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 In his investigations into the second variation of simple integrals, Jacobi arrived at some 

theorems on linear differential equations that were derived and further developed by many others 

(*), and in particular, by Hesse (this journal, Bd. 54, pp. 227). The partially laborious calculations 

that this proof requires can be averted completely when one defines the differential expression that 

Fuchs (this journal, Bd. 76, pp. 183) cared to call the adjoint to another one, not by its formal 

representation, but by its characteristic property that it makes a certain bilinear differential 

expression become a complete differential. In that way, one also easily gets the relations between 

the constants that enter into the reduced form of the second variation that Clebsch first gave, which 

are relations that Hesse had exhibited only in a somewhat-complicated form. I will first derive the 

aforementioned theorems for ordinary differential expressions and then briefly give their 

application to the conversion of the second variation, and finally extend some of those theorems 

to partial differential expressions. 

 

 

§ 1. – On the composition of differential expressions. 

 

 If A0, A1, …, An are well-defined (given) functions, but u is an undetermined function of x then 

I will call the expression: 

 

(1)  2

0 1 2

n

nA u ADu A D u A D u+ + + +  

 

a (homogeneous) linear differential expression and denote it by A (u), also more briefly by A. In 

the latter case, A then means the expression itself, while it is an operation symbol in the former. If 

one replaces the function u in the expression A (u) by a linear differential expression B (u) then 

one will again obtain a linear differential expression A (B (u)), which I shall call the composition 

of A and B (in that sequence) and denote it by AB (u), also more briefly by AB (cf., this journal, 

Bd. 80, pp. 321). Its order is the sum of the orders of A and B. 

 

 
 (*) One finds the older literature in Hesse (loc. cit.) and the more recent ones in Mayer, this journal, Bd. 69, pp. 

238. Cf., also, Horner, Quarterly Journal, no. 55 (1876, Oct.), pp. 218. 
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 I. The coefficient of the highest derivative of a composed differential expression is the product 

of the coefficients of the highest derivatives of its parts. 

 

 That simple remark implies a series of consequences. A differential expression is called 

(identically) zero when all of its coefficients are zero. If one composes several differential 

expressions, none of which are zero, then one will once more obtain a differential expression that 

does not vanish. That is because from the theorem above, the coefficient of the highest derivative 

will be non-zero. Therefore, when a composed differential expression vanishes, one of its parts 

must be zero. If AB = 0 and A is non-zero then B = 0. If ABC = 0 and A and C are both non-zero 

then B = 0. If AC = BC (or CA = CB) and C is non-zero then A = B. For example, if DA = DB 

(where D is the derivation symbol) then A = B. 

 A linear differential expression in the undetermined function u whose coefficients are linear 

differential expressions in another undetermined function v is called a bilinear differential 

expression and will be denoted by A (u, v). It is called symmetric when A (u, v) = A (v, u) and 

alternating when A (u, v) = − A (v, u) . The sum of the orders of the derivatives of u and v that are 

multiplied together in a certain term in A (u, v) will be called the dimension of that term. 

 

 

§ 2. – The definition of adjoint differential expressions. 

 

 If A (u) denotes the differential expression (1) then: 

 

(2)  2

0 1 2( ) ( ) ( ) ( 1) ( )n n

nA u D A u D A u D A u− + − + −  

 

is called the adjoint differential expression to A, and in what follows it will always be denoted by 

( )A u  or A . Meanwhile, we will make little use of that definition, but define the adjoint 

differential expression by one of its characteristic properties that we would like to briefly derive, 

since it will define the foundation for the following investigations. 

 We take the starting point to be the easily-verified formula: 

 

()  
1

1 1

0

( 1)D D u D v


    



−
− − − −

=

−   = ( 1)v D u u D v  − − , 

 

upon which the method of partial integration is based. The differential expression 

( 1)v D u u D v  − −  is then the complete differential of a bilinear differential expression: 

 

()      P (u, v) = 
1

1 1

0

( 1) D u D v


    



−
− − − −

=

−  , 

 

whose terms all have dimension ( – 1) and have the alternating coefficients + 1 and – 1. If one 

replaces v with the product A v in () then one will get: 
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()     ( ) (( 1) ( ))v A D u u D A v  

 − −  = D P (u, A v) . 

 

If the bilinear differential expression P (u, A v), which has order ( – 1) relative to u, as well as 

v, is arranged in terms of the derivatives of u and v then the highest dimension that occurs will be 

( – 1), and the terms of that dimension will have alternating coefficients + A and – A . 

 The differential expression: 

 

(3)  
1

( , )
n

P u A v 
 =

  = 
1

1 1

1 0

( 1) ( )
n

D u D A v


    


 

−
− − − −

= =

−    = 1

,

( 1) ( )D u D A v  

 
 

+ +−   

 

shall be called the concomitant bilinear differential expression (*) to the expression A (u) and it 

shall be denoted by A (u, v). It has order (n – 1) relative to u and v, and the highest dimension that 

occurs is likewise only (n – 1). The terms of dimension (n – 1) have alternating coefficients + An 

and – An . The coefficients of ( )A u , as well as A (u, v), are linear differential expressions of the 

coefficients of A (u). 

 If one sums equation () over  then one will get the following relation (**) between the 

differential expressions (1), (2), and (3): 

 

(4)  ( ) ( )v A u u A v−  = D A (u, v) . 

 

Conversely, when A (u) and B (u) are two such differential expressions such that v A(u) – u B (v) 

is the derivative of a bilinear differential expression C (u, v) then B (u) = ( )A u  and C (u, v) = 

( , )A u v . That is because when one subtracts equation (4) from the equation: 

 

v A (u) – u B (v) = D C (u, v) , 

one will get: 

 

()  ( ( ) ( ))u A v B v −  = D (C (u, v) – A (u, v)) . 

 

If one imagines setting v equal to a certain function then C (u, v) – A (u, v) will be a homogeneous 

linear differential expression in u. If it were not identically zero, but the highest derivative of u 

 
 (*) If the coefficients of A are single-valued functions of the complex variables x in a certain region then n 

independent integrals u0, u1, …, un−1 of the differential equation A = 0 will experience a linear substitution with constant 

coefficients when x traverses a closed curve that lies inside of that region. One can then determine n independent 

integrals v0, v1, …, vn−1 of the differential equation A  = 0 such that they experience the transposed substitution along 

that path, so the quantities u0, u1, …, un−1 are contragredient (this journal, Bd. 76, pp. 194 and pp. 267). On those 

grounds, A  will be called the associated or adjoint expression to A. (That remark implies, with no further discussion, 

e.g., the theorems that Jürgens had derived on the fundamental systems of adjoint differential equations in this journal, 

Bd. 80, pp. 150.) The expression A (u, v) is then comparable to the algebraic structures that Aronhold called 

“intermediate forms” and Sylvester called “concomitants.” Therefore, I shall call it the concomitant bilinear 

differential expression. 

 (**) Jacobi, this journal, Bd. 32, pp. 189. 
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that actually appeared in it were the thm  then the highest derivative of u that would actually appear 

in its derivative would be the (m + 1)th, so from equation (), one would have m + 1 = 0, while m 

could still be non-negative. 

 

 

§ 3. – The reciprocity of adjoint differential expressions. 

