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INTRODUCTION

In volume IV of the Annales de lInstitut Fourier (1952)howed the part that is
played in the study of the mechanics of rigid system$iéekistence of an exterior form
Q, of degree two and maximal rank onra-2-dimensional differentiable manifoln+1
that is the generator of the equations of motions tihén natural to pose the question: Do
the mechanical equations of continuous media possessesatieg exterior form, and
what is its topological support?

If one reverts to the most elementary concept of matica 3-dimensional Galilean
continuous medium (viz., a numerical spatethen one will observe that this motion is

nothing but a mam of classC' (r = 2) of the numerical spadg* (the product of the
numerical spac®&® with the real line) intgs’. In relativity, since time is related to the
medium, the motion of a relativistic continuous mediwiti be a map ofR* into "

More generally, we are led to envision mapsf classC' (viz., r-map3 of a spaceRP

into a spaced’, and then maps from a manifoldl, into a manifold Y,), and then to
associate Ehresmann’s manifold of first-order Jﬁ(vp, W,) with these maps. We prove
that onJ'(V,, W), with x = (x}, %4, ..., X) O(V,) and &= (&, &, ..., & O (W), there
exists an exterior forn@,.; of degreep + 1 such that the solutions of the associated
exterior systeni(X) Q.1 = O that satisfylé”  V, = 0, moreover\{, denotes the volume
form on the manifold \{y)), are solutions of a system of first-order partidfedential
equations that generalize Hamilton’s equations. This sy&equivalent to a system of
linear second-order partial differential equations. Tysesn of generalized Hamilton
equations can be defined once one is given a Pfaff f{oom the manifoldll(vp, W,) and
a volume fornv, on (V).

For the maps of mechanics, everything comes down tstremting the forn€,.1 on
J'(Vp, Wh). Now, a grougs that operates oiVg, Wh) and, by prolongation, ait(V,, W),
is associated with mechanics. Since the gi@upust leave the equations of mechanics
invariant, the fornQ,+1 must be invariant undé€s. This property permits us to specify
the exterior form that corresponds to the case oiléaal mechanics. It is important to
note that the equations of mechanics for undeformalsiteersg are naturally derivable
from the formQ,., without the intervention of postulates on the intefoeces: They are
generated by a forf2, of degree two on the manifold of the Lie group of disphaents.

What makes this point of view interesting is the faett tih reveals the profound
nature of the classical theorems of mechanics, dsaseduggesting new research. The
only inconvenience is that these theorems must be tlomrapletely re-established,
which is why this article is limited to the cases in vihame may operate fruitfully. Later
articles will discuss new points.



Chapter One

Exterior differential forms on Jl(Vp, Wh).
8 1. — Notions concerning jets.

Ehresmann has shown (Cogresso di Taormina 1951 and tlog@otle Géometrie
Différentielle de Strasbourg 1953) that one may assoaiatgt of jets]l(vp, W,) with the
r-maps of a manifold\(,) to a manifold \\,) that is defined in the following manner:

Let ¢ be a map of a neighborhood»of] (Vp) into (W) sox is thesourceof the map
andx = ¢(x) O (W,) is thetarget Consider two admissible local chagsnd yin (V)

and ), resp., such that whem andy belong to the numerical spac& and /o,
respectively, one has:

uld RP: x = g(u)

yo g" &= P = KY).

The composition of maps that is suggested by the diagram:

4
Vp _)Wn

SN

RP—— '

leads us to imagine the restrictiajy of g to a neighborhoodJ of u such that the
composed mafp = y* [ Og is well-defined. One says thétis anr-map of the point
x when the magp of U into ¢' admits continuous partial derivatives with respecheo t

canonical coordinates @ of each order up toin a neighborhood of the point Let
C.(V,,W,) be the set of map®(x), whereg is anr-map of the poink. Two elements
(41, %), (#2, X) of C;(V,, W) are said to bef the same r-clad§

1) $1(X), = 9AX).

2) The pair of local chartgy,()) associates two mapg, and @, with ¢, and ¢,,
resp., whose partial derivatives of the same ogdeiake the same value at the paint

These definitions are independent of the pair of lokatts €, )) since it suffices to
consider another paig'( ) that partially covers the latter one.

1. The definition of a jet.— An infinitesimal jet of order — orr-jet — of (V) to (W)
is anr-class of C\(V,,W,), wherex is the source.j;é will denote ther-jet that is
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determined by the paig(x) O C, (V,,W,). The set of-jets of (/;) to (W,) with sourcex
is denoted byJ, (V,,W,). The union of thel| (V,,W,) asx varies ovel, is called the

manifold of jets of order.r
U J5 (v, W) = I (Vp, Wh).
XV,

2. The set of jets of order 1J%(V,, Wh). — The set'(RP, 0 of jets of order 1 is

homeomorphic to thenp + n + p-dimensional manifoldR® x N;nx A, in which a point
has the canonical coordinates:

8, o, U, un, &8 L8,

in which the&” denote coordinates jf, thex denote coordinates &P, and theu’ = 9&°

/| 0X denote the partial derivatives of t€ with respect to the!. When one is
concerned with]l(vp, W), the preceding set constitutes a system of locaidowates on
that manifold.

3. The kernel of the space of jets of order = We call an element with source O
and target 0 — i.e., an element with tipecanonical coordinates (0, ..., G;, ..., u’, ...,

u?, 0, ..., 0) — th&ernelof J(RP, 4", which we denote by?, .

In order to give some intrinsic significance to the kéwof the set of jetﬂl(Vp, W),
we make the following remarks:

a) The elements af'(R, W;) with source 0 and targétthat have the coordinates (0,

Louh LU & L, &) are nothing but the tangent vectors\d,)( the set of which
will be denoted by[(W,). T(W,) is a fiber bundle with bas&\{) and fiberR".

The elements af (RP, W;) with source 0 and targétare nothing but the elements of
the product op examples of the tangent bundle ¥&,) at the pointé.

J.(R?,W) is a fiber bundle that has\) for its base andR™ for its fiber; one
denotes this space Ay(W,). There exists a canonical projectionJHiR®, W) ontoRP,

which suggests thal'(R?, W;) is a fiber bundle that ha&® for its baseT,(Ws) for its

fiber, and the homogeneous linear grélgn) of R" for its structural group.

If one considers]l(vp, W,) then since there exists a canonical projecfioof Jl(Vp,
W) onto ), Jl(Vp, Wh) is a fiber bundle relative to this projectibrthat has ) for its
base,T,(Wh) for its fiber, andSL(n) for its structural group.
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b) The elements odl(Vp, o)) witb target O are nothing but the tangent covectors to
(Vp), the set of which is notated Ay(Vp). It is a fiber bundle with bas&/) and fiber

R”. The elements 0]1(Vp, A" with target 0 and sourceare nothing but the elements of
the product ofn copies of the dual to the tangent bundle ¥g) (at the pointx.
J:o(V,, 0") is a fiber bundle with\(,) for its base an@&"" for its fiber; one denotes this
space byT(V,)). There exists a canonical projection BtV,, J) onto ', which
suggests thal'(V,, J') is a fiber manifold witho" for its base,T,(V,) for its fiber, and

the homogeneous linear groG.(p) of RP for its structural group.

If one considers]l(vp, W,) then since there exists a canonical projecBoof Jl(Vp,
W,) onto W), Jl(Vp, W,) is a fiber bundle relative to this projectiBnwith (W) for its
base,TnD(Vp) for its fiber, andGL(p) for its structural group.

c) There exists a canonical projectiGnof J'(V,, Wy) onto {/,xWe). J(V,, Wh) is
then a fiber manifold relative to this projecti@with (V,xW,) for its base, the kernel of
Jl(Vp, W,) for its fiber, andGL(p) x GL(n) for its structural group. The kernel ﬂf(Vp,

W,) is homeomorphic to the homogeneous sp48¥, J") of homogeneous linear maps

of R into A

Remark— These considerations extendJlt()/p, W,). (Cf., Ehresmann [3])

4. Coordinate changes in the kernel oﬂk(Vp, W,). Consider a change of local
coordinates in\\,) that is defined by the formulas:

E=&n, ... ..

6% _

we set:

If one considers a change of coordinate®firthen the local coordinates fof are
defined by the formulas:

X =FOL Y )

ox i

we set:

a7 =8

If one considers the changes that are inverse to thedingcones then we can write,
upon inverting the partial derivatives:
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on” al a—yj
0&” 7 ox'

=q.

