z +  = 

2 2

2 2

1 /

1 /

v c

v c

+

−
 = 

2 . 

 

 In order to represent the events by means of the coordinate system X Z  , which corresponds 

to the “moving” inertial system, we must then define the unit of length by OM   and the unit of 

time by /ON c  = /OM c . 

 The condition that determines the change in the gauge under the transition from the inertial 

system “at rest” to the moving inertial system with the method of representation that is being 

considered is analytically identical to the condition that expresses the invariance of that gauge 

when using the previous method. That is because when one replaces z = c t with z = i c t in (26.a), 

that equation will assume the form: 
2 2x z+  = 1,            (26.b) 

i.e., it will represent a circle. 

O 

N  

 

M 
X 

 

L Z  

Figure 38. 
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 Note that when the segment QQ1 in Fig. 37 is inclined with respect to the Z-axis less than the 

bisector (or asymptote) OL, one can draw the Z  -axis parallel to QQ1. That means that the two 

events take place at the same spatial point from the associated “kinematical” standpoint. By 

contrast, if the angle between QQ1 and OZ is greater than LOZ then there will be a direction of the 

X  -axis that is parallel to it, i.e., an inertial system in which those events appear to be 

simultaneous. 

 The cited graphical representation can be easily generalized to the case of non-rectilinear 

motions in a plane. However, we would not like to go into the details of that question here, and we 

will move on to the most-general case of the four-dimensional “world,” while employing 

geometric terminology. 

 

____________ 

 



 

 

CHAPTER NINE 

 

APPLYING THE THEORY OF RELATIVITY TO 

ELECTROMAGNETIC PHENOMENA 
 

 

§ 1. – Transforming vectors. 

 

 The formulas (18) and (18.a) of the last chapter represent a special case of the Lorentz 

transformation. The general case corresponds to a motion of the spatial coordinate systems 

1 2 3( , , )S X X X     relative to the “rest” system S (X1, X2, X3) in an arbitrary direction, and under which 

the orientations of the two systems can be different. The sixteen coefficients kl of that general 

transformation can obviously be determined by composing the special transformation (18) with 

two ordinary spatial transformations that mean a rotation of the “rest” and “moving” systems of 

axes. 

 However, it is simpler and more convenient to represent the aforementioned special 

transformation in a coordinate-free manner as a relationship between the times t and t  and the 

spatial radius vectors r and r whose components are given by x1, x2, x3 ( 1x , 2x , 3x , resp.). Recall 

that r and t (or i c t) can be regarded as the spatial and temporal projections of the four-dimensional 

spacetime vector r. Therefore, r and t  ( )i c t  will mean the corresponding projections of the same 

spacetime vector in the moving,” or even better, “primed” inertial system. One must further 

observe that the “origin” of the two systems O and O  and the initial moments t = 0 and t  = 0 are 

chosen in such a way that O and O  will coincide for t = t  = 0. 

 Let the velocity of S   relative to S be v. The velocity of S relative to S   will then be: 

 

v = − v . 

 

We will define the direction of the vector v by the unit vector v0 = v / v. 

 The formula: 

t  = 
2

1

2 2

/

1 /

t x v c

v c

−

−
, 

can obviously be represented in the form: 

t  = 
2

2 2

( ) /

1 /

t c

v c

− 

−

r v
,          (1) 

 

since the product x1 v means nothing but the inner product of the vectors r and v, under the 

assumption that v has the same direction as the X1-axis. 

 In order to obtain the relation between r and r, we must combine the formula: 
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1x  = 1

2 21 /

x vt

v c

−

−
 

with the formulas: 

2x  = x2 , 3x  = x3 . 

 

Now, we obviously have x1 = r  v0 and 1x  = r  v0 . The longitudinal (i.e., parallel to the velocity 

v) components of r and r are then equal to: 

 

(r v0) v0 [(r v0) v0, resp.] , 

and the transverse ones are: 

 

r − (r v0) v0 = v0  (r  v0)  [r − (r v0) v0 = v0  (r  v0) , resp.]. 

 

The coordinate-wise equations above can then be replaced with the vector equations: 

 

(r v0) v0 = 0 0

2 2

( )

1 /

t

v c

−

−

rv v v
, 

 

 r − (r v0) v0 = r − (r v0) v0 . 

 

Adding the latter two will give the desired relation: 

 

r = r − (r v0) v0 + 0 0

2 2

( )

1 /

t

v c

−

−

rv v v
, 

or after a slight conversion: 

r = 0 0
2 2 2 2

1
1 ( )

1 / 1 /

t

v c v c

  −
 −   +
 − − 

r v
r v v ,   (1.a) 

 

in which the vector – (r  v0)  v0 represents simply the component of r that is perpendicular to 

v0. One can easily get the coordinate-wise representation of the Lorentz transformation by 

projecting that vector equation onto the “rest” or “moving” system of axes. In particular, if the two 

coordinate systems have the same orientation then we will get: 

 

1x  = 1 1
1 122 2 2 2

1 ( )
1

1 / 1 /

x v t
v x

vv c v c

  − 
 − − + 
   − − 

rv
, 

etc. 
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 The transformation equations that are reciprocal to (1) and (1.a) are obtained by simply 

inverting the sign of v. 

 From the covariance principle, the spatial and temporal projections of the other four-vectors, 

e.g., j and A, must transform according to similar formulas. Namely, if one notes that in the case 

of the “four-current,” the time t is associated with the charge density  divided by c, and in the 

case of the “four-potential,” it is associated with the scalar potential, likewise divided by c, then in 

place of (1) and (1.a), one will have: 

  = 
2 2

( ) /

1 /

c

v c

 −

−

jv
,       (2) 

j = 0 0
2 2 2 2

1 ( / )
1 ( )

1 / 1 /

c

v c v c

  −
 −   +
 − − 

j v
j v v ,   (2.a) 

and likewise: 

 = 
2 2

( ) /

1 /

c

v c

 −

−

Av
,     (3) 

A = 0 0
2 2 2 2

1 ( / )
1 ( )

1 / 1 /

c

v c v c

  −
 −   +
 − − 

A v
A v v .    (3.a) 

 

Note that the velocity of a particle, i.e., the differential quotient u = d r / dt, cannot be considered 

to be the spatial projection of a four-vector. In fact, d r and dt obviously transform in the same way 

as r and t. One will then get the transformed velocity u = /d dt r  from (1) and (1.a): 

 

u = 

1

2 2

0 02
1 (1 1 / ) ( )v c

c

−
   − − −   + −    

u v
u v v u v .  (4) 

 

That formula is completely different from (1.a), (2.a), and (3.a). It represents the generalization of 

the simple formula (23), Chap. VIII, for the superposition of two parallel velocities. By squaring 

and adding the quantities (r, ict), (j, i), (A, i), we will get the squares of the four-vectors that 

they define, which are true invariant scalars. Those invariants then have the following property: 

 

r2 = 
2 2 2r c t− ,      (5) 

j2 = 
2 2j − ,              (5.a) 

A2 = 
2 2A − .              (5.b) 

 

A third invariant quantity can be defined from the two vectors j and A, namely, the inner product: 
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A j = A1 j1 + A2 j2 + A3 j3 + A4 j4 , 

or 

A j = A j –   .     (5.c) 

 

In the case of time-constant fields, one can consider that quantity to be the difference of the 

magnetic (kinetic) and electric (potential) energy per unit volume. It plays an important role in the 

mechanics of the theory of relativity (see Chap. X). The other two inner products that can be 

defined by the four-vectors r, j, A, have no physical meaning. 

 We have already defined the quantity | r | = 
2 2 2r c t−  = 

2 2 2r c t −  (for the special case of 

r = x1) to be a “spacetime” distance. In the case considered, we are dealing with the “distance” 

between the events that are characterized by (r, t) [ ( , )t r , resp.] and the coincidence of the 

coordinate origins of the two systems (r = r  = 0, t = t  = 0). The four-dimensional distance 

between two arbitrary spacetime points (r1, t1) and (r2, t2) is correspondingly expressed by the 

formula: 

s = 2 2 2

2 1( )R c t t− − ,           (6) 

where 

R = | r2 – r1 |               (6.a) 

means the ordinary spatial distance. 

 We saw above that we must distinguish two cases, namely, 2s < 0 and 2s > 0. In the first case, 

the vector s is called time-like since there is an inertial system S   where its spatial projection R 

vanishes. In the second case, there exists no such system. However, there is an inertial system 

relative to which the temporal projection of s will vanish. That is why one refers to the vector s as 

space-like in this case. 

 In the limiting case of s = 0, which appears in the propagation of an electromagnetic effect, 

one can make the two projections of s (viz., the spatial and temporal ones) vanish individually, 

i.e., one can make the two events (e.g., emission and reception of a light signal) coincide in space 

and time. However, in that way the new coordinate system must move with the speed of light with 

respect to the original one, which is physically unrealizable. 

 The cited considerations obviously remain valid for the arbitrary four-dimensional vectors. In 

particular, we must then distinguish between space-like and time-like four-currents and four-

potentials, i.e., ones that reduce to their spatial or temporal projections for a suitable choice of 

reference system. Finally, we must make the following remark: We can set j = ( / c) u for the 

current density of a moving electron with a volume charge. In particular, if we are dealing with a 

pure translational motion with a velocity of u then we must have j2 < 
2  since u < c. In this case, 

the vector j will then be time-like and can be reduced to its temporal projection. Obviously, that 

will happen for the inertial system S   relative to which the electron is instantaneously at rest, i.e., 
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it moves with a velocity of v = u relative to the original system. The corresponding “rest density” 

of the electricity 0 is obviously determined from the equation 2 2j − = 2

0 , i.e.: 

 

0 = 
2 21 /u c − .          (7) 

 

It then represents the least-possible value of . u can be larger than c when the electron is rotating 

(in the event that such a rotation actually takes place). The vector j would then be space-like. 

Nothing at all can be said about the existence of a rest density for the electricity. By contrast, there 

is an inertial system S in this case in which  vanishes, and j assumes the least-possible “natural” 

value: 

j0 = 
2 2j −  = 

2

2
1

c
j

u
− . 

 

However, it is very doubtful whether one can then represent j as the product of  / c and a “velocity” 

u since superluminal speeds are excluded from the theory of relativity in principle. 

 

 

§ 2. – Transforming six-vectors. 

 

 We shall move on to consider the four-dimensional tensors and first investigate the skew-

symmetric field tensor or “six-vector,” 2H. The general transformation formula for its components 

in the inertial systems S and S   read: 

k lH  
  = 

4 4

1 1

kk ll kl

k l

H  

= =

 .           (8) 

 

 If one replaces t and t  with x4 / ic and 4 /x ic , resp., and sets: 

 

 = 
2 2

1

1 /v c−
,     (8.a) 

 

to abbreviate, then the special Lorentz transformation, which can be expressed by the formulas 

(18), Chap. VIII, will be written as follows: 

 

1x  = 1 4

v
x x

i c


 
− 

 
,      2x  = x2 ,      3x  = x3 ,      4x  = 4 1

v
x x

i c


 
+ 

 
. 

 

The coefficients kk   will then define the following matrix in this case: 
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( )kk   = 

0 0

0 1 0 0

0 0 1 0

0 0

v

i c

v

i c

 

 

 
− 

 
 
 
 
 
 
 

 .     (8.b) 

 

If one substitutes that in (8) then when one recalls the skew-symmetric character of 2H (Hkk = 0): 

 

23H   = H23 , 31H   = 31 34

v
H H

i c


 
− 

 
 , 12H   = 12 42

v
H H

i c


 
− 

 
 , 

 14H   = H14 , 24H   = 21 24

v
H H

i c


 
+ 

 
 , 34H   = 31 34

v
H H

i c


 
+ 

 
 , 

 

and as a result, from the substitution matrix [cf., (5), Chap. VIII]: 

 

21 31 12 14 24 34

1 2 3 1 2 3

H H H H H H

H H H i E i E i E

 
 

− − − 
, 

one will have: 

1 1 2 2 2 3 3 2

1 1 2 2 3 3 3 2

, , ,

, , .

v v
H H H H E H H E

c c

v v
E E E E H E E H

c c

 

 

   
  = = + = −    

    


      = = − = +        

   (9) 

 

Since the velocity v has the direction of the first axis in the case considered, the quantities 3( / )v c E  

and − 2( / )v c E  will mean the second (third, resp.) component of the outer product E  (1 / c) v, 

and analogously, the quantities − 3( / )v c H  and 2( / )v c H  mean the corresponding components of 

the outer product (1 / c)  v  H. If one then introduces the longitudinal and transverse components 

of the vectors E, H (E, H, resp.), as in the transformation of the vector r, then the relations (9) 

can be given the following coordinate-free form: 

 

(H v0) v0 = (H  v0) v0, H − (H v0) v0 =  [H − (H  v0) v0] − 
c


v  E, 

(E v0) v0 = (E  v0) v0, E − (E v0) v0 =  [E − (E  v0) v0] − 
c


v  H, 

 

which will give: 
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H = (1 – ) (H  v0) v0 +  (H − 
1

c
v  E) ,     (9.a) 

E = (1 – ) (E  v0) v0 +  (E + 
1

c
v  H) ,     (9.b) 

 

upon addition. One gets the reciprocal transformation formulas, which represent the transition 

from S   to S, by simply switching the unprimed and primed quantities and inverting the sign of v. 

For the limiting case of small velocities (v / c  1), the formulas above result to: 

 

1
,

1
.

c

c


 = −  


 = + 


H H v E

E E v H

             (9.c) 

 

Note that similar formulas were derived in the foregoing chapters and used many times. In 

particular, we saw that a system of charges in uniform, rectilinear motion creates a magnetic field 

strength H that is coupled with the corresponding electric field strength by the complete exact 

relation H = (1 / c) v  E. That relation will be given by the first of formulas (9.c) when we assume 

that the charges in question are at rest relative to the system S  , i.e., they create no magnetic field 

in that system. The same result also follows from the exact formulas (9.a) and (9.b), and indeed, 

when H = 0, the reciprocal formulas will assume the form: 

 

H = 
c


v  E,  E = (1 – ) (E v0) v0 +  E. 

 

One will then have v  E =  v  E, and as a result: 

 

H = 
1

c
v  E. 

 

One likewise gets the relation E = − (1 / c) v  H for the case in which E = 0. 

 Formulas (9.a) and (9.b) can be combined into a single formula when one multiplies one of 

them (e.g., the second one) by i = 1−  and adds it to the other. That will, in fact, give: 

 

H + i E = (1 – ) [(H + i E)  v0]  v0 + [H + i E −
1

i c
 v  (H + i E)] .  (10) 

 

If one sets H + i E = F here, to abbreviate, and squares that then, due to the facts that: 
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(1 / c) v  F = 0( / ) ( )v c v F   and  [v0  F]2 = 2F  − (v0 F)2 , 

one will get: 

2F   = (1 – )2 (F v0)
2 + 

2
2 2 2

02
( )

v
F

c


 
−  

 
v F  + 2 (1 – )  (F v0)

2 

 = (1 – )2 (F v0)
2 + 

2 2
2 2 2 2

02 2
( )

v v
F F

c c


 
− + 

 
v F , 

i.e., from (8.a): 

2F   = 
2

2 2 2 2

0 2
( ) 1

v
F

c
 

 
+ − + 

 
Fv = 2F , 

or ultimately: 

(H + i E)2 = (H + i E)2.            (10.a) 

 

We have then found a new invariant of the electromagnetic field. Upon setting the real and 

imaginary parts equal to each other, it will split into two invariants, namely: 

 
2 2H E −  = 2 2H E−            (10.b) 

and 

H  E = H  E .       (10.c) 

 

Note that those invariants can be obtained more simply. One first takes the square of the tensor 2H 

with no concern for its skew-symmetric character: 

 
2H2 = 2

kl

k l

H  = 2 2 2 2 2 2

23 31 12 14 24 342( )H H H H H H+ + + + + , 

i.e.: 
2H2 = 

2 22( )H E− , 

 

and that must obviously be an invariant scalar quantity. However, since 2H is a skew-symmetric 

tensor, when one forms its inner product with the “dual” tensor 2H, it will follow from (14.a), 

Chap. VIII that: 

 
2H  2H = 4 (H23 H14 + H31 H24 + H12 H34) = − 4i (H  E) = invariant. 

 

The invariance of the quantities 2 2H E−  and H  E shows that the characteristic property of the 

electromagnetic field in the wave zone (viz., the equality of the magnitudes of the electric and 

magnetic field strengths and their orthogonality) must be true in all inertial systems. One can then 

characterize the wave zone from the standpoint of the theory of relativity quite generally by the 

vanishing of the invariants (10.b) and (10.c). 
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 If both of them are non-zero then one can always choose an inertial system such that the field 

strengths E and H (or E and H) are parallel to each other at the spacetime point in question. 

However, it is impossible to make one of them vanish or be perpendicular to the other one. One 

can refer to the electromagnetic field as having “magnetic type” or “electric type” according to 

whether 2H  > 2E  or 2H  < 2E , resp. However, it can be pure magnetic or pure electric only when 

H E  = 0. 

 The scalar (10.b), divided by 8, represents the difference between the magnetic and electric 

energy densities. It will then correspond completely to the scalar (7). 

 Entirely-similar formulas and considerations will be true for the vectors P and M, from which 

the six-vector of electromagnetic polarization 2P is composed, and for the components Z and Z 

of the polarization potential 2Z. One must observe only the fact that the vectors P and Z do not 

correspond to the quantity E, but rather – E. For that reason, instead of (9.a) and (9.b), we will 

have the following transformation formulas: 

 

0 0

0 0

1
(1 ) ( ) ,

1
(1 ) ( ) ,

c

c

 

 

 
 = −  + +   

  


   = −  + −     

M M v v M v P

P P v v P v M

            (11) 

 

and there will be identical formulas for the vectors Z, Z. 

 Recall that when one treats time-constant fields, the electric and magnetic polarization seem 

to be entirely independent quantities (cf., § 10, Chap. III), just like the electric and magnetic field 

strengths. Later on (§ 4, Chap. V), when treating time-varying fields, we have composed them in 

a purely superficial way since the current density j was not expressed in terms of merely 
1

c t





P
, 

but by the sum rot M +
1

c t





P
. In that way, we considered both expressions to be completely 

equivalent and reduced their formal difference to differing definition of the vector P. In fact, the 

vector P was defined only incompletely by the formula  = − div P (§ 10, Chap. III) that was 

originally used in its definition, even in conjunction with the boundary condition Pn = , and one 

can use that indeterminacy in order to replace 
1

c t





P
 with the sum 

1

c t





P
 + rot M, along with the 

additional boundary condition M  n = 0. Obviously, that definitions of the two vectors P and 

M are not free of arbitrariness, either. However, the principle of relativity shows that in the event 

that they are established in a certain reference system, when one goes to another inertial system, 

one must treat them as quantities that are closely coupled with each other by the transformation in 

formulas (11). For example, if M = 0 in the “primed” reference system ( )S , and P is non-zero, 
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then M must also be non-zero relative to S, and it must be coupled with the corresponding value 

of the electric polarization by the relation: 

 

M = − 
1

c
 v  P .     (11.a) 

 

By contrast, if P = 0 and M  0 then one will have: 

 

P = 
1

c
 v  M .     (11.b) 

 

Both relations are true quite rigorously for arbitrarily-large relative velocities v (< c). If we have 

a dipole at rest in the system S   or a uniformly-polarized ball with an electric moment p then 

from the standpoint of the system S, that ball will seem to be polarized not only electrically, but 

also magnetically, with a moment of m = − (1 / c) v  p. Therefore, p is identical to p in a first 

approximation. According to (11), they differ by only quantities order two and higher in v / c. 

