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INTRODUCTION  
 

 In volume IV of the Annales de l’Institut Fourier (1952), I showed the part that is 
played in the study of the mechanics of rigid systems by the existence of an exterior form 
Ω2 of degree two and maximal rank on a 2n+1-dimensional differentiable manifold V2n+1 
that is the generator of the equations of motion.  It is then natural to pose the question: Do 
the mechanical equations of continuous media possess a generating exterior form, and 
what is its topological support? 
 If one reverts to the most elementary concept of motion in a 3-dimensional Galilean 
continuous medium (viz., a numerical space ρ3) then one will observe that this motion is 

nothing but a map ϕ of class Cr (r ≥ 2) of the numerical space R4 (the product of the 

numerical space R3 with the real line) into ρ3.  In relativity, since time is related to the 

medium, the motion of a relativistic continuous medium will be a map of R4 into ρ4.  

More generally, we are led to envision maps ϕ of class Cr (viz., r-maps) of a space Rp 

into a space ρn, and then maps from a manifold (Vp) into a manifold (Wn), and then to 
associate Ehresmann’s manifold of first-order jets J1(Vp, Wn) with these maps.  We prove 
that on J1(Vp, Wn), with x = (x1, x2, …, xp) ∈(Vp) and  ξ = (ξ1, ξ2, …, ξn) ∈ (Wn), there 
exists an exterior form Ωp+1 of degree p + 1 such that the solutions of the associated 
exterior system i(X) Ωp+1 = 0 that satisfy dξσ ^ Vp = 0, moreover (Vp denotes the volume 
form on the manifold (Vp)), are solutions of a system of first-order partial differential 
equations that generalize Hamilton’s equations.  This system is equivalent to a system of 
linear second-order partial differential equations.  The system of generalized Hamilton 
equations can be defined once one is given a Pfaff form ω on the manifold J1(Vp, Wn) and 
a volume form Vp on (Vp). 
 For the maps of mechanics, everything comes down to constructing the form Ωp+1 on 
J1(Vp, Wn).  Now, a group G that operates on (Vp, Wn) and, by prolongation, on J1(Vp, Wn), 
is associated with mechanics.  Since the group G must leave the equations of mechanics 
invariant, the form Ωp+1 must be invariant under G.  This property permits us to specify 
the exterior form that corresponds to the case of Galilean mechanics.  It is important to 
note that the equations of mechanics for undeformable systems are naturally derivable 
from the form Ωp+1 without the intervention of postulates on the internal forces: They are 
generated by a form Ω2 of degree two on the manifold of the Lie group of displacements. 
 What makes this point of view interesting is the fact that it reveals the profound 
nature of the classical theorems of mechanics, as well as suggesting new research.  The 
only inconvenience is that these theorems must be almost completely re-established, 
which is why this article is limited to the cases in which one may operate fruitfully.  Later 
articles will discuss new points. 



Chapter One 
 

Exterior differential forms on J1(Vp, Wn). 
 

§ 1. – Notions concerning jets.   
 

 Ehresmann has shown (Cogresso di Taormina 1951 and the Colloque de Géometrie 
Différentielle de Strasbourg 1953) that one may associate a set of jets J1(Vp, Wn) with the 
r-maps of a manifold (Vp) to a manifold (Wn) that is defined in the following manner: 
 Let ϕ be a map of a neighborhood of x ∈ (Vp) into (Wn) so x is the source of the map 
and x = ϕ(x) ∈ (Wn) is the target.  Consider two admissible local charts g and γ in (Vp) 

and (Wn), resp., such that when u and y belong to the numerical spaces Rp and ρn, 

respectively, one has: 

     u ∈ Rp:  x = g(u) 

     y ∈ ρn:   ξ = ϕ(x) = γ(y). 
 
 The composition of maps that is suggested by the diagram: 
 

 
Vp Wn 

R
p ρn 

g γ 

ϕ 

ϕ  

 
 

leads us to imagine the restriction g  of g to a neighborhood U of u such that the 

composed map ϕ  = γ−1 ⋅ ϕ  ⋅ g  is well-defined.  One says that ϕ is an r-map of the point 

x when the map ϕ  of U into ρn admits continuous partial derivatives with respect to the 

canonical coordinates of Rp of each order up to r in a neighborhood of the point u.  Let 

( , )r
x p nC V W  be the set of maps (ϕ, x), where ϕ is an r-map of the point x.  Two elements 

(ϕ1, x), (ϕ2, x) of ( , )r
x p nC V W are said to be of the same r-class if: 

 
 1) ϕ1(x), = ϕ2(x). 
 2) The pair of local charts (g, γ) associates two maps 1ϕ  and 2ϕ  with ϕ1 and ϕ2, 

resp., whose partial derivatives of the same order ≤ r take the same value at the point u. 
 
 These definitions are independent of the pair of local charts (g, γ) since it suffices to 
consider another pair (g′, γ′) that partially covers the latter one. 
 
 1.  The definition of a jet. – An infinitesimal jet of order r – or r-jet – of (Vp) to (Wn) 
is an r-class of ( , )r

x p nC V W , where x is the source. r
xj ξ  will denote the r-jet that is 
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determined by the pair (ξ, x) ∈ ( , )r
x p nC V W .  The set of r-jets of (Vp) to (Wn) with source x 

is denoted by ( , )r
x p nJ V W .  The union of the ( , )r

x p nJ V W  as x varies over Vp is called the 

manifold of jets of order r: 
( , )

p

r
x p n

x V

J V W
∈
∪ = Jr(Vp, Wn). 

 

 2.  The set of jets of order 1: J1(Vp, Wn). – The set J1(Rp, ρn) of jets of order 1 is 

homeomorphic to the (np + n + p)-dimensional manifold Rp × 1
pnN × ρn, in which a point 

has the canonical coordinates: 
 

(x1, x2, …, xp, 1
1u , …, iuσ , …, n

pu , ξ1, ξ2, …, ξn), 

 

in which the ξσ denote coordinates in ρn, the xi denote coordinates in Rp, and the iuσ = ∂ξσ 

/ ∂xi denote the partial derivatives of the ξσ  with respect to the xi.  When one is 
concerned with J1(Vp, Wn), the preceding set constitutes a system of local coordinates on 
that manifold. 
 
 3.  The kernel of the space of jets of order 1. – We call an element with source 0 
and target 0 – i.e., an element with the np canonical coordinates (0, …, 0, 1

1u , …, iuσ , …, 
n
pu , 0, …, 0) – the kernel of J1(Rp, ρn), which we denote by 1

pnN . 

 In order to give some intrinsic significance to the kernel of the set of jets J1(Vp, Wn), 
we make the following remarks: 
 

 a) The elements of J1(R, Wn) with source 0 and target ξ that have the coordinates (0, 

…, 0, u1, …, un, ξ1, …, ξn) are nothing but the tangent vectors to (Wn), the set of which 

will be denoted by T(Wn).  T(Wn) is a fiber bundle with base (Wn) and fiber Rn. 

 

 The elements of J1(Rp, Wn) with source 0 and target ξ are nothing but the elements of 

the product of p examples of the tangent bundle to (Wn) at the point ξ. 

 1
0( , )p

x nJ W= R  is a fiber bundle that has (Wn) for its base and Rnp for its fiber; one 

denotes this space by Tp(Wn).  There exists a canonical projection of J1(Rp, Wn) onto Rp, 

which suggests that J1(Rp, Wn) is a fiber bundle that has Rp for its base, Tp(Wn) for its 

fiber, and the homogeneous linear group GL(n) of Rn for its structural group. 

 If one considers J1(Vp, Wn) then since there exists a canonical projection A of J1(Vp, 
Wn) onto (Vp), J

1(Vp, Wn) is a fiber bundle relative to this projection A that has (Vp) for its 
base, Tp(Wn) for its fiber, and GL(n) for its structural group. 
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 b) The elements of J1(Vp, ρ) with target 0 are nothing but the tangent covectors to 
(Vp), the set of which is notated by T*(Vp).  It is a fiber bundle with base (Vp) and fiber 

R
p*.  The elements of J1(Vp, ρn) with target 0 and source x are nothing but the elements of 

the product of n copies of the dual to the tangent bundle to (Vp) at the point x.  
1

0( , )n
pJ Vξ ρ=  is a fiber bundle with (Vp) for its base and Rpn for its fiber; one denotes this 

space by ( )n pT V∗ .  There exists a canonical projection of J1(Vp, ρn) onto ρn, which 

suggests that J1(Vp, ρn) is a fiber manifold with ρn for its base, ( )n pT V∗  for its fiber, and 

the homogeneous linear group GL(p) of Rp for its structural group. 

 If one considers J1(Vp, Wn) then since there exists a canonical projection B of J1(Vp, 
Wn) onto (Wn), J

1(Vp, Wn) is a fiber bundle relative to this projection B with (Wn) for its 
base, ( )n pT V∗  for its fiber, and GL(p) for its structural group. 

 
 c) There exists a canonical projection C of J1(Vp, Wn) onto (Vp×Wn).  J

1(Vp, Wn) is 
then a fiber manifold relative to this projection C with (Vp×Wn) for its base, the kernel of 
J1(Vp, Wn) for its fiber, and GL(p) × GL(n) for its structural group.  The kernel of J1(Vp, 

Wn) is homeomorphic to the homogeneous space L(Rp, ρn) of homogeneous linear maps 

of Rp into ρn. 

 
 Remark. – These considerations extend to Jk(Vp, Wn).  (Cf., Ehresmann [3]) 
 
 
 4.  Coordinate changes in the kernel of Jk(Vp, Wn).  Consider a change of local 
coordinates in (Wn) that is defined by the formulas: 
 

ξσ = ξσ(η1, …, ηρ, …, ηn); 
we set: 

σ

ρ
ξ
η

∂
∂

= σ
ρα . 

 

 If one considers a change of coordinates in R
p then the local coordinates for Vp are 

defined by the formulas: 
xi = fi(y1, y2, …, yp); 

we set: 
i

j

x

y

∂
∂

 = i
ja . 

 
 If one considers the changes that are inverse to the preceding ones then we can write, 
upon inverting the partial derivatives: 
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ρ

σ
η
ξ

∂
∂

 = ρ
σα ,  

j

i

y

x

∂
∂

 = j
ia . 

 
 If one denotes the new canonical coordinates of the kernel of J1(Vp, Wn) by jV ρ  = ∂ηρ 

/ ∂yj then from the relation: 

iuσ  = 
ix

σξ∂
∂

= 
ρ

σ
η
ξ

∂
∂ jy

ρη∂
∂

j

i

y

x

∂
∂

, 

it results that: 
(1)     iuσ  = j

i ja vσ ρ
ρα , 

 
a formula that shows that the canonical coordinates of J1(Vp, Wn) may be identified with 
the components of a tensor that is constructed from the spaces Tξ and xT ∗

′ , upon denoting 

the tangent space to (Wn) at the point ξ by Tξ and the dual to the tangent space to (Vp) at 
the point x by xT ∗

′ ; iuσ ∈ Tξ  ⊗ xT ∗
′ . 