 

 All of the properties of the adjoint differential expression can be easily read off of the 

characteristic property (4), by which we can now define it. The theorem of Lagrange that the 

adjoint expression to A  is equal to A follows from it immediately. 

 Furthermore, if the expression A goes to (the linear differential expression) P, A  goes to Q, 

and A (u, v) goes to R (u, v) when one introduces a new independent variable x  in place of x then 

one will have: 

v P (u) – u Q (v) = 
( , )dR u v dx

dx dx




 , 

 

or when one multiplies that by 
dx

dx
 and replaces v with 

dx
v

dx


: 

 

v P (u) – 
dx dx

u Q v
dx dx

 
 

 
 = ,

d dx
R u v

dx dx

 
 

  
 . 

 

The adjoint differential expression to P (u) is then 
dx dx

Q u
dx dx

 
 

 
, and the concomitant bilinear 

differential expression is ,
dx

R u v
dx

 
 
 

. 

 If B is a linear differential expression and B   is its adjoint, while B (u, v) is the concomitant 

bilinear expression then: 

v B (u) − ( )u B v  = D B (u, v) . 

 

If one replaces v with ( )A v  then one will get: 

 

( ) ( ) ( )A v B u u B A v   −  = ( , ( ))D B u A v  . 

 

If one replaces u with B (u) in equation (4) then one will find that: 

 

v A B (u) − ( ) ( )B u A v  = D A (B (u), v) . 

 

Adding those equations will give: 
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v A B (u) − ( )u B A v  = D [A (B (u), v) + ( , ( ))]B u A v  . 

 

It then follows from this that: 

 

 I. If P = A B then P   = B A   and: 

 

P (u, v) = A (B (u), v) + ( , ( ))B u A v  . 

 

By repeatedly applying that theorem, one will find the more general result that the adjoint 

expression to ABC… is equal to C B A   . 

 

 II. If a differential expression is composed of several others then the adjoint expression is 

composed the adjoints in the opposite order. 

 

 Because I will refer to that theorem frequently, I would like to call it the reciprocity theorem. 

(Cf., this journal, Bd. 76, pp. 263 and pp. 277; ibid., Bd. 77, pp. 257; ibid., Bd. 80, pp. 328) 

 The theorem of Hesse (this journal, Bd. 54, pp. 232) is immediately obvious from the 

characteristic equation (4), as well as from the formal representation (2) and (3): 

 

 III. The adjoint linear (the concomitant bilinear) differential expression of a sum is equal to 

the sum of the adjoint linear (and the concomitant bilinear) differential expressions of the 

individual summands. 

 

 It is easy to determine the adjoint to a differential expression with the help of the reciprocity 

theorem and Hesse’s theorem, no matter what form it might also be given in. The adjoint 

expression to a u, where a means a certain function of x, is a u, and the adjoint expression to D u 

is – D u. Therefore, the adjoint expression to a  A (u) will be equal to A (a u), and that of D A (u) 

will be equal to – A D (u). 

 One can define the adjoint to a bilinear differential expression A (u, v) in two different ways. 

Either one considers v to be an undetermined function and imagines that u is set equal to a well-

defined value, or one regards u as undetermined. Let ( , )A u v  be the adjoint expression to A (u, v) 

in the former sense. If one then imagines that u is set equal to a well-defined function in equation 

(4) and calculates the two sides of the adjoint expressions then one will get the formula: 

 

(5)     v A (u) – A (u v) = − ( , )A u Dv  . 

 

If one takes u in that to be an integral 1 / c0 of the differential equation A (u) = 0 , and one replaces 

v with c0 v then one will find that: 

A (v) = 0

0

1
,A D c v

c

 
  
 

 , 

or when one introduces the notation: 
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0

1
,A v

c

 
  
 

 = A1 (v) , 

one will find that: 

A (v) = A1 D (c0 v) . 

 

In the same way, one can put the (n – 1)th-order differential expression A1 (v) into the form: 

 

A1 (v) = A2 D (c1 v) , 

 

in which 1 / c0 is an integral of the differential equation A1 (v) = 0 and A2 (v) is a differential 

expression of order (n – 2). When one proceeds in that way, one will ultimately put the expression 

A into the form: 

 

(6)     A (u) = cn D cn−1 D cn−2 … c2 D c1 D c0 u , 

 

which is composed of nothing but first-order differential expressions. From the reciprocity 

theorem, the adjoint expression to that is: 

 

(7)     ( )A u  = (− 1)n c0 D c1 D c2 … cn−2 D cn−1 D cn u . 

 

 

§ 4. – Differential expressions that are equal to their adjoints. 

 

 From the reciprocity theorem, the adjoint differential expression to ( )A A u  is equal to 

( ) ,A A u  and when a is a well-defined function of x, that of ( )A a A u  is equal to ( )A a A u  (*). 

 Conversely, let P (u) be an arbitrary differential expression of order m that is equal to its own 

adjoint. If the coefficient of the highest derivative in P is equal to p then the corresponding 

coefficient in P   is equal to (− 1)m p. Let P0 (u), P1 (u), …, Pn (u) be n + 1 arbitrarily-chosen 

differential expression, where P (u) has order . Let q be the coefficient of 
nD u  in Pn (u), and let 

pn be determined by the equation: 

p = 2( 1)n

nq p−  . 

 

The coefficient of 
2nD u  in the expression ( )n n nP p P u  will then be equal to p, and therefore the 

expression: 

( ) ( )n n nP u P p P u−  

 

 
 (*) The adjoint differential expression to ( )A D A u  is − ( )A D A u . 
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will have order at most (2n – 1). However, since it is equal to its adjoint, and as a result will have 

even order, it can have order at most (2n – 2). (Cf., Hesse, this journal, Bd. 54., pp. 234.) Let p  

be the coefficient of 2 2nD u−  in it, while q  is that of 1nD u−  in Pn−1, and let: 

 

p  = 1 2

1( 1)n

nq p−

−
−  . 

Thus: 

1 1 1( ) ( ) ( )n n n n n nP y P p P u P p P u− − −
 − −  

 

will be a differential expression that is equal to its adjoint and have order at most (2n – 4). When 

one calculates further, one will ultimately bring P into the form (*): 

 

(8)    P (u) = 1 1 1 0 0 0( ) ( ) ( )n n n n n nP p P u P p P u P p P u− − −
  + + +  . 

 

If, e.g., P (u) = D u
, so ( )P u

  = ( 1) D u − , then one sees from this that every differential 

expression that is equal to its own adjoint can be put into the form: 

 

(9)     P (u) = 2 2

0 1 2 ( 1)n n n

np u D p Du D p D u D p D u− + − + − . 

 

(Jacobi, this journal, Bd. 17, pp. 71) 

 Since the time of Jacobi, one has, conversely, sought to represent every expression in that 

form when one would like to prove that it is equal to its own adjoint. However, since that is not 

usually possible without long-winded calculations, and since that form is only an inessential 

feature of such differential expressions, as its generalization (8) already shows, I will make no use 

of it in what follows. 

 A differential expression that is equal to its own adjoint can be represented in the form (8) or 

(9) by rational operations and differentiations. By contrast, a more important discovery of Jacobi 

was that one can bring every such differential expression into the form ( )A A u  with the help of 

integrations, or into the form ( )A a A u  when it should result in a real form. 