Namely, by switching the primed and unprimed quantities and the sign of v in (11), we will get: 

 

P = (1 – ) (P  v0) v0 +  P 

  

when M = 0. In the same way, a ball that is at rest relative to S   and appears to be polarized only 

magnetically with a moment of m (P = 0) will also appear to have an electric polarization with 

a moment of p = + (1 / c) v  m to an observer that is fixed in S. Obviously, we will then have: 

 
2p  = 

2 2p m−   or 
2m  = 

2 2m p− , resp.,  (11.c) 

 

corresponding to (10.c). The inner product m  p remains equal to zero in both cases, which 

corresponds to the invariance in (10.c). 

 It is possible to make a sharp distinction between an electric dipole and an elementary current, 

or a magnetic dipole that can replace it as the source of an electromagnetic field, only in the 

corresponding “rest system” then. Just as the electric field partially goes to a magnetic one under 

the motion of the electric dipole that creates it, the electric moment of that dipole will partially go 

to a magnetic one, and vice versa. Due to the relativity of velocity, the concepts of magnetic and 

electric will be just as relative as, say, “spatial” and “temporal.” 

 Those considerations can obviously be applied to the case of the rotating electron that was 

treated in Chap. VII, § 8. In that way, the introduction of the electric polarization will be 

impossible, or better yet, inconvenient, in the “rest system” S  , in which the electron has only a 

rotational motion, since the electron is not a neutral system. That is why one must next neutralize 

it with an opposite charge (at infinity or anywhere else, e.g., at its center). In that latter case, a 
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radial polarization would arise inside of the electron with a resultant electric moment of zero. By 

contrast, one can replace the rotational motion of the electron with a homogeneous (as a surface 

charge) or inhomogeneous (as a volume charge) magnetic polarization with the moment m that 

was calculated in Chap. VII. As we already suggested at the time, when such a magnetic electron 

moves relative to the observe with a translational velocity of v, it must appear to be electrically 

polarized with a moment of p = (1 / c) v  m. From (59), Chap. VIII, that additional moment will 

correspond to an additional scalar potential + A  v / c. However, that is precisely the value that 

the transformation formulas (3) will give when we set   = 0 in it. That aforementioned additional 

electric moment of the rotating electron can also be calculated without introducing the magnetic 

polarization, and indeed, on the grounds of the transformation formula (2) for the electric charge 

density. If one ignores the relativistic “contraction” of the electron, i.e., if one restricts oneself to 

first-order quantities in v / c, then from (2), one will have: 

 

 = 
1

c
 + jv   

1

c
 + j v . 

In that, one has: 

j = 
c


(o  r) , 

 

where o means the rotational velocity of the electron relative to S  . From the definition of the 

electric moment, that will imply that: 

 

p = dV r  = 
1

( ) dV
c


 

   
 

 r v o r , 

since dV r = 0. Now, we have: 

v  (o  r) = r  (v  o) , 

 

and as a result, in the mean over different directions of r, we will have: 

 

[ ( )] r v o r  = [ ( )] r r v o  = 21
3
r (v  o) . 

 We will then have: 

p = 
21 1

3
r dV

c


 
 

 
v o  = 21 1

3
r dV

c
 v o , 

 

i.e., from (45), Chap. VII: 

p = 
1

c
v  m . 
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 Note that according to the theory of relativity, the angular velocity o, just like the magnetic 

moment, is regarded as the spatial part of a six-vector. In order to be consistent, one must treat the 

rotational motion in an entirely-different way from the translational motion. Rather, it is 

questionable whether rotational motion can exist at all, in the ordinary sense of the term. That is 

because a rotation of an ordinary material body can be reduced, in essence, to a translational motion 

of the electrons that define it. Whether one can speak of a rotation of the individual electrons in 

the same sense is initially still quite doubtful. 

 As was suggested before in Chap. VII, § 8, the expressions (57) and (57.a) that were given at 

the time for the additional torque and force that would appear due to the combination of rotation 

and translation are false, and must be replaced with the formulas: 

 

Ma = p  Ea = 
1 a

c

 
  

 
v m E  

and 

Fa = (p grad) Ea = 
1

 grad a

c

  
  

  
v m E . 

 

In formulas (67) and (67.b), Chap. VII, which are supposed to characterize the interaction between 

the two magnetic moments of a rotating electron, one must accordingly replace them with: 

 

Ma = f  (p  r) 

and 

Ma = r  (p grad) f r = − f  (p  r) , 

 

in which one has r  r (p grad f)  = 0. The two torques are then equal and opposite, from which it 

will follow that the resultant impulse moment of the electron must remain constant. We will return 

to that topic in the last section of this book. 

 

 

§ 3. – Transforming the energy tensor. Force and torque. 

 

 The various components of the energy tensor 2 [cf., the matrix (14.a), Chap. VIII] transform 

in a rather complicated way. That is why we would like to restrict ourselves to considering the 

energy density  and the momentum g. As far as the former is concerned, we will have: 

 

  = 44
  = 4 4k l kl

k l

    = 2 2

14 11 14 44 14 44 442    +  +  , 

 

i.e., from (12.a), Chap. VIII and (8.b), Chap. IX: 
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  = 
2

2 2 2 2 2 2 2

1 2 3 1 2 3 12

1
( ) 2

8

v
H H H E E E v g

c
 



 
− − − + − − − + 

 
, 

 

or, since  = 2 2( ) / 8H E +  and 2 2 2(1 / )v c −  = 1: 

 

  = 
2

2 2 2 2 2

2 3 2 3 12

1
2 ( )

8

v
H H E E v g

c
 



 
+ + + + − 

 
. 

 

 Now, since the velocity v has the direction of the X1-axis, one will obviously have: 

 

v g1 = v  g and 
2

2 2 2 2

2 3 2 32
( )

v
H H E E

c
+ + +  = 

2 2
1 1

c c

   
 +    

   
v E v H . 

 

The coordinate-free transform of the formula for the energy density will then read: 

 

  = 
2 2 2

2

1
[( ) ( ) ] 2

4 c
 



 
+  +  − 

 
v E v H vg .   (12) 

 

Note that the second term in the bracket corresponds to the classical transformation of kinetic 

energy for v  c. Namely, if one considers a particle of the mass m that moves relative to S with 

a velocity of u from the standpoint of the second coordinate system S   then one will get: 

 

T   = 21
2
mu  = 21

2
( )m −u v = 2 21 1

2 2
mu m mv−  +u v , 

 

or approximately, for v  c: 

2T   = 2T – (m u)  v . 

 

Here, m u means the momentum of the particle considered relative to S. The fact that the 

electromagnetic energy density ( = 2c ) corresponds to twice the kinetic energy of ordinary 

mechanics was already mentioned in § 3, Chap. VII. 

 As far as the transformation of the electromagnetic momentum is concerned, we have: 

 

− 1i c g   = 14
  = 1 4k l kl

k l

    = 11 14 11 + 11 44 14 + 41 14 41 + 41 44 44 

 

for its first component, i.e., from (8.b): 
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1g   = 
2 2

2 2 2 2 2 2

1 1 2 3 1 2 32

1
1 ( )

8

v v
i c g H H H E E E

i c c i c






  
− + + − − + − − −  

−   
 , 

or 

1g   = 
2

2 2 2

1 1 12 2 2

1 2 1
( )

4

v v v
g E H

c c c
 



  +
− + +  

  
 .   (12.a) 

We get: 

 

− 2i c g   = 24
  = 

2 4k l kl    = 4 2l l

l

   = 14 21 + 44 21 , 

i.e.: 

2g   = 2 1 2 1 22

1
( )

4

v
g E E H H

c




 
+ + 

 
 , 

 

for the second component, and likewise: 

 

3g   = 3 1 3 1 32

1
( )

4

v
g E E H H

c




 
+ + 

 
 , 

 

for the third. Those formulas cannot be simply combined vectorially. 

 We would like to add the following formula for the linear invariant of the tensor 2: 

 
4

1

kk

k =

   0 . 

That is given directly by (13), Chap. VIII. 

 In Chap. VII, § 7, along with the vector g, we introduced the vector r  g, which we defined 

to be the density of the electromagnetic impulse moment. From the standpoint of the theory of 

relativity, that quantity must be regarded as a component of a rather complicated four-dimensional 

quantity. The ordinary components of the vector r  g, namely, xk gl – xl gk, define three (or six) 

components of a partially-symmetric, partially skew-symmetric four-dimensional tensor of rank 

three, and the general form of its components is: 

 

xk ln – xl kn . 

 

The four-dimensional extension of the usual three-dimensional torque r  f will be 

correspondingly represented by the skew-symmetric tensor, or six-vector 2M, with the 

components: 

Mkl = xk fl – xl fk .     (13) 

 



314 Chapter Nine – Applying the Theory of Relativity to Electromagnetic Phenomena. 
 

Therefore, the first, second, and third component of the vector will be equal to M23, M31, M12. They 

will then relate to the angular momentum tensor 2M in the same way that the magnetic field 

strengths relate to the field tensor 2H. The associated part of 2M that corresponds to the electric 

field strength is a vector with the components: 

 

i M14 ,  i M24 ,  i M34 , 

i.e., when one recalls f4 = i l / c: 

l
c

c
−r f .          (13.a) 

 

We will come back to that vector, and the tensor 2M in general, later on. It plays a non-trivial role 

in the theory of rotational and orbital motion. The transformation formulas for the vectors r  f 

and 
l

c
c

−r f  are completely identical to the transformation formulas for H and E. 

 Ultimately, it should be pointed out that the components of the “four-force” (or “four-impulse”) 

f transform in the same way as any other four-vector (cf., § 1). For that reason, we will not need 

to go into the details of that issue. However, it would not seem irrelevant to emphasize that in the 

theory of relativity, the ordinary force f is a variant quantity in regard to not only its direction, but 

also its magnitude, just like the spatial distance between two space-time points. By contrast, the 

difference: 
2

2

2

l
f

c
−  = f2 

 

is regarded as an invariant quantity. If one substitutes l = f  u in that then one will have: 

 

f2 = 

2

2 1

c

 
−  

 
f f u . 

 

It follows from the constraint u < c that the vector f is space-like, and the quantity: 

 

f0 = 

2

2 1
f

c

 
−  

 
f v      (13.b) 

 

represents its “rest magnitude,” which is the “natural” magnitude that is as small as possible. The 

relativity of force is an immediate consequence of the relativity of velocity since the latter enters 

explicitly into the expression for the force according to the formula: 
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f =  E + 
1

c
 v  H . 

 

 

§ 4. – Applying the relativistic transformation formulas to the uniform rectilinear motion  

of electrons and oscillators. 

 

 In § 2, we alluded to the fact that the influence of translation (with constant velocity) on the 

properties of rotating electrons can be determined by means of the theory of relativity. We would 

now like to calculate the electromagnetic field of a moving electron (initially with no magnetic 

moment) in the same way and then the field of an arbitrary oscillator (so the magnetic electron can 

be regarded as a special case of that). In that way, we will treat the electron, like the oscillator, as 

point-like, for the sake of simplicity. 

 The field of those particles relative to the coordinate system S   in which they are at rest must 

obviously be assumed to be known. As always, we shall denote the velocity of S   relative to S by 

v. 

 a) Electron (point-charge). – The electromagnetic potentials in S   are: 

 

A = 0 ,   = 
e

R
. 

 

It will follow from (3) and (3.a) (in which the primed quantities can be switched with the unprimed 

ones while inverting the sign of v) that: 

 

A = 
c


v,  = 

21







−
 = 

21

e

R  −
  

v

c


 
= 

 
. (14) 

 

The problem then arises of expressing the distance R   in terms of the “unprimed” quantities. We 

assume that for t = t  = 0, the electron is found at the common origin (O or O , resp.) of the two 

coordinate systems S and S  . We then, in turn, address the calculation of the quantity R   that is 

associated with an arbitrary spacetime point Q (r, t) in S. Let the radius vector of the electron in S 

be denoted by r0. Obviously, we have r0 = OO  = v t, and the distance from the reference point P 

(r) considered to the electron at the moment t (in S) will be equal to the magnitude of the vector 

R = r − r0. 

 If one introduces the coordinate axes (X1, X2, X3) and 1 2 3( , , )X X X , as usual, then after a 

Lorentz transformation, one will have: 

 

1x  = 1

21

x vt



−

−
 = 

0

1 1

21

x x



−

−
, 2x  = x2 , 3x  = x3 , 
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and 

2R  = 2 2 2

1 2 3x x x  + +  = 
0 2 2 2 2

1 1 2 3

2

( ) (1 )( )

(1 )

x x x x



− + − +

−
 = 

2

21

R





−
,  (14.a) 

i.e., as a result: 

 = 
e

R
,     (14.b) 

in agreement with the results of Chap. VI. 

 The electric and magnetic field strengths can be obtained from those formulas by 

differentiating with respect to the coordinates x1, x2, x3, and time. However, one can determine 

them directly from the corresponding expressions for the rest system S   according to the 

transformation formulas (9.a) and (9.b) or the formulas that are reciprocal to them, Namely, one 

has: 

E = 
3

e

R
R , H = 0 .     (15) 

As a result, we have: 

 

H = 
1

c
v  E ,E = (1 – ) (E v0) v0 +  E = 

3

e

R
{(1 − ) (R v0) v0 +  R}. 

 

Now, in coordinate notation, we have: 

 

R v0 = 1x  = 
0

1 1

21

x x



−

−
 = 0

1 1( )x x −  =  (R v0) . 

 

The first component (i.e., the one parallel to v0) of the vector (1 − ) (R v0) v0 +  R is then 

equal to: 

(1 − )  R v0 + 2  R v0 =  R v0 . 

 

Since the other components of R and R are identical, we will have simply: 

 

(1 − )  (R  v0) v0 +  R =  R ,    (15.a) 

and therefore, from (14.a): 

E = 
2

3
(1 )e

R



−

R
.     (15.b) 

 

That is formula (13), Chap. VI that we know already. 

 

 b) Oscillator. – We consider the oscillator to be a double dipole whose electric and magnetic 

moments are given by the vectors p and m in the “rest system” S  . Those vectors can initially 
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be arbitrary (but known) functions of an oscillatory nature in time t . We can combine the vectors 

p and m into a skew-symmetric moment tensor 2p with the components (relative to S  ): 

 

23 1 31 2 12 3

14 1 24 2 34 3

, , ,

, , .

p m p m p m

p i p p i p p i p

     = = =

     = = =
 

 

The electromagnetic field of that double oscillator in the system S   is determined by the known 

expressions for the electric and polarization potential: 

 

Z = 
/t R c

R

 −



p , Z = 

/t R c

R

 −



m .   (16) 

 

[Cf., (28.a), Chap. V. What was denoted by t  in that expression is now /t R c − ]. 

 According to the formulas that are reciprocal to (11), in which P and M are replaced with Z 

and Z, the transformed expressions for those potentials (in the system S) will now read: 

Z = (1 – ) (Z  v0) v0 +  (Z + 
1

c
v  Z) , 

Z = (1 – ) (Z  v0) v0 +  (Z − 
1

c
v  Z) . 

 

If one introduces the expressions above in them and recalls that R   = R 
 then one will have: 

 

1

0 0

1

0 0

1 1
( 1) ( ) ,

1 1
( 1) ( ) .

R c

R c





−



 −



 
  = −  + +   

  


    = −  + −     

Z p v v p v m

Z m v v m v m

   (16.a) 

 

In those formulas, p and m are regarded as given vector functions, and we need to express only 

their argument, i.e., effective time relative to S  : 

 

  = /t R c − , 

 

which plays the role of phase, in terms of t and r (or R). 

 Now, if R   = R 
 and: 

t  = 
2

2 2

( ) /

1 /

t c

v c

− 

−

r v
 = 

2
t

c


 
− 

 

r v
 

then, as a result, one will have: 
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  = 
2

R
t

c c


 
− − 

 

r v
 =   ,     (16.b) 

 

in which  has the meaning relative to S that would correspond to  . One can calculate the 

potentials A, , and the field strengths E, H by differentiating (16.a) with respect to x1, x2, x3, t 

using the last formula. However, as we have remarked before, it is generally much simpler to 

calculate the desired quantities (e.g., E and H) directly (using the formulas that are reciprocal to 

(9.a) and (9.b)] from the corresponding “primed” quantities, which have the forms: 

 

E = 0 0 02

1
[ ( ) ]

c R
      + R R p R m , H = 0 0 02

1
[ ( )]

c R
     +  p R R R m , 

 

in the case considered, according to (31), (32), (51.a), and (51.b). 

 However, we would not like to do that calculation and will content ourselves with the remark 

that the electric and magnetic field strengths must also be numerically equal and perpendicular to 

each other relative to S [according to (10.b) and (10.c)]. It follows from this that the ray vector K 

= ( )
4

c


E H , just like K, can be represented by the product of the energy density times the speed 

of light. However, the direction of that light velocity must be different in S and S  . 

 One can determine the relationship between K and K directly by means of the transformation 

formulas (12.a) and the ones that follow from them. However, it is simpler to calculate the change 

in the two factors  and c (obviously, the latter relates to only the direction) individually. 

 For the sake of simplicity, we will assume that the radiated light is “unpolarized,” i.e., the 

oscillations of the oscillator are distributed uniformly in all directions, and the intersections of the 

vectors H and E with the directions perpendicular to the wave normal n (= / R R ) will have 

the same absolute value correspondingly. Obviously, their mean values E  and H  must vanish 

then. By contrast, according to the equation 
2 2( ) / 8E H  +  =  , we will have: 

 
2E  = 2H   = 4   

 

for the mean values of their squares. The mean values of (v  H)2 and (v  E)2 are obviously 

equal to each other. In order to determine them, we set H = n  E (or E = H  n). We will 

then have: 

v  H = v  (n  E) = (v  E) n – (n  v) E, 

and as a result: 

  2( )v H = 2 2( ) ( )E   + v E n v  (since E  n = 0), 

or since: 
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(v E)2 = 2 2v E − (v  E) , 

we will have: 
2 2( ) ( )  + v H v E  = 2 2 2(1 cos )v E  + , 

 

in which   = (n  v0) means the angle between the wave normal (i.e., the ray R) and the velocity 

v. 

 From (12), when we switch the primed and unprimed quantities and recall the fact that: 

 

v  g = cos
v

c





 , 

we will get the formula: 

 = 
2

2 2

2
1 (1 cos ) 2 cos

v v

c c
   

   
  + + +  
   

. 

 

If one sets v / c =  in that and observes that 2  = 
21/ (1 )−  then one will get: 

 

 = 2 2 2[sin (cos ) ]      + +  = 2 2( cos 1)     + . 

 

The change in direction of the light rays (wave normals) under the transition from the coordinate 

system S   to S can be derived quite simply from the formula (16.b) for the “phase,” when 

expressed as a function of r (and t). That is because the wave surfaces can generally be defined to 

be the surfaces of constant phase at fixed values of time. From the standpoint of the coordinate 

system S  , in which the oscillator is “at rest” at its origin O , the surfaces of constant phase   for 

t  = const. are determined by the equation R   = const. They will then be concentric spheres, as is 

clear from the outset. By contrast, from the standpoint of the system S, according to (16.b), they 

will be given by the equation: 

 = R
c


+

r v
 = const.         (17) 

 

The direction of the wave normal at the reference point (r, t) is obviously determined by the 

gradient of . We then have: 

grad  = 
1

grad R
c

+v , 

or in coordinate notation: 

 

1x




=  + 

0

1 1x x

R

−
, 

2x




= 

2 2(1 )
x

R



− , 

3x




= 

2 3(1 )
x

R



− , 

 

and as a result, from the known formulas: 
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x1 − 0

1x  = 1x  , x2 = 2x , x3 = 3x , R  = 
R




, 21 −  = 

2

1


, 

one will have: 

1x




=  + 1x

R




,      

2x




= 2x

R




,      

3x




= 3x

R 
. 