 
 
 6 †.  Hamiltonian coordinates in the kernel of J1(Vp, Wn).  In the development that 
we have seen, it is very advantageous to introduce another coordinate system into the 
kernel of the jets of order 1 that we call Hamiltonian coordinates, due to the role that they 
play in writing down a certain system of partial differential equations that define a family 
of maps from (Vp) to (Wn). 
 We give ourselves a volume form Vp on (Vp).  Consider the completely anti-
symmetric covariant tensors 

1 1pi ipσ −⋯
of order p that are constructed on T*(Wn) and 

Tp−1*(Vp).  By means of the unit volume tensor on the manifold (Vp), whose contravariant 

components are 1 pi iδ ⋯ , one defines a once-covariant, once-contravariant tensor ipσ  by 

contraction: 

1

1 1

1

( 1)!
p

p

i i

i ip
p σ δ

−−
⋯

⋯ = pipσ . 

 
 The tensor ipσ  is an element of Tξ  ⊗ xT ∗

′ .  If one considers the manifold J1(Wn, Vp) 

then the ipσ  are the canonical coordinates on the kernel of the set of jets of (Wn) into (Vp), 

which are inverse to the jets of (Vp) into (Wn) since they obey the coordinate 
transformation rule: 

ipσ = i j
ja qρ

σ ρα . 

 
 Now, J1(Wn, Vp) and J1(Vp, Wn) are two fiber manifolds that have the same base − 

namely, Wn×Vp – and the same fiber – viz., L(Rp, ρn) – which is the space of 

homogeneous linear maps of Rp to ρn.  For this reason, one may take the  ipσ  to be 

                                                
† [DHD: There was no section 5 in the original article.] 
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coordinates in the kernel of J1(Vp, Wn).  However, it is essential to remark that we have 
not presented any means of expressing the canonical coordinates iuσ  as functions of the 

ipσ ; the structure that is implied by an exterior form Ωp+1 – which will be defined later – 

will permit us to relate the ipσ  to the iuσ . 

 The ipσ  may be used as coordinates for the kernel of J1(Vp, Wn).  The same thing is 

true for the completely anti-symmetric tensor of order p that is defined by the contracted 
product of the ipσ  with the covariant components of the unit volume tensor on (Vp): 

 

(2)      
1 1pi ipσ −⋯

= 
1

1
p

i
i i p

p σδ
⋯ . 

 
 It is the components of the completely anti-symmetric covariant tensor 

1 1pi ipσ −⋯
to 

which we shall give the name of Hamiltonian coordinates for the kernel of J1(Vp, Wn). 
 Notation. – When one assigns an ordering to the coordinates in (Vp) − e.g., the natural 
ordering – in order to signify that just the index i has been omitted in pσ12…p, one writes: 
 

i
pσ
⌣  = δ12…p ipσ . 

 
 

 7.  Practical coordinates in the kernel of J1(Vp, Wn).  When local coordinates 
systems have been chosen in (Wn) and (Vp), and when one assigns an ordering to the 
coordinates in (Vp), moreover, it is convenient to use the ipσ  as the coordinates in the 

kernel of the set of jets for the sake of calculations, and they be identified with the 
components of a mixed tensor that is constructed from the spaces Tξ

∗  and Tx . 

 
 

§ 2. – Differential forms on J1(Vp, Wn). 
 
 1.  The vector pσ and the form θθθθ(pσ) Vp . – We denote the contravariant vector with 
source 0, target 0, and components (0, …, 0, 1pσ , …, ipσ , …, ppσ , 0, …0) by pσ .  The 

canonical map A of J1(Vp, Wn) onto (Vp) that was envisioned before in § 1.3 makes a form 

pV ′  on J1(Vp, Wn) correspond to the volume form Vp that is defined on (Vp).  The 

infinitesimal transformation operator θθθθ(pσ) (
1) makes a form of degree p on J1(Vp, Wn) – 

viz., θθθθ(pσ) pV ′  − correspond to pV ′ . 
 Therefore, in the particular case where (Vp) is a Riemannian manifold whose 
fundamental metric tensor is gij , upon denoting the determinant of gij by g, the classical 
volume form Vp has the expression: 
 

Vp = g  dx1 ^ dx2 ^ … ^ dxp, 

                                                
 (1) Cf., H. Cartan, Colloque Topologie. Bruxelles 1950. 
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(3)    θθθθ(pσ) pV ′  = 1 1

1

( 1)
p

i i i p

i

g dp dx dx dxσ
+

=
− ∧ ∧ ∧ ∧∑

⌣
⋯ ⋯ , 

 
in which the ∨ sign placed above the dxi signifies that this term has been omitted. 
 
 Remark. – In the preceding expression, one will observe that d denotes the symbol of 
absolute differentiation. 
 

 2.  The form Φp+1 = 
1

( )
n

pd Vσ
σ

σ
ξ

=

′⋅∑ pθθθθ . – The forms dξσ on Wn lift to J1(Vp, Wn) by 

means of the map B (§ 1.3).  When one takes the exterior product of these forms with the 
n-form θθθθ(pσ) and sums over the index σ, this generates a form Φp+1 of degree p + 1 
whose support is J1(Vp, Wn).  From the considerations that were developed in § 1.6, this 
closed form may be considered as being generated by a completely anti-symmetric tensor 

1 1pi ipσ −⋯
 that is constructed over the spaces Tξ

∗  and 1( ) p
xT∗ − . 

 One then has: 

Φp+1 = 1

1 1

1
( )

( 1)!
p

p

ii
i id p d dx dx

p
σ

σ ξ
−

− ∧ ∧ ∧ ∧
− ⋯

⋯ . 

 
 This expression for Φp+1 is trivially invariant under a change of local coordinates in 
J1(Vp, Wn), which shows that Φp+1 is an intrinsic form on J1(Vp, Wn). 
 
 
 3.  The generating form Ωp+1 . – We denote a Pfaff form on J1(Vp, Wn) by ω.  In a 
practical coordinate system, ω may be written: 
 

ω = 
,

i
i

i

X dp X dσ σ
σ σ

σ
ξ+∑ . 

 
 For reasons that will be justified by theorem I, we call the form Ωp+1 of degree p + 1 
that is defined on J1(Vp, Wn): 
(4)     Ωp+1 = Φp+1 + ω ^ pV ′  
the generating form. 
 We now express Ωp+1 in a system of Hamiltonian coordinates.  When all of the 
indices range from 1 to p, the volume form may be written: 
 

  pV ′  = 1

1

1

!
p

p

ii
i i dx dx

p
δ ∧ ∧
⋯

⋯ , 

 

  ω ^ pV ′  = 1

1

1
( )

!
p

p

iii
i i iX dp dx dx

p
σ

σ δ∧ ∧ ∧
⋯

⋯ , 

   = 1

1

1

( 1)!
p

p

iii
i i iX dp dx dx

p
σ

σ ∧ ∧ ∧
− ⋯

⋯ , 
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upon taking into account formula (2), which defines the Hamiltonian coordinates.  Hence, 
the expression for Ωp+1 is: 
 

(5)   Ωp+1 = 11 1

1 1

1
( )

( 1)!
p p

p

i ii ii
i i idp d dx dx X dx dx

p
σ σ

σ ξ −

−
∧ − ∧ ∧ ∧ + ∧ ∧

− ⋯
⋯ ⋯ . 

 
 This expression for Ωp+1 is trivially invariant under a change of Hamiltonian 
coordinates, if one takes that to mean an arbitrary change of coordinates on (Vp) and (Wn), 
and a change of Hamiltonian coordinates on the kernel of J1(Vp, Wn). 
 
 Remark. – It is pointless to write down the part of the Pfaff form ω that is on (Vp), 
since it disappears under exterior multiplication by the volume form. 
 
 4.  The system of exterior forms associated with Ωp+1 . – If X is an arbitrary vector 
field on J1(Vp, Wn) then one call the system of exterior equations i(X) Ωp+1 = 0, which is 
reducible to np + n + p equations, the associated system of equations for Ωp+1, where 
i(X) denotes the anti-derivation of H. Cartan.  The Hamiltonian coordinates are useful in 
theoretical questions – in particular, when one wants to show the intrinsic character of 
certain forms.  When it is a question of performing calculations, it is necessary to use 
practical coordinates.  In such a coordinates system, Ωp+1 is written: 
 

(6)   Ωp+1 = 1 1( 1)i i i pg d dp dx dx dxσ
σξ+− ∧ ∧ ∧ ∧ ∧ ∧⌣

⋯ ⋯  

     + 1( )i i pg X dp X d dx dxσ
σ σ σ ξ+ ∧ ∧ ∧⋯ . 

 
In particular, the associated system of equations i(X) Ωp+1 may be put into the following 
form: 

np equations of the type: 
 

(7)  11

( )
p

idpg σ

+∂Ω
∂

 = (−1)i dxσ ^ dx1 ^ … ^  idx
⌣

 ^ …^ dxp + iXσ  dx1 ^ … ^ dxp = 0, 

 
n equations of the type: 

 

(8)  11

( )
p

dg σξ
+∂Ω

∂
 = 1 1 1

1

( 1)
p

i i i p p

i

dp dx dx dx X dx dxσ σ
+

=
− ∧ ∧ ∧ ∧ ∧ + ∧ ∧∑

⌣
⋯ ⋯ ⋯  = 0, 

 
p equations of the type: 

 

(9)  11

( )
p

jdxg
+∂Ω

∂
= 1 1

1 1

( 1)
pn

i j i i j p

i

d dp dx dx dx dxσ
σ

σ
ξ+ +

= =
− ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧∑∑

⌣ ⌣
⋯ ⋯ ⋯  

     + (−1)j ω ^ dx1 ^ … ^ jdx
⌣

^ … ^ dxp = 0. 
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 THEOREM 1. – If the Jacobian with np elements 
( )

( )
i
i

D X

D p

σ

σ

⋯ ⋯

⋯ ⋯
 is non-zero then the 

solutions to the system i(X) Ωp+1 = 0 that satisfy the n equations dξσ ^ Vp = 0 are locally 
the solutions to a system of linear partial differential equations (H), and are equivalent to 
the solutions to a system of n second-order linear partial differential equations S2,n(ξσ) 
with respect to the variables xi. 
 
 We now look for the solutions to the exterior system i(X) Ωp+1 = 0 such that the ξσ are 
functions of xi of class Cr, r ≥ 2. 

 The np equations  1

( )
p

idpσ

+∂Ω
∂

 = 0 give: 

 

(10)     
ix

σξ∂
∂

 = iXσ . 

 

 The Xi are functions of the local coordinates of J1(Vp, Wn).  If 
( )

( )
i
i

D X

D p

σ

σ

⋯ ⋯

⋯ ⋯
 ≠ 0 then 

equations (10) define the ipσ  as functions of the 
ix

σξ∂
∂

 = iuσ , which are the canonical 

coordinates of the kernel of J1(Vp, Wn). 
 Locally, one thus has: 

(11)     ipσ  = , ,i h
j

x
x

σ
µ

σ
ξϕ ξ ∂

 ∂ 
, 

 
in which h, j are arbitrary numbers from the set (1 to p) and ρ, µ are arbitrary numbers 
from the set (1 to n).  By means of equations (10), the ipσ  then become the components 

of n vector fields pσ (σ = 1 to n) on (Vp).  With respect to the frame at the point x of (Vp), 
the differential of ipσ  is, upon denoting the coefficients of the infinitesimal connection on 

(Vp) by i
hjΓ : 

idpσ  = 
i

j i h j
hjj

p
dx p dx

x
σ∂ + Γ

∂
 = 

( )i
j

j

D p
dx

Dx
σ . 

