
 

 

 

 

 

 

 

 

 

 

 

 

PART TWO 

 

 

TIME-DEPENDENT 

ELECTROMAGNETIC EFFECTS 



CHAPTER FIVE 

 

THE GENERAL LAWS OF THE ELECTROMAGNETIC FIELD 
 

 

§ 1. – Electromagnetic induction in a time-constant field. 

 

 In Chapter II, we found that an electric charge e (more precisely, an electrified particle) that 

moves in a time-constant magnetic field H with the velocity v will experience a force f = 
e

c
v  H. 

That electrokinetic or electromagnetic force, when referred to a positive unit of charge (e = 1) will 

then be equal to: 

F = 
1

c
v  H .       (1) 

 

Since the force f is perpendicular to the velocity of the corresponding charged particle, it can do 

no work under the motion of the latter. However, the expression for f above was derived from the 

change in the potential energy of a linear current under an infinitesimal (virtual) displacement of 

the current line since that change would be set equal to the work that electromagnetic forces did 

on the current elements. That apparent contradiction can be resolved as follows: 

 Under the motion of a current line , the velocity v of the electric charges that are 

instantaneously found in the element d is composed of two components: Its “relative” velocity v 

relative to d and the “absolute” velocity v with which d is displaced (parallel to itself). In 

Chapter II, when we derived the elementary electromagnetic force, we considered only the velocity 

v, which determined the current strength i according to the formula: 

 

e

c




v
 = i  d 

 

(in which the summation extends over all charges that are found in d). That relative, or 

longitudinal, velocity corresponds to transverse electromagnetic forces f = 
e

c
v  H, whose sum 

will give the known expression: 

 

 f  = 
e

c
 v H= 

e

c

 
 

 


v
H  = i  d  H 

 

for the force that acts upon the element d of a current line at rest. 



132 Chapter Five – The General Laws of the Electromagnetic Field. 
 

 As far as the forces f = 
e

c
v  H are concerned, which are due to the convection of the charges 

along the current line element d, their resultant along that element must vanish (as long as the 

latter is electrically neutral) since the velocity v is the same for the positive and negative charges: 

 

f = 
e

c
 v H= ( )e

c

 
 

 


v
H  = 0 . 

 

 Under a displacement v d of the current line element d, the transverse electromagnetic forces 

will do an amount of work equal to: 

 

d A = dt f v  = (i  d  H) v dt . 

  

 However, in that same time interval dt, the charges that were (originally) contained in d will 

experience longitudinal displacements v dt that must be different for positive and negative charges 

(since otherwise the current strength would be equal to zero). Those longitudinal displacements 

correspond to a non-zero work d B done by the forces f (which also point longitudinally, i.e., 

parallel to d, for perpendicular displacements of d.) Although the total force f  = 0, we will 

nonetheless get a non-zero expression for the resultant work done: 

 

d B = dt  f v  = ( )
e

dt
c

  v H v  = 
1

[( ) e dt
c

  v H v ] , 

i.e., from (1): 

d B = (F c i ) d dt = c i F d dt  ,           (2) 

 

in which F = 
1

c
v  H, means the component of the electromagnetic force F per unit charge that 

originates in the convective motion of d, and F
  = F means its longitudinal projection (onto the 

direction of the current). 

 The sum of the works dA and dB must obviously be equal to the total work done by the 

electromagnetic forces f = f + f that act upon the individual charges in d under the corresponding 

total displacement v dt = v dt + v dt. Since the vectors f and v are perpendicular to each other, it 

will follow that dA + dB = 0. 

 That relation can be derived immediately from the equation f  v = 0. Since: 

 

f = 
1

c
v  H  and v = v + v, 

one has: 
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f  v = ( )
e

c

 
 +  

 
v v H  (v + v) = ( ) ( )

e e

c c
    + v H v v H v  = f  v + f  v, 

 

and as a result,  f v dt +  f v dt = 0, i.e.: 

 

d A + d B = 0 . 

 

The results obtained can be formulated as follows: 

 The motion of a current line in a time-constant magnetic field will generate a longitudinal 

electromagnetic field (F) that acts upon opposing charges in opposing directions, and the work 

that it does is equal and opposite to the work done by the transverse electromagnetic forces that 

act upon the elements of the current line. 

 The work done by longitudinal (or as one often calls them, “electromotive”) forces along the 

entire current line  per unit time is equal to c i F d  . As far as the work done by the transverse 

(or “ponderomotive”) forces is concerned, it can be measured by the decrease in potential energy 

U of the current line in question (at constant current strength) relative to the external system that 

generates the field H. Since one has U = − ni H dS , from (10), Chap. II, then since 
dA dB

dt dt
+  = 

0, it will follow that: 

F d   = − 
1

n

d
H dS

c dt  .     (3) 

 

That equation expresses the law of electromagnetic induction. The line integral F d   is called 

the electromotive force that is induced by the motion of the current line in the magnetic field. It 

should be noted that the vector F then plays the role of the ordinary electric field strength in that 

way. The integral F d   along a line that is not closed will then correspond to the potential 

difference between the endpoints of that line. For a closed line, it must be equal to zero when F 

coincides with the field strength of a time-constant electric field. 

 The “electromotive force” (3) is completely independent of the current strength. The 

longitudinal motion of the electric charges that determines the current strength will generate the 

transverse component of F. By contrast, the longitudinal component F is required by only the 

(transverse) “convectional motion” of the current line. 

 In the absence of a current (i = 0), the induced electromotive force tries to create one. In the 

general case (i  0), it tries to produce a change in the current strength. 
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§ 2. – Electromagnetic induction in a time-varying magnetic field. 

The relativity principle. 

 

 Let the magnetic field that was considered in the previous section be created by a second linear 

current ( )i   . We shall now show that the two current lines  and    are coupled by a common 

translational motion such that they will remain at the same position relative to each other. 

Experiments show that in this case, everything happens just as it would in the rest state: Therefore, 

only the transverse electromagnetic (“ponderomotive”) forces would remain active, while the 

longitudinal (electromotive) forces would not appear at all (1). 

 It will follow from this that those electromagnetic forces depend upon only the relative motion 

of the current lines in question relative to the other. We would like to refer to that law as the 

relativity principle. It should be pointed out that in that way, one deals with only the relativity of 

the simplest kinematical quantity, namely, the velocity. Indeed, when we determined the 

electromotive forces that were induced in  using formula (1), we have understood v to mean, not 

the “absolute” velocity of the element of  but its relative velocity relative to a coordinate system 

that is fixed along the current line   (2). 

 We must further assume that the magnetic field that is created by   is carried along by the 

“absolute” motion of    without any change to it, i.e., it is constant in time relative to the 

aforementioned coordinate system that is coupled with    (3). Therefore, the magnetic field 

strength at a fixed point in space must change in time. In other words, if one considers the magnetic 

field from the standpoint of a coordinate system “at rest” then one must regard it as time-varying. 

 In the previous section, we regarded the current line    as being at rest and  as moving. Since 

the inductive action that is exerted upon  according to the relativity principle depends upon the 

relative motion, we can switch the roles of the two current lines without altering that action in any 

way, i.e., we can regard  as being at rest and    as being in motion (with the opposite velocity). 

Only the interpretation of the electromotive force (3) must change in that way. Indeed, in the case 

considered, it comes down to an electric field that is created by the motion of   , and in that way, 

the longitudinal component of that “induced” field E should be identified with the corresponding 

component F of our previous electromagnetic force per unit charge. The relative character of the 

velocity then corresponds to a peculiar relativity of force: The same force can be interpreted as 

either an electric or an electromagnetic one. 

 In what follows, we will denote the time variation of a scalar or vectorial quantity at a fixed 

point in space by the symbol dt
t




, i.e., by a partial derivative with respect to t. By contrast, the 

symbol for a total derivative with respect to time t, which appears, e.g., in formula (3), shall refer 

to the case of a moving point or system. We then get the formula: 

 
 (1) We imagine, e.g., two coils, one of which is placed inside the other. If a constant electric current flows in one 

coil (e.g., the outer one) then one will get an induced current as a result of the motion of the inner coil. The same 

current would be generated by the opposite motion of the outer coil. One will not get any induced current from a 

common displacement of the two coils. 

 (2) We will formulate the relativity principle more precisely later on in Chap. VIII. 

 (3) Later on, we will see that this assumption is not fulfilled with complete rigor. It is true only in the limiting case 

of very small velocities. 
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E d   = − 
1

nH dS
c t



   

or 

E d   = − 
1

dS
c t




H
n ,               (4) 

 

which is equivalent to the formula (3). 

 That formula shows that the inductive electric field is required by the time variation of the 

magnetic field in question. The special circumstances upon which that variation might depend do 

not enter into (4) explicitly. For that reason, we can assume that those special circumstances are 

entirely irrelevant. Correspondingly, formula (4) must also be valid when the change in the 

magnetic field has its origin, not in the motion of one or more current lines at constant current 

strength (which was always assumed up to now), but in the change in the current strength in a 

current line that is either at rest or in motion. If the current strengths i and i  in  (  , resp.) are 

held constant in some way then the transverse electromagnetic forces that act upon  as a result of 

  must do work A = U1 – U2 under a displacement  from the position (1) to another one (2), 

where: 

U = − ni H dS  = − ni H dS
   = U   

  

means the mutual potential energy of the two current lines [cf., (20.c), Chap. III]. However, as we 

saw in § 1, the longitudinal electromagnetic forces that act upon  and require an electromotive 

force will do the opposite amount of work B = U2 – U1 , such that the sum of the works done by 

the electromagnetic forces must remain equal to zero. 

 Furthermore, an electromotive force will be induced in    due to the motion of  that comes 

from the time derivative of the magnetic field (H) that is created by . According to the relativity 

principle that was just considered, that electromotive force of electrical origin coincides with the 

“kinetic” electromotive force that is generated in    when  is at rest, but    moves in the opposite 

way. The work done by that force (at constant field strength i ) must be equal to the (algebraic) 

increase in the potential energy of    compared to , i.e., the difference 2 1U U − , or since U   = 

U, U2 – U1 . It will then follow from this that in the case in question (viz.,    is at rest and  is in 

motion), the two electromotive forces – viz., the kinetic one V in  and the static one V   in   – 

must do the same work U2 – U1, i.e., their sum is twice that amount of work 2 (U2 – U1). If one 

adds that to the work done A = U1 – U2 on  by the transverse forces that act upon it (the 

corresponding work done on the current line    is equal to zero since it is at rest) then one will 

get the work: 

2 (U2 – U1) + (U1 – U2) = U2 – U1 = − A 

 

in total. That result can be easily generalized to the case in which the two current lines (which are 

mutually independent) move simultaneously: The work done by the transverse and longitudinal 

electromagnetic forces remains equal to zero in total. As far as the work done by the two induced 

electromagnetic forces of electric origin is concerned, which is due to the time variation of the 
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magnetic fields H and H, it is independent of the “absolute” motion of    and , so it will always 

be equal to the increase in the potential energy U2 – U1 . 

 The energy in such a system will generally be the quantity whose algebraic decrease is equal 

to the work done between by the forces that act between the parts of the system under a transition 

of that system from one position to another (assuming that the work done us independent of the 

path taken during that transition). If one would then like to attribute the total work that is done by 

the forces that are active in a system of linear electric currents to an energy function then that 

function T must be defined in such a way that one has T1 – T2 = U2 – U1. If one establishes that the 

energy T vanishes when the current lines are separated by an infinite distance, just like U, then that 

will give the following simple relation: 

T = − U .      (5)  

 

If one recalls once more that the potential energy U corresponds to only the transverse 

electromagnetic (i.e., “pondermotive”) forces that act upon the elements of the two current lines, 

while T plays the same role for static (electric) forces of induction that are generated by the time 

variation of the magnetic fields. The work done by the kinetic forces of induction will be 

compensated precisely by the work done by the aforementioned transverse forces, and that is why 

it will remain out of consideration. 

 We would like to call the quantity T the electrokinetic or simply the magnetic energy of the 

current in question. One can also define it to be the work that must be expended (at the expense of 

any external energy sources) in order to overcome the induced electric forces so that the current 

strengths would remain constant when the two current lines went to their (relative) configuration 

considered after starting out at an infinite distance from each other. 

 Since that work depends upon only the relative motion of the two current lines, one can imagine 

that one of them, e.g., , is at rest, and that as a result the work done T will be expended completely 

on that current line (whereas only electrokinetic forces “that do no work” will act upon the moving 

current line). Moreover, since the induced electromotive force on  is determined completely by 

the time variation of the corresponding magnetic flux  Hn dS (that emanates from   ), and is 

entirely independent of the special circumstances that caused that variation, we can replace the 

motion of    under fixed current strength with a gradual increase in the current strength from 0 to 

i  while the position is fixed. In both cases, the work that must be expended in order to secure the 

constancy of the corresponding field strength i in the face of the electromotive force that is induced 

in  is given by the same quantity T. It can also be obtained reversing the roles of the current lines 

 and   , and furthermore, it is easy to see that it can be obtained in the most-general case when 

the current strengths in  and    grow from zero to i ( i , resp.) simultaneously. In that way, they 

can move in a completely arbitrary way, and must arrive at the (relative) configuration in question 

only at the end of the entire process. 

 In summation, we can then say that the work that is done by the electric and electromagnetic 

forces of interaction under an arbitrary change in the configuration of two current lines and the 

corresponding current strengths is always equal to the (algebraic) decrease in the magnetic energy 

T. It is determined completely by the values of T in the initial and final states and is independent 

of the intermediary states. 
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§ 3. – Maxwell’s fundamental equations for time-alternating electromagnetic fields. 

 

 Obviously, formula (4) must also remain valid when no current circulates in the curve , i.e., 

one can apply it to any closed curve and the surface that is bounded by the latter. If one transforms 

the line integral E d   into the surface integral  n rot E dS using Stokes’s formula then one will 

have: 

rot  dSn E  = − 
1

dS
c t




H
n . 

 

Due to the arbitrariness in the surface S, it will then follow that: 

 

rot E = − 
1

c t





H
.         (6) 

 

That differential equation is the generalization of the equation rot E = 0 that we exhibited in Chap. 

I on the basis of the energy principle, and up to now we considered it to be the analytical expression 

of that principle. We then see that in the general case of time-alternating fields, the energy principle 

in its usual form will lose its validity, at least for the isolated electric field. 

 As far as the magnetic field is concerned, one can also adapt the corresponding differential 

equation div H = 0 to the general case in question. That already follows from the fact that the 

energy principle also remains true for alternating currents, although in a somewhat-altered form 

(viz., electrokinetic energy T instead of potential U). However, our assertion can be proved with 

full rigor on the basis of equation (6). That is because when one applies the operation div to the 

two sides of that equation, that will give (since div rot  0) div 
t





H
 = 0, i.e., 

t




div H = 0, and as 

a result div H = const. Now, it is always possible to imagine that the magnetic field in its initial or 

final state remains constant along a time interval. However, one would then need to have div H = 

0. One can then conclude that the equation that was derived from the energy principle for the 

special case of time-constant fields: 

div H = 0      (7) 

is true in general. 

 In Chap. III, we exhibited the equations div E = 4  and rot H = 4 j by combining the energy 

and equivalence principles. The identity div j = 0 follows from the second of those equations, and 

in conjunction with the principle of the conservation of electricity, it represents the condition of 

stationarity of the electrical current that generates the field H [Chap. II, formula (4.a)]. Therefore, 

the equation rot H = 4 j cannot be true in the general case of a non-stationary electrical current 

since the divergence on its left-hand side will vanish, while the divergence of j is non-zero. 

According to (4), Chap. III (with J = c j), the principle of the conservation of electricity is 

expressed by the equation: 
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div j + 
1

c t




 = 0 .        (8) 

 

On the other hand, the desired generalization of the equation rot H = 4 j to the case of time-

alternating fields must obviously have the form: 

 

rot H = 4 j + 
t





G
,     (8.a) 

 

in which G means an initially-undetermined vector that depends upon the distribution of the 

electrical charges. Upon comparing that equation with (8), we will get: 

 

div 
t





G
 = 

t




 div G = 

4

c t

 


, i.e., div G = 

4

c

 
. 

 

If we then assume that the first of the aforementioned equations: 

 

div E = 4  ,      (9) 

 

just like the corresponding equation for the magnetic field (div H = 0), is true in general then we 

must set the vector G equal to 
1

c
E . In that way, (8.a) will assume the following form: 

 

rot H = 
1

c t





E
 + 4 j .          (10) 

 

It should be noted that in “empty space,” i.e., for  = 0 and j = 0, equations (9) and (10) will be 

completely analogous to equations (7) and (6), with the single difference that the time derivatives 

of H in (6) and E in (10) have opposite signs. 

 We then see that an alternating electric field will induce a magnetic field in the same way that 

an electric field will be induced by an alternating magnetic field, but the induced fields will be 

opposite when the inducing fields are equal. We get the following expression for the total flux of 

the vector rot H through an open surface S from (10): 

 

rotn dS H  = 
1

4nE dS i
c t




+
  , 

 

in which i =  jn dS means the strength of the electrical current that flows through S, or upon 

applying the Stokes transformation formula to the integral on the left-hand side: 
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H d  = 
1

4nE dS i
c t




+
  .           (10.a) 

 

 That formula shows that the time derivative of the “electrical flux” ( En dS) that flows through 

S, divided by 4 c, plays the same role with respect to the creation of the magnetic field as the 

corresponding current strength (1). 

 If one represents the vectors 
t





E
 and 

t





H
 graphically by a family of parallel lines then the 

induced fields H (E, resp.) can be represented by ring-like lines of force that surround the 

aforementioned families of lines, and indeed in the positive sense in the first case and in the 

negative sense in the negative one (Fig. 29.a,b). 

 Along with the electric charge and current density (, j), one can introduce (in an entirely 

formal way) the corresponding magnetic quantities  
, 

j , which must be coupled with each other 

by the “conservation equation”: 

 

1
div

c t

 
 

+


j  = 0 .         (11) 

 

(That equation is actually fulfilled 

since 
j  = 0 and  

 = 0.) Equations 

(7) and (6) would then assume a 

form that is entirely analogous to 

that of (7) and (10), and indeed: 

 

div H = 4  
,       (11.a) 

rot E = − 
1

4
c t

 
−



H
j .      (11.b) 

Along with the total force: 

 

f = 
1

[ ]e
c

 
+  

 
E v H             (12) 

 

that acts upon point-charge e that moves in the electromagnetic field E, H with the velocity v, one 

accordingly introduces an analogous (fictitious) force: 

 

 
 (1) That fact was discovered by Maxwell. In so doing, Maxwell interpreted the vector E as an elastic displacement 

in the ether and correspondingly interpreted the integral 
1

4 nE dS
c t





 as a “displacement current.”  

 

a 

H E 

 

b 
Figure 29. 
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f = 
1

[ ]e
c

  
−  

 
H v E            (12.a) 

 

that is supposed to act upon a moving magnetic pole e . 

 Those (obviously entirely fictitious) concepts and quantities are often very convenient for the 

practical calculation of the fields that are created by given electrical motions. 

 

 

§ 4. – The differential equations for the electromagnetic potentials. 

 

 The general differential equations of the electromagnetic field can be summarized in the 

following two groups (1): 

div 0,

1
rot 0,

c t

= 


 
+ =  

H

H
E

      (I) 

and 

div 4 ,

1
rot 4 .

c t

 



= 


 
− =  

E

E
H j

     (II) 

 

We shall now turn to the consideration of equations (I). It follows from the first of them that the 

magnetic field is source-free (or solenoidal), even in the general case, such that H can be calculated 

from a vectorial or magnetic potential A according to the formula: 

 

H = rot A ,      (13) 

 

just as it could in the special case of electrical current. If one substitutes that expression in the 

equation: 

1
rot 

c t


+



H
E  = 0 

then one will have: 

1
rot rot 

c t


+


E A  = 

1
rot 

c t

 
+ 

 

A
E  = 0 . 

 

It follows from that equation that the sum 
1

c t


+



A
E  represents a vortex-free vector, i.e., it is equal 

to the gradient of a scalar quantity – . One can then set: 

 
 (1) Those equations were first exhibited by J. C. Maxwell, and in their ultimate form by H. A. Lorentz. For that 

reason, one ordinarily refers to them as the Maxwell-Lorentz fundamental equations.  
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E = − grad  − 
1

c t





A
.           (14) 

 

For constant fields, that formula reduces to the formula E = − grad  that was derived in Chap. I, 

such that  agrees completely with the previously-introduced scalar or electric potential. 

 If one substitutes the expressions (13) and (14) in equations (II) then that will give: 

 

div E  − 2 1
div 

c t



 −


A  = 4              (14.a) 

and 

1
rot 

c t


−



E
H   rot rot A + grad 

2

2 2

1 1

c t c t

 
+

 

A
 = 4 j , 

or from the identity: 

rot rot A = grad div A – 2 A , 

 

– 2 A + grad 
2

2 2

1 1
div

c t c t

  
+ + 

  

A
A  = 4 j .   (14.b) 

 

As we have seen before in Chap. II in our consideration of time-constant electromagnetic fields, 

the vector function A that was introduced in (13) is not determined completely. We previously 

removed that indeterminacy by means of the equation [(12.a), Chap. II]: 

 

div A = 0 . 

The relation: 

div A + 
1

c t




 = 0     (15) 

 

would now seem to be a reasonable generalization of that equation, which is completely-analogous 

to the relation (8) between the right-hand sides of (14.a) and (14.b). That would then make it 

possible to separate the two unknown functions  and A in (14.a) and (14.b) from each other. In 

fact, if one considers (15) then (14.a) and (14.b) will reduce to two equations of the same form: 

 

– 2 + 
2

2 2

1

c t




 = 4  ,            (16) 

– 2A + 
2

2 2

1

c t





A
 = 4 j ,            (17) 

 

which can be regarded as the generalization of equations (8) and (9), Chap. III. 

 In the case where the positive and negative charges are coupled with each other into the 

smallest neutral particle (viz., molecules, as in, e.g., dielectrics), the current density can be 
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represented as in (2), Chap. II as the time derivative of the polarization vector P, which measures 

the electric moment per unit volume of the body in question. With the use of the electrokinetic 

units for the current density [j = (1/c) J], one will then have: 

 

j = 
1

c t





P
.             (18) 

 

Upon substituting that expression in equation (8), the latter will assume the form div
1

c t





P
+

1

c t





= 0, i.e.: 

1
(div )

c t



+


P  = 0 . 

 

It follows from this that the volume density of the electric charge can be represented by means of 

the polarization vector according to the formula: 

 

 = − div P        (18.a) 

 

that we already derived in § 10, Chap. III, in a different way. It should be pointed out that formulas 

(18) and (19) are not only valid for the case of bound charges, they can also be applied to the case 

of charges in an arbitrary state of motion. However, in that way, the vector P will lose the 

aforementioned intuitive physical sense and would become merely an auxiliary quantity that is 

defined by (18) (cf., 10, Chap. III). 

 Just as j and  can both be represented by means of that quantity, one can express the 

corresponding potentials A and  in terms of one and the same quantity Z as a result of the relation 

(15), and that quantity will have the same relation to the vector P that A has to j. In analogy with 

(18) and (19), one sets: 

A = 
1

c t




Z               (19) 

and 

 = − div Z .           (19.a) 

 

Upon substituting those expressions in equations (16) and (17), we will get: 

 

− 2 (− div Z) + 
2

2 2

1
( div )

c t


− 


Z = − 4 div P 

and 
2

2

2 2

1 1

c t c t

  
−  + 

  

Z
Z  = 

1

c t




4 P . 
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It will then follow that the vector Z (viz., the so-called Hertz vector or electric polarization 

potential) satisfies the equation: 
2

2

2 2

1

c t


−  +



Z
Z  = 4 P .       (20) 

 

The form of that equation coincides with that of equations (16) and (17) for the electric and 

magnetic potential and represents the generalization of equation (36), Chap. III. 

 We have seen that in the case of a stationary electric current, the current density can be 

expressed in terms of the “magnetic polarization vector” M and the vector potential can be 

expressed in terms of the magnetic polarization potential Z by using the formulas j = rot M and 

A = rot Z. Obviously, those formulas cannot be adapted to the general case. However, they can be 

combined with the foregoing ones, and by defining j to be the sum: 

 

j = rot M + 
1

c t





P
.     (21) 

 

That will correspondingly give A as the sum: 

 

A = rot Z + 
1

c t





Z
.     (21.a) 

 

The original definition of the electric polarization P will clearly be altered somewhat by that. 

However, one can employ that fact in order to replace the actual system with a different one in 

such a way that the electromagnetic field can be determined as easily as possible in the spatial 

region considered. It follows from (21) and (21.a), in conjunction with the previous formulas, that: 

 
2

2

2 2

1

c t


 

−  +


Z
Z  = 4 M ,          (22) 

 

i.e., an equation with the same form as (20). 

 One refers to such equations as d’Alembertian equations. They represent the generalization of 

the Laplace equations for time-varying fields. 

 

 

§ 5. – Integrating the foregoing differential equations. Retarded potentials. 

 

 We would first like to perform the integration of equation (16) for the case in which the electric 

charge density  is zero outside a certain well-defined point P. By contrast, we imagine that a 

charge e of finite and time-varying magnitude is concentrated at that point. Therefore, let e be an 

arbitrary function of time: 
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e = e (t) . 

 

That picture is physically meaningless since it contradicts the principle of the conservation of 

electricity. However, it has the advantage of the greatest-possible simplicity from the mathematical 

standpoint. As we will see below, we can easily construct the general solution to equation (17) by 

means of the corresponding special solution, and in that way, the principle of conservation of 

electricity will once more come into its own. 

 We then assume that the equation: 

 

– 2 + 
2

2 2

1

c t




 = 0            (23) 

 

is true in all of space, except at the point P  , where the right-hand side will become infinite. On 

the grounds of symmetry, the potential  must have the same value at the same time for all points 

that are at an equal distance from P  . In other words, one can make the Ansatz for  : 

 

 (r, t) =  (R, t) , 

 

where R means the distance from the reference point P in question to P   ( P P  = R = r – r; as 

usual, r and r are the radius vectors from P and P   relative to any fixed point O). From (18), Chap. 

III, the operation 2 will then reduce to 
2

2

1
( )

d
R

R dR
  such that equation (23) will assume the 

following form: 

− 
2 2

2 2 2

1 ( ) 1R

R R c t

  
+

 
 = 0 , 

 

or due to the independence of the two variables R and t with respect to each other: 

 

− 
2 2

2 2 2

( ) 1 ( )R R

R c t

  
+

 
 = 0 .          (23.a) 

 

We introduce the new variable  = R / c in place of R and denote the product R  by f. In that way, 

(23.a) can be written as follows: 
2 2

2 2

f f

t 

 
−

 
 = 0 .            (23.b) 

 

That equation will be satisfied when one replaces f with any function of the sum t +  or the 

difference t – . It will then follow that the most-general solution of (23.b) can be represented in 

the form: 

f (t, ) = f1 (t – ) + f2 (t + ) ,     (24) 
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in which f1 () and f2 () mean two arbitrary functions of the corresponding arguments. 

 A more rigorous proof of that assertion can be obtained by transforming (23.b) to the new 

variables: 

 = t –   and  = t +  . 

 

Due to the fact that t = 1
2

( + ) and  = 1
2

( − ) one will have: 

 






 = 

1 1

2 2t 

 
−

 
, 






 = 

1 1

2 2t 

 
+

 
, 

so 
2 2

2 2t 

 
−

 
 = 

t t 

     
− +  

     
 = 4

 

 

 
 , 

 

and as a result, from (23.b): 
2 f

 



 
 = 0 . 

 

The derivative f /  is then independent of , but it can be an entirely-arbitrary function of . 

Conversely, f /  is an arbitrary function of  in which  does not appear at all. As a result, the 

function f must be representable as the sum of two arbitrary functions of the individual variables 

 (, resp.). 

  We initially assume that f2 = 0. We will then get the following formula for the potential  (R, 

t): 

 = 1( / )f t R c

R

−
.            (24.a) 

 

In order to determine the function f1, we observe the fact that equation (23.a) will reduce to the 

equation for the ordinary Coulomb potential that was treated before in Chap. III for c = . One 

must then have: 

 = 
e

R
 

 

in this case, in which e means the quantity of the charge that is concentrated at the point P  . In the 

derivation of that formula in Chap. III, we assumed that e was a constant quantity. However, it is 

clear that it will still remain valid under the condition that c =  when the charge e changes 

arbitrarily with time. In that way, the value of the potential  at any time-point t must obviously 

be determined by the simultaneous value of the function e (t). 

 We then see that for c = , formula (24.a) must assume the form  (R, t) = e (t) / R. We then 

get from this that f1 (t – R / c) = e (t – R / c), and as a result: 
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 (R, t) = 
( / )e t R c

R

−
.          (25) 

 

That formula shows that the value of  at the points that are at a distance R from the charge e (i.e., 

they lie on a spherical surface with the radius R and a center at P  ) and at the moment t are not 

determined by the simultaneous magnitude of that charge, but by its magnitude at the previous 

moment t  = t – R / c. 

 We must the exhibit the fact that the effect of e at the point P   does not spread instantaneously 

through the surrounding spatial points, but with a certain delay that is directly proportional to its 

distance to P  . In other words, that effect propagates in empty space in the form of a spherical 

wave, just like the circular waves that are produced on the surface of water by a local perturbation, 

or even better, like the spherical sound waves in air. 

 The speed of propagation is obviously equal to c, i.e., the quantity c = 3  1010 cm/s, which we 

initially defined to be the ratio of the electromagnetic unit of current strength to the electrostatic 

one, and later (§ 6, Chap. III) to be the “critical speed.” We can then regard that critical speed as 

the speed of propagation of electrical effects in space. It should be recalled once more that it agrees 

precisely with the experimentally-measured speed of light. 

 For the reasons that were explained above, one refers to the potential that is determined by 

formula (25) as the delayed or retarded potential. 

 It should be pointed out that this formula is not a mathematically-necessary consequence of 

the original differential equation (23.a). One could just as well set f1 = 0 as f2 = 0 in the general 

solution of that equation (24), which would give the formula for  : 

 

 (R, t) = 
1

( / )e t R c
R

+ ,          (25.a) 

 

instead of (25). The most-general form of the solution (24) that is compatible with the physical 

constraints on our problem, i.e., the one that goes to the usual Coulomb potential  (R, t) = ( ) /e t R

when c = , is obviously a linear combination of (25) and (25.a): 

 

 (R, t) = 
1

[ ( / ) ( / )]e t R c e t R c
R

  − + + ,         (25.b) 

 

in which   and   are two numerical coefficients whose sum is equal to 1. One of those 

coefficients can then be chosen to be completely arbitrary. 

 However, one actually sets   = 1, and as a result  = 0, i.e., one drops the second particular 

solution (25.a), and indeed because the corresponding advanced potential seems to be physically 

meaningless. That is because equation (25.a) says that the effect that would be produced by the 

charge e at the point P at a moment t would be determined by the magnitude of that charge at a 

later moment t  = t + R / c. In other words, the effect that e produces must be combined with the 

corresponding point P   according to (25.a), instead of spreading away from it in the sense of 

formula (25). 
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 Such an “advanced” effect not only seems physically impossible, but also logically 

inconceivable since it would mean that the cause would follow after the effect, instead of preceding 

that effect, which would correspond to the usual conception of causality principle. 

 However, a simple argument will show that in reality the usual conception of things is illusory. 

In fact, from the standpoint of classical mechanics, which is connected with the picture of an 

“instantaneous” action-at-a-distance (i.e., instantaneous transfer of force), the acceleration of any 

material particle will depend upon the simultaneous positions of all other particles that produce 

the effect in question. The concept that the motion is delayed somewhat from the force is based 

upon the fact that we do not perceive the motion by the acceleration, but by the velocity, or rather 

the corresponding displacement. However, in order to notice a change in velocity or a change of 

place, one must wait during a certain time interval. 

 We then see that causa and effectum are considered to be simultaneous in classical mechanics. 