If one denotes the new canonical coordinates of thmkele(Vp, Wh) by V/ = on’

/ dy then from the relation:

o = 967 _0n° 9n” oy’
"X 987 ay! ox ]

it results that:
(1) u’ = agalvy,

a formula that shows that the canonical coordinate‘é(vp, W,) may be identified with
the components of a tensor that is constructed frensplace3 s and T/, upon denoting

the tangent space td\) at the pointf by T¢ and the dual to the tangent spaceMy) at
the pointx by T/; u’0Ts O T,

6 ". Hamiltonian coordinates in the kernel ole(Vp, W,). In the development that
we have seen, it is very advantageous to introducen@angbordinate system into the
kernel of the jets of order 1 that we dddmiltonian coordinatesdue to the role that they
play in writing down a certain system of partial differeahequations that define a family
of maps fromY)) to \W).

We give ourselves a volume foriw, on (Vy). Consider the completely anti-
symmetric covariant tensorg, ; of orderp that are constructed of (Wh) and

Tp‘l*(vp). By means of the unit volume tensor on the maahif@}), whose contravariant

components ared" """, one defines a once-covariant, once-contravariargotep, by

contraction:
1 P i
pai1-~-i _151 P= p; .
(p-1)! P

The tensorp] is an element of; O T. If one considers the manifold(Wh, Vp)

then thep’ are the canonical coordinates on the kernel o$¢hef jets of\(\,) into (Vp),

which are inverse to the jets oWy into (W, since they obey the coordinate
transformation rule:

i— P i
P,= a,a,q,.

Now, J{(Wh, V,) andJ*(V,, W,) are two fiber manifolds that have the same base
namely, W,xV, — and the same fiber — vizL(RP, d) — which is the space of

homogeneous linear maps ®&P to 4. For this reason, one may take thg, to be

" [DHD: There was no sectidhin the original article.]
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coordinates in the kernel df(Vp, W,). However, it is essential to remark that we have
not presented any means of expressing the canonical coesdiffats functions of the

p. ; the structure that is implied by an exterior fa@m — which will be defined later —
will permit us to relate thep) to theu/ .

The p, may be used as coordinates for the kerne]l(oifp, W,). The same thing is
true for the completely anti-symmetric tensor of ongénat is defined by the contracted
product of thep), with the covariant components of the unit volumesteron ,):

(2) Popi .= =Gy, Py

o l+

It is the components of the completely anti-synrioetovariant tensorp,;.;  to

which we shall give the name damiltonian coordinatefor the kernel oﬂl(Vp, Wh).
Notation.— When one assigns an ordering to the coordimat@4) — e.g., the natural
ordering — in order to signify that just the indenas been omitted o2, ONE writes:

paf = dZ..,p p:7

7. Practical coordinates in the kernel ole(Vp, W,). When local coordinates
systems have been chosen WX and {,), and when one assigns an ordering to the
coordinates in\(,), moreover, it is convenient to use tipg as the coordinates in the
kernel of the set of jets for the sake of calcaladi and they be identified with the
components of a mixed tensor that is constructau the space@D andTx.

§ 2. — Differential forms onJ'(V,, Ws).

1. The vector p;and the form 8(p,) V, . — We denote the contravariant vector with
source 0, target 0, and components (0, ...pD0, ..., p,, ..., p2, 0, ...0) byp,. The
canonical map of Jl(Vp, Wh) onto {/,) that was envisioned before in § 1.3 makes a form

V, on Jl(Vp, Wh) correspond to the volume foriw, that is defined on\{;). The

infinitesimal transformation operaté(p,) () makes a form of degreeon Jl(Vp, W) —
viz., B(po)V, — correspond t&/; .
Therefore, in the particular case wheh)(is a Riemannian manifold whose

fundamental metric tensor @ , upon denoting the determinantgyfby g, the classical
volume formV, has the expression:

Vo= g dAdé ... Ad,

() Cf., H. Cartan, Colloque Topologie. Bruxelles 1950.
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(3) 8(po)V, = _zp:(—l)i*l\/ﬁ dg, OdxX O---0 dkO--- dX,

in which thel sign placed above thi signifies that this term has been omitted.

Remark— In the preceding expression, one will obsenrat didenotes the symbol of
absolutedifferentiation.

2. The form ®p.y = > dé7 B(p,)V, . — The formsd&” on W, lift to J'(Vp, Wh) by
o=1
means of the maB (8 1.3). When one takes the exterior produche$¢ forms with the
n-form B(p,) and sums over the index this generates a for,.; of degreep + 1
whose support is]l(vp, W,). From the considerations that were develope®l 1n6, this
closed form may be considered as being generatadcbynpletely anti-symmetric tensor

P,,..,, thatis constructed over the spadgsand (T,)"".
One then has:
-1

Py =
" (p-1)!

d(p,, ) 0de7 Odx 00 dx .

This expression fof,., is trivially invariant under a change of local cdimates in
J(Vp, Wh), Which shows thab,.; is an intrinsic form od'(Vp, Wh).

3. The generating formQ,.; . — We denote a Pfaff form Q]JI(Vp, W) by @ Ina
practical coordinate systemymay be written:

W= X7dd, + X, &

For reasons that will be justified by theorem & wall the fornQp., of degreep + 1
that is defined od*(V,, Wh):
(4) Qp+1=Ppir + W™V,
thegenerating form

We now expres$p:1 in a system of Hamiltonian coordinates. Whenadlithe
indices range from 1 tp, the volume form may be written:

A :ilcsi_,_i dxi O--- O dxe,
pt

p

I V[; = (Xigdﬂ;) D%Q_ﬂ_ip dk O---0 d)l(’ )

-_1 Xdg, , Od¥O---0dk,
(p-1)! e
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upon taking into account formula (2), which defines the Htaman coordinates. Hence,
the expression faRp.q is:

1

(5) Qpi1 = oD

dpl, ., 0(-d&” Odx OO de* + X dx0--0 dy).

This expression forQ,.1 is trivially invariant under a change of Hamiltani
coordinates, if one takes that to mean an arbithayge of coordinates ov,j and (),
and a change of Hamiltonian coordinates on theelkeﬂrﬂl(vp, Wy).

Remark.— It is pointless to write down the part of thefPform wthat is on V),
since it disappears under exterior multiplicatigrtiee volume form.

4. The system of exterior forms associated wit,.;. —If X is an arbitrary vector
field on Jl(Vp, W) then one call the system of exterior equatigi3 Q.1 = 0, which is
reducible tonp + n + p equations, th@ssociated systewf equationsfor Q.1, where
i(X) denotes the anti-derivation of H. Cartan. Thenktanian coordinates are useful in
theoretical questions — in particular, when onetwdo show the intrinsic character of
certain forms. When it is a question of performgajculations, it is necessary to use
practical coordinates. In such a coordinates BySDg.; is written:

(6) Qpi1 = 4/g(-1)"dé? Odg, O dx O---0 dkO--- 0 d%
+Jg (X dg, + X, &) 0 dkO---0 d¥.
In particular, the associated system of equatiPhs Q.1 may be put into the following

form:
np equations of the type:

0Q . .
(7) =l PL = (1) dXhdx A LA d) A AR+ X dX A L AR =0,
Jo a(dp,)
n equations of the type:
1 0Q +1 : i+1 g A i
(8 ——2—=>(-1)"dp, 0dXO---0dx0---0dx+ X% dxJ---0 dk=0,
Jg odé?) =
p equations of the type:
1 aQ St i+j+1
(9) \/_a(d’ = > > (-1)"*dé” Odg, OdX O--- 0 dxO0--- 0 dk O+~ 0 dx
X o=1i=1

+ ) wrddE A L AdE A L A A = 0.
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g

THEOREM 1. —If the Jacobian with np elemen%% is non-zero then the
solutions to the syster(Xi) Qp+1 = Othat satisfy the n equation§t" V, = O are locally
the solutions to a system of linear partial differential equat{gf)sand are equivalent to
the solutions to a system of n second-order linear partial differeatjahtions £,(£°)
with respect to the variable$ x

We now look for the solutions to the exterior systéx) Qp.1 = 0 such that thé” are
functions ofx' of classC', r > 2.