 

 The n equations 1

( )
p

d σξ
+∂Ω

∂
= 0 then give, upon using the symbol D to indicate the 

absolute derivative: 

(12)     
1

ip

i
i

Dp

Dx
σ

=
∑  + Xσ  = 0. 

 
 Upon taking the solution (11) to equations (10) into account, the system (12) then 
gives rise to a system of linear second-order partial differential equations S2,n(ξσ). 
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 We now show that the last p equations of the associated system are verified, as 
consequences of (11) and (12).  When one considers the ipσ  to be functions of the xi, by 

the intermediary of the functions ξσ and their first-order partial derivatives, the 

expression 11

( )
p

jdxg
+∂Ω

∂
 is written: 

 

  11

( )
p

jdxg
+∂Ω

∂
 = − 

, 1 1 1

det
ipn ni j

ii ji i
i i

i j

Dpx x X X
x DxDp Dp

Dx Dx

σ σ

σ
σ σ

σ
σ σ σσ σ

ξ ξ
ξ

= = =

 ∂ ∂
  ∂∂ ∂  + +

∂ 
  

∑ ∑ ∑∑  

 

    = 
1 1 ,

i ipn n

ii j j i
i i

Dp Dp
X X

x Dx Dx x

σ σ
σσ σ

σ
σ σ

ξ ξ
= =

   ∂ ∂+ − −  ∂ ∂  
∑ ∑ ∑ . 

 
 The right-hand side is therefore zero, as a consequence of equations (10) and (12). 
 
 Remarks: 
 
 1) It is obvious that the solutions of the equations i(X) Ωp+1 = 0, dξσ ^ Vp = 0 are 
represented by the solutions to the system S2,n(ξσ) only locally. 
 
 2) It is the system of equations (10) that defines the system of practical coordinates 
as functions of the coordinates of the kernel of J1(Vp, Wn).  One sees that this system is 
obtained by equating the coefficient iXσ  of the Pfaffian form ω with the canonical 

coordinate iuσ : 

(13)    ( , , )i h
iX p xσ µ

ρ ξ  = iuσ . 

 
The Latin indices take on all of the values from 1 to p, while the Greek indices take on all 
of the values from 1 to n. 
 
 3) If the Pfaff form ω is homologous to 0 – i.e., ω = dE – then the form Ωp+1 is a 
closed form: dΩp+1 = 0.  Since d[θθθθ(pσ) Vp] = 0, one may write: 
 

Ωp+1 = 
1

( )
n

p pd V EVσ
σ

σ
ξ

=

 + 
 
∑ pθθθθ . 

 
 The system of equations (10) and (12) then takes on the form: 
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(14)    

1

,

.

i i

ip

i
i

E

x p

Dp E

Dx

σ

σ

σ
σ

ξ

ξ=

∂ ∂=
∂ ∂

∂= −
∂∑

 

 
 This form (14) is the generalization of Hamilton’s equations, which one obtains for p 
= 1.  Geometrically, if one considers the maps of the number line t into (Wn) then the 
manifold of jets J1(t, Wn) is associated with these maps, which is a fiber bundle that has 
the number line t for its base and the tangent bundle T(Wn) to (Wn) for its fiber.  The 
elements p1, p2, …, pn are identified with the components of the co-velocity in (Wn).  It is 
for this reason that we call the system of equations (14) the generalized Hamiltonian 
system. 
 

 4) If the p-dimensional number space Rp is referred to a Cartesian coordinate 

system, and if the function E is a quadratic form with constant coefficients on J1(Rp, Wn) 

then the system S2,n(ξσ) has constant coefficients. Ωp+1 is the generating form of this 
system of second-order partial differential equations with constant coefficients. 
 
 5) The np functions ipσ  on (Vp) are likewise solutions of a system of partial 

differential equations that are obtained by demanding that the n forms 
1

p
i

i
i

X dxσ

=
∑  be 

closed. 
 

 6) If 
( )

( )
i
i

D X

D p

σ

σ

⋯ ⋯

⋯ ⋯
 = 0 then some very diverse circumstances are presented.  The 

system i(X) Ωp+1 = 0 might not have solutions, or it might admit ones that are constructed 
by starting with the solutions of a system of first-order partial differential equations 
(systems of first-order partial differential equations are submanifolds of J1(Vp, Wn)), or 
further, that it admit solutions only for the jets that relate to the partial maps from a subset 
of (Vp) into (Wn). 
 
 5. In order to familiarize the reader with the preceding notations, we treat several 
examples that, to simplify, relate to the determination of a numerical function on a 
manifold (Vp).  The manifold J1(Vp, ρ) is associated with maps of (Vp) to the number line 
ρ. 

 a) p = 2, V2 = R2.  The maps of R2 to ρ are defined by a numerical function of two 

variables x1, x2, which are the rectangular coordinates of a point of R
2.  Upon using the 

practical coordinates p1, p2 on J1(Vp, ρ), the Pfaff form is given by: 
 

ω = p1 dx1 + k p2 dp2 + g(x1, x2, p1, p2, ξ) dξ, 
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in which k denotes a constant.  The generating form Ω3 is: 
 

Ω3 = dξ ^ dp1 ^ dp2 + dξ ^ dx1 ^ dp2 + (p1 dp1 + k p2 dp2 + g dξ) ^ dx1 ^ dx2. 
 

 In particular, the associated system i(X) Ω3 = 0 may be put into the form: 
 

    3
1( )dp

∂Ω
∂

 = − dξ ^ dx2 + p1 dx1 ^ dx2 = 0, 

 

    3
2( )dp

∂Ω
∂

= dξ ^ dx1 + k p2 dx1 ^ dx2 = 0, 

 

    3

( )dξ
∂Ω

∂
 = dp1 ^ dx2 + dx1 ^ dp2 + g dx1 ^ dx2 = 0. 

 
 From theorem 1, we can dispense with writing down the other equations.  The first 

two solutions of this exterior system such that ξ is a function on R2 are: 

 

1x

ξ∂
∂

 = p1,  
2x

ξ∂
∂

= k p2, 

 The Jacobian is: 

1 2

1 2

( , )

( , )

D X X

D p p
= 

1 0
det

0 k

 
 
 

 = k. 

 

 If k ≠ 0, p1 and p2 are functions of x1 and x2, and p1 = 
1x

ξ∂
∂

, p2 = 
2

1

k x

ξ∂
∂

 then the third 

exterior equation gives: 
1 2

1 2

p p
g

x x

∂ ∂+ +
∂ ∂

 = 0, 

 
from which, we find that the second-order partial differential equation is equivalent to the 
preceding three equations: 
 

S2,1(ξ):   
2 2

1 2
1 2 2 2 1 2

1 1
, , , ,

( ) ( )
g x x

x k x x k x

ξ ξ ξ ξ ξ∂ ∂ ∂ ∂ + +  ∂ ∂ ∂ ∂ 
 = 0, 

 
which is of elliptic type if k > 0 and hyperbolic if k < 0. 

 If k = 0 then the Jacobian is 1 2

1 2

( , )

( , )

D X X

D p p
 = 0, and one may no longer say that p2 is a 

function of x1, x2.  A possible solution to the system i(X) Ω3 = 0 is composed of dp2 = 0.  
One may imagine the form 3Ωɶ  that is induced by Ω3 on the submanifolds p2 = constant.  
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It permits us to determine x as belonging to the class of maps of the number line x1 to the 
number line ρ.  In this case, 3Ωɶ  = Ω2 ^ dx2, in which x2 is regarded as constant and x is 

determined to be the solution of the characteristic system of Ω2 . 
 

 b) Furthermore, take p = 2, V2 = R2, and let ω have the form: 

 
ω = − p2 dp1 + (p1 + p2) dp2 + g dξ, 

 
in which g denotes an arbitrary function of x1, x2, p1, p2, ξ.  A calculation that is 
analogous to the preceding one shows that the solutions to the equations i(X) Ω3 = 0 such 

that ξ is a function on R2 are locally solutions to the partial differential equations of 

parabolic type: 

S2,1(ξ):   
2

1 2
1 2 1 2 1, , , ,

( )
g x x

x x x x

ξ ξ ξ ξ ξ∂ ∂ ∂ ∂ + + − ∂ ∂ ∂ ∂ 
 = 0. 

 

 c) For an arbitrary p, Vp = Rp, which is referred to Cartesian coordinates, we propose 

to find the form Ωp+1 that generates the harmonic forms on R
p; it all comes down to 

determining ω.  Observe that, one the one hand, ∆ξ = div ⋅ grad ξ, and, on the other 
hand, the system of equations (10) and (12) may be written: 
 

     
ix

ξ∂
∂

 = Xi(p
1, …, pp, x1, …, xpp, x), 

 

     
1

ip

i
i

p

x=

∂
∂∑  = − X. 

 
 If one considers the vector p(pi) then the latter equation signifies that div p = − X.  
One thus obtains a solution by taking X = 0, Xi = pi – i.e., ω = pi dpi – or: 
 

ω = 1
2  d(Norm p). 

 
 A very simple means of obtaining the Laplacian of a function in curvilinear 
coordinates, which we denote by q1, …, qp, then results.  If the metric tensor is gij and p 

denotes a vector of Rp, with norm(p) = gij p
i pj, then consider the form: 

 
Ωp+1 = dξ ^ θ(p) Vp + [d norm(p) + X dξ] ^ Vp , 

 
which is written in terms of curvilinear coordinates: 
 

Ωp+1 = 1 1 1
2( 1) ( )i i i p i j

ijg d dp dq dq dq gd g p pξ+− ∧ ∧ ∧ ∧ ∧ ∧ +∑
⌣

⋯ ⋯  
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+ g  X dξ ^ dq1 ^ … ^ dqp. 

 
 From the associated system, it results that: 
 

ix

ξ∂
∂

 = gij p
j,  X = 

1

( )1 ip

i
i

g p

qg =

∂−
∂∑ , 

namely, that: 

∆ξ = − X = 
1

1
ij

p j

i
i

g g
x

qg

ξ

=

∂ ∂  ∂ 
∂∑ . 

 

 Indeed, it suffices to write the equation 1

( )
p

dξ
+∂Ω

∂
 = 0 in the form: 

 
1 1 1( 1) [ ( ) ]i i i i p p

i

d p g p d g dq dq dq X g dq dq+− − ∧ ∧ ∧ ∧ ∧ + ∧ ∧∑
⌣

⋯ ⋯ ⋯ = 0, 

 
which gives: 

1 1

( )ip p
i

i i
i i

D p g g
p X g

Dq q= =

∂
− +

∂∑ ∑  = 0, 

 
which gives the desired result upon remarking that: 
 

i
jiΓ  = 

1
j

g

qg

∂
∂

. 