 

If one denotes the angle between the wave normal and the direction of v in S and S   by  and , 

resp., then one will obviously have: 

 

cos  = 
1

1

| grad | x








,  sin  = 

2 2

1 2

1

| grad | x x

 



    
+   

    
, 

 

on the one hand, and: 

cos   = 1x

R




, sin  = 

2 2

2 3x x

R

 +


, 

on the other. It will then follow that: 

tan  = 
sin

( cos )



  



 +
.          (18) 

 

 For example, let S be a coordinate system that is fixed on the Earth. A “fixed star” might serve 

as an oscillator. That “fixed star” must move relative to S, and indeed with a periodically-

alternating velocity (due to the orbital motion of the Earth around the Sun). The direction of its 

light rays that are observed on Earth, or in other words, its apparent location in the sky, must 

correspondingly vary periodically. That is the phenomenon of the aberration of the fixed stars that 

was discovered by Bradley. Ordinarily, one does not care to speak of the direction of the light ray, 

but of the direction of observation that is opposite to it, and one does not consider the motion of 

the star relative to the Earth, but the motion of the Earth relative to star. One must correspondingly 

invert the sign of   (angle of observation) and  (velocity of the Earth divided by the speed of 

light), which will not alter the formula above. 

 Note that, in reality, only the change in the angle  can be observed, which is based upon the 

orbital motion of the Earth around the Sun. Therefore, a constant difference must remain between 

 and  , in general, that originates in the relative translational motion of the star and the solar 

system. That relationship is represented schematically in the accompanying figure (Fig. 39). In 

that figure, B means the Earth and A  means the so-called true position of the star. A is the 

“apparent” position (from the standpoint of the system S), while BC is the instantaneous direction 

of motion of the Earth (as evaluated in S  ). The difference  =  −  is called the aberration 

angle. From (18), the tangent to that angle is equal to: 

 

tan  = 
tan tan

1 tan tan

 

 

 −

+
 = 

2

( 1)cos
sin

cos (cos ) sin

  


    

− +


  + +
. 
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 The velocity of the Earth relative to the stars (and one deals with only the relative velocity) is 

very small compared to the speed of light. That is why one can set  = 1, and generally omit terms 

of second order in . Therefore, the formula above will assume the well-known simple form: 

 

   sin     sin  . 

 

Up to now, we have made no assumption about the type of light 

oscillations. We would now like to assume that those oscillations are 

harmonic (i.e., monochromatic light). Let their frequency in the rest 

system S   (i.e., their “true” frequency) be  . The dependency of the 

oscillations of the oscillator on time is then expressed relative to S   

by the phase factor cos 2 t   , and the corresponding dependency 

of the light oscillations at the reference point in question is expressed 

by cos 2   , i.e., from the standpoint of the coordinate system S 

(viz., a terrestrial astronomer), by: 

cos 
2

2
R

t
c c

 
 

 − − 
 

rv
. 

 

 r remains constant for a point that is fixed in S (e.g., a telescope). By contrast, the quantity R   

must vary slowly. For a time interval t – t0 that is not too long, one can represent its dependency 

upon time by 0

0

( )
dR

t t
dt

 
− 

 
. Now, one has: 

dR

dt



 = 
0 0

1 1 1( )x x dx

R dt

−
= − 

R

R v
. 

 

The phase factor above then assumes the following form: 

 

cos 
02 1 ( const.)t t

R c
 



  
 +  − +  

  

R v
. 

 

The light oscillations that are observed in S are also harmonic then, but they will have a frequency 

that is different from  : 

v = 1
R c

 


 
 +  

 

R v
 ,            (19) 

 

or approximately (for very large distances): 

v = ( )1 cos    + .       (19.a) 

 

That formula expresses the known Doppler-Fizeau principle, but in a form that is sharper than the 

usual one: Namely, in addition to the “linear” Doppler effect, which is found in the factor of first 

 

 

A 

C 

 

 
 

 

B 

Figure 39. 
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order in  and vanishes for  =  / 2 (viz., motion perpendicular to the direction of observation), 

there is also a “quadratic” effect that corresponds to the difference between the flow of time in S 

and S   by way of the factor  = 
21/ 1 − . One does not need to consider that factor for the 

speeds that actually occur in nature (for stars, as well as isolated luminous atoms). 

 The last result regarding the change in the direction and frequency of light due to the relative 

motion of the light source and the observer can be derived quite simply when one imagines that 

the light source (i.e., oscillator) is infinitely distant from the outset and correspondingly treats the 

waves as planar. The dependency of the electromagnetic field of such waves on position and time 

is known to be determined by a phase factor of the form  = ie  , in which the phase  is 

expressed linearly in terms of the radius vector r and time t by the formula [cf., (37.a) and (37.b), 

§ 8, Chap. V]: 

 = 2 (−  t + k r) .         (20) 

 

The vector k is numerically equal to the reciprocal wavelength 
c


 = 

1


, and is directed parallel to 

the wave normal n. 

 The expression (20) refers to the coordinate system S. However, its numerical value must be 

independent of the choice of coordinate system. In other words, the phase  is invariant under 

Lorentz transformations. However, since r and t define the spatial and temporal projections of the 

four-vector r, k and  (except for certain coefficients) must be the corresponding projections of a 

certain four-vector k such that the phase  is equal to the inner product of those four-vectors (times 

2) will be: 

 = 2 k  r = 
4

1

2 l l

l

k x
=

 .           (21) 

 

On the other hand, from (20),  can be represented coordinate-wise in the form: 

 

 = 2 (+ k1 x1 + k2 x2 + k3 x3 –  t) . 

 

Upon comparing that with (21), we will get –  t = k4 x4 = k4 ic t, i.e.: 

 

k4 = 
i

c
  = 

i


.            (21.a) 

 

One must then consider the frequency (multiplied by i / c) to be the fourth component of a four-

vector k (viz., the wave vector). The square of that four-vector is equal to zero identically: 

 

k2 = 
4

2

1

l

l

k
=

  = 0 ,     (21.b) 
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which corresponds to the fact that it represents the propagation of an effect with the speed of light. 

 It follows from the argument above that the spatial and temporal projection of k will transform 

just like the corresponding projections of r. 

 From (1) and (1.a) (in which r is replaced with k and t is replaced with 2/ c ): 

 

  =  ( – k  v)           (22) 

and 

k = 
2c




 
− 

 
k v  + (1 – ) (v0  k)  v0 .    (22.a) 

 

Recall that the vector (v0  k)  v0 is nothing but the projection of k onto a plane that is 

perpendicular to v. 

 We shall once more introduce the coordinate axes (X1, X2, X3), 1 2 3( , , )X X X  and assume that 

the vector k lies in the X1 X2-plane and defines the angle  with v. (22) will then assume the form: 

 

  = 1 cos
v

c
  

 
− 

 
 . 

 

That is the formula that is reciprocal to (19.a), i.e., the formula for the Doppler principle. By 

projecting (22.a) onto the first and second axes, we will get: 

 

cosk  = 
2

cos
v

k
c


 

 
− 

 
 =  k (cos  – ) , 

sink  =  k sin  + (1 – ) k sin  = k sin  , 

 

from which it will follow immediately that: 

 

tan  = 
sin

(cos )



  −
, 

 

i.e., the formula for the Bradley aberration that is reciprocal to (18). 

 

 

§ 5. – The electromagnetic field of an arbitrarily-moving oscillator. 

 

 One can determine the field of an oscillator in uniform, rectilinear motion from the field of an 

oscillator at rest (which is assumed to be known) by means of a Lorentz transformation. We would 

now like to solve the corresponding problem for an entirely arbitrary translational motion. In so 
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doing, we will treat the oscillator as point-like. Note that it can just as well represent a light source 

(of any type of oscillation) as a “rotating” electron with a time-varying magnetic moment. 

 The desired solution is given most simply by means of a method that we have applied already 

in Chap. VI, § 4 in the determination of the electromagnetic potential of a moving point-charge. 

We will now replace that charge with the oscillator in question and replace the four-potential A 

with the polarization potential 2Z. Since the latter satisfies the differential equation 2Z = 0, just 

like A, in which the oscillator appears merely as a point singularity, one can immediately write 

down a point solution that corresponds to a singular spacetime point ( )Q r , and indeed in the 

form: 

2Z = 
2

1

S

2p , 

 

in which 
2S  = | r – r |2 means the four-dimensional (i.e., spacetime) distance between Q  and the 

reference point Q (r) in question. Now, the question arises of how one should compose a “line 

solution” out of such point solutions that would correspond to the actual translational motion of 

the oscillator and its actual (time-varying) electromagnetic moment. 

 Since no identity (like say A = 0) exists between the components of the polarization 

potential, we must look somewhere else for the answer to the question above. 

 It is initially clear that in the special case of the oscillator at rest, the general solution to be 

determined must go to the known solution Zkl = /klp R , in which klp  are the components of the 

polarization tensor for the effective moment t  = t – R / c. That special solution can be represented 

in the form: 

Zkl = 
2

klpc
dt

i S


 . 

 

That integral must then be taken along a closed curve in the complete t -plane around the root of 

the equation 
2S  = 0 that corresponds to the retarded action (cf., the corresponding representation 

of the Coulomb potential in § 4, Chap. VI). 

 If one seeks to adapt the foregoing formula to the general case then one will encounter the 

following complication from the standpoint of the theory of relativity: The quantities Zkl and pkl 

are covariant, and 
2S  is an invariant scalar. However, dt  is not an invariant scalar, but only the 

fourth component of the four-vector d r , divided by ic, that corresponds to an infinitesimal 

spacetime displacement of the oscillator along its four-dimensional “world-line.” 

 We now note that this four-vector must have a time-like character due to the condition that v < 

c (v = translational velocity of the oscillator). That is why it is possible to replace the time interval 

of variation dt  with an invariant time-interval d   that is obtained when one considers the 

oscillator from the standpoint of an inertial system in which it is instantaneously at rest, i.e., it 

moves with the same velocity v relative to the original system as the oscillator at the spacetime 

point considered. According to (24.a), that natural time interval, which is as small as possible, is 

expressed by the formula: 
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d   = 
2 21 /dt v c − .     (23) 

 

Note that the corresponding spacetime distance between the points r and r + d r , which we 

would like to denote by ds, is equal to: 

 

ds  = 2 2 2 2

1 2 3 4dx dx dx dx   + + +  = 

22 2

31 21
dxdx dx

i c dt
dt dt dt

      
 − + +            

, 

i.e.: 

ds  = i c d .        (23.a) 

 

One calls ds  the arc-length element of the four-dimensional “world-line.” 

 The general covariant formula for Zkl then reads: 

 

Zkl = 
2 2

2

1 /klp v cc
dt

i S

 −
 .            (24) 

 

By taking the residue at the “retarded pole,” we will get: 

 

Zkl = 

0

2 2

/

1 /

(1 / )

kl

R
t t R c

p v c

v c R
= −

  −
 

−  

 ,          (24.a) 

 

as in § 4, Chap. VI. The method that we used at the time can serve as an illustration of the 

methodological utility of the theory of relativity. 

 We would now like to show the simplest way that the ordinary electromagnetic potentials A, 

 can be calculated from Zkl . That will be much simpler on the basis of the four-dimensional 

formula (24) than it is on the basis of the corresponding three-dimensional formula (24.a). It is 

generally most convenient to pass to the ordinary three-dimensional space in the end result and 

perform all of the intermediate calculations in four dimensions. From § 1, Chap. VIII., we will 

have: 

Ak = kl

l l

Z

x




  = 2 2

2

1
1 /kl

l l

c
p v c dt

i x S

  
  −  

  
 , 

or with the abbreviation: 

klp  = 
2 21 /klp v c − ,          (25) 

 

and when we recall the facts that 
l

S

x




 = l lx x

S

−
 and pkl = − plk , we will get: 
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Ak = 
4

( )2 lk l lp x xc
dt

i S

 −



 .      (25.a) 

 

For 0t t → , we further have 4S  = 2 3

2 0 3 0( ) ( )a t t a t t   − + − + , with: 

 

a2 = 
2 4

2

0

1 ( )

2

d S

dt

 
  

, a3 = 
3 4

3

0

1 ( )

6

d S

dt

 
  

, etc. 

As a result: 

4

1

S
 = 3

02

2 0 2

1
1 ( )

( )

a
t t

a t t a

 
 − − + 

 −  
, 

and from (25.a): 

Ak = 3

2 2

2 0 2 0

( ) 4 ( )4 1 1

2 ( ) 2

k kF t a c F tc
dt dt

a i t t a i t t 

 
 −

   − −  , 

in which we have set: 

( )kF t  = ( )lk l l

l

p x x − , 

to abbreviate. 

 Since the function ( )kF t  remains finite for t  = 0t , one will have (cf., Chap. VI, § 5): 

 

0

( )1

2

kF t
dt

i t t




 −  = 0( )kF t  and 
2

0

( )1

2 ( )

kF t
dt

i t t




 −  = 

0

( )k

t t

d
F t

dt  =

 
 

 
. 

 

Moreover, after an elementary calculation, that will imply that: 

 

a2 = 2 2 24 (1 / )RR c v c−  

and 

a3 = − 
2

3

2
4 (1 / ) 1R

v
Rc v c

c R

  
− − + 

 

w R
 . 

It will then follow that: 

 

Ak = 

0

2 24

2 2 2 3
1

( )1 /1

(1 / ) 1 /

l l lk lk l lk l lR

lR R t t

x x dp p dx p x xv c w

v c c R dt c R dt v c R

  

=  =

    − −− +
− + 

   − − 
 . (26) 

 

We can now split the four-vector A into its spatial and temporal parts. In so doing, we remark that 

for k = 1, we will have: 

 

( )lk l l

l

p x x −  = p21 R2 + p31 R3 + p41 R4 = m2 R3 – m3 R2 − 1 0( )i p i c t t−  = (m  R)1 + p1 R . 
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Likewise: 

1

1 l
l

l

dx
p

c dt

 


  = 2 2

1

1

1
1 /v c

c

  
 −  +  

  
m v p  

and 

( )lk
l l

dp
x x

dt



−


  = ( ) ( )2 2 2 2

1

1

1 / 1 /
d d

v c R p v c
dt dt

 
 −  + −   

m R  . 

 

Analogous formulas are true for k = 2 and k = 3. However, for k = 4, we will get: 

 

4 ( )l l l

l

p x x −  = i (p1 R1 + p2 R2 + p3 R3) = i p  R ,  etc. 

 

From (26), the vector potential A and the scalar potential  = A4 / i can then be represented as 

follows: 

A = 
2 2

2 3 2 2

1

(1 / )1 1 1

(1 / ) (1 / )

R

R R

v c w d dc

v c v c R R c R dt c R dt   

  
   +       − +   − +  +     − −   

  

m v p
m R m p

R , (26.a)   

 

 = 
2 2

2 3 2 2

1

(1 / )1 1

(1 / ) (1 / )

R

R R

v c w dc

v c v c R R c R dt  

  
       − +   − +     − −   

  

p v
p R p

R ,    (26.b) 

 

with the usual notation: 

 = 
2 2

1

1 /v c−
. 

 

The translational velocity of the oscillator is assumed to be a given function of time. As far as the 

electromagnetic moments p and m are concerned, they can be considered to be immediately 

given functions of time only in the corresponding rest system. Those known “rest values” p0 and 

m0 are coupled with the values p and m that are referred to the chosen fixed inertial system by 

the formulas: 

0

0 0

0

0 0

1
(1 )( ) ,

1
(1 )( ) .

c

c

 

 

 
     = −  + +   

  


       = −  + −     

m m v v m v p

p p v v p v m

   (27) 
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[Cf., the formulas (11), § 2. The primed quantities there correspond to p0 and m0. In our present 

notation, the prime means that it is not the time t, but the effective time 0t  = t – R0 / c that should 

serve as the argument.] Obviously, we can also express p and m in terms of p0 and m0 by means 

of the reciprocal formulas. 

 For the “rotating” or (when expressed more carefully and more physically precisely) magnetic 

electron, the electric moment will be equal to zero in the rest system. In that case, we will then 

have: 

p = 
1

c
 v m ,      (27.a)  

 

such that the second term in the brackets in (26.a) and (26.b) will vanish identically. The magnetic 

moment m is then expressed in terms of the corresponding rest moment by the formula: 

 

m = 0 0

0 0(1 )( )  −  +m v v m . 

 

 If one assumes that the vector m0 is always perpendicular to the direction of translation, i.e., 

the velocity vector v [which corresponds to the vanishing of the internal torque, according to 

(53.a), Chap. VII], then one will get simply: 

 

m =  m0.      (28) 

 

 In that way formulas (26.a) and (26.b) will assume the following forms: 

 

A = 

0 0

02 2 0

0

2 2

1 1

1 /1

(1 / ) 1 /

R

R R

v c w c c

v c v c R c R

  
 − +     − +  − 

 − − 
  

m R v v m
m R

,  (28.a)   

 

 = 

0 0 0

2 2 0 0

2 2

1 1 1

1 /1

(1 / ) 1 /

R

R R

v c w c c c

v c v c R c R

    
  +      − +    + 

 − − 
  

v m R R v m v m

.  (28.b) 

 

The dots over m and v mean the corresponding differential quotients with respect to time t  at the 

moment t  = 0t . Obviously, one must combine those potentials with the ones that originate in the 

charge of the electron. 

 In order to calculate the electric and magnetic field strengths, we must revert to the original 

four-dimensional expressions since in so doing, we will need to consider the equation 0t  = t – 
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/ ,R c  which determined the effective time, only in the final result, but not in the intermediate 

calculations. 

 We would like to explain that situation in the aforementioned example of the potentials that 

originate in the charge of the electron: 
 

 = 
(1 / )R

e

v c R−
, A = 

c


v . 

 

The determination of the field strengths comes about in the usual way that was described in § 2, 

Chap. VI, i.e., by means of the formulas: 

 

H = rot A, E = − grad  − 
1

c t





A
 . 

 

 We now replace those formulas with the four-dimensional ones Hkl = l k

k l

A A

x x

 
−

 
 and employ 

the integral representation (23), Chap. VI, for Ak : 

 

Ak = 
2

kdxe

i S


  = 

2

1e dx
dt

i dt S




 . 

Therefore: 

Hkl = 
4

2
( ) ( )k l

l l k k

dx dxe dt
x x x x

i dt dt S

   
 − − − 

  
 . 

 

That expression can be brought into the form: 

 

Hkl = 

0

2 2

03 3 2 2 2

(1 / )
( ) ( )

(1 / ) (1 / )

R
kl kl

t tR R

e v c w e d
t t

v c R c v c R c dt  =

 − +  
  +  

  − −  
 

 

in the same way as (25.a), with: 

 

( )kl t   ( ) ( )k l
l l k k

dx dx
x x x x

dt dt

 
 − − −

 
, 

 

which will immediately give the formulas for E and H that were derived before in § 2, Chap. VI. 

 

 

§ 6. – Deriving the basic electromagnetic equations from a variational principle. 

 

 In § 5, Chap. IV, we proved the theorem that the differential equation 2 = 0 for the scalar 

potential inside of a bounded region represents the condition for a minimum of the integral: 
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J = 
2( ) dV      (29) 

 

for given boundary values of the function  on the bounding surface S. We can invert that theorem 

and consider the differential equation 2 = 0 to be a consequence of the variational equation: 

 

 J = 0            (29.a) 

 

for given boundary values of . In it, the quantity  J (the so-called first variation of the integral 

J) means the change in that integral that is linear in the infinitely-small change or variation  of 

the function  (r) in question. Equation (29.a) is considered to be only a first approximation for 

the corresponding change in J then. In § 5, Chap. IV, we also considered the terms that are quadratic 

in  and showed that the corresponding second variation of J (viz., 
2J ) remains essentially-

positive when 2 vanishes. 