Thenp equations—= = 0 give:
o(dp,)
(10) 05 = xe.
ox

DC- X ) # 0 then

D(~~-pi, =)

equations (10) define thg, as functions of the%—i = u’, which are the canonical
X

The X; are functions of the local coordinatestGVp, Wy). If

coordinates of the kernel af(V,, W)
Locally, one thus has:

(1) B, = ¢;(a‘? X“,E"j,

ox '

in which h, j are arbitrary numbers from the set (1pJoand p, i are arbitrary numbers
from the set (1 tm). By means of equations (10), th then become the components

of n vector fieldsp, (o= 1 ton) on (V). With respect to the frame at the poirdf (Vp),
the differential ofp, is, upon denoting the coefficients of the infinitesin@lection on

(Vp) by [,

C 0P, i ow oy = D(RY) L
dpg —ﬁdxj‘f‘rhjﬁ]d){ —dej.

0Q
The n equations—22—= 0 then give, upon using the symtdlto indicate the

0(d&”)
absolute derivative:
p

Dp!
12 —2 + X, =0.
(12) Z;, o~

Upon taking the solution (11) to equations (1@p iaccount, the system (12) then
gives rise to a system of linear second-order gattfferential equationS; ,(&°).
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We now show that the lagt equations of the associated system are verified, as
consequences of (11) and (12). When one considerp,the be functions of th&', by

the intermediary of the functiong” and their first-order partial derivatives, the

. 1 p+1
expression—

— is written:
\/E a(dx’)
0&% 9é&°
1 0Q,, ox ox % 0% v Dp,
— : =- ) det " D) X, =+ X' —=
Jg a(dx’) Z Dp, Dp, Z OX ZZ DX
DX Dx
" 967 | & Dp, ", Dp, ( 0&° o
= Y e x |-y 2 2o,
= ox LZ:;‘ Dx’ ”} ; DX | 9x '

The right-hand side is therefore zero, as a consequémcpiations (10) and (12).
Remarks:

1) It is obvious that the solutions of the equatit® Qp+1 = 0,d&” ~V, = 0 are
represented by the solutions to the sys&ié°) only locally.

2) It is the system of equations (10) that defines tlseeay of practical coordinates
as functions of the coordinates of the kerne.lllo\‘/p, W,). One sees that this system is

obtained by equating the coefficierX” of the Pfaffian formw with the canonical
coordinateu’ :
(13) X7(d,, X&) = .

The Latin indices take on all of the values from ptavhile the Greek indices take on all
of the values from 1 to.

3) If the Pfaff formwis homologous to 0 — i.eqw= dE — then the fornQp.; is a
closed formdQp.1 = 0. Sinced[0(po) V] = 0, one may write:

Qp+1 = d{ZfUB(pU)Vp + EVP]
o=1

The system of equations (10) and (12) then takes on time for
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0& _ E
(14) ax' op,
i Dp, __OE
= DX 0%

This form (14) is the generalization of Hamilton’s equasi which one obtains f@r
= 1. Geometrically, if one considers the maps ofrthmber linet into (W,) then the
manifold of jetsJ(t, Wy) is associated with these maps, which is a fiber leutiait has
the number lind for its base and the tangent bund(®V,) to (W) for its fiber. The
elementgy, p2, ..., pn are identified with the components of the co-velocitf\,). It is
for this reason that we call the system of equatidds thegeneralized Hamiltonian
system

4) If the p-dimensional number spadk® is referred to a Cartesian coordinate

system, and if the functioB is a quadratic form with constant coefficientsJOfRP, W)

then the systen$,(¢°) has constant coefficient€.; is the generating form of this
system of second-order partial differential equationtk wonstant coefficients.

5) The np functions p, on (V,) are likewise solutions of a system of partial

p .
differential equations that are obtained by demanding tti@an forms Zdex be
i=1
closed.

% = 0 then some very diverse circumstances are presentee
system(X) Q,+1 = 0 might not have solutions, or it might admit otiest are constructed
by starting with the solutions of a system of firstker partial differential equations
(systems of first-order partial differential equatiae submanifolds a'(V,, W), or
further, that it admit solutions only for the jets thalate to the partial maps from a subset

of (Vp) into (\W).

6) If

5. In order to familiarize the reader with the precgdmotations, we treat several
examples that, to simplify, relate to the determoratof a numerical function on a
manifold /,). The manifold]l(vp, p) is associated with maps d&f,j to the number line

P.
a) p=2,V, =R% The maps oR? to p are defined by a numerical function of two

variablesx', ¢, which are the rectangular coordinates of a poii%f Upon using the

practical coordinateg', p> onJ(V,, o), the Pfaff form is given by:

w=p"dx +k P dp +g(x, %G, ph p? ) dé,
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in whichk denotes a constant. The generating fo:s:
Qs =dérdpt Adp? +dEA dXE A dp? + (Pt dpt +k i dp? + g dd) A dxt A dX.

In particular, the associated systgX) Q3 = 0 may be put into the form:

0 _ oA 100 A 2 =
G dérdy +ptdxt A dx =0,

6932 =dérdxt +kp?dxt A dx¥ = 0,
a(dp°)

09 _ 1A A Ay
25 dpt A dx¥ +dxt A dpf +g dX A d¥é = 0.

From theorem 1, we can dispense with writing ddkerother equations. The first
two solutions of this exterior system such tha a function orR? are:

o0& _ ¢

— =pn, — =k,
oxt P ox? J
The Jacobian is:

20020,

D(p.. p.) 0k
If k0, p* andp? are functions ok" andx?, andp® = % p? = %a—i then the third
X X
exterior equation gives:
op'  ap°
F4ZF 4g =0,
ax- ox° J

from which, we find that the second-order partiffiedential equation is equivalent to the
preceding three equations:

S.4(é):

0°¢ ,1.0% 0§ 106 -)_
(0xY)? ¥ k(ax2)2+g(xl’ Xz’axl’ kaxz"(j =0

which is of elliptic type ik > 0 and hyperbolic ik < 0.

DXy, X,) _ 0, and one may no longer say thais a
D(p., p.)
function ofx’, X¥*. A possible solution to the syste(X) Qs = 0 is composed afp? = 0.

One may imagine the forrf?3 that is induced b3 on the submanifolds? = constant.

If k = 0 then the Jacobian i
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It permits us to determineas belonging to the class of maps of the numbeline the
number linep. In this caseQ, = Q, ~ d¥, in whichx® is regarded as constant ané

determined to be the solution of the characteristiteay®fQ, .

b) Furthermore, take = 2,V, =R? and letwhave the form:

w=-p>dp" + (' +p) dpf +g dé
in which g denotes an arbitrary function of, >4, p', p% & A calculation that is

analogous to the preceding one shows that the sadutiotine equatiornigX) Qs = 0 such
that £ is a function onR? are locally solutions to the partial differential eqoms of

parabolic type:

- 0%¢ 08,08 _0¢ o).
=04) (ax1)2+g(xl’xz’axl+ax2’ axl’j 0

c) For an arbitrarp, V, = R”, which is referred to Cartesian coordinates, veppse

to find the formQp.: that generates the harmonic forms®h it all comes down to

determiningaw Observe that, one the one haAd,= div Ograd ¢, and, on the other
hand, the system of equations (10) and (12) mayriten:

9¢ =X ..., p° X . XD, X),

ox

If one considers the vectp(p) then the latter equation signifies that giv= — X
One thus obtains a solution by takdg 0,X =p' —i.e.,w=p dp — or:

w= % d(Normp).

A very simple means of obtaining the Laplacian affunction in curvilinear
coordinates, which we denote &Y ..., o°, then results. If the metric tensorgisandp

denotes a vector @&, with normg) = g; p P, then consider the form:

Qp+1 =dENB(P) Vp + [dnorm) + X dé] * V,,

which is written in terms of curvilinear coordinate

Qpa = X (-1)"g dEOdB O dd 00 dy0-- 0 dig+3y/ g6l g 'p'
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+Jg X dérdg A n

From the associated system, it results that:

o _ _ (/g p)
o gi P, \/—Z oq

6(@ d a‘(-j

ox’
aq

namely, that:

AéE=-X= z }
. : : 0Q .
Indeed, it suffices to write the equatlgr(q(;—a = 0 in the form:

> )™d(po)- pd/d0 dg0---0 do0---0 dy+ § gddl--0 8=0

which gives:

£000 50005

i=1 Dq

which gives the desired result upon remarking that:

ri_la\@

P g ag

Now, if one considers a Riemannian manifold) (then a vectop that is tangent to
(Vp) is an element cﬂl(vp, p) with target 0. By means of the fo., and its associated
system, one generates a class of functions thataaneonic functions on the open sets of
(Vp) in the case where the norm is always positive.