 
 Now, if one considers a Riemannian manifold (Vp) then a vector p that is tangent to 
(Vp) is an element of J1(Vp, ρ) with target 0.  By means of the form Ωp+1 and its associated 
system, one generates a class of functions that are harmonic functions on the open sets of 
(Vp) in the case where the norm is always positive. 
 Therefore, on the sphere S, when referred to the coordinates of longitude θ and 
colatitude ϕ, the form V2 = R2 sin ϕ dθ ^ dϕ, the vector p has the coordinates of p1, p2 
with respect to the natural frame, and the norm N(p) = R2 [sin2 ϕ(p1)2 + (p2)2].  The form: 
 

Ω3 = R2 sin ϕ dξ ^ [dp1 ^ dϕ – dp2 ^ dθ) + (p1 dp1 sin2 ϕ + p2 dp2) R4 sin ϕ dϕ ^ dθ 
 
gives the associated equations: 
 

ξ
θ

∂
∂

 = p1 sin2 ϕ R2,  
ξ
ϕ

∂
∂

 =  p2 R2,  
1 2Dp Dp

D Dθ ϕ
+  = 0. 

 
From a preceding remark, one may replace this latter equation by the equation: 
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1 2( ) ( )p g p g

θ ϕ
∂ ∂

+
∂ ∂

 = 0, 

 
which gives the second-order equation: 
 

2 2

2 2 2

1
cot

sin

ξ ξ ξϕ
θ θ ϕ ϕ

∂ ∂ ∂+ +
∂ ∂ ∂

 = 0. 

 

 THEOREM 2. – If the Pfaff form ω on J1(Rp, ρn) has constant coefficients on the 

kernel then the solution to the associated system i(X) Ωp+1 = 0, which are functions on 

R
p, define a linear map of Rp into ρn. 

 
 Since the iCσ  are constant, if ω = i

iC dpσ
σ∑ then the first np of equations (10) give: 

 

ix

σξ∂
∂

= iCσ , 

 
from which, ξσ = i

iC xσ  + Cσ.  This solution satisfies the other equations of the system 

i(X) Ωp+1 = 0.  If the Cσ are zero then this solution comprises the representative 
polynomial of J1(Vp, Wn). 
 
 Consequence. – By adding this solution, one may always suppose that the Pfaff form 
has non-constant coefficients on the kernel of J1(Vp, Wn). 
 
 THEOREM 3. – A system of partial differential equations (H) corresponds to any 
Pfaff form ω on J1(Vp, Wn), and conversely. 
 
 Indeed, by Theorem 1, ω = i

iX dpσ
σ  + Xσ dxσ corresponds to the system: 

 

(H)     

1

,

,

ii

ip

i
i

X
x

Dp
X

Dx

σ
σ

σ
σ

ξ

=

∂ =
∂

= −∑
 σ ∈ (1 to n). 

 
 Conversely, for any given system (H), the right-hand sidesiXσ , Xσ are given functions 

on J1(Vp, Wn), and, as a consequence, they correspond to a form ω = i
iX dpσ

σ  + Xσ dxσ  on 

J1(Vp, Wn). 
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 THEOREM 4. – If the Pfaff form ω is the sum of Pfaff forms ω1 and ω2, and the 
solutions 1f

σ  and 2f
σ  of the system i(X) Ωp+1 = 0, in the sense of Theorem 1, are assumed 

to exist for ω1 and ω2 then the solution that relates to ω is f1 + f2 . 
 
 This proposition is obvious, since it corresponds to the linearity of the system of 
partial differential equations S2,n(ξσ).  In particular, if the Xσ are functions that are defined 
only on Vp then the solution is obtained from a sum of solutions that relate to the form ω 
= i

iX dpσ
σ , and a particular solution to the system (H). 

 
 6.  The forms Ωp+1 . – It may be the case that the Pfaff form ω that is defined on 
J1(Vp, Wn) depends upon certain numerical functions Φ1, …, Φr that are defined on J1(Vp, 
Wn), or upon certain operators that depend upon these functions.  One will then imagine 
the form Ωp+r+1 = dΦ1 ^ …^ dΦr ^ Ωp+1 that is defined on Dr × J1(Vp, Wn), in which, Dr is 
the product of r number lines, on which, the Φi take their values.  The argument that was 
made in the proof of Theorem 1 persists upon replacing the operator i(X) with the 
operator i(Φ1) ^ i(Φ2) ^ … ^ i(Φr) ^ i(X).  In order to determine the set of functions ξσ 
and the functions Φi, one then adjoins the equations that define the functions Φi to the 
associated system.  The motion of a perfect fluid constitutes an example of this case, 
when one takes density, pressure, and heating into account. 
 
 

§ 3. – Properties of the kernel of J1(Vp, Wn). 
 

 In this section, which is principally concerned with the kernel of J1(Vp, Wn), we 
denote the latter by NJ1(Vp, Wn).  There exist certain obvious properties of the kernel of 
J1(Vp, Wn) that will be used in the applications.  They result from the fact that was pointed 
out in § 1.3 that J1(Vp, Wn) may be considered to be a fiber manifold that has Vp × Wn for 

its base and fibers that are isomorphic to the space L(Rp, ρn) of homogeneous linear maps 

of Rp into ρn. 

 
 PROPOSITION 1. – If Wn = Wα + Wβ  then NJ1(Vp, Wn) is isomorphic to the product 
of NJ1(Vp, Wα) with NJ1(Vp, Wβ). 
 

 It results that the property is true for L(Rp, ρα−β). 

 
 Remark. – This proposition is true for NJ1(Vp, Wα × Wβ).  It suffices to recall the 
definition of the r-jets with their source at x: ( , )r

x p nJ V W . 

 
 Consequence. – The form Ωp+1 is the sum of two forms: 1p

α
+Ω  on J1(Vp, Wα) and 1p

β
+Ω  

on J1(Vp, Wβ). 
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  ξ ∈ Wα : 1p
α

+Ω  = (−1)i+1 dξσ ^ idpσ ^ dx1 ^ … ^ idx
⌣

 ^ … ^ dxp + ωα ^ Vp , 

  η ∈ Wβ: 1p
β

+Ω  = (−1)i+1 dξσ ^ idqσ  ^ dx1 ^ … ^ idx
⌣

 ^ … ^ dxp + ωβ ^ Vp . 

 
 Remark. − If ωα and ωβ are basic forms on J1(Vp, Wα) and on J1(Vp, Wβ), resp., then 
the system of generalized Hamiltonian equations may be decomposed into two distinct 
systems. 
 
 PROPOSITION 2.  If Vp = Vh × Vk then NJ1(Vp, Wn) is isomorphic to the product of 
NJ1(Vh, Wn) with NJ1(Vk, Wn). 
 
 The proof is identical to the proof of  Proposition 1. 
 
 Remark. – This proposition is not exactly true for NJk(Vh × Vk, Wn) if r > 1.  Indeed, if 
one imagines the source (x, y) to be in the kernel of Jk(Vh × Vk, Wn) then one must deal 

with composed elements such as 
2

i j

f

x y

∂
∂ ∂

 with i + j = r. 

 
 Consequence. – The form Ωh+k+1 may be written: 
 

Ωh+k+1 = Φh+1 ^ Vk + (−1)h Vh ^ Φk+1 + ω ^ Vh ^ Vk , 
 

an expression in which Vh and Vk denote the two volume forms on the manifolds (Vh) and 
(Vk), respectively, ω denotes a Pfaff form on J1(Vh×Vk, Wn), and Φk+1 is a form of degree k 
+ 1 on J1(Vp, Wn). 
 
 Indeed, a vector pσ in NJ1(Vh × Vk, Wn) is the sum of two vectors: uσ , which is in 
NJ1(Vh, Wn) and vσ , which is in NJ1(Vk, Wn): pσ = uσ + vσ . 
 
   θθθθ(pσ) Vh ^ Vk = [θθθθ(pσ) Vh] ^ Vk + (−1)h Vh ^ [θθθθ(pσ) Vk], 
     = [θθθθ(uσ) Vh] ^ Vk + (−1)h Vh ^ [θθθθ(vσ) Vk], 
 
from which: 
 

Ωh+k+1 = 
1

( )
n

hd Vσ
σ

σ
ξ

=

 ∧ 
 
∑ uθθθθ  ^ Vk + (−1)h Vh ^ 

1

( )
n

kd Vσ
σ

σ
ξ

=

 ∧ 
 
∑ vθθθθ  + ω ^ Vh ^ Vk , 

or: 
(18)  Ωh+k+1 = Φk+1 ^ Vk + (−1)h Vh ^ Φk+1 + ω ^ Vh ^ Vk . 
 
 PROPOSITION 3. – If one lets (Vp), (Vq), (Wn) be three manifolds then any map f 
from (Vq) to (Wn) is embedded in a map of J1(Vp, Vq) into J1(Vp, Wn). 
 
 We have seen that J1(Vp, Wn) may be regarded as a fiber bundle that has (Vp) for its 
base and Tp(Wn) for its fiber.  Since the map of (Vq) into Wn may be prolonged to a map 
of the tangent bundles T(Vq) into T(Wn), the proposition is obvious.  In the domain of a 
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coordinate system about the point η of (Vq), the map f makes the point ξ of (Wn) 
correspond to h by way of the formulas ξσ = fσ(ησ).  This map may be prolonged to a map 
of the bundle of tangent vectors to (Vq), which is denoted by T(Vq), to the bundle T(Wn) 
by means of the formulas: 
 

ξσ = fσ(h1, …, ησ, …, ηq),   iuσ  = i

f
v

σ
ρ

ρη
∂
∂

 

 
which translate into a map of J1(Vp, Vq) to J1(Vp, Wn) that we call the prolongation of f to 
the manifolds of jets. 
 
 Remark. – If one uses the practical coordinates on the kernel of the jets then it is 
necessary to consider the inverse map f−1 and replace the latter formulas with: 
 

ipσ  = i
ρ

ρσ
η π
ξ

∂
∂

. 

 
 COROLLARY. – The form Ωp+1, which is defined on J1(Vp, Wn), then lifts to the 
manifold J1(Vp, Vq).  Explicitly, the equations of this lift are: 
 

dξσ = dσ ρ
ρα η ,  ipσ = iρ

σ ρα π , 

 
Φp+1 = 1 1( 1)i i i pd dp dx dx dxσ

σξ+− ∧ ∧ ∧ ∧ ∧ ∧∑
⌣

⋯ ⋯ , 

which becomes: 

1p+Φ  = 1 1( 1)i i i pd d dx dx dxσ
ση π+− ∧ ∧ ∧ ∧ ∧ ∧∑

⌣
⋯ ⋯ , 

while: 
ω = i

iX dp X dσ σ
σ σ ξ+   becomes ω  = i

iY d Y dρ ρ
ρ ρπ η+ , 

 
from which, the form 1p+Ω  on J1(Vp, Vq) becomes: 

 

1p+Ω  = (−1)i+1 dησ ^ id ρπ ^ dx1 ^ … ^ idx
⌣

^ … ^ ω  ^ dx1 ^ … ^ dxp. 

 
 APPLICATION. – Let J1(Vh×Vk , Wn) be the manifold of jets that are associated with 
the maps of Vh×Vk  to Wn, and let ϕ be a map of Vh×Vk  to Wn .  By means of the map ϕ, 
the form Ωh+k+1 on J1(Vh×Vk , Wn) becomes a form on J1(Vh×Vk , Vh×Vk).  If the maps of  
Vh×Vk  to Vh×Vk reduce to the maps of (Vk) to (Vh) then the form Ωh+k+1 is a form on Vh × 
J1(Vk, Vk).  Formula (18), in which Ωh+1 is zero, gives: 
 

1h k+ +Ω  = Vh ^ [(−1)h Φk+1 + (−1)h ω ^ Vk]. 

