ACADEMIE ROYALE DE BELGIQUE
CLASSE DES SCIENCES

MEMOIRES

COLLECTIONIN 8 °
SECOND SERIES

VOLUME XVIII

WAVE MECHANICS

OF THE

ELECTRON AND PHOTON

BY

Jules GEHENIAU

Doctor of mathematical and physical sciences
Printing decided by the Science Class

Translated by

D. H. Delphenich

BRUSSELS
PALACE OF ACADEMIES
RUE DUCALE, 1

1938






TABLE OF CONTENTS

Page
INTRODUCGCTION. .. ottt e e e e e e e e re e eaas 1
CHAPTER |
Massive and electromagnetic fields
1. General theory... 4
2.  Massive field.. 6
3. Massive electromagnetlc fleld 9
4.  Equations of space-time motlon of pomts of a chargasts dlstrlbutlon ..... 12
5.  Spatial motion of electrified, massive points... N
6. Point-like particles..........cooo i, 16
CHAPTER I
Wave mechanics for point-like particles without spin.
I = (o]0 ToTo [T o174 11 0] o 1R 19
2. Variational prinCiple. ... ..o 19
3. WAVES ANA TAYS. .. ettt ittt e e e e e e e e e e 20
A, EXUemMalS.... ..o e e 21
5. Fermat’'s theOrem. .. ..o 23
6. Fundamental equation in space-time................cccovveiiiiiiiieiiicneeneen .25
7.  Other forms of the variational principle.............c.cc i e ... 26
8. Th. De Donder’s correspondence principle.............cooooiiiiiii e, 28
9. Conservation of electricity...........c.ccoeiiiiiii i 30
10. Law of IMpuUlSe and €Nergy ........ccovieii i e 31
11, APPIOXIMALION. ...ttt e e e e e e e e e e e e e e e ea e 32
12. Equivalence of the variational principle and the dpefarinciple............. 34
13. Operators and Mean ValUES. .. .......c.uiuiieiie i i e 36
CHAPTER 1lI
Wave mechanics of the electron with spin.
Minkowski field.
O N o] = 10 PR £ |
P22 | 0140 Yo ¥ X1 o o A 39
3. Second-order DiraC equation..........cccvovvieiiin e, 41
4. Variational prinCiples. ... 43



©No O

PwnpE

HOONOO A~ WNE

PwnpPE

Wave mechanics of the electron and photon

The electric current-density VECIOr.........co.iiiriie i e 44
The energy-impulse tensor... PP Lo
Action ofallghtwaveonanelectron PP o1 0
Remarks.. PP o o

CHAPTER IV

The photonic fields of Th. De Donder-J. M. Wittaker.

Fundamental equations............cccoe it it i eie e e, DB

Variational prinCiple... ... e 57

Correspondence prinCiple..........c.ooo vt DT

PhotoniC fieldS. ... oo 58
CHAPTER V

Wave mechanics of the photon.

1] (0 T {17170 o T 59
Fundamental equations............ccccoeiii it i eee e eee. B0
Operators... PR o X
Mean values and matrlces ............................................................. 64

Densities of the matrix elements associated wittatiméhilation of the photon 65
Tensorial form of the equations of a photon .........cccueeieieviioo... 68

Variational prinCiple... ... 71
The current-density VECIOr..........oo vt i e veeen 12
The energy-impulSe teNSOr ... ..o e 75
Moments Of IMPUISE........oooiiii i eenee. (B
The operatorda + Ba) [ 2. 78
On the annihilation solution.. 81
Some elements of important matrlces ............................................... 82
On non-Maxwellian magnitudes. .. .......c.iuiinii i, 84
Appendix — A general method for transforming expressidn8A @......... 85
CHAPTER VI

Spherical waves in the theory of the photon.

ClassiCal theOrY.. ... 88
SPNEIICAI WAVES. ... e e e e e 88
Moments of impulse... ceviee 100

On the complete determlnatlon of spherlcal wavesltlmtblar waves......... 105



Table of Contents iii

Page
CHAPTER VII
Study of the interaction between an electron and a photon.
Wave functions of the electron and the photon...................coviinnn. 109
Transitions caused by Interactions............cceeeviiiii i 112

CoNSEIVAtION AW, .. cn e e e e e e e e e et e e e e aee e e, 115
Case of the Maxwellilan Wave... ... i, 115

PwpNdPE

INDEX OF CITED AUTHORS. ... 117






INTRODUCTION

The present work is dedicated to the wave mechaniceladtrified material
corpuscles and photons.