Therefore, on the sphei® when referred to the coordinates of longitudend
colatitude @, the formV., = R? sin ¢ d&” dg, the vectomp has the coordinates pt, p?
with respect to the natural frame, and the nbkp) = R? [sin® ¢(p")? + (p%)?]. The form:

Qs =R sing d& [dpt ~ dg —dp® A d@) + (p* dp* sirf ¢ + p? dpf) R* sing dg ~ d&

gives the associated equations:

0 _ 1. o0& _ Dp', Dp*
ﬁ—psmz¢R2, 26 = PR, oo " ¥ =0.

From a preceding remark, one may replace this latjeation by the equation:
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o(p'y9) , APV _,
a0 ¢

which gives the second-order equation:

0§ _

1 0% 9% o _
09

SN0 08° 04>

+cotg

THEOREM 2. —If the Pfaff formwon J(RP, ") has constant coefficients on the

kernel then the solution to the associated sys@nQ@,.1 = 0, which are functions on
RP, define a linear map dk® into o'

Since theC’ are constant, ifu= ZCI”dq', then the firsnp of equations (10) give:

08 _ o

ox '

from which, & = C’X + C° This solution satisfies the other equationshef system

i(X) Qu1 = 0. |If theC? are zero then this solution comprises the reptatee
polynomial ofJ*(V,, Wh).

Consequence- By adding this solution, one may always suppbaethe Pfaff form
has non-constant coefficients on the kerne]lcvp, Wh).

THEOREM 3. —A system of partial differential equatio(id) corresponds to any
Pfaff formwon J(V,, Wh), and conversely.

Indeed, by Theorem Ly= X°dg, + X,dx’ corresponds to the system:

0y

(H) ; gxi o0 (1 ton).
Sy 2P o x,
' DX

i=1

Conversely, for any given system)( the right-hand sides”, X, are given functions

on Jl(Vp, W), and, as a consequence, they correspond to adornX’dg, + X,dxX’ on
(Vo Wh).
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THEOREM 4. —If the Pfaff formwis the sum of Pfaff forma} and «f, and the
solutions f,” and f, of the systen(X) Qp:1 = 0,in the sense of Theoremare assumed
to exist forat and «F then the solution that relates tois f, +f5 .

This proposition is obvious, since it corresponds to theatlity of the system of
partial differential equationS,(&°). In particular, if theX, are functions that are defined
only onV, then the solution is obtained from a sum of solutitwas relate to the fornw
= X7dpg,, and a particular solution to the syste).(

6. The formsQp.;. — It may be the case that the Pfaff fornthat is defined on
JY(Vp, Wh) depends upon certain numerical functigrs ..., ®" that are defined o8l(V,,
W,), or upon certain operators that depend upon these faoacti@ne will then imagine
the formQpir+1 = dP* A ... A dD" A Qp.qthat is defined oD x JY(Vp, W), in which, D" is
the product of number linespn which, thed' take their values. The argument that was
made in the proof of Theorem 1 persists upon replacing theatopé&(X) with the
operatori(®*) A i(®%) A ... Ai(@) A i(X). In order to determine the set of functioffs
and the functionsd', one then adjoins the equations that define the functidrie the
associated system. The motion of a perfect fluid dotss an example of this case,
when one takes density, pressure, and heating into account.

§ 3. — Properties of the kernel o8*(V,, Wh).

In this section, which is principally concerned witle tkernel ole(Vp, W), we
denote the latter bMJl(Vp, W,). There exist certain obvious properties of the keofel
Jl(Vp, W,) that will be used in the applications. They resutf the fact that was pointed
outin§1.3 thaﬂl(Vp, Wh) may be considered to be a fiber manifold that\has W, for

its base and fibers that are isomorphic to the shR® 0" of homogeneous linear maps

of R into A

PROPOSITION 1. # W, = W, + W then Nj(Vp, W,) is isomorphic to the product
of NI (Vp, W,) with NJ(V,, Wj).

It results that the property is true fofRP, o7 7).

Remark — This proposition is true deJl(Vp, W, x Wp). It suffices to recall the
definition of ther-jets with their source at J} (V,,W,).

Consequence: The formQy., is the sum of two formsQ? onJ'(V,, W,) and Qs
on JY(Vp, Wp).
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EO0W,: Q7. = ()& dg A dXE A LA A L AdR MY,

p+l

n 0Wg QF, =DM dENdg, AdxE A LA AR AL AD P Y.

Remark— If of and «f are basic forms od'(V,, W,) and onJ'(V,, W), resp., then
the system of generalized Hamiltonian equations magidsemposed into two distinct
systems.

PROPOSITION2. If V, = Vi x Vi then N3(Vp, W,) is isomorphic to the product of
NI (Vh, Wh) with NJ(Vi, Wh).

The proof is identical to the proof of Proposition 1.

Remark— This proposition is not exactly true (Vi x Vi, W,) if r > 1. Indeed, if
one imagines the source, §) to be in the kernel a(Viy x Vi, W) then one must deal
2
with composed elements suchg\%;—j withi +j =r.
Xoy

Consequence: The formQp.+1 may be written:
Qs = Pros M Ve + (1) Vi A Ppeg + w0 Vi M Vi

an expression in whict, andVi denote the two volume forms on the manifoldg @nd
(Vi), respectivelywdenotes a Pfaff form ait(VixVi, Wy), and®y.1 is a form of degreke
+ 1 onJY(Vp, Wh).

Indeed, a vectop, in NJ (Vi x Vi, W) is the sum of two vectorst,, which is in
NJ'(Vh, Wh) andv, , which is inNJ*(Vi, Wh): Po = Uo + V.

B(Po) Vi A Vi = [8(Po) Vil A Vi + (-1)" Vi ~ [B(po) Vi,
= B(ug) Vh] " Vi + (-1)" Vi A [B(vo) Vi,

from which:

Qhikr1 = {Z dé&’ DB(UU)Vh} AV + (1) Vi A {Z Vad DB(VU)VJ + W™ Vi ™ Vi,
o=1

o=1
or:
(18) Qniker = Prar M Vi + (—1)h Vh N Dper + 0™ Vi N V.

PROPQOSITION 3. 4f one lets(Vp), (Vy), (W») be three manifolds then any map f
from (V) to (Wh) is embedded in a map o{(\Vy, V) into J(V,, Wh).

We have seen thdf(vp, Wh) may be regarded as a fiber bundle that Nglsfor its
base and’,(W,) for its fiber. Since the map o¥{) into W, may be prolonged to a map
of the tangent bundleB(V,) into T(W,), the proposition is obvious. In the domain of a
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coordinate system about the poiptof (Vy), the mapf makes the poin¢ of (W)
correspond td by way of the formulag” = f°(7°). This map may be prolonged to a map
of the bundle of tangent vectors ), which is denoted by(V,), to the bundlel (W)

by means of the formulas:

o0,
on’

=, ..., 0% ..., 1), u

which translate into a map d]f(vp, V) to Jl(Vp, W,) that we call thgrolongationof f to
the manifolds of jets.

Remark.— If one uses the practical coordinates on the kerh#heojets then it is
necessary to consider the inverse mapnd replace the latter formulas with:

o _0n”
pg'_,7

= 7.
&’ *

COROLLARY. —The formQp.1, which is defined on'Qv,, W), then lifts to the
manifold 3(Vp, Vy). Explicitly, the equations of this lift are:

d&” = aJdn”, p,= alm,,
®per = ) (=1)"dé? Odg, DdX O--- 0 dkO--- 0 dX,
which becomes:
@, =Y (-)*"dp° Odm, Odx O---0 dxO0---0 d& ,
while:
w= X7dg, + X o becomes @ =Y d, +Y, dy”,

from which, the fornf3,,,, on J(V,, Vo) becomes:
Q.. =N dpP A d A AN L AR LA @ XA L AR
APPLICATION. — LetJ (VaxVi, W;) be the manifold of jets that are associated with
the maps oWpxVk to W, and letg be a map o¥xVx to W, . By means of the mag,
the formQnsx1 on ' (VixVic, Wh) becomes a form odt(VixVi, VaxVi). If the maps of
VXV to VpxVi reduce to the maps o¥y) to (Vr) then the fornQp.x+1 is a form onv;, x
J{(Vi, V). Formula (18), in whickn.1 is zero, gives:

§h+k+1 = Vh A [(_1)h q)k+1 + (_1)h wh Vk]

) By summing over a chain oYy), this form becomes a for@y.; of degreek + 1 on
J (Vk, Vk)Z
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Qi1 = (_1)hk J.C(Vh)(q)kﬂ +wlV,) OV, .