 
 By summing over a chain of (Vh), this form becomes a form Ωk+1 of degree k + 1 on 
J1(Vk , Vk): 
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Ωk+1 = (−1)hk  1( )
( )

h
k k kC V

V Vω+Φ + ∧ ∧∫ . 

 
 We shall now proceed to apply this result to the generation of the equations of the 
mechanics of rigid systems, although first we shall begin with the equations of mechanics 
for continuous media. 



CHAPTER II 
 

The mechanics of Galilean continuous media. 
 

§ 1. – The generating form for Galilean continuous media. 
 

 We shall show that three of the classical postulates of Galilean mechanics lead to the 
existence of a generating form for the equations of motion, in the sense of the 
fundamental theorem of Chapter I. 
 
 POSTULATE 1. – There exists a universal time that is independent of the medium 
considered and is defined up to an additive constant: 
 

t = τ + t0 . 
 

 Consequence. – The motion of an n-dimensional continuous medium will be defined 

by the maps of the number space R
n× t to an n-dimensional number space ρn. 

 

 POSTULATE 2. – The n-dimensional space Rn is properly Euclidian. 

 

 Consequence. – There exists a fundamental second-order covariant tensor gij on Rn 

that permits us to define the norm of a vector in R
n by means of a positive-definite 

quadratic form and its contravariant components.  The image space of Rn under a map is 

likewise properly Euclidian; we denote its fundamental tensor by γσρ .  The properly 

Euclidian structures of the space Rn and ρn extend to the kernel of the set J1(Rn, ρn) of 

jets of order 1.  Since an element of the kernel of this set of jets has ipσ  for its 

coordinates, which is identified with a tensor that is constructed over the tangent space Tx 

at the point x of Rn and the dual Tξ
∗  to the tangent space at the point ξ of ρn, the metric 

tensor on the kernel of J1(Rn, ρn) is γσρ gij for the system of coordinates that is used in the 

kernel. 
 

 Remark. – When one is concerned with the kernel of J1(Rn× t, ρn), one will consider a 

metric tensor gn+1, n+1 on the number line t, and take the tensor that has the components 
γσρ gij , γσρ gn+1, n+1 to be the metric tensor on the kernel of the jets. 
 
 POSTULATE 3. – In n-dimensional media, all of the frames that are composed of 
systems of n orthogonal vectors and animated with a uniform translational motion are 
equivalent. 
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 Consequence. – If a point M of Rn, which is the source of a map, has the coordinates 

(x1, x2, …, xn) with respect to the first frame, and the point µ, which is the target of the 
map in ρn, has the coordinates (x1, x2, …, xn), while M and µ have coordinates (y1, y2, …, 
yn) and (η1, η2, …, ηn), respectively, with respect to a second frame then the formulas: 
 
  ξσ  = a vσ ρ σ

ρη τ+ , 

(19) t  = τ + t0 , 
  xi  = i j

ja y  

 

define the passage from the second frame to the first one, in which the matrix aσ
ρ  = 

i
ja  is an orthogonal matrix, and thus constitute a representation of a group G that one 

calls the Galilean group and which is characteristic of Galilean mechanics. 
 From the fundamental theorem of Chapter I, a generating form of degree n + 2 on 

J1(Rn× t, ρn) is associated with the maps of Rn× t to ρn, which has the following 

expression in practical coordinates in the first frame: 
 

Ωn+2 = 1 1( 1)i i i nd dp dx dx dx dtσ
σξ+− ∧ ∧ ∧ ∧ ∧ ∧ ∧∑

⌣
⋯ ⋯  + ω ^ dx1 ^ … ^ dxn ^ dt. 

 
 Since Postulate 3 implies that there exists no privileged frame in an n-dimensional 
medium, this implies that the form Ωn+2 must be invariant under G.  As with Ωn+1, the 
only element that is not well-defined is ω, but the conditions of the invariance of Ωn+2 
under G permit us to make ω more specific. 

 Formulas (19) define a map of Rn × t × ρn × G to Rn × t × ρn.  The set J1(Rn× t, ρn) of 

jets is contained in J1(Rn× t, Rn× t×ρn).  The form Ωn+2, which is defined on the subset of 

J1(Rn× t, Rn× ρn) for which the target is ρn, lifts to J1(Rn× t, Rn× t×ρn×G) by means of the 

map of Rn× t ×ρn×G to Rn× t×ρn.  For a fixed γ ∈ G, the restriction of Ωn+2 to J1(Rn× t, 

R
n× ρn× {γ}) is a form Ωn+2, γ .  The invariance translates into the equality: 

 
Ωn+2, γ  = Ωn+2 . 

 

 The group G operates on Rn× t×ρn, and by prolongation to the kernel of the jets, on 

the set J1(Rn× t, ρn).  The formulas that translate the prolongation of G to the kernel are, 

in canonical coordinates: 
  iuσ  = j

i ja a vσ ρ
ρ , 

  1nuσ
+  = ja v vσ ρ σ

ρ + , 

and, in practical coordinates: 
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  ipσ  = i j
ja aρ

σ ρπ , 

  1npσ
+ = 1na vρ σ

σ ρπ + + . 

 
 Invariants of the group G. – It is important to the point out that the Galilean group 
G is a subgroup of a group G′, if one denotes the linear group that corresponds to an 

arbitrary matrix i
ja  by G′.  The group G′ leaves the following n algebraic functions of 

the ipσ  invariant: 

  1J′  = i
ip∑  ( )composed of  termsn∑ , 

  2J′  = i j
j ip p∑  ( )2composed of  termsn∑ , 

  3J′  = i j k
j k ip p p∑  ( )3composed of   termsn∑ , 

……………………. 

  rJ′  = 31 2

2 3 4 1

rii i i
i i i ip p p p∑ ⋯  ( )composed of  termsrn∑ , 

  nJ′  = 31 2

2 3 4 1

ni ii i
i i i ip p p p∑ ⋯  ( )composed of  termsnn∑ . 

 
 We denote the set of these invariants by J′.  If one takes the Galilean group G then G 
leaves not only the set J′ invariant, but also the norms of the vectors pi 1 2( , , , )i i i

np p p⋯ , 
and, more generally, the norms of the r-vectors that are constructed from the vectors pi.  
We denote the set of invariants of the Galilean group G by J. 
 
 The determination of the Pfaff form ω that makes Ωn+2 be invariant under G. – 
Divide the sum of terms that constitute ω into three partial sums: 
 

 1) ωc  = 1
1

1

n
n

nX dpσ
σ

σ

+
+

=
∑ . 

 

 We verify that this sum corresponds to the kinetic part of the motion of a point of Rn. 

 2) ωσ  = 
1 1

n n
i

i
i

X dpσ
σ

σ = =
∑∑ . 

 
 We verify that if the iXσ  are functions of the ipσ  then this sum corresponds to the 

deformation of the medium. 
 
 3) ωσ  = − Hσ dxσ . 
 
 This sum corresponds to the elementary work that is done by a force field Hσ when it 
is applied to a point µ of the medium, and does not include any surface action, as one 
usually intends of it.  The – sign that precedes Hσ arises from the fact that since Ωn+2 is 
defined only up to a multiplicative constant, it is necessary to choose one if we are to 
recover the equations of classical mechanics. 
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 In order to perform the calculation of Ωn+2, g , we divide the terms of Ωn+2 into two 
categories: 
 
 a) The ones of the form: 
 

 ϕc = 2 1

1

( 1)
n

n n nd dp dxσ
σ

σ
ξ+ +

=
− ∧ ∧ ∧∑ ⋯  + ωc ^ dx1 ^ … ^ dxn ^ dt. 

 
 b) The ones of the form: 
 

 ϕd = 1 1

1

( 1)
n

i i n
id dp dx dx dx dtσ σ

σ
ξ+

=
− ∧ ∧ ∧ ∧ ∧ ∧ ∧∑

⌣
⋯ ⋯  + ωd ^ dx1 ^ … ^ dxn ^ dt. 

 
 We next study the manner by which the ϕc terms are transformed: 
 
 ϕc = [(−1)n+2 dξσ ^ 1ndpσ

+  + (−1)n ωc ^ dt] ^ dx1 ^ … ^ dxn, 

 
 ϕc = (−1)n [dξσ ^ dpn+1 + ωc ^ dt] ^ (dx1 ^ … ^ dxn). 
 
 Under an orthogonal change of variables dx1 ^ … ^ dxn = dy1 ^ … ^ dyn, we occupy 
our time with only the terms: 

ϕ2 = 1

1

n
nd dpσ
σ

σ
ξ +

=

∧∑ + ωc ^ dt. 

 
 From the formulas for a change of frame: 
 

dξσ = a dσ ρ
ρ η + vσ dτ,  1ndpσ

+  = 1na dρ
σ ρπ + , ωc = 1

1
n

nX dpσ
σ

+
+ , 

 
we have: 
    ϕ2 = 1 1

1( ) n n
na d v d d X a d dρ σ ρ σ σ ρ

σ ρ ρ σ ρα η τ π π τ+ +
++ ∧ + ∧ , 

 
    ϕ2 =

1 1
1( )n n

nd d X v a d dρ σ σ ρ
ρ σ ρη π π τ+ +

+∧ + − ∧ . 

 
 Now, under a change of frame 1nX σ

+  = 1na Yσ ρ
ρ + .  Thus, 1nX σ

+  may be identified with the 

components of a contravariant vector.  It results from this that: 
 

1nX σ
+  = 1nu Fσ

+ , 

 
where F denotes a function of the invariants of the set J.  Under a frame change: 
 

1nX σ
+  = 1( )nF a v vσ ρ σ

ρ + + . 
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 In order for ϕ2 to be invariant, F can only be a constant equal to unity.  It then results 
that ωc = 1

1
n

nu dpσ
σ

+
+ .  Since the group G leaves the norm of the vector pn+1 invariant, ωc 

may only be proportional to the differential of that invariant, which has the expression 

1 2

1

( )
n

npσ
σ

+

=
∑  in terms of rectangular coordinates.  If we let δ denote something that is 

constant under G, but that may very well be a function of the coordinates of the point µ 
and other parameters (e.g., temperature and pressure), then we have: 
 

ωc = 1 2

1

1
( )

2

n
nd pσ

σδ
+

=

 
 
 
∑ . 

 
 From the fact that ωc = 1

1
n

nu dpσ
σ

+
+ , it results that 1npσ

+  = 1nuσδ + , and as a result, one has, 

in canonical coordinates: 

ωc = ( )2

12 nd uσδ
+  = 

2

2
d

t

σδ ξ ∂
 ∂ 

. 

 
 From the mechanical point of view, it is interesting to remark that the number δ is 
nothing but the density, and the vector pn+1 (whose components are 1npσ

+ ) is nothing but 

the quantity of motion vector of the point µ. 
 From the foregoing, one has the theorem: 
 
 THEOREM 1. – In Galilean mechanics, the kinetic part ωc of the Pfaff form ω is one-
half the differential of the vis viva δv2, when δ is the density of matter at the point µ. 
 
 Remark. – When one uses practical coordinates, the general expression for ϕ2 in 
orthogonal coordinates is: 

ϕ2 = dξσ  ^ 1ndpσ
+  + 1 2

1

1
( )

2

n
nd pσ

σδ
+

=

 
 
 
∑ . 