If that simultaneity were replaced by a delayed force effect, so the temporal unity of cause and 

effect would be perturbed, then it would not seem impossible to also assume that there would be 

an advanced force effect. Nonetheless, if there seem to exist definitive grounds for rejecting an 

advanced force effect then they are not of a logical nature, but of an empirical one: Namely, such 

an effect would be rejected by the well-known phenomena of the propagation of light (see below). 

 We must then throw out the solution (25.a) and express the effect that is produced by a charge 

that is at rest, but time-varying, in terms of the retarded potential (25). 

 The transition from that simple, but purely fictitious, case to the general case of an arbitrary 

distribution and current of electricity that is supposed to satisfy the conservation principle can now 

be easily completed. Due to the linearity of the general equation (16) relative to  and , one can 

represent  as the sum of the elementary potentials d that are generated by the infinitesimal 

charges de  = dV  that are concentrated in the individual volume elements dV  . Let r be the 

radius vector from dV   to any point from ( )P , and let r be the radius vector to the “reference 

point” P (for which  is to be determined). For finite magnitudes of P P  = R = | r – r | or (what 

amounts to the same thing) for infinitely-small dimensions of the volume element dV   in 

comparison to R, one can treat the charge de  as a point-charge (whose time variation is 

compensated for by the corresponding change in the charges of the neighboring volume element) 

and correspondingly set: 

d (r, t) = 
1

( , / )t R c dV
R

  −r , 

as in (25). It will then follow that: 

 (r, t) = 
1

( , / )t R c dV
R

  − r ,    (26) 

 

in which the integration extends over all of space, or really all points r in space that are “charged” 

at the corresponding “effective” time-point: 

 

t  = t – R / c .           (26.a) 
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 In the special case for which  is constant in time (electric charges at rest), (26) will reduce to 

the formula (17.a), Chap. III, for the ordinary Coulomb potential. 

 Formula (26) can be regarded as the solution to the differential equation (16). If follows from 

the formal identity of that equation with (17) that the solution to the latter must be obtained from 

(26) by replacing the scalar  with the vector j. The vector potential that is created by the electrical 

current that is determined by the function ( , )t  j r  is then expressed by the formula: 

 

A (r, t) = 
1

( , / )t R c dV
R

 − j r .    (27) 

 

Now, it is easy to see that the potential that is defined by (26) and (27) must satisfy the condition 

(15), as along as the corresponding condition (8) for  and j is fulfilled, i.e., the principle of the 

conservation of electricity. 

 That is because when one differentiates (26) with respect to c t then, since 
t




 = 

t




 ( t  = t – 

R / c), one will have: 

1

c t




 = 

1 1
( , / )t R c dV

R c t



 −

 r , 

 

and furthermore, with the abbreviation j = ( , )t j r : 

 

div A = div dV
R




j
 = 

1 1
grad div dV

R R

 
  + 

 
 j j . 

 

Therefore, according to formula (28.a) in the Introduction: 

 

div j = grad t
t






i
 = − 

1
grad R

c t





i
. 

 

We now replace the differentiation with respect to r with the corresponding differentiation with 

respect to the radius vector r, which plays the role of the independent variable in the foregoing 

integral. Due to the fact that  = −  (i.e., grad = − grad, etc.), that will give: 

 

− 
1

grad R
c t





i
 = + 

1
grad R

c t






i
 = − 

const.{div (div ) }t=
   −j j , 

 

where 
const.(div )t=

 j  corresponds to a fixed value, and as a result: 

 

div A = const.

1
div (div )t dV

R R
=

 
   − + 

 


j
j . 
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 Now, from Gauss’s formula, one has: 

 

div dV
R


 
j

 = 
1

nj dS
R

  . 

 

The vector j (or at least its normal component) must vanish on the surface S   that bounds the 

entire volume in which the electrical current is found (at the corresponding time). One must then 

have div dV
R


 
j

 = 0, and as a result: 

1

c t




 + div A = const.

1
(div )t

dV

c t R


=

  
 + 

 
 j  = 0 , 

from (8). 

 The integrals (26) and (27) determine the total effect that will be produced at the point 

considered in space and time r, t by all of the charges that are present in the surrounding space. 

The effect, which converges to P from all directions, can be pictured geometrically by a spherical 

surface that contracts to its center P with a velocity of c such that its radius R will be equal to zero 

at the instant t. Such a spherical surface that converges to a certain reference point corresponds to 

the diverging “spherical waves” that spread from any source point, i.e., any charged spatial point 

at the moment in question, with the same velocity c. 

 The integrals (26) and (27) are composed of the elementary contributions that are, so-to-speak, 

“grabbed” by the “sphere of action” of the corresponding volume element that converges to the 

reference point, divided by the respective radius of that sphere. 

 We consider a cone with an infinitely-small opening angle d  and its vertex at the reference 

point P. In the infinitely-small time interval between the moments t  = t – R / c and t dt +  = t – 

(R + dR) / c , the volume element dV = 
2R d dR  will be cut out of that cone by the sphere of 

action that converges to P. Formulas (26) and (27) can correspondingly be written in the form: 

 

0

0

( , / ) ,

( , / ) .

d t R c R dR

d t R c R dR

 





=  − 



=  −



 

 

r

A j r

    (27.a) 

 

 It should be pointed out that the formulas that were obtained will not yield a complete solution 

to the differential equations (16) and (17). They can be completed by adding any arbitrary solutions 

to the corresponding homogeneous equations: 

 
2

2

2 2

1

c t





 −


 = 0 , 

2
2

2 2

1

c t


 −



A
A  = 0 
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that satisfy the condition (15). However, such solutions can always be interpreted as retarded 

potentials that are required by the infinitely-distant electrical charges. Therefore, if the functions 

( , )t  r  and ( , )t j r  are assumed to be known for all of space (including the points at infinity) and 

for all of time from –  to +  then one can consider the corresponding solutions to (26) and (27) 

(which consider those space and time points at infinity) to be complete. We will treat that question 

in detail below. 

 

 

§ 6. – The electromagnetic field of an elementary oscillating dipole (oscillator). 

 

 If the polarization vector ( , )t P r  is known for various points in space and time then one can 

employ the polarization potential Z that was given by the differential equation (22) for the 

determination of the electromagnetic field. The integral expression for that potential is obviously 

obtained from formula (27) by replacing the current density ( , )t j r  with the vector ( , )t P r . One 

will then have: 

Z (r, t) = 
( , )t

dV
R

 


P r
,           (28) 

 

in which t  means the “effective time,” as before. 

 We now consider the simplest case of an elementary (mathematical) dipole at rest with a time-

varying electric moment. Obviously, that moment cannot increase or decrease monotonically, but 

must oscillate about some mean value (otherwise the dipole could not be elementary), i.e., it must 

continue to have a very small length. For that reason, we shall call such a dipole an oscillator. Any 

neutral electric system of very small linear dimensions whose first-order electric moment is time-

varying (e.g., an atom or a molecule) can be treated as an elementary oscillator in the first 

approximation. 

 If we imagine that the oscillator is concentrated at a fixed spatial point P   and we denote its 

moment as a function of time by p (t) then from (28), and due to the fact that ( , )t dV  P r  = 

( )tp : 

Z (r, t) = 
( )t

R

p
     (28.a) 

[cf., (32.b), Chap. III]. 

 In order to calculate the potentials  and A using (20) and (21), we observe the following 

formulas, which relate to the differentiation of the vector p = ( )tp , as well as any other vectorial 

function of the argument t  = t – R / c [cf., Introduction (28) – (28.c)]: 

 

t





p
 = 

d t

dt t

 


 

p
 = 

d

dt





p
, 

 

div p = grad
d

t
dt


 



p
, rot p = grad

d
t

dt






p
, 
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(k grad) p = ( grad )
d

t
dt






p
k , 

in which k is an arbitrary vector, and: 

 

grad t  = − grad 
R

c
 = − 

1

c R

R
 = − 0

c

R
. 

 

By means of those formulas, and with the usual notation for the derivative of any function with 

respect to time t , we will get: 

( )d t

dt





F
 = ( )tF  = F , 

 

 = − div 
R

p
 = − 

1 1
grad div 

R R
 −p p , 

i.e.: 

 = 0 0

2

R R

R c R

 
+

p p
      (29) 

and 

A = 
c R

p
.             (29.a) 

 

 In the special case p = p = const., (29) reduces to the known expression for the electric potential 

of an elementary dipole. Formula (29.a) corresponds to the previously-exhibited formula (22), 

Chap. III, for the vector potential of a moving point charge, with the (very essential) difference 

that (29.a) does not represent an instantaneous action, but a retarded one. 

 Moreover, the formula H = rot A gives: 

 

H = rot
c R

p
 = 

1 1 1
grad grad

c R c R
  +p p  = 

1 1
grad grad t

c R c R
   + p p , 

in which: 

p  = 
2

2

d

dt





p
, 

i.e.: 

H = 0 0

2 2c R c R

  
+

p R p R
.          (30) 

 

In order to calculate the electric field strength E = − grad  − 
1

c t





A
, we replace the unit vector R0 

in (29) with R / R. One will then have: 
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 grad  = 
2 2

grad grad
R c R

 
+

p R p R
  

 

= 0 02 4 2 3

1 ( ) 1 2( )
grad ( ) 3 grad + grad ( ) grad

R R c R c R

 
 − −

p R p R
p R R p R R . 

 

Moreover, we have [Introduction (27)]: 

 

 grad (p R) = (p grad) R + p  rot R + (R grad) p + R  rot p 

 = ( grad ) (grad )t t    + +  p R p R p  = 0( )
R R

c c


  − −  p p R p , 

or since: 

0( ) R R p  = 0 0( ) ( ) −R R p p RR  and R R0 = R , 

we will have: 

grad (p R) = 0 ( )
c

 −
R

p Rp . 

 

If we replace the vector p with p  here then we will have: 

 

grad ( p  R) = 0 ( )
c

 −
R

p Rp . 

We will then get: 

 

grad  = 0 0 0 0

3 4 2 3

1 1
( ) 3( ) ( ) 2 ( )

R c R c R c c R

   
     − − + − −   

   

R R R R
p Rp p R p Rp p R  

 

 =     0
0 0 0 0 03 2 2

1 1
3 ( ) 3 ( ) ( )

R c R c R
    − + − −

R
p R p R p R R p R p , 

and as a result: 

 

E =      0 0 0 0 0 03 2 2

1 1 1
3 ( ) 3 ( ) ( )

R c R c R
     − + − + −R R p p R R p p R R p p .  (30.a) 

 

The right-hand side of that formula reduces to the first term when p = const., which agrees with 

(26), Chap. III. We would like to denote the first term by E(0). The second term: 

 

E(1) =  0 02

1
3 ( )

c R
 −R R p p  
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represents an electric field of the same type as the first one, but in which the field strength does 

not drop off with the third power of distance, but with its square, and the role of the electric moment 

will be played by its time derivative, i.e., the corresponding impulse. 

 The third term: 

E(2) =  0 02

1
( )

c R
 −R R p p  

 

corresponds to an electric field that is inversely proportional to the first power of distance, and it 

will be required by the second derivative of the moment with respect to time, i.e., the acceleration 

of the oscillating charges in the dipole. 

 The vector 0 0( )R R p  obviously represents the longitudinal component of p , i.e., the 

component of the vector p  in the direction of the radius vector P P  = R. It will then follow that 

the difference p  − 0 0( )R R p  is equal to the transversal component of p , or in other words, the 

projection of p  onto the plane perpendicular to R. 

 E(2) can be correspondingly written in the form: 

 

E(2) = 0 0

2

( )

c R

 R R p
.           (31) 

(Recall that R0 R0 = 1.) 

 The first term in formula (30): 

H(1) = 0

2c R

p R
 

 

corresponds to the Biot-Savart law, with the aforementioned correction for the retardation of the 

electromagnetic action-at-a-distance. The second term: 

 

H(2) = 0

2c R

p R
      (32) 

 

represents a magnetic field of the same type as H(1), with the differences that the electric impulse 

p  is replaced with the “acceleration” p , and the second power of the distance is replaced with 

the first, just as one had with E(2). 
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 Formulas (31) and (32) show that the vectors E(2) and H(2) 

are perpendicular to each other and to the radius vector R. In 

that way, E(2) lies in the “meridian plane” that is laid through 

R and p , while H(2) is perpendicular to it. The lines of 

electric force are then the meridian circles and the magnetic 

lines are the great circles of a spherical surface that includes 

the reference point in question and whose polar axis M N   

points in the same direction as the “acceleration vector” p  

at the corresponding effective moment (Fig. 30). 

 Moreover, one will find from (31) and (32) that the 

vectors E(2) and H(2) are coupled with each other by the 

relations: 

 E(2) = H(2)  R0 , H(2) = R0  E(2) .   (32.a) 

 

One sees from this that they have the same magnitude (i.e., | E(2) | = | H(2) |), and they are oriented 

in such a way that the vector product E(2)   H(2) will fall in the direction of the radius vector R. 

 It should be noted that the electric and magnetic lines of force on a spherical surface with a 

different radius R1 at the same moment t can point in very different directions according to the 

direction of the “acceleration vector” at the corresponding effective moment 1t   = t – R1 / c. 

 We can get the common magnitude of E(2) and H(2) from (31) and (32): 

 

(2)E  = (2)H  = 
2

|
sin

c R


p |
,            (32.b) 

 

if the angle between the vectors R and p  is denoted by . We see from this that (2)E  and (2)H  

vanish in the direction of the “polar axis,” i.e., at the “poles” M   and N , while they achieve their 

maximum magnitudes at the equator. 

 In the close vicinity of the oscillator, the strength of the electric field E(0) must generally exceed 

that of the other two (E(1) and E(2)) by a large amount. However, since that field (or more precisely, 

that part of the electric field) drops off rapidly with distance, the field E(1) and the Biot-Savart field 

H(1) that is coupled with it, which are inversely proportional to the second power of distance, must 

dominate for intermediate distances. 

 Finally, at sufficiently-large distances, the electromagnetic fields E(1), H(1) that were just 

examined must take the foreground, such that the other two can be left out of consideration 

completely in practice. 

 In summary, we get the following picture for the spreading of the effect of the oscillator in 

question. At each moment, it defines a new infinitesimal spherical surface of action, or “wave,” 

around the point P   that propagates uniformly in all directions with the speed c such that its radius 

 

H(2) 

E(2) 

 

R 

P (t) 

 

Figure 30. 
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will increase by c in a unit time. At the onset, the structure of the electromagnetic field on each 

such spherical surface will change gradually, but the structure that is suggested in Fig. 30 will soon 

be achieved, and after that, it will remain unchanged, except that the electric and magnetic field 

strengths will drop off in inverse proportion to the radius as the sphere expands further. 

 

 

§ 7. – Electromagnetic waves and the essence of light. 

 

 We will now assume that the oscillator performs purely sinusoidal or “harmonic” oscillations 

with a period of . The electric and magnetic field strengths at each fixed point in space must then 

oscillate with the same period. That temporal periodicity in the oscillations at the same spatial 

point corresponds to a spatial periodicity along each ray that is drawn through P   at the same 

moment. Indeed, the electric (magnetic, resp.) field strengths must always have the same phase at 

any points on that ray that lie at a distance of: 

 

 = c             (33) 

from each other at each point. 

 If one represents the electric field strength at each point graphically by means of a line segment 

that is parallel and proportional to it then in the case where the oscillator oscillates linearly and 

parallel to a certain line MN, one will get the picture that is suggested in Fig. 31, i.e., a curve that 

differs from an ordinary sinusoid only insofar as the amplitude of oscillation will decrease slowly 

along the ray. 

 
 If the oscillator performs an oscillation of elliptical form then one will get a helical curve of 

constant pitch  and slowly-decreasing circumference in the individual windings instead of the 

sinusoid that was suggested above. 

 Due to the analogy between the process that was described with the known wavelike 

propagation of mechanical oscillations in material media (or on their separation surfaces), one 

cares to speak of “waves,” and indeed electromagnetic waves here, as well. The quantity  is called 

the wavelength of the electromagnetic oscillations in question. In that way, one refers to the latter 

as linearly, circularly, or elliptically “polarized” according to the form of the curve that is described 

 

N 
N1 

 

M1 
M 

Figure 31. 
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at the point in question by the line segment that represents the electric vector. The type of 

polarization will obviously remain unchanged for all points on the same ray. 

 It should be remarked that the aforementioned analogy has only an entirely-formal nature. 

Physically, the process of propagation of electromagnetic effects or “waves” in empty space has 

absolutely nothing to do with the propagation of elastic waves in material bodies. In the latter case, 

one deals with a process that is based upon the action of neighboring atoms (or molecules) on each 

other that makes an oscillatory motion take place at each location. By contrast, the propagation of 

electromagnetic waves means nothing but a retarded action-at-a-distance of oscillators on the 

surrounding particles, which is an action-at-a-distance that can be regarded as a “motion” only 

when a particle or “resonator” that is capable of oscillating actually exists at the spatial point in 

question. The electromagnetic oscillations are not at all oscillatory motions. They must be regarded 

as oscillations of force whose wave-like character arises from the finite speed of propagation of 

the action that emanates from the oscillator, combined with the periodic character of the motion of 

the corresponding electric charges. One must sharply distinguish between that oscillatory motion 

of charged material particles that the electromagnetic field generates (viz., “electronic 

oscillations”) and the oscillations of the field strengths in the surrounding space (“force 

oscillations”). Namely, they have the same relationship to each other as the cause does to the effect. 

 The force oscillations that are generated by certain “primary” electronic oscillations in a certain 

particle can produce new “secondary” electronic oscillations in other particles in their own right, 

as long as the latter are found in their neighborhood and are capable of oscillation. Those secondary 

electronic oscillations must generate new secondary force oscillations with the same period and 

wavelength as the ones that the primary oscillations generate, and so on. One cares to refer to that 

phenomenon, i.e., the appearance of second electromagnetic waves, as the “scattering” or 

“reflection” of the primary waves. 

 As was suggested before, the theoretically-determined (as the ratio of the electromagnetic unit 

of charge to the electrostatic one) speed of propagation of electromagnetic effects coincides 

precisely with the empirically-measured speed of light. That single fact already sufficed to define 

the foundation of the electromagnetic theory of light, i.e., the theory that light waves could be 

regarded as electromagnetic waves of the corresponding (experimentally determined) 

wavelengths. That concept now seems to be ensured completely by the analysis of the 

electromagnetic field of an elementary oscillator that was carried out above. 

 That is because the essential feature of the oscillations of light is known to consist of their 

transversality (which follows experimentally from polarization phenomena). However, we have 

just seen that the electric and magnetic field strengths at a sufficiently-large distance from the 

oscillator are perpendicular to the corresponding ray. It should be pointed out that this 

transversality of electromagnetic force oscillations has a double nature, to some degree. That is 

because it is valid not only in regard to the direction of the field strengths relative to the ray, but 

also in the sense that those field strengths depend upon only the projection of the corresponding 

electron oscillations onto the plane that is perpendicular to that ray (e.g., onto the line M1 N1 in the 

case of Fig. 31). 

 Moreover, since the vectors E(2) and E(2)  are inversely proportional to the first power of the 

distance R, the energy of the electromagnetic force oscillations, which is proportional to the square 

of those vectors (or their product), as we will show below, drops off with the square of R, in 



§ 7. – Electromagnetic waves and the essence of light. 157 
 

agreement with the empirical law for the dependency of the light intensity on the distance from 

the corresponding point to the light source. 

 As far as the light source is concerned, it can obviously be regarded as a system of elementary 

electric oscillators, which are identical to the elementary light sources, viz., the atoms and 

molecules of the body in question. That offers the simplest proof of the electric nature of matter, 

i.e., the fact that the smallest particles of ordinary neutral matter (i.e., the atoms) are composed of 

even smaller particles that carry fixed electric charges (and for that reason, are called electrons). 

That is because everything that is visible, whether it be “primary” or “secondary,” upon being 

illuminated by foreign light must consist of electrified particles that are capable of oscillation. The 

electric nature of material bodies then follows immediately from its visibility. 

 Visible light is known to occupy only a very narrow band of wavelengths that lie between  = 

7.5  10−5 cm (red light) and  = 4  10−5 cm (violet light). The “invisible light rays’ lie outside of 

that spectral region, and indeed on the side of the shorter wavelengths, one has the ultraviolet and 

Röntgen rays ( down to 10−9 cm), and on the other side one has the infrared rays (up to about  

= 10−2 cm) and the long-wave “electrical rays” that are connected with wireless telegraphy and 

telephony. With the latter, for which the wavelengths can reach up to several hundred meters, one 

ordinarily speaks of waves, and not of rays. The rays can be defined only formally as the lines of 

propagation of the waves. By contrast, the concept of the ray takes on a so-to-speak physical reality 

in the realm of shorter wavelengths since it would then be possible to screen out a very-thin, 

almost-linear bundle of rays from an arbitrarily-wide wave surface. However, the width of such a 

ray bundle will always be large in comparison to the wavelength, as a more precise examination 

of that question will show. 

 

 

§ 8. – The transition from spherical to plane waves. 

 

 The electric moment of a harmonically-oscillating oscillator is expressed as a function of time 

by the real part of the complex quantity: 

 

p (t) = 
0

i te p .      (34) 

In that expression, one has: 

 = 
2


 = 2  ,     (34.a) 

 

in which  means the frequency of the oscillations, i.e., their number per unit time. The amplitude 

p0 must generally be regarded as a complex vector, i.e., it is represented in the form: 

 

p0 = a – i b ,      (34.b) 

 

in which a and b are two ordinary (real) vectors. The real part of (34) then reads, when written out 

in detail (since 
i te 

= cos  t + i sin  t): 
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p (t) = a cos  t + b sin  t .     (34.c) 

 

Each term on the right-hand side represents a linear harmonic oscillation with an amplitude of a 

(b, resp.) and the same frequency . It is known that by combining such oscillations, one will get 

elliptical oscillations. If one considers p to be the radius vector of a moving particle, e.g., the 

positive end of a dipole with charge 1, while the negative end might be fixed, then from (34.c), 

that particle must move on an ellipse with conjugate radii a and b. (In particular, the latter can 

coincide with the semi-axes of the ellipse.) 

 Upon differentiating (34) twice, we will get: 

 

( )tp  = − 2

0

i te  p  = − 2 p , 

 

and as a result, from (31) and (32): 

 
2

(2) ( / )

0 0 0 2

2
(2) ( / )

0 0 2

( ) ,

( ) .

i t R c

i t R c

e
c R

e
c R









−

−


= −   



= − 


E R R p

H p R

          (35) 

The quantity in that: 

 (t – R / c) = 2
t R


 

 
− 

 
     (36) 

 

means that phase of the electromagnetic oscillations at a distance R from the oscillator. We then 

see that the wavelength c  =  plays the same role in relation to R that the period  plays relative 

to time t. 

 As far as the type (“polarization”) of the force oscillations considered is concerned, it will be 

different for different directions of R. For example, in the directions that lie in the plane of 

oscillation of p, the force oscillations will be linearly polarized. In general, they reproduce the 

projection of p onto the plane that is perpendicular to R. Note that the electric field strengths E 

at each moment t have the same direction as the transverse projection of p at the corresponding 

effective moment t – R / c. 

 The fields E(1), H(1), and E(0) oscillate at each location in a manner that is similar to E(2) and 

H(2), so their phase is also given by (36). It will follow from (30.a), (30), and (34) that their 

amplitudes have roughly the mutual ratios: 

 

(0) (1) (2): :E E E   
2

2 2 2 2

1
: :

R c R c R

 
,  

(1) (2):H H   
2

2 2 2
:

c R c R

 
, 
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i.e., since 
c


 = 

2


  

1


: 

 

(0) (1) (2): :E E E  = 
2

2
1: :

R R

 
,  

(1) (2):H H   
2

2
:

R R

 
. 

 

One must observe in all of this that one has (2)E = (2)H  and (1)E   (1)H . 

 We then see that in the case of a harmonically-oscillating oscillator, the wavelength can be 

used as a unit of length in order to determine the relative strengths of the three sub-fields, which 

depend upon p, p , and p . Indeed, for “small” distances, i.e., ones that are small compared to , 

the first field is the strongest. By contrast, for “large” distances (which are, in turn, large compared 

to the wavelength), one needs to consider only the fields E(2), H(2). That relationship can be 

illustrated by the fact that the neighboring molecules of a fixed or fluid body attract each other 

very powerfully, while they exert only a slight effect on the distant molecules of other bodies. The 

forces of that type (viz., the so-called cohesive forces) originate in the field E(0) or the “static” field 

of the electric moments of order two and higher. By contrast, the forces of the second type must 

correspond to the fields E(2), H(2). (Recall that the wavelength of the visible light amounts to 

around 10−5 cm, which is then a thousand times bigger than the molecular distances, but very small 

compared to the usual distance between different “molar” bodies.) 

 One cares to refer to the spatial region in which the electromagnetic field reduces to the “light 

field” E(2), H(2) in practice as the wave zone of the oscillators in question. That wave zone thus 

begins at a certain distance from the oscillator that is sufficiently large relative to the wavelength 

and extends to infinity. By contrast, the “electrostatic” field E(0) originates in the immediate 

neighborhood of the oscillator. In practice, that field is independent of the finite speed of 

propagation of electromagnetic effects (i.e., no considerable changes will be required when one 

sets c = ). 

 We now imagine that the oscillator is found at a finitely-distant point P  . In that case, we can 

obviously treat the spherical waves that it emanates into the spatial region that is considered to 

consist of finite points as planar and treat the corresponding radii (i.e., the light rays that emanate 

from P  ) as a family of mutually-parallel lines whose direction might be denoted by the constant 

unit vector n. (That vector will now enter in place of the unit vector R0.) We will then have: 

 

R = R R0 = (r – r) n = r n – r n = r n + const., 

 

in which r means the radius vector to the reference point P in question relative to any point O that 

lies at a finite distance, as it did before. 

 The general expression for the polarization potential (28.a) assumes the form: 
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Z (r, t) = ( / )0 i t R ce
R

 −p
         (37) 

 

in the case of a harmonic oscillator. The distance R appears twice in that expression, and indeed, 

the first time, it appears in the phase factor, while the second time, it appears in the amplitude 

factor. As far as the phase factor is concerned, it can be represented in the form: 

 

const.  ( / )i t ce  −rn  

 

in the case considered (R → ), and it depends upon the radius vector r in about the same way as 

if the oscillator were at a finite distance. However, one can treat the amplitude factor as a quantity 

that is constant in practice since for a finite value of p0 / R, the difference  (p0 / R) at any point 

(e.g., O) must be infinitely small for two distinct finite points [since  (p0 / R) = − 2

0( / )R R p ]. 

 The formula (37) then reduces to: 

 

Z (r, t) = ( )

0

i te  −krZ ,     (37.a) 

where: 

k = 
c


n  = 

2


n             (37.b) 

 

is a vector that determines the direction of propagation of the waves, and at the same time, their 

lengths. The constant vector Z0 represents the (complex) amplitude of the polarization potential. 

 One can easily convince oneself that the formula (37.a) that is obtained from the line of 

reasoning above actually satisfies the differential equation (22). In our case, that equation reduces 

to the corresponding homogeneous equation: 

 
2

2

2 2

1

c t


 −



Z
Z  = 0 . 

 

 If one sets 
( )i te  −kr

= , to abbreviate, then from (37.a), one will have: 

 
2 Z  = 2

0  Z  = Z0 div grad  , 

or since: 

grad  =  grad i ( t – k r) = − i k  

and 

div k  = k  grad  , 

 
2 Z  = 2

0 ( )i k− Z  = − 
2k Z0  = − 

2k Z . 

On the other hand, we have: 
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2

2 2

1

c t





Z
 = 

2

0 2

( )i

c


Z  = − 

2

c

 
 
 

Z , 

i.e., from (37.b): 
2

2 2

1

c t





Z
 = 2 Z . 

 

We will get the following expressions for the potentials A,  and the field strengths H, E from 

(37.a): 

  A = 
1

c t





Z
 = i

c


Z  = i k Z , 

   = − div Z = − Z0 grad  = i k Z = k A , 

  H = rot A = i k rot (Z0 ) = i k grad   Z0 = k  k  Z0 , 

  E = − grad  − 
1

c t





A
= − i (k  Z) grad  – (i k)2 Z 

  = − (k Z0)  + 
2k Z = − (k Z) k + 

2k Z , 

i.e.: 
2

2

( ) ,

.

k

k

=  


=  

E n Z n

H n Z
    (37.c) 

 

Those formulas show that the vectors E and H are perpendicular to the vector n, i.e., to the 

direction of propagation of the waves. Moreover, they are mutually perpendicular and have 

identical magnitudes. Those relations are expressed by the following relations, which are easily 

obtained from (37.c) [cf., (32.a)]: 

H = n  E , E = H  n . 

 

We then see that in the case considered (infinitely-distant harmonic oscillator, plane waves), the 

fields of type E(0), E(1), and H(1) and  will vanish. The electromagnetic field reduces to the type 

E(2), H(2) that characterizes the wave zone, so the amplitude of the force oscillations will be 

independent of the distance (which was obviously to be expected). 

 Those results can be easily generalized to plane waves of arbitrary form (so they do not need 

to be periodic). For a non-harmonic oscillator at infinity, one must replace (37.a) with the formula: 

 

Z (r, t) = t
c

 
− 

 

nr
Z  ,          (38) 

 



162 Chapter Five – The General Laws of the Electromagnetic Field. 
 

in which ( )tZ  is a function of the argument t  = t – 
1

c
(n r), i.e., the effective time, that is 

determined by the type of oscillation of the oscillator from the outset, but otherwise entirely 

arbitrary. 

 That formula is implied immediately by (28.a) when R →  and represents the simplest 

solution to the equation: 

2 Z  −
2

2 2

1

c t





Z
 = 0     (38.a) 

 

that includes no restriction in regard to the dependency of the electromagnetic field on time. 

 Due to the linear character of equation (38.a), its most-general solution can be represented as 

a sum of mutually-independent solutions of the simplest harmonic type (37.a). In that way, the 

“phase vector” k might assume arbitrary values (and directions), just like the amplitude Z0 (under 

the condition that 
2 2/ c  = 2k ). If a solution of (38.a) is sought in a finite spatial region that is 

subject to certain boundary conditions on the bounding surface then only certain discrete values 

(and directions) of k will be compatible with those conditions, in general. The corresponding 

amplitudes also remain completely arbitrary here. 

 In the first case, one will get an integral for Z of the form: 

 

Z (r, t) = 
( ) 2

0 ( ) i ck te k dk d− 
krZ k ,        (38.a) 

 

in which d  means the infinitesimal solid angle (the “direction interval” of the vector k), and 

Z0(k) means an arbitrary vector function of k. Since the “proper values” of k that satisfy the 

conditions of the problem define a triply-infinite countable set in the second case, one will get a 

triply-infinite trigonometric series for Z. However, it should be emphasized once more that such 

solutions to the homogeneous equation (38.a) can always be interpreted as the potentials of electric 

charges (in particular, dipoles) that lie outside of the spatial region in question (at finite or infinite 

points). Therefore, there is no essential difference between the case of time-constant 

electromagnetic fields that was treated in Chap. IV and the one here in that regard. 

 

 

§ 9. – Huyghens’s principle. 

 

 Just as in the aforementioned special case, one can further reduce the time-varying field that 

prevails inside (or outside) a closed surface S and satisfies equation (36.a) in the corresponding 

region, i.e., it is generated by external (internal, resp.) electric charges, to a time-varying 

distribution of electricity on the boundary surface S itself. For the sake of simplicity, in what 

follows, we would not like to consider the polarization potential, but the scalar potential . We 

then assume that the equation: 
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2
2

2 2

1

c t





 −


 = 0 

 

is fulfilled inside of S, and we would like to try to represent the value of the potential    for any 

(internal) point P  by the boundary values of  on S (and possibly the corresponding boundary 

values of ), which are regarded as known functions of time. 