We shall now proceed to apply this result to the geeraf the equations of the
mechanics of rigid systems, although first we shallrbegth the equations of mechanics
for continuous media.



CHAPTER I

The mechanics of Galilean continuous media.

8 1. — The generating form for Galilean continuous media.

We shall show that three of the classical postulat&salilean mechanics lead to the
existence of a generating form for the equations of anptin the sense of the
fundamental theorem of Chapter I.

POSTULATE 1. —There exists a universal time that is independent of the medium
considered and is defined up to an additive constant:

t=r+ty.

Consequence: The motion of am-dimensional continuous medium will be defined
by the maps of the number sp& t to ann-dimensional number spagg.

POSTULATE 2. -The n-dimensional spa@®' is properly Euclidian.

Consequence- There exists a fundamental second-order covariasortgp on R"
that permits us to define the norm of a vectoiRlhby means of a positive-definite

quadratic form and its contravariant components. Tlagarspace dk" under a map is
likewise properly Euclidian; we denote its fundamentakee by ),, . The properly
Euclidian structures of the spaB8 and d' extend to the kernel of the sB(R", ") of

jets of order 1. Since an element of the kernel of #eais of jets hasp for its
coordinates, which is identified with a tensor that isstatted over the tangent spage
at the pointx of R" and the duall'gD to the tangent space at the pafiof J', the metric

tensor on the kernel at(R", 0" is y?” g; for the system of coordinates that is used in the
kernel.

Remark— When one is concerned with the kerned'¢R"x t, 4"), one will consider a

metric tensomn+1, n+1 ON the number ling and take the tensor that has the components
V¥ gi, V¥ ghe1ne1 to be the metric tensor on the kernel of the jets.

POSTULATE 3. -n n-dimensional media, all of the frames that are composed of
systems of n orthogonal vectors and animated with a uniform translational nao&on
equivalent.
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Consequence- If a pointM of R", which is the source of a map, has the coordinates

(<}, %, ..., x") with respect to the first frame, and the pgintwhich is the target of the
map ingd", has the coordinates'(, ..., X"), while M andu have coordinates/{, y?, ...,
y") and ¢4, 77, ..., "), respectively, with respect to a second frame thericttmulas:

& =an’+vr,
(19) t =7+t,
X =ay

define the passage from the second frame to the firstionehich the matrix”a‘;H =

|| is an orthogonal matrix, and thus constitute a reptatien of a group that one

calls theGalilean groupand which is characteristic of Galilean mechanics.
From the fundamental theorem of Chapter |, a geingrdbrm of degreen + 2 on

JFR"x t, ") is associated with the maps Bf'x t to &', which has the following
expression in practical coordinates in the first frame

Qniz= Y (-1)"dé” Odg, OdX O-+-0 ok O---0 ok O d+ w”dx A ... Adx At

Since Postulate 3 implies that there exists no privilegeme in am-dimensional
medium, this implies that the for@,., must be invariant undés. As with Qn.4, the
only element that is not well-defined ¢g but the conditions of the invariance Qf.»
underG permit us to makevwmore specific.

Formulas (19) define a mapBf xtx 0'x GtoR"xt x d. The set(R"x t, J") of
jets is contained id'(R"x t, R"x txd"). The formQ,.», which is defined on the subset of
JHR"x t, R"x J" for which the target ig, lifts to J'(R"x t, R"x txd'xG) by means of the
map ofR™x t xd'xG to R"x txd". For a fixedy O G, the restriction 0fn.2 to J{(R"x t,

R" g% {}) is a formQn.2,,. The invariance translates into the equality:

Qn+2,y =Qne2.

The groupG operates oiiR"x txd', and by prolongation to the kernel of the jets, on

the setl'(R"x t, JY). The formulas that translate the prolongatiosdb the kernel are,
in canonical coordinates:

g

u =aja'v,

O _ A0
un+1_ pvjp+\f’

and, in practical coordinates:
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p, =a’ar

L% p

+1 +1
po = gé’;f/j +V.

Invariants of the group G. — It is important to the point out that the Galilegaup
G is a subgroup of a grou@’, if one denotes the linear group that corresponds to an

arbitrary matrix”aij H by G'. The groupG' leaves the followingn algebraic functions of
the p, invariant:
i =>0p (3 composed o ternjs
J=>.0n (z composed of’ tern):,
=Y ppd (z composed of’ tern):,
(
(

> composed oft’ tem):,
> composed of" tern):.

= g n
=D PR B

We denote the set of these invariantsibylf one takes the Galilean groGpthenG
leaves not only the sét invariant, but also the norms of the vectpr{p;, p,,---, B,),

and, more generally, the norms of theectors that are constructed from the vecpirs
We denote the set of invariants of the Galileaugi® by J.

The determination of the Pfaff form wthat makes Qn., be invariant under G. —
Divide the sum of terms that constitutento three partial sums:

1) @ = z X7 dp™ .
o=1

We verify that this sum corresponds to the kinp&ct of the motion of a point &".

2) %:Zn: X7 dg, .

o=1i=1
We verify that if the X’ are functions of thep then this sum corresponds to the
deformation of the medium.

3) ay =—HgdX .

This sum corresponds to the elementary work thdbne by a force fieldl, when it
is applied to a pointz of the medium, and does not include any surfatiergcas one
usually intends of it. The — sign that preceHesarises from the fact that sin€h.; is
defined only up to a multiplicative constant, itnecessary to choose one if we are to
recover the equations of classical mechanics.
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In order to perform the calculation ©f..,, 4, we divide the terms d®n.+, into two
categories:

a) The ones of the form:

fo= 3 (-1)2AE° Odg OO dX + o dd A . A ~dt
=)

b) The ones of the form:

Pa = Zn‘,(—l)”ldf” Odf OdX0---0 dx0---0 dX0 d + ey "dxX A ... AdxX A dt.
o1

We next study the manner by which iheerms are transformed:

B = [(F1)™2dE A dpi*t + (1) @ At A dxE AL AdX,

P = (1) [dE A dp™ + @ A di] A (dx A L A dXD).

Under an orthogonal change of variatdes” ... ~dxX' = dy* ~ ... ~dy', we occupy
our time with only the terms:

$2= > d&’ Odg™ + M dt.
o=1

From the formulas for a change of frame:

d&” = ajdp” + v’ dr, dp;” = afdm™, @ = X7, dg",

(2

we have:
$:= & (agdy” + vV d) O d™ + X, § du 0 d,

¢2=dn” Odm)* + (X7, - V) & dr," O o .

n+l

g

Now, under a change of fram,, = ayYs,. Thus, X7, may be identified with the

components of a contravariant vector. It resutisnfthis that:

X7, =ul . F,

n+l
whereF denotes a function of the invariants of theJetnder a frame change:

g
Xn+1

= F@v,+Vv).

L N+l
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In order forg, to be invariantF can only be a constant equal to unity. It then results
that @ = u’,,dg™. Since the groufs leaves the norm of the vectp?™ invariant, c
may only be proportional to the differential of that ingat, which has the expression

Z(pn+l )? in terms of rectangular coordinates. If we &etlenote something that is

constant unde, but that may very well be a function of the caoates of the point/
and other parameters (e.g., temperature and pegstwen we have:

o P!