 
If the axes are not orthogonal then: 
 

ϕ2 = dξσ  ^ 1ndpσ
+  + 1 1

1, 1

1
( )

2
n n

n nd g p pσρ
σ ργ

δ
+ +

+ + . 

 
 Now, let us study the transformation of ϕd : 
 

ϕd = 1 1

1

( 1)
n

i i n
id dp dx dx dx dtσ σ

σ
ξ+

=
− ∧ ∧ ∧ ∧ ∧ ∧ ∧∑

⌣
⋯ ⋯  + ωd ^ dx1 ^ … ^ dxn ^ dt. 
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 The presence of the factor dt = dτ in the exterior products that constitute the terms of 
ϕd leads to the conservation of only a dσ ρ

ρ η  in the expression for dξσ.  If one denotes the 

minor of the determinant ija  relative to the element ija  by i
jA : 

 
dx1 ^ … ^ idx

⌣
 ^ … ^ dxn = 1( 1)i j i j n

jA dy dy dy′ ′+
′− ∧ ∧ ∧ ∧⋯ ⋯ . 

 

 If one denotes an element of the inverse matrix to i
ja  by j

iα ′  then i
jA ′  = det | a | ⋅ 

j
iα ′ .  Since the matrix i

ja  is an orthogonal matrix, det | a | = + 1 and j
iα ′ = i

ja .  Under a 

frame change, idpσ  = i j
ja a dµ

σ µπ , from which, the transform of the terms of ϕd that do not 

include ωd is: 
 

( )1 1( 1) ( 1) ( ) (i i j i j i i n
j ja d a a d a dy dy dy dσ ρ µ

ρ σ µη π τ′+ +
′− − ∧ ∧ ∧ ∧ ∧⌣

⋯ ⋯ . 

 
 From the properties of orthogonal matrices, it results that: 
 

i i
j ja a ′  = 0 if j′ ≠ j,  i i

j ja a ′  = 1 if j′ = j. 

It results that: 
 

ϕd = 1 1( 1) j j j nd d dy dy dy dρ
ρη π τ+− ∧ ∧ ∧ ∧ ∧ ∧ ∧∑

⌣
⋯ ⋯  + ωd ^ dy1 ^ … ^ dyn ^ dτ. 

 
 Now, imagine the ωd part of ω.  In ωd = i

iX dpσ
σ , the iXσ  are functions of the ipσ .  

Under a change of variables ωd = i
iX dpσ

σ  = j
jY dρ

ρπ , the tensorial quantity: 

 

iXσ  = j
i ja a Yσ ρ

ρ  

 
shows that the iXσ  may be identified with the components of a mixed tensor that is 

constructed over the tangent space to R
n and its dual.  If iM σ  denotes a mixed tensor that 

is constructed over Rn and its dual then one has iXσ  = iM σ f for σ ≠ i, where f is a 

function of the invariants of the Galilean group G, and iXσ  = iM σ f + g for σ = i, where f 

and g denote two functions of the invariants of the Galilean group G.  The presence of the 
invariant g in the expression for iXσ  stems from the fact that one may have terms of the 

form 
1 1

n n
i i
i i

i i

X dp
= =

  
  
  
∑ ∑  in ωd, where each term of the product 

1 1

n n
i i
i i

i i

X dp
= =

  
  
  
∑ ∑  is an 

invariant. 
 In particular, the possible expressions for iXσ  are: 

 
 1) For σ ≠ i: iXσ  = γσρ gij 

ipσ f, for σ = i:  i
iX  = i

ip f g+ . 
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 2) If one considers the contracted product iCσ =
1

n
j

j i
j

p pσ

=
∑ , and more generally, the 

contracted product of r indices iCσ = 1 2

1 2 3

rj j j
j j j ip p p pσ∑ ⋯ , then a very general possible 

expression for iXσ  consists of a linear function of the iCσ , where the coefficients are 

arbitrary functions of the group G. 
 Finally, we remark that the application of the fundamental theorem of Chapter I gives 
the generalized Hamiltonian equations: 
 

ix

σξ∂
∂

 = iXσ ,  
1

in

i
i

p

x
σ

=

∂
∂∑ − Xσ = 0. 

 
 For i ≤ n, the first n2 equations, by the nature of their right-hand sides iXσ , allow us to 

study the map of Rn to ρn, and, as a result, the deformation of the medium.  This is why 

ωd = i
iX dpσ

σ  corresponds to the deformations. 

 The following theorem results from this: 
 
 THEOREM 2. – In Galilean mechanics, the ωd part of the Pfaff form ω, which 
corresponds to the deformations of the medium, is a linear function of the components of 

a mixed tensor iM σ  that is constructed over Rn and its dual, and thus has the coefficients: 

 

iXσ  = i iM f gσ σδ+ , 

 
in which i

σδ  denotes the Kronecker symbol, while f and g are functions of the invariants 

of the Galilean group. 
 
 We have therefore constructed a form Ωn+1 that is invariant under the Galilean group 

G and whose support is the jet manifold J1(Rn × t, ρn).  From the fundamental theorem I 

of Chapter I, the system that is associated with Ωn+1 leads to second-order partial 
differential equations.  These equations exhibit the characteristics that we would like for 
the axioms of Galilean mechanics to possess.  We then propose to axiomatize the latter in 
the following manner: 
 
 AXIOM. – The equations of Galilean mechanics on an n-dimensional continuous 
medium are generated by the system of exterior equations that are associated with the 

exterior form Ωn+1 of degree n + 2, which has its support one the jet manifold J1(Rn × t, 

ρn), and which is invariant under the Galilean group G, a system whose solutions one 

takes to be functions on Rn × t of class Cr (r ≥ 2). 
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 Remarks. – 
 
 1) The preceding axiom entails that we must have assumed postulates I, II, III. 
 
 2) The applications show that one therefore recovers the classical equations, and that 
one may pose very broad hypotheses regarded the deformations of the medium in another 
context, moreover.  Note that it is the energy-momentum vector that is naturally 
introduced in the second-order partial differential equations. 
 
 3) One will observe that there is no reason to introduce the notions of the energy of 
the deformation tensor and the constraint tensor in order for us to arrive at these results. 
 
 4) A general means of generating the mechanics of an n-dimensional continuous 
medium (time being one of the local coordinates in the medium) is to consider a form 
Ωn+1 on a manifold Vn that admits a group or pseudo-group of transformations G, a form 
that has its support on the set of jets of maps from Vn to Vn and is invariant under G. 
 
 5) In an arbitrary system of practical coordinates, the expression for the generating 
form for the motions of the n-dimensional Galilean continuous medium is: 
 
(20) Ωn+1 =  
 

1 1 1

1

( 1)
n

i i i n n

i

g d dp dx dx dx dt dx dx dtσ
σξ ω+

=

 − ∧ ∧ ∧ ∧ ∧ ∧ ∧ + ∧ ∧ ∧ ∧ 
 
∑

⌣
⋯ ⋯ ⋯  

 
 with: 

ω = 1 1
1, 1

1

2
i n n

i n nX dp d g p p H dσ σρ σ
σ σ ρ σγ ξ

δ
+ +

+ +
 + − 
 

,  g = det gij . 

 
The functions iXσ must be determined specifically in each case that one encounters in the 

applications. 
 

§ 2. – The mechanics of filaments. 
 

 One must adapt the preceding theory to the dimensions of the medium in question.  A 
filament is a medium with two of its dimensions being negligible when compared to the 
third one.  The points of the filament are thus defined by means of a variable length s0, 
which is not subject to tension. 
 
 A. STATICS. – The consideration of the equilibrium state of the filament gives rise to 
the study of maps from the number line s0 into the 3-dimensional number space ρ3.  From 
the general theory, we know that the generating form for the equations of statics for the 
filament is a form of degree two on the jet manifold J1(s0, ρ3): 
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Ω2 = 
2

1

d dpσ
σ

σ
ξ

=
∧∑ + ω ^ ds0 . 

 
 Ω2 must be invariant under the transformations of the Galilean group, so the ωd part 
of ω must be invariant, and as a result it must depend upon only the differential of a 
function of just one invariant I, which is the norm of the vector p (whose components are 
p1, p2, p3), in this case.  Let f(I) be this function of: 
 

     I = ( )
2

2

1

pσ
σ =
∑ , 

and let: 

     ω = 2
f

p dp H d
I

σ
σ σ σ ξ∂ −

∂
. 

 
(Hσ are the components of a force field in ρ3.) 
 The characteristic equations for Ω may then be written: 
 

0

2
f

p
s I

σ

σ
ξ∂ ∂− +

∂ ∂
= 0, 

0

p
H

s
σ

σ
∂ −
∂

 = 0. 

 
 In order to determine the function f(I), it is necessary to make some hypothesis on the 
manner by which the filament behaves. 
 
 a) Inextensible filament. – Let s denote the arc length of the profile of the filament in 
its equilibrium position under the action of the applied forces.  The hypothesis of 

inextensibility translates into ds2 = 2
0ds , from which, 

2
2

1 0s

σ

σ

ξ
=

 ∂
 ∂ 

∑ = 1.  From the first three 

Hamiltonian equations, it then results that: 
 

2
f

I

∂ 
 ∂ 

= 
1

4I
, 

 

so the sign of ωd must be the same as that of ωh and f = − I . 
 The generating form for the equations of statics for the filament is therefore: 
 

Ω2 = ( )2
2 2 2
1 2 3 0

1

d dp d p p p dsσ
σ

σ
ξ

=
∧ − + + ∧∑  − Hσ dxσ ^ ds0 . 

 



Exterior forms and the mechanics of continuous media.                              29 

 TENSION. – If δ0 denotes the linear density of the filament then one calls the product 

T = 0 Iδ the tension at a point.  Upon replacing I  with T / δ0, one obtains: 

 

(21)   Ω2 = 
2 3

0
0

1 1

d dp p dp H d ds
T

σ σ
σ σ σ σ

σ σ

δξ ξ
= =

 ∧ − + ∧ 
 

∑ ∑ , 

 
so the characteristics equations: 
 

0

0

d
p

ds T

σ

σ
δξ +  = 0, 

0

d
H

ds

σ

σ
ξ − = 0 

 
take on the classical form upon setting dξσ / ds0 = uσ: 
 

0
0

( )d Tu
H

ds

σ

σδ+  = 0. 

 
 b) Extensible filament. – If one assumes a law of elongation that is proportional to 
the tension: 

ds = ds0 (1 + kT) 
 
then, from Hamilton’s equations, it results that: 
 

2

0

ds

ds

 
 
 

= (1 + kT)2 = 
2

4
f

I
I

∂ 
 ∂ 

. 

 

 Since T = 0 Iδ , by definition, one has: 

 
f

I

∂
∂

= 0

1
(1 )

2
k I

I
δ+ , 

from which: 

f = 0

2

k
I I

δ+ . 