 That problem will be solved by means of the general equation (21) in the previous chapter, and 

indeed the simplest way to solve it is to make the previous Ansatz: 

 

 = 
1

R
 

 

for the auxiliary function  (the notations are the same as they were at the time). However, in so 

doing, one must not consider the potential  at each point P at the same moment t when its value 

   at P  is sought, but at the corresponding “effective” moment: 

 

t  = t – R / c , 

 

where R means the distance P P
. We set: 

 

  = ( , )t r  . 

 

Formula (21) can then be written as follows: 

 

1 1
d

R R
  

 
  −   

 
  = 

21 1 1
m m dS dV

R R R
    

   −  −  
 

  .      (39) 

 

Along with the operation , which means a complete differentiation with respect to the argument 

r, we now introduce the corresponding operation , which should mean differentiation with 

respect to r at fixed t . One will then have: 

 

  = t
t





   + 


     (39.a) 

and 

2  = div   = div ( ) ( ) t
t

 


    +  


, 

i.e., from the foregoing formula: 

 

2  = 
2

2 2

2
div ( )t t t

t t t

 
 

    
        +  +   +  

    
. 



164 Chapter Five – The General Laws of the Electromagnetic Field. 
 

If one further considers the formulas: 

 

t  = − 
1

R
c

  = − 
1

R
c

 ,  (R)2 = 1, 

 

div t
t

 
  

 
 = divt t

t t

   
     + 

  
 = − 

1 1 1
divR R R

c t c t c t

      
  −  − 

    
, 

and 

div R = div 
R

R
 = 

2

R
 

then one will have: 

2  = 
2

2

2 2

2 1 1
2 R

R c t t c t

  


    
    − −   +

    
, 

 

or finally, since   satisfies the equation: 

 
2

2

2 2

1

c t





  −


 = 0 , 

one will have: 

2  = 
2

2 2

1 1 1
2 R

R c t t c t

       
 − −   + 

     
.      (39.b) 

 

Obviously, one can replace partial differentiation with respect to t  with partial differentiation with 

respect to R, which will make: 

 

− 
1

c t




 = 

R




 and 

2

2 2

1

c t




 = 

2

2R




. 

 

We further introduce the total differentiation with respect to R according to the following formula: 

 

d

dR


 = R

R





  +  


.            (40) 

 

Therefore, 
d

dR


 dR will mean the change in   along an infinitely-small line segment dR of the 

line P P  for fixed values in the time t. We now write (39.b) in the form: 

 

2  = 
2

2

1
2 R

R R R t

       
 + +   

   
. 
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However, from (40), when   is replaced with / R  , we will have: 

 
2

2
R

R R

   
 +  

 
 = 

d

dR R




. 

As a result, one will have: 

2  = 
2 d

R
R dR R

 
 

 
 .          (40.a) 

 

Now, the volume integral that appears in (39): 

 

21
dV

R
   = 

2

1
2

d
R dV

R dR R

  
 

 
  

 

can be transformed into a surface integral over S and . If one sets dV 
 = 2R dR d , in which d 

means an infinitely-small solid angle (with its vertex at P ), then one will have: 

 

2

1 d
R dV

R dR R

  
 

 
  = 

2

1

R

R

d
d R dR

dR R

 
  

 
   = 

2 1

d R R
R R

       
 −    

     
 . 

 

The indices 1 and 2 in that refer to the boundary surfaces  (S, resp.). One now introduces the 

surface elements d  and dS that belong to the angle element d . Obviously, since cos (n R2) = 

(n R)2 and cos (n R1) = (n R)1, one will have the relations: 

 
2

2R d = dS  (n R)2 ,  
2

1R d = d   ( R)1 . 

One will then have: 

 

2

1 d
R dV

R dR R

  
 

 
  = 

1 1
nR dS R d

R R R R


   
 −  

   , 

 

and as a result, from (39): 

 

1 2 1
R d

R R R R
  


 

 
  −  −   

 
  = 

1 2 1
n n nR dS

R R R R


 

 
  −  −  

 
  . 

 

Due to (39.a), when one recalls that t
t





 = R

R





, and: 

 

− 
1 1

R
R R R





 − 


 = − 

2

1 1
R

R R R




 
−  

 
 = − R

R R

  
 

  
, 
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that formula can be written in the form: 

 

1
R d

R R R
 




   
  −    

   
  = 

1
n nR dS

R R R




   
   −   

   
 .  (40.b) 

 

 We now imagine that the inner surface  contracts to the point P . Just as in the previously-

considered case of a time-constant field (cf., § 6, Chap. IV): 

 

0

1
lim d

R
 

→
    = 0 , lim R d

R R


  
  

  
  = −

2

nR
d

R
 

  = − 4   , 

 

and ultimately: 

   = 
4 4

n
ndS R dS

R R R

 

 

    
−  

  
  .         (41) 

 

That formula is the desired generalization of formula (21.b), Chap. IV. It represents the potential 

at the point P  as the sum of two components, the first of which depends upon a surface charge 

with the time-varying density 
4

n 



 
, while the second one corresponds to a double layer. It is easy 

for one to further see that the right-hand side of (41) will vanish for a point P  that lies outside of 

S, just as in the static case. 

 If one considers the field outside of S that is generated by internal charges then if one is to 

calculate the potential, one must introduce a surface S   that envelops the two surfaces S and  and 

which one can extend to infinity. If one can assume that only the static field prevails at infinitely-

distant points (i.e., that the oscillators that are found inside of S have begun to oscillate at only a 

finite time before t) then the integral that extends over S   will drop out, and one can again get the 

formula (41), but n shall now mean the interior normal to S, and not the exterior one. 

 By a suitable choice of the auxiliary function , we can represent the potential    in terms of 

either just the boundary values of  or just the boundary values of n  , just as in the static case. 

However, we would not like to go further into that topic here. 

 One refers to the possibility of representing the electromagnetic potential inside of an empty 

spatial region by the boundary values of that potential or the corresponding field strengths on the 

bounding surface of the region (internally or externally) as Huyghens’s principle. Originally, that 

principle was conceived in a somewhat-narrower and more physically intuitive context since one 

asserted, with Huyghens, that every surface element of a light wave can be treated as a “virtual 

light wave,” i.e., as the center of new elementary spherical waves. If one then knows the form of 

an advancing wave at any moment then one can use those elementary spherical waves to construct 

the resultant form of the wave for any later moment without having to worry about what the actual 

source of the “primary” light wave was. As is known, that is the simplest way to solve problems 

in reflection, refraction, and diffraction of light in wave optics, and with almost no calculation. 
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However, a complete solution to that problem that considers not only the form of the wave front, 

but also the intensities and the polarization of the force oscillations, would require complicated 

methods that we will learn about later (Volume II). 

 

 

§ 10. – The electromagnetic fields of higher-order oscillators (multipoles). 

 

 The results that were obtained in § 7 concerning the electromagnetic field of an oscillating 

dipole can be easily generalized to higher-order multipoles with time-varying moments. 

 We initially consider the simplest case of purely-harmonic (i.e., sinusoidal) oscillations and 

imagine a continuous distribution of electricity inside of a very-small spatial region that might be 

bounded by a spherical surface K of radius a, instead of isolated oscillating point-charges. We shall 

then assume that at each point Q of that spatial region, the charge and current densities can be 

represented as functions of time by the formulas: 

 

 (r, t) = 
0( ) i te  r , j (r, t) = 

0( ) i te j r ,    (42) 

 

in which the corresponding “amplitudes” 0 and j0 are given functions of position that must be 

coupled with each other by the equation 
1

c t




 + div j = 0, according to the principle of 

conservation of electricity, i.e.: 

i k 0 + div j0 = 0     (42.a) 

 

in the present case. The k in that equation means: 

 

k = 
c


 = 

2

c




 = 

2


,     (42.b) 

 

which is the magnitude of the phase vector that was introduced already in § 8. We assume that the 

spherical radius a, i.e., the linear dimensions of our system are small compared to the wavelength. 

 Under those assumptions, the scalar potential of S at any exterior point P can be developed in 

a convergent series that is entirely analogous to the series (6) – (7) of § 3, Chap. IV, and can be 

regarded as a direct generalization of it. From (26) and (42), that potential can be expressed by the 

formula: 

 (r, t) = ( )0( ) i t k Re dV
R

 −


r
. 

If one sets: 

 (r, t) = 
0( ) i te  r ,       (43) 

 

corresponding to (42), then one will have: 
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0 (r) = 0 ( ) dV   r ,        (43.a) 

 

in which the function  is defined by: 

 = 
i k Re

R

−

.           (43.b) 

 

 Formula (43.a) has the same form as the usual formula for the scalar potential of a static 

distribution of charge with the time-constant volume density 0 , except that the reciprocal radius 

1 / R is replaced by the more-general function . (For infinitely-slow oscillations, i.e., for k = 0, 

 reduces to 1 / R.) If one now develops that function for an arbitrary point Q that lies inside of K 

in powers of its coordinates 1  , 2  , 3   relative to the center of the sphere O then one will have: 

 

0 = (0) (1) (2) ( )

0 0 0 0

n   + + + + ,    (44) 

 

just like in § 3, Chap. IV, where: 

 

(0)

0  = 0e  , (1)

0  = − 0i

i i

e
x





 , (2)

0  = 
2

1
02 ik

i k i k

e
x x




 
 , … (44.a) 

 

The  in that means the value of  for the point O, i.e., (since OP = r): 

 

 = 
i k re

r

−

,          (44.b) 

while the quantities: 

 

0e  = 0 dV  ,  0ie  = 0 i dV   , 0ike  = 0 i k dV     , … (44.c) 

 

can be defined to be the amplitudes of the electric moments of the system in question. 

 The general term of (44) can also be represented in the form: 

 

 ( )

0

n  = 
31 2

1 2 3

0 1 2 3

1 2 3 1 2 3

( , , )
( 1)

! ! !

n
n

nn n
n n n n

e n n n

n n n x x x



+ + =


−

  
 ,          (45) 

with: 

e0 (n1, n2, n3) = 31 2

0 1 2 3

nn n
dV       .         (45.a) 

 

As a special case of that, (45) will imply the expression: 

 

( )

0

n  = 
( )

0

( 1)

!

n
np

n

−
(a1) (a2) … (an)  ,    (45.b) 
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which one can interpret as the amplitude of the potential of an thn -order multipole with fixed axes 

a1, a2, …, an, and a harmonically-oscillating moment ( )np  = ( )

0

n i tp e  (1). Note that the vectors ai 

can also be treated as complex quantities. However, that will have an immediate physical sense 

only when one of them (e.g., a1) proves to be complex, while the other ones are real. The product 

1

i te a  will then mean an elliptic oscillation that arises from a rotation of the “first” axis of the 

multipole in a well-defined plane. If the other axis vectors are also complex then (45.b) will 

decompose into a sum of components that correspond to a number of multipoles with each rotating 

axis. 

 Since the function i te   = 
( )i t k re

r

 −

 satisfies the equation: 

 
2

2

2 2

1
( )i t i te e

c t

  


 −


 = 0 , 

 

it will follow (as one can also verify by direct calculation) that: 

 
2 2k  +  = 0 .     (46) 

 

The derivatives 
31 2

1 2 3

n

nn n
x x x



  
, and as a result, the potential (45), must also satisfy that equation 

[which is regarded as the simplest generalization of the Laplace equation 2 (1/ )R  = 0]. 

 By repeated application of the equation 2  = 0 that is valid for static fields (k = 0), one can 

reduce the number of parameters that appear in (45) to (2n + 1) and correspondingly reduce the 

expression (45) to the form (46.a). For k > 0, such a reduction is not possible, in general, except in 

the simplest case of n = 1. Although one can also say here that the external field of a system of 

electric charges that is included inside of spherical surface is equivalent to a number of multipoles 

at the center of the sphere, but generally several multipoles of the same order must exist that cannot 

be combined into a single multipole for n > 1. 

 The aforementioned assumption that the radius of the sphere is small compared to the 

wavelength is just as essential for the convergence of the series (44) as the assumption that the 

point P lies outside the surface of the sphere. That is because in the development of the function 

 in (43.a) in the coordinates 1  , 2  , 3  , one will get terms of the form: 

 

  
31 2

1 2 3

nn nik r

n p p

e

r r

  



−

−

  
  (n1 + n2 + n3 = n, p = 0, 1, …, n). 

 

 

 (1) With the exception of the case n = 0 since the resulting charge of the system 
0

e  must obviously remain constant.  
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It will then follow that the wavelength  plays an equally-important role in the convergence of the 

corresponding series. 

 Obviously, the thn -order potential ( )n  = ( )

0

n i te   can be represented in the following form: 

 

( )n  = 
( )( )

0

pi t k r n
n

n p p
p

Ke

r r





−

−
=

 ,          (46.a) 

 

in which the coefficients ( )p

nK  depend upon only the direction of the radius vector r. The (0)

nK  in 

that means an ordinary spherical function of order n in the angle that determines that direction. In 

fact, the corresponding “zeroth-order” term in (46) must coincide with (8), Chap. IV, except for 

the “phase factor” 
( )i t k re  −

, which is equal to unity in the static case.  

 We would like to calculate the thn  term in (46.a) in detail since for large distances (viz., in the 

wave zone), the potential ( )n  must reduce to that term in practice. (All of the other ones will drop 

off more rapidly.) 

 In the differentiation of  in (45), if we then drop all terms that are proportional to the second 

and higher powers of 1 / r then from (44.b), we will have: 

 

31 2

1 2 3

n

nn n
x x x


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  

31 2

1 2 3

( )

nn n
ik r
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−       
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       
 = 31 2

1 2 3( 2 )
i k r

nn nn

n

e
i

r
   



−

− , 

 

in which 1, 2, 3 mean the direction cosines of the radius vector, and as a result: 

 

( )n   31 2

1 2 3

( )

0 1 2 3
1 2 3

1 2 3

( , , )(2 )

! ! !

i t k r n
nn n

n
n n n n

e n n ne i

r n n n

 
  



−

+ + =

 .  (46.b) 

 

For n = 1 (i.e., the harmonically-oscillating dipole), that expression will be identical to the 

corresponding (second) term on the right-hand side of formula (29). In fact, (46.b) can then be 

written in the form: 

(1)   
( )

0 0( , )
i t k re

i k
r

 −

p r , 

 

in which p0 means the vector with the components e0 (1, 0, 0), e0 (0, 1, 0), e0 (0, 0, 1), i.e., since 

t  – k r = t   and 
0

i ti k e  
p = 

1

c
p : 

(1)  = 0

1

c r
p r . 

 

Note that the “main term” in the potential (45.b) under consideration of a simple 
thn -order 

multipole is expressed in the formula: 
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( )n  = 
( ) (2 )

!

i t k r n

n

e i

r n

 



−

(a1 r0) (a2 r0) … (an r0) 
( )

0

ne .  (46.c) 

 

 The vector potential of our system: 

 

A (r, t) = ( )0 ( ) i t k re dV
R

 −


j r
 = 0 ( )i te dV   j r  = 

0

i te A  

 

can be developed into a series: 

 

A0 = (0) (1) (2) ( )

0 0 0 0

n+ + + + +A A A A            (47) 

 

in a manner that is entirely analogous to what was done for the scalar potential, with the general 

term: 

( )

0

nA  = 
31 2

1 2 3

0 1 2 3

1 2 3 1 2 3

( , , )
( 1)

! ! !

n
n

nn n
n n n n

n n n

n n n x x x



+ + =


−

  


J
,   (47.a) 

in which the vector parameter: 

J0 (n1, n2, n3) = 31 2

0 1 2 3

nn n
dV      J ,   (47.b) 

 

which we can call the “electrokinetic moment” of the system in question, plays the same role in 

regard to A that the electrostatic moment e0 (n1, n2, n3) does for . 

 It follows from the relation (42.a) that (we will drop the index 0 and the prime in what follows): 

 

e (n1, n2, n3) = 31 2

0 1 2 3

nn n
dV    = − 31 2

1 2 3

1
div 

nn n
dV

i k
   j  

= − 3 31 2 1 2

1 2 3 1 2 3

1 1
div ( ) ( )

n nn n n n
dV dV

i k i k
      +  j j . 

 

Since we have jn = 0 on the spherical surface that bounds the volume V, we have: 

 

31 2

1 2 3div ( )
nn n

dV   j  = 31 2

1 2 3

nn n

nj dS    = 0 , 

and as a result, since: 

 
31 2

1 2 3( )
nn n  j  = 3 3 31 2 1 2 1 2 11 1

1 1 1 2 3 2 2 1 2 3 3 3 1 2 3

n n nn n n n n n
n j n j n j         −− −

+ + , 

 

one will have: 

 

e (n1, n2, n3) = 1 1 1 2 3 2 2 1 2 3 3 3 1 2 3

1
{ ( 1, , ) ( , 1, ) ( , , 1)}n J n n n n J n n n n J n n n

i k
− + − + − . (48) 
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By substituting those expressions in the formula (46.a), we will get: 

 

( )n   31 2

1 2 3

( ) 1

0 1 2 3
1 2 31

1 1 2 3

( , , )(2 )

! ! !

i t k r n
nn n

n
n n n n

n n ne i

r n n n

 
  



− −
 

−
  + + = −

  

  


r J
. 

 

On the other hand, (47.a) will reduce to: 

 

( )

0

nA   31 2

1 2 3

1 2 3
1 2 3

1 2 3

( , , )(2 )

! ! !

i k r n
nn n

n
n n n n

n n ne i

r n n n


  



−

+ + =


J

 

 

in the wave zone (r  ). Thus, we will have: 

 
( )n  = r0 A(n−1) 

 

for the wave zone, and as a result, since we can always set (0)  = 0 (1): 

 

 = r0 A.          (48.a) 

 

That relation between the two potentials agrees with the one that we found in § 9 for the 

electromagnetic field of an infinitely-distant oscillator. Note that it is fulfilled in complete 

generality for all plane (even non-sinusoidal) electromagnetic waves and can be derived from the 

corresponding general Ansatz (38) for the polarization potential. Moreover, (48.a) implies the 

known relations between the field strengths in the wave zone and the unit vector r0 that determined 

the direction of propagation of the waves [cf., (32.a)]: 

 

H = r0  E  and E = H  r0 . 

 

Instead of characterizing the system in question by giving the electric charge density  and current 

j, to that end, one can obviously introduce the electric polarization P and correspondingly develop 

the polarization potential: 

Z (r, t) = 
0

i te Z  = 0 ( )i te dV  P r  

 

into a series of the same type as the series that was cited above for the vector potential A. In that 

way, the “polarization moment” would appear in place of the corresponding electrokinetic moment 

(47.b). 

 

 (1) If the system in question is not neutral, i.e., 
(0)

  has a non-zero value, then the latter must remain constant in 

time, and that is why it is irrelevant to the electric field in the wave zone. 
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 The cited results can be generalized to the case of arbitrary anharmonic oscillations of the 

charge and current density (the polarization, resp.) in the system considered when those 

oscillations are not too rapid such that the mean or effective wavelength is large in comparison to 

the radius of the sphere. One can reduce that case to the foregoing one by decomposing  or j (P, 

resp.) as functions of time into Fourier series or Fourier integrals. The resulting electromagnetic 

field must then be obtained from the sum (or integral) of the elementary components that originate 

in the individual harmonic components of  and j. 

 

 

§ 11. – Equivalent magnetic systems. Magnetic oscillators. 

 

 In Chap. IV, we saw that a time-constant magnetic field that is created outside of a closed 

surface S by an internal (or superficial) system of stationary currents can be treated in the same 

way as an electrostatic field when the aforementioned currents are replaced with fictitious 

magnetic charges (or poles) (1). Now, it is easy to see that an analogous “process of replacement” 

is also possible in the general case of an arbitrary external electromagnetic field. Indeed, we can 

introduce fictitious magnetic charges in place of the electric current and replace the electric charges 

with fictitious magnetic currents that are distributed inside of the ball in such a way that the field 

in question will prevail in the exterior space. Mathematically speaking, that means the following: 

  Instead of determining the field from the fundamental equations: 

 

1
div 4 , rot 4 ,

1
div 0, rot 0,

c t

c t

  
 

= − = 


 = + =
 

E
E H j

H
H E 

   (49) 

 

in which  and j are given functions of r and t that satisfy the condition 
1

c t




 + div j = 0, one can 

also derive it from the “conjugate” equations: 

 

1
div 0, rot 0,

1
div 4 , rot 4 ,

c t

c t
   

 
= − = 


 = + =

 

E
E H 

H
H E j

   (49.a) 

 

in which the magnetic charge and current densities  
 (j, resp.) must be chosen suitably when 

one considers the condition that 
1

c t

 


 + div j = 0 [cf., (11), (11.a), (11.b), § 3]. In so doing, one 

 
 (1) The surface S must be simply connected, i.e., not annular, in order for the magnetic lines of force to not be able 

to close outside of S. 
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must assume only that the system in question is neutral, i.e., that the volume integral   dV must 

vanish when it is extended over all of the volume that is bounded by S (just like dV

  = 0). 

Obviously,  and j must be equal to zero outside of S, just like    and j. The assignment of the 

functions    and j to the given functions  and j is therefore not one-to-one, which one can 

already see from the fact that according to Huyghens’s principle, the latter can be replaced with a 

certain distribution of charge and current on the outer surface S. 

 By means of the substitution: 

E = − H, H = E,          (49.b) 

(49.a) will imply the equations: 

1
div 4 , rot 4 ,

1
div 0, rot 0,

c t

c t

  


   


 


= − = 


 = + =

 

E
E H  j

H
H E  

       (49.c) 

 

which coincide with the original equations (49). They can be solved in the same way accordingly, 

and indeed by introducing the potentials   , A, or a polarization potential Z, and the 

corresponding polarization vector P, which is coupled with  
 and j by the relations: 

 

 = − div P,  j = 
1

c t





P
,        (50) 

 

so Z must be determined from the equation: 

 

−
2

2

2 2

1

c t


 

 +


Z
Z  = 4 P.          (50.a) 

 

If Z is known then one can calculate E and H from the formulas: 

 

E = − 
1

c t



 

 −


A
,  H = rot A, 

and 

 
 = − div Z,  A = 

1

c t





Z
, 

i.e.: 

E =  div Z − 
2

2 2

1

c t





Z
, H = rot 

1

c t





Z
.   (50.b) 
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 The vector Z is nothing but the magnetic polarization potential that we introduced already in 

§ 4; P corresponds to our previous M. The sense of the formulas above is to be found in the fact 

that one can replace the actual distribution of electric charge and current density inside of S with a 

fictitious distribution of infinitely-small magnets with time-varying moments whose resultant per 

unit volume is equal to P. That representation is very convenient in many cases and allows us to 

calculate the electromagnetic field of a relatively-complicated system very simply. 

 We imagine, e.g., an elementary current of time-varying strength. In so doing, the dimensions 

of the current line () shall be small in comparison to not only the distance to the reference point 

P, but also the wavelength that corresponds to the frequency of the oscillations in current strength 

(or also the fluctuations in the orientation of  when such things occur). One calls such a system a 

magnetic oscillator since it must obviously be identical in regard to its external effects to a 

(fictitious) magnetic dipole whose moment m coincides with the magnetic moment of the current 

at each instant. For instance, if the current line  is planar and the surface that it surrounds is equal 

to A then, as is known, m = i S, where i means the current strength at the instant in question. 

 The magnetic polarization potential of that oscillator must obviously depend upon m in the 

same way that the electric polarization potential Z depends upon the electric moment of an 

oscillating dipole. From (28.a), we will then have: 

 

Z (r, t) = 
1

R
m ,     (51) 

 

in which m means the value of m at the effective instant t  = t – R / c. That will give the same 

formulas for the quantities E and H that we had posed in § 6 for the electric and magnetic field 

strength of an electric oscillator. In order to get the corresponding field strengths in the case 

considered (viz., magnetic oscillator!), from (49.b), we must replace E (= E) with H and H (= 

H) with − E in those formulas (and obviously replace p with m, in addition). In that way, we will 

get the following formulas for the electromagnetic field in the wave zone: 

 

E = 02

1

c R
R m ,        (51.a) 

H = 0 02

1
( )

c R
 R R m ,       (51.b) 

 

instead of (31) and (32), from which it will follow that the relations (32.a) that we saw must always 

be fulfilled in the wave zone in § 10 will actually remain true in the present case. 

 

__________ 

 



 

CHAPTER SIX 

 

THE ELECTROMAGNETIC FIELDS OF MOVING POINT-

CHARGES (ELECTRONS) 
 

 

§ 1. The electromagnetic potential of a moving point charge. 

 

 In order to calculate the electromagnetic potential that is created by an electron that moves 

arbitrarily by using the general formulas (26) and (27), Chap. V, it is necessary, first of all, to have 

a well-defined picture for the “structure” of the electron, i.e., the spatial distribution of the electric 

charge that belongs to the electron or “defines it,” so to speak, and certainly when it is in its rest 

state, and secondly, to express the charge density  and the current density j for a moving electron 

by the aforementioned “rest density” 0 and the translational velocity of the electron (or also its 

angular velocity). In that way, one can either treat the electron as a rigid body or as a deformable 

body. In the latter case, one must further consider its deformation. 

 Ordinarily, one considers an electron to be a rigid (or also deformable in a certain sense) ball 

of a certain radius a and imagines that the electron charge e is distributed uniformly over the outer 

surface or throughout the volume of that ball. 

 That “classical” conception of the electron as a spatially-extended “structure” can give rise to 

some very serious physical and epistemological objections that we will consider in detail later on 

(Chap. VII). We would first like to try (while completely overlooking the aforementioned 

objections, merely on the grounds of simplicity) to treat the electron as a point-charge, just as we 

often did before in our investigation of static fields. We then pose the problem of extending the 

simple formula  = /e R  for the scalar potential of a point-charge at rest to the case of an 

arbitrarily-moving point-charge and to replace the previously-posed formula for the vector 

potential of a moving point-charge A = 
e

c R

 v
, which is only true approximately, with an exact 

formula. 

 To that end, we temporarily imagine that the electron is a rigid structure of very-small 

dimensions, and indeed with a volume V0 in which the electron charge is distributed uniformly 

with the rest density 0 = 0/e V . The case that is of interest to us of a point-like electron will be 

given later as the limiting case as V0 → 0. We further imagine that this electron moves with a 

translational velocity v (without rotation), in which v does not need to be constant in time. 

 At each moment, the moving electron will “fill up” a certain “rest volume” V = V0, inside of 

which the electric charge density  will coincide with 0, while outside of it, one will have  = 0. 

As far as the current density j is concerned, by definition (as the spatial density of the electrical 

impulse), it is obviously coupled with  by the relation: 

 

j = 
c


v .      (1) 
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 In order to calculate the scalar potential at a point P (radius vector r), we would like to use the 

first of formulas (27.a), Chap. V, and the picture that is connected with it of a sphere of action that 

contracts to P at a rate of c. That sphere shall contract to the point P at time t. It must meet the 

electron somewhat earlier than that, while remaining in contact for a very brief time  , or when 

expressed more precisely, passing through the electron, and then leaving it again. The only 

exceptional case is defined when the electron moves past P with a speed of v = c. We would like 

to exclude that case, which would correspond to an ongoing contact. For the sake of definiteness, 

we would like to further assume that: 

v < c ,             (1.a) 

 

i.e., that the electron moves with “subluminal velocity.” 

 For infinitely-small dimensions of the electron, the effective time interval   during which the 

action of the electron that is received at the point P at time t is emitted will also be infinitely small. 

For that reason, we can treat the velocity of the electron during that interval   as (= v).  

 We now consider two moments that lie inside of  : 

 

 1t   = 1 /t R c−   and 2t  = 2 /t R c−   ( 2t  > 1t  ), 

 

and compare the distance R1 – R2 between the corresponding positions of the sphere of action in 

the electron with the thickness of the electron layer that is “swept through” in that way being l. If 

one denotes the radial velocity of the electron (relative to the reference point P) by Rv  and observes 

that the radial velocity of the spherical surface element S that cuts the electron relative to the 

electron is equal to the difference c − Rv  then one will get the equations: 

 
1

1 22
( )R R −  = / ( )Rl c v− = 2t  − 1t  , 

from which it will follow that: 

dR = / (1 / )Rdl v c− ,         (2) 

and from (27.a): 

 = 
21

1 /R

R dl d
v c R




−   = 0

1

(1 / )R

dV
v c R


 −  , 

i.e.: 

 = 
(1 / )R

e

R v c



 −
.         (3) 

 

 What corresponds to the usual Coulomb potential of a point-charge at rest that originates in the 

motion of the electron then consists of, firstly, replacing the simultaneous position of the latter 

with the retarded position at the moment t  = t − /R c , and secondly, introducing the factor 

1/ (1 / )Rv c− , which can be interpreted only when one imagines that the electron is not point-like, 

but infinitely-small, and indeed as the relative change in the effective volume or the effective time 
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interval that corresponds to the emission of the action that is received at the point P at the moment 

t. 

 One will then have: 

A = 
(1 / )R

e

c R v c




 −
v      (4) 

or 

A = 
1

c
 v .              (4.a) 

 

 Upon differentiating the expressions (3) and (4) directly, one can easily prove that it is actually 

enough for them to satisfy the differential equations: 

 

− 
2

2

2 2

1

c t





 +


 = 0 ,  − 

2
2

2 2

1

c t


 +



A
A  = 0 ,  resp., 

 

and indeed, for all points in space and time except for those spacetime points where the electron 

itself is found and which are characterized by R   = 0 (1). In so doing, one must treat R   = ( )R t  

as the function of time that is defined by the equation:  

 

t  = t − ( ) /R t c            (5) 

 

and corresponds to the motion of the electron in question, i.e., the dependency of its radius vector 

r on time t , which is assumed to be known. From the usual definition, one has: 

 

( )tR  = r − ( )t r ,          (5.a) 

 

in which r means the radius vector of the reference point. 

 

 

§ 2. The electric and magnetic field strengths. 

 

 In order to calculate the electric and magnetic field strengths that belong to the potentials (3) 

and (4), we must first derive some auxiliary formulas that are obtained by differentiating equations 

(5) and (5.a) with respect to the two independent variables t and r. For the sake of abbreviation, 

we then introduce the following notations: 

1

1 /Rv c−
 =        (6) 

 
 (1) We will refer to this proof later on in the context of a new derivation of formulas (3) and (4). Note that those 

formulas were first derived in the way that was described above by Liénard and Wiechert. For that reason, the 

potentials (3) and (4) are usually referred to as the Liénard-Wiechert potentials. 
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and 

 (1 / )RR v c −  = 
1

R
c

  − R v  = R ,    (6.a) 

or 

R   = R  .              (6.b) 

 From (5.a), one has: 

d

dt





R
 = −

( )d t

dt

 



r
 = − v , 

and as a result, since: 

d

dt






R
R  = 

dR
R

dt





, 

one will have: 

dR

dt




 = −

( )

R

 



R v
 = − Rv . 

 

Upon differentiating (5) with respect to t and r, we will get: 

 

t

t




 = 1 − 

1 dR t

c dt t

 

 
 = 1 + Rv t

c t

 


 

and 

t  = − 
1

R
c

  = − const.

1 1
( )t

dR
R t

c c dt
=


  − 


 = − 0 R

R v
t

c c

 
+  , 

 

where 0
R  = R / R means the unit vector on the direction of the electron reference point (effective 

position). It will then follow that: 

 

t

t




 =  , t  = − 0

c


R ,    (7) 

and furthermore: 

t

t




 = − Rv  , R  = 0 R  .             (7.a) 

 

 In what follows, we will denote differentiation with respect to r for fixed t  by  [= 
const.( ) ].t=   

 We will then have: 

 

 = t
t





  + 


 = − 

2

0

2 2

1R
R

ve e d
R v

R c R c c c dt


 

       
     −  + − + −         

Rv v
R R  , 

 

i.e., due to the fact that: 

 R = 0
R ,  (R v) = v, 
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and when we denote the acceleration of the electron d v / dt by w: 

 

 = − 2

0 02

1
/ / ( / )R

e
c v c v c

R c




   
      − + − +  

  
R v R R w  .  (7.b) 

Moreover, we have: 

 

1

c t





A
 = 

1

c t c


  
 

  
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and 

rot A = rot 
c


 

 
 

v
 = rot 

c


 
 
 

v
 + t

t c


  
   

  

v
 = 0

c c t c


 

   
   −   

  

v v
R  . 