 In general, i.e., for a differential expression of arbitrary form under the integral sign in (29), 

the formula (29.a) can be regarded as only a necessary, but not sufficient, condition for the 

minimum of J. It can just as well correspond to a maximum or even neither a maximum or a 

minimum, but a stationary value of integral J, i.e., a value that remains constant under an 

infinitesimal change in the function . 

 The differential equation 2 = 0 will be true when electricity is absent from the volume 

considered V. However, it is easy to see that the more general equation: 

 

2 = −   , 

 

which is true for a given, time-constant distribution of electricity with finite volume density, is also 

completely equivalent to a variational equation of the form  J = 0, but in which the integral J is 

not given by (29), but by the formula: 

 

J = 
2( )

8
dV


 



 
− 

 
  

or 

J = 
2

8
dV 



 
− 

 

E

.          (30) 

 

E = −  means the electric field strength. The aforementioned boundary condition ( = 0) must 

then remain unchanged by that. 

 In fact, the first variation of (30) reads: 

 

J = 
4

dV


 


 
−  

 

E E

. 

Just as in § 6, Chap. IV, we now have: 
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E   E = − E     = − div ( E) +  div E = − div  E + 4   , 

 

and as a result: 

 J = − div( ) dV E = nE dS  = 0 . 

 

Recall that the integral 
2

8

E
dV

 , which extends over all of space, is considered to be the total 

electric energy in the charges that create the field E. As is known, the same energy can also be 

represented in the form: 

U = 1
2

dV  . 

In our case, we then have: 

J = − U . 

 

In that way, we can replace the boundary condition  = 0 on S for an infinitely-distant surface 

with the usual condition for the scalar potential  = 0. 

 In an entirely-analogous way, one can prove that the differential equation: 

 

2 A = −  j , 

 

which determines the vector potential of a given stationary current distribution, is completely 

equivalent to the variational equation  K = 0, where: 

 

K = 
4

dV





 
−  

 

H H

A j , 

and note that: 

 

H   H = H  rot  A = div ( A  H) +  A  rot H = div ( A  H) + 4 j   A . 

 

As a result: 

 K = div( )dV  A H = ( )n dS  A H  = 0 . 

 

That result, which can be true for only time-constant fields (6), can be immediately generalized to 

arbitrary fields that correspond to a time-varying distribution of the charge and current density. 

The general field equations read: 

 
2A  = −  j  and 2H = rot A 

 

 
 (6) Which was first pointed out by K. Schwarzschild.  
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in four-dimensional notation. Let the variational equation that is equivalent to it be: 

 

 S = 0 , 

 

in which S means an initially-undetermined integral. In order to determine it, we have the following 

clues: First of all, in the special case of time-constant fields, the equation  S = 0 must reduce to 

the equations J = 0 and K = 0. Secondly, S must represent an invariant scalar quantity. 

 Now, we have seen from §§ 1 and 2 that the quantities A j and  , on the one hand, 2H  and  

and 2E , on the other, can actually be combined into the invariant quantities: 

 

A j −   = A j 

and 
2 2H E−  = 1

2
2H2 . 

 

 It will then follow that the desired integral S must include the function: 

 

A j −    − 2 21
( )

8
H E


−  = A j – 

1

16
| rot A |2    (31) 

in its integrand. 

 As far as the domain of integration is concerned, it must be four-dimensional, due to the fact 

that the space and time coordinates have an equal status. In order to free ourselves from any sort 

of spacetime boundary conditions, we can extend that integration over the entire space and time 

manifold, i.e., over the entire four-dimensional “world.” If we denote the volume element of “the 

world” by d  then we will have: 

 

S = 
21

(rot )
16

d


 
−  

 
 Aj A ,    (32)  

or in coordinate notation: 

 

S = 

2

1 2 3 4

1

16

k l
k k

k k l l k

A A
A j dx dx dx dx

x x

   
 − − 

    
   .  (32.a) 

 

We must still test the tacit assumption that we have made that the expression for the volume of a 

four-dimensional “world region” that was just cited: 

 

d   = 1 2 3 4dx dx dx dx   = i c dV dt     (33) 

 

is actually invariant under the Lorentz transformation (otherwise the variational equation  S = 0 

would make no sense). If we go from the coordinate system in question X to another system X   
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that is in a state of uniform, rectilinear motion then from the well-known theorem of Jacobi, the 

integral (33) will go to the multiple integral: 

 

1 2 3 4D dx dx dx dx     , 

 

in which D means the functional determinant with the elements /k lx x   = kl . However, due to 

the orthogonality of the Lorentz transformation, that determinant will be equal to 1. 

 The quantity S corresponds to the Lagrange function (or more precisely, the action function) 

of ordinary mechanics, i.e., the difference between the kinetic (viz., magnetic) and potential (viz., 

potential) energy. We will use that fact later when we derive the equations of motion of an electron. 

 We would now like to calculate the variation  S and convince ourselves that the equation  S 

= 0 is actually equivalent to the original field equations. Obviously, in so doing, we must treat the 

components of the four-current j as given functions of the four coordinates that are not to be varied. 

We will then have  (Ak jk) = jk  Ak , and furthermore: 

 
2

k l

l k

A A

x x


  
− 

  
 = 2 k l k l

l k l k

A A A A

x x x x

      
− −  

     
 = 2 k l

lk

l k

A A
H

x x

   
− 

  
 . 

  

We can convert the last expression as follows: 

 

k l
lk

l k

A A
H

x x

   
− 

  
 = ( ) ( ) lk lk

lk k lk l k l

l k l k

H H
H A H A A A

x x x x
   

  
− − +

   
. 

 

 When summing those expression over the two indices k and l, the latter can obviously be 

switched with each other: 

 

[e.g., one has ( )lk l

k l k

H A
x





 = ( )lk k

k l l

H A
x





 ]. 

 

If one recalls that Hkl = − Hlk then one will have: 

 
2

k l

k l l k

A A

x x


   
 − 

    
  = ( )4 4 lk

lk k k

k l k ll l

H
H A A

x x
 


+

 
   

 = 4 4 lk
k lk k

l k k ll l

H
A H A

x x
 

  
+ 

  
    . 
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The sum 
k lk

l kl

A H
x


  

 
  

   can be treated as a four-dimensional divergence of a four-vector 

with the components k lk

k

A H (l = 1, 2, 3, 4). It must vanish under the integration over the entire 

“world.” We will then get: 

 

 S = 1 2 3 4

1

4

kl
k k

k l l

H
A j dx dx dx dx

x




 
− 

 
   . 

 

In order for that integral to vanish for arbitrary (infinitely-small) values of Ak , the equations: 

 

kl

l l

H

x




  = −

2

2

k k

l ll k l

A A

x x x

 
+

  
   = 4 jk 

 

must be fulfilled. However, they are precisely equations (7) from Chap. VIII. It will follow those 

equations that: 

4 k

k

j

x





  = − 

2 2

2 2

k l

l k k ll k k l

A A

x x x x

  
+

   
      0 , 

 

i.e., the conservation law for electricity, as well as the relation: 

 
4

1

l

l l

A

x=




 = 0 , 

 

and the usual field equation: 2

kA  = − 4 jk . 

 

____________ 

 



 

CHAPTER TEN 

 

RELATIVISTIC MECHANICS 
 

 

§ 1. – The elementary theory of translational motion. 

 

 When investigating the motion of a material particle in classical mechanics, one prefers to 

choose time to be the independent variable, i.e., to represent the spatial coordinates x1, x2, x3 as 

functions of time t. In reality, due to its varying character, time is just as unsuited to the role of an 

independent variable as the coordinates themselves. In the “graphical” representation of events, 

i.e., spacetime points, by points in four-dimensional space, time, multiplied by ic, will simply 

become a fourth coordinate on a par with the other three. Kinematics, i.e., the study of motion in 

ordinary three-dimensional space, will then be reduced to a pure geometry of four-dimensional 

space. In that way, only the condition that was suggested in the last chapter (§ 5) of the time-like 

character of all four-dimensional lines that represent the motion of a particle (electrons, 

oscillators) must be fulfilled. One cares to refer to such time-like four-dimensional lines as the 

world-lines of the corresponding particles. That is why it would seem convenient to define the 

position of the particle in question along its world-line, not by time, but by the length s of that 

world-line, as measured from a certain point. The element of length of the world-line ds and the 

corresponding smallest-possible time interval d, as we have seen before, is determined by the 

formulas: 

ds = ic d = 
2 21 /ic dt v c− .     (1) 

 

If the motion of the particle is known as a function of the associated time in any coordinate system 

then one calculates the invariant proper time t =  dt of that particle, and as a result, the arc-length 

s = ic, according to the formula: 

 = 
2 21 /v c dt− .         (1.a) 

 

 Dividing the four-vector d r that determines the elementary spacetime displacement by its 

magnitude ds = | d r | will yield a unit vector with the components dxk / ds. From the standpoint of 

“world geometry,” that vector defines the tangent direction to the world-line of the particle in 

question, and from the kinematical standpoint, it represents the direction and magnitude of its 

velocity. That is because one has: 

 

1dx

ds
 = 1( / )

( / )

dx dt

ds dt
 = 1

2 21 /

v

ic v c−
, 2dx

ds
= 2

2 21 /

v

ic v c−
,  

  3dx

ds
= 3

2 21 /

v

ic v c−
, 4dx

ds
= 

2 2

1

1 /v c−
. 
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It is often much more convenient to use the proper time as the independent variable, and not the 

arc-length. 

 The quantities: 

 

1dx

d
 = 1

2 21 /

v

v c−
, 2dx

d
 = 2

2 21 /

v

v c−
, 3dx

d
 = 3

2 21 /

v

v c−
, 4dx

d
 = 

2 21 /

i c

v c−
 

 

define the components of a four-vector v that we will refer to as the four-velocity. Its spatial and 

temporal projections are equal to 
2 21 /v c−

v
 and 

2 21 /

i c

v c−
, resp. For v = 0, the first one 

vanishes, while the second one assumes the constant value ic: That means that a particle that is at 

rest in the chosen coordinate inertial system will displace in time, i.e., in the direction of the fourth 

axis, with a constant velocity of ic. If the ratio v / c is small compared to 1 then the spatial projection 

of v will reduce to the ordinary velocity v. A uniform, rectilinear motion in three-dimensional 

space will be represented by a “world-line.” In that way, the four-vector v will remain “constant,” 

i.e., independent of  or s. Any deviation of the motion from rectilinearity or uniformity would 

correspond to a curvature of the world line. That curvature is determined by the change in velocity 

of the vector dxk / ds (tangent direction) relative to s, i.e., by the second derivatives of the 

coordinates with respect to s. Those second derivatives 2 2/kd x ds  define the components of the 

four-dimensional curvature vector, which determine the magnitude and direction of the 

acceleration of the particle from the kinematical standpoint. We define that four-acceleration w to 

be the derivative of v with respect to  (or the second derivative of r with respect to ). As a result, 

its components are equal to: 

 

 
2

1

2

d x

d
= 1

2 2 2 2

1

1 / 1 /

vd

dtv c v c− −
,  

2

2

2

d x

d
 = 2

2 2 2 2

1

1 / 1 /

vd

dtv c v c− −
,  

 
2

3

2

d x

d
 = 3

2 2 2 2

1

1 / 1 /

vd

dtv c v c− −
,  

2

4

2

d x

d
 = 

2 2 2 2

1

1 / 1 /

d i c

dtv c v c− −
. 

 

The spatial projection of that four-vector can also differ from the ordinary acceleration w = 

/d dtw  when the ratio v / c is very small, in the event that the magnitude of w is very large. Upon 

differentiating the equation 

2

kdx

ds

 
 
 

  = 1 with respect to s, that will give: 

2

2

k kdx d x

ds ds
  = 0 .           (2) 
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Geometrically, that means that the vectors 
d

ds

v
 and 

2

2

d

ds

v
 are perpendicular to each other. If one 

replaces s with  in that then one will get the equations v2 = − 2c , and: 

 

31 2
1 2 3

2 2 2 2 2 21 / 1 / 1 /

vv vd d d
v v v

dt dt dtv c v c v c
+ +

− − −
 = 2

2 2

1

1 /

d
c

dt v c−
, 

 

or with the usual vector notations: 

 

2 21 /

d

dt v c


−

v
v  = 

2

2 21 /

d c

dt v c−
.      (2.a) 

 

That equation then expresses the fact that the magnitude of the four-velocity will always remain 

equal to ic. 

 The results above define the mathematical foundation for the structure of the mechanics of 

material particles, i.e., for exhibiting the equation that will determine their translational motion 

under the action of given external forces. In that way, we will not need to speak of the internal 

forces that Lorentz’s theory operates with (not even when they are actually present), e.g., the forces 

of interaction between different electrons in a moving atom (in the event that the latter can be 

regarded as isolated particles). 

 As a starting point, we would like to take the classical Newtonian equation motion: 

 

0

d
m

dt

v
 = f , 

 

which is certainly true in the limiting case of very small speeds. 

 From the standpoint of the theory of relativity, one can consider the Newtonian law to be an 

approximate and incomplete form of a law of motion that represents a relation between two four-

dimensional vectors. If one would not like to alter Newton’s law fundamentally, but replace it with 

a four-dimensional equation that reduces to 0

d
m

dt

v
 = f in the limiting case v → 0, then one must 

obviously do the following: 

 First of all, replace the three-dimensional acceleration 
d

dt

v
, with the four-dimensional one ,

d

d

v
 

and secondly, replace the force f with the four-vector of impulse and work F, in which those 

quantities must not be referred to the usual unit of time, but to the unit of proper time. In that way, 

we will get the following relativistic equation of motion: 

 

0

d
m

d

v
 = F ,      (3) 
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The spatial projection of the vector F is equal to the impulse of the force f per unit proper time, 

i.e.: 

dt

d
f  = 

2 2

1

1 /v c−
f . 

 

The corresponding projection of the vector 
d

d

v
 is 

2 21 /

dt d

d dt v c −

v
. One will then have: 

 

0

2 21 /

md

dt v c−

v
 = f .      (3.a) 

 

The temporal projection of equation (3) reads: 

 

0
2 21 /

dt d ic
m

d dt v c −
 = 

dt i
l

d c
, 

 

in which l means the work done by the force f per unit of ordinary time, i.e.: 

 
2

0

2 21 /

m cd

dt v c−
= l .     (3.b) 

 

One can easily convince oneself of the validity of the definition of l above by means of equation 

(2.a). Namely, if one multiplies the latter by m0 then one will get: 

 

l = f  v 

 

when one recalls (3.a). According to Einstein, when one applies the theory of relativity to Newton’s 

theory, equation (3.a) will agree completely with equation (42), Chap. VII, which we derived for 

an electron on the basis of Lorentz’s principle. We then see that Einstein’s equation is much more 

general, and must be true for not only a free electron, but for any material particle (atom, molecule, 

as well as celestial bodies), in the event that Newton’s law is confirmed the limiting case v / c  

1, and entirely independent of any hypothesis about the origin of mass or the force of inertia. 

 The three-dimensional vector: 

G = 0

2 21 /

m

v c−

v
 = m v             (4) 

 

represents the mechanical momentum of the particle (which we have previously defined to be the 

electromagnetic momentum of the electron), while its mass is: 
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m = 0

2 21 /

m

v c−
.      (4.a) 

The quantity: 

W = 2mc              (4.b) 

 

is ordinarily considered to be the complete internal energy of the particle. However, it is not entirely 

clear what that means because a particle at rest must have an energy of 2

0m c  according to that 

definition. Now, the mass of a particle (or body) is mainly composed of the masses of the electrons 

that define it. The mutual mass, which originates in its interactions and corresponds to the sum of 

its mutual (electric and magnetic) energies, has a relatively negligible value. We then meet up with 

the following question again: What should the term “internal” or “proper” energy mean for an 

electron at rest? 

 We would not like to go into a detailed discussion of that question here. 

 The momentum (4) and the energy (4.b) multiplied by i / c obviously define the spatial and 

temporal projections, resp., of the four-vector: 

 

G = m0 v 0
k

k

dx
G m

d

 
= 

 
,   (5) 

 

which corresponds to the ordinary momentum (or “impulse”) and is referred to as the impulse-

energy vector. The equations of motion (3) can be written in the form: 

 

d

d
G = F      (5.a) 

by means of that four-vector. 

 In the treatment of the translational motion of an electron on the grounds of the Lorentz 

principle, along with the “inertial force” – 
d

d
(m v), we also found a second derivative of v with 

respect to t that is proportional to “a force of friction” (viz., radiation damping) and referred to the 

fact that even higher derivatives of v must be added in order to get the precise expression for the 

self-force (and as a result, in the exact equation of motion). The formal nature of the theory of 

relativity gives no reference point for assessing the question of whether the simple equations of 

motion (3) [or (3.a)] must actually be extended by such terms or not. The theory of relativity asserts 

only that all of those terms must be four-vectors (or their spatial projections). If we assume that, 

e.g., in connection with equation (24.b), Chap. VII, the equation of motion of the electron has the 

form: 
2 2

0 3 2

2

3

d e d
m

d c d 
−

v v
 = f              (6) 

 

for very small speeds, then we can conclude immediately from the theory of relativity that the 

exact (i.e., also valid for large speeds) equation of motion must have the following form: 
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2 2

0 3 2

2

3

d e d
m

d c d 
−

v v
 = F ,                    (6.a) 

 

or when one takes the spatial projection of that and multiplies by 
2 21 /v c− : 

 

2

0

32 2 2 2 2 2

2 1

31 / 1 / 1 /

md e d d

dt c dt dv c v c v c

 
 −
 − − − 

v v
 = f .       (6.b) 

 

However, that equation can be completely false, and there are actually many reasons for saying 

that the simple equation of motion (3.a) is valid precisely in the case of an isolated electron. 

 

 

§ 2. – The variational theory of the translational motion of an electron in a given 

electromagnetic field. 

 

 We assume that the external fields E, H in which the electron in question moves are known 

(in which E and H do not need to be constant in time.). The external force: 

 

f = 
1

e
c

 
+  

 
E v H              (7) 

 

cannot be treated as known in that way because it includes the velocity of the electron explicitly. 

If one multiplies (7) by 
dt

d
= 

2 2

1

1 /v c−
 then that will give the spatial projection of the four-

vector F. Its first component (in any coordinate system) reads: 

 

F1 = 
2 21 /

e

c v c−
(v2 H3 – v3 H2 + c E) = 

2 21 /

e

c v c−
(v2 H12 + v3 H13 + ic H14) , 

i.e.: 

R1 = 32 4
12 13 14

dxdx dxe
H H H

c d d d  

 
+ + 

 
 . 

 

Obviously, analogous expressions are true for the other components. As a result, one will have: 

 

Fk = l
kl

l

dxe
H

c d
 ,     (7.a) 

or in coordinate-free notation: 
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F = 
e d

c d

r 2H . 

 

We also point out the following expression: 

 

Fk = 
0

kl l

l

e
H G

m c
 ,         (7.b) 

 

which we will get from (7.a) when we replace dxl / dt with Gl / m0 using (5). 