 Jacobi’s proof of that theorem can be represented in the following simple way with the help 

of the reciprocity theorem: 

 Let P (u) be an expression of order 2n that is equal to its own adjoint, and let P (u, v) be the 

concomitant bilinear expression. One then has: 

 

(10) v P (u) – u P (v) = D P (u, v) . 

 

 
 (*) Similarly, one can bring every expression that is equal and opposite to its adjoint into the form: 

 

1 1 1 1 0 0 0 0
( ) ( ) ( )

n n n n n n n n
P p D p P u P p D p P u P p D p P u

− − − −
    +   

 

(Jacobi, this journal, Bd. 32, pp. 196) 
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The left-hand side changes sign when one switches u with v. Therefore, one has: 

 

D P (u, v) = D (− P (v, u)) , 

and as a result, from § 1: 

P (u, v) = − P (v, u) . 

 

 I. If a differential expression is equal to its adjoint then the concomitant bilinear differential 

expression will be alternating (*). 

 

 Therefore, P (u, v) will vanish when u = v. If one takes the v in equation (10) to be an integral 

1 / c0 of the differential equation P (v) = 0, then one will get: 

 

P (u) = 0

0

1
,c D P u
c

 
 
 

 . 

Since the differential expression 
0

1
,P u
c

 
 
 

 of order (2n – 1) vanishes for u = 1 / c0, it can (§ 3) be 

brought into the form P1 D (c0 u), where P1 (u) is a differential expression of order (2n – 2), and 

as a result: 

P (u) = c0 D P1 D c0 u . 

 

If one takes the adjoint expression to both sides then, from the reciprocity theorem, one will get: 

 

P (u) = 0 1 0c D P D c u , 

and therefore: 

0 1 0c D P D c u  = c0 D P1 D c0 u , 

so from § 1: 

1P   = P1 . 

 

Now, if 1 / c1 is an integral of the differential equation P1 = 0 then one will have: 

 

P1 (u) = c1 D P2 D c1 u , 

 

in which P2 is a differential expression of degree (2n – 4) that is equal to its adjoint. When one 

proceeds further in that way, one will bring the given expression into the form: 

 

P (u) = c0 D c1 D c2 … D cn−1 D c D cn−1 … c2 D c1 D c0 u . 

 

 
 (*) If a differential expression is equal and opposite to its adjoint then the concomitant bilinear differential 

expression will be symmetric. 
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Since the coefficient p of the highest derivative of a composite differential expression P is equal 

to the product of the coefficients of the highest derivatives in its parts, one will have: 

 

p = c0 c1 … cn−1 c cn−1 … c1 c0 = c (c0 c1 … cn−1)
2 . 

 

Therefore, when the coefficients of P are all real, and only real integrals are employed in the 

conversion, c will have the same sign as p. Let a be an arbitrary function that has the same sign as 

(− 1)n p, and: 

c = 2( 1)n

nac−  . 

If one then sets: 

 

(6)   cn D cn−1 … c1 D c0 u = A (u) 

 

then one will have: 

 

(7)     ( )A u  = (− 1)n c0 D c1 … cn−1 D cn (u) , 

 

and therefore: 

 

(11) P (u) = ( )A a A u  . 

 

It would be simplest to set a =  1, or a = 1 when one is not dealing with real expressions. However, 

should the coefficient of the highest derivative in A be equal to unity, then one would need to 

choose: 

 

(12)      a = (− 1)n p . 

 

 

§ 5. – New proof of Jacobi’s theorem. 

 

 It follows from equation (11) that all of the n integrals of the differential equation A = 0 must 

also satisfy the differential equation P = 0. However, it will be shown that they are not n arbitrary 

integrals of P = 0 but must fulfill certain conditions. Nonetheless, it is difficult to find those 

conditions in their simplest form in the way that was just pursued (*). For that reason, I would like 

to derive Jacobi’s theorem in a different way that will imply those relations with no further 

analysis. 

 If one replaces v with a A (v) in equation (4) then, when one appeals to the notation (11), one 

will get: 

a A (v) A (u) – u P (v) = D A (u, a A (v)) . 

 

 
 (*) A means for doing that will be suggested in remark I in § 6. 
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If one switches u with v and subtracts the new equation from the original one then that will give: 

 

v P (u) – u P (v) = D (A (u, a A (v)) − A (u, a A (v)) . 

 

It not only follows from this that the differential expression P is equal to its own adjoint, but that 

the concomitant bilinear differential expression will be: 

 

P (u, v) = A (u, a A (v)) – A (v, a A (u)) . 

 

However, the right-hand side of that equation will vanish when u and v are any two integrals of 

the differential equation A = 0. As a result, one must have P (u, v) = 0 when u and v both satisfy 

the differential equation A = 0. 

 Conversely, now let P be any differential expression of order 2n that is equal to its adjoint. The 

concomitant bilinear differential expression P (u, v) will then be alternating, as was shown above. 

I will now assert that n independent integrals of the differential equation P = 0 can be found such 

that any two of them will annul the expression P (u, v). Namely, let a0, a1, …, a2n−1 be any 2n 

independent integrals of P = 0, and let: 

P (a, a) = a . 

 

Since P (u, v) is alternating, a = − a and a = 0 . Moreover, since equation (10) implies that: 

 

DP (a, a) = a P (a) – a P (a) = 0 , 

 

a will be a constant. Now, let x0, x1, …, x2n−1 and y0, y1, …, y2n−1 be arbitrary constants, and let: 

 

u = 
2 1

0

n

a x 


−

=

 ,  v = 
2 1

0

n

a y 


−

=

  

 

be any two integrals of the differential equation P = 0. 

 

P (u, v) = 
,

a x y  
 

  = A 

 

will then be an alternating bilinear form. In the next section, I will give various ways of finding n 

independent sequences of values: 

 

(13) ( )

0x  , ( )

1x  , …, ( )

2 1nx 

−
  ( = 0, 1, …, n – 1), 

 

any two of which will annul the form Z. 

  u = 
2 1

( )

0

n

x a

 


−

=

    ( = 0, 1, …, n – 1), 
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which will then be n independent integrals of the differential equation P = 0 that pairwise satisfy 

the equation P (u, v) = 0 (*). 

 However, if n independent functions u0, u1, …, un−1 are given then one can define a differential 

equation A = 0 or order n that they satisfy. Should the coefficient of the highest derivative of A be 

equal to unity then one would have: 

 

(14) A (u) = ( 1) ( ) ( 1)

0 1 1 0 1 1:n n n

n nu u u u u u u− −

− −
    . 

 

 Furthermore, when all integrals of an thn -order differential equation A = 0 satisfy a 
th2n -order 

differential equation P = 0, one can put P into the form: 

 

P = B A , 

 

in which B is a differential expression of order n (cf., this journal, Bd. 76, pp. 257). If B   is the 

adjoint expression to B and B (u, v) is the concomitant bilinear differential expression then one 

will have: 

v B (u) − ( )u B v  = D B (A (u), v) . 

 

If one switches u and v and subtracts the new equation from the original one then that will give: 

 

v P (u) – u P (v) − ( ) ( ) ( ) ( )A u B v A v B u +  = D [B (A (u), v) – B (A (v), u)] , 

 

or due to (10): 

 

( ) ( ) ( ) ( )A v B u A u B v −  = D [B (A (u), v) – B (A (v), u) – P (u, v)] = D C (u, v) . 