 

From those formulas, and the facts that E = −  − 
1

c t





A
 and H = rot A, one will get: 

 

E = 
2

3 2

02 2 2 2

1
1 ( )

e v e

R c c c c R
 

     
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  

R w
R v w ,   (8) 

 

H = 
2

3 2

0 02 2 2 2
1

e v e

c R c c c R
 

     
   − +  +  

  

R w
v R w R ,   (9) 

 

when one replaces 1/ R
 with / R  . The magnetic and electric field strengths are then coupled 

with each other by the simple relation: 

 

H = 0
R  E .      (9.a) 

 

Note that this relation coincides with one of the relations (32.a) in Chap. V. It shows that the 

magnetic field strength always points perpendicular to the radius vector to the respective effective 

position of the electron from the reference point and that its magnitude can never exceed the 

magnitude of the electric field strength. However, the second of the aforementioned relations (E(2) 

= H(2)  0
R ) is generally fulfilled only in the wave zone, i.e., for the part of the two field strengths 

that is proportional to the first power of 1/ R . Namely, those parts of (8) and (9) are equal to: 

 

E(2) = 
2

0 02

1
( ) ( )

e

c R c
 

  
    − − 

  
R w R v w ,       (10)  

H(2) = 2

0 0 02

1
( )

e

c R c
 

   
      +   

   
R w v R w R ,   (10.a) 
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such that: 

H(2)  0
R  = 2

0 0 0 02

1
( ) ( )Rve

c R c c
 

   
       − + −     

R w R v R w R w  . 

 

If one now observes the identity: 

 

0
Rv

c



R  = 0 0 0

Rv

c
 

 
  − + 

 
R R R  = − 0 0 +R R  

 

then the expression in curly brackets in the previous formula will assume the form: 

 

0 0

1
( )( )

c
     − −R w R v w , 

 

which is, consequently, identical to the corresponding expression in (10). Thus, one has the 

following two relations in this case: 
(2) (2)

0

(2) (2)

0

,

,

 = 


=  

H R E

E H R
       (10.b) 

 

which are characteristic of the electromagnetic field in the wave zone. 

 We now imagine that the electron in question performs regular or irregular oscillations of very 

small amplitude about a certain fixed equilibrium position P  . We further imagine that an electron 

with the opposite charge – e  rests at that point. We then get an elementary oscillator whose field 

was examined before in the previous chapter in § 6. In that case, the formulas (10), (10.a) must 

obviously coincide with the previous formulas (31), (32). As is easy to see, that is, in fact fulfilled. 

Indeed, one can neglect the quantity /v c  ( /Rv c , resp.), due to the smallness of the oscillations 

(since the speed of the electron must remain very small compared to the speed of light), and set 

R   = R = P P  (= const.), moreover. Formulas (10) and (10.a) will then reduce to: 

   

E(2) =  02
( )

e

c R


 −Rw R w = 0 02

( )
e

c R


 R R w ,      (11)  

H(2) = 02

e

c R


w R .        (11.a) 

 

However, those expressions will be identical to (31) and (32), Chap. V, when one observes that p  

= e w  in the case considered. 

 Formulas (11), (11.a) correspond to the extreme case in which the velocity of the electron 

vanishes in comparison to the acceleration. The general formulas (8), (9) will also take on an 

especially-simple form in the opposite extreme case when the acceleration vanishes in comparison 

to the velocity, i.e., when the electron (practically) moves in a uniform, rectilinear way. 
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 Let the path of the electron be represented by 

the line MN (Fig. 32). Let its effective position at 

the instant t  = t − /R c  be P  . While the action 

that is emitted from P   runs to the reference point 

P along the path P P , the electron will displace 

from P   to P . P  will then be its 

“instantaneous” position at the moment t. The 

equation P P = P P P P −  is obviously true, i.e.: 

 

( )t t −v  = R – R , 

 

and since t − t  = /R c , it will follow from this that: 

 

R = R – 
R

c


v  = 0

1
( )R

c
  −R v .    (12) 

The vector 0

1

c
 −R v  that appears in (7) is then equation to (1/ )R R . If one replaces / R   with 

1/ R
 in (8) and introduces the notation: 

v

c


 =   ,          (12.a) 

to abbreviate, then one will have: 

E = 2

3
(1 )

e

R





− R .          (13) 

 

 Moreover, when one observes the relation: 

 

0
 v R  = 

1

R
 


v R  = 

1 R

R c

 
  + 

  
v R v  = 

1

R



v R , 

 

which follows from (12), one will get from (9) that: 

 

H = 
2

3
(1 )

e

c R





 − v R .            (13.a) 

 

 It is very remarkable that the “instantaneous” radius vector R enters in place of the effective 

radius vector R in those formulas. That means that the forms of the lines of force of the electric 

and magnetic fields of a point-charge in uniform, rectilinear motion will behave as if the 

electromagnetic action-at-a-distance were instantaneous. For example, the electric lines of force 

are straight lines that emanate from P  , just as in the case of a charge at rest at P . However, in 

contrast to the static case, the density of that family of lines must vary in different directions, such 

R 

N  

 

P (t) 
Figure 32. 

M  
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that the electric field will exhibit no radial symmetry (relative to P ), but only an axial symmetry 

relative to the path-line MN. (13) and (13.a) imply the relation: 

 

H = 
1

c
v  E ,     (13.b) 

 

which is true for only constant velocity of the electron, in contrast to (9.a). Obviously, formulas 

(13) to (13.b) will also remain approximately true when that velocity varies relatively slowly 

(quasi-stationary motion). 

 

 

§ 3. – Special consideration of uniform rectilinear motion. 

 

 We now imagine that a second electron with charge e moves with a constant velocity v and is 

found at the point P at the moment t. As is known, the force that acts on that electron as a result of 

the first one ( )e  is expressed by the general formula: 

 

F = e (E + 
1

c
v  H) , 

which will assume the form: 

 

F = 2

3 2

1 1
(1 ) 1

e e

R c c c




     
 − − +    

    

vv
R Rv v     (14) 

 

in our case (v = const.), from (13) and (13.a) [or (13.b)]. (Cf., the approximate expression (23.b), 

Chap. III for the electromagnetic force f = 
1

c
v  H.) 

 The quantities that characterize the two electrons appear asymmetrically in that formula. That 

is why one cannot speak of the equality of action and reaction for arbitrary v and v. The only 

exception to that is the case in which the two electrons move with the same velocity, i.e., they 

remain at rest relative to each other. In that case (v = v,    = ), (14) reduces to: 

 

F = 2 2

3

1 1
(1 ) (1 )

ee

R c c
 



   
− − +  

  
R Rv v .            (14.a) 

 

The quantity R  has the same value for the two electrons. As a result, one will get the force F that 

acts on the first electron on the part of the second one from (14.a) by simply switching the sign of 

the vector R, such that one will have F = − F. 

 Formula (14.a) can be converted as follows: From (12), when we recall (6.a), we will have: 
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2 1 1
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c
 − +R v . 

 

 On the other hand, from (7.b) (with w = 0): 
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1 Rv v
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and as a result, since 
0R  R  = R: 
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c c
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 One then has (for v = v): 

2 1 1
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c c

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− +  

 
R Rv v  = R R  , 

 

which will make formula (14.a) assume the form: 
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2

3

(1 )ee
R

R

 


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 , 

or 

F = − e  ,      (15) 

with: 

 = 
2(1 )e

R




 −
 = 

2(1 ) − .           (15.a) 

 

 One can derive that result in a simpler way when one considers the situation in which the two 

electrons move with the same constant velocity from the outset. Indeed, the potentials  and A 

that determine the action of e  on e must remain constant in time. That follows from the fact that 

those potentials depend upon only the velocity v and the relative position of the two electrons (at 

the same moment), i.e., the radius vector R. However, v and R are constant in our present case. 

 One then has d / dt = 0 and d A / dt = 0, in which the symbol d / dt means the complete 

differentiation with respect to time, i.e., the rate of change of the corresponding quantity at a 

reference point that moves with e. Now, when the time derivative at a fixed spatial point is denoted 

by  / t, one will have: 

d

dt


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d

t dt





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
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
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
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and likewise: 
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
+ 



A
v A .    (16.a) 

 As a result, the relation: 

− 
1

c t





A
 = 

1

c

 
 

 
v A  

 

will exist in the case considered, or since A = ( / c) v : 
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 By means of that relation, we will get: 

 

E = −  − 
1

c t
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1 1
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 Moreover, one has: 

H = rot A = 
1

c
  v . 

 As a result, one will have: 

 

F = e (E + 
1

c
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1 1 1 1
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2 2(1 / )e v c −  . 

 

 We have then found the previous result once more without explicitly using the expression for 

. 

 That result can obviously be generalized to an arbitrary system of electrons that possess a 

common constant translational velocity. The interaction of the electrons then preserves the same 

character that it has in a state of absolute rest (v = 0). The electric and electromagnetic force 

combine into a force F that one can interpret as an ordinary electric force that corresponds to the 

scalar potential . 

 One cares to refer to that potential as a convective potential. One can correspondingly refer to 

the vector field –  as a convective force field or also as the effective electric field strength. 

 The lines of the vector –  are not straight lines, in contrast to the electric lines of force, since 

the level surfaces of the convective potentials, i.e., the surfaces  = const. are not spherical as they 

are for a charge at rest, but spheroidal. 

 In order to see that, we introduce a rectangular coordinate system X1, X2, X3 with its origin at 

the point P  (where the electron e  is found at the moment in question). Let the X1-axis of that 

system then be the line MN (Fig. 32), i.e., it shall point in the direction of motion. 
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 If one denotes the components of the vectors R and R, i.e., the coordinates of the reference 

point P relative to P  and P  , resp., by xk ( kx , resp.) (k = 1, 2, 3) then one can replace the vector 

equation (12): 

R = R − 
R

c


v  

with three scalar equations: 

 

x1 = 1

v
x R

c
 − ,  x2 = 2x , x3 = 3x .   (17) 

 

 Due to the fact that R   = 1 2 3x x x  + + , it will follow from this that: 
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 Upon solving that equation (for 1x , and recalling the condition that 1x − x1 = R   > 0), we 

will get: 
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2 2 2 2

1 1 2 3
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x x x x 



+ + − +

−
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 Now, one has: 

R  = 
1
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c

 − R v  = 1R x − , 

or from (17): 
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and as a result, from (17.a): 

R  = 2 2 2 2

1 2 3(1 )( )x x x+ − + .    (17.b) 

 

 We then see that the surfaces  = const., just like the surfaces  = const. and A = const. are 

determined by the equation: 
2 2 2 2

1 2 3(1 )( )x x x+ − +  = 2R  = const. 

or 
22 2
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2 22 2( 1 )
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 = 1 . 
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As a result, they can be represented as flattened ellipsoids that arise from a ball by longitudinal 

contraction with a ratio of 
21 − : 1 (Fig. 33). The lines of the effective electric field of force 

( )− , just like the electric and magnetic lines of 

force, will correspondingly concentrate in the 

neighborhood of the equatorial plane, while the field 

strengths will be diminished in the neighborhood of 

the line of motion. 

 That flattening, or “contraction,” of the 

electromagnetic field in the direction of motion will 

initially increase slowly with the increase in 

velocity, but then very rapidly when one is close to 

the critical velocity of c. In the limiting case v = c, 

the field of the electron must contract completely in 

the equatorial plane. We shall consider that fact to be 

a proof of the idea that the critical velocity (or, as 

one ordinarily says, the speed of light) can never be 

achieved in reality. According to (17.b), for v > c 

(i.e.,  > 1), the quantity R  will become imaginary 

outside of the cone: 

 
2

1x  = 2 2 2

2 3( 1)( )x x − + ,  (17.c) 

 

and therefore, the potentials and field strengths, as well. 

 However, we have already excluded that case, i.e., the case of “superluminal velocity,” from 

the outset [see (1.a)]. We now ask whether we would arrive at the same results under the 

assumption that v > c. We would then have to distinguish two cases according to whether the 

electron pierces the sphere of action that converges to the reference point from inside to outside or 

from outside to inside (1). In the first case (vR < 0), what was done in § 1 will remain completely 

unchanged. In the second case (vR > 0), we must replace c – vR with vR – c in formula (2) and 

correspondingly invert the signs in the following formulas that include that expression. Therefore, 

when an electron is in uniform, rectilinear motion, only the sign of (i.e., of  and A) will change, 

but formulas (16) to (17.c) will suffer no change whatsoever. We would then see that the potentials 

and field strengths inside of the cone (17.c) would assume imaginary values in both cases. A 

motion with constant superluminal velocity would then seem to be physically impossible. 

 

 

 

 

 

 
 (1) In general, both cases can happen at the same time. If the electron moves with, e.g., constant superluminal 

velocity then it must initially dive into the sphere of action and then fly away from it.  

Figure 33. 

v 
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§ 4. – Electrons as point-singularities in the spacetime continuum.  

New derivation of the electromagnetic potential of a moving point-charge. 

 

 In § 1, we have derived the formulas (3), (4) for the potential of a moving point-charge (of 

constant magnitude) on the basis of formulas (26) and (27), Chap. V, which referred to the case of 

charges of varying magnitude at rest, strictly speaking. However, one can get them in an entirely 

different, so-to-speak direct, way by a process of integration that is a generalization of the one that 

we had used in order to solve the Laplace equation for a point-charge at rest (1). 

 We introduce a rectangular coordinate system with an entirely-arbitrary fixed origin O. Let the 

coordinates of the reference point P be x1, x2, x3. We shall denote the coordinates of the electron at 

an arbitrary moment t  (which does not necessarily coincide with the effective moment) by 1x , 

2x , 3x . 

 We would like to combine a spatial point and the moment at which we consider it into a 

“spacetime point” in a four-dimensional spacetime continuum. Instead of speaking of the reference 

point P (x1, x2, x3) at the moment t, we will simply say the reference point P (x1, x2, x3, t). We will 

likewise refer to the position of the electron at the moment t  as the source point 1 2 3( , , , )P x x x t     . 

 The electrostatic potential  and the components A1, A2, A3 of the vector potential satisfy the 

differential equation: 
2

2

2 2

1

c t





 −


 = 0 

 

in all of the spacetime continuum, with the exception of the source point P  , and in the special 

case of a point-charge at rest, it will reduce to the Laplace equation 2  = 0. Therefore, we will 

have 2  = 
2 2 2

2 2 2

1 2 3x x x

    
+ +

  
, and as a result, when we introduce the notation: 

x4 = i c t (i = 1− )    (18) 

 

(and correspondingly 4x  = i c t ), we will have: 

 
2 2 2 2

2 2 2 2

1 2 3 4x x x x

      
+ + +

   
 = 0 .            (18.a) 

 

That equation has the same form as the Laplace equation, but it includes four variables (viz., 

spacetime coordinates) x1, x2, x3, x4 in a completely-symmetric way, instead of three. We must 

further consider the fact that  and A are coupled with each other by the relation: 

 

div A + 
1

c t




 = 0 . 

 
 (1) That derivation goes back to Herglotz.  
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That relation can be written in coordinates as follows: 

 

31 2

1 2 3

1AA A

x x x c t

  
+ + +

   
 = 0 . 

 

If one now introduces the relation that corresponds to (18): 

 

A4 = i          (19) 

 

then that equation will assume the symmetric form: 

 

31 2 4

1 2 3 4

AA A A

x x x x

  
+ + +

   
 = 0 .          (19.a) 

 

In place of spatial coordinates and time, we must then use four equally-justified “coordinates” in 

(18.a) and (19.a) and correspondingly replace the vector potential A and the scalar  with four 

components of a “four-dimensional” vector potential (which will make  = A1, A2, A3, A4) 

 One can likewise treat the equations of motion of the electron (which are regarded as known): 

 

1x  = 1( )f t , 2x  = 2 ( )f t , 3x  = 3( )f t , 4x  = i c t    (20) 

 

as the equations of a “line” in a four-dimensional “space” (x1, x2, x3, x4), and indeed as the set of 

all source-points of the electromagnetic field that the electron creates. For that reason, we would 

like to refer to that line as the singular line of the functions Ak (k = 1, …, 4). 

 We next consider the following hypothetical problem: Find a function that is symmetric in the 

four “coordinates” x1, x2, x3, x4, satisfies equation (18.a), and possesses only one singular point 

1 2 3( , , , )P x x x t     . From a purely-formal standpoint, that problem corresponds completely to the 

integration of the usual three-dimensional Laplace equation for a point-charge at rest. We 

correspondingly replace the ordinary three-dimensional distance: 

 

R = 2 2 2

1 1 2 2 3 3( ) ( ) ( )x x x x x x  − + − + −  

 

with the four-dimensional distance: 

 

S = 2 2 2 2

1 1 2 2 3 3 4 4( ) ( ) ( ) ( )x x x x x x x x   − + − + − + −  = 
2 2 2( )R c t t− − ,  (21) 

 

and consider  to be a function of S. 

 We will then get: 

kx




 = 

k

d

dS x

 


 = k kx xd

dS S

 −
, 
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2

2

kx




 = 

2 2 22

2 2 3

( ) ( )k k k kx x S x xd d

dS S dS S

  − − −
+ , 

and as a result: 
24

2
1k kx



=




  = 

2

2

3d d

dS S dS

 
+  = 0 , 

from which, we will easily get: 

 = 
2S


.      (22) 

 

Here,  means an arbitrary integration constant. (The second additive integration constant can be 

set equal to zero.) 

 We would now like to use the “point solution” (22) to (15.a) in order to construct functions Ak 

that satisfy not only equation (18.a), but also the relation (19.a) We shall overlook the physical 

sense of those functions completely, for the time being, and pose the problem from a purely-

analytical standpoint. 

 To that end, we shall treat the time t  (t, resp.) as a complex variable, not a real one, and then 

imagine functions f1, f2, f3 that are determined for only real values of t  being continued 

analytically into the entire complete t -plane. (In so doing, we must obviously assume that such 

an analytic continuation is actually permissible.) 

 We further draw an entirely-arbitrary line in that place and combine the “point solutions” dAk 

= 2/k dt S  , which correspond to the isolated points (or more precisely, the infinitely-small 

elements dt  of that line) according to (22), into a “line solution”: 

 

Ak = 
2

k dt

S

 
 .      (22.a) 

 

 Therefore, the quantities kx  (k = 1, …, 4) that appear in 
2S  are treated as the functions of the 

complex argument t  that are defined by (20) (by means of the aforementioned analytic 

continuation). By contrast, the coefficients k are initially undetermined functions of t . 

 We must now choose those functions and the path of integration in such a way that the 

quantities (22.a) will satisfy the relation (19.a) when regarded as functions of xk (k = 1, …, 4). 

Since the xk appear as parameters in the integrals (22.a), from (21), we will have: 

 

k

k

A

x




= 

2

1
k

k

dt
x S


  

  
  

  = − 
2

1
k

k

dt
x S


  

  
  

 , 

and as a result: 
4

1

k

k k

A

x=




  = − 

4

2
1

1
k

k k

dt
x S


=

  
  

  
  . 
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 In order for the integral on the right-hand side to vanish identically, i.e., independently of the 

form of the functions f1, f2, f3, it is obviously necessary and sufficient that, first of all, the 

coefficients k   can be expressed by the formulas: 

 

k   = kdx

dt





,      (22.b) 

 

in which  means a constant, and secondly, that the path of integration must be represented by a 

closed curve. Namely, we will then get: 

 
4

2
1

1
k

k k

dt
x S


=

  
  

  
 = 

4

2
1

1

k k

dt
x S


=

  
 

  
  = 

2

1
d

S


 
 
 

 , 

and as a result: 
4

1

k

k k

A

x=




  = − 

2

1
d

S


 
 
 

   0 . 

 One will then have: 

Ak = 
2

( / )kdx dt
dt

S


 
  = 

2

kdx

S



 .    (23) 

 

 If the integration curve includes no pole of the integrand, i.e., no root of the function 
2S , then 

the integral 
2/kdx S  must vanish. In that way, we get a “trivial” solution of (18.a) and (19.a), 

namely, Ak = 0. By contrast, if a root t  = 0t  of 
2S  lies inside the integration curve then, as is 

known from Cauchy’s theorem (1): 

2

k dt
S


  = 

0

2
2 Res k

t t

i
S




 =

 
 
 

 = 

0

2
2 k

t t

i
dS

dt




 =

 
 
 
 
 

 

,    (23.a) 

or since (21) implies that: 

 
2dS

dt
 = 

22 ( )
dR

R c t t
dt

 
+ −  

 and R0 = 0( )c t t − , 

 

 (1) Namely, we can contract the path of integration to an infinitely-small circle with its center at 
0

t   in that case. 

Along that circle, it is sufficient to consider only the first two terms in the development of 
2

S  in powers of the 

difference 
0

t t − . However, since S0 = 0, we will have 
2

S = 
2

0
0

( )
dS

dt
t t

 
 

 
 = , and as a result: 

2 22

0

0 0

2 .k k kdt dt
i

dS dSS t t

dt dt

  


   
      

= =   
 −   

   
    

   
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one will have: 

2

k dt
S


  = 

0

1
1

k

t t

i
dR

c R
c dt




 =

 
 
 

      

,    (23.b) 

 

in which the upper sign corresponds to the equation: 

 

( )R c t t− −  = 0     (23.c) 

 

for a positive sense of traversal, and the lower one, to the equation: 

 

( )R c t t+ −  = 0      (23.d) 

for the negative sense. 

 If the electron moves with a superluminal velocity then those equations will each have one 

real root. Therefore, the real root of (23.c) means nothing but the effective time that is 

characteristic of the retarded potential. Now, it is easy to see that for that value of 0t , we will get 

the components of the potential Ak that we found before in the (Liénard-Wiechert) formulas (3), 

(4). That is because we have: 

1 dR

c dt
 = − Rv

c


, 

and as a result, from (23) and (23,b): 

  Ak = 
/

(1 / )

k

R

dx dt
i
c R v c

 


−
 0( )t t = , 

i.e.: 

A = 
1

(1 / )R

i
c R v c

  
−

v , 

and from (19): 

 = 
(1 / )R

i

R v c

 

−
. 

 

Those formulas will coincide with (4) [(3), resp.] when one sets: 

 

 = 
e

i


.      (24) 

 

 In the special case of an electron at rest or one in uniform, rectilinear motion, the equation 
2S  

= 0 will have no imaginary roots. One can then deform the path of integration into an arbitrary, 

closed or infinite, curve that runs between the two real roots t  = 0t  and t  = 0t  from below to 

above (Fig. 34). The simplest of those curves is the line that goes in the direction of the imaginary 
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axis through the point t  = t. If it were chosen to be the path of integration then, according to (23) 

and (24), one would get: 

 

 = 4A

i
 = − 

2 2

4 4( )

t t i

t t i

e i c dt

R x x

− =+ 

− =− 

 

+ −  = 4 4

2 2

4 4

( )

( )

d x xe

R x x

+

− 

 −

+ −  = 
e

R


 

 

in the case of an electron at rest (R = const.), so the Coulomb potential. 

 If the electron moves in the positive X1-direction with a velocity v < c then when one sets 1x  

= vt  = 4i x −  ( = v / c), 1x  = 2x  = 0, and t = 0 : 

2S  = 2 2 2 2 2

1 2 3 1 4 42 (1 )x x x i x x x  + + + + −   =

2 2 2 2 2
2 1 2 31

4 2 2

(1 ) ( )
(1 )

1 1

x x xi x
x




 

  + − +
− + + 

− − 
. 

 

If one denotes 2 2 2 2

1 2 3(1 )( )x x x+ − +  by 2R  [as in (17.b)] and introduces the variable: 

 

u = 2 1
4 2

(1 )
1

i x
x






 
− + 

− 
 

 

in place of t  then one will get: 

 

 = 
2 2

e du

R u

+



− 



+  = 
e

R


 and A = 

1

c
 v, 

 

which agrees with the previous results. 

 Note that in those cases, the usual “retarded” 

potential, which corresponds to the moment t  

= 0t , corresponds to the “advanced” one, which 

is given by the negative residue relative to the 

point t  = 0t . 

 In the general case of an arbitrarily-moving 

electron, the advanced potential will be completely different from the retarded one. It is ignored 

as “physically absurd.” However, in that way, one could bring a whole set of potentials under 

consideration that belong to the complex roots of (23.c) and (23.d) and depend upon the type of 

motion in a very special “singular” way. Those singular potentials correspond to an electric action-

at-a-distance that is neither retarded nor delayed, and which can still be possibly found in nature. 

However, that question has still not been investigated up to now. 

 

 

 

 

Figure 34. 

= t   
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§ 5. – Formal reduction of the retarded action-at-a-distance to an instantaneous one. 

 

 By means of the identity: 

 

2

1

S
 = 

1

[ ( )][ ( )]R c t t R c t t + − − −
 = 

1 1 1

2 ( ) ( )R R c t t R c t t

 
+  − − + − 

, 

 

formula (23), with the value (24) for the constant , can be written in the form: 

 

Ak = 
2 [ ( )] 2 [ ( )]

k kdx dxe e

i R R c t t i R R c t t 

  
+

 − − + −  .    (25) 

 

 We choose the path of integration ( )l  in such a way that it includes only one root 
2S  = 0, and 

indeed the effective time 0t  that corresponds to the retarded action, and in addition, the time-point 

in question t  = t, at which the potentials are to be calculated. In that way, the second integral in 

the previous formula will drop out since the function 1/ [ ( )]R R c t t+ −  will remain regular inside 

of l . We further assume that the condition: 

 

| R | < | ( ) |c t t−      (25.a) 

 

is fulfilled for all time-points ( )t  that lie along l . Note that the inequality (25.a) will always be 

true for the two real points of l  (where that curve intersects the real axis), as long as the velocity 

of the electron remains smaller than the speed of light [see the inequality (1.a)]. That is why it 

seems possible to assume the validity of (25) for other complex points of l , as well. 

 Under that assumption (which might also be inapplicable, though), one develops the function 

1/[ ( )]R c t t+ −  into a series in increasing positive powers of / [ ( )]R c t t −  that converges (inside 

and on the curve l ). 

 One will have: 

1

[ ( )]R R c t t− −
 = 

1

( ) 1
( )

R
R c t t

c t t

 
− + − 

 = 
0

1
( 1)

( ) ( )

n

n

n

R

Rc t t c t t



=

 
−  

 − − 
  

= 
1

1 1
0

( 1)
( )

n
n

n n
n

R

c t t

−

+ +
=

−
 −

 , 

and correspondingly, from (25): 

 

Ak = 
1

1 1
0

1
( 1)

2 ( )

n
n k

n n
n

dxe R c dt

i c dt c t t

−

+ +
=

 
−

  −
  . 
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 If ( )F t  means any function that is regular inside of the integration curve then, as is known, 

one will have the formula: 

1

1 ( )

2 ( )n

F t dt

i t t +

 

 −  = 
1 ( )

!

n

n

t t

d F t

n dt
=

 
  

= 
( ) ( )

!

nF t

n
. 

 

 We then get the following (so-called Lagrange) series for Ak : 

 

Ak = 1

0

( 1) 1 1

!

n n
nk

n n
n

dxd
e R

n c dt c dt


−

=

−  
    
   ( )t t = , (26) 

i.e., the series: 

 = 
1

0

( 1) 1 ( )

!

n n n

n n
n

d R
e

n c dt

−

=

−



    ( )t t = ,         (26.a) 

for the scalar potential, and: 

A = 1

0

( 1) 1

!

n n
n

n n
n

d e
R

n c dt c


−

=

−  
 

  
 v   ( )t t =           (26.a) 

for the vector potential. 

 In those formulas, the quantities v and R, i.e., the velocity of the electron and its distance from 

the reference point P (x1, x2, x3) = P (r), refer to the same moment t  = t at which its action at P is 

calculated. 

 That action can then be treated formally as an instantaneous or momentary action-at-a-distance 

that is nonetheless completely equivalent to the retarded action-at-a-distance that was considered 

before and was expressed by formulas (3), (4). 

 The formal reduction of the actual retarded action-at-a-distance to a fictitious momentary one 

is obviously permissible for only those motions of the electron for which its velocity does not 

satisfy the condition (1.a), but also the condition that all of its derivatives with respect to time must 

remain finite and continuous. Moreover, the series (26) to (26.b) are generally unconditionally 

convergent only for sufficiently-small distances R. By contrast, it will seem to be divergent (or at 

best semi-convergent) for large distances. (The wavelength can then be regarded as the most-

natural unit of length for periodic motion, as was stated before in Chap. V.) Obviously, that is 

connected with the fact that our assumption above regarding the validity of the inequality (25.a) 

along the entire integration curve l  (which must initially include the two points t  and t) is not 

fulfilled, in general. 

 Formulas (26.a) and (26.b) are (in the corresponding domain of convergence) very convenient 

for investigating the interaction between two or more electrons, since they allow all of those 

electrons (just like in the ordinary mechanics of a system of material points) to be considered at 

the same moment, instead of introducing two different “effective” times for each electron-pair. 

One can also apply them to the consideration of the interaction between the various elements of 

the same electron (as long as the latter is treated as a spatially-extended structure). 

 If one restricts oneself to the first two terms in the series (26.b) then one will have: 
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A = 
2

e e

c R c

 
−v w        (27) 

 

(in which the primes on v and w = d v / dt have been dropped since those quantities refer to the 

moment t). 

 The second term in the series (26.a) is obviously equal to zero. If one considers the next term 

then one will have: 

 = 
2

2 22

e e d R

R c dt

 
+ . 

Now: 

dR

dt
 = − vR = − 

R

Rv
, 

and as a result: 

 
2

2

d R

dt
 = − 

2

1 d dR

R R dt R dt

 
− − 

 

Rv R R
v  = − R0 w + 2 2

0

1
[ ( ) ]

R
−v R v  . 

 

 We then get: 

 = 
2 2

0 02 2

1
1 [ ( ) ]

2 2

e e

R c c

  
+ − − 

 
v R v R w .          (27.a) 

 

 Note that the second terms on the right-hand sides of (27) and (27.a) represent (momentary) 

actions-at-a-distance whose intensities are completely independent of the distance. The omitted 

higher-order terms in (26.a) and (26.b) generally lead to action-at-a-distance that does not decrease 

with distance, but even increases, and indeed as a positive power of that distance. 

 Such momentary actions-at-a-distance that collectively replace the retarded actions-at-a-

distance that correspond to the potentials (3) and (4) are obviously merely mathematical fictions 

that would have no physical meaning whatsoever when taken individually. 

 According to the general equations: 

 

H = rot A and E = −  − 
1

c t





A
, 

 

formulas (27) and (27.a) will imply the following expressions for the magnetic and electric field 

strengths: 

H = 02

e

c R


v R        (28) 

(viz., the Biot-Savart law) and: 
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E = 
2

0
0 0 02 2 2 3

( )1
1 [ ( ) ]

2 2

e e e d

R c c R c dt

   
− − + + 

 

vR w
R w R w R .  (28.a) 

 

 Those approximate formulas deviate from the exact formulas (8) and (9) rather strongly. 

 The last term in the foregoing expression for E : 

 

E(3) = 
3

e d

c dt

 w
      (28.b) 

 

plays an important role in the theory of radiation, as we will see below. 

 

___________ 

 



 

CHAPTER SEVEN 

 

 ENERGY AND MOMENTUM FOR TIME-VARYING 

ELECTROMAGNETIC PHENOMENA. 

DYNAMICS OF ELECTRONS. 
 

 

§ 1. – The electric energy of a system of charges at rest. 

 

 As is known, the mutual (or “relative”) energy of two point-charges e  and e is expressed by 

the formula: 

U = 
e e

R


,      (1) 

 

in which R means the distance between the corresponding points P   and P, as always. 