 Formula (7.a) corresponds completely to formula (10.a), Chap. VIII for the components of the 

impulse-work four-vector per unit volume and time. It is easy to derive the last formula from the 

first when one represents the electron as an infinitely-small body, and not merely a point. Let the 

volume of electron be V and let the charge density be . One can then set the current density equal 

to ( / c) v. The work done and the impulse (with the former multiplied by i / c) contained in the 

volume element dV of the electron during the time interval dt are expressed by the four-vector with 

the components: 

kl l

l

H j dV dt  = l
kl

l

v
H dV dt

c
  

 

(in which v4 = ic) (1). Integrating that expression over the volume of the electron will run into very 

great difficulties, in principle, due to the appearance of time, which does not need to have the same 

value for different elements of the electron. Those difficulties will go away in the limiting case 

considered of infinitely-small electrons, and we will get simply: 

 

kl l

l

e
H v dt

c
  

 

for the total impulse (work, resp.) during the time dt. Dividing by d = 
2 21 /dt v c−  will 

ultimately give: 

2 21 /

l
kl

l

ve
H

c v c−
 = l

kl

l

dxe
H

c d
 , 

i.e., the expression (7.a). 

 We can then write out the equation of motion (3) in detail in the form: 

 
2

2

kd x

d
 = l

kl

l

dx
H

d



             (8) 

or 

 
 (1) Note that the products dV dt and  dV are invariant quantities. The former means an element of the world-

volume, while the latter means the element of electron charge de. 
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kdG

d
 = kl l

l

H G  ,                  (8.a) 

with the abbreviation: 

 = 
0

e

m c
.             (8.b) 

 

Now, it is easy to show (1) that equation (8) is a necessary consequence of the Schwarzschild 

variational equation: 

 S  

2

1

16

k l
k k

k k l i k

A A
A j d

x x




   
 − −  

    
   = 0 , 

 

when one considers the four-potential (Ak) in the latter to be a given function of the coordinates 

(and time) that determines the external field and considers the current density (jk) to be the desired 

function that corresponds to the motion of the electron. Therefore, Ak = 0 in all of space (and for 

all time) such that the variational equation above will reduce to: 

 

S   = 0 ,      (9) 

with 

S 
 = k k

k

A j d  , 

 

or when one drops the irrelevant factor ic : 

 

S   = k k

k

A j dV dt  .           (9.a) 

 

We consider the electron to be (spatially) infinitely small. That is why we can treat the factor kA dt

as constant when performing the volume integration. We already calculated the integral kj dV  

before; it is equal to: k

e
v

c
 = kdxe

c dt
. 

 We then get: 

S 
 = k k

k

e
A dx

c
  = k

k

k

dxe
A d

c d



 ,         (10) 

 

in which the proper time of the electron should serve as the independent variable. We can imagine 

that the integration extends over an arbitrary piece of the world-line of the electron. Therefore, that 

line must be chosen in such a way that the integral (10) will remain constant in the first 

approximation under infinitely-small changes to its form (that take the form of motions). In other 

words, the coordinates xk of the electron (k = 1, 2, 3, 4) must be determined as functions of the 

 
 (1) According to M. Born.  
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parameter  in such a way that the first variation of (10) will vanish under an infinitely-small 

variation of those functions. However, we should observe that, first of all, the xk are not completely 

independent of each other, but must fulfill the relation: 

 
2

k

k

dx

d

 
 
 

 = − 2c      (10.a) 

 

identically (for all ), and secondly, that certain conditions must be posed for the variations xk at 

the limits of integration  = 1 and  = 2 since otherwise the entire problem would lose any well-

defined meaning. We would initially like to leave those boundary conditions indeterminate and 

address the solution of the variational problem that was defined by (9), (10), and (10.a). 

 As was mentioned before, the components of the four-potential are regarded as known 

functions of the four coordinates xk. Now, their values in (10) refer to those spacetime points that 

lie along the world-line of the electron. As a result, while varying that line, they must suffer a 

variation of Ak = k
l

l l

A
x

x





 , just as when the electron is displaced along a certain world-line. In 

the latter case, we will have kdA

d
 = k l

l l

A dx

x d




 . 

 The variation of (10) reads: 

 

S 
 = 

2

1

k k
k k

k

dx dxe
A A d

c d d





  
 

 
 + 

 
 , 

 

or due to the commutability of the operations  and d: 

 

S 
 = 

2

1

k k
k k

k

dx d xe
A A d

c d d






 

 

 
 + 

 
 . 

Now, one has: 

k
k

k

dx
A

d



  = k k

k

k l l

A dx
x

x d








  

and 

k
k

k

d x
A

d




  = k l

k k k

k k l l

A dxd
A x x

d x d
 

 

 
− 

 
  . 

 

Upon switching the indices k and l in the double sum, one will get: 

 

k
k

k

d x
A

d




  = l k

k k l

k l k k

A dxd
A x x

d x d
 

 

 
− 

 
  . 
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As a result, one will have: 

 

S   = 

2 2

1 1

k l k
k k k

k l k l k

A A dxe e
A x x d

c c x x d

 

 

  


   
+ −       

  , 

 

or when one introduces the notations: 

 

k l

l k

A A

x x

  
− 

  
 = Hlk , 

k
lk

k

dxe
H

c d
  = Fl ,          (11) 

 

with no concern for the previous formulas, but merely for the sake of brevity, one will have: 

 

S   = 

2

1

l k k k

l k

e
F x d A x

c





  
 

+  
 

  .   (11.a) 

 

If the variations of the four coordinates xk are independent of each other then the condition for 

the vanishing of S 
 will read simply: 

 

Fl = 0  and (1)

kx  = (2)

kx  = 0 . 

 

However, in reality, the xk are coupled with each other by the relation (10.a). That situation can be 

considered by way of the known method of Lagrange multipliers. We next construct the variation 

of (10.a). In that way, we will get the equation: 

 

l l

l

dx dx

d d


 
   l l

l

dx d x

d d



 
  = 0 . 

 

We multiply that equation by a factor  that is initially completely undetermined and can be an 

arbitrary function of , and extend the integrand in the original expression for S 
 by: 

 

l l

l

dx d x

d d




 
  = l l

l l

l l

dx dxd d
x x

d d d d
   

   

   
−   

   
   . 

 

Instead of (11.a), we will then get: 

 

S 
 = 

2

1

l l
k l l k

l l

dx dxd e
x F d A x

d d c d





    
  

      
− + +      

      
  .             (11.b) 
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One can always choose the boundary condition for the xl, dxl / d, and dxl (and in fact, in different 

ways) such the second terms in 4.b) vanishes. If one then sets: 

 
2

1

l
l k

l

dxe
A x

c d





 


  
+  

  
 = 0             (12) 

 

then the necessary and sufficient condition for the vanishing of S   will reduce to the four 

differential equations: 

l
l

dxd
F

d d


 

 
−  

 
 = 0 .      (12.a) 

 

 Indeed, one can use the arbitrariness of the function  () in order to treat the four variations 

xl as independent arbitrary quantities, despite the relation (10.a) between them (that is exactly the 

essence of the Lagrange method). However, the function  must ultimately be determined in such 

a way that the expressions for the derivatives dxl / d that follow from the differential equations 

will actually satisfy the condition. To that end, one multiplies (12.a) by dxl / d and sum over l. In 

that way, one will have: 
22

2

l l l
l

l l l

dx dx d x d d
F

d d d d d

 


    

 
− −  

 
    = 0 .   (12.b) 

 

The first sum must vanish identically from the definition of the quantities Fl. In fact, from (11), 

one will have Hlk = − Hkl, and: 

 

l
l

l

dx
F

d
  = k l

kl

l k

dx dxe
H

c d d 
  = ( ) k l

kl lk
l k

dx dxe
H H

c d d 
+   0 . 

 

From (10.a), the third sum in (12.b) is equal to the constant quantity − 
2c , and as a result, the 

second one will be equal to zero [cf., (2)]. It will then follow that: 

 

2d
c

d




 = 0 , i.e.,  = const. 

 

The differential equations (12.a) are then completely identical to the equations of motion (8) that 

were derived above when  = m0. At the same time, in that way, we will get the general expression 

for the electromagnetic four-force from the Schwarzschild variational principle. That is because 

the quantities Fl that are defined by (11) play the same role in the components of the four-force in 

(12.a) that we have previously described in an entirely-different way. 

 We then see that the two groups of the fundamental electrodynamical laws, one of which 

determines the electromagnetic of moving electrons, while the other defines the motion of an 
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electron in a given electromagnetic field, can be combined into a single equation, namely, the 

equation of variation: 

 S = 0 . 

 

One can say that all of electrodynamics is included in that equation. 

 In that way, one must note the following: In the derivation of the equations of the 

electromagnetic field, we have treated the current distribution as continuous and found the 

differential equation k

k k

j

x




  = 0 as the law of conservation of electricity. In so doing, when 

deriving the equations of motion, we regarded the electron as a point-charge, and employed the 

equation 

2

k

k

dx

d

 
 
 

 = − 2c  in place of the one above. It is easy to see that those two equations are 

completely equivalent (when the charge of the electron can be considered to be constant). We 

would not like to go into the details of the proof of that here, which offers only a purely-

mathematical interest. Moreover, in the first case, we considered the complete field of the charges 

in question, while in the second case, we considered only the external field. In that sense, the two 

forms of the Schwarzschild variational principle are not completely equivalent from the physical 

standpoint. Under the transition from the original integral S to the integral (9.a), we have tacitly 

ignored the field that the electron itself creates since otherwise we would not be able to assume 

that the components of the four-potentials Ak are known quantities. 

 

 

§ 3. – Three-dimensional form of the variational principle. 

 

 One can formally replace the variational equation S 
 = 0, together with the auxiliary 

condition: 
2

k

k

dx

d

 
 
 

 = − 
2c , 

with the variational equation: 
2

1
02

k k
k

k

dx dxe
m A d

d c d
 

 

   
+  

   
  = 0        (13) 

 

that is free of that auxiliary condition. In fact, after performing the variation and converting the 

corresponding expressions, the left-hand side of (13) will again reduce to (11.b), except that  is 

replaced with m0. However, in order to actually liberate oneself from the aforementioned auxiliary 

condition, one must split the four-dimensional world into space and time, and reintroduce the 

ordinary time t in place of the proper time as the independent variable, and correspondingly set  t 

= 0, and not  = 0. The derivatives of the spatial coordinates with respect to time, like the 

variations  x1,  x3,  x3, are obviously treated as quantities that are completely independent of 

each other, such that one does not need to bring any auxiliary conditions into the picture. 
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 The transition from  to t, to the extent that it concerns the integral (10), happens quite simply: 

Namely, we set: 

S   = k k

k

e
A dx

c
  = k

k

k

dxe
A dt

c dt
 , 

 

i.e., in ordinary three-dimensional notation: 

 

S   = 
e

e dt
c


 

 − 
 

 v A .         (13.a) 

 

It is easy to see that setting the variation of that function to zero will not lead to equations of motion 

for the electron, but to the equation f = 0 for the external force f = e (E + 
1

c
 v  H) that acts on 

it. The aforementioned equation of motion reads: 

 

0

2 21 /

md

dt v c−

v
 = e (E + 

1

c
 v  H) .    (13.b) 

 

We would like to show directly that this equation will be implied when one starts from the integral 

(1): 

V = 2

0
k

k

k

dxe
m c A d

c d




 
− + 

 
 ,     (14) 

 

instead of the integral (10). As long as one treats  as the independent variable, i.e., one sets  d 

= 0, the variational equation V = 0 will be completely equivalent to S 
 = 0. However, if one 

introduces the usual time as the argument in place of  then one will have t = 0 and  dt = 0, while 

 d = 
2 21 /dt v c −   0, and the equation V = 0 differs essentially from the equation S 

 = 0. 

Therefore, the integral (14) will assume the form: 

 

V = 
2 2 2

0 1 /
e

m c v c e dt
c


 

− − + − 
 

 vA ,        (14.a) 

 

and differs from (13.a) by the term −
2 2 2

0 1 /m c v c− , which implies precisely the left-hand side 

of the equation of motion (13.b). 

 The boundary conditions can be chosen in the simplest way here (due to the independence of 

the variations  x1,  x3,  x3). We would like to assume that the initial and final points of the path 

 

 (1) The additional term – 
2

0
m c  is twice as large as the corresponding additional term 

2

1
02

k

k

dx
m

d

 
 
 

  in (13).  
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electron are fixed spatially and temporally. The variation of its radius vector  r must then vanish 

at the limits of the integral (14.a) (t = t1, r = r1, and t = t2, r = r2). In order to calculate the variation 

of (14.a), we note the following formulas: 

 

 =  r   ,   A = ( r ) A , 
d

dt
A = 

d

dt

 
 

 

r
A  = (v ) A . 

Moreover: 

 (v A) = 
d

dt
 
r
A  + v  ( r ) A = 

d

dt


 
 

 
r A  + v  ( r ) A 

= ( )
d d

dt dt
 − rA r A  +  r   (A v) , 

and ultimately: 

 

−
2 2

0 1 /m v c −  = 0

2 21 /

m

v c



−

v v
 = 

d
m

dt




v
v  = ( ) ( )

d d
m m

dt dt
  − r v r v . 

We will then have: 

 

V = 

2

1

e d e e
m m e

c dt c c
  

        
 + +  − + +   −       
        

r v A r v A v A  = 0 . 

 

Due to the arbitrariness in  r between the limits of integration and its vanishing at those limits, 

we will get the following differential equation as the necessary and sufficient condition for the 

vanishing of V : 

d e
m

dt c

 
+ 

 
v A  = grad 

e
e

c


 
 − 

 
v A  .      (15) 

 

We consider the relations – grad  = E and rot A = H then from the known formula: 

 

grad (v  A) = (v grad) A + v  rot A , 

 

that equation can be brought into the form (13.b). 

 The vector: 

G = m v + 
e

c
A     (15.a) 

 

plays the role of total momentum in equation (15). One can define it to be the sum of the ordinary 

mechanical momentum and the “mutual” momentum relative to the electrons that create the vector 

potential A. One can correspondingly interpret the right-hand side as the gradient of a mutual 
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potential energy that equals e  – (e / c) v A . Upon multiplying equation (15) by dt / d, that will 

give: 

d

d
G = grad k

k

dxe
A

c d
  = grad  A G. 

 

That is the spatial projection of a four-dimensional vector equation: 

 

d

d
G =  A G , 

 

for which the temporal projection of four-vector G will be equal to: 

 

4G  = i c (m +
2

e

c
) = i c m .         (15.b) 

 

The quantity m
 = m + 

2( / )e c   plays the role of the total mass, i.e., the sum of m = 

2 2

0 / 1 /m v c−  (proper mass of the electron) and a “mutual” mass 2( / )e c  . 

 When one substitutes the difference G − (e / ) A for G, the foregoing equation will assume 

the following form: 

d

d
G =  (G A −

e

c
A2) .    (16) 

 

One can easily derive that four-dimensional form of the equations of motion from the original one 

(8) when one sets: 

Hkl = l k

k l

A A

x x

 
−

 
 

in it. Namely, one will get: 

 
2

2

kd x

d
 = l k l

l k l

A A dx

x x d




  
− 

  
  = l k

k

lk

dx dA
A

x d d
 

 

  
− 

  
 , 

i.e.: 

0
k

k

dxd e
m A

d d c 

 
+ 

 
 = 

0
l

l

lk

dx
A m

x d




  
 

  
 .            (16.a) 

 

 However, that is nothing but equation (16). 
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§ 4. – The action function and the Hamilton-Jacobi differential equation. 

 

 The variational equation V = 0 represents the refined form of Hamilton’s principle of classical 

mechanics for the case of a single electron. The integral V is the so-called action function, and the 

integrand: 

L  = − 2 2 2

0 1 /
e

m c v c e
c

− + −vA          (17) 

 

is the Lagrangian function. One ordinarily defines the latter to be the difference between the 

kinetic and potential energy. For the limiting case of very small speeds, one will get: 

 

−
2 2 2

0 1 /m c v c−  − 2 21
0 02

m c m v+ , 

and as a result: 

2

0L m c +   L  21
02

e
m v e

c
+ −vA .   (17.a) 

 

For A = 0, i.e., in the absence of an external magnetic field, L will correspond completely to the 

usual definition of the Lagrangian function. However, if a magnetic field is present then one must 

either add the quantity (e / c) v A to the kinetic energy or subtract it from the potential energy. In 

other words, when one treats the (mutual) magnetic energy as a potential energy (as was done in, 

e.g., Part One), it will be equal to − (e / c) v A. By contrast, if one treats it as kinetic energy then 

one must set it equal to + (e / c) v A. 

 The derivatives of the Lagrangian function with respect to the components of the velocity: 

 

pk = 
k

L

v




 

L 
= 

 
p

v
           (18) 

 

are called the momenta, as is known. The function that is expressed in terms of the coordinates and 

momenta: 

H = 
4

1

k

k k

L
v

v=




  = p  v − L          (18.a) 

 

will be called the Hamiltonian function. For the Lagrangian function (17.a), it is equal to: 

 

H = 21
02

m v  + e  ,     (19) 

 

i.e., the sum of the kinetic and electric energy, in which the mutual magnetic energy makes no 

contribution to H. That corresponds to the fact that magnetic forces do no work. The function that 

appears on the right-hand side of (19) is still not a Hamiltonian function since the latter must not 



§ 4. – The action function and the Hamilton-Jacobi differential equation.  351 
 

be expressed in terms of velocity, but in terms of the “momenta,” as was just mentioned. In the 

case considered, those moments are equal to: 

 

pk = m0 vk + 
e

c
 Ak .     (19.a) 

 

In the first approximation, they will then coincide with the components of the vector G that is 

defined by (15.a). 

 The expression for the Hamiltonian function (19) in the absence of a magnetic force will then 

be equal to: 

H = 
2

0

1
( )

2

e
e

m c
− +p A .          (19.b) 

 

However, that expression is valid for only small speeds of the electron (v / c  1). In the general 

case, the momenta that are defined by formulas (17) and (18) are equal to precisely the components 

of the vector G, which we can write vectorially as follows: 

 

G = 
L

v
.               (20) 

The Hamiltonian function is: 

H  = G v − L .     (20.a) 

Its magnitude is then equal to: 

 

H  = 
2

0

2 21 /

m c
e

v c
+

−
 = 

2mc e+  = − 
4i cG .   (20.b) 

 

It will differ from the fourth component of the four-vector G by only the factor i / c then. 

Ordinarily, one subtracts the “rest energy” of the electron 2

0m c  from that and defines the 

magnitude of the Hamiltonian function to be the quantity: 

 

2

0H m c −  H = 2

0
2 2

1
1

1 /
m c e

v c


 
 − +
 − 

,   (20.c) 

i.e., just as in classical mechanics, it is the sum of the kinetic energy 
2

0
2 2

1
1

1 /
m c

v c

 
 −
 − 

 (in 

the limiting case of v / c  1, it coincides with 21
02

m v ) and the electrical energy e . In order to 

express H  as a function of the momenta pk = 
kG , we must employ the relation (15.a), or when 

written out in detail: 
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G = 0

2 21 /

m e

cv c
+

−

v
A .            (21) 

 It follows from this relation that: 

 

2 2

0

2 21 /

m v

v c−
 = 

2
e

c

 
− 

 
G A = 

2 2
2 20
02 21 /

m c
m c

v c
−

−
 = 2 2 2 2

0m c m c− , 

or 

m = 

2

0 2

1 e
m

c c

 
+ − 

 
G A .            (21.a) 

 

Therefore, from (20.b), one will have: 

 

H  = 

2

2

0

e
m c e

c
 

+ − + 
 
G A .     (21.b) 

 

When one replaces H  with − 
4i cG  and  with – i A4, that formula can be written in the following 

symmetric four-dimensional form: 

 
2

e

c

 
− 

 
G A = 

24

1

k k

k

e
G A

c



=

 
− 

 
  = − 2 2

0m c ,    (22) 

 

which one will obtain immediately when one observes that, by definition: 

 

k k

e
G A

c

 −  = Gk = 0
kdx

m
d

.         (22.a) 

 

 One can derive the motion of an electron in a given field that is characterized by the four-

potential A with no further analysis by immediately integrating its equations of motion in the form 

that was quoted above. However, it is possible and often much more convenient to solve that 

problem by a direct method that was introduced into classical mechanics by Hamilton and Jacobi. 