 

 From the way that it is composed, the expression C (u, v) will vanish when u and v are replaced 

with any two functions u0, u1, …, un−1 that each annul A (u) and both annul P (u, v). Its derivative 

is ( ) ( ) ( ) ( )A v B u A u B v − , so it has order at most n relative to u and v. Therefore, C (u, v) can 

have order at most (n – 1) relative to u and v (§ 1). However, when (n – 1)th-order differential 

expression C (u, v) vanishes for n independent functions v = u0, u1, …, un−1, it must vanish 

identically. As a result, no matter which well-defined function only also sets v equal to, the 

expression C (u, v), which has order (n – 1) relative to u, must then vanish identically for u = u0, 

u1, …, un−1 . Therefore: 

( ) ( ) ( ) ( )A v B u A u B v −  = 0 , 

or 

( )

( )

B u

A u


 = 

( )

( )

B v

A v


 

 
 (*) In order to define n independent functions u0, u1, …, un−1, in addition to the n (n – 1) / 2 equations P (u , u) = 

0 (,  = 0, 1, …, n – 1), one does not need the n equations P (u) = 0 ( = 0, 1, …, n – 1), but only one of them, say 

P (u0) = 0. 
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is an expression that is independent of the choice of the undetermined function u, i.e., a well-

defined function a. However, if: 

( )B u  = a A (u) 

then from the reciprocity theorem: 

B (u) = ( )A au , 

and therefore: 

 

(11) P (u) = ( )A a A u  . 

 

If one takes A to be the expression (14), in which the coefficient of the highest derivative is unity. 

then one must choose a to be the function (12). 

 

 

§ 6. – Lemma on alternating bilinear forms. 

 

 In order to complete the proof that was just carried out, one still needs to show how one can 

find n independent sequences of values (13) that pairwise annul the alternating bilinear form: 

 

Z = 
2 1

, 0

n

a x y  
 

−

=

 . 

 

It would be simplest to determine them in succession. One assumes that the quantities: 

 
(0)

0x , (0)

1x , …, (0)

2 1nx −
 

 

are arbitrary (but not all zero). Since Z is alternating, it will satisfy the linear equation: 

 

(0)a x x  
 

 
 
 

   = 0 . 

 

One takes (0)

0x , (0)

1x , …, (0)

2 1nx −
 to be any second solution of that equation that is independent of the 

previous one, etc. If one has already determined m independent sequences of values  

 

  ( )

0x  , ( )

1x  , …, ( )

2 1nx 

−
  ( = 0, 1, …, m – 1) 

that satisfy the m linear equations: 

( )a x x

  
 

 
 
 

   = 0 

 

then ( )

0

mx , ( )

1

mx , …, ( )

2 1

m

nx −
 must be a new solution of those equations that is independent of those 

m. Now, m homogeneous linear equations in 2n unknowns will have at least 2n – m independent 



Frobenius – On adjoint linear differential expressions. 13 

 

solutions as long as m < n, so in addition to the m ones that are known already, there will be 2n − 

2m, so at least 2. 

 Before presenting a second method for determining the quantities (13), I shall prove the 

theorem that the determinant | a | is non-zero. The bilinear differential expression: 

 

P (u, v) = p D u D v 

  

 

has order (2n – 1) relative to u and v. Since it includes no term of dimension higher than (2n − 1), 

one will have p = 0 when  +  > 2n – 1. Therefore, the determinant | p | reduces to a term: 

 

| p | = (− 1)n p2n−1,0 p2n−2,1 … p0, 2n−1 , 

 

or since the terms of dimension (2n – 1) alternately equal + p and – p, to: 

 

| p | = 2np . 

Moreover: 

a = P (a , a) = 
( ) ( )

,

p a a 

  
 

 , 

and therefore: 

| a | = ( ) 2| | | |p a 

   = ( )
2

( )| |np a 

 . 

 

The determinant of the bilinear form Z is therefore non-zero (*). As a result, one can reduce Z to 

the form: 

Z = 
1

0

n

X Y X Y   


−

=

 −  

 

by linear substitutions, in which X, X
  (n = 0, 1, …, n – 1) are 2n independent homogeneous 

linear functions of x0, x1, …, x2n−1, and Y , Y
  are the same functions of y0, y1, …, y2n−1. The 

quantities (13) will then satisfy the conditions that were posed when they satisfy the n linear 

equations X = 0 , which actually possess 2n – n independent solutions, or more generally 

(Clebsch, this journal, Bd. 55, pp. 344), when the are determined from the n equations: 

 

  X
 = 

1

0

n

c X 


−

=

   ( = 0, 1, …, n – 1), 

in which: 

c = c 

are n (n + 1) / 2 arbitrary constants. 

 
 (*) It then follows that there are no more than n independent sequences of values (13) that pairwise annul Z. (Cf., 

this journal, Bd. 82, pp. 256.) 
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 Thirdly, and finally, one can also determine n integrals u0, u1, …, un−1 in the following way 

that satisfy the equation P (u, v) = 0 pairwise. Let x  be a nonsingular point for the differential 

equation P = 0, and let e be the integral of it whose development in the neighborhood of x  begins 

with: 

  e = 2

,2

( )
( )

1 2

n

n

x x
e x x






−
+ − +


  ( = 0, 1, …, 2n – 1). 

 
( )e 

  (a, k = 0, 1, …, 2n – 1) is then equal to 0 or 1 for x = x  according to whether  is different 

from  or equal to it, respectively. Since the expression: 

 

P (e, e) = 
( ) ( )

,

p e e 

  
 

  

 

is constant, it will remain unchanged when the variable x is assigned the value x . As a result, it 

will be equal to the value that p has for x = x , so it will be zero when  +  > 2n – 1. 

 Therefore, en, en+1, …, e2n−1 satisfy the equation P (u, v) = 0 pairwise, and likewise any linear 

combination of any two of them will. One can then choose u0, u1, …, un−1 to be any n independent 

integrals whose developments in powers of x x−  do not begin with a power less than n. 

 

 Remark I. – The relations between the constants (13) are the ones that Clebsch found, while 

their simplest form was due to Hesse. Due to the significance of the work of Hesse, it is perhaps 

interesting to know precisely the point that he had overlooked. 

 

 Let u0 = 1 / c0 be an integral, so a multiplier of the differential equation P = 0. One will then 

have P (u) = c0 D Q1 (u), in which the differential expression Q1 (u) of order (2n – 1) will vanish 

for u = 1 / c0 , so it can be brought into the form Q1 (u) = P1 D c0 u . For the further reduction, one 

cannot employ an arbitrary second integral u1 of P = 0, but one for which one also has Q1 = 0. 11/ c  

= D c0 u1 will then be an integral of P1 = 0, so (§ 4) it will also be a multiplier of P1, and as a result, 

Q1, as well. Therefore, Q1 = c1 D Q2 and Q2 (u) = P2 c1 D c0  u . If u2 is then an integral of P = 0 

that is independent of u0 and u1 for which one has, at the same time, Q2 = 0 then 21/ c  = 1 0 2D c D c u

will be an integral of P2 = 0, so it will also be a multiplier of P2, and as a result of Q2, as well. 