 Since /e R  =  represents the potential of e  at the point P, and likewise e / R =   represents 

the potential of e at the point P  , one can also set: 

 

U = e  = e    = 1
2
( )e e  +  .    (1.a) 

 

 Those formulas can be easily generalized to the case of a system of arbitrarily-many charges 

e1, e2, …, en . Let those charges be originally concentrated at the points P1, P2, …, Pn . We now 

imagine that they are displaced from that configuration into the new one 1P  , 2P  , …, nP  . The work 

done by that, namely A, is defined to be equal to the algebraic decrease in the mutual potential 

energy of the charges in question, i.e., the electric energy of the system that they define. If one 

denotes the value of that energy in the initial and final configurations by U and U  , resp., then one 

will have: 

A = U − U  . 

 

The work done A is obviously composed of the individual contributions that originate in the action 

of each charge on the other ones. If one then denotes the work done by the force e exerts upon e 

by A then one will have: 

 

A = A
 

  = ( )A A 
 

+  = 1
2

( )A A 
 

+  . 

 

Now, the sum A + A is obviously the algebraic decrease in the mutual energy of e and e , i.e., 

the difference U − U
 . As a result, one will have: 

 

U − U  = U U 
    

−  , 
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i.e.: 

U = U
 

 , 

or from (1): 

U = 
e e

R

 

  

  = 1
2

e e

R

 

  

 .         (2) 

 

If we now introduce the potential at the point P where the th charge is found that is generated by 

all other charges: 

   = 
e

R



  

                 (2.a) 

 

then we can represent the energy U in the form: 

 

U = 1
2

1

n

e 




=

 .               (2.b) 

 

 One can now transform that energy expression in an entirely-different way that will have 

fundamental significance in what follows: 

 Let  and E be the potential (electric field strength, resp.) of the th charge at any point P, 

while   and 
E  are the contributions at that point that originate in all of the other charges (   = 

 – , 
E  = E – E). One has   =   at the point P where the charge e is found. Moreover, 

let S be a surface that includes all of those charges. By means of the formula: 

 

1
( )

4
n dS

  E , 

one will get: 

e   = 
1

( )
4

n dS 




 E  = 
1 1

( ) [( ) ]
4 4

n ndS dS     
 

 − − E E . 

 

We use Gauss’s theorem to transform the last integral into: 

 

[( ) ]n dS   − E  = div( ) dV   −  E  = ( )div [ grad ( )]dV dV        − +  − E E . 

 

Since div E = 0 outside of the point P , while: 

 

div dV E  = ( )n dS E  = 4 e 

has a finite magnitude, we will have: 
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( )div dV   − E  = 0 . 

Moreover, we have: 

grad ( ) −  = grad   = − 
E  , 

and as a result: 

grad ( ) dV   − E  = − dV 
E E . 

 

We then come to the following formula: 

 

U = 1
2

e 


  = 
1 1

( )
8 8

n

dS dV   
 


 

 
 + 

 
  E E E , 

 

or when the surface S is shifted to infinity, which will make the surface integral vanish (since 

  E  decreases in inverse proportion to the third or higher power): 

 

U = 
1

( )
8

dV 


 E E  = 
1

4
dV 

  

 E E .    (3) 

 

 As one approaches each of the points P ( = 1, 2, …), the corresponding field strength E 

will become infinite, and indeed in inverse proportion to the square of the distance l from P . 

However, since the size of a very small volume V that includes P is proportional to the third 

power of its linear dimensions, the integral  E dV must vanish as V → 0. In fact, if one 

introduces an infinitely-small solid angle d  with its vertex at P, along with the distance l, 

then since dV = 2l d dl   and E = 2/e l  , one will have: 

 

E dV   = e dl d    = 1/3[ ]e V   ,          (3.a) 

 

in which the symbol [A] means a number with the same order of magnitude as A. One will then 

have E dV   → 0 as V → 0 . That explains the fact that the integral (3) keeps a finite value 

despite the fact that the quantity E will become infinite at the individual points. 

 When we recall that 
E = E – E , we will have: 

 

( ) 


 E E  = 2 2E 
 

 
− 

 
 E E  = 2 2E E



− . 

 

We can correspondingly write the formula (3) as follows: 
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U = 2 21 1

8 8
E dV E dV

 
−   .        (4) 

 

However, that representation of the energy makes no sense since the integrals 
2E dV  and 

2E dV  

are infinite when taken individually. For example, from (3.a), we have: 

 

2E dV   = 
2

2

dl
e d

l


 



  = 2 1/3[ ]e V 

−  →  .   (4.a) 

 

 We now imagine a continuous distribution of electricity inside of a finite volume V0 with a 

finite volume density  instead of a system of point charges. If we let E denote the electric field 

strength that originates in the electric charge e =   dV   V that is contained in the very small 

volume V then the integral
2E dV   must not become infinitely large as V → 0 but become 

infinitely small. In fact, if the charge e were concentrated at a point P (which would not alter the 

integral 
2E dV   appreciably) then, from (4.a), we would have: 

 
2E dV   = 2 5/3[ ]V  → 0     (4.b) 

 

upon contracting V to P . The order of magnitude of the integral 
2E dV 

 , which extends over 

the whole volume V0, except for V (V
  = V – V), must obviously be infinitesimal of order higher 

than (4.b) (since one has 
2E dV 

  = 2 2 1/3

0[ ][ ]V V ). We will then have: 

 
2E dV  = 2 5/3[ ]V  , 

 

and as a result, when the volume V is subdivided into elementary volumes of the same size (or 

order of magnitude): 

2E dV


  = 
2 5/30 [ ]

V
V

V





 
 
 

 = 2 5/3

0 [ ]V V  → 0 .   (4.c) 

 

 One will also arrive at the same result for the case of the distribution of electricity over a 

surface S0 with the finite surface density . If one subdivides S0 into infinitely-small surface 

elements S that might contain infinitely-small volume elements V of the same linear dimensions 

then in place of (4.b), one will have: 

 
2E dV   = 2 2 1/3[ ][ ]S V  −  = 2 4/3 1/3[ ][ ]V V  −  = 2 [ ]V ,         (4.d) 

and instead of (4.c): 
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2E dV


  = 
2 0[ ]

S
V

S





 
 
 

 = 2 1/3

0 [ ]S V  → 0 .   (4.e) 

 

However, it must be emphasized that with a distribution of electricity along a line 0 with finite 

linear density  
de

d

 
= 

 
, the sum 

2E dV


  will remain finite as  → 0 and V → 0, and indeed 

with the order of magnitude 2

0  . 

 We then see that with a continuous distribution of electricity with finite volume or surface 

density (but not linear density!), the mutual electric energy of the infinitely-small charge elements 

that are found in the infinitely-small volume (surface, resp.) elements of the system considered can 

be expressed by the integral: 

U = 21

8
E dV

  .     (5) 

 

That result will also be valid for infinitely-small charged volumes V0 or surfaces S0 as long as the 

total charge   dV0 (   dS0, resp.) is finite. 

 From the formula (5), one can treat the electric energy as a spatially-localized quantity, say, of 

the same type as the electric charge (in the case of the volume distribution). In that way, one can 

show that the total energy 
2

8

E
dV


 is stored in the volume element dV, i.e., that the energy is 

distributed in space with the volume density: 

 

 = 
2

8

E


.             (5.a) 

 

In that way, the “volume density” of energy at each point is determined by the corresponding 

resultant field strength. 

 We would now like to transform formula (5) “in reverse,” i.e., reduce the energy that it 

represents into the form that corresponds to our original formula (26) for the mutual energy of a 

system of point charges. 

 To that end, we shall first perform the integration that was suggested in (5) over a bounded 

volume (V). In so doing, we would like to confine ourselves to the case of a volume distribution. 

That will then give div E = 4  , and as a result, due to the identity: 

 

div  E =  div E + E grad  , 

and the relation E = − grad  : 

 
2E  =  div E – div  E = 4   – div  E . 

 

When one denotes the surface that bounds the volume V by S, one will have: 
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2

( )

1

8
V

E dV
  = 

( )

1 1

2 8
n

V

dV E dS  


−  . 

 

 We now shift S to infinity. In that way, the surface integral will vanish (as long as the electric 

charge is still distributed over finite points), so from (5): 

 

U = 1
2

dV  .     (6) 

 

 For a surface distribution of electricity, one will get: 

 

U = 1
2

dS                (6.a) 

 

by an entirely-analogous transformation of (5) using equation (23.b) in Chap. IV. Those formulas 

seem to correspond completely to formula (2.b) on first glance. However, in reality, there is a very 

crucial difference between them. That difference already asserts itself in the fact that the energy 

that is defined by (6) and 6.a) must always be positive [since the aforementioned formulas are 

identical to (5)], while the energy of a system of electric point charges will prove to be positive or 

negative according to whether the charges with the same or opposite signs lie closer to each other, 

resp. 

 The quantity  that enters into the formula (2.b) represents the potential at the point P of all 

charges, except for the charge e, which is itself found at P . By contrast, the quantity  in formula 

(6) [or (6.a)] means the total value of the potential at the point in question, so the value that 

originates in not just the charges “at a distance,” but also in the charge that belongs to that point. 

Due to the assumed finitude of the charge density  (, resp.), the aforementioned charge will 

actually be equal to zero. More precisely: The part of the potential at any point P in a volume 

element V that originates in the charge  V (or  S) that is found inside of it is an infinitely-

small quantity of order 2/3V  ( 1/3V , resp.). For that reason, there is no difference in practice between 

the total value  of the potential at V and the value   that is required by the charges that lie 

outside of V . 

 The formula (2.b) corresponds to the case in question of the sum 1
2

V   , which 

represents the mutual energy of the elementary charges that are found in the infinitely-small 

volume element. However, that sum will drop off, together with the integral (6), in the limit as V 

→ 0. One can then define that the integral to be the mutual electric energy of the various infinitely-

small elements of the electric charge. However, one can also refer to it as the total electric energy 

of the system in question since the sum of the “internal” energies of the individual charge elements 

(i.e., the “mutual” energy of the even-smaller elements of which they are composed) will vanish 

in the limit. 

 The fact that the energy that is represented by (6) and (6.a) is always positive is explained by 

the fact that in that way the closest element of electric charge, which contributes the most to the 

“mutual” energy of the whole system, due to the (presumed) continuity of the density function  
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(or ), must have the same sign. By contrast, in the case of a system of point charges, those closest 

charges might just as well possess the opposite sign to it (see above). 

 That analysis shows that a crucial principal difference exists between systems of point charges 

(“point-like electrons”), on the one hand, and the continuous distributions of electricity with a 

finite volume or surface density in regard to the concept of energy (1). That difference has its 

physical roots in the form of the fundamental (viz., Coulomb) law of electrostatic interaction. For 

example, if the force of attraction or repulsion between two charges were not inversely 

proportional to the square of the distance between them, but directly proportional to the first power, 

then an irreducibility of the aforementioned type would not exist between point-systems and 

continuous distributions. 

 That irreducibility asserts itself most clearly in the fact that the representation of energy in the 

form (5), in which it appears in the form of a “quasi-material” quantity with volume density that 

is determined from the resultant electric field strength according to (5.a), is impossible for a system 

of point-charges and must be replaced with the original representation (3) in which the elementary 

field strengths that originate in the individual point-charges appear explicitly. 

 We will represent the electric energy of a system of electrons at rest by the formula (5) 

accordingly. That energy is obviously composed of two parts, and indeed, they would be the mutual 

energy of the various electrons and the “internal” energy of the individual electrons, i.e., the energy 

of interaction of the infinitely-small elements of each individual electron. We would like to denote 

the first type of energy by 
gU  and the second one by the sum U



 , in which the index  (= 1, 

2, …) should refer to the individual electrons. We will then have: 

 

U = gU U


+  .              (7) 

 

The cited subdivision of the “total” energy U corresponds to the splitting of the integral (5) that 

the identity: 

2E  = 

2




 
 
 
E  = 

2( ) E  
  

+ E E  

 

implies, which splits it into the following sub-integrals: 

 

21

8
E dV

   = 
21 1

8 8
dV E dV  

   

+  E E , 

 

in which one obviously has: 

 
gU = 

1

8
dV 

  

 E E                (7.a) 

and 

 
 (1) We will overlook the case of a finite linear density in what follows. 
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U = 21

8
E dV

  .     (7.b) 

 

Formula (7.a) is externally identical to our original formula (3) for the mutual energy of a system 

of point-charges. However, the elementary field strengths E must actually be different from the 

usual Coulomb expressions for point-charges, at least inside the electrons. 

 If one considers the electron to be a ball of radius a on whose surface or in whose interior the 

electron charge e (we shall drop the index ) is distributed uniformly, and indeed with a surface 

density of  = 
24

e

a
 (volume density of  = 

3

3

4

e

a
, resp.), then one can state the following: 

“Outside of” the electron, its electric field will coincide with the field of a point-charge of the same 

magnitude that is concentrated at its center (cf., Chap. IV, § 5). Now, as far as the “electron interior” 

is concerned, one must distinguish between the aforementioned two cases. Indeed, the electric field 

strength inside of the ball must vanish in the case of a uniform surface charge. By contrast, if the 

charge is distributed uniformly over the entire volume of the ball then the electric field strength E 

at a distance r from the center will depend upon only the charge that is found inside of a ball of 

radius r. In that way, that charge will obviously act as if it were concentrated at the center of the 

ball. In the case considered, one will then have: 

 

E  = 
3

2

4

3

r

r

 
 = 

4

3
r


  = 

3

er

a
 

 

for r < a. We can now calculate the “internal,” or proper, energy of our electron by means of the 

formula (7.b) (1). In the case of the surface-charged electron, that will give U = 
2

4

1

8
r a

e
dV

r



=

 , i.e., 

with dV = 
24 r dr : 

U = 
2

2

e

a
.      (8) 

 

For the volume-charged electron, one will get: 

 

U = 
2 2

2

6 4

0

1 1

8 8

a

a

e e
r dV dV

a r 



+  , 

i.e.: 

U = 
23

5

e

a
.      (8.a) 

 

 
 (1) Obviously, one can also employ the formula (6) or (6.a) in order to do that. 
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 It should be noted that the proper energy of an electron, i.e., the mutual energy of the infinitely-

small elements of its electric charge, represents the work that must be done by the forces of 

repulsion between those elements when they fly off to infinity, so when the electron explodes. 

However, insofar as such an explosion seems to be impossible, and as long as the structure of the 

electron remains invariable, its proper energy will generally play the role of only an inessential 

additive constant in the expression (7) for the total energy of a system of electrons. Thus, when 

one considers the electrostatic interactions, it is irrelevant in practice whether one calculates with 

the total or only the mutual energy of the electrons. However, we will see that the state of affairs 

will be entirely different as soon as one passes from the rest state of the electron to a state of 

motion. 

 

 

§ 2. – The magnetic energy of electric currents. 

 

 In § 2, Chap. V, we saw that the mutual magnetic energy T of two linear currents, which is 

defined to be the quantity whose decrease under any change in the configuration of the current 

lines or current strengths would be equal to the total work done by the transverse 

(“ponderomotive”) and longitudinal (“electromotive”) forces, is expressed by the formula: 

 

T = ni H dS  = ni H dS
    = T  ,    (9) 

 

in which H means the magnetic field strength that is due to i , and nH dS  =  means its flux 

through the current line  (i) . The quantities H and  nH dS
   =  have the same meanings for 

the second current line ( )i  . If one introduces the corresponding vector potentials A and A 

instead of the magnetic field strength then, from (20.b), Chap. III, the energy T = T   can be put 

into a form that is symmetric in the two current lines, namely: 

 

T = Li i ,           (9.a) 

with 

L = d d
R

 
 


  .          (9.b) 

 

The formula (9.a) is entirely analogous to the formula (1) for the mutual electric energy of two 

point-charges. The current strengths in it play the role of charges (e or e , resp.), and the coefficient 

L plays the role of the inverse distance between the latter. That coefficient, which depends upon 

only the relative positions of the two current lines, is called the coefficient of mutual induction. 

From (9.a), it can be defined to be the mutual magnetic energy of the current in question when the 

current strength is unity (i = i  = 1). One can also define it to be the magnetic flux that links a 

current line as a result of the presence of the other when the current strength in the latter one is 

equal to 1. In fact, for arbitrary current strengths, from (9) and (9.a), one will have: 
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 = i L ,  = i L .        (9.c) 

 

It should be observed that the formula (9) can be written in the form: 

 

T = i  = i   = 1
2
( )i i  +  . 

 

Upon comparing that with (1.a), it will follow that the magnetic flux plays the same role for the 

magnetic energy of linear currents that the scalar potential does for the electric energy of point-

charges. The result above can be generalized to a system of arbitrarily many linear currents, and 

indeed in the same way as what was done in the case of a system of point-charges that was treated 

above. Due to the analogy between electric and magnetic quantities that was just described, with 

no further analysis, we can then set: 

 

T = L i i  
 

  = 1
2

L i i  
 

 ,          (10) 

 

in conjunction with (2), or correspondingly: 

 



  = L i 
 

                (10.a) 

and 

T = 1
2

i 


  ,            (10.b) 

 

in conjunction with (2.a) and (2.b). The 

  in that means the magnetic flux through the current 

line  that is created by the other current lines. That flux is obviously equal to the algebraic sum 

of the fluxes  = L i , The coefficients of induction are determined by formulas of type (9.b) 

and satisfy the symmetry condition: 

L  = L . 

 

 We would now like to turn our attention from linear currents, which represent a mathematical 

fiction, to stationary currents that circulate in the interior or on the outer surface of any sort of 

body (say, a metal conductor). The generalization of the concept of energy to that case comes about 

in the following way: We imagine that the electrical current in question is subdivided into 

infinitely-thin closed current filaments (which is always possible for stationary currents). We treat 

those elementary current filaments as linear currents and define the limit of their mutual energy 

according to (10.b) to be the total magnetic energy in the system of currents under consideration. 

 The magnetic flux 

  = dS  



H n  can be represented in the form 

  = d   

A   by 

introducing the corresponding vector potential 

H  ( 

H  = rot 

A ). Moreover, in the case of a 

current distribution with a finite volume density j, one can replace i  d with j dV , where 



208 Chapter Seven – Electromagnetic Energy and Momentum. Dynamics of Electrons. 

 

dV means the volume element that is equivalent to the element d of the current line that 

represents it. From (10.b), one will then have: 

 

T = 1
2

dV 


A j . 

 

In the limit of infinitely-small cross-sections of the elementary current filaments, the contribution 

of the vector potential, which is itself generated by each of those current filaments, will vanish, as 

is easy to see. For that reason, in the passage to the limit that was suggested, we can replace the 

“mutual” potential 


A  that appears in the foregoing formula with the total vector potential A at 

the point in question. Since the subdivision of the electrical current into individual filaments would 

become absurd then, and the combination of the volume integration over a current filament ( dV) 

with the summation over all current filaments would be equivalent to an integration over the total 

region that the current goes through, we would get: 

 

T = 1
2

dVAj .     (11) 

 

For the case of a surface-distributed current, that will give: 

 

T = 1
2

dSAk                (11.a) 

 

in the same way, in which k means the (finite) surface density of the current. Thus, the vector 

potential at any external or internal point will be determined by (20), Chap. III to be: 

 

A = 
dV

R

 


j
             (11.b) 

or 

A = 
dS

R

 


k
,             (11.c) 

 

resp. As a result, one can represent the magnetic energy of the electrical current in question in the 

form of a double integral over the spatial region that the current flows through, namely: 

 

T = 1
2

dV dV
R


 

jj
        (12) 

for the volume current and: 

T = 1
2

dS dS
R


 

kk
     (12.a) 

for the surface current. 

 One can get those expressions directly by applying the formula (23) that was exhibited in § 6, 

Chap. III for the “effective” mutual energy of two moving point-charges. That is because if one 
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switches the sign in that formula, corresponding to the general relation (5), Chap. V, then one will 

get an “effective” elementary magnetic energy for the charges in question: 

 

T = 
1 e e

R c c

 


v v
.     (12.b) 

 

That energy can be defined in the spirit of an “effective” mutual energy, as in the case of stationary 

or quasi-stationary currents in closed current filaments, so the sum of the expressions (12.b) over 

all charge-pairs that are found in different current filaments must give the correct expression for 

the mutual magnetic energy of those current filaments. By contrast, no summand of the type (12.b) 

has any immediate physical meaning since the electromagnetic forces that act between two moving 

point-charges cannot be derived from any energy function. The formula (12.b) is completely 

analogous to the corresponding formula (1) for electrostatic energy. Its generalization for arbitrary 

current systems, and especially to ones with continuous volume or surface distributions, then 

comes about in the same way as the corresponding generalization of (1). One thus proves the 

admissibility of the replacement of the mutual potential 

A  with the total one A that was made 

above. We can further assert that such a replacement would be impossible in the case of linear 

currents with finite current strengths, i.e., with finite “linear density” of the electrical impulse. 

 In the case of a stationary volume current that can be characterized by the relation rot H = 

4 j , the formula (11) can be transformed into the corresponding formula (6) for the electric 

energy in the same way. Indeed [from formula (25), Introduction], we will have: 

 

A j = 
1

4
A rot H = 

1

4
div (H  A) + 

1

4
H rot A , 

 

i.e., due to the fact that H = rot A : 

A j = 
1

4
div (H  A) + 21

4
H


, 

and as a result: 

T = 1
2

dVAj = 2

( )

1 1
( )

8 8
V

dS H dV
 

 + H A . 

 

If one shifts the outer surface S to infinity and correspondingly extends the volume integral over 

all of space then that will give: 

T = 2

( )

1

8
V

H dV
  .     (13) 

 

That formula can also be obtained from (11.a) [by means of relation (23), Chap. IV]. However, 

one must observe that it will lose all meaning in the case of a system of linear currents, just like 

the corresponding formula (5) in § 1 for continuous distributions of electric charge with finite 

linear density. 
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 For a system that consists of two or more filamentary currents (e.g., in metal wires) that are 

separate from each other, the energy T decomposes into the mutual magnetic energy of those 

currents i ( = 1, 2, …): 

 

gT  = 
1

8
dV 

  

 H H  = 
1

4
dV 

  

 H H ,      (13.a) 

 

and the “internal” or “proper energy” for each of them: 

 

T = 21

8
H dV

  .     (13.b) 

 

In that way, the expression (13.a) will also exist for linear currents, while the expression (13.b) 

will become infinite in that case. 

 Since the “elementary field strengths” H are proportional to the corresponding current 

strengths, one can write gT  in the form: 

 
gT  = 1

2
L  

 

 i i , 

 

which agrees with the formula (10). The coefficients of mutual induction L then depend upon 

only the configuration and form of the current filaments. One can easily convince oneself that in 

the limiting case of infinitely-thin current filaments, the new (general) expression for the 

coefficients of mutual induction: 

L = 
1

4
dV 

 H H   (i = i = 1)          (14) 

 

can be reduced to the original form (9.b). Rather, we define the coefficients of self-induction of the 

individual currents (or more precisely, current conductors) in a manner that corresponds to (14). 

Namely, if we set: 

 L = 21

4
H dV

    (i = 1) 

 

then that will give the following expression for the “proper energy” of the current i : 

 

T = 21
2

L i  .           (14.a) 

One can accordingly define the quantity: 

 = L i 

 

to be the magnetic “self-flux” of the current in question. However, the latter can by no means be 

regarded as linear in form, not even approximately, so that concept will lose the sharpness that it 
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gave to the original definition that related to the mutual energy of linear currents. The magnetic 

flux of the current () through the current filament () that is defined by the formula: 

 

 = L i ,            (14.b) 

 

in conjunction with (14), can be represented in the form of the surface integral dS  H n  only 

approximately for a vanishingly-small cross-section of that filament. 

 In essence, the proper energy of an electric current T = 21
2

Li  (we will drop the index  in what 

follows) is nothing but the mutual magnetic energy of the infinitely-thin current filaments into 

which the current in question can be decomposed. From what was said in § 2, Chap. V, that energy 

is equal to the work that must be done against the forces of mutual electric induction that are 

created by the simultaneous increase in the elementary current strengths in the individual sub-

filaments when the current strength rises from zero to i. Those elementary forces of induction can 

be combined into a total electromotive force that will be given by the expression: 

 

 = − 
1 d

c dt


 = − 

1 di
L

c dt
            (15) 

 

in the limit. It corresponds to a scalar potential difference of the same magnitude (in electrostatic 

units), such that an amount of work equal to  c i dt = 
di

L i dt
dt

 = L i di would be required in order 

to overcome it. Integrating that expression will, in fact, give the magnetic energy of the current in 

question 21
2

Li . 

 

 

§ 3. – The electromagnetic theory of mass. 

 

 The analogy between the magnetic energy of a current loop that is defined and expressed in 

that way with the usual kinetic energy of a material particle comes to mind. In that way, the current 

strength corresponds to the velocity of the particle v and the coefficient of self-induction 

corresponds to its mass m. The force of self-induction (15) is completely analogous to the “inertial 

force”: 

− 
d

m
dt

v
 = − m w , 

 

that must be overcome under an acceleration of the particle. 

 The analogy will be converted into an identity when we consider the translational motion of a 

body that carries a charge that is distributed over its surface or throughout its volume instead of a 

closed current loop. 

 Imagine, e.g., a rigid spherical electron in a state of uniform rectilinear motion with a velocity 

v. Since that motion is not stationary, strictly speaking, one cannot apply the concept of magnetic 
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energy to case in question. Nonetheless, if one attempts to calculate the corresponding magnetic 

energy T then that will give: 

T = 
2

2

v
U

c
, 

 

based upon the formula (12.b), in which U means the electric energy of the electron in the rest 

state. That expression is identical to the kinetic energy of a particle with a mass of: 

 

m = 
2

2U

c
. 

 

However, one must observe that the formula (12.b) is certainly inapplicable in the present case. 

That is why we would like to calculate the energy T by means of the formula (13). (Later on, we 

will see that it is valid in general.) In regard to that, one should note that the relation: 

 

H = 
1

c
v  E , 

 

which exists between the magnetic and electric field strengths of a point-charge in uniform 

rectilinear motion, according to (13.b), Chap. VI, must obviously be true for the corresponding 

resultant field strengths of any system of electric charges that moves with the same constant 

velocity, as well. One must then have: 

 

2H  = 2 2 2

2

1
{ ( ) }E v

c
− Ev , 

 

and as a result, from (13) and (5), one will have: 

 

T = 
2

2

2 2

1
( )

8

v
U dV

c c
−  Ev .             (16) 

 

 In the case considered (viz., an electron with a spherically-symmetric distribution of charge), 

the electric field must also be spherically or radially-symmetric in the rest state, and approximately 

so for small velocities of motion (v  c). If one then denotes the angle between v and the radius 

vector r of the volume element (relative to the center of the electron) by  then | E v | = cos ,E v 

and as a result: 

2

2

1
( )

8
dV

c  Ev  = 
2

2 2

2

1
cos

8

v
E dV

c




 
 
 

  . 
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The 
2cos   in that means the mean value of cos2  over all directions of r. It is known that one has 

2cos   = 1
3

, such that from (16), one will have: 

 

T = 
2

2

2

3

v
U

c
.          (16.a) 

 

That expression is then calculated to be one-third smaller than the previous one, and corresponds 

to an electromagnetic mass of: 

m = 
2

4

3

U

c
,        (16.a) 

 

i.e., m = 
2

2

2

3

e

a c
, in the case of the surface charge, and m = 

2

2

4

5

e

a c
 in the case of the volume charge 

[cf., (8) and (8.a)] 

 One can convince oneself of the validity of that formula (1) directly by calculating the force of 

electric induction with which the electron must act upon itself under an accelerated motion. We 

saw in Chap. VI, § 2, that for low speeds, the part of its electric field strength that depends upon 

the acceleration of a point-charge is expressed by: 

 

d E(2) = − 0 02
{ ( ) }

de

c R


 −w R w R  .      (17) 

 

 It will follow from that this that the force with which an infinitely-small element de  of the 

electron acts on another one de can be represented by the product of the mutual electrical energy 

of the two elements 
2

dede

c R


 with the vector – {w − (R0 w) R0} (we drop the prime and consider 

the interaction of the various elements of the electron to be instantaneous, cf., infra, § 3), and 

divided by 
2c . Upon summing that product over all elements de and  de , one will obviously get: 

 

− 0 02

2
{ ( ) }

U

c
−w R w R  , 

 

in which 
0 0( )R w R  means the mean value of the vector (R0 w) R0 for various directions of the 

radius vector R (R0 = R / R) that points from de  to de. Due to the spherically-symmetric 

structure of the electron, the component of the vector 
0 0( )R w R   that is perpendicular to w must 

vanish. By contrast, one will get:  

 

 
 (1) For small velocities. We will derive the formulas that are valid for arbitrary velocities later on.  
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0 cosR w  = 2cosw   = 1
3

w , 

 

for the component that is parallel to it, when the angle between R0 and w is denoted by  . 

 The desired “force of self-induction” that is required by the acceleration of the electron is then 

expressed by the formula: 

F = − 
2

4

3

U

c
w .              (17.a) 

 

As a result, that force is identical (at least formally) to the usual force of inertia of a particle of 

mass (16.b). 

 It should be noted that the part of the electric field strength that was overlooked in the foregoing 

calculation, just like the force that is implied by the magnetic field strengths, must make no 

contribution to the resultant “self-force” when one (doubly) sums over all elements of the electron. 

Therefore, that “self-force” must vanish for an electron in uniform, rectilinear motion. 

 The result above (1) defines the foundation for the so-called electromagnetic theory of mass. 

According to that theory, the mass of an electron is not a primitive property (like, say, its charge), 

but a property that is determined by the formula (16.b). The mass of an electron can then be defined 

to be its coefficient of self-induction. 

 The actual physical sense of that statement consists of the assertion that under an (accelerated) 

motion of the electron, the external force F(a) that acts on it must be compensated by the 

corresponding self-force F at each moment. The equation of motion of an electron in a given 

external electromagnetic field can be exhibited using that equilibrium principle, or even better, 

principle of motion, which goes back to H. A. Lorentz. If one then sets: 

 

F + F(a) = 0 ,             (17.b) 

 

in general, and one employs the expression for F(a) (= − m w) that follows from (17.a) and (17) 

then one will get the known Newtonian equation of motion: 

 

m w = F .           (17.c) 

 

It will follow from this that since the cited expression for the self-force presents only an 

approximate value for small speeds, the equation of motion above will also be inaccurate, and must 

be replaced with a more-complicated equation for high speeds, in any event. 

 Since the charge and mass of the electron can be established experimentally, under certain 

assumptions about its “structure” (i.e., the charge distribution), it is possible to assess its geometric 

dimensions. The simplest assumption, namely, that the electron is a rigid ball with a uniformly-

distributed surface or value charge, will give the radius of that ball in the case of negative electrons 

(e = − 4.77  10−10, m = 9.8  10−27 g) as: 

 
 (1) Which was exhibited for the first time by J. J. Thomson.  
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a  2  10−13 cm, 

 

and in the case of positive electron or “protons” (e = + 4.77  10−10, m = 1.7  10−27 g): 

 

a  2  10−16 cm. 

 

Finally, it should be observed that the mass of any system of electrons, e.g., an atom or material 

body, is generally different from the sum of the masses of those electrons, in general. That is 

because one must then turn one’s attention to the “mutual masses” of the individual electrons, 

along with their “proper masses.” That mutual mass of the various electrons is analogous to the 

coefficients of mutual induction of different currents. It will correspond to the mutual magnetic 

energy or the force of mutual induction that must appear when the system of electrons in question 

moves uniformly (accelerates, resp.) as a whole. According to (16), its order of magnitude is equal 

(1) to the mutual electric energy of the various electrons, divided by 2c , i.e., the square of the speed 

of light. As long as the distances between the electrons remain large in comparison to their 

dimensions (i.e., radii), their mutual mass must also be small in comparison to the sum of their 

proper masses. We would like to emphasize once more that, according to the electromagnetic 

theory that was sketched out here, the proper mass of an electron can be represented as the mutual 

mass of the mutually-inseparable elements into which one imagines that the electron can be 

subdivided. 