 
 The generating form Ω2 then assumes the initial form: 
 

Ω2 = 
3

1

d dpσ σ

σ
ξ

=
∧∑ − df ̂  ds0 – Hσ dξσ ^ ds0 , 

since: 

df = 
1

(1 )
2

kT dI
I

+ ,  df ^ ds0 = 0

1
(1 )

2
kT dI ds

I
+ ∧ . 
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 Upon taking into account that ds = (1 + kt) ds0, one finds that: 
 

df ^ ds0 = 
1

2
dI ds

I
∧  = 

3

1

1
p dp ds

I
σ σ

σ =
∧∑ , 

 
from which, the new expression for Ω2 as a function of the differential ds of an arc of the 
profile of the equilibrium curve becomes: 
 

Ω2  = 
3

1

1 1

1
d dp p dp ds H d ds

kTI
σ σ σ

σ σ σ
σ

ξ ξ
=

∧ − ∧ − ∧
+∑ ∑ , 

 
which generates the classical equations. 
 
 B. DYNAMICS. – The Galilean dynamics of filaments comes down to the study of 

maps of R2 = s0 × t (s0 is the number line in which the parameter that fixes the length of 

the filament at rest takes its value and t is the temporal number line) into ρ3.  From the 
theoretical study, the generating form for the equations of motion is a form of degree 3 on 
J1(s0 × t, ρ3): 
 

(22) Ω2  = ( ) ( ) ( )
3 3 2 2 21 2 1 1 1

0 1 2 3
1 1

d dp dt d dp ds d p p p dtσ σ
σ σ

σ σ
ξ ξ

= =
∧ ∧ − ∧ ∧ − + + ∧∑ ∑  

 

   + 
( ) ( ) ( )2 2 22 2 2

1 2 3

0 02

p p p
d ds dt H d ds dtσ

σ ξ
 + +
 ∧ ∧ − ∧ ∧
 
 

. 

 
 Example. – Transverse vibrations of stretched filaments. – Assume that the filament 
extends along Ox and that the tension that is imposed in this direction is T0 .  Assume that 
there is no longitudinal displacement – i.e., ξ1 = x – so the vibration is defined only along 
the y-axis, and there is only one unknown function – viz., ξ2 – that is generated by the 
associated equations of the form: 
 

Ω3 = ( )21 2 2 1 2 2
2 2 0 0 2 2 2( / )d dp dt d dp dx d T p dx dt p dp dx dtσ σξ ξ δ∧ ∧ − ∧ ∧ − + ∧ ∧ + ∧ ∧  

− H2 dξ2 ^ dx ^ dt. 
 

 The associated equations give: 
 

12
2

2 1 2
0 0 2( / ) ( )

p

x T p

ξ
δ

∂ +
∂ +

 = 0, − 
2

2
2p

t

ξ∂ +
∂

 = 0, 
1 2
2 2

2

p p
H

x t

∂ ∂+ −
∂ ∂

 = 0. 
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 If one assumes that T0 / δ0 is very large when compared to 1
2p  then one may write 12p  

= − 
2

0

T

x

ξ
δ

∂
∂

, which gives the classical second-order equation: 

 
2 2 2 2

2 2
0 ( ) ( )

T

x t

ξ ξ
δ

∂ ∂−
∂ ∂

 = H2 . 

 
 Remark. – In the foregoing analysis, we assumed that the space ρ3 was referred to 
rectangular axes.  Upon taking an arbitrary coordinate system on ρ3, it suffices to take I to 
be the invariant I = γσρ pσ pρ , where γσρ denotes the metric tensor on contravariant form. 
 
 PERFECT FLUID. – A continuous medium will be said to have perfect fluid type if 
the ωd part of the Pfaff form ω is identically zero, and if, in addition, there exists a 
function F of the point µ such that the form 1/δ dF (in which δ is the density of the 
medium at the point µ) appears in ωd . 
 The generating form of the equations will then be of degree 5 on the jet manifold 

J1(R3 × t, ρ3): 

Ω5 = ( ) ( ) ( )
3 2 2 25 4 4 4 41

3 1 2 3 42
1

( 1) d dp V d p p p Vσ
σ

σ
ξ

=

 − ∧ ∧ + + + ∧  ∑  

+ 4

1 ( )P
H d Vσ

σσ
βτ ξ

δ ξ
 ∂ − − ∧ ∂ 

 

 
in which P denotes the pressure, τ, the temperature, Hσ, the components of the force field 
at the point µ of the medium, β is the dilatation coefficient at constant pressure, and V3 = 
dx ^ dy ^ dz, while V4 = V3 ^ dt. 
 One then deduces from Ω5 that: 
 

t

σξ∂
∂

 = 4pσ , 
4 ( )p P

H
t
σ

σσ
βτδ δ

ξ
∂ ∂ −+ −
∂ ∂

= 0, 

 
from which, we deduce the classical equations: 
 

2

2t

σξδ ∂
∂

= − 
( )P

Hσσ
βτ δ

ξ
∂ − +

∂
. 

 
 Since the functions P, τ, δ are auxiliary unknown functions, one must add three other 
equations to the preceding one: In particular, one can add the characteristic equation of 
the fluid (P, τ, δ) = 0, and the conservation of mass.  This latter condition may be 
interpreted in the following manner: Let p4 be the vector whose components are 4

1( p , 4
2p , 

4
3p , 4

4p  = d) and let θθθθ(p4) denote the infinitesimal transformation operator relative to the 

field p4, so: 



Exterior forms and the mechanics of continuous media.                              32 

θθθθ(p4) V4 = 0. 
 

 This suggests that we consider a medium that has four dimensions, along with maps 

of R4 into ρ4.  Since the density is variable, one imagines the form [sic]: 

 

Ω5 = ( ) ( ) ( ) ( )
4 2 2 2 25 4 4 4 4 4

3 1 2 3 4 4
1

1
( 1)

2
d dp V d p p p p Vσ

σ
σ

ξ
δ=

 − ∧ ∧ + + + + ∧  ∑  

+ 
43 3

4
4 4

1 1

( )
(?)

pP
H d V d V

x
σ σ

σσ σ
σ σ

βτ ξ ξ
ξ= =

   ∂∂ − − ∧ + − ∧  ∂ ∂   
∑ ∑ . 

 
 The generalized Hamiltonian equations that one deduces are: 
 

t

σξ∂
∂

= 
4 4 ( )p p P

H
t

σ σ
σσ

βτ δ
δ ξ

∂ ∂ −+ −
∂ ∂

= 0 σ = 1, 2, 3, 

 
4 3

1

p p

t
σ σ

σ
σ ξ=

∂  ∂ +  ∂ ∂ 
∑ = 0. 

 
 The latter equation translates into the conservation of mass, while the condition 44p  = 

δ entails that ∂ξ4 / ∂t = 1, from which, ξ4 = t + constant, in accord with the postulate 
concerning time in the case of Galilean mechanics. 
 
 Remark.- The theory of permanent motions is an immediate consequence of the case 
where Ω5 admits the infinitesimal transformation that is associated with the vector t = (0, 
0, …, 0, t), which translates into: 

θθθθ(t) Ω5 = 0. 
 
 

§ 4. – n-dimensional isotropic media; the Navier-Stokes equations. 
 

 The ωd part of the Pfaff form ω may be a closed form that is homologous to 0.  In this 
case, there exists a function E on the invariants of the set J for the group G of an isotropic 
medium.  One does not generally know how to determine the function E that corresponds 
to certain properties of the medium, such as having an invariant volume.  That is why one 
confines oneself to looking for an analysis of limited scope; from Theorem 2 of Chapter 
I, the interesting terms are of degree at least two.  Upon confining ourselves to these 
second-degree terms, there are only two possible ones: (J1)

2 and J2, if we denote the 

invariant 
1

n
i
i

i

p
=
∑  by J1, and the quadratic form for the ipσ  on the kernel J1(Rn, ρn) by J2 .  

Upon denoting two coefficients, which might depend upon the temperature, by α and β, 
one then has: 

E = + 1
2 [α(J1)

2 + β J2]. 
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 Therefore, in the case of the approximation that amounts to the form that the classical 
linear approximation takes in this theory, the n-dimensional isotropic media (n ≥ 2) 
depend upon only two physical coefficients other than the density. 
 In an arbitrary system of coordinates the generating form is written: 
 

(23)  Ωn+2 = { 1 1 1( 1)i i i ng d dp dx dx dxσ
σξ+ +− ∧ ∧ ∧ ∧ ∧ ∧∑

⌣
⋯ ⋯  

    + }1 1
1, 1 1

1
( )

2
n n

n n nd g p p dE X d Vρσ σ
σ σ σγ ξ

δ
+ +

+ + + + − ∧  , 

 
in which we have written xn+1 = t, g = det gij . 
 The first series of generalized Hamilton equations may be written: 
 

ix

σξ∂
∂

 = 
i

E

pσ

∂
∂

,  
1nx

σξ
+

∂
∂

= 1
1, 1

1 n
n ng pσρ

ργ
δ

+
+ + . 

 
 We calculate them explicitly.  In arbitrary coordinates: 
 

E = ( ) 2

2 2
i i j
i ijp g p pσρ

σ ρ
α β γ  + ∑ . 

Set 
ix

σξ∂
∂

 = iuσ . 

 
 For σ ≠ i:  iuσ = β γρσ gij

jpρ , 

 For σ = i:  iuσ = β γρσ gij
jpρ  + α 

1

n
i
i

i

p
=
∑ . 

 
 In a general manner, upon denoting the Kronecker symbol by i

σδ , one has: 

 
    iuσ = β γρσ gij

jpρ  + α i
σδ J1. 

 

 Upon resolving jpρ  = 1

1
( )ij

i jg u Jσ σ
σργ α δ

β
− , one determines J1 = 

1

n
i
j

j

p
=
∑  when one 

sets ρ = j in the preceding formula: 
 

i
jp∑  = 1

1
( )ij

i jg u Jσ σ
σργ α δ

β
− . 

 
 Upon setting i

σπ  = γσj g
ij, one finds: 
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1

n
i
j

j

p
=
∑ = 1

1
( )i

i iu Jσ σ
σπ αδ

β
−  = 1

1 i i
i iu Jσ

σ
απ π

β β
− ×∑ , 

thus: 

1
1

n
i
i

i

J β α π
=

 + 
 

∑  = i
iuσ

σπ∑ . 

 
 If one sets I1 = 

,

i
i

i

uσ
σ

σ
π∑ then: 

J1 = 1
i
i

I

β α π+ ∑
. 

 

 If one takes the same coordinate system in R
n and ρn then i

iπ∑  = n, J1 = 1

1
I

nβ α+
: 

 

ipρ  = 11 ij
i i

I
g g u

n
σ α

σρ αδ
β β α

 − + 
. 

 
 Upon using the absolute derivative, the generalized Hamiltonian equations: 
 

1

1

n jn

j
j

p p
X

t x
ρ ρ

ρ

+

=

∂ ∂
+ −

∂ ∂∑  = 0 

become: 

(24)  gσρ g
n+,n+1 1 1( ) 1 1ijn i

j

D u Du DI
g g X

Dt Dx n Dx

σ σ

σρ ρρ
δ α

β β β α
+ + − −

+
 = 0. 

 
 In particular, in rectangular axes gσρ = 0 when σ ≠ ρ, while gρρ g

ij = 1. 
 

(25)  11 1 I
X

t t n x

ρ
ρ

ρρ
δ ξ αξ

β β β α
  ∂∂ ∂ + ∆ − − ∂ ∂ + ∂ 

 = 0. 