Therefore, Q2 = c2 D Q2 , etc. 

 The equation Q1 (u1) = 0 is a relation between u0 and u1, the equation Q2 (u2) = 0 splits into 

two relations between u0, u1, u2, Q3 (u3) = 0 splits into three relations between u0, u1, u2, u3, etc. 

(Hesse, Bd. 54, pp. 253) The reason why Hesse failed in his attempts to perform this less-

transparent form for those relations lies in the fact that he overlooked a peculiar combination of 

the differential expressions Q1, Q2, Q3, … Namely, the expression Qm of order (2n – m) can be 

brought into the form: 

 

Qm (u) = v0 P (u, u0) + v1 P (u, u1) + … + vm−1 P (u, um−1) , 
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in which the ratios of the functions v0, v1, …, vm−1 are already determined in such a way that Qm 

has order only (2n – m), so the coefficients of 2 1nD u− , 2 2nD u− , …, 2 1n mD u− +  on the right-hand side 

must vanish. Therefore, Qm is equal (up to a factor) to: 

 

0 1 1

0 1 1

(1) (1) (1)

0 1 1

( 2) ( 2) ( 2)

0 1 1

( , ) ( , ) ( , )m

m

m

m m m

m

P u u P u u P u u

u u u

u u u

u u u

−

−

−

− − −

−

 , 

 

and v0, v1, …, vm−1 behave like the functions that I have called the adjoints to u0, u1, …, um−1 (this 

journal, Bd. 77, pp. 250). As a result (loc. cit., pp. 249), they are mutually independent. Now, um 

must satisfy the equation Qm (u) = 0, or else one must have: 

 

v0 P (um, u0) + v1 P (um, u1) + … + vm−1 P (um, um−1) = 0 . 

 

However, since the quantities P (um, u) are constants, due to the independence of v0, v1, …, vm−1, 

that equation requires that one must have: 

 

  P (um, u) ( = 0, 1, …, m – 1) ; m = 0, 1, …, n – 1) . 

 

That is the form that Clebsch gave to the relations. 

 

 Remark II. – Let the coefficients of the 
thm -order linear differential equation P = 0 be analytic 

functions that are defined in the neighborhood of a nonsingular point x0 by convergent series in 

increasing whole positive powers of x – x0 . In what follows, a line L that starts from x0 and returns 

to it shall be called closed only when the coefficients of P can be simultaneously continued to a 

surface strip (of finite width) that surrounds that line and returns on itself without losing the 

character of rational functions, and in that way go back to the original function elements. If x 

traverses such a line L then m independent integrals a0, a1, …, am−1 of the differential equation P 

= 0 will be converted into m linear combinations 0a , 1a , …, 1ma −
  with constant coefficients, so it 

will experience a linear substitution aa = k a 


  that I called the substitution K that corresponds 

to the line L. (
1H K H−

; cf., this journal, Bd. 84, pp. 21 and 23). A closed line L does not correspond 

to a well-defined substitution, but an entire class of similar substitutions. However, such a thing 

will be determined completely when its characteristic determinant is given and decomposed into 

elementary divisors. Relative to a linear differential equation, any closed line will then correspond 

to a certain characteristic function that is decomposed into elementary divisors. 

 We now let P (u) be a differential expression that is equal to its adjoint expression and appeal 

to the same notations as above. Along the line L, the integral u = x a   will go to u  = x a 
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and the integral v = y a   will go to v  = y a 
 . The 2n constants x

  are linear functions 

of the constants x, and the linear substitution by which the quantities x go to x
  is contragredient 

to the one that the 2n integrals a experience along the line L. Namely, if a = k a 


  then x
  

= k x 


  and likewise y
  = k y 



 . The bilinear expression: 

 

P (u, v) = a x y    = Z  will now go to  ( , )P u v   = a x y  
   = Z  . 

 

However, since P (u, v) is a quantity that is independent of x, it can experience no change along 

the line L, and as a result, one must have Z = Z  . The linear substitution that takes the quantities 

x to x
  then has the property of transforming an alternating bilinear form with cogredient 

variables with a non-vanishing determinant into itself. As a result (this journal, Bd. 84, pp. 41), the 

elementary divisors of its characteristic function will be pairwise of equal degree and vanish for 

reciprocal values, except for the ones that are zero for the values  1. However, the ones that have 

an odd exponent must be likewise pairwise present among the latter. The characteristic determinant 

of the contragredient substitution K must have the same properties then (loc. cit., pp. 25 and 21). 

That also follows from the fact that the substitution K will transform the reciprocal form to Z into 

itself. 

 

 The elementary divisors of the characteristic function that corresponds to a closed path 

relative to a differential equation that is equal [equal and opposite, resp.] to itself must be pairwise 

of equal degree and vanish for reciprocal values, with the exception of the ones that are zero for 

the values  1 and have an even [off, resp.] exponents. 

 

 

§ 7. – Conversion of a determinant. 

 

 Since the determinant of the functions u0, u1, …, un−1 plays an important role in the calculus of 

variations, we would like to examine it somewhat more thoroughly. 

 Let b be the coefficient of a in the non-vanishing determinant | a | of degree 2n, divided 

by the entire determinant, and let: 

Y = b x y    

 

be the adjoint form of Z, so it is likewise an alternating form. Furthermore, let: 

 

(15) ( )

0y  , ( )

1y  , …, ( )

2 1ny 

−
  ( = 0, 1, …, n – 1) 

 

be n independent sequences of values that annul Y pairwise. I shall then assert that any two 

solutions of the n independent linear equations: 
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()      
2 1

( )

0

n

y x

 


−

=

  = 0   ( = 0, 1, …, n – 1) 

 

will annul Z. That is because, due to the equations: 

 

()      
( ) ( )

,

b y y 

  
 

  = 0  (, = 0, 1, …, n – 1), 

the expressions: 

 

()     ( )x 

  = 
( )b y 

 


  ( = 0, 1, …, 2n − 1;  = 0, 1, …, n – 1) 

 

will be n independent solutions of equations (), since one has: 

 

()      
( ) ( )x y 

 


  = 0  (, = 0, 1, …, n – 1). 

 

However, solving equations () will give: 

 

()      ( )y 

  = 
( )a x 

 


 . 

 

If one multiplies that equation by ( )x 

  and sums over  then one will get: 

 

()      
( ) ( )

,

a x x 

  
 

  = 0 

 

due to (). Since the n sequences of values ( )x 

  that are defined by equations () are independent, 

and since the n independent linear equations () between the 2n unknowns have no more than 2n 

– n independent solutions, every solution of them will be a linear combination of the n solutions 

(). However, since the n sequences of values () annul the form Z pairwise, as formulas () show, 

any two linear combinations of them will possess the same property, since Z is alternating. 

Therefore, the n sequences of values (13) will also annul the form Z pairwise when it is not given 

by the formulas () but is defined by any n independent solutions of equations (), i.e., equations 

() and () always imply equations () [and even without appealing to equations () or ()]. 

Equations () likewise follow from equations () and () [but equations () do not necessarily 

follow from () and ()]. I have called two systems of quantities (13) and (15) that are coupled 

together by equations () adjoint (this journal, Bd. 82, pp. 238) and showed that the determinant 

of degree n of the one of them ( )( )x 

  is equal to the complementary determinant of degree n of the 

other one ( )( )y 

 , up to a common non-zero factor. 
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 I. If n independent sequences of values annul an alternating bilinear form in 2n variable 

pairs with non-vanishing determinant pairwise then the n sequences of quantities that are adjoint 

to them will annul the adjoint form pairwise. 