That method is described most simply as follows: One can also write the relation (20.a) between 

the Lagrangian and Hamiltonian function in the form: 

 

L  = 
4i cG  +G v  = 

4

1

k
k

k

dx
G

dt



=

 . 

 

By the definition of the Lagrangian function, we correspondingly get: 

 



§ 4. – The action function and the Hamilton-Jacobi differential equation.  353 
 

V = L dt

  = k k

k

G dx .     (23) 

 

If the spatial coordinates of the electron are actually known as functions of time then V can be 

represented as a function of the initial and final values of time t. That representation is not invariant. 

However, one can replace it with an invariant representation (or imagine replacing it) since V is 

considered to be a scalar function of the initial and final values of the four-dimensional spacetime 

vectors r. In so doing, one must observe that the change in V under an infinitely-small change in 

the path of integration will be equal to zero as long as the endpoints are fixed. If one imagines that 

the initial value r = r0 is fixed and the final value is variable then one can, as a result, treat the 

quantity V as a completely determined function of those variable final values. According to (23), 

the change in V that corresponds to an infinitely-small change in r is then expressed by the formula: 

 

dV = 
4

1

k k

k

G dx

=

  = G  d r . 

It obviously follows from this: 

kG  = 
k

V

x




 (G = V),    (23.a) 

 

i.e., when one compares different motion with the same starting point, the vector G (energy-

momentum) can be treated as the gradient of a scalar function V. 

 That function will be called the action function. In will be, in fact, unknown, as long as the 

equations of motion of the electron have not been integrated. However, one does not need to 

integrate the equations of motion in order to determine it. To that end, one can use equation (22). 

That is because, from (23.a), the latter will assume the following form: 

 
2

e
V

c

 
− 

 
A   

2
4

1

k

k k

V e
A

x c=

 
− 

 
  = − 2 2

0m c ,   (24) 

 

i.e., it will be converted into a first-order partial differential equation of degree two for the action 

function V. 

 The complete integral of (24) includes four arbitrary constants that can be characterized by, 

e.g., the initial value of the spacetime vector r0, which was left indeterminate. If one now considers 

V to be a function of r and r0, i.e., of xk and 0

kx  (k = 1, …, 4) then one will have: 

 

V = 

0

4

1

k k

k

G dx

=


r

r

 = 

0

d 
r

r

G r .     (25) 
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It will then follow that along with equations (23.a), which are obtained by differentiating V with 

respect to the upper limit of that integral, the following equations must also exist: 

 

0

k

G  = − 
0

k

V

x




  (G0 = − 0 V) ,          (25.a) 

 

which correspond to differentiating with respect to the lower limit (1). 

 If the initial values of the “momenta”
kG , i.e., the (total) momenta and energy, are given along 

with the initial coordinates 0

kx  then the world-line of the electron will be determined completely 

by equations (24.a). In fact, only three of the four equations (25.a) are mutually independent, but 

the fourth one must be a consequence of those three since the four quantities 0

kG  ( 0/ kV x  , resp.) 

must satisfy equation (22) [(24), resp.] identically, by their very nature. By solving equations 

(25.a), one will then get only three relations between the four coordinates x1, x2, x3, x4 that 

determine a line in four-dimensional space. The equation of that line includes seven arbitrary 

constants: Namely, the four initial coordinates 0

kx  and three of the “initial momenta” 0

kG , or any 

three arbitrary constants by which the initial momenta can be expressed consistently with equation 

(22). Obviously, the initial momenta determine the initial direction of the world-line. By varying 
0

kG  with fixed values of the initial coordinates, one will then get a bundle of world-lines that go 

through the same initial point (and which can obviously be extended in the opposite direction) 

Each of those lines is orthogonal to the associated surface V = const., but not to the other ones, 

which indeed correspond to the same starting point, but have different final points. 

 The surfaces that are orthogonal to all lines of the bundle considered obviously define the 

envelope of the surfaces V = const. One can get the equation of such an envelope as follows: One 

expresses the initial coordinates 0

kx  as functions of the xk and the initial momenta 0

kG  by means 

of equations (25.a) and substitutes those expressions in the action function V. If the quantities 0

kG  

are independent of each other then the desired equation of the envelope would be given by 

eliminating the 0

kG  from the equations V = const. and 
0

k

V

G




= 0. However, as a result of the 

relation: 
2

0 0

k k

e
G A

c

 
− 

 
 = − 2 2

0m c ,          (25.b) 

 

the equations above must be replaced with: 

 

 

 (1) The quantities 
0

k

V

x

 
 

 

 should not be confused with the quantities 

0k

V

x

 
 

 

, which are given for the values xk = 

0

k
x  of the coordinates; namely, the latter are equal to + 0

kG . 
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V = const., 0 0

0 k k

k

V e
G A

G c
 



  
− − 

  
= 0     (26) 

 

from the well-known method of multipliers, in which  means an undetermined factor. If one now 

introduces a new function of r and r0 according to the formula: 

 

V   = V + G0  r0     (26.a) 

 

then the elimination equations (26) can be regarded as determining equations for the initial 

coordinates: 

V 
 = const., 0

kx  = 0 0

0 k k

k

V e
G A

G c
 



  
− − 

  
 . 

 

 One can also represent those equations in a purely-analytical way. Namely, one considers an 

infinitely-small variation of the action function that is defined by (25) that corresponds to an 

infinitesimal displacement of the initial and final points: 

 

V = G   r − G0   r0, 

 

and replaces G0   r0 with  (G0  r0) − r0   G0. Hence: 

 

 (V + r0  G0)  V 
= G  r + r0   G0. 

 

When one recalls (25.b), it will then follow that: 

 

V 
 = const., 

k

G  = 
k

V

x




, 0

kx  = 0 0

0 k k

k

V e
G A

G c
 



  
− − 

  
 .        (26.b) 

 

The function V 
, like V, will be determined directly as the solution to the differential equation 

(24). The constants that appear in that solution must not be expressed in terms of the components 

of r0 then, but in terms of the components of G0. 

 In order to explain that concept, we would like to examine the simplest case of force-free initial 

motion. Since A = 0, it will follow from (24): 

 

V = const., and V = B  r + C , 
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in which B is a constant four-vector, and C is an ordinary constant. The constant C is determined 

by the condition that V = 0 for r = r0. One will then have V = B  (r − r0), and as a result, from 

(22) and (25), G = G(0) = B. 

 Those equations mean that the world-line is a line that goes through the point r0 perpendicular 

to the “plane” V = const. However, the relation between the coordinates that we should obtain from 

equations (25) is not to be found in that way, in general. In order to obtain that relation, we can use 

equations (26.b). 

 The function V   can be represented in the same form as V formally. However, the initial point 

will remain undetermined. One can get the initial momenta from the formula 0

k

G  = 

0k

V

x

 
 

 
 = Bk. 

From (26.b), it will follow that: 

0

kx  = 
k

k

V
B

B



−


 = xk –  Bk , 

i.e.: 
0

1 1

1

x x

B

−
 = 

0

2 2

2

x x

B

−
 = 

0

3 3

3

x x

B

−
 = 

0

4 4

4

x x

B

−
 =  . 

 

 Upon replacing the expressions xk − 0

kx  =  Bk in the function V 
, we will get: V 

=  + 0 ,k kB x  

or  = V.  

 We would like to consider the case that appears most frequently in which the external 

electromagnetic field is constant in time. In that way, we can set V / x4 = const. = B4 in equation 

(24), i.e., we can put the action function into the form: 

 

V 
 = B4 x4 +  (x1, x2, x3) ,           (27) 

 

in which the function  depends upon only the spatial coordinates. As long as we are not dealing 

with very rapid motions, we can determine  as the integral of the approximate three-dimensional 

equation: 
2

0

1

2

e
e

m c


 
 − + 

 
A = H = const.,    (27.a) 

 

that is obtained from (19) when we recall that G =  and B4 x4 = − H t. 

 While integrating that equation, one can treat H as an entirely arbitrary parameter without 

considering its relationship to the quantities 0

1G , 0

2G , 0

3G . The action function V

 = − H t +  

can correspondingly be represented as a function of four independent parameters 0

1G , 0

2G , 0

3G , 

H (so the latter appear in  explicitly). That is why it is unnecessary in this case to introduce the 

additional term that is multiplied by . The equations of motion (26.b) will then reduce to the 

known equations of classical mechanics: 
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  0

kG  = 
kx




,  0

kx  = 
0

kG




  (k = 1, 2, 3) 

and 

t0 = t + 
H




. 

 

 

§ 5. – The simplest examples of the motion of a free electron. 

 

 We would now like to consider some concrete examples of the motion of an electron as it is 

determined from the relativistic equations of motion. As a first example, we take the simplest case 

of the motion in an electromagnetic field that is constant in space and time. 

 Therefore, from (8), one can set: 

 
2

2

d

d
r = 2 d

d




r

H  = 2( )
d

d



H r , 

from which it will follow that: 

d

d
r = v = 2  +H r a ,            (28) 

in which a is a constant four-vector. 

 Upon multiplying (28) by r, since the product (2H  r)  r will vanish as a result of the skew-

symmetric character of the tensor 2H, we will get: 

 

r 
d

d
r  21

2

d

d
r  = a  r.     (29) 

 

In the special case in which the product a  r is equal to zero, that will give r2 = const., i.e.: 

 
2 2 2r c t−  = const.     (29) 

 

However, in that way, r and t must satisfy the condition: 

 

a  r = at  t ,            (29.a) 

 

in which a is the spatial projection of the four-vector a, and (i / c) at is its temporal projection. 

 The various types of motion can be systematized most simply when one considers the 

invariants 2 2H E−  and H  E. Obviously, one must distinguish four cases, namely, 2 2H E− > 0 

or 2 2H E−  < 0, while H  E = 0 or H  E  0. (We can overlook the case H = E for a constant 

field.) 
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 First case: 2 2H E−  > 0, H  E = 0. – One can imagine that the magnetic field is eliminated 

by a suitably-chosen Lorentz transformation. From § 2, Chap. IX, the new reference system S   

must move with a velocity that is determined from the formula H = (1 / c) v  E. Moreover, since 

H is perpendicular to E, that additional velocity must lie in the place that is perpendicular to E 

and H and have a magnitude of c H / E . It then remains for one to consider the motion of the 

electron in a constant electric field E. 

 For the sake of simplicity, we would like to drop the prime, which refers to the “moving” 

coordinate system S  . The spatial projection of equation (28) reduces to: 

 

m v = e E t + a     (30) 

 

for H = 0. If a = 0 then from (29), we will have r  d r / dt − 2c t  = 0, i.e., r  v = 2c t , and as a 

result, since m r  v = e E r t : 

2mc  = 
2

0

2 21 /

m c

v c−
 = e E  r . 

 

That equation is a special case of the energy equation 
2mc + e  = const. 

 If one sets r = x1 − 0

1x , x2 = 0, x3 = 0, then from (29), one will get the equation: 

 
0 2 2 2

1 1( )x x c t− −  = 
2b , 

 

in which 
2b is an essentially-positive constant (since otherwise r would be imaginary for 

sufficiently-small t). The motion that is represented by the equation above is called hyperbolic 

since it can be represented graphically by a branch of a hyperbola. It corresponds to the uniformly-

accelerated motion of ordinary mechanics, e.g., the motion of a stone that is thrown upwards (viz., 

the negative X1-direction) under the action of gravity. The difference originates in the dependency 

of mass on velocity. When t increases from −  to t = 0, x1 will decrease from +  to 0

1x + b, but it 

will then increase to +  again. As the electron goes to infinity, its velocity will asymptotically 

tend to the limiting value c. In the vicinity of the inflection point (x = 0

1x + b), its motion will 

approach the ordinary uniform rectilinear motion. In fact, for ct  b, one will have: 

 

x1 − 0

1x  =
2 2 2b c t+  

2
1

1
2

c t
b

b

  
+  

   

 = b + 21
2
wt , 

 

in which w = 
2 /c b  means the acceleration. Obviously, since w = e E / m0, that will give the value 

of b = 2

0 / ( )m c eE  to the parameter b.  
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 When the vector a is non-zero and has a different direction from E, one will get a motion that 

is somewhat more complicated, but we will not investigate that here. 

 

 Second case: 2 2H E−  > 0, H  E = 0. – Therefore, the electric field can be transformed away 

by an additive constant velocity with a magnitude of c E / H. Thus, only motion in a homogeneous 

magnetic field will remain. Equation (28), which reduces to: 

 

m v = 
e

c
r  H 

 

in this case, shows that (for a = 0) the velocity of the electron will always remain perpendicular to 

the radius vector and the magnetic field strength. The electron must then move in a circle with its 

center (r = 0) in a plane that is perpendicular to H. If one denotes the angular velocity by o then 

one will have v = o  r, i.e.: 

v = − 
e

mc
H = −  H .        (31) 

 

That velocity is twice as great as the mean precessional velocity that is required by the orbital 

motion of an electron around a fixed attracting center (Larmor precession, Chap. VII, § 9). 

However, it is experimentally identical to the precessional velocity of the magnetic or rotational 

axis of a free electron. 

 Due to the constancy of the mass, if the vector a is non-zero then one sets a = m v0, which will 

then imply: v = v0 + o  r. The general type of motion of an electron in a constant magnetic field 

will then be a combination of the circular motion that was considered above with a uniform, 

rectilinear motion. 

 

 Third and fourth case: H  E  0. – The electric and magnetic field strengths will remain non-

zero in all inertial systems. However, there will be a “canonical” reference system in which they 

are parallel to each other. When the electron moves in that distinguished direction, it will not “feel” 

the magnetic field at all. We will then get the hyperbolic motion that we examined before. As long 

as the mass of the electron remains almost constant, i.e., for low speeds, the electron will generally 

move along a helix, and indeed with a constant orbital velocity around the common E-H-direction 

and with uniformly-increasing velocity (v / m0 E t) in that direction. For high speeds, the motion 

will become rather complicated. 

 We would not like to analyze that motion here and will be content to refer to the general 

solution of the equations of motion (28). Since that equation is linear when we use t as its argument, 

we can easily determine r as a function of the proper time . When written in coordinate form, (28) 

will produce the system of equations: 

 



360 Chapter Ten – Relativistic Mechanics 

 

kdx

d
 = kn n k

n

H x a + ,           (32) 

which can be solved by the Ansatz: 

xk = 
4

1

l

kl k

l

e a
  

=

+ ,        (32.a) 

 

as is known. The functions l

kl e
   in that are different solutions of the homogeneous system of 

equations that are obtained from (32) when a = 0. The coefficients a are the roots of the 

characteristic equation: 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

H H H H

H H H H

H H H H

H H H H









−

−

−

−

 = 0 , 

i.e.: 

3 2 1

3 1 2

2 1 3

41 2 3

H H i E

H H i E

H H i E

i E i E i E









− − −

− − −

+ − − −

−

 = 0 , 

 

or, after calculating the determinant: 

 
4 2 2 2 2( ) ( ) + − −E H EH = 0 .    (32.b) 

 

The roots of that equation are then determined in a simple way in terms of the two invariants 
2 2−E H  and E  H. The real roots correspond to “hyperbolic” asymptotic motions that are required 

by the electric field, while the imaginary roots correspond to periodic orbital motions that originate 

in the magnetic force. 

 Each root l belongs to a system of solutions that is given by the formulas xk = l

kl e
  .The 

coefficients kl , can be determined up to an arbitrary factor from the equations: 

 

l kl = 
4

1

kn nl

n

H 
=

 . 

 

If one would ultimately like to replace proper time with ordinary time as an argument then one 

would have to solve a transcendental equation [x4 = f ()], which is possible only approximately 

for very small or very large velocities. 

 As a second example, we consider the motion of a free electron in the electromagnetic field of 

a plane light wave, i.e., in the wave zone of an arbitrary electric system. In that case, the two 
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invariants 2 2H E−  and E  H are equal to zero, which is why it seems especially simple from the 

standpoint of the theory of relativity. We would not like to make any restricting assumptions about 

the type of oscillations, and we will characterize them by the phase factor: 

 

( )t  = 
1

t
c

 
 − 

 
nr  .       (33) 

 

The n in that means the wave normal, and t  means the “phase time,” i.e., the quantity that 

determines the phase of the oscillation of the waves at the location in question. For the special case 

of harmonic oscillations, that phase factor will assume the form: 

 
2 ( / )i t ce   −nr , 

 

in which the exponent  (t − n r / c) can also be represented in the form – k  r = −
4

1

l l

l

k x
=

 . k means 

the phase vector that was considered in § 4, Chap. IX here. 

 The integration of the equations of motion is quite easy to perform. Namely, due to the facts 

that: 

H = n  E and E  n = 0 , 

we will have: 

d
m

dt
v  = e E + 

e

c
v  H = 1 ( )nv e

e
c c

 
− +  

 
E n E v .   (33.a) 

 

Moreover, upon inner multiplying by the constant unit vector n, we will get: 

 

d

dt
(n  m v) = 

d

dt
(m vn) = 

e

c
E  v . 

 

The quantity e E  v is the work done by the electric (or electromagnetic) force per unit time. One 

then has e E  v = 2( )
d

c m
dt

, from the general relation between energy and mass. As a result, we 

have: 

m vn = c m + const. 

 

If we measure the time from a moment t = 0 when the electron was at rest then we will have: 

 

m vn = c (m – m0) = 
T

c
,          (34) 
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in which T = 2c (m – m0) = 2

0
2 2

1
1

1 /
m c

v c

 
 −
 − 

 is the kinetic energy of the electron. 

 The projection of the mechanical momentum of the electron G = m v onto the wave normal 

then gives an essentially-positive quantity that is proportional to the kinetic energy (that is 

communicated by the waves). One can then say that the electron experiences a type of light 

pressure, and as a result, it will have a velocity that is parallel to the light ray and has a magnitude 

of: 

  vn = 0( )c m m

m

−
 = 

2(1 1 )c − −   
v

c


 
= 

 
. 

 

The relation between the normal and total velocity can also be written as follows: 

 

21 −  = 1 nv

c
− .     (34.a) 

 

From the definition of proper time , we have 
21 − = d / dt. On the other hand, from the 

definition of “phase time” t : 

dt

dt


 = 

1d
t

dt c

 
−  

 
r n  = 1 nv

c
− . 

 

It follows from (34.a) that t  and  are identical in the case considered: 

 

t  = 
1

t
c

− r n  =  = 

1

2 2

0

1 /v c dt− .          (35) 

 

By means of those formulas, equation (33.a) can be put into the form: 

 

0

d d
m

dt dt

 
 

 

r
 = e 

dt

dt


E + 

e

c
(E  v) v 

or 
2

2

d

dt

r
 = 

0 0

e e d

m m c dt

 
+  

 

r
E E n .     (36) 

 

Projecting that equation onto the wave plane and the wave normal will give: 

 
2

2

d

dt





r
 = 

0

( )
e

t
m

E ,      (36.a) 
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with the abbreviation r = r – rn n, and due to the facts that E  n = 0 and E  
d

dt

r
= E  

d

dt





r
: 

 
2

2

nd r

dt
 = 

0

e d

m c dt

 
 

 

r
E  = 

0

e

m c
E  

d

dt





r
.    (36.b) 

If one sets: 

E(−1)  = 
0

( )

t

t dt



 E  and E(−2)  = 
( 1)

0

( )

t

t dt



−  E ,   (37) 

 

to abbreviate, then from (36.a), one will have: 

 

d

dt





r
= 

0

e

m
E(−1)  and r =

0

e

m
E(−1) .    (38)  

Moreover, we have: 

 

E 
d

dt





r
= 

0

e

m
E  E(−1) = 

0

e

m
E(−1)  

( 1)d

dt

−



E
 =

( 1) 2

0

( )
2

e d
E

m dt

−


, 

 

and as a result, from (36.b): 

rn = 
2

( 1)2

0 0
2

t
e

E dt
m c



−  .     (38.a) 

 

Finally, we will get the following expression for the radius vector of the electron: 

 

r = ( 2) ( 1)2

0 0 0
2

t
e e

E dt
m m c



− −
  

+  
   

E n  .   (38.b) 

 

The first term represents the action of the lateral electric force, while the second one represents the 

combined effect of it with the magnetic force, which can be regarded as light pressure. 