 Strictly speaking, there is no such thing as a “proper” mass, but only a mutual mass. The 

concept of mass has no simple and direct relationship to the concept of matter, but only to energy. 

Namely, matter is nothing but a collection of electrons, which are regarded as indestructible and 

invariable things. However, the mass of a material body is, in part, a variable, and at the same time 

non-additive, quantity that depends upon the relative configuration of the electrons that comprise 

that body, and indeed in the same way as its mutual electric energy. That accordingly raises the 

question of the localization of mass. Obviously, that question must be resolved at the same time as 

the question of the localization of energy. 

 Insofar as the electromagnetic energy of a system of electrons can be expressed as a function 

of their reciprocal distances (and possibly also their velocities), one cannot speak of such a 

localization. However, we have seen that in the case of time-constant electric and magnetic fields, 

the “total” energy can be regarded as a “quasi-material” quantity that is distributed over all space 

with the volume density 21

8
E


 ( 21

8
H


, resp.). Now, we would like to try to generalize that 

representation of the electromagnetic energy as a quasi-material, spatially-localizable quantity to 

arbitrary time-varying phenomena. 

 

 

 

 

 (1) One observes that the formula (16), just like the fundamental relation H = 
1

c
v  E, must be true for not only 

an isolated electron, but for arbitrary electric systems that move uniformly and rectilinearly as a whole.  
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§ 4. – Electromagnetic energy and radiation. 

 

 We shall consider a system of electrons that might move in a completely-arbitrary way and 

characterize them by an initially-arbitrary spatial distribution of electric charge and impulse with 

a finite volume density  (j, resp.). We can then set: 

 

j = 
c


v

             (18) 

 

(cf., § 1, Chap. VI) and correspondingly write the conservation of electricity in the form: 

 

t




+ div  v = 0 .     (18.a) 

 

 In order to obtain a definition of energy that is generally valid, we must return to the source of 

that concept, so we must consider the work that is performed by electric and electromagnetic 

forces. Therefore, we will consider not only the “external” forces that act upon an electron as a 

result of the other ones, but also the corresponding self-forces. In other words, we will understand 

the total force to mean the force d F that acts upon a charge de =  dV that is found in the volume 

in element dV, including the part that originates in the neighboring elements of the electron in 

question, and mainly in the element  dV itself. (However, the latter must vanish in the limiting 

case dV → 0.) 

 We will correspondingly consider the total electric and magnetic field strengths, which are 

coupled with  and j by the equations: 

 

div E = 4  ,  rot H − 
1

c t





E
 = 4 j . 

 

 The force that acts upon the charge de =  dV is expressed by the formula: 

 

d F = 
1

de
c

 
+  

 
E v H  .          (18.b) 

 

We will get the work that it does during the time dt by internally multiplying d F by the 

corresponding displacement of the charge element v dt in question. That work is then equal to: 

 

d F v dt =  E v dV dt 

 

since the product (v  H) v vanishes. (The electromagnetic force always “does no work”.) If we 

denote the work done per unit volume and time by l then we will have: 
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l =  E v , 

or from (18): 

l = c E j .            (19) 

 

We shall now replace j with 
1 1

rot
4 c t

 
− 

 

E
H  in that expression and add the conjugate 

expression: 

l
 = − 

1
rot

4

c

c t

 
+ 

 

H
H E             (19.a) 

 

to it, and according to (49.a), Chap. V, that would represent the work done by the magnetic forces 

for non-vanishing “magnetic” current density j. However, j is, in fact, zero, and as a result, so is 

l
, such that adding l

 would be pointless. (However, it does allow us to put the work in question 

into a symmetric form that is easy to transform in the desired way.) We then have: 

 

l = l + l
 = 

1
rot rot }

4 4

c

t t 

  
− − + 

  

E H
E H H E E H{  , 

i.e.: 

l = − 
2 2

div ( )
4 8

c E H

t 

 +
 −


E H .    (19.b) 

 

If one now multiplies that equation by dV and integrates over a volume (V) that is bounded by the 

surface S then the work done per unit time for the total volume A =  l dV will be: 

 

A = − n

dW
K dS

dt
−  ,     (20) 

in which one sets: 

W = 2 21
( )

8
E H dV


+     (20.a)  

and 

K = 
4

c


E H .            (20.b) 

 

 From the results of the previous section, the quantity W can be interpreted as the 

electromagnetic energy that is stored in the volume V. The interpretation corresponds completely 

to the role that W plays in the general formula (20). That is because if we imagine, for the moment, 

that the surface integral  Kn dS vanishes then formula (20) will mean that the work K will be done 

at the expense of the quantity W. However, that is precisely the characteristic feature of energy. 

 In general, the integral nK dS  will still remain non-zero when we displace the surface S to 

infinity. By contrast, the work done A when the motion of the isolated electrons takes place in such 
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a way that the external force that acts upon each of them will be cancelled by the corresponding 

self-force [cf., (17.b)] and will vanish for an arbitrary closed surface that does not intersect any 

electron. If we then assume that this Lorentzian principle of motion is valid then equation (20) will 

reduce to: 

− 
dW

dt
 = nK dS .     (21) 

 

It should be pointed out that the Lorentzian principle has no direct relationship to equation (20). 

That equation can always be reduced to the form (21) in any event when no electrons at all are 

inside of the surface S. 

 The equation (21) is completely analogous to the equation: 

 

− 
d

dV
dt

   = nc j dS  

 

(Chap. II, § 2), which expresses the principle of conservation of electricity. In that way, the charge 

density  will correspond to the energy density: 

 

 = 2 21
( )

8
E H


+ ,     (21.a) 

 

and the current density c j = J (in electrostatic units) will correspond to the vector K. That is why 

it is reasonable to treat electromagnetic energy as a type of substance (in the same way as 

electricity) and to regard equation (21) as the statement of the principle of the conservation of the 

substance. One correspondingly refers to the vector K as the density of energy current. If the 

analogy between energy and electricity were complete then a relationship of the form: 

 

K =  E          (21.b) 

 

would have to exist between K and , which would correspond to the relation (18) between J and 

. In that way, the vector E would have the meaning of the velocity of the energy current at the 

point in question. Obviously, such a vector can always be defined to be simply the quotient of K 

by . However, one must ask whether, and to what extent, it can be assigned any sort of physical 

meaning. That is also closely connected with the question of whether, and to what extent, the 

“substance picture” for electromagnetic energy that was depicted above is permissible. 

 In order to resolve that question, we would like to calculate the vector K for the simplest case 

of the electromagnetic field of an elementary oscillator. In that way, we will initially consider only 

the field in the wave zone, so we will identify E and H with the field strengths E(2) and H(2) that 

are determined by the formulas (31) and (32) of Chap. V. By means of the relations: 
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H = R0  E, E = H  R0 ,     (22) 

 

we will immediately get from (20.b): 

 

K = 2

0
4

c
E


R  = 2

0
4

c
H


R  = 

2 2

0
8

E H
c



+
R .   (22.a) 

 

It will follow upon comparing (21.a) with (21.b) that: 

 

C = c R0 .           (22.b) 

 

In the present case, that velocity C is nothing but the speed of propagation of the electromagnetic 

waves at the point in question then. That result can obviously be generalized to arbitrary systems 

of electric (or magnetic) oscillators, and above all, to arbitrary electric systems that are always 

found in a bounded region of space because at very large distances from that region, the relation 

(22) (cf., Chap. V, § 8) that is characteristic of the wave zone must always exist. 

 With that, the question that was posed above is resolved for the wave zone in complete 

generality, and even in the affirmative sense. 

 However, it is easy to convince oneself that the velocity that was defined by (21.b) will become 

physically meaningless for the other components of the electromagnetic field that were left out of 

consideration in the analysis above, which play the principal role for small distances (obviously, 

“small” means relative to the wavelength). For example, we shall present a system that consists of 

one charge at rest and one elementary current. For distances that are not-too-small, one can imagine 

that both of them are combined at the same point. Since the electrical force lines are directed 

radially, while the magnetic ones lie in the meridian planes that are determined by magnetic axis 

of the current, the lines that represent the vector E  H must be coaxial circles (parallels). In that 

case, we will then have an “energy flux” around the axis of the electrical current in a direction that 

depends upon the sign of the aforementioned charge and has a velocity [in the sense of formula 

(21.b)] that will become zero for vanishing charge. Obviously, that process represents a mere 

fiction since the charge and the current that we have combined into a system have no reciprocal 

influence on each other at all. 

 In the case that was considered above of the wave zone of an (elementary) oscillator, according 

to (31) and (32), Chap. V, the electromagnetic energy density will be given by the expression: 

 

 = 
2

0

4 2

| |

4 c R

p R
. 

 

If one lets  denote the angle between R and p  (in which the prime suggests that the quantity 

refers to the effective time t  = t – R / c) then one will get the following expression for the vector 

K according to (22.a): 
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K = 
2

2

02 3

1 | |
sin

4 R c




p
R .              (23) 

 

That will then give the following formula for the total energy flux through a spherical surface of 

radius R: 

Q = nK dS  = 2 2

3

1
| | sin

c
p , 

 

or since 
2sin   = 1 − 

2cos   = 2/3: 

Q = 
2

3

2 | |

3 c

p
.              (23.a) 

 

 That energy flux is independent of the size of the sphere when one restricts oneself to the 

consideration of a certain effective time-point. One can then state the following: The radiation of 

a certain amount of energy Q dt  will be required by the “accelerated” motion of the oscillator 

during an infinitely-small time interval between t  and t dt + . That energy will propagate with 

the speed of light in all directions in the wave zone, and it will remain localized inside a spherical 

shell of thickness c dt  that is bounded by two spherical surfaces with radii ( )c t t−  and 

( )c t t dt − −  at each succeeding moment t. 

 In the case of light waves, the vector K determines the direction, and at the same time, the 

intensity, of the light ray. For that reason, one cares to refer to it as the “ray vector” (1). 

 From formula (21), the radiation of energy through any closed surface S must occur at the 

expense of the energy that is stored inside of that surface. If one then thinks of S as the separating 

surface between the wave zone and the “internal” spatial region, in which the field strengths E(0), 

E(1), and H(1) play the main role, then one can consider the process of energy radiation that was 

described above to be a conversion of the energy 
(0) (1)W W+  that corresponds to the 

aforementioned field strengths into the energy (2)W  of the electromagnetic field E(2), E(2) that 

prevails in the wave zone and spreads out every further in all directions with time. 

 The energy 
(0) (1)W W+  is composed of the electric and magnetic energy of the electrons that 

define the oscillator in question. In that way, the sum of the proper electric energies of those 

electrons will remain constant, and that is why it will not be considered. By contrast, their mutual 

electric energy must decrease. That decrease can be partially compensated by an increase in the 

magnetic energy of the electrons, i.e., some of their kinetic energy. (Recall that the magnetic field 

strength H(1) follows the Biot-Savart law, so it will be proportional to the velocity of the electrons.) 

We would not like to go into the details of that question since the only stated goal of the present 

analysis was to explain the relationship between the energies 
(0) (1)W W+ , on the one hand, and 

(2)W , on the other. 

 
 (1) It is also frequently referred to as the Poynting vector since it was first introduced by J. Poynting.  
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 The energy (0) (1)W W+  corresponds to the ordinary “mechanical” energy of a system of 

material particles. One can represent it approximately as the sum of potential (electric) and kinetic 

(magnetic) energy of the electrons, the former of which will depend upon their relative positions, 

while the latter will depend upon their velocities. (The mutual kinetic energy will remain quite 

small comparatively.) By contrast, in classical mechanics, there does not exist a quantity that 

corresponds to the energy (2)W . One refers to that energy, which is required by the acceleration of 

the electrons and propagates to infinity with the electromagnetic waves, as the energy of radiation 

(or “radiated energy”). One can crudely define the process of energy radiation as the conversion 

of mechanical energy into energy of radiation then. However, one must not forget that the cited 

division of electromagnetic energy into “mechanical” and “radiant” energy is not precise. Indeed, 

a precise division of that kind is largely impossible. 

 One generally refers to the reduction of the “mechanical” energy of a system of electrons by 

radiation as radiation damping. That radiation damping can be reduced (at least formally) to 

certain forces of the same type as the forces of friction in ordinary mechanics. For the sake of 

simplicity, imagine an oscillator that includes only one moving (oscillating or orbiting) electron. 

In that way, one can set the electric moment p of that oscillator equal to e r, where e means the 

charge of the moving electron, and r refers to its radius vector relative to a fixed point (e.g., the 

opposite fixed electron). One correspondingly has p  = 
2

2

d
e

dt

r
 = 

d
e

dt

v
 = e w, and as a result one 

has, from (23.a): 

Q = 
2 2

3

2

3

e w

c
.            (23.b) 

 

That is therefore the energy that the moving electron (or more correctly, the oscillator) loses per 

unit time to radiation. That loss of energy must be produced by an additional “frictional force” f 

(that has remained out of consideration up to now). In order to determine that force, we set the 

work that it does 
2

1

t

t

dt fv  during the time interval (t1, t2) equal to minus the energy 
2

1

t

t

Q dt  that was 

radiated during that same interval. From (12.b), that would yield: 

 
2

1

t

t

dt fv  = − 
2

1

2
2

3

2

3

t

t

e
w dt

c  .         (24) 

 

We convert the integral on the right by partial integration. We will then have: 

 
2

1

2

t

t

w dt  = 
2

1

t

t

dw v  = 
2

2

1

1

[ ]

t

t

t

t

d
dt

dt
 − 

v
w v v . 

The quantity: 
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2

1
[ ]t

tw v  = 
2 2

2 1

1 1

2 2

dv dv

dt dt

   
−   

   
 

 

must obviously remain practically (i.e., in the mean) zero for stationary or weakly-damped 

oscillations, at least in comparison to the quantity 
2

1

2

t

t

w dt . For that reason, we can set: 

 
2

1

2

t

t

w dt  − 
2

1

t

t

d
dt

dt
v

v  

 

for time intervals (t1, t2) that are sufficiently large relative to the period of oscillation (but can be 

otherwise very short), and correspondingly, from (24), we will have: 

 
2

1

t

t

dt fv  = 
2

1

2

3

2

3

t

t

e d
dt

c dt
w

v , 

or ultimately: 

f = 
2

3

2

3

e d

c dt

w
.             (24.a) 

 

That force of friction, which is usually referred to as radiation damping (1), must obviously 

represent part of the “self-force” F that was left unconsidered in the last section, i.e., the resultant 

of the elementary forces with which the various infinitely-small elements of the electron ( , )de de  

act upon each other. In fact, when one calculates that force on the basis of formula (17), one can 

consider the retardation of the corresponding elementary force effects, so one must understand w 

to mean the acceleration of the electron, not at the moment t in question, but at the earlier moment 

t  = t – R / c, in which R means the distance from the “active” charge element de  to the “passive” 

de. In so doing, one assumes that the electron moves like a rigid body, i.e., that the various electron 

elements have the same velocity at the same moments, and as a result, the same accelerations (2). 

 If one now develops the acceleration w as a function of t  in powers of the difference t − t 

then one will have: 

w = w + ( )
d

t t
dt

 −
w

  

 

in the first approximation, in which w and d w / dt refer to the time-point t, or since t − t = 

/ :R c−  

 
 (1) And which was first introduced by M. Planck.  

 (2) Cf., infra, in the theory of the deformable (Lorentz) electron.  
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w = w 
R d

c dt
−

w
 = w 

R

c
− w . 

 

Upon substituting that expression in (17), we will get: 

 

E(2) = − 0 0 0 02 2
{ ( ) } { ( ) }

de de

c R c

 
− + −w R w R w R w R , 

 

from which, after multiplying by de and summing twice of the various elements of the (spherically-

symmetric) electron, we will get [cf., the derivative of (17.a)]: 

 

F = − m w + 
2

3

2

3

e

c
w.     (24.b) 

 

That formula can be regarded as the completion of our previous formula (17.a) for the self-force 

of the electron. In that way, we have introduced the electron mass m according to (16.b) into the 

expression for that force. The self-force is then composed of two components: The inertial force 

m− w and the damping force f = 
2

3

2

3

e

c
w  that was calculated above in a different way. 

 At the end of Chapter VI, it was pointed out that when one considers the interaction between 

different parts of a system electric charges, the usual expressions for the retarded electromagnetic 

potentials and field strengths are to be preferred over the corresponding series developments that 

represent them as instantaneous actions at a distance. In fact, one can derive formula (24.b) directly 

from the slightly-corrected formula (28.a), in Chap. VI. In that way, the first term in (28), which 

is quadratic in 1 / R, will not correspond to any resultant self-force. The second term, which is 

linear in 1 / R will correspond to a self-force of: 

 

− 0 02
{ ( ) }

U

c
−w R w R  = −

2

4

3

U

c
w  = − m w, 

 

which coincides with (17.a), and the third term, which is independent of R, corresponds to the self-

force: 

+ 
2

3

e d

c dt

w
. 

 

The factor of 2/3 is missing from that expression, which is explained by the imprecision in the 

formula (28.a). Had we considered one more term in the series (27) and (27.a), Chap. VI, then that 

would have given the part of the self-force in question with the correct factor. 

 In conclusion, let us point out the following fact: We can replace equation (21), which can be 

regarded as the integral expression for the law of the conservation of energy, with a differential 

equation, just like the corresponding equation for the principle of the conservation of electricity, 

and it will obviously read: 
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t




 + div K = 0 .     (25) 

 

That is nothing but equation (19.b), but in which we have set l = 0. Now, it must be observed that 

the last equation is not valid in general. That is because one cannot conclude from the vanishing 

of the work  l dV for a complete electron (according to the Lorentzian principle of motion) that 

the elementary work l dV must vanish for each individual element of the electron. The development 

of that question is not possible until one goes deeper into the details of the structure of the electron. 
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 The total force d F that acts on a charge element de =  dV can be represented in the form d F 

= f dV. According to (18.b), the vector f is expressed by the formula: 

 

f = e E + i  H ,     (26) 

 

and can be defined to be the force per unit volume or also the impulse per unit volume of the force. 

In that conception of things, the vector f corresponds to the scalar l : The latter means the work 

done per unit time, while the former means the corresponding impulse. 

 We would now like to show that the expression (26) can be transformed in a way that is 

completely analogous to the transformation of the expression (19) that was performed in the 

previous section. 

 We first consider the case in which the electric and magnetic field are constant in time. The 

two components of (26) can then be transformed independently of each other. 

 When one recalls the differential equations: 

 

div E = 4  and rot E = 0 , 

then resulting electric force: 

F(e) = dVE  

 

that acts upon all of the charges that are found in the volume V can initially be written in the form: 

 

F(e) = 
1

div 
4

dV
 E E . 

 

Moreover, from the general formula (16.c), Introduction, we have: 

 

div dVE E  = ( ) ( grad) dV dV− En E E E , 
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and from (27) (ibid.), since rot E = 0 , we will have: 

 

(E grad) E = 21
2
grad E . 

It will follow from this that: 

 

F(e) = 21 1
( ) grad

4 8
dV E dV

 
− En E , 

 

and finally, from (16), Introduction: 

F(e) = ( )21
2

1

4
nE E dS


− E n .    (27) 

 

With that formula, the force F(e) can be represented as the resultant of the quasi-elastic stresses 

that act in all of the electric field (even where no charge is present). In that way, we can use (27) 

to say that a certain force − ( )e

nT dS  acts on any surface element dS, where ( )e

nT  − viz., the “stress” 

per unit area – is given by the formula: 

 

( )e

nT  = 
2

8 4

nEE

 
−n E .      (27.a) 

 

 One considers such stresses, or surface forces, in the theory of elasticity, where they 

characterize the interaction of two parts of a body that bound each other along the surface in 

question. In our case, those stresses are mere mathematical fictions that represent the interaction 

of two electric charges that are found on the two sides of any surface S in a very convenient and 

intuitive way. If the electric field strength is parallel to the surface normal n (En E = 
2E n ) then 

the stress (27.a) will reduce to − 
2

8

E


n . In that case, we will then have a tension that acts from the 

inside to the outside. By contrast, if the vectors n and E are perpendicular to each other then we 

will get a compression with the same magnetic that points from the outside to the inside (in the 

usual manner of hydrostatic pressure). In other words, we can represent the electric lines of force 

as stressed wires that are subject to a pull in the longitudinal direction and a push in the lateral 

direction. Therefore, the aforementioned “principal stresses” – viz., the longitudinal pull and lateral 

push per unit area – will be equal to the volume density of the electric energy (Maxwellian 

stresses). From the mathematical viewpoint, we can treat the stress vector ( )e

nT  as the inner product 

of a certain tensor quantity 2T(e), namely, the so-called electric stress tensor, with the normal n. 

Upon multiplying Tn with any other unit vector k, we will get a scalar quantity: 

 

( )e

nkT  = 
2

( )
8 4

n kE EE

 
−nk          (27.b) 
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that we can refer to as the component of the tensor 2T(e) relative to the two directions n and k. We 

must conclude from the fact that n and k enter into (27.b) in a completely-symmetric way that the 

electric stress tensor is a symmetric tensor. According to (27.b) (in which n and k should mean 

two coordinate vectors), its components relative to any rectangular coordinate system X1, X2, X3 

are expressed by the formulas: 

 

( ) 2 2 2 ( ) 2 2 2 ( ) 2 2 2

11 1 2 3 22 2 3 1 33 3 1 2

( ) ( ) ( ) ( ) ( ) ( )2 3 1 3 1 2
23 32 31 13 12 21

1 1 1
( ) , ( ) , ( ) ,

8 8 8

, , .
4 4 4

e e e

e e e e e e

T E E E T E E E T E E E

E E E E E E
T T T T T T

  

  


= − + + = − + + = − + + 


= = − = = − = = −


   (27.c) 

 

 Entirely-analogous results can be obtained by transforming the magnetic (or electromagnetic) 

force: 

F(m) = dV j H  

 

when the electric current is assumed to be stationary (and as a result, the magnetic field strength 

is assumed to be constant in time). In that case, we will have: 

 

rot H = 4 j , div H = 0 . 

We will then have j  H = 
1

4
 rot H  H, and as a result, due to the identity: 

 

grad 21
2

H = (H grad) H + H  rot H , 

we will then have: 

dV j H  = 21 1
( grad) grad

4 8
dV H dV

 
− H H , 

i.e.: 

F(m) = ( )21
2

1

4
nH H dS


− H n .            (28) 

 

That formula is completely-identical to (27). That is what we do not need to go into the details of 

its interpretation. We can define the vector: 

 

( )m

nT  = 
2

8 4

nHH

 
−n H      (28.a) 

 

to be the normal component of the magnetic stress tensor 2T(m). Its rectangular components are 

expressed by formulas that are entirely analogous to (27.c): 
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( ) 2 2 2 ( ) 2 2 2 ( ) 2 2 2

11 1 2 3 22 2 3 1 33 3 1 2

( ) ( ) ( ) ( ) ( ) ( )2 3 1 3 1 2
23 32 31 13 12 21

1 1 1
( ) , ( ) , ( ) ,

8 8 8

, , .
4 4 4

m m m

m m m m m m

T H H H T H H H T H H H

H H H H H H
T T T T T T

  

  


= − + + = − + + = − + + 


= = − = = − = = −


  (28.b) 

 

We refer to the sum: 
2T = 2T(e) + 2T(m)      (28.c) 

as the electromagnetic stress tensor. 

 We now go on to our general problem: Transforming the expression (26), or the integral: 

 

F = dV f , 

 

for an arbitrary electric system, i.e., for time-varying electromagnetic fields. 

 We therefore write the fundamental equations of the electromagnetic field in the form: 

 

1
div 4 , rot 4 ,

1
div 4 , rot 4 ,

c t

c t

  

   

 
= − = 


 = + = −

 

E
E H j

H
H E j

          (29) 

 

in which the magnetic charge and current densities are obviously equal to zero (  
 = 0, 

j  = 0), 

and add the conjugate magnetic expression to the expression (26): 

 

f =   H – 
j   E 

[cf., (12.a), Chap. V]. We will then have: 

 

f = f + f =  E +   H + j  H – 
j   E , 

or from (29): 

 

f = 
1

4
{E div E + H div H + rot H  H + rot E  E − 

1 1

c t c t

 
 + 

 

E H
H E} 

 = 
1

4
(E div E − E  rot E + H div H − H  rot H) − 

1
( )

4 c t





E H . 

 

When we subtract the formulas that were already used above: 

 

( ) dS En E  = ( grad) divdV dV+ E E E E  

and 
21

2
E dS n  = 

21
2
grad E dV  = ( grad) rotdV dV+  E E E E , 
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that will give the identity: 

 

( div rot ) dV−  E E E E  =  21
2

( ) E dS− En E n . 

 

From this identity and the corresponding one for H, we get: 

 

dV f  =  2 21
2

1 1
( ) ( ) ( ) ( )

4 4
E H dS dV

c t 


+ − + − 

 En E Hn H n E H , 

i.e.: 

F = − n dS
t


−

 
G

T ,            (30) 

in which: 

G =
1

( )
4

dV
c

 E H = 
2

1
dV

c K .    (30.a) 

 

K means the energy flux vector (20.b), and Tn means the normal component of the stress tensor: 

 

Tn = 2 21
2

1
( )

4
n nE H E H


 + − + E H n  .   (30.b)  

 

The formula (30) is entirely analogous to the formula (20). In that way, the scalars A (work per 

unit time) and W (energy) correspond to the vectors F and G, resp. The vector K in (20) 

corresponds to the tensor 2T in (30). It follows from this purely-formal relationship between the 

two expressions that they must admit a corresponding physical interpretation. In fact, if one 

considers the vector K, not as the force per unit time, but as the impulse delivered by that force per 

unit time (see above), and employs the usual mechanical relationship between the impulse 

delivered by a force and the resultant change in the mechanical momentum (which corresponds 

completely to the relationship between work and the change in kinetic energy) then one can define 

the vector G to be the electromagnetic momentum that is stored in the volume V and define the 

tensor 2T to be the volume density of the momentum flux. 

 If the impulse F were non-zero then one could say that it was gained at the expense of the 

electromagnetic momentum. However, since that impulse vanishes for any isolated electron, 

according to the Lorentz principle of motion, the formula (30) will reduce to (in the event that the 

surface in question does not intersect any electron): 

 

− 
d

dt

G
 = n dST ,     (31) 

 

and that expresses the law of the conservation of electromagnetic momentum. 
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 One can replace the last formula with the corresponding differential equation: 

 

t





g
 + div 2T = 0 ,     (31.a) 

in which: 

g = 
2

1

c
K            (31.b) 

 

means the spatial density of the electromagnetic momentum. However, one must observe that the 

equation (31.a) is not true in the interior of the isolated electrons. 

 With the aforementioned interpretation, the electromagnetic momentum (just like the 

electromagnetic energy) seems to be something substantial that can be localized in space. Since it 

is a vector quantity, it is impossible to treat it as a type of substance in its own right. However, one 

can appeal to the usual definition of the mechanical momentum (i.e., product of mass and velocity) 

and define the vector g to be the product of a scalar  that has the meaning of an ordinary mass 

density, i.e., an ordinary inertial mass, per unit volume, with a vector that should represent the 

velocity of the motion of that mass. 

 Let it be recalled that we have performed an analogous decomposition in the previous section 

on the energy flux vector K. Upon replacing the corresponding expression (21.b) in (31.b), that 

will give: 

g =  C ,          (32) 

with 

 = 
2c


.       (32.a) 

 

The last equation expresses an entirely-general relation between mass density and energy density. 

It corresponds to the relation (16.b) between the mass and the (electrostatic) energy of an electron 

that we have presented on the basis of the electromagnetic theory of the mass. In that way, the 

mass of an electron (or any system of electrons) seems to be a property of its electromagnetic field. 

Indeed, it must not be localized in the electron itself, i.e., the space where its charge is thought to 

be localized, but in all of the space over which the electromagnetic field of that charge extends. 

Furthermore, it follows from the formula (32.a) that it is not electric energy that contributes to the 

mass, but the magnetic energy. In other words, the mass of an electron must increase with its 

velocity and take on the value that was calculated above only in the limiting case of very small 

velocities. It is noteworthy that the factor 4 / 3 that appears in (16.b) is missing from the general 

formula (32.a). That fact poses a major problem for the electromagnetic theory of mass to which 

we will return later. 

 Strictly speaking, the decomposition (32), like the corresponding decomposition (21.b), will 

take on a proper physical sense only in the wave zone where the magnitude and direction of the 

velocity C coincide with those of the velocity of propagation of electromagnetic waves. In that 

case, the tensor 2T can also be represented in a form that is completely identical to the form that it 
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has in ordinary mechanics. Namely, if we have a continuously-distributed body with mass density 

 and flow velocity C then the components of the tensor (viz., the current density 2T of g) will be 

expressed in terms of the components of C and in the same way that the components of g (viz., 

the current density of ) are expressed in terms of the components of C and the scalar . In that 

case, along with the formulas gi =  Ci (i = 1, 2, 3), the corresponding formulas: 

 

Tik =  Ci Ck           (32.b) 

must also be true. 

 Now, it is easy to convince oneself that those formulas will coincide with the generally-valid 

formula: 

Tik = 2 21
2

1
[ ( ) ]

4
i k i k ikE E H H E H 


− − + +     (33) 

 

that follows from (30.b) in the wave zone. In that way, the ik mean the components of the identity 

tensor: 

2 = 

1 0 0

0 1 0

0 0 1

 
 
 
 
 

 ,     (33.a) 

such that ik = 1 for i = k and ik = 0 for i  k. 

 We imagine that, e.g., the first axis is laid in the direction of propagation (or radiation), the 

second axis is in the direction of the electric field strength, and the third one is in the direction of 

the magnetic field strength. In that way, according to (22), we will get a right-handed coordinate 

system relative to which the tensor components (33) can be expressed as follows: 

 

2 2 2 2 2 2

11 22 11

23 31 12

1 1 1
( ), ( ) 0, ( ) 0,

8 8 8

0.

T E H T E H T E H

T T T

  


= + = − + = = − = 


= = = 

 (33.b) 

 

That same result can be deduced from formula (32.b) when one understands C to mean the velocity 

vector of the light and considers the relation (32.a) between mass and energy density. 

 However, it must be emphasized that this agreement if true for only the wave zone. In general, 

a velocity vector C that would admit a representation of the tensor components (33) in the form 

(32.a) cannot be defined at all, if only on the grounds that we would get six equations for three 

unknowns (viz., the components of C) by setting (32.b) equal to (33). 

 The aforementioned “substantial representation” of the electromagnetic fields as the carrier of 

energy and mass will then remain unconditionally valid for only the wave zone. However, a 

decomposition of the energy flux vector (or the momentum), and especially the “momentum flux 

tensor” 2T, in analogy with classical mechanics, would otherwise be not just physically absurd, 

but also mathematically impossible in the last case. It should be noted that in the region of space 
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where that decomposition is permissible, the electromagnetic energy will prove to be twice as big 

as the kinetic energy (in the sense of ordinary mechanics) of a mass that moves with the speed of 

light whose magnitude is given by (32.a). 

 The two conceptions of the tensor 2T (as the current density of the electromagnetic momentum 

and the stress tensor) are obviously completely equivalent to each other. We would like to explain 

that equivalence with the following simple example: We consider a bundle of light rays, i.e., a 

laterally bounded wave-train that falls on a material plate and is absorbed by that plate. In that way, 

the energy and momentum that are carried by the ray-bundle in question will go into the plate, so 

to speak, where they will then assume the usual form of kinetic energy or heat or an ordinary 

“mechanical” momentum, resp., that can express itself as a motion of the plate in the direction of 

light rays. It will then follow that the plate experiences a certain pressure from the light rays. That 

so-called light pressure is obviously equal to the momentum that is transferred to the plate per unit 

time, i.e., (in the event that the pressure is referred to a unit area), it is equal to the product g c. On 

the other hand, it must be equal to the component of the stress tensor T11 =  that was calculated 

above. However, those quantities are identical since it would follow from (32) and (32.a) that: 

 

g = 
c


. 