 

 From the extended multiplication theorem, the determinant of degree n of the quantities: 

 

()      ( )u 

  = 
2 1

( ) ( )

0

n

x a 

 


−

=

   (,  = 0, 1, …, n – 1) 

 

can be decomposed into a sum of products of each determinant of degree n of the system ( )a 

  and 

the corresponding one for the system ( )x 

 . From Laplace’s determinant theorem, the determinant: 

 

(16) 

(0) (0) (0)

0 1 2 1

( 1) ( 1) ( 1)

0 1 2 1

0 1 2 1

( 1) ( 1) ( 1)

0 1 2 1

n

n n n

n

n

n n n

n

y y y

y y y

a a a

a a a

−

− − −

−

−

− − −

−

 

 

can be decomposed into a sum of products of a determinant of degree n of the system ( )a 

  and the 

complementary determinant of the system ( )y 

 . However, since the determinants of degree n of 

the system ( )x 

  behave like the complements of the system ( )y 

 , the determinant ( )| |u 

  of degree 

n will be equal to the determinant (16) of degree 2n, up to a constant factor. One will arrive at the 

same result when one multiplies (16) by a determinant of degree 2n whose first n rows are defined 

by the quantities ( )x 

 , and whose last n rows are defined by the arbitrary constants ( )c 

 . It is 

especially remarkable that the constants (15) that enter into (16) do not need to go back to the 

constants (13) by equation () under that conversion, but can obviously be defined such that they 

pairwise annul the alternating bilinear form Y. 

 One will obtain a system of quantities (15) in an especially simple way when one chooses u0, 

u1, …, un−1 to be the special system of n independent integrals that was mentioned at the end of § 

6, none of which includes a power less than n in its development in powers of x x− . Namely, if 

one sets x = x  in () then the left-hand side of that equation will vanish, and as a result one will 

satisfy equations (b) when one takes ( )y 

  to have the values that ( )a 

  assume for x = x  (Mayer, 

this journal, Bd. 79, pp. 257). The n sequences of values thus-obtained are independent, because 

when all of determinants of degree n of those quantities ( )y 

  vanish, the determinant ( )| |a 

  of 

degree 2n will vanish for x = x , so x  will be an (essential or inessential) singular value for the 

differential equation P = 0. 
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§ 8. – On the second variation of simple integrals. 

 

 Let: 

F = 
1

0

(1) ( )( , , , , )

x

m

x

f x y y y dx  

 

be a well-defined integral that includes an unknown function y and its derivatives up to order m, 

while u is an undetermined function of x,  is a very small number, and: 

 
1

0

(1) (1) ( ) ( )( , , , , )

x

m m

x

f x y u y u y u dx  + + +  = 
2

1 2
F G H


+ + +


, 

so: 

G = 
1

0

( )

x

x

R u dx , H = 
1

0

( , )

x

x

S u u dx , …, 

in which: 

R (u) = 
( )

f
D u

y









 ,  S (u, v) = 

2

( ) ( )
,

f
D u D v

y y

 

 
 



 
 , … 

 

(Cf., Hesse, loc. cit., pp. 227-229.) If ( )R u  is the adjoint expression to the linear differential 

expression R (u), and R (u, v) is the concomitant bilinear expression then: 

 

v R (u) − ( )u R v  = D R (u, v) , 

and therefore, for v = 1: 

R (u) = (1)u R  + D R (u, 1) , 

in which: 

(17) (1)R  = 
( )

( 1)
f

D
y

 



 
−  

 
  . 

Therefore: 

G = 
1

0

( )

x

x

R u dx  = 
1 1

0 0

( ,1) (1)

x x

x x

dR u u R dx+  . 

 

 In the calculus of variations, one then infers that the integral F can be a maximum or a 

minimum for only those functions y that satisfy the differential equation (1)R  = 0 or: 

 

(17*) 
2

(1) (2) ( )
( 1)m m

m

f f f f
D D D

y y y y

   
− + + + −

   
 = 0 . 
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In the following, y shall then be understood to mean the function that is determined by that 

differential equation and the auxiliary conditions of the problem. (Hesse, loc. cit., pp. 229) 

 If one considers the functions v in the symmetric bilinear differential expression S (u, v) to be 

undetermined then one lets ( , )S u v  be the adjoint expression and lets S (u ; v, w) be the 

concomitant bilinear differential expression in v and w. Both expressions are also linear with 

respect to u (§ 2). If one then switches u and v in the equation: 

 

()     w S (u, v) − ( , )v S u w  = D S (u ; v, w)  

 

and subtracts the original equation from the new one then since S (u, v) = S (v, u), one will get: 

 

( , ) ( , )v S u w u S v w −  = D [S (v ; u, w) – S (u ; v, w)] . 

 

It will then follow from this that when one sets w equal to a certain function and considers u to be 

undetermined, the expression ( , )S u w  will be identical to its adjoint (*). (Cf., the laborious proof 

in Hesse, loc. cit., pp. 233-239.) 

 

 I. If S (u, v) is a symmetric bilinear differential expression and ( , )S u v  is its adjoint, when v 

is considered to be undetermined, then the expression  ( , )S u v  will be identical to its adjoint when 

u is regarded as undetermined. 

 

 If one sets w = 1 then the expression: 

 

(18)   ( ,1)S u  = P (u) = 
2

( ) ( )
,

( 1)
f

D D u
y y

  

 
 

 
−  

  
  

 

will be equal to its own adjoint (**). It is therefore of even order (2n) and can be brought (§ 5) into 

the form: 

 

(11) P (u) = ( )A a A u . 

 

If one sets v = a A (u) in the equation: 

 

 
 (*) If S (u1, u2, …, uk) is a differential expression that is linear (and homogeneous) relative to each of the 

undetermined functions u1, u2, …, uk then one can consider u along to be undetermined and calculate the adjoint 

expression S (u1, u2, …, uk). One again considers only u to be undetermined in that and then determines the adjoint 

expression S , etc. The relations that exist between the differential expressions S , S , S , … can be found by 

means of the same process that was used to derive the special theorem above. 

 (**) Since the adjoint expression to D u


 is equal to ( 1) D u
 

− , that of ( 1) ( )D f D u
  


−  will be equal to 

( 1) ( )D f D u
  


− , from the reciprocity theorem. From that, one can once more infer that the expression 

( 1) ( )D f D u
  


−  is equal to its own adjoint, assuming that f = f . 
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(4)     ( ) ( )v A u u A v−  = D A (u, v) 

 

then one will get: 

a (A (u))2 – u P (u) = D A (u, a A(u)) . 

 

If one further sets u = v and w = 1 in equation () then since ( ,1)S u  is denoted by P (u), that will 

give: 

S (u, u) – u P (u) = D S (u ; u, 1) . 