 The dependency of the radius vector on proper or phase time is determined by the formula 

(38.b). In order to represent r as a function of the ordinary time, one must eliminate from (38.b) 

and the equation: 

t = 
1

t
c

 + r n  = 
2

( 1)2

2 2

0 0
2

t
e

t E dt
m c



− +  . 
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§ 6. – Systems of electrons. Virial theorem and mass defect. 

 

 The general problem of the motion of a system of material particles already raises very 

significant complications in classical mechanics. One can say that only the problem of the motion 

of two mass-points can be solved simply and completely in classical mechanics. However, up to 

now, the famous “three-body problem” possesses no complete solution. In the relativistic theory 

of mechanics, the state of affairs is much narrower in scope since the “two-body” problem has not 

been solved completely either in that context. In addition to the complications that originate in the 

variability of mass, a much more essential complication enters in that is required by the retarded 

character of the electromagnetic action-at-a-distance. We must defer a thorough discussion of 

those questions to Vol. III of this book, since they define the essential content of the mechanics 

and electrodynamics of atoms. At this point, we will restrict ourselves to considering an important 

general theory that relates to the motion of an arbitrary number of electrons and the consideration 

of a special case of the two-body problem that is connected with the simple problems that were 

treated above. 

 We imagine a number of electrons (some of which are positive, some of which are negative) 

that define a closed system, i.e., they move under the action of their mutual forces (in the absence 

of any “external” forces) and indeed in such a way that they always remain a finite distance from 

each other. Obviously, the forces of attraction between opposing electrons must exceed the forces 

of repulsion that act between electrons of the same type. 

 We shall initially overlook the aforementioned complications in relativistic mechanics. The 

error that is made in so doing will not be too great as long as the speed of the electrons is small 

compared to the speed of light and their distances from each other are small compared to the 

wavelength of the light that is radiated. We will correspondingly consider only the electrostatic 

forces. 

 From § 2, Chap. VII, the mutual potential energy of our system is expressed by: 

  

U = 
e e

R

 

 



 . 

 

In that way, the equations of motion of an electron (in the approximation that we are considering) 

will read: 
2 ( )

( )

2

kd x
m

dt


 = − 

( )

k

U

x 




     (k = 1, 2, 3). `      (39) 

 

For the sake of simplicity, we will drop the indices  and k, and the summation over them will be 

denoted by simply . It follows from equation (39) upon multiplying by x (i.e., ( )

kx  ) that: 

 
2

2

d x
m x

dt
= −

U
x

x




, 

 

or after converting the left-hand side and summing: 
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2
d dx dx

m x m
dt dt dt

   
−   

   
  = −

U
x

x




 .         (39.a) 

 

 The sum 

2
dx

m
dt

 
 
 

 is obviously equal to twice the kinetic energy of the total system (2 T). 

Moreover, one can easily show that the sum 
U

x
x




  is equal to simply the negative potential 

energy. In fact, if one combines the terms pair-wise that express the interaction of two electrons 

() and () and observes that: 

2R  = 
3

2

1

( )k k

k

x x 

=

−  

then one will have: 

3
( ) ( )

( ) ( )
1

1 1
k k

k k k

e e x x
x R x R

 

   

 =

  
+    

  

 

= − 

( ) ( ) ( ) ( ) ( ) ( )

3

[ ( ) ( )]k k k k k kx x x x x x
e e

R

     

 



− + −
 = − 

( ) ( ) 2

3

( )k kx x
e e

R

 

 



−
 

= − 
e e

R

 



 

It will then follow that: 

−
U

x
x




  = + U . 

 

Equation (39.a) can then be written as follows: 

 

2T = − U + 
d

Q
dt

, 

 

in which Q means the sum 
dx

m x
dt

  = 21
2

d
m x

dt
 . From our assumption that the electrons will 

always remain at a finite distance from each other, the coordinates x can oscillate only within 

certain limits (but not vary monotonically). The mean value of 
d

Q
dt

 over a length of time that is 

sufficiently long in comparison to the period of such oscillations (but is still very small, such as 

when one treats the motion of electrons in an atom or molecule) must vanish as a result. The 

corresponding mean values of the kinetic and potential energy must then be coupled with each 

other by the formula [viz., the virial theorem (1)]: 

 
 (1) The virial theorem for the general case of arbitrary conservative forces was first derived by Clausius.  
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2T = − U .             (40) 

 

 In order for it to be possible for the system in question to actually exist, its potential energy 

must be negative, i.e., the effect of the forces of attraction must exceed the effect of the forces of 

repulsion. Under a contraction of the system, i.e., a reduction of all distances (while preserving the 

configuration), the potential energy must decrease (algebraically), and the kinetic energy must 

increase by half as much (as a result of the increase in the forces of interaction). From (40), the 

total energy of the system: 

W = T + U = T U+      (40.a) 

 

must be equal and opposite to the mean kinetic energy: 

 

W = − T .           (40.b) 

 

We would like to illustrate that remarkable relationship by the following example: When a material 

body goes from the gaseous state to the fluid or the solid one (at the same temperature) then it will 

lose a certain amount of its internal energy (viz., latent heat). Based upon formula (40.b), we can 

now assert that the kinetic energy of the electrons in the atoms or molecules of that body must 

increase by the same amount. If the mechanical energy in an atom or a heavenly body is lost due 

to radiation [cf., Chap. VII, § 3] then the kinetic energy of the electrons will increase through the 

same amount. 

 We saw that the mass of any material body is proportional to its energy according to the theory 

of relativity. We would like to defer the question of the intrinsic nature of the energy of an isolated 

electron at rest and simply define it to be the product 2

0m c . However, we can assert that the mutual 

potential energy of all of those electrons U corresponds to an additional mutual “electromagnetic” 

mass 
2/U c , and likewise the kinetic energy will correspond to an additional mass of magnitude 

2/T c . The total mass of a material body, whether molecules or atoms, is then equal to the sum of 

the “rest masses” of all electrons that comprise that body, whether molecules or atoms, and it will 

increase by the amount 
2( ) /T U c+ = 

2/W c , which represents the mechanical equivalent of that 

body. That additional mass is always negative since W is equal to − T , from (40.b). That is why 

the opposite quantity: 

 = 
2

T

c
 = − 

2

W

c
     (41) 

 

will be referred to as the mass defect of the material system considered. That mass defect, 

multiplied by 
2c , is the work that must be done in order to disassemble the system completely, i.e., 

to separate all electrons from each other and bring them to rest. That is because the mechanical 

energy of such a disassembled system will be equal to zero, so the increase in the energy under 

disassembly (= work expended) will be equal to 0 – W = − W = T . 

 Insofar as the electrons are indivisible and a conversion of their proper energy 2

0m c  into 

another “useful” form of energy would then seem impossible, one must not consider the material 
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bodies to be energy reservoirs (as is often done), but as structures devoid of energy that can only 

serve as sources of energy when they sink even deeper below the zero level. 

 The cited argument in regard to the mass defect can initially seem somewhat inconsistent since 

we have coupled the kinetic energy with an increase in mass, while we have left the derivation of 

equation (40) for that mass increase out of consideration. 

 However, one can easily show that the argument remains valid in the first approximation. 

Namely, if one replaces the classical equations of motion (39) with the relativistic ones (or rather 

semi-relativistic ones, since one would then avoid the problem of finding an exact expression for 

the force and would consider only the velocity dependency of the mass): 

 

( )
d

m
dt

 v = − () U  0

( )2 21 /

m
m

v c






 
 =
 − 

, (42) 

then that will give: 

 

( )
d

m
dt

r v  = ( ) 2d
m mv

dt
 − r v  = − Ur  = + U , 

 

in the same way as before, or when one goes over to mean values: 

 
2mv  = − U .     (42.a) 

 

In the case in question, the quantity 21
2
mv  is somewhat different from the kinetic energy of an 

electron, but only by a term of order of magnitude 

2
v

c

 
 
 

, as is easy to see. When written in the 

form: 

2mv  = 
2

0
2 21 /

v
m

v c−
 = 2 2 2

0
2 2

1
1 /

1 /
m c v c

v c

 
 − −
 − 

 ,  (42.b) 

 

the quantity will be defined to be the sum of the energy of the electron 
2

0

2 21 /

m c

v c−
 and the 

corresponding part of its Lagrangian function [ L  = − 
2 2 2

0 1 /m c v c− , cf., (17), § 3]. 

 From (15), § 3, the exact and complete equations of motion of the electrons in our system read: 

 

ed
m

dt c

   
+ 

 
v A  = − 

( ) e
e

c

   
 

 
 − 

 
A v  , 

 



368 Chapter Ten – Relativistic Mechanics 

 

in which A and   are the potentials that are created by all other electrons at the spacetime point 

in question (1). In the event that one neglects the retardation of the electric action-at-a-distance, 

one can express those potentials by the simple formulas: 

 

  = 
e

R



 

 ,  A = 
e

c R





 


w

,    (43) 

 

and corresponding to the mutual electric or potential energy U = 1
2

e 




 = 
e e

R

 

 



 , one 

introduces the mutual magnetic or kinetic energy (cf., Chap. VII, § 2): 

 

T   = 1
2

e

c

 



 v A .         (43.a) 

Obviously, one will then have: 

 

( ) e
e

c

   
 

 
 −  

 
v A  = 

( ) ( )U T  −  

and 
( ) ( )U T 



 − r  = − ( )U T − .    (43.b) 

 

 We can then write the equations of motion, which consider not only the electric, but also the 

magnetic, interactions of the electrons, and at the same time, the variability of their mass, in the 

following form, which is entirely analogous to (42) (when one drops the indices ): 

 

 
d e

m
dt c

 
+ 

 
v A = − ( )U T  − .    (44) 

From (43.b), that will imply: 

 

d e
m

dt c

 
+ 

 
 r v A  = 

d e e
m m

dt c c

    
+ − +    

    
 r v A v A v  = + ( )U T − , 

 

as before, i.e., from (43.a): 

2d e
m mv

dt c

  
 + −  
  

 r v A  = U T + , 

or for the mean values: 
2m v = − U T − .     (44.a) 

 
 (1) Note that the differentiation with respect to time must also involve the positions and velocities of those 

electrons, insofar as the vector potential A depends upon them.  
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In the limiting case of low speeds, one can once more set 
2m v  = T  here, and as a result, when 

one defines the total mechanical energy W to be the sum T + T   + U : 

 

W  = − T . 

 

Recall that the Hamiltonian function H is independent of the magnetic forces and is expressed 

simply by the sum of T and U. If one introduces that Hamiltonian function in place of W then one 

will have: 

T T +  = − H .      (44.b) 

 

That formula is the generalization of the virial theorem (40). In the absence of magnetic forces, 

the Hamiltonian function will remain constants, but not the quantity W = H + T  . 

 

 

§ 7. – The orbital motion of an electron. 

 

 We would now like to treat the two-body problem under the simplifying assumption that the 

mass of one particle is much larger than the mass of the second one. That corresponds to the actual 

relationships in material atoms, which are known to consist of a heavy, positively-charged nucleus 

and a number of light negative electrons that orbit around it. We shall consider the case of a single 

electron and ignore the associated motion of the nucleus. The actually reduction of the two-body 

problem to an ordinary one-body problem will then become especially simple since the nucleus at 

rest will create a constant electrostatic field. Let the charge of the nucleus be – Z e, so the scalar 

potential of the field will be: 

 = − 
Z e

r
 

(+ e = electron charge). 

 The equation of motion of the electron will then read: 

 

d
m

dt
v= − grad (e ) = − 

2

02

Z e

r
r  0

r

 
= 

 

r
r .    (45) 

 

It will then follow immediately that its angular momentum: 

 

J = m r  v 

 

remains constant in time. (That theorem is known to be true for all central force motions; cf., Chap. 

VII, § 9). If one introduces polar coordinates r,  in the plane of motion ( = angle between r and 

a fixed OX-axis) then the magnitude of J can be written in the form 
2 d

mr
dt


. One will then have: 
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2 d
mr

dt


= J = const.     (45.a) 

Moreover, we have the energy theorem: 

 
2

2 Ze
mc

r
− = H = const.,        (45.b) 

with 

m = 0

2 21 /

m

v c−
. 

 

 Upon multiplying (45) by the unit vector r0 and recalling the facts that 0d

dt

r
 = 

d

dt


, v  r0 = 

dr

dt
, we will get v  0d

dt

r
 = 

2
d

r
dt

 
 
 

 (the vector 0d

dt

r
 is perpendicular to r ; 

d
r

dt


is the 

corresponding azimuthal component of the velocity): 

 

0
0( )

dd
m m

dt dt
−

r
vr v  = − 

2

2

Z e

r
, 

i.e.: 
2

d dr d
m mr

dt dt dt

   
−   

   
= − 

2

2

Z e

r
. 

 

 If one introduces 
( )d

dt


= 

2

( )J d

mr d


 into that, according to (45.a), then one will have: 

 
2

2 2 3

J d J dr J

mr d r d mr 
−  = − 

2

2

Z e

r
, 

i.e., with the notation 1 / r =  : 
2

2

d

d





+  = 

2

2

Z e
m

J
, 

 

or ultimately, since from (45.b), one has m = 
2 2( ) /H Z e c+ : 

 
2 2 4

2 2 2
1

d Z e

d J c






 
+ − 

 
 = 

2

2 2

Z e H

J c
 

1

p
.             (46) 

 

That equation can be integrated directly. Namely, from the general theory of linear equations with 

constant coefficients, we can set: 
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 = 
2 4

2 2

1
1 cos 1

Z e

p J c
 

 
+ − 

 
 

,    (46.a) 

 

in which  means an initially-undetermined integration constant. If the parameter: 

 

 = 
2Z e

J c
           (46.b) 

 

is very small compared to 1 then the formula above will, in practice, reduce to the known equation 

for a conic section: 

r = 
1 cos

p

 +
, 

in which  means its eccentricity. 

 The path that is represented by (46.a) then differs (when  < 1) from the ordinary elliptical or 

hyperbolic paths of celestial mechanics by the fact that the product 
21 −  appears in place of 

. For  < 1, the electron will describe a quasi-elliptical path that will yield an ordinary ellipse after 

an additional rotation (viz., precession in the orbital plane). A complete oscillation of r (from the 

minimum value 
1

p

+
 to the maximum 

1

p

−
 and then back to the minimum again) will then require 

an increase in  of 
2

2

1



−
, not 2. The major axis of the ellipse will then shift by an angle of 

2

1
2 1

1




 
 −
 − 

 during each orbit, or approximately 
2   by when   1. One can easily 

calculate the eccentricity in the path from the equations J = m rmin v and H = 
2

2

min

Ze
mc

r
− , which 

correspond to passing through the perihelion. (Thus, v will be perpendicular to r, and as a result 

| |r v  = rv). Namely, if one eliminates the mass m and velocity (by means of the relation m = 

0

2 21 /

m

v c−
) and considers the fact that rmin = 

1

p

+
 then that will give: 

 

 = 
2 2

0

4 4

0

2 ( )
1

J H m c

m Z e

−
+ .          (46.c) 

 

One will then get the quasi-elliptic motion in question only when 2

0H m c−  < 0, i.e., for negative 

mechanical energy of the electron, which was clear from the outset. By contrast, for 2

0H m c−  > 
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0, the electron moves on a quasi-hyperbolic path that goes from infinity to infinity. (That motion 

should not be confused with the uniform hyperbolic motion in § 5!) 

 However, those two types of paths are obtained only when the parameter  < 1. Note that in 

the simplest case of a circular motion ( = 0), that parameter will be equal to the ratio of the speed 

of the electron v to the speed of light. Thus, if  > 1 then the type of motion must change 

completely. In fact, instead of the trigonometric function in (46.a), we will get an exponential 

function according to the formula: 

 = 
1

r
 = 

2 11
(1 )e

p

 


−
+  .           (47) 

 

That is the equation of a spiral that always winds closer to the origin. The speed of the electron 

will increase continuously up to the limiting value r = c. 

 This is not the place for a detailed discussion of the results above from the physical standpoint. 

However, we would like to illustrate the relativistic conversion of the classical-mechanical 

concepts of angular momentum (J) and torque (M) in this example of the orbital motion of an 

electron. 

 Up to now, we have assumed that the nucleus is at rest. However, we can go from the original 

coordinate system S to another one S   that moves with a velocity v. What form will the orbital 

motion of the electron take when we consider it from the standpoint of the system S  , in which 

the entire “atom” (nucleus + electron) has a constant translational velocity − v ? 

 In order to answer that question, we introduce the coordinates of the nucleus and electron and 

denote them by 0

kx  (xk, resp.) for the system S and by 0

kx  ( kx , resp.) for S  . In the original system, 

we have made no distinction between the fourth coordinates 0

4x  and x4, i.e., We must now recall 

that the concept of simultaneity has no absolute meaning. That is because after the Lorentz 

transformation that determines the transition from S to S  , we will get different values for 0

4x  and 

x4 when 0

4x  = x4, in general. That shift in the time-point that is ascribed to the nucleus and the 

electron is closely connected with a change in the vector J under the transition from S to S  . In 

classical mechanics, that vector, like any other three-dimensional vector, is considered to be an 

invariant quantity. In relativistic mechanics, one must treat it as a varying quantity (just like any 

other three-dimensional vector), and indeed as is easy to see, as the spatial part of a six-vector. In 

fact, the components of J are expressed in S by the formulas: 

 

J1 = 0 0

2 2 3 3 3 2[( ) ( ) ]m x x v x x v− − −  = 
0 03 2

2 2 3 3( ) ( )
dx dx

m x x x x
dt dt

 
− − − 

 
 , 

  

etc. If one introduces the proper time of the electron d = 
2 21 /v c dt− = (m0 / m) dt in place of 

the ordinary time t then one will get the three components of J from: 
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Jkl = 
0 03 2

0 2 2 3 3( ) ( )
dx dx

m x x x x
d d 

 
− − − 

 
 (k, l = 1, 2, 3). (48) 

 

However, those three quantities must obviously be the three spatial components of a four-

dimensional skew-symmetric tensor Jkl = − Jlk . The other components will be obtained when one 

introduces the fourth index, along with the first three. One can then set: 

 

1 23 2 31 3 12

1 14 2 24 3 34

, , ,

, , ,

J J J J J J

i J J i J J i J J  

= = = 


= = = 
   (48.a) 

 

in which J represents the temporal part of 2J that belongs to J. Due to the condition that 0

4x  = x4, 

from (48), we have: 

 Jk4 = 0

0 ( )k k

i c dt
m x x

d
−  = 0( )k ki cm x x−  (k = 1, 2, 3), 

 

i.e., with the abbreviation 0

k kx x−  = Rk : 

J = c m R .          (48.b) 

 

Under the transition to the system S  , the vectors J and J must obviously transform under the 

same formulas as the magnetic and electric polarization, i.e., from the formulas (11), Chap. IX. 