From the fact thate = u?, dg™, it results thatp)™ = du’,,, and as a result, one has,
in canonical coordinates:

_0 (.o \2 o0&
a=Za(ie.) =20 %]

From the mechanical point of view, it is interagtito remark that the numbéris
nothing but the density, and the vecpS* (whose components angl™) is nothing but

the quantity of motion vector of the pojat
From the foregoing, one has the theorem:

THEOREM 1. 4n Galilean mechanics, the kinetic pait of the Pfaff formwis one-
half the differential of the vis vivd?, whendis the density of matter at the pojnt

Remark.— When one uses practical coordinates, the gemeyaiession forg, in
orthogonal coordinates is:

¢ =d& N dpl*t + —d{Z( ) } .
If the axes are not orthogonal then:
¢, =d&” " dp)™ + 5d(y"” Gnusn B )
Now, let us study the transformationdgf:

$a= > (-1)"dé’ Odf OdX O---0 dxO---0 dX0 d+ a A dx A ... Adx At
o=1
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The presence of the factdr=dr in the exterior products that constitute the terms of
¢4 leads to the conservation of ordy d7” in the expression faté®. If one denotes the

minor of the determinard relative to the elemerd, by A :
dx A AdX AL Ad = (-)A dy O Ody 00 df.

If one denotes an element of the inverse matriHcat#) by a' then A; =det|a|O

a). Since the matrixd, is an orthogonal matrix, deg|| = + 1 anda;” = a;. Under a

frame changedp, = a/a dr,, from which, the transform of the terms @fthat do not
include ay is:

(-y“agdy” ") (&4 o7,) § (dy 00 dyD-- O dyd
From the properties of orthogonal matrices, itittsshat:

a'Jd] =0 ifj" #j, a'Jd] =1 ifj' =j.
It results that:

e Z(—l)jﬂd/]p Ddﬂ;Dd)}D"'D dy 0---0dy0 & + M dy* ~ ... Ady' A dr

Now, imagine thewy part of @ In ay = X7dg,, the X’ are functions of thep, .
Under a change of variableg = Xdp, = Y/ dr), the tensorial quantity:

X7 = Zaj Yjp

shows that theX” may be identified with the components of a mixedsbr that is

constructed over the tangent spac®t@nd its dual. IfM° denotes a mixed tensor that

is constructed oveR" and its dual then one ha¥’ = M’f for o # i, wheref is a

function of the invariants of the Galilean gro@pand X = M?f + g for o=, wheref
andg denote two functions of the invariants of the &al groups. The presence of the
invariantg in the expression foX.” stems from the fact that one may have terms of the

form [Z Xi‘j(z dqj in ay, where each term of the prod{cE Xi‘j(z dﬁj is an
i=1 i=1 i=1 i=1
invariant.
In particular, the possible expressions ¥ are:

1) Foro#i: X7 =g p,f, foro=i: X' =p f+g.
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2) If one considers the contracted prodG?qf’tzz py p’, and more generally, the

j=1
contracted product of indices C°=) p?p/ p?--- Pr, then a very general possible
expression forX,” consists of a linear function of th&’, where the coefficients are

arbitrary functions of the groug.
Finally, we remark that the application of the fundataktheorem of Chapter | gives
the generalized Hamiltonian equations:

0¢° o ", dp;
ox ' IZ:;‘ ox

Fori < n, the firstn? equations, by the nature of their right-hand SiXés allow us to
study the map oR" to ', and, as a result, the deformation of the mediutis & why

wy = X7dg, corresponds to the deformations.
The following theorem results from this:

THEOREM 2. —In Galilean mechanics, they part of the Pfaff forma which
corresponds to the deformations of the medium liilsear function of the components of

a mixed tensoM ? that is constructed ové®" and its dual, and thus has the coefficients:
Xia' = Mia'f +5|0'g,

in which 6” denotes the Kronecker symbol, while f and g aretfons of the invariants
of the Galilean group.

We have therefore constructed a fd@, that is invariant under the Galilean group
G and whose support is the jet manifdfR" x t, 7). From the fundamental theorem |

of Chapter I, the system that is associated Wkth; leads to second-order partial
differential equations. These equations exhibit the chematics that we would like for
the axioms of Galilean mechanics to possess. Weypttogrose to axiomatize the latter in
the following manner:

AXIOM. — The equations of Galilean mechanics on an n-dinos@asicontinuous
medium are generated by the system of exteriorteosathat are associated with the

exterior formQn.1 of degree n+ 2, which has its support one the jet manifol@RY x t,
A", and which is invariant under the Galilean group &system whose solutions one
takes to be functions d&' x t of class C(r > 2).
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Remarks-—
1) The preceding axiom entails that we must have asspostulates I, I, llI.

2) The applications show that one therefore recaberslassical equations, and that
one may pose very broad hypotheses regarded the defornatitvesmedium in another
context, moreover. Note that it is the energy-mammanvector that is naturally
introduced in the second-order partial differential equatio

3) One will observe that there is no reason to thtce the notions of the energy of
the deformation tensor and the constraint tensordardor us to arrive at these results.

4) A general means of generating the mechanics af-dimensional continuous
medium (time being one of the local coordinates in tleeliom) is to consider a form
Qn+1 0n a manifoldv, that admits a group or pseudo-group of transformat&re form
that has its support on the set of jets of maps ¥pio V,, and is invariant undes.

5) In an arbitrary system of practical coordinates, éRpression for the generating
form for the motions of the-dimensional Galilean continuous medium is:

(20) Qmi=

i=1

\/E{Zn:(—l)”ldf"md;j,md)mmm dk0---0 kO dtwD dd---0 &3 %

with:
o 1. 1 + + o
w= xi dldg + d(z_ayﬂp g|+l,n+l @ ' g 1j_ I_Jf (f 1 g= detgij :

The functionsX,” must be determined specifically in each case thatemcounters in the
applications.

8 2. — The mechanics of filaments.

One must adapt the preceding theory to the dirmaasf the medium in question. A
filament is a medium with two of its dimensionsrigeinegligible when compared to the
third one. The points of the filament are thusirdef by means of a variable lengi
which is not subject to tension.

A. STATICS. — The consideration of the equilibristate of the filament gives rise to
the study of maps from the number lgénto the 3-dimensional number spae From
the general theory, we know that the generatinghffar the equations of statics for the
filament is a form of degree two on the jet mamlfdi(so, £°):
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2
Q,=>.dé’ Odp, + w"dy, .
o=1

Q, must be invariant under the transformations of the &sadilgroup, so they part
of wmust be invariant, and as a result it must depend upontbaldifferential of a
function of just one invariart which is the norm of the vectpr(whose components are
P1, P2, P3), in this case. Ld{l) be this functiorof:

2 2
1= (p,)",
o=1
and let:

w= 23—]; p,dp, — H, d&’.

(H, are the components of a force fielddh)
The characteristic equations farmay then be written:

_ag +2£ p,= 0,
0s, ol
P _y =o.
os, °

In order to determine the functidft), it is necessary to make some hypothesis on the
manner by which the filament behaves.

a) Inextensible filament: Letsdenote the arc length of the profile of the filament in
its equilibrium position under the action of the appliedcés. The hypothesis of

2
2 a
inextensibility translates intds’ = ds?, from which, Z{%‘; j = 1. From the first three

o=1

Hamiltonian equations, it then results that:

(ﬂjz_ L
ol 4]’

So the sign oty must be the same as thatgfandf = — Jr.
The generating form for the equations of statics ferftament is therefore:

szko“Dd@—dt/§+-§+ gy]d§—Hadf“d&.
o=1
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TENSION. — If denotes the linear density of the filament then onle tfa product
T :Jox/l_thetensionat a point. Upon replacindl_ with T/ &, one obtains:

3

2 o .
(21) Qz:ng‘”deﬂ—(?‘)z pdp+ H & jD ds,
o=1 o=1
so the characteristics equations:
dé” N
ds,

pgi=0, 4 —-H,=0
T ds,

take on the classical form upon settthf / ds = u”:

d(Tv) ,

&H, =0.
ds

g

b) Extensible filament= If one assumes a law of elongation that is progaati to
the tension:
ds=ds (1 +KkT)

then, from Hamilton’s equations, it results that:

ds 2_ 2 _ ﬂz
(Ej = (1 +KkT) —4|(a|j :

SinceT = J,+/1 , by definition, one has:

of 1
- = (1+ka ),
3 M—( V1)
from which:
f= T +5%,
2

The generating forf2, then assumes the initial form:

3
Q,= ng‘” Odp” - df*dg —H,d& " dsy
o=1
since:
df = —= (1+KT) dI df A dg = ——
| ’ 241

1+KT)dIOds.
0 (1+KkT) $
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Upon taking into account thds= (1 +kt) ds, one finds that:

L diods= -~

3
dp. O ds,
I ﬁzp" D,

o=1

df *dg =

from which, the new expression fOr as a function of the differentidik of an arc of the
profile of the equilibrium curve becomes:

3 1 1
Q, = N dé&? Ody ——= dp O d ——_ 4°0 d,
’ ;5 IOa\/l_zlo”'?’ Slj1+|<Tef

which generates the classical equations.