We begin with asuccinct presentation of the theory of gravitational and
electromagnetic fields the general form that Th. De Donder gave them. THieywdf
the presentation will rest upon the fact that the irtgsd considerations in wave
mechanics are based upon the “correspondence princip®’@p. ?)

We point out the proof of the variational principlettisaattached to the motion of the
points of a continuous massive distribution when theoten$ massive stresses has a
dlogA

ox”
continuous distribution of mass and electricitydel trajectories that extremize a certain
integral [eq. (55) and (70)].

Thesecond chapterelates to th@vave mechanics of charged massive points (without
spin) that are placed in an arbitrary gravitational altteomagnetic field. That theory
will permit the study of the properties of matenrticles that are placed in not just an
electromagnetic field, but a gravitational onewedl, when one can neglect the spin and
magnetic moment of the corpuscle. We shall shat ithorder to preserve the analogy
between geometrical optics and classical mechaagcssell as the one between physical
optics and wave mechanics, one can introduce la ifitlependent variable and then
reason in a five-dimensional space.

The agreement between wave mechanics and classgzdianics is the same as the
one that relates physical optics and geometricceptOne has a Fermat theorem for the
rays or bicharacteristic lines that are associatéd the fundamental equation that is
nothing but the variational principle that defirtbe trajectories of the material points in
Einsteinian mechanics.

One can then eliminate the fifth variable. Theiadgpn that one obtains is the
relativistic Schrodinger equation; it is likewiseediiced from a variational principle.
Thanks to that fact, Th. De Donder’s correspondgmaaciple will then permit us to
define a current and an energy-impulse tensomma@ner that is formally identical to the
one that is utilized in the theory of the graviva@l field. We link that study to the
method of operators and show that the impulse spomds to the covariant operatof
271 (), o , Where (), is the symbol for the covariant derivative.

In Chapter IlI, we will show that thesecond-order Dirac equationsan serve as the
basis for a theory of the electron and positronheut having to introduce Dirac’s hole
hypothesis. Meanwhile, it lacks certain interactierms that yield the phenomena of
materialization and dematerialization.

At the end of that chapter, one will find some aeks on the theory of the interaction
between light and the electron.

Chapter IV contains a discussion of thequations of J. M. Whittakeand a
presentation of Th. De Donder's theory of the phmtofield. One will see that
Whittaker’s theory cannot represent a Dirac electrdBy contrast, Th. De Donder’s
theory of the photonic field, which utilizes thosguations, will preserve its value for the

particular form (viz.,Pj’ﬂ:N j We likewise prove that the points of a



2 Wave mechanics of the electron and the photon

study of photons, which is natural, since Whittaker's dqoathave the Maxwellian
form.

The following two chapterare dedicated to th@ave mechanics of the photoAfter
a brief summary of the ideas that guided L. de Broglibis research, we shall analyze
and discuss the theory and its general principles. willebe mainly interested in the
mean-value densities and the mean values. L. de Brgalie two possible definitions
for the mean values. Those two definitions will be iregjent for waves that can be
developed into a series of plane waves in all of spgheg; will not be equivalent in the
general case (for a spherical wave, for examplenly One of the definitions should be
retained; it is the one that leads to mean-valuesitiea with satisfactory variance
properties. As one knows, the agreement between wagbames and the classical
theories can always come about by the intermedifiryjean values. For the theory of
the photon, that then comes down to comparing thosen-waae densities to the
corresponding tensors in Maxwell's theory. That comgpar will always be possible,
thanks to certain inversion formulas that we haveuwaled. Indeed, one can form
sixteen independent linear combinations of the sixtesations®,, 5 that define the state
of the photon. Those sixteen combinations are thgoaents of tensorial magnitudes,
among which, one finds the (complex) Maxwellian elao@gnetic potential and the
(complex) electromagnetic field.

Conversely, it is then possible to replace ¢hes in any formula from the theory of
the photon with their expressions as functions of #ferementioned tensorial
magnitudes. One can then compare the energy-impulser temsthe theory of the
photon, when written in conformity with general priregpof the theory, to the Maxwell
energy-impulse tensor, when it is constructed from dexfields. We shall show that
those two tensors are not identical, but they difigly by terms that will “generally” be
zero when they are integrated over all space. Inthbery of the photon, one can
likewise write a tensor whose “principal” terms aredt of the Maxwell tensor; that
tensor will not have the canonical form of a mealealensity.