 

Upon subtracting both equations, one will ultimately find that: 

 

S (u, u) = D [A (u ; u, 1) – A (u, a A (u))] + a (A (u))2, 

 

and from that, one will get Jacobi’s conversion of the second variation: 

 

(19)  H = 
1

0

( , )

x

x

S u u dx  = 
1 1

0 0

2[ ( ; ,1) ( , ( ))] ( ( ))

x x

x x

d S u u A u a A u dx a A u dx− +  . 

 

 If y means an undetermined function then (17) will be a nonlinear differential expression whose 

order is equal to at most 2m. If one sets y equal to a function of two independent variables x and h 

in it and differentiates with respect to h then one will get: 

 

(20)   
(1)R

h




 = 

2 ( )

( ) ( )
,

( 1)
f y

D
y y h


 

 
 

  
−  

   
  = 

y
P

h

 
 

 
 . 

 

 Since the order of the expression P (u) is equal to 2n, it will follow that (1)R  is also of order 

2n with respect to y [cf., the examples of Spitzer, Sitzungsberichte der Wiener Akademie (1854), 

pp. 1014, and ibid. (1855), pp. 41]. 

 

 II. The order of the differential equation (17*) is always an even number. 

 

 If y is the general integral of it with the 2n arbitrary constants h0, h1, …, h2n−1 then the 2n 

functions: 

  a = 
y

h




  ( = 0, 1, …, 2n – 1) 

 

will be linearly independent (Jacobi, this journal, Bd. 23, pp. 55 and 56) and will satisfy the linear 

differential equation P (u) = 0 due to the identity (20). If one combines n independent integrals u0, 

u1, …, un−1  of it (§ 6) that annul the concomitant bilinear differential expression P (u, v) [ = S (v ; 

u, 1) – S (u ; v, 1)] pairwise then the expression A (u) will be given by equation (14), and the 
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function a will be given by (12). If 2 ( )2/ mf y   is non-zero then the degree of the differential 

equation (17*) will be equal to 2m, and: 

a = 
2

( )2m

f

y




 . 

 

 

§ 9. – On adjoint linear partial differential expressions. 

 

 The relationships between adjoint linear ordinary differential equations, to the extent that they 

are not concerned with their integrals, can be extended to partial differential equations. 

 If u and v are two functions of x1, …, xn then from § 2, (): 

 

( 1)
u v

v u
x x

 



 

 


 

 

 
− −

 
 = 

P

x




, 

in which: 

P = 
1 1

1

1
0

( 1)
u v

x x

 





  
 

 
  

− − −
− −

− −
=

 
−

 
  

 

is a bilinear differential expression in u and v. If one replaces: 

 

u with 
1

1 1

1 1

n v

x x



 

 

 

 

+

+ −

+ +

+ −



 
 

in that equation and 

v with 
1 1

1 1

11

1 1

( 1)
v

x x







 
 





−

−

−

+ +
+ +

−


−

 
 

then one will get: 

 
1 1 11 1

1 1 1

1 11 1

1 1 1 1

( 1) ( 1)
n n

n n

n n

v u v u

x x x x x x x x

  

 

   

      
   

      

   

− +

−

− +

+ + + + + ++ +
+ + + +

− +

   
− − −

       
 = 

Q

x








. 

 

If one takes  to be the numbers 1, 2, …, n in succession and adds up the equations in question 

then that will give: 
1 1

1

1 1

1 1

( 1)
n n

n

n n

n n

u v
v u

x x x x

   
 

  

+ + + +
+ + 

− −
   

 = 1

1

n

n

QQ

x x


+ +

 
 . 

 

If one finally replaces v with the product of v and a well-defined function 
1 n

A   then one will find 

that: 
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11

11

1 1 1

1 1

( )
( 1)

nn

nn

n n n

n n

A vu
v A u

x x x x

  
  

    

+ ++ +
+ +

  
− −          

 = 1

1

n

n

RR

x x


+ +

 
 , 

 

in which R1, …, Rn are bilinear differential expressions in u and v. 

 If: 

A (u) = 
1

1 1

1

n

n n

n

u
A

x x

 

  

+ +


 
  

is a linear (partial) differential expression then: 

 

( )A u  = 
1

11

1

1

( )
( 1)

n

nn

n

n

A u

x x

 

  



+ +

+ +


−
 

  

 

is called the adjoint differential expression. When one sums the last formula, one will find the 

following relation between those two differential expressions: 

 

(21)    ( ) ( )v A u u A v−  = 
( , )A u v

x








 , 

 

in which A (u, v) (n = 1, 2, …, n) are n bilinear differential expressions in u and v. 

 The meaning of that equation is based upon the fact that one can infer from it that ( )A u  is 

conversely the adjoint expression to A (u). That is all the more remarkable since the bilinear 

expressions A (u, v) are not at all well-defined but can assume many different forms. The proof 

of that assertion is based upon the lemma: 

 

 I. If A1, A2, …, An are linear differential expressions in u then the coefficient of u in the adjoint 

expression to 

1 2

1 2

n

n

AA A

x x x

 
+ + +

  
 

will be zero. 

 

 If a is a well-defined function of x1, …, xn then: 

 

1 2

1 2

1 1 2

n

n

n

u
a

x x x x

  

 

+ + +  
 

    
 = 

1 2 1 2

1 2 1 2

1

1

1 1 2 1 2

n n

n n

n n

a u u
a

x x x x x x x

     

    

+ + + + + + +

+

  
+

      
 . 

 

The adjoint differential expression to that is: 
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1 2

1 2

1

1 2 1 2

1
1

1

1 2 1 2

( 1)

n

n

n

n n

n n

a
u

x au

x x x x x x

  

  
 

    

+ + +

+ + + +
+ +

+

  
  

   − −
      
 
  

 , 

 

which then vanishes for u = 1. If one arranges that according to the derivatives of u then the 

coefficient of u will be equal to zero. The assertion above will then follow from the remark that 

the adjoint expression to a sum is a sum of the adjoint expressions to the summands. 

 Now let A (u) and B (u) be two linear differential expressions, and let n bilinear differential 

expressions C (u, v) ( = 1, 2, …, n) be determined in such a way that: 

 

v A (u) – u B (v) = 
C

x








 . 

 

If one subtracts equation (21) from that then one will get: 

 

( )( ) ( )u A v B v −  = 
( )C A

x

 



 −


 . 

 

If one imagines that v is set equal to a well-defined function then both sides of that equation will 

be linear differential expressions in u. The adjoint expression to the left-hand side is 

( )( ) ( )u A v B v − . The coefficient of u in the adjoint expression to the right-hand side is equal to 

zero. As a result, B (v) = ( )A v . 

 We can then define the adjoint expression to another one from now on by the characteristic 

equation (21). It follows immediately from this that the adjoint expression to ( )A u  is equal to 

( )A u . 

 

 

§ 10. – The reciprocity theorem. 

 

 If one replaces u with B (u) in the equation: 

 

(21)    ( ) ( )v A u u A v−  = 
( , )A u v

x








  

then one will get: 

( ) ( ) ( )v AB u B u A v−  = 
( ( ), )A B u v

x








 . 

 If one further replaces v with ( )A v  in the equation: 
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( ) ( )v B u u B v−  = 
( , )B u v

x








  

then one will get: 

( ) ( ) ( )A v B u u B A v  −  = 
( , ( ))B u A v

x








 . 

 Upon adding both equations, one will find that: 

 

( ) ( )v AB u u B A v −  = 
[ ( ( ), ) ( , ( ))]A B u v B u A v

x

 



 +


 . 