For low speeds, one has the approximate formulas: 

 

J = J + 
1

c
v  J, J = J − 

1

c
v  J .          (49) 

 

Note that under the aforementioned restriction (v / c  1), one regards the mass of the electron as 

constant, and its magnetic moment (i.e., the magnetic moment that originates in the orbital motion) 

m =
2

e

c
r  v can be determined from the formula: 

m = 
1


J  

02

e

m c


 
 = 

 
.          (49.a) 

 

We will then get the following expression for the associated electric moment p: 

 

p = 1
2
eR .             (49.b) 

 

If the nucleus has a charge – e (Z = 1) then it will define a dipole with the electron that has a 

moment of e R, i.e., twice as large as (49.b). However, if Z is not equal to 1 then it will be 

impossible to ascribe a well-defined electric moment to the nucleus-electron system on the basis 
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of the usual definition of a dipole moment. That is because one can just as well think of that system 

as a combination of a dipole with a moment e R and a resultant nuclear charge – (Z – 1) e or a 

dipole with the moment Z e R, and a resultant electron charge + (Z – 1) e. 

 That indeterminacy in the electric moment is obviously closely connected with the arbitrariness 

that adheres to the normalization of the simultaneity of the nucleus and electron above. That is 

because it is not clear from the outset (and in fact, it is impossible to establish) why one should 

have the equation x4 = 0

4x  in the system S and not in the system S  . The changes in J and J that 

are determined by (49) (and obviously the same formulas are true for m and p) originates in 

precisely the changes in the spatial and temporal distances between those “events” that are defined 

by the presence of the nucleus and electron at the spacetime points considered. One can easily 

show that the change in J (or m) is mainly implied by the change in the spatial distance, while the 

change in J (p, resp.) is implied by the change in the temporal distance. 

 The same difficulties will arise when one seeks to formulate the concept of the torque for a 

system that consists of two or more electrons in a four-dimensional way while considering the 

relativity of time. If the electron is subject to an external force f, but not the nucleus (which is what 

happens, e.g., in an external magnetic field), then one regard can the moment of that force relative 

to the nucleus: 

M = R  f 

 

as the spatial part of a six-vector with the components: 

 

 Mik = Ri Fk − Rk Fi  (i, k = 1, 2, 3, 4), 

 

in which F means the four-impulse (per unit proper time of the electron) that corresponds to that 

force. However, the same arbitrariness will adhere to the definition of the temporal part of the 

tensor Mik that adheres to the tensor 2J. 

 For a rigorous and consistent treatment of the two-body or many-body problem according to 

the theory of relativity, one must then consider the motion of each electron in isolation and consider 

the other ones only to the extent that they are the sources of the external field that acts upon the 

electron in question. The relativity of simultaneity will then do no harm due to the invariance of 

the electrodynamical equations. 

 

 

§ 8. – Rotational motion. Equations of motion of the magnetic electron. 

 

 The complications that were considered in the foregoing section in regard to the definition of 

the angular momentum and torque on a system of two or more electrons will drop away when one 

refers those quantities to an isolated electron. In so doing, it is not necessary, nor even preferable, 

to decompose the element into elements and to reduce its “rotational motion” to an orbital motion 

of the latter around a certain axis that goes through the center of the electron. One can (and this is 
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the path that we shall go down) treat the electron as simply a point whose properties are 

characterized by certain scalar, vector, and tensor quantities. If one assumes the validity of the 

usual mechanical relations spatial projections of those quantities for the limiting case of vanishing 

translational velocity then the theory of relativity will permit one to ascertain the corresponding 

exact relations that are true for arbitrary translational velocities directly without needing to go into 

any detailed consideration of the “structure” of the electron. In that way, as we will see, the 

difficulties that are implied by the usual theory of an extended rotating electron in regard to its 

mass that were presented in § 8, Chap. VII, will also vanish. 

 We define the magnetic moment of the electron m to be the spatial component of a skew-

symmetric tensor  = −  : 

 

23 31 12 14 24 34

1 2 3 1 2 3m m m i p i p i p

      
 
 

 , 

 

in which p1, p2, p3 are the spatial components of the associated electron moment. 

 We would like to determine that dipole moment from the condition that it should vanish (p = 

0) in the coordinate system S   where the electron is instantaneously at rest. It will then follow (cf., 

Chap. IX, § 2) that it is known for an arbitrary coordinate system S relative to which the electron 

has the translational velocity v: 

p = 
c

v
 m .              (50) 

 

One can also derive that result in the following way: Let x be the coordinates of the electron and 

time, multiplied by i c (i c t = x4) relative to the system S. One then uses  and x  = dx / d, 

where d = 
2 21 /dt v c−  means the proper time of the electron, to define the four-dimensional 

vector 
4

1

x 



=

 , or x   when written more simply (the summation sign will always be omitted 

for pairs of equal indices in what follows). The components of that vector x    in the “rest 

system” S   must vanish since one would have 1x  = 2x  = 3x  = 0, and by assumption, one would 

then have 14  = 24  = 34  = 0. However, it would follow from this that the equations: 

 

x   = 0 ,           (50.a) 

 

which express the vanishing of the vector above, will be fulfilled in any other coordinate system 

S. If one replaces  and x  with their corresponding three-dimensional expressions then one will 

get the spatial components of the vector: 
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2 21 /

c

cv c

 
 − 

 −

v
m p              (51) 

 

for  = 1, 2, 3, while one will have: 

 

4 x   = − ( )
2 21 /

i

v c−
vp  

 

for  = 4. The vanishing of the second expression follows immediately from the vanishing of the 

first one, i.e., equation (50). 

 It is known that one can form the following two invariant quantities from the tensor 

components: 
2 2m p−  = 1

2     

and 

m p = i (23 14 + 31 24 + 12 34) . 

 

In that way, from (50) (i.e., due to the fact that p = 0): 

 

m p = m p = 0 

and 

2 2m p−  = 

2

2m
c

 
−  

 

v
m  = 

2m .    (51) 

 

The last equation determines the dependency of the magnetic moment of the electron on its 

translational velocity v. One can rewrite it in the form: 

 

m = 
2 21 /v c



⊥−
,                 (51.a) 

 

in which v⊥ means the component of v that is perpendicular to m. m  =  is the magnitude of the 

magnetic moment in the “rest system.” 

 We now introduce the four-dimensional quantities that correspond to the magnetic energy 

−mH = − m H and the magnetic torque m  H, i.e., the skew-symmetric three-dimensional 

tensor with the components m H – m H . The four-dimensional “extension” of the energy 

function is obviously the scalar: 

 

U = − 1
2

H   = − (m H) – (p E) .               (52) 
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It is easy to see that the corresponding “extension” of the torque is given by the skew-symmetric 

four-dimensional tensor (six-vector): 

 

M = H H    −                (53) 

with the spatial components: 

(M23, M31, M12) = m  H + p  E , 

and the temporal components: 

 

− i (M14, M24, M34) = − m  E + p  H . 

 

 We define the angular momentum of the electron to be the spatial part of the tensor: 

 

1



, 

with  = e / c m0 . 

 The simplest four-dimensional “extension” of the usual differential equation for the time 

variation of  will then read: 

1



 = M ,      (54) 

i.e.: 

1


m  = m  H + p  E          (54.a) 

and 

1


p  = p  H − m  E  ,          (54.b) 

 

in which the dot means differentiation with respect to proper time. 

 However, equations (54.a) and (54.b) can be fulfilled simultaneously only in the case where 

the vectors m and p are mutually independent (a priori). However, the relation (50) must exist 

between them, which will make equations (54.a), (54.b) incompatible. Now, it is easy to modify 

the combined equation (11) in such a way that the condition (7.a) will be fulfilled. To that end, we 

introduce an initially-indeterminate four-dimensional vector a and define the invariant scalar: 

 

− a x    = − 1
2

( )a x a x     − ,           (55) 

 

which vanishes identically, according to (50.a). We add that scalar to the “energy function” U, i.e., 

we replace the latter with: 

 

U   = − 1
2

( )H a x a x      + − = − 1
2

H    .   (55.a) 

 

We correspondingly replace the tensor M with: 
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M
  = H H     − ,          (55.b) 

i.e.: 

M
  = ( )M a x x      + − ,                (55.c) 

 

and the “equations of motion” (54) with: 

1



 = M

  ,     (56) 

or when written out in full: 

 

1



 = ( )H H a x x           − + −  .   (56.a) 

 

We now determine the vector a in such a way that this equation will agree with the relation (50.a). 

Indeed, when we consider (50.a) and the identity: 

 

x x   = − 2c , 

it will follow from (56.a) that: 

 

1
x 


 = − 

1
x 


 = H x a x x       −  = 

2( )H x a c    +  , 

or 

21
x H x a c    



 
+ + 

 
 = 0 . 

That will then give: 

a = ( )2

1
H x x

c
  


− .            (57) 

 

Independently of that expression for a , when one considers (50.a), one will get from (56.a) that: 

 

1
  


 =   H −   H  = 2   H = 0 

 

(due to the skew-symmetric character of H), i.e.: 

 

2d

d



 = 0 

or 
21

2   = 
2 2m p−  = 

2  = const.    (58) 

 

 As is known, the equations of motion of a non-magnetic electron [cf., (8), § 2] are: 
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0m x  = 
e

H x
c

   , 

or, with 0/e m c =  : 

 x  = H x   .              (58.a) 

 

If one neglects the force that originates in the magnetic moment in comparison to the force 

1
e

c

 
+  

 
E v H , which corresponds to the four-vector 

e
F x

c
  , then from (58) and (58.a), one 

will have: 

a ~ 0 .         (58.b) 

 

In that approximation (i.e., when one neglects the perturbation of the translational motion of the 

electron that is required by the magnetic force), one then determines its “rotational motion,” i.e., 

the time variation of the vector m, from the simple equations (54) or (54.a). 

 If one substitutes p = (1 / c) v  m in (54.a) using (50) then one will have: 

 

1


m   m  H + 

1

c

 
 

 
v m   E .    (59) 

 

One now considers the case in which the electron moves around the nucleus in a weak external 

magnetic field H. One can then set: 

E  0m d

e dt

v
,             (59.a) 

 

to an even-coarser degree of approximation (viz., one ignores the terms that are quadratic in v / c). 

In that way, the second term on the right-hand side of (59) will assume the form: 

 

0 ( )
m d

ec dt
 

v
v m . 

 

We would now like to calculate the mean value of that expression for the unperturbed motion. 

 One has (for the unperturbed motion, cf., § 9, Chap. VII): 

 

( )
d

dt
 v m v = ( )

d d

dt dt

 
  +   

 

v v
v m m v = 0 . 

 

It then follows from this that: 

( )
d

dt
 

v
v m  = 1

2

d

dt

 
  

 

v
m v  , 



380 Chapter Ten – Relativistic Mechanics 

 

or from (59.a): 

1

c

 
  

 
v m E   

1
( )

2c
 m E v  = 

1

2
m H  .   (59.c) 

 

As a result, the mean variation of the vector m is determined, to the degree of approximation 

above, by the equation: 

1 d

dt

m
  m  H + 

1

2
m H ,     (60) 

 

in which H = − 
1

2
v E  − 

1

2
v E  means the magnetic field strength in the coordinate system 

,S   in which the electron is instantaneously at rest, and H  means the mean value of that field 

strength. 

 We will now cite a more rigorous derivation of the differential equation (56) for the “rotational 

motion” of the electron on the basis of the Hamilton-Schwarzschild principle. At the same time, 

that will yield the precise differential equations for translational motion. 

 We then set: 

L d   = 0 ,      (61) 

 

as usual (cf., § 3), with the auxiliary conditions: 

 
2x
 = − 

2c ,           (61.a) 

x   =  .           (61.b) 

 

We then write the Lagrangian function in the form: 

 

L = 1
2

e
A x T H

c
   + + ,                (62) 

 

in which T   means the “kinetic energy” of the rotational motion. 

 We consider that energy in conjunction with the usual three-dimensional mechanics as a 

function of the “angular velocity,” which we characterize by the skew-symmetric tensor  = 

− . In that way, we set: 

T 
 = 

1

2
  


,       (62.a) 

 

by definition. In order to determine the variation of , we next observe the corresponding 

operation in ordinary mechanics. The work done by the magnetic torque m  H under a virtual 

infinitesimal rotation  v is equal to the inner product  v  (m  H). On the other hand, it must be 
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equal to the decrease in magnetic energy –  (− m H) =  m  H. We will then have  m  H = 

( )  v m H  or ( m H) = ( )  v m H , and as a result: 

 

 m =  v  m . 

 

The corresponding four-dimensional variational formula must be obtained from that in the same 

way that formula (53) was obtained from the three-dimensional expression for the torque m  H. 

If one then introduces the four-dimensional skew-symmetrical “rotation tensor”   whose 

spatial part is equal to the vector  v then one will have: 

 

 =     −     .    (62.b) 

 

Obviously, the quantities   (just like ) do not represent complete differentials, i.e., there 

is no “angular coordinate”  (non-holonomic system) that would correspond to x . Nonetheless, 

we shall assume that along with the relations: 

 

x  = 
d

x
d




,     (63) 

 

the corresponding commutation relations for   and d  =  d are also true, i.e.: 

 

  = 
d

d



 .      (63.a) 

 

 By means of the formulas and the relations that were partially employed before: 

 

 A = 
A

x
x










, A

 = 
A

x
x









, 

 H = 
H

x
x











, H  = 

H
x

x










, 

we will get: 

 

 L = 
1 1

2 2

A Ae e d e d
x x x x A x

c x c x d c d

 
         

 

      
   

     
− + −  +    

     
 

+ 1 1
2 2

( )
H

x H
x



      



     


+  − 


, 

or since: 
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AA

x x



 


−

 
 = H , 

 L 

= 1 1
2 2

1 1He d e
H x x H H A x

c x d c



             



        
  

     
+ + − + −  + +      

     

. 

 

Similarly, from (61.a) and (61.b), when one adds the undetermined Lagrange multipliers  and a 

( = 1, 2, 3, 4): 

x x    = − ( ) ( )
d d

x x x x
d d

      
 

+  = 0 

and 

( )a x     = 1
2
[ ( ) ( )]a x a x        −  

 

= 1
2

( ) ( ) ( )( )
d d

a x x a a x a x
d d

                    
 

− + −   −    = 0 , 

 

or since: 

x   = x   = 0 , 

one will have: 

 

( )a x     = 1
2

( ) ( ) ( )
d d

a x x a a x x
d d

                 
 

− +   −   = 0 . 

 

 With the usual assumption that the variations  x,   vanish at the limits of the integral 

(61), it will then follow from (61), (61.a), (61.b) (upon adding the expressions above and setting 

the coefficients of  x and   equal to zero) that: 

 

( )
d

x a
d

   


+  = 1
2

He
H x

c x



  






+


              (64) 

and 

1



 =  H −  H + ( )a x x     − . 

 

 The last equation coincides with (56.a). The first of them is the generalization of the ordinary 

equations of motion (58.a) for a non-magnetic electron. 

 We correspondingly set: 

 = 0m + ,             (64.a) 

 

in which   means an additional term that depends upon the moment of the electron. After 

performing the differentiation on the left-hand side of (64), we will get from (57) that: 
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x x a a         + + +  = 2 1
0 2

H
m c a

x



 



 


+


. 

 

 Due to the relations 2x
 = − 2c , x x  = 0, and a x   = 0, it will follow from that upon 

multiplying by x  that: 

− 
2c x a x      + +  = 1

2

H
x

x



 







 = 1

2

dH

d






 

or 

− 2c   = ( )1 1
2 2

( )
d

H H a x a x
d

        


− + −  . 

  

 From (55.a), (55.b), and (56), we have: 

 

1
2

( )H a x a x      + −  = 1
2

H    = ( )
2

H H H    


   −  

= ( )
2

H H H H     


    −  = H H       = 0 , 

 

due to the skew-symmetric character of the tensor  . As a result, we will have: 

 

  = − 
2

1

2
H

c
  .            (64.b) 

 

 The increase in mass m0 is then equal to the “relative magnetic energy” of the electron (relative 

to the nucleus and other particles that create the field H) divided by the square of the speed of 

light. 

 One can interpret the expression  a in (64) as the -component of the additional impulse 

that originates in the absolute energy of the electron, i.e., the kinetic energy of its rotation. 

 Due to (57), upon substituting (64.a) in (64), that will give: 

 

( )
d

x a
d

   


 +  =  2 1
0 2

H
c m a

x



 



 


+


.   (65) 

 

 One can employ that equation in order to determine a for an approximately, and indeed, in the 

first approximation, when one neglects the left-hand side of (65), one will get: 

 

a  = − 
2

1

2

H

ec x











.        (65.a) 

 

 It will follow from equation (64) that: 
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      (66) 

 

 That equation can be regarded as the generalization of the “law of areas,” i.e., the usual formula 

for the rate of change of the ordinary angular momentum of the translational motion m0 r  
d

d

r
. 

In that way, that angular momentum is replaced with the skew-symmetric tensor: 

 

I = ( ) ( )x x x x a x x          − + − ,    (66.a) 

 

whose spatial part coincides with m0 r  v in the first approximation. It should be further noted 

that the second term on the right-hand side of (66) is equal and opposite to the corresponding 

additional term in formula (56.a) for the rate of change of the angular momentum of rotational 

motion. If one sets: 

1



 = i 

then one will have: 

 

( )
d

i I
d

 


+  = ( )
e U U

H H H x x H x x x x
c x x
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 
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 

 (66.b) 

 

for the sum of the two moments, according to (56.a) and (70), and in which U means the “relative 

energy”: 

U = − 1
2

H  . 

 

 We now consider the case in which the electron moves in a radially-symmetric electric field E 

= f (r) r, although an (external) magnetic field is absent. In that case, one will have U = − p E =  

f− pr , and as a result, for ,  = 1, 2, 3: 
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U U
x x

x x
 

 

 
−

 
 = f (x p – x p) = E p – E p . 

  

The resulting torque, which corresponds to the spatial part of the tensor on the right-hand side of 

(66.a), will then be equal to zero (cf., § 9, Chap. VII and § 2, Chap. IX). 

 It will then follow that magnitude and direction of the resultant angular moment of the electron 

in the case in question must remain constant. 

 As we have already seen above [equation (15)], the magnitude of the tensor , and as a result, 

i, as well, is constant in time. As a result, in the first approximation (when one drops the terms 

that are quadratic in 1 / c), one can consider the magnitude of the angular momentum of the 

rotational motion i = m /  to be constant in time. If one denotes the angular momentum of the 

translational motion (i.e., the spatial part of the tensor I) by I then, due to the condition i + I = 

const., it will follow that the magnitude of I must also remain constant and that both vectors i and 

I must precess around their resultant with the same angular velocity. 

 If we introduce the corresponding magnetic moments m =  i and M = ( / 2) I in place of 

the angular momenta i and I then we will see that the sum m + M = 1
2
 (i + I) + 1

2
 i does not 

represent a constant vector. Indeed, the magnitude of that vector will remain constant, but its 

direction must precess around the atomic axis with the aforementioned angular velocity. There is 

no simple way of determining that angular velocity. However, formula (64) shows that its mean 

value coincides with the usual Larmor velocity of the electron orbit in an external magnetic field 

H . 

 In the foregoing discussion, we have left the internal torque that was found in § 8, Chap. VII, 

completely out of consideration. That torque (when it actually does exist) would represent the 

spatial part of a six-vector and should reduce to the form (63.a), Chap. VII, in the limiting case of 

small translational velocities. Now, it is easy to convince oneself that such a six-vector, with its 

components that are quadratic in  and x
, can indeed be constructed, but it must vanish 

identically due to the condition that x  = 0. 

 That is why the existence of an internal torque seems to be incompatible with the theory of 

relativity. 
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