B. DYNAMICS. — The Galilean dynamics of filamertsmes down to the study of
maps ofR? = 5 x t (5 is the number line in which the parameter thatdithe length of

the filament at rest takes its value anid the temporal number line) inj@. From the
theoretical study, the generating form for the ¢éiqna of motion is a form of degree 3 on

Mo xt, A

(22) szidf"ﬂdp},Ddt—i &’ 0dg 0 ds- q/( B+ B+ Yo

() + () <

2
> ) Odg O dt- H, & 0 dsO d.

Example— Transverse vibrations of stretched filamertsAssume that the filament
extends alon@x and that the tension that is imposed in this timads To . Assume that
there is no longitudinal displacement — i&.= x — so the vibration is defined only along
the y-axis, and there is only one unknown function —,\Z — that is generated by the
associated equations of the form:

Q3= dé&’ Odg Odt- oF? O dg O dx q/( J139)%+( gzm d¥ dt pdp dx
—Hyd& M dx ~ dt

The associated equations give:

+ - o, 0P, _
0x (T8, + (P o ox ot

2 1 2
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If one assumes thab / & is very large when compared @ then one may writeo,

2
=- laai, which gives the classical second-order equation:
X

0

T o 0%
g (7 (av’

Remark — In the foregoing analysis, we assumed that the spawvas referred to
rectangular axes. Upon taking an arbitrary coordinatesysng’, it suffices to také to
be the invariant = )”” p, p,, where)” denotes the metric tensor on contravariant form.

PERFECT FLUID. — A continuous medium will be said swvdperfect fluid typaf
the ay part of the Pfaff formw is identically zero, and if, in addition, there exists
function F of the pointyx such that the form &dF (in which J is the density of the
medium at the point) appears i .

The generating form of the equations will then be of de§rea the jet manifold

FHR3x t, F):
0s = (170" a0+ f () +( ) +( #)]0

" [i—a(P_’Br)—HUJdE” v,
5 0

in which P denotes the pressurg,the temperaturéy,, the components of the force field
at the pointu of the mediumg s the dilatation coefficient at constant pressarelV; =
dx” dy”dz whileV, =V; M dt.

One then deduces fro@ that:

o 4 —
ag - p:;, 56p¢7 +6(P 'Br)—O_HU:O,
ot ot 0&°

from which, we deduce the classical equations:

0°¢” __ 9(P-pr1)
O =T g oM,

Since the functionB, 7, dare auxiliary unknown functions, one must addehother
equations to the preceding one: In particular, care add the characteristic equation of
the fluid P, 7, d = 0, and the conservation of mass. This lattarddéion may be
interpreted in the following manner: Lt be the vector whose components e, p;,

ps, p; =d) and letB(p*) denote the infinitesimal transformation operagative to the
field p*, so:



Exterior forms and the mechanics of continuous media. 32

8(p*) V4 = 0.

This suggests that we consider a medium that has foendions, along with maps
of R*into 4. Since the density is variable, one imagines the fsid:

0s= . (-2 Oa O\ + o of () +( ) +( ) +( ¢

+ i[—a(P_ﬁr) - ngdg‘” v, +i(6p§ —(?)j ag' IV,

047 0x

The generalized Hamiltonian equations that oneicieslare:

o 4 4 -
af :&Opg+6(P ﬁr)—éHU:O o= 1’ 2, 3,
ot o ot &7

op, > 9p,
a + ag e O
ot Z(ag"j

o=1

The latter equation translates into the consesmatf mass, while the conditiop; =

J entails thato&* / ot = 1, from which,& =t + constant, in accord with the postulate
concerning time in the case of Galilean mechanics.

Remark- The theory of permanent motions is an immediatesequence of the case
whereQs admits the infinitesimal transformation that is@sated with the vectdr= (O,
0, ..., 0,t), which translates into:
B(t) Qs =0.

8 4. —n-dimensional isotropic media; the Navier-Stokes equations

The ay part of the Pfaff formwmay be a closed form that is homologous to Gthi
case, there exists a functi&ron the invariants of the séffor the groupG of an isotropic
medium. One does not generally know how to detegrthe functiork that corresponds
to certain properties of the medium, such as haamgvariant volume. That is why one
confines oneself to looking for an analysis of tiewi scope; from Theorem 2 of Chapter
I, the interesting terms are of degree at least twipon confining ourselves to these
second-degree terms, there are only two possibés:af)? and J;, if we denote the

invariantz p. by J;, and the quadratic form for the, on the kernel'(R", A" by J; .
i=1

Upon denoting two coefficients, which might depemmbn the temperature, lsyand g,
one then has:

E=+i[a(d)’+ B
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Therefore, in the case of the approximation that ansaiothe form that the classical
linear approximation takes in this theory, thelimensional isotropic median (= 2)
depend upon only two physical coefficients other than thetgensi

In an arbitrary system of coordinates the generating fe written:

(23) Qne2 = 4/0{ > (-1 d&” Odg, 0 dR OO0 dkO--- 0 X

1 o +1 N+l o
# s[GBI B+ dE- X 7 ]0 W}

in which we have writte®,+1 =t, g = detg; .
The first series of generalized Hamilton equatioay be written:

0 o o 1
ox  op,’ ox"™ g

n+1l

ygpgn+1,n+1pp .

We calculate them explicitly. In arbitrary coordies:

E= %[Z(pii)]z’Lgygpgj o6

Set 65_ =u’.
ox
Foro#i: u’= By’ gip),
Foro=i: uwW=Bygip, +ad p.
i=1

In a general manner, upon denoting the Kroneckmbsl by &7, one has:
u’=pBy7gip, +ad’d

Upon resolvingp! = iygpg” (W=-ady ), one determineg, = > p, when one

B =

setsp =] in the preceding formula:

S p :%ygpg" (W -ad’d).

Upon setting7Z, =y, g', one finds:
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1 1, a -
=AU -ad’d) == -= x> 77,
;pj ﬁ U(ul al 1) ﬁ Uul ﬁ z’t

thus:

Jl(,[z’+azn:ni"j =y mu’.

If one setd; = Y rr,u’ then:

Jy=— .
prayn
If one takes the same coordinate systei®"iand o’ thenZn{ =n,J; = ,[>’+1na l,:
p' :ig g’ y —ad” l, _
S R ' B+na

Upon using the absolute derivative, the generdlizamiltonian equations:

opy™t & 0p)
——+>» —£-X_ =0
ot ,Z:; ox' 7
become:
(24) gap gn+,n+1 D(5Un+1) +£ ij Dui a 1 Dll X =0.

bt B9 DY B ptra DX

In particular, in rectangular axgs, = 0 wheno# p, while g,, g =1

)
25) 2[00, 1y @ 1 Oy
ot\ ot B B B+na ox°

These are the Navier-Stokes equations, in whidtenotes the Laplacian for an
dimensional medium. Upon introducing the Lamé ficiehts A, 4, one finds:

1 1 1
(26) ==, B=--
Hn+ H

A+u

and one then puts them into the classical vectfuiat:

HAE+ (A + ) grad(div ) +F = %(5v) :
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Remark— The expression fdE in canonical coordinates is:

ygpg"u u - (ygp d ),

" 28 ,3 a 23

which gives, upon using the Lamé coefficients aawangular axes:

E=- L3y -S0+n(Ty)-

8 5. — The generating form of the equations of the mechaniogrigid systems.

The motions of rigid systems in ardimensional medium are maps frd@tx t to 4’
that preserve the lengths and orientations ofiheds. Locally, one thus has:

do? = Zn:(df")z =dg = i(dk)z .

. 0&° .
Upon settlngaii = u’, the system of equations results:
X

In order to solve these equations, we first interghem geometrically. At a poipt
with the coordinates&), consider the natural framg,(g) that is composed of the point

M andn vectorse that have coordinateéui” ) with o varying from 1 ton. Since this

frame is orthonormal, the corresponding metricdems),, = 0 wheno# pandy,, = 0
wheno= p. It results from this that the Christoffel symbake zero. Thus, timevectors
e have fixed directions, thg are constants, and:

u’=m’.