 

We can then say that the light pressure on an absorbing surface that is normal to the light rays is 

numerically equal to the electromagnetic energy density. 

 For an oblique incidence of the rays, the surface force (stress) Tn that they exert will not reduce 

to a simple hydrostatic pressure. According to the known rules of tensor calculus [Introduction, 

(34)], the projection of that force onto any unit vector k is generally expressed by the formula: 

 

(2T n) k = Tnk = 
3 3

1 1

T n k  
 = =

 . 

 

In the special case where the coordinate system to which the formulas (33.b) refer, we will get: 

 

Tnk =  n1 k1 =  cos  cos  ,     (34) 

 

where  and   mean the angles between the vectors n (k, resp.) and the light rays. The pressure 

that acts normally to the surface is then equal to: 

 

Tnn =  cos2  ,      (34.a) 

in the case considered. 
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§ 6. – The translational motion of a Lorentz electron. 

 

 The transformation formulas for the work (20) that were cited in the previous two sections, 

and especially formula (30), allow us to calculate the self-force that an arbitrary moving electron 

exerts in a new way, and therefore to exhibit the exact form of the equations of motion of an 

electron that is based upon the Lorentz principle of motion. In order to do that, we need to consider 

only the field that is created by the electron in question in the calculation of the electromagnetic 

momentum (or energy). 

 Obviously, one can determined the desired self-force directly as the resultant of the elementary 

forces between the various elements of the electron, just as we did approximately in § 2 and § 3 

[formula (24.b)]. However, the indirect method that we shall pursue (1) has the following advantage 

over the direct one: We can use formulas (26.a) and (26.b), Chap. VI in order to represent the 

electromagnetic field of the electron at a certain moment t as a series whose individual terms 

depend upon its velocity v, acceleration w, and higher derivatives of v with respect to time (2). 

The terms that depend upon only the velocity (viz., first-order terms) are irrelevant in the 

calculation of the self-force by direct methods. We must then consider the second-order terms, 

which produce the main part of the self-force, namely, the inertial force. It should be remarked that 

those terms can include the velocity along with the acceleration. However, in the aforementioned 

approximation, we have restricted ourselves to the case of small velocities, and correspondingly 

dealt with only the terms in w that are independent of v. The third-order terms determine the next 

part of the self-force, which corresponds to radiation damping. Along with d w / dt, they can also 

include v and w. However, we have assumed that v and w are relatively small in the calculation 

of the damping force. Analogous contributions are true for the higher-order terms. 

 By contrast, due to the appearance of the time derivatives of energy and momentum in formulas 

(20) and (30), in the indirect method, one must already consider the first-order terms, which depend 

upon only the velocity, when calculating the self-force (or the work that it does). Those terms 

indeed play the main role since differentiating the corresponding terms in the momentum G with 

respect to time will produce terms that depend upon the acceleration linearly, so they will 

determine the inertial force. Briefly, that relation can be formulated as follows: Terms of order n 

in the series development of the electromagnetic field allow one to calculate the same (nth-order) 

part of the self-force by means of the indirect method that can only be determined from the (n + 

1)th-order terms using the direct method. Thus, if one deals with the precise calculation of the 

“inertial force,” i.e., that part of the self-force that is proportional to the acceleration of the electron, 

but in which one must also consider its dependency upon the velocity, then it will suffice to 

evaluate the electromagnetic fields of the electron for a motion at constant velocity in order to use 

the indirect method. In that way, the integrals nK dS  and n dS T  that appear in (20) and (30) 

will drop out for a surface at infinity (since the electric and magnetic field strengths will drop off 

 
 (1) Which goes back to Abraham.  

 (2) As long as those derivatives are continuous, and as a result finite. In the opposite case, one must consider the 

time interval in which they remain finite by itself and correspondingly employ different developments for different 

parts of the field. 
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in inverse proportion to the square of the distance under uniform rectilinear motion, just as they 

do for a state of rest), such that those formulas will take on the following simple forms: 

 

F = − 
d

dt

G
         (35) 

and 

A = F v = − 
dW

dt
.     (35.a) 

 

The integrals (30.a) and (20.a), which determine G and W, must obviously extend over all of space 

then. 

 In Chapter VI, we showed that the electromagnetic field of a point-charge de in a state of 

uniform rectilinear motion (with less than the speed of light) can be expressed by the formulas: 

 

d E = 2

3
(1 ) de

R



−

R
,  d H = 

1

c
 v  d E    (36) 

 

[cf., (13), (13.a), and (13.b), Chap. VI]. We can now treat the infinitely-small element de of the 

electron considered to be a point-charge and determine the resultant field strengths E, H by 

integrating the expressions (36). 

 Let it be recalled that the vector R means the radius vector of the reference point P considered 

relative to the simultaneous (momentary) position P  of the element de, and that in a rectangular 

coordinate system X1, X2, X3 whose origin lies at P , and whose X1-axis falls in the direction of 

motion, the following formula will be true: 

 

R  = 2 2 2 2

1 2 3(1 ) ( )x x x+ − + ,    (36.a) 

 

in which x1, x2, x3 are the components of R. 

 We now introduce a new rectangular coordinate system 1X  , 2X  , 3X  , with the same origin and 

the same orientation of the axes, but another yardstick for the first axis (which is parallel to v), by 

way of the formulas: 

x1 = 
2

1 1x  − , x2 = 1x , x3 = x1 .   (37) 

 

In that way, the expression for R  above can be represented in the form: 

 

R  = 
21 R − ,        (37.a) 

in which: 

R   = 
2 2 2

1 2 3x x x  + +             (37.b) 
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has the meaning of the distance P P  in the new coordinate system. Upon substituting those 

expressions in the formula (36) for d E, we will get: 

 

d E = 
321

de

R −

R
, 

 

or in components along the coordinate axis: 

 

dE1 = 1

321

xde

R −
 = 1

3

x
de

R




, dE2 = 2

321

xde

R



−
,  dE3 = 3

321

xde

R



−
. (38) 

 

It will then follow that the vector d E, with the components: 

 

1dE   = dE1, 2dE  = 
2

2 1dE − ,      3dE   = 
2

3 1dE − ,  (38.a) 

 

can be treated as the electric field strength of a point-charge de that is at rest in the coordinate 

system X   at the beginning. 

 Upon summing over the various elements of the electron charge, (38.a) will give the formulas: 

 

E1 = 1E  , E2 = 2

21

E





−
, E3 = 3

21

E





−
.  (38.b) 

 

The 1E  , 2E  , 3E   in that mean the components of the resultant field strengths of the electron in 

question relative to the coordinate system X  . 

 We now remark that according to the transformation formula (37), this coordinate system arises 

from the original one X by a dilatation in the direction of motion, and indeed with a ratio of 

21: 1 − . Therefore, if the electron can be represented as spherical in the coordinate system X 

then it must appear to be an ellipsoid of revolution in the transformed coordinate systems X   

whose longitudinal axis is larger than its transverse axis by a ratio of 
21: 1 − , i.e., larger than 

the original radius of the sphere a. The total charge of the electron will remain unchanged under 

that in such a way that the charge density   (relative to X  ) will appear to be reduced in 

comparison to the true charge density  (relative to X) by the same ratio. 

 In the cited explanation, we have tacitly assumed that the electron moves like an absolutely-

rigid body (in the sense of ordinary mechanics). Now, that picture, which goes back to Abraham, 

is by no means the most natural. Namely, in Chap. VI, § 3, we saw that the interaction between 

the elements of a system of point-charges in a state of uniform rectilinear motion can be determined 

from a convection potential  in the same way that the interaction of the same point-charges in the 

rest state of the system can be determined from the ordinary scalar potential . We have further 

seen that the surfaces  = const. can be represented by flattened ellipsoids of revolution for any 
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point-charge that moves with constant velocity v = c , and indeed they are flattened in the 

direction of motion by the ratio 
21 :1− . The ellipsoids will once more appear to be spheres 

when observed in the transformed coordinate system X  . 

 Now, that raises the following question: Why must the moving electron keep the same form as 

the one at rest, despite the change in the interaction of its elements that is caused by its motion? 

 Under the assumption of spherical symmetry, in the rest state, that interaction reduces to a 

radial stress that will be cancelled in some way by the binding forces that act between the elements 

of the electron (otherwise, the electron would “explode”). In that way, the surface of the electron 

coincides with a level surface  = const. The same thing is true for all surfaces of constant charge 

density whatsoever. Now, it would seem entirely natural to regard that coincidence of the surfaces 

 = const. and the surfaces  = const. as the actual equilibrium condition for the electron, which 

must also determine its external form, in particular. 

 We would now like to follow Lorentz (and Fitzgerald) and generalize this equilibrium principle 

to the case of an electron in uniform rectilinear motion by replacing the scalar potential with the 

convection potential  (for v = 0 and  = ). We then assume the following: For a moving electron, 

the surfaces  = const., and especially the “free” surface  = const., must coincide. 

 According to (15.a), Chap. VI, the convection potential of an element de of the electron is 

expressed by the formula: 

d = 
2(1 )

de
R




−
,     (39) 

or from (37.a) 

d = 
21

de
R

−


.              (39.a) 

 

The surfaces d = const. will then appear to be spherical with respect to the coordinate system 

.X   It will then follow from this that for an electron that is spherical relative to that system, i.e., 

for an electron for which the surfaces   = const. are concentric spheres in X  , the level surfaces 

of the resulting convection potential must also be spherical (in X  ). The integral in that case 
de

R  

=   is identical to the scalar potential of an electron at rest, and as is known, that can be 

represented in the form /e r  ( r  means the distance from the reference point to the center O of 

the electron, as measured in X  ). Therefore: 

 

 = 
21  −  = 

21
e

r
−


.        (39.b) 

 

However, in order for the electron in question to appear spherically-symmetric relative to the 

coordinate system X  , in reality (i.e., relative to X), it must be an ellipsoid of revolution that is 

flattened by a ratio of 
21 :1− . In that way, we will be led to the following so-called Lorentz 
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contraction hypothesis: An electron in a state of uniform rectilinear motion must contract in the 

direction of motion by a ratio of 
21 :1− . (Its transverse dimensions remain unchanged by that.) 

 Our problem (viz., calculating the momentum) will be simplified by that assumption, namely, 

it will be reduced to an electrostatic problem that was solved before. The spatial density of the 

electromagnetic momentum: 

g = 
1

4 c
 E  H 

 

can be initially represented by means of the relation H =
1

c
 v  E in the form: 

 

g = 
21

[ ( ) ]
4

E
c

−v vE E ,           (40) 

 

or in terms of its components along the coordinate axes X1, X2, X3 : 

 

g1 = 2 2

2 32

1
( )

4

v
E E

c
+ ,  g2 = − 1 22

1

4

v
E E

c
,  g3 == − 1 32

1

4

v
E E

c
. 

 

If we introduce the quantities 1E  , 2E  , 3E   into that in place of E1, E2, E3 using (38.b) then we will 

have: 

 

g1 = 
2 2

2 32 2

1
( )

4 1

v
E E

c 
 +

−
,  g2 = − 1 22 2

1

4 1

v
E E

c 
 

−
, g3 == − 1 32 2

1

4 1

v
E E

c 
 

−
 . 

 

 In order to calculate the total momentum G =  g dV, we remark that a volume element dV = 

1 2 3dx dx dx  in X corresponds to the volume element: 

 

dV   = 1 2 3dx dx dx    = 1 2 3

21

dx dx dx

−
 

 

in the coordinate system X  , according to (37). We will then have: 

 

dV = 
21 dV − , 

and as a result: 
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2 2

1 2 3
2 2

2 1 2
2 2

3 1 3
2 2

1
( ) ,

41

1
,

41

1
.

41

v
G E E dV

c

v
G E E dV

c

v
G E E dV

c








  = + 

−



  = − 
− 


  = −
− 







   (40.a) 

 

 Since the electron is spherically-symmetric in its rest state, and that spherical symmetry will 

be preserved relative to the comoving coordinate system X   as a result of the Lorentz contraction, 

the field the vectors 1E  , 2E  , 3E   must be judged to be identical in that coordinate system to the 

ordinary electrostatic field of that electron in its rest state relative to that coordinate system X. It 

will then follow that: 

1 2E E dV    = 1 3E E dV    = 0 

and 
2

1E dV   = 
2

2E dV   = 
2

3E dV   = 
21

3
E dV   = 

21
3

E dV  , 

i.e.: 

2 2

2 3

1
( )

4
E E dV


  +  = 0

4

3
U  . 

The notation: 

U0 = 21

8
E dV

   

 

means the usual electric energy of the electron in the rest state. If one appeals to (16.b) in order to 

define the corresponding rest mass of the electron by the formula: 

 

m0 = 0

2

4

3

U

c
               (41) 

then from (40.a), one will have: 

G = 0

21

m

−

v
 = m v .     (41.a) 

The quantity: 

m = 0

21

m

−
             (41.b) 

 

is the actual mass of the electron at the speed v = c . 

 We then see that in contrast to ordinary mechanics, the mass of the electron is not a constant 

quantity, but depends upon the velocity, and indeed in such a way that it will become infinite as v 
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→ c. It will then follow that the speed of light c represents a limiting speed that can never be 

attained by the action of finite forces. 

 In ordinary mechanics, one defines the mass to be the ratio of the external force Fa to the 

acceleration w. Now, that definition proves to be valid only for low speeds. In fact, if one assumes 

that the self-force of the electron can be represented by – d G / dt then its equations of motion will 

have the following general form: 

d

dt
(m v) = Fa                  (42) 

 

according to the Lorentz principle of motion. We now consider the special case in which the 

magnitude of the velocity remains constant, and only its direction changes in time (that case would 

correspond to, e.g., motion in an external magnetic field). m will then remain constant, and the 

formula (42) will reduce to the form: 

0

2 21 /

m d

dtv c−

v
 = Fa.      (42.a) 

 

In the opposite case, when the direction of the velocity stays constant, but its magnitude varies, we 

will get from (42) and (41.b): 

 

d

dt
(m v) = 0

2 21 /

d v
m

dt v c−
= 

2 2

0 2 2 3/22 2

1 /

(1 / )1 /

dv v c
m

dt v cv c

 
 +
 −− 

 = 0

2 2 3/2(1 / )

m dv

v c dt−
, 

 

and as a result: 

0

2 2 3/2(1 / )

m dv

v c dt−
 = aF .    (42.b) 

 

The mass, as the ratio of the force to acceleration, proves to be different in the two cases (42.a) 

and (42.b). One correspondingly calls the quantity 0

21

m

−
 the transverse mass of the electron 

and calls 0

2 3/2(1 )

m

−
 the longitudinal one. However, it is more convenient to consider the mass to 

be a unified quantity that is determined by (41.b) and merely define it to be the coefficient of the 

velocity vector in the general expression (41.a) for momentum. 

 Upon inner multiplying the force Fa by v, we will get the work done per unit time by that 

force. Now, from (42) and (41.b): 

 

A = Fa  v = v 
d

dt
(m v) = 

2 dm d
m

dt dt

 
+  

 

v
v v  = 

2 2 2 22 2

0 0

2 2 3/2 2 2

/ /( ) ( )

(1 / ) 2 1 /

m v c m v cd v d v

v c dt dtv c
+

− −
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= 
2

0

2 2 3/2

( )

2(1 / )

m d v

v c dt−
 = 2

0
2 2

1

1 /

d
m c

dt v c−
. 

 

We then see that the work done during an arbitrary time interval will be equal to the (algebraic) 

increase in the quantity: 

W 
 = 

2

0

2 21 /

m c

v c−
 = 2mc ,     (43) 

such that the difference: 

 T   = 2

0( )c m m−  = 2

0
2 2

1
1

1 /
c m

v c

 
 −
 − 

 ,   (43.a) 

 

which will vanish for v = 0, will play the role that kinetic energy does in ordinary mechanics. If 

one develops 
2 2 1/2(1 / )v c −−  in powers of 2 2/v c  then that will give the series: 

 

T   = 
4

2 31
0 02 8 2

v
m v m

c
+ ,        (43.b) 

 

whose first term actually agrees with the usual expression for kinetic energy when the mass is 

constant. 

 It should be noted that that the kinetic energy of the electron that is defined by (43.a) is different 

from its magnetic energy T = 
21

8
H dV . In fact, by means of the relation H = 

1

c
 v  E, or in the 

coordinate representation: 

H1 = 0 ,      H2 = − 3

v
E

c
,      H3 = + 2

v
E

c
, 

we will get from (38.b) that: 

 

2H  = 2 2 2

1 2 3H H H+ +  = 2 2 2

2 3( )E E +  = 
2

2 2

2 32
( )

1
E E




 +

−
, 

and as a result: 

T = 
2

2 2

2 3
2

1
( )

81
E E dV




  +

−
  = 

2

0
2

2

31
U



−
, 

i.e.: 

T = 
2

0

2 2

1

2 1 /

m v

v c−
 = 21

2
mv .     (44) 

 

We can explain the fact that this quantity does not coincide with the kinetic energy of the electron 

by saying that the electric energy of a moving electron U is different from the corresponding rest 
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energy U0 . That is why we should expect that we would have T   = T + U – U0 . However, that is 

not the case, either. Rather, from (38.b), we have: 

 

U = 21

8
E dV

   = 
2 2

2 22 3
1 2

1
1

8 1

E E
E dV

 

  +
+ − 

− 
  

= 
2 2 2 2

1 2 3
2

1 1 1
1 ( )

8 8 1
E dV E E dV

  
    − + +

−
   = 2

0
2

1 2
1

3 1
U 



 
 − +
 − 

, 

 

and as a result: 

W = U + T = 2 2 21
0 42 2

1
1 /

1 /
m c v c

v c

 
 − −
 − 

.   (44.a) 

 

The difference W – U0 is not equal to T   then. In the limit of very high speeds that approach the 

speed of light, the electromagnetic energy (44.a) will coincide with the quantity W 
 that was 

defined above. By contrast, for v = 0, we will get W   = 2

0c m  and W = 23
04

m c . The last formula 

is identical to (41) (since W = U0 for v = 0). However, from the general relation (32.a) between the 

mass and energy of the electromagnetic field, we should not consider U0 to be the energy of the 

electron in the rest state, but the quantity 
0W  = 2

0m c . The quantity that is determined from the 

general equation (43), will have the meaning of the total energy of the electron at (constant) 

velocity v, accordingly. 

 That disagreement seems to be directly linked with the contraction hypothesis that was the 

basis for our calculations. That is because the assumption that a moving electron is compressed in 

the direction of motion implies a peculiar dependency of that that field on the velocity of the 

electron as a whole by way of the general differential equations of the electromagnetic field that 

cannot be overlooked. We will come back to that question later on. Here, it should be observed 

that equations (41.b) and (42), which were exhibited on the basis of the Lorentz principle of motion 

and the contraction hypothesis, are in excellent agreement with the facts of experiment in regard 

to the deflection of freely-moving electrons (e.g., in the form of cathode rays) by electric and 

magnetic forces. By contrast, the Abraham picture of the absolutely-rigid electron leads to a 

dependency of the mass on velocity that breaks down completely for high speeds. We would not 

like to go into Abraham’s theory here, which is presently of only historical interest. However, we 

will show immediately that the Lorentz formula (41.b) can be derived from completely-general 

principles without having to propose any specialized pictures regarding the composition of 

electrons. 

 Those principles are expressed, first of all, by the formula (32.a) of the equivalence of mass 

and energy, and secondly, the general form of the equations of motion (42), i.e., the possibility of 

representing the momentum as a product of mass and velocity. Since the work done by the external 

force Fa must be equal to the increase in the energy of the electron, it will follow from the 

principles above that: 
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2( )
d

c m
dt

 = 
( )d m

dt

v
v , 

i.e., with v = c  : 

dm = 2 21
2

( )md dm + , 

or 

dm

m
 = 

2

2

1 ( )

2 1

d 

−
. 

 

Upon integrating that equation, we will get: 

 

m = 0

21

m

−
, 

i.e., the Lorentz formula. 

 From the theory that was presented, one must regard the equation ( )
d

m
dt

v  = Fa as the 

approximate form of a more complicated equation of motion that is exactly valid only in the 

limiting case of low speeds. Had we further considered the acceleration of the electron in the 

calculation of G, then we would get an equation in which the damping force would appear along 

with the inertial force − ( )
d

m
dt

v . However, in order to determine that force precisely, it would be 

necessary to make certain assumptions about the dependency of the form of the electron upon not 

only the velocity, but also the acceleration. Nonetheless, such a path to the exhibition of exact 

equations of motion seems inaccessible from the outset. 

 

 

§ 7. – The rotational motion of a spherical electron. 

 

 As long as the electron can be considered to be a rigid or quasi-rigid body, one can examine 

not only its translational motion, but also the basically-possible rotational motion around a free 

axis that goes through its center, as well as the change that this rotational motion must experience 

under the action of external torques. 

 The rotation of a spherically-symmetric electron around any free axis with constant angular 

velocity u obviously means a stationary electric current. Therefore, if no change in the charge 

distribution in the electron appears in that way, and in particular, its form remains the same (which 

we will always assume in what follows) then its electric field must remain unchanged, and its 

magnetic field must remain constant in time and proportional to the angular velocity. It will then 

follow that this angular velocity can be arbitrarily large, and that the linear velocity of the 

equatorial zone of the electron does not need to be restricted to the speed of light. 

 In the general case of an arbitrary charge distribution, the magnetic moment of the electron is 

expressed by the formula: 
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m = 1
2

dV
c


v

r . 

 

(r = radius vector of the volume element dV relative to the center O.) If one substitutes v = u  r 

in that then one will have: 

m = 2 21
{ ( )}

2
r dV

c
 − u r u r , 

 

or for a spherically-symmetric distribution of charge, since: 

 

0 0( )r u r  = 2

0cos ( , )u u r  = 1
3
u  

[cf., the derivation of (17.a)]: 

m = 21

3
dV

c
u r .          (45) 

 

In the case of a surface charge, in particular, the already-known formula (cf., § 7, Chap. IV) will 

give: 

m = 
2

3

e a

c
u ,            (45.a) 

 

in which a means the radius of the electron. For a uniform volume distribution of charge ( = 

const.), with dV = 24 r dr , we will get: 

m = 
2

5

ea

c
.            (45.b) 

 

For the sake of simplicity, in what follows, we will restrict ourselves to the case of surface charge. 

In that way, the electric field inside the electron will be equal to zero, and outside of it, it will be 

identical to the field of a point charge concentrated at O, so it will be equal to: 

 

E = 02

e

r
r .      (46) 

 

The magnetic field in external space is equivalent to the field of an elementary magnetic dipole at 

O: 

H = 
2

1

r
{3 (m r0) r0 – m} .             (46.a) 

 

By contrast, inside of the electron, a homogeneous field: 
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H = 
3

2

a
m             (46.b) 

will prevail [cf., § 7, Chap. V]. 

 If the electron in question is found in an external magnetic field whose field strength Ha inside 

of the corresponding very-small spatial region can be regarded as constant then it must experience 

a torque with the moment: 

Ma = m  Ha .     (47) 

 

For strong inhomogeneous fields, one must also consider the additional force: 

 

Fa = (m grad) Ha .     (47.a) 

 

 We now move on to the consideration of the internal torque, which can be required by the non-

uniform rotation of the electron. In that way, we will employ an indirect method (1) for the 

calculation of that “self-torque” that is connected with the corresponding method for the 

determination of the self-force. We would next like to show that such a method can actually be 

developed. 

 In order to do that, we consider the moment of a force d F = f dV that acts upon the volume 

element dV relative to any point O (e.g., the center of the electron). From the general formula (30), 

we can then represent the force f per unit volume in the form: 

 

f = − 
t





g
 − div 2T     (48) 

 

[cf., (31.a), where we have set f = 0]. Upon outer multiplying that equation by r (viz., the radius 

vector to dV), we will get the associated moment: 

 

r  f = − r  
t





g
 − r  div 2T . 

 

Since r is independent of t, one can set r 
t





g
 = 

t




r  g  Moreover, due to the symmetry of the 

tensor 2T, we will have: 

(r  div 2T)1 = x2 div T3 – x3 div T2 = 31 32 33 2321 22
2 3

1 2 3 1 2 3

T T T TT T
x x

x x x x x x

       
+ + − + +   

        
 

= 2 31 2 32 2 33 3 21 3 22 3 23

1 2 3 1 2 3

( ) ( ) ( ) ( ) ( ) ( )x T x T x T x T x T x T
x x x x x x

     
+ + − − −

     
, 

 
 (1) which also goes back to Abraham.  
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i.e.: 

(r  div 2T)1 = div (r  2T)1 . 

 

In that expression, r  2T means an asymmetric tensor 2N with the components: 

 

N11 = x2 T31 – x3 T21 , N22 = x3 T12 – x1 T32 , N33 = x1 T32 – x2 T13 , N12 = x2 T32 – x3 T22 , 

 N21 = x3 T11 – x1 T31 , etc., 

 

or in in general 

Nik = (r  Tk)i        (49) 

 

(Tk is the vector with the components Tk1, Tk2, Tk3 ; cf., Introduction, § 20). 

 One will then have: 

r  f = − 
t




(r  f) − div 2N ,    (49.a) 

 

and as a result, for an arbitrary volume, one will have: 

 

dV r f = − 2d
dV dS

dt
 − r g Nn .            (49.b) 

 

 We can decompose the tensor 2N into a symmetric and a skew-symmetric one, and then replace 

the latter with a vector. However, that is unnecessary since we will not need that tensor at all in 

what follows. Namely, we will only examine the “internal” or “self-moment” part M, which 

depends upon the angular acceleration of the electron, i.e., it depends upon only the first derivative 

of the vector u with respect to time (and the translational velocity v, in addition). According to 

(49.c), we can calculate the quantities g and 2T for a rotation of the electron with constant angular 

velocity. However, since the tensor components Tik drop off like the square of the electric and 

magnetic field strengths in that case, i.e., from (46) and (46.a), they are at least inversely 

proportional to the fourth power of the distance, and as a result, the components of 2N will be 

inversely proportional to the third power, so the surface integral (49.b) will drop out when one 

displaces the surface S to infinity, and we get the following simple equation: 

 

M = − 
d

dt

I
,      (50) 

with 

I = dV r g .     (50.a) 
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The vector I is called the electromagnetic impulse moment of the electron. It would be defined in 

the same way for an arbitrary electromagnetic field. 

 In order to calculate that vector, we remark that E, and as a result g, vanishes inside of the 

electron, while outside of it, we will have: 

 

g = 
1

4 c
E  H = 05

1

4

e

c r
m r ,       (51) 

 

according to (46) and (46.a). One will then have: 

 

r  g = 0 04

1
[ ( ) ]

4

e

c r
−m mr r , 

 

and when one recalls the fact that has been used several times before that the mean value of the 

vector (m r0) r0 over all directions of the unit vector r0 is equal to 1
3
m: 

 

I = 
4

2

4 3
a

e dV

c r



 m  = 
2

2

3
a

e dr

c r



m , 

i.e.: 

I = 
2

3

e

c a
m .             (51.a) 

 

If one introduces the rest mass m0 of the electron, in place of its radius, according to the formula: 

 

m0 = 
2

2

3

e

c a
, 

 

which corresponds to the surface charge, then that will give the following relation: 

 

m = 
0

e

c m
I .           (51.b) 

 

An easy calculation will show that for a uniform volume charge, one will have I = 
4

7

e

c a
m  (1), 

or: 

 
 (1) The magnetic field strength inside of the electron at a distance r from the center is composed of two parts: The 

part H that is created by the internal ball of radius r is expressed by the formula (46.a), in which the total magnetic 

moment m is replaced with the moment mr of the aforementioned ball. However, from (45.b), that is equal 

31

5
,re r

c
u  
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m = 
0

7

5

e

c m
I , 

since one has m0 = 
2

2

4

5

e

c a
 in that case: When one recalls the formula (45.a), the expression (51.a) 

for I can be written in the form: 

I = 21
03

m a u .      (52) 

 

That corresponds to a “moment of inertia” for the electron of magnitude 21
03

m a . By comparison, 

it should be pointed out that the moment of inertia of a hollow sphere of mass (m0) is twice as 

large. In order to establish the relation between the ordinary mechanical and the electromagnetic 

quantities that characterize the rotational motion, we would like to now calculate the magnetic 

energy of the electron. The part of that energy that is localized externally to it is given by the 

integral: 

T  = 
2 2 2 2

0 0 06

1 1
{9( ) 6( ) }

8
r a

r m dV
r



=

− + mr mr , 

 

or, since 2

0r  = 1 and the mean value of (m r0)
2 is equal to 21

3
m : 

 

T  = 
2

2

6

1 4
2

8

r

a

r dr

r




 m  = 

2

33a

m
. 

 

in which er = 
3

3

r
e

a
 means the charge of that ball. The second part, which originates in the outer shell of the ball, will 

be represented by the integral: 

 

3 2 2 2

3 3

2 2
4 4 ( )

3 3

a a

r r

e
r r dr r dr a r

c r c a
    =  = = − 

u u u
H , 

 

from (45) and (46.b), such that the sum H + H will have the following value: 

 

2 2 2 2 2 2

3 5

1
{3( ) 5( ) } {3( ) (5 6 ) }

5

e
r a r r a r

c a a
= − + − = − + −H ru r u u rm r u m . 

 

 As far as the electric field is concerned, for r < a, it will be determined by the formula E = 
3

e

a
r . One can easily 

calculate from this that the part of the impulse moment that originates in the internal electromagnetic field of the 

electron is equal to − 
2

21

e

ca
m . The other (external) part is obviously expressed by (52.a). In total, we will then get: 

I = 
2 2

3 21

e

ca

 
− 

 
m  = 

4

7

e

ca
m . 
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The magnetic field inside of the electron contributes an amount equal to: 

 

T   = 

2

3

3

1 2 4

8 3
a

a





 
 

 

m
 = 

2

3

2

3 a

m
 

 

to its energy. As a result, it will follow that: 

 

T T +  = T = 
2

3a

m
,     (52.a) 

or from (45.a): 

T = 
2 2

2

2

1

9

e a

c a
u  = ( )2 21 1

02 3
m a u .    (52.b) 

 

We then get the usual expression for the kinetic energy of a rotating body with the moment of 

inertia 21
03

m a . 

 According to the Lorentz principle of motion, the rotational motion of the electron under the 

action of an external torque with a moment of Ma will be determined from the equation M + Ma 

= 0, i.e., according to (50), from: 

d

dt

I
 = Ma,           (53) 

 

in complete agreement with ordinary mechanics. We would like to write that equation: 

 

1 d

dt

m
 = Ma           (53.a) 

and 

d
I

dt

u
 = Ma,           (53.b) 

with the abbreviations: 

 = 
0

e

c m
,            (54) 

I = 21
03

m a .          (54.a) 

 

The coefficient  represent the ratio of the magnetic moment of the electron to its impulse moment, 

and I means the moment of inertia. 

 If the moment Ma depends upon an external magnetic field Ha then we will get from (47) that: 

 

d

dt

m
 =  m  Ha.     (55) 
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Inner multiplication of the two sides of that equation by m will yield: 

 

2d

dt
m  = 0 , 

i.e., | m | = const. 

 It follows in the same way that for a time-constant external field, one will have: 

 

a d

dt
H m= ( )ad

dt
mH  = 0 , 

 

i.e., the angle between the vector m and Ha also remains constant. 

 One can easily show that the motion of the electron in this case is composed of the 

“unperturbed” rotation with an angular velocity u and a uniform rotation or precession of the 

vector u around the field direction Ha with the angular velocity: 

 

o = −  Ha.      (55.a) 

 

In fact, the time derivative of the vector u must therefore be equal to the linear velocity of a point 

with the radius vector u, i.e., du / dt = o  u. We likewise have dm / dt = o  m . Due to (55.a), 

that equation agrees with (55). 

 

 

§ 8. – Combining the rotational and translational motion. 