 
 These are the Navier-Stokes equations, in which ∆ denotes the Laplacian for an n-
dimensional medium.  Upon introducing the Lamé coefficients λ, µ, one finds: 
 

(26)   α = 
1 1

u
nµ

λ µ
+

+

,  β = − 
1

µ
, 

 
and one then puts them into the classical vectorial form: 
 

µ ∆ξ + (λ + µ) grad(div ξ) + F = ( )
t

δ∂
∂

v . 
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 Remark. – The expression for E in canonical coordinates is: 
 

   E = 21 1
( )

2 2
ij ij

i j i jg u u g u u
n

σ ρ σ ρ
σρ σρ

αγ γ
β β α β

−
+

, 

 
which gives, upon using the Lamé coefficients and rectangular axes: 
 

   E = − ( )22

,

1
( ) ( )

2 2
i

i i
i

u uσ

σ

µ λ µ− +∑ ∑ . 

 
 

§ 5. – The generating form of the equations of the mechanics of rigid systems. 
 

 The motions of rigid systems in an n-dimensional medium are maps from Rn × t to ρn 

that preserve the lengths and orientations of the figures.  Locally, one thus has: 
 

dσ2 = 2

1

( )
n

d σ

σ
ξ

=
∑  = ds2 = 2

1

( )
n

idx
σ =
∑ . 

 

Upon setting 
ix

σξ∂
∂

 = iuσ , the system of equations results: 

 

( )2

1

n

iuσ

σ =
∑ = 1,  

1

n

i iu uσ σ

σ =
∑ = 0. 

 
 In order to solve these equations, we first interpret them geometrically.  At a point µ 
with the coordinates (ξσ), consider the natural frame (µ, ei) that is composed of the point 

µ and n vectors ei that have coordinates ( )iuσ  with σ varying from 1 to n.  Since this 

frame is orthonormal, the corresponding metric tensor is γσρ = 0 when σ ≠ ρ and γσσ  = 0 
when σ = ρ.  It results from this that the Christoffel symbols are zero.  Thus, the n vectors 
ei have fixed directions, the ui are constants, and: 
 

iuσ = imσ . 

 
 The n2 elements imσ  are the elements of an orthogonal matrix. 

 In order to characterize the ωd = i
iX dpσ

σ  part of the Pfaff form ω on the kernel of 

J1(Rn × t, ρn) that would correspond to a motion of the medium, in the course of which, 

the distances remain invariant, we remark that the resulting generalized Hamilton 

equations are 
ix

σξ∂
∂

 = iuσ  = iXσ ; hence, ω d = i
im dpσ

σ .  This gives us the theorem: 
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 THEOREM 3. – If the motion of a continuous medium is such that the mutual 
distances between these points remain invariant then the ωd part of the Pfaff form 
reduces to a form with constant coefficients imσ , the set of whose elements comprises an 

orthogonal matrix. 
 
 Remark. – By virtue of Theorem 2 in Chapter I, one may further say that ωd = 0, 
modulo a Pfaff form with constant coefficients. 
 
 If VD denotes the manifold of the group of displacements of an n-dimensional space 

then the family of maps in question is comprised of the maps of Rn × t into ρn that are 

defined by the formula: 
ξσ = imσ xi + ησ, 

 

in which imσ  denotes an orthonormal matrix. 

  For the map of Rn × VD to ρn, the general form Ωn+2 that is defined on J1(Rn × VD , 

ρn) lifts to J1(Rn × t, Rn × VD).  Since the maps of Rn to Rn reduce to the identity, the form 

Ωn+2 becomes a form on Rn × J1(t, VD).  When this form is summed over a domain of R
n, 

it generates a form Ω2 of degree two whose support is J1(t, VD).  Now, upon denoting the 
tangent space to VD by T(VD), J1(t, VD) is homeomorphic to t × T(VD).  One may thus the 
preceding result as: 
 
 THEOREM 4. – For a rigid system, the generating form of the equations of motion is 
a form of degree two whose support is the product of the number line t by the tangent 

space to the manifold of the group of displacements.  VD = Rn × (SOn), in which SOn 

denotes the group of rotations in Rn. 

 
 COROLLARY. – In the three-dimensional space of a system of solids, the generating 
form for the equations of motion will be a form of degree two on the product of the 
number line t with the tangent spaces to the manifold of the displacement group. 
 
 Remark. – The case of a material point is a particular case of the preceding 
discussion: If the rigid system in animated with a translational motion then VD reduces to 

R
3.  The motion of the system reduces to that of a material point whose equations of 

motion are generated by a form of degree two on the seven-dimensional manifold t × 

T(R3). 

 
 Consequences. – It is very important to remark that the equations of the mechanics of 
a point particle, and the equations of the mechanics of rigid systems are naturally 
deduced from the equations of continuous media, while the converse inference 
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necessitates that we must make an appeal to a postulate concerning the forces that one 
calls “internal,” and which are completely unknown. 
 
 

§ 6. – The role of symmetric tensors. 
 

 One may be very surprised to find that in order to treat the theory of the motion of 
continuous media, we have not needed to introduce the notion of constraints.  We shall 
now examine the consequences of the introduction of a twice-covariant symmetric tensor 
Tij to account for the motion of an n-dimensional continuous medium.  Let α be a 

covariant vector field on Rn with components αi .  The contracted product Tij αj = fi is a 

contravariant vector f.  If D is an arbitrary domain of Rn then the flux of f that traverses 

the frontier of D, which we denote by ∂D, is: 
 

( ) nD
i V

∂∫ f , 

 

upon denoting the volume form on Rn by Vn . 

 For any field α that leaves the ds2 of the medium invariant – any field that verifies the 
Killing equations – one writes that the sum of the effects of the forces that act on the 
closed volume D and on its frontier is zero.  If X denotes the force field that exists at 
every point of the medium then one has: 
 

( ) ( )n nD D
i V Vα

∂
+ ⋅∫ ∫f X = 0, 

 
a condition which is further written: 
 

( ) ( )n nD D
V Vα

∂
+ ⋅∫ ∫f Xθθθθ  = 0, 

 
which gives, upon using Cartesian coordinates: 
 

1

ijn
j j

j niD
i

T
X V

x

α
α

=

 ∂
+  ∂ 

∑∫ = 0. 

 
 Since the preceding integral is zero for uniform fields α, in particular, one must have: 
 

1

ijn
j

i
i

T
X

x=

∂ +
∂∑  = 0. 

 
 A comparison is called for between this equation and the analogous equation for the 
generalized Hamiltonian system: 
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1

in

i
i

p
X

x
σ

σ
=

∂ −
∂∑ = 0. 

 
 As the latter does not have the same tensorial character as the former, we use the 
twice-contravariant metric tensor γσρ to put ipσ  and Xσ into contravariant form: 

 
piρ = γσρ ipσ ,  Xσ = γσρ Xσ . 

 
 Upon using rectangular axes, one obtains: 
 

1

in

i
i

p
X

x

ρ
ρ

=

∂ −
∂∑ = 0. 

 
 Upon equating the index j with ρ, one deduces that the components Tij of the 
symmetric tensor are solutions to the system of partial differential equations: 
 

(27)     
1

ijn

i
i

T

x=

∂
∂∑ = − 

1

ijn

i
i

p

x=

∂
∂∑ , 

 

where the pij that figure in the right-hand side are functions of the xh, 
ix

σξ∂
∂

 that are 

deduced from the generalized Hamiltonian equations: 
 

ix

σξ∂
∂

 = ( , , , , )h i
iX x pσ

ρ⋯ ⋯ ⋯ , pij = j ipρ
ργ . 

 
 Since the system (27) is linear one obtains the general solution by adding the solution 
to the system without the right-hand side: 
 

1

ijn

i
i

S

x=

∂
∂∑ = 0   j = 1, …, n 

 
to the particular solution of the system with the right-hand side. 
 One solves this latter system in the following manner: If one is given n arbitrary 
constants βj then upon multiplying the equation of rank j by βj and summing over the j, 
one obtains: 

1

ijn

j i
i

S

x
β

=

∂
∂∑  = 0. 

 

 Upon setting || Sij || × i
jβ  = ϕi, one has the equation 

1

in

i
i

x

ϕ=

∂
∂∑  = 0, which expresses 

that: 
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Tjj = 1
1

( )2 1 1
ij in

jij i j
j i

i

g u
g u I dx

n x

α
β β β α β =

∂− + +
+ ∂∑∫ . 

Now: 

1

( )ij in
j

i
i

g u

x=

∂
∂∑ = 

2

1

in
ij

i j
i

g
x x

ξ
=

∂
∂ ∂∑ , 

 

1

( )ij in
j j

i
i

g u
dx

x=

∂
∂∑∫ = 

2

1

in
ij j

i j
i

g dx
x x

ξ
=

∂
∂ ∂∑∫  = 

1

n
ij

i
i

g C
x

σξ
=

 ∂ + ∂ 
∑  = gjj (I1 + C), 

 
upon denoting a constant by C. 
 Finally: 

   Tii = − 1 1

2 1 1
( )jj k ii

kg u I I C g
n

α
β β β α β

 − + + + + 
. 

 
 Upon introducing the Lamé coefficients, these formulas may be written: 
 
 For i ≠ j: Tii = + ( )ii j jj i

i jg u g uµ + , 

 
 For i = j: Tjj = 12 [( ) ]ii j jj

ig u g I Cµ λ µ µ µ+ + − −  = 12 ( )jj j jj
jg u g I Cµ λ µ+ − . 

 

 If one introduces the displacement vector v in Rn and ξ = x + v for i ≠ j, while j
iu  = 

j
iv  for j = 1, j

ju  = j
jv  + 1 then preceding formula give: 

 

     Tij = 
i j

j i

v v

x x
µ  ∂ ∂+ ∂ ∂ 

, 

 

     Tjj = 
1

2 3
i jn

j i
i

v v
C

x x
µ λ µ λ µ

=

∂ ∂+ + − −
∂ ∂∑ . 

 

 These are the classical formulas if one takes the constant C = 
2 3µ λ

µ
+

. 

 
 The role of the deformation tensor. – We conclude our study of the role of the 
symmetric tensors with that of the deformation tensor.  If the metric tensor on ρn is γρσ 

then dσ2 = γρσ  dξσ dξρ, and if the metric tensor on Rn is gij , so ds2 = gij dxi dxj, then one 

calls the tensor eij, which is such that dσ2 – ds2 = eij dxi dxj the deformation tensor, and 
the expression for the deformation tensor as a function of the canonical coordinates on 

J1(Rn, ρn) becomes: 
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eij = i ju uσ ρ
σργ  − gij . 

 
 By means of the generalized Hamiltonian equations: 
 

ix

σξ∂
∂

 = ( , , , , , , )j h
iX p xσ σ

σ ξ⋯ ⋯ ⋯ ⋯ , 

 
one obtains the expression for the deformation tensor as a function of the practical 
coordinates: 

eij = i jX Xσ ρ
σργ  − gij . 

 
 Thus, when the form ωd is known, one immediately knows the deformation tensor as 

a function of the coordinates on J1(Rn, ρn).  However, if one knows, conversely, the 

deformation tensor on Rn – i.e., its expression as a function of the variables xi – then it is 

important to remark that this does not suffice to reconstitute the ωd part of the Pfaff form 

on the set J1(Rn, ρn) of jets. 
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