Then® elementsnf are the elements of an orthogonal matrix.
In order to characterize they = X“dg, part of the Pfaff formwon the kernel of
JYR" x t, J") that would correspond to a motion of the mediimthe course of which,
the distances remain invariant, we remark that mé®ulting generalized Hamilton

50'

equations area— =u’ = X7; hencewd = n dg,. This gives us the theorem:
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THEOREM 3. —If the motion of a continuous medium is such that the mutual
distances between these points remain invariant thenagheart of the Pfaff form

reduces to a form with constant coefficients, the set of whose elements comprises an
orthogonal matrix.

Remark.— By virtue of Theorem 2 in Chapter I, one may further thet «y = O,
modulo a Pfaff form with constant coefficients.

If Vo denotes the manifold of the group of displacements afdimensional space
then the family of maps in question is comprised ofrtiags ofR" x t into 4" that are
defined by the formula:

&= X+,

in which Hm"” denotes an orthonormal matrix.
For the map oR" x \/p to &, the general fornf, that is defined od*(R" x \jp ,
) lifts to F(R" x t, R" x Vp). Since the maps &" to R" reduce to the identity, the form

Qn+2 becomes a form oR" x JY(t, Vb). When this form is summed over a domairR8f

it generates a forr®, of degree two whose supportJi§t, Vo). Now, upon denoting the
tangent space tdp by T(Vp), J'(t, Vb) is homeomorphic tox T(Vp). One may thus the
preceding result as:

THEOREM 4. —or a rigid system, the generating form of the dgumes of motion is
a form of degree two whose support is the prodfiche number line t by the tangent

space to the manifold of the group of displacements = R" x (SQ), in which SQ

denotes the group of rotationsIRY.

COROLLARY. —In the three-dimensional space of a system of sdliet generating
form for the equations of motion will be a formddgree two on the product of the
number line t with the tangent spaces to the mihdbthe displacement group.

Remark.— The case of a material point is a particular cake¢he preceding
discussion: If the rigid system in animated with a taishal motion theWp reduces to

R®. The motion of the system reduces to that of a nadtpdint whose equations of

motion are generated by a form of degree two on the sHwsmsional manifold x
T(RY).

Consequences. It is very important to remark that the equationghefrechanics of
a point particle, and the equations of the mechanicsiged systems are naturally
deduced from the equations of continuous media, while thevecse inference
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necessitates that we must make an appeal to a postalaterning the forces that one
calls “internal,” and which are completely unknown.

8 6. — The role of symmetric tensors.

One may be very surprised to find that in order to tit@attheory of the motion of
continuous media, we have not needed to introduce tiennof constraints. We shall
now examine the consequences of the introduction of @tvavariant symmetric tensor
T’ to account for the motion of amdimensional continuous medium. Letbe a

covariant vector field oiR" with componentsr . The contracted produ@ a; = f is a

contravariant vectof. If D is an arbitrary domain @&" then the flux of that traverses
the frontier ofD, which we denote byD, is:

.[aDi(f Wa

upon denoting the volume form &\ by V, .

For any fielda that leaves thds’ of the medium invariant — any field that verifibe
Killing equations — one writes that the sum of #ftects of the forces that act on the
closed volumeD and on its frontier is zero. X denotes the force field that exists at
every point of the medium then one has:

jaDi(f)vn +jD(x &)V, =0,
a condition which is further written:
[ 8V, +[ X@)V, =0,

which gives, upon using Cartesian coordinates:

0 oTi
JD(Z%'*XJUJV\ =0.

i=1

Since the preceding integral is zero for uniforatdk a, in particular, one must have:

A comparison is called for between this equatiod the analogous equation for the
generalized Hamiltonian system:
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n a i
> _x =o.
iz OX

As the latter does not have the same tensoriabctex as the former, we use the
twice-contravariant metric tensgf to put p, andX, into contravariant form:

p7=y" p,, X7= PP Xg.

Upon using rectangular axes, one obtains:

n ip
> P _yo=o.
o OX

Upon equating the indek with p, one deduces that the componeftsof the
symmetric tensor are solutions to the system of paliti@rential equations:

n ij n ij
(27) Ty ®
= OX o OX

that are

0&°

where thep! that figure in the right-hand side are functions of the ;
X
deduced from the generalized Hamiltonian equations:
087

o =X ), PRy

Since the system (27) is linear one obtains the geseltgion by adding the solution
to the system without the right-hand side:

n ij
%%:O j=1,...,n
i=1

to the particular solution of the system with the tdigand side.

One solves this latter system in the following mannkonk is givenn arbitrary
constants3 then upon multiplying the equation of rapky 4 and summing over the
one obtains:

o, 0S]
Zﬁj — =0.

= OX

Upon setting |B' || H,[:’J'H = ¢, one has the equatioEg—;i = 0, which expresses
i=1

that:
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. _2 i a(gllul)
Tep uj+Z[Hna ' IZ:,

Now:

n 'lu) i n 25i
Z ox -9 Zaxc')x‘ ’

a(g“ e E Y »
.[z -9 '[Z;‘axiaxj dx =g’ [ZG_”LCJ =d¢’ (1. +C),

i= =1

upon denoting a constant By
Finally:

i__ |2 jx,a 1 1 i
T = {ﬁg N l1+ﬁ(l1+C)}g

Upon introducing the Lamé coefficients, these formuay be written:
Forizj: T =+u(g'u +d ),
Fori=j: T =2ug"y +d [(A+u)-ul,-uC =2ug"u + ¢ (A1, - uC).

If one introduces the displacement veatdn R" andé = x +v fori # j, while u) =

vl forj=1,u/ = v/ + 1then preceding formula give:

i o oV
T = U
[axJ ox j

i j
+)lzal+2,u 3 -uC.

2u+3A
o

These are the classical formulas if one takesdhstaniC =

The role of the deformation tensor.— We conclude our study of the role of the
symmetric tensors with that of the deformation ¢ensif the metric tensor og’ is y,o

thendd® = y,» d& d&, and if the metric tensor & is g; , sods’ = g; dX dX, then one

calls the tensoe;, which is such thatlc® — ds” = g; dX dX the deformation tensor, and
the expression for the deformation tensor as atifumof the canonical coordinates on

J{R", /") becomes:
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6 = ygpui"uj” =0 -
By means of the generalized Hamiltonian equations:

65:7 = X7(-+, p;,...,gﬂ,...,)@ o),
oX

one obtains the expression for the deformation teasoa function of the practical
coordinates:

8 = Voo X X! — g
Thus, when the fornay is known, one immediately knows the deformation derss
a function of the coordinates al\(R", ). However, if one knows, conversely, the

deformation tensor oR" — i.e., its expression as a function of the variakllesthen it is

important to remark that this does not suffice to rettouts theay part of the Pfaff form
on the set™(R", 0" of jets.



[1]

2]

[3]

[4]

[5]

[6]

[7]

BIBLIOGRAPHY

H. CARTAN, Colloque de Topologie sur les Espaces Fibisixelles,1950,
Masson & Co., Paris, 1951, pp. 15to 17.

C. EHRESMANN, “Les prolongements d’'une variété difétiable. |. Calcul de
jets,” C. R. Acad. Pari233(1951), pp. 598; “Il. L’'espace des jets d’ordete V,
dansV,,” C. R. Acad. Parig (1951), pp. 77.

C. EHRESMANN, “Les prolongements d'une variété diidtiable,” Atti 1V
Cogresso Unione mat. Italiandaormina Ott., 1951.

C. EHRESMANN, “Introduction a la theorie des struetinfinitésimales et des
pseudo-groupes de Lie,Céllogue intern. Géometrie différentielle, C. N. R. S.
1953, pp. 97-110.)

F. GALLISOT, “Les formes extérieure et la mechanigles milieux continus,”
C. R. Acad. Pari244(1957), pp. 2347.

P. LIBERMANN, “Sur le probleme dequivalence de ceartastructures
infinitésimales,” Thése Ann. di MatmaticaXXXVI, 1954. “Sur les pseudo-
groupes de Lie,Colloque de Topologie de StrasboyApril, 1954).

A. LICHNEROWICZ, Théorie Globale des Connexiones et des groupes
d’holonomie Consiglio Nazionale delle Ricercharis, Dunod, 1956.