 

 We would now like to examine the case in which the rotating electron moves with a 

simultaneous small translational velocity v (v  c). In the presence of an external electric field 

Ea, it must suffer an additional external torque (and force). We would initially like to determine 

that based upon the assumption that the rotating electron is completely equivalent to a magnetic 

dipole relative to its magnetic effects. (Below, in Chap. IX, § 2, we will see that this assumption 

is, in reality, unacceptable. The formulas that follow from it are also false, accordingly.) 

 According to (12.a), Chap. V, a magnetic pole  that moves with a velocity in an external field 

Ha, Ea will feel a force of  (Ha − 
1

c
v  Ea) . As a result, that will give two equal and opposite 

forces for the fictitious dipole in question that combine to give a resultant moment of l  [ (Ha − 

1

c
v  Ea)] . The l in that means the length of the dipole (as measured from the negative pole –  

to the positive one + ). The product  l is nothing but the magnetic moment of the electron m. 

Along with the magnetic torque (47), we will also get an electric one: 
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Ha = − m  (
1

c
v  Ea) .            (57) 

 

In a strong inhomogeneous field, one must also consider the additional external force: 

 

 Ia = (m grad) (Ea 
1

c
v) = − 

1

c
v  [(m grad) Ea] .              (57.a) 

 

 However, additional internal forces and torques will appear in the case in question that 

originate in the electromagnetic field that is produced by the combination of rotation and 

translation. 

 We initially consider the magnetic field Hv that corresponds to pure translation. For an electron 

with a constant velocity v, that field is coupled with the basic electric field of the electron E by 

the general relation that has been used many times before: 

 

Hv = 
1

c
v  E .     (58)  

 

That field vanishes inside of the electron, just like E, and outside of the electron, according to (46), 

it will reduce to the magnetic field of a charge e that is concentrated at the center of the electron. 

 However, that comes down to an additional electric field Em that originates in the combination 

of the two types of motions. That field can be attributed to the fact that the electric current that is 

defined by the “rotation” of the electron will lose its stationary character under translational 

motion. In fact, the magnetic field strength H that is produced by the rotation at any fixed reference 

point P must then change in time. Obviously, the same thing is true for the associated vector 

potential A, which is coupled with H by the formula H = rot A. However, a time-varying vector 

potential will correspond to an additional electric field: 

 

Em = − 
1

c t





A
. 

 

Since the field strengths and the potentials will remain constant at a comoving reference point, i.e., 

one that is fixed relative to the electron (when one ignores its rotation), just as in the case of the 

simple translation [cf., (16.a), Chap. VI], we will have the relation: 

 

d

dt

A
 = 

1

c t





A
+ (v grad) A = 0 , 

i.e.: 

− 
1

c t





A
 = + 

1
grad

c

 
 
 

v A , 
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or from the identity (27) in the Introduction: 

 

− 
1

c t





A
 = + 

1 1
grad

c c

 
−  

 
vA v H . 

 

The additional electric field Em is then composed of two parts: 

 

E = − 
1

c
v  H      (58.a) 

and 

 E = grad (
1

c
v A) .     (58.b) 

 

The formula (58.a) is entirely analogous to (58). It corresponds completely to the “magnetic” 

differential equations (11.a), (11.b), in Chap. V and is obtained from them in the same way as (58) 

when one allows the existence of magnetic poles. [The opposite signs in (58) and (58.a) correspond 

to the opposite signs of i and i in (8.a) and (11.b), Chap. V.] Insofar as the rotating electron can 

be replaced with a magnetic dipole in regard to its magnetic effects, the translational motion of 

that dipole must produce the additional field (58.a) in that same way that the translation of the 

electron charge produced the additional field (58). 

 However, that symmetric (or “skew-symmetric”) relationship between the electric and 

magnetic fields will be destroyed by the appearance of the second component of Em, i.e., the 

electric field E. The latter can be treated as an ordinary electrostatic field that is due to the scalar 

potential: 

 = − 
1

c
v A .      (59) 

 

In the case in question, the vector potential A is determined by the formula: 

 

A = 02

1

r
m r               (59.a) 

 

outside of the electron (r > a) [cf., (27), Chap. III]. By contrast, we will have: 

 

A = 
3

1

a
m r              (59.b) 

 

inside of it [cf., § 7, Chap. IV]. Thus, since 0( )v m r = r0 (v  m), we will have: 
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 = 
2

1

r
pr0 .                 (60) 

for r > a, with: 

p = − 
1

c
v  m .           (60.a) 

 

It will follow that   (for r > a) represents the scalar potential of a dipole with an electric moment 

p that is found at the center of the electron. We get: 

 

 = 
3

1

a
pr .             (60.b) 

 

for the electron interior in the same way. In Chap. IV, § 7, we saw that the potentials (60) and 

(60.b) outside (inside, resp.) of a ball with radius a can be generated by a surface charge that 

vanishes in total and is distributed on the outer surface with a density of: 

 

 = p cos   (   p, r).        (60.c) 

 

Later on (Chap. X), we will show that based upon the theory of relativity, in reality, the translational 

motion of the rotating electron must be accompanied by a small change in the charge distribution 

on its outer surface (or its interior) that is equivalent to the appearance of a charge distribution that 

is precisely equal and opposite to (60.c). The field E will be cancelled by that additional charge 

distribution, or polarization, of the electron, and the additional field Em will reduce to its first 

component E. 

 The complete value of the electromagnetic momentum (per unit volume): 

 

g = 
1

4 c
(E + E + E)  (H + Hv) 

is composed of the previously-calculated vector g(0) = 
1

4 c
 E  H, the additional terms of first 

order in v / c: 

gv = 
1

4 c
 E  Hv, g = 

1

4 c
 E  H, g = 

1

4 c
 E  H , 

 

and an additional term of second order 
1

4 c
(E + E)  Hv, which we can neglect. 

 The term gv corresponds to the motion of pure translation without rotation and was considered 

already in the previous section in the calculation of the inertial force. We would now like to see 

what sort of contribution to that force, and as a result to the electron mass, is due to g and g. 
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(The term g(0), which corresponds to the case of v = 0, still remains irrelevant then.) From (58.a), 

we will have: 

g = 
1

4 c
H  (

1

c
v  H) =  2

2

1
( )

4
H

c
−v H vH . 

 

The first term in the curly brackets will produce the contribution 2(2 / )T c v  when integrated over 

all of space, where T = 21

8
H dV

   is the quantity (52.a) that was calculated before (viz., the 

magnetic energy for v = 0). According to (46.a), for r > a, we will get the following expression for 

the second term: 

 

− 
6

1 1

4 c r
{9 (m r0)

2 (v r0) r0 – 3 (m v) (m r0) r0 – 3 (m r0) (v r0) m + (m v) m} . 

 

In order to calculate the mean value of the quantities that appear in it over all directions of the unit 

vector r0, we next make note of the following formulas, which are true for the rectangular 

components of r0, i.e., for its direction cosines r1, r2, r3 : 

 

 2 2 2

1 2 3r r r+ +  = 1 , 2r  = 1
3

, r r   = 0  (for   ). 

 Moreover: 

2

2r


 
 
 
 = 1 =  

4 2 23 6r r r  +  

and 

r r r r     = 0 , 

 

when the four indices , , ,  are not pair-wise equal. We then get: 

 

4r  = 
4cos   = 

4

0

1
cos 2 sin

4
d



   


  = 

1

4

1

1

2
r dr 

+

−

  = 
1

5
 

 

for the mean value of 4r , and as a result, 
2 2r r   = 1 / 15. 

 Now, one has: 

0 0( )( )mr vr  = m v r r   
 

  = 1
3

m v 


  = 1
3

(m v) , 

  
0( )rmr  = m r r  



  = 1
3
m , i.e., 

0 0( )mr r  = 1
3
m , 

 2

0 0( ) ( ) rmr vr  = m m v r r r r      
  

   
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 = 2 2 2 2 2 2 22m v r m v r r m m v r r           
    

+ +   

 = 2 2 21 1 2
5 15 15

( ) {( ) }m v m v m v m      + − + −m mv  

 = 21
15

{ 2( ) }v m +m mv , 

i.e.: 
2

0 0 0( ) ( )mr vr r  = 21
15

{ 2( ) }+m v mv m  . 

 

Upon introducing that mean value into the expression above, multiplying by 24 r dr , and 

integrating from a to , after an easy calculation, one will get: 

 

− 
2

2 3

1
{3 ( ) }

15c a
+m v mv m . 

As a result, one will have: 

 

r a

dV


 g  = 
2

2

2 3 2 3

2 1
{3 ( ) }

3 15c a c a
− +

m
v m v mv m  

 

externally (r > a). For the interior of the electron (r < a), (46.b) will imply that: 

 

2

1

4 c
(v H) H = 

2 6

4( )

4 c a

mv
m , 

 

such that the corresponding contribution to the total momentum G =  g dV will be given by: 

 
2

2 3 2 3

4 4
( )

3 3c a c a
−

m
v mv m . 

 Ultimately, one will have: 

G = 
2

2 3 2 3

9 7( )

5 5c a c a
−

m mv
v m .              (61) 

 

We then see that the additional momentum in question is indeed proportional to the velocity, but 

not parallel to it, in general. The first component of G, which is parallel to the vector v, can be 

treated as an ordinary momentum that is simply added to the momentum G0 = m0 v that originates 

in the charge of the electron. In that way, we will get an additional “magnetic” mass: 

 

m  = 
2

2 3

9

5c a

m
= 

2

2

9

5

T

c
,        (61.a) 
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which does not need to be small in comparison to the “electric” mass: 

 

m0 = 
2

2

2

3

e

c a
 = 

2

4

3

U

c
 

(see below, § 8). 

 It should be noted that the second component of G, which is parallel to the vector m, will 

vanish only when the magnetic moment of the electron is perpendicular to its translational velocity. 

 The momentum G =  g dV is quite simple to determine. Indeed, from (60), we have: 

 

G = 
3

1

r
{3 (p r0) r0 − p} 

for r > a), and a result: 

g = 
6

1 1

4 c r
[3 (p r0) r0 − p]  [3 (m r0) r0 − m] 

= − 
6

1 1

4 c r
{3 (p r0) (r0  m) + 3 (m r0) (p  r0) − (p  m)] . 

 

In order to calculate the mean value of the bracketed expression, we (scalar) multiply it by and 

arbitrary fixed vector l and write the product in the form: 

 

3 (p r0) [(m  l) r0] + 3 (m r0) [(l  p) r0] − (p  m) l . 

 

Its mean value is given by the formula 
0 0( )( )mr vr  = 1

3
m v (see above): 

 

p (m  l) + m (l  p) − l (p  m) = l (p  m) . 

One will then have: 

g  = − 
6

1 1

4 c r
 p  m , 

and for all of the exterior space: 

 

dVg  = 
24 r dVg  = 

3

1

3c a
 m  p . 

 

According to (60.b) and (46.b), for the interior of the electron (r < a), we have: 

 

E = − 
3

1

a
p ,  g = 

6

1

4 c a
m  p ,  dVg  = 

3

1

3c a
 m  p , 

so in total: 
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G = 
3

2

3c a
m  p , 

or from (60.a): 

G = − 
2

2 3 2 3

2 2
( )

3 3c a c a
+

m
v mv m .    (62) 

 

Upon adding (61) and (62), we will get: 

 

Gm = 
2

2 3 2 3

17 11 ( )

15 15c a c a
−

m mv
v m .         (62.a) 

 

However, G will, in fact be compensated precisely by the momentum that originates in the 

“polarization” of the electron, such that the additional “magnetic” momentum and “magnetic” 

mass will be expressed by the formulas (61) and (61.a). 

 The remarkable fact that the momentum of a rotating – or “magnetic” – electron is not parallel 

to the translational velocity corresponds to self-torque M that is generated by that velocity and 

strives to align the magnetic axis perpendicular to the direction of motion. As a result of that 

alignment, the momentum will be in the direction as the velocity, and the vector M will vanish. 

 In fact, from the general formula (50), one will have: 

 

M = − 
d

dt

I
. 

 

It should be recalled that the radius vector r that enters into the expression (50.a) for I must refer 

to a fixed point. If one would then like to refer the differentiation with respect to time to the 

comoving reference point (volume element) – in which g is regarded as a constant quantity – then 

one must set d r / dt = v. One will then have: 

  

M = − dVv g  = − dV v g , 

i.e.: 

M = G  v .      (63) 

 

That formula shows that M will be non-zero only when G has a component that is not parallel to 

v. If one substitutes G = G in it then, from (61), that will give: 

 

M = 
2 3

7 ( )
( )

5 c a


mv
v m .         (63.a) 
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If the expression (62.a) were correct then the complete value of M would be equal to: 

 

M = 
2 3

11 ( )
( )

15 c a


mv
v m .         (63.b) 

 

 

§ 9. – The magneton. 

 

 The most recent advances in the field of the optical and magnetic properties of the atom have 

removed all doubt from the oft-expressed suspicion (1) that electrons rotate around their own axis 

(or, more precisely, they have a magnetic moment), or at least for negative electrons (2). The theory 

of spherical, surface-charged electrons that was proposed implied the exact value of the ratio  = 

0/e m c of the magnetic moment to the angular moment of the negative electrons in a remarkable 

way. It should be noted that this value is twice as large as the one that corresponds to a translational 

motion of the electron around a fixed point. In fact, we have seen in Chap. III, § 9 that the magnetic 

moment of a linear electric current relative to any point is composed of the contributions: 

 

m = 
2

e

c
r  v               (64) 

 

that originate in the individual electrons. On the other hand, the corresponding mechanical moment 

is expressed by the formula: 

   = 
02

e

c m
.            (64.b) 

 

If the electron moves around a fixed point O to which it is attracted by a central electric field, as 

is found approximately in, e.g., atoms, then the magnitude and direction of its mechanical angular 

momentum must remain constant. That will follow immediately from the equations of motion 

( )
d

dt
mv  = Fa upon outer multiplying it by the radius vector of the electron r. That is because the 

vectors Fa and r are parallel to each other, so one will have: 

  

r  ( )
d

dt
mv  = r  Fa = 0 , 

and as a result, since: 

( )
d

dt
r mv = ( )

d

dt
r mv  + v  m v = ( )

d

dt
r mv , 

 
 (1) Especially by Abraham and A. H. Compton.  

 (2) One has G. Uhlenbeck and S. Goudsmit (1926) to thank for being the first to observe the fact that the magnetic 

electron in an electric field must feel an additional force [see below, formula (56.a)] that is responsible for its 

previously-unexplained optical and magnetic properties. 
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one will have: 

r  m v = J = const. 

 

It would emerge from the derivation that was just given that this theorem will also be true when 

one considers the dependency of the mass on the velocity (1). In what follows, we would like to 

restrict ourselves to small velocities and set m = m0 = const. It will then follow from the theorem 

above that the magnetic moment of electron, or expressed more precisely, the electronic orbit 

(around the center of attraction O), must remain constant. 

 At distances that are large compared to the dimensions of the orbit, a magnetic field will be 

generated by the orbital motion of the electron whose mean over a time interval that includes 

several orbital periods (but can be, at the same time, very small in comparison to the ordinary unit 

of time) will be identical to the field of a stationary elementary current, or an elementary magnet 

(magnetic dipole) at the point O. That is why one cares to refer to an electron that orbits in an atom 

as a magneton (2). However, it would more correct to speak of a double magneton since a rotation 

of the electron around its own axis will appear along with the orbital motion (just like what happens 

with the motion of the Earth around the Sun!), that will have a magnetic moment m as a 

consequence. The electron equivalent in its magnetic effects to a system of two elementary magnets 

with the moments m and m (obviously, one can think of the latter as being combined into a 

resultant moment m + m). 

 That equivalence refers to not only the actions that are exerted upon the electron, but also the 

actions that the electron itself experiences in an external magnetic field Ha. That question was 

resolved above (§ 6) for the case of the rotational motion. As far as the orbital motion is concerned, 

one can also characterize the change in the vector m that is produced by the external field by the 

equation: 

d

dt

m
=   m  Ha ,     (65) 

  

which is entirely analogous to (55). The overbar over the time derivative of m in that means that 

one is not dealing with the exact “instantaneous” value of that derivative, but with a mean value 

in the same sense as in the determination of the magnetic field that is produced by the orbital 

motion of the electron. The precise formula for the change in velocity of the angular momentum 

J = (1/ ) m , obviously reads: 

d

dt

J
= Ma, 

in which: 

Ma = r  
e

c
(v  Ha)     (65.a) 

 
 (1) It then represents the generalization of the usual “law of areas” in classical mechanics.  

 (2) That terminology was introduced by P. Weiss.  
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is the moment of the magnetic force that acts on the electron. That moment must suffer certain 

fluctuations during each orbit that will mutually cancel in the mean and remain trivial for the mean 

variation of J. The latter will then be determined exclusively by the mean value of Ma over an 

orbital period (or several orbits when the motion is not strictly periodic). For sufficiently-weak 

external fields (i.e., in the first approximation), that mean value Ma is identical, in practice, to the 

one that relates to unperturbed motion (but in the presence of Ha). 

 Now, we point out that the mean value of the time derivative of any quantity that experiences 

no systematic (i.e., monotone) change under unperturbed motion, but merely oscillates about a 

certain mean value, must vanish as long we ignore the perturbation. In particular, we will then 

have (1): 

[ ( )]ad

dt
 r r H  = 0 , 

 

or, since one has 
d

dt
[r  (r  Ha)] = r  (v  Ha) + v  (r  Ha) : 

 

( ) ( )a a  +  r v H v r H  = 0 .           (65.b) 

When one recalls the identity: 

 

r  (v  Ha) + Ha  (r  v) + v  (Ha  r)  = 0   (65.c) 

 

[cf., Introduction (5.a)], that will give: 

 

( )a r v H  = 1
2

(r  v)  Ha .          (65.d) 

 

We have omitted the overbar on the right-hand side of that equation since the vector r  v will 

remain constant in the unperturbed motion. 

 According to (65.a) and (65.d), we will then get: 

 

aM  = 
2

e

c
(r  v)  Ha = m  Ha,       (66) 

and ultimately: 

d

dt

J
 = m  Ha, 

which agrees with (65). 

 
 (1) In order to avoid any misunderstandings, we would like to emphasize the fact that the following mean values 

represent a zeroth-order approximation (relative to Ha), while it is the first order of approximation that is suggested 

in (65). 
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 According to that equation, the perturbation of the orbital motion that is caused by the external 

field reduces to a precession of the vector m around the field direction with an angular velocity: 

 

o = − aH             (66.a) 

(viz., the so-called Larmor precession) (1). 

 That angular velocity is half as big as the angular velocity o with which the vector m, i.e., the 

magnetic axis of the electron, must precess around the same field direction. 

 It should be remarked that such an independent precession of the two vectors m and m is, in 

reality, impossible since they are, so to speak, coupled to each other by the action of the central 

electric field that keeps the electron in the vicinity of the point O. If one assumes, e.g., that the 

electron experiences moment (57) and the force (57.a) during its orbital motion, and one sets Fa = 

e Ea = e f  r, in which f means a scalar function of the distance, so from (57): 

 

Ma = 
e

f
c

 m  (r  v) = 2 f m  m.        (67) 

 

That moment obviously corresponds to a virtual magnetic field of strength: 

 

H = 2 f m = 
2| |a

r


E
m     (67.a) 

 

that we can formally attribute to the magneton that accompanies the orbital motion of the electron. 

Due to the fact that (m grad) f r = m f + r (m grad f), the additional force (57.a) can be written in 

the form: 

− e f 
1

c
v  m − 

1

c

 
 

 
v r (m grad f) = + e f p + 2 (m grad f)  m, 

 

in which p means the dipole moment that is defined by (60.a). We get the following expression for 

the moment of that force that causes the change in the vector m: 

 

Ma = e f r  v + 2 (m grad f) (r  m) .   (67.a) 

 

That expression is quite different from (57). We will see below (Chap. IX, § 2) that in reality, both 

of them are false [just like the fundamental formulas (57) and (47.a)]. The additional force and 

torque that are required by the translational motion of the rotating electron in an electric field 

originate, not in the fictitious magnetic dipole, but in an electric polarization of the electron, i.e., 

of the corresponding electric dipole (with a moment of – p) and have an entirely symmetric 

 
 (1) After J. Larmor.  
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interaction between m and m as a consequence, such that the resultant angular momentum will 

remain constant. 

 Along with the external magnetic and electric torque, the rotating electron must experience a 

self-torque that is given by (63.a) [(63.b), resp.]. However, that torque is proportional to the square 

of the ratio v / c, and for that reason, it can be neglected for small translational velocities (which 

we have restricted ourselves to from the outset). 

 Experimentally, the “internal” magnetic moment of the negative electron amounts to about: 

 

| m | = 10−20. 

 

The total magnetic moment of the atom, which is composed vectorially from the moments m and 

m of the individual electrons, is always a whole-number multiple of the cited value. 

 If one substitutes it in the formula (45) then that will give the equatorial velocity of a negative 

electron with a = 10−13 cm and e = 4.77  10−10 as roughly 1013 cm / sec. As was mentioned before, 

that fact does not need to be regarded as an objection to the theory that was proposed. 

 However, a more fundamental objection will be raised when we estimate the additional mass 

that originates in the rotation of the electron. According to (61.a), that “magnetic” mass has an 

order of magnitude of 
2

2 3c a

m
. With | m |  10−20 and a 10−13, it must be equal to around 10−21. 

However, it actually amounts to only 10−27, which is a million times smaller! One should recall 

that the “radius” of the electron was calculated from precisely the latter value under the assumption 

that the mass of the electron was purely-electrical, i.e., it was determined from the formula m0 = 
2

2

2

3

e

c a
. By contrast, if one would like to treat that mass as mainly magnetic in origin then that 

would give a value for the electron radius of: 

 

a  
2

3
2

0c m

m
  10−11. 

 

However, that value is certainly too large. From the known results of Rutherford regarding the size 

of the atomic nucleus, the usual value (10−13) is already considered to be too large. 

 

 

§ 10. – Critique of the theory of extended electrons. 

 

 In this chapter, we have treated the electron as a spatially-extended structure with a surface or 

volume charge and exhibited its equations of motion on the basis of the Lorentzian principle, and 

indeed in agreement with experiments, on the whole. 

 We must now review that picture critically and ask ourselves whether it cannot be replaced 

with a different one, and in particular, with the much-simpler picture of the point-like electron. 
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 Let us first make some epistemological remarks. Since electrons are the ultimate indestructible 

and indivisible elements from which material bodies are composed, it would seem somewhat naïve 

to once more picture them as small rigid or quasi-rigid bodies. The question of the structure of 

material bodies is the question of how they are composed of smaller, discrete mutually-inseparable 

particles. In that way, one will arrive at molecules, atoms, and ultimately electrons. However, since 

electrons are not further divisible, it would seem senseless to speak of the “elements” of one and 

the same electron. The charge of the electron (just like its mass in the usual conception of classical 

mechanics) is not a form of matter, but a property. However, since that property is invariant, and 

additive, in addition (under the composition of several electrons), that will give the possibility of 

treating that property as the representative of the corresponding thing (in that spirit, we have 

frequently referred to a charged particle as merely a charge) and localize it in the same spatial 

region. In that way, one can just as well imagine a point, a line, a surface, or a volume. To the 

extent that one is dealing with an interaction between different electrons, the conception of the 

electrons as point charges is the simplest and most natural. In that way, the other one will be used 

as a tool, as we did in, e.g., the derivation of the electromagnetic field of a moving point-charge in 

Chap. VI, § 1 and 2. 

 The inducement to treat the electric charge as a continuously-distributed substance with a finite 

volume density first comes from the possibility of replacing the integral laws that determine the 

action-at-a-distance between different electrons with differential equations (which imply a 

fictitious “local action”). However, the decisive basis for introducing spatially-extended electrons 

lies in the fact that it is only in that way that one will arrive at the general study of energy that was 

presented in the previous chapter. Since it is therefore entirely irrelevant from a purely-

mathematical standpoint whether one regards the charge of the electron as a volume charge or a 

surface charge (see § 1), one cares to consider those two possibilities to be physically equivalent. 

By contrast, the line and point conceptions of the electron were rejected because they proved to be 

mathematically untenable in the sense of the aforementioned formulation of the concept of energy 

and its related concepts. However, it is clear that from a purely-geometric standpoint the electron 

with a volume charge is no less different from an electron with a surface charge than the latter is 

from an electron with a line charge. 

 We have therefore not allowed ourselves to be guided by epistemological principles or physical 

facts, but by a mathematical formalism that is coupled with the differential form of the fundamental 

physical laws. 

 We have extended that formalism by a very essential physical principle, namely, the Lorentz 

principle of motion. The meaning of that principle for the “field theory” of electromagnetic energy 

and momentum consists of the fact that it will imply the conservation laws for those quantities in 

the sense of equations (21) and (31) or the corresponding differential equations: 

 

t




+ div K = 0 , 

t





g
+ div2 T = 0 

2

1

c

 
= 

 
g K .       (68) 

 

 Those equations are certainly quite convenient for determining the motion of an electron, but 

not at all necessary. One can solve the same problem by a direct method, namely, when one 

calculates the force that the electron exerts on itself and sets it equal to minus the external force 
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that originates in the other electrons. In that way, one must treat the elements of the electron as 

point charges and define its self-force to be the resultant of their reciprocal actions. 

 The actual physical sense of introducing the spatially-extended electrons with volume or 

surface charges in place of point-like ones consists of just the idea that it will bring about the 

possibility of exhibiting their equations of motion theoretically with the help of Lorentz’s principle. 

Energy, momentum, etc., are considered to be only auxiliary constructions that will ease the 

solution of that problem. The basic concepts of electrodynamics, like those of classical mechanics, 

are force and motion. The basic problems are, firstly, to determine the interactions of the different 

electrons as function of their motion (and configuration), and secondly, to determine the change in 

that motion (and configuration) as a function of their interactions. We have solved the first problem 

completely in the previous chapter. We know the electromagnetic field that is generated by a given 

motion of the electron in question and the force that acts on another electron that is found in that 

field. However, in order to get a closed system of equations that will allow us to follow the history 

of the system of electrons considered, we must further determine the motion of an electron under 

the action of given external forces. One possibility for solving that problem on the basis of rational 

foundations consists of “blowing up” the electrons to spheres or other spatially-extended structures 

with surface or volume charges, and introducing self-forces that will be compensated by external 

forces. 

 However, that is not the only possibility, nor is it even the simplest or most reasonable one. In 

nature, we can observe only “external” forces that act on an electron on the part of the other ones. 

The “self-force” represents a metaphysical fiction, due to the aforementioned fact that it is 

epistemologically and physically meaningless to subdivide an electron into further “elements.” 

 Nonetheless, one can always demand that the theory of self-forces should treat not only the 

motion, but also the equilibrium of an electron; but that is not at all the case. The Lorentz principle 

demands the vanishing of the total force for the whole electron, but not for its individual “parts.” 

No equilibrium exists in the interior of the electron. The electrical force of repulsion between its 

“elements” remains uncompensated, at least by forces of an electric nature. Obviously, one can 

suspect that those forces are compensated by forces of a different nature, e.g., “elastic” ones. 

However, that oft-expressed, and partially-developed suspicion means a connecting bridge to 

electrodynamics as a closed physical theory. I am of the opinion that this problem, just like all 

problems and complications that are coupled with the subdivision of the electron into elements, 

should be considered to be only an apparent problem of the same type as many other scholastic 

problems that the philosophers and theologians of the Middle Ages had addressed (1). 

 Either there are no individual electrons at all, but only a continuous distribution of current and 

charge density over all of space, so it would then make no sense to speak of any sort of equations 

of motion. The role of such equations of motion could be played by the principle of the 

conservation of the electromagnetic energy and momentum that was expressed by equations (68). 

However, in that way, they must be valid in all of space, and not just “outside of the electrons.” 

 Or the electrons are discrete indivisible material particles, and it would then seem simplest and 

most-natural to regard them as mere force centers with no extension in space, i.e., as material 

points, as Leibniz and Boskowitsch said before in regard to the ultimate elements of matter. 

 
 (1) For example, recall the famous problem of the number of angels that can dance on the head of a pin. 
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 In that way, all of the problems and complications that relate to the structure of the electron 

vanish. However, at the same time, it would seem as though all of the study of energy that was 

developed in this chapter will also vanish, and therefore the electromagnetic theory of the mass 

and moment of inertia of the electron, as well, i.e., theory of its translational and rotational motion. 

 We will see below (Chap. X) that the equations of motion that were found above can be 

exhibited in connection with the known Ansätze of classical mechanics on the basis of a 

completely-general formal principle, namely, Einstein’s relativity principle. However, in that way, 

it is necessary to define the mass (or more precisely, the rest mass) of an electron and its magnetic 

moment as primary properties that are independent of charge. Accordingly, one must not attribute 

the energy, momentum, and angular momentum of the electron to its electromagnetic field but 

consider it to be its own mechanical attribute that is not directly coupled with the aforementioned 

field. The quantities 2 21
( )

8
E H dV


+ , etc., are physically meaningful for an individual electron 

only when it can be subdivided into infinitely-smaller elements. In that way, it will represent the 

mutual energy, etc., of those elements relative to each other. However, if one considers the electron 

to be a largely indivisible thing then that aforementioned volume integral will lose all of its 

physical sense. In the case of point-like electrons, they would then be infinite. 

 However, along with the mechanical energy and momentum of the individual electrons, one 

must also give some attention to their mutual energy and momentum. In so doing, those “mutual” 

quantities cannot be defined directly as functions of the relative configuration and velocity of the 

electrons that are thought to be in a state of interaction due to the delayed character of 

electromagnetic action-at-a-distance. Nonetheless, one can probably represent them as integrals 

over all space of quantities that will be obtained from the total energy density  = 2 21
( )

8
E H


+ , 

etc., when one subtracts the quantities from it that correspond to the proper energy, etc., of the 

individual electrons. The resultant “mutual” quantities (1) must obviously be expressed by products 

of the elementary electric and magnetic field strengths Ea, Ha that originate in the different 

electrons. For the volume density of the mutual electromagnetic energy, we get, e.g. [cf., (3), § 1]: 

 

   = 
1

( )
8

   
  

+ E E H H ,           (69) 

 

and for the density of the mutual electromagnetic momentum: 

 

g = 
1

4 c
 

  

 E H .             (69.a) 

 

Accordingly, we must also replace the density of the electromagnetic energy current K = 
2c g  = 

8

c


E  H and the tensor density of the momentum flux 2T with the mutual “remainder” that is 

 
 (1) In what follows, we will denote that remainder by an asterisk (). 
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obtained by subtracting the terms that originate in the individual electrons. If one replaces the 

individual electromagnetic energy and momentum of those electrons with the corresponding 

mechanical quantities W and G then the conservation laws for the total energy and total 

momentum can be written in the form: 

 

− 
d

W W
dt




 
+ 

 
  = nK dS

 ,     (70) 

− 
d

dt




 
+ 

 
G G  = n dS

 T ,             (70.a) 

in which: 

W   = dV 

 ,  G = dV

g     (70.b) 

 

mean the mutual electromagnetic energy and momentum, resp., that are included in the volume V. 

In so doing, the volume V will remain arbitrary. However, it is preferable to choose it to be large 

enough that the surface S lies completely in the wave zone, and as a result, it will include all of the 

electrons in question. Nonetheless, the introduction of those quantities can be useful only when 

one expresses them explicitly in terms of the kinematical elements of the electrons in question, 

i.e., their configuration, velocities, accelerations, etc., and indeed for the same time-point at which 

the entire system is considered. One can do that by means of the series development that was cited 

in Chap. VI, § 5. However, we shall not go into the details of that. 

 It should be pointed out that equations (70) and (70.a) are incomplete in comparison to the 

corresponding equations for the complete electromagnetic energy and momentum, and indeed in 

the sense that terms that would correspond to the radiation of energy and momentum by the 

individual electrons are missing from then. Obviously, that lacuna must be filled by introducing 

additional, non-conservative terms into the equations of motion. 
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