A particularly interesting case is that of the namts of impulse. As in Dirac’s
theory, the moment of impulse is the sum of two &hmre: viz., the orbital moment and
the spin. One sees immediately an important difieze between the mean-value
densities of the total moment and the moment of thenttay vector with respect to a
point O. Like the orbital moment, the moment of the Paymtvrector will depend upon a

vector OP (P is the point of application of the Poynting vector)n e contrary, the
spin density constitutes an intrinsic moment. Howewag can compare that spin to an
intrinsic moment — or “momentor” — that was introduced byHEnriot only a few years
ago in Maxwell's theory of the electromagnetic fieldere, | would like to point out that
it is my desire to compare the momentor to the spah wWas the starting point for this
work on mean-value densities in the theory of the photdhe result is that the two
tensors — viz., spin and momentor — are not identicéhoadh they are similar.
Furthermore, although in Maxwell's theory, we mustl gliscuss the question of
knowing when one can employ the moment of the Poyntettor or the momentor, in
wave mechanics, we must always take the sum of theabrb@dment and the spin. In
addition, we shall give a relation between the monwdrthe Poynting vector and the
mean-value density of the total moment, which is aiogldhat will permit us to find the
cases in which the two definitions will lead to the saesult. We will then show that
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the mean value of the proper mass will lead to a farthdt is analogous to the one that
is obtained in Dirac’s theory.

Finally, we shall express some of our reflectiongrenfundamental equation of the
photon, the relativistic significance of the new faitmat it takes in theory of the photon,
the general definition of mean-value densities, and tineMaxwellian quantities in the
theory.

In Chapter V| we shall study diverging, converging, or stationaryesighl waves in
a deeper manner.

The method that is employed will permit us to obtam gleneral expression for the
functions® .z of the spherical waves by a simple calculationdedtification; that will
then give corresponding expressions for fields, elecgatic potentials, and non-
Maxwellian magnitudes. Those waves, which are chaiaeteby two integer numbers
(1, m), will each further depend upon two arbitrary constariisse significance we shall
discuss, along with their link to the well-known indeteracy in the Maxwell’'s theory.
The calculation of the moment of impulse in termssplierical waves is easy to do in
wave mechanics and will yield some general formulas tfetracomplete agreement
with the demands of the law of conservation of momdntmpulse for multipolar
emissions. In order to agree with the well-known ltssof Maxwell's theory, we shall
deduce some theorems from those general formulas diuthef moments of impulse
across a closed surface that tends to infinity forrdimg waves and some theorems on
the mean values of the moment of impulse of a statjowave. For the flux at infinity,
only the case of diverging dipolar waves has been leadmlin Maxwell's theory. W.
Heitler studied stationary waves in a very completamer. His results agree with our
own; however, there are some essential differebheéseen our methods. We point out
some differences in detail: We have not annulled tladasgotentiala priori, and we
have introduced two radial functions that are coupled, Bsrat’s theory, and they seem
to simplify the formulas. Those formulas are venttn such a way that they will remain
valid for| = = m. We have also let the proper mass of the photon heem. We
conclude with some remarks on the non-Maxwellian queastitwhich can transport
energy, in principle.

Finally, in thelast chaptey we shall develop a new theory of the interactionvben
light and matter. We will show that the wave mecbamf the electron and the photon
will permit us to study the elementary phenomena thitte to the interaction of a
photon and an electron in a simple fashion, and withaliing the quantum theory of
fields.

This work was carried out under the direction of Profe$so De Donder, who never
ceased to lavish me with invaluable advice. | am happyet@lde to express my
profound gratitude to him here.

| would like to warmly thank Professor L. de Brogle the benevolent interest with
which he examined my research into the theory of thetgm, as well as for his
comments and criticisms, which have been quite usefonet.



CHAPTER |

MASSIVE AND ELECTROMAGNETIC FIELDS

1. General theory.— The theory of massive gravitational and electromaghietids
that forms the basis for this chapter was presenteevieral works by Th. De Donde) (
We shall summarize the general method of that authrer he

Space-time is defined by the set of four variabfesé, x°, x*, and the fundamental
gquadratic form:

Jap (¢, ..., X) & &P, a,pB=1,..,4, (1)

in which gos = gs. are ten (real) functions of the, ..., X' ; they are Einstein’s
gravitational potential. The form (1) is the squarehefinterval between two infinitely-
close pointsx