As a result, B A   is the adjoint expression to AB. 

 

 I. If a differential expression is a composition of several others then the adjoint expression 

will be a composition of the adjoints in the opposite sequence. 

 

 The adjoint expression to 
( )A u

x




 is then −

u
A

x

 
 

 
 , from which it will be clear that the 

coefficient of u will vanish in it. 

 In equation (21), one imagines that u has been set equal to a well-defined function and takes 

the adjoint expression to both sides. If one lets ( , )A u v
  denote the adjoint expression to A (u, v), 

when the v in it is considered to be an undetermined function, then one will get: 

 

(22)    v A (u) – A (u v) = − ,
v

A u
x





 
  

 
  . 

 

 Conclusions that are similar to the ones that were inferred from (5) can be inferred from the 

latter equation. Here, we would like to use it only to determine the most general form of the bilinear 

expressions A (u, v). If one arranges the bilinear differential expression A (u v) – v A (u), which 

vanishes for v = 1, in derivatives of v then that might give: 

 

A (u v) – v A (u) = 
2 3

, , ,

( ) ( ) ( )
v v v

P u P u P u
x x x x x x

  
          

  
+ + +

     
    , 

 

in which the coefficients are linear differential expressions in u. Indeed, when  and  are different, 

P + P means the coefficients of 
2v

x x 



 
, when decomposed into two summands in any way, 

P + P + P means the coefficients of 
3

2

v

x x 



 
, when split into three parts arbitrarily, etc. 

One does not need to conclude the development above with the terms of highest order that actually 

occur either, but one can add arbitrarily many higher-order terms, in which the various coefficients 
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of the same derivative have a zero sum. Equation (22) will then be fulfilled identically when one 

sets: 

(23)   A (u, v) = 

2

,

( ( ) )( ( ) )
( )

P u vP u v
P u v

x x x




    

  
− + −

  
   

 

However, if one takes the adjoint expressions relative to v on both sides of (22) then one will again 

obtain equation (21). Moreover, since any arbitrary bilinear differential expression can be written 

in the form (23), one needs only to traverse the given path backwards in order to convince oneself 

that (23) is the most general form for the n bilinear differential expressions that enter into equation 

(21). 

 

 

§ 11. – Principle of the last multiplier. 

 

 I shall now turn to the question of what form the relations between adjoint differential 

expressions might take when new variables are introduced in place of the independent ones. To 

that end, I shall nee Jacobi’s formula, which lies at the basis for the principle of the last multiplier. 

I would then like to communicate a brief digression into a new derivation of the formula. 

 When the (total) linear differential expression: 

 

a1 dx1 + … + an dxn = a dx , 

 

whose coefficients are functions of x1, …, xn , goes to a dx   by introducing n new independent 

variables, at the same time, the bilinear differential expression: 

 

()    ( ) ( )a dx d a x −   = 
,

aa
dx x

x x


 

   


 

−    
  

 

will be converted into 
aa

dx x
x x


 

 


 

 −     
 , and will then be called the bilinear covariant of 

the linear differential expression (this journal, Bd. 70, pp. 73; ibid., Bd. 82, pp. 235). The 

differentials of the original variables are coupled with those of the new ones by the linear 

equations: 

  dx = 
x

dx
x




 





   ( = 1, 2, …, n) 

whose determinant is: 

x

x








 = D . 
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The n – 2 independent differential expressions: 

 

a1 dx1 + … + an dxn   might go to 
1 1 n na dx a dx 

   + +  ( = 1, 2, …, n – 2) 

 

under that substitution (Cf., Bd. 82, pp. 279). Let u and v be two undetermined functions of x1, …, 

xn, and let: 

W = 

1

1

11 1

2,1 2,

n

n

n

n n n

u u

x x

v v

x x

a a

a a− −

 

 

 

   = 
u v

A
x x



 

 

 
  . 

 

Since A = − A and A = 0, W will be an alternating bilinear partial differential expression. If 

W  denotes the analogous determinant that is defined by the transformed functions u, v and the 

coefficients of the transformed forms then: 

 

W  = W D . 

 

Therefore, W will be a contravariant of the (n – 2) differential expressions in question (Christoffel, 

this journal, Bd. 70, pp. 64). However, if () is a covariant and W is a contravariant of a system of 

forms then (Aronhold, this journal, Bd. 62, pp. 339): 

 

()    J = 1
2

,

aa
A

x x




   

 
−    

  = 
a

A
x









  = −

a
A

x










  

 

will be an invariant of it, and when J   is composed of the coefficients of the transformed forms in 

that same way that was given for J, one will have: 

 

J   = J D . 

 

 We now consider a system of n – 1 independent differential expressions: 

 

()      a1 dx1 + … + an dxn  ( = 1, 2, …, n – 1). 

 

They have a linear contravariant: 
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U = 

1 1

11 1

1,1 1,

n

n n n

u u

x x

a a

a a− −

 

 

 = 
u

A
x








 , 

 

which will be called the partial differential expression that is adjoint to it (this journal, Bd. 82, pp. 

268). It is coupled with the analogous contravariant of the transformed system by the equation: 

 

()      U   = U D . 

 

Furthermore, from (), the n – 1 expressions: 

 

  J = 
,

aA

a x



   



 
  ( = 1, 2, …, n – 1) 

 

will be invariants of the system of forms (), and as a result, their sum: 

 

J  = J


  = 
,

aA

a x



    



 
  = 

A

x



 




  

 

will also be an invariant of it that is coupled with the same invariant in the transformed system by 

the equation: 

 

()      J   = J D . 

 

However, by means of the substitution that was applied, one will now have: 

 

U = 1

1

n

n

u u
A A

x x

 
+ +

 
 = 1

1

n

n

u u
A A

x x

 
 + +

  
, 

so from (): 

U   = 1

1

( ) ( )n

n

u u
A D A D

x x

 
 + +

  
 , 

and therefore: 

J   = 
( )A D

x








 , 

so from (): 

(24)     
( )A D

x








  = 

A
D

x








  . 
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(Jacobi, this journal, Bd. 27, pp. 243. The derivation above is a generalization of the method by 

which Jacobi based a special case of the theorem above in loc. cit., pp. 203.) 

 If A1, …, An are linear differential expressions in an undetermined function, or several linear 

differential expressions in several undetermined functions, then: 

 

  A = 
x

A
x




 




   (a = 1, 2, …, n) 

will also be linear differential expressions. 

 Now, the differential expressions A (u), ( )A u , A (u, v) that enter into equation (21) might go 

to ( )P u , Q (u), and R (u, v) by the introduction of new variables. One would then have: 

 

v P (u) – u Q (v) = 
( , )R u v

x








  = 

( ( , ) )1 R u v D

D x





 


 , 

 

in which ( , )R u v
  are bilinear differential expressions, and the determinant D of the substitution is 

a well-defined function of 1x , …, nx . If one multiplies by D and replaces v with v / D then one 

will get: 

( )
v

v P u u Q D
D

  
−   

  
 = ,

v
R u D

x D




   
      

  . 

 

As a result, 
v

Q D
D

 
 

 
 will be the adjoint expression to P (u) . 

 

 Zurich, in February 1877. 

 

___________ 

 

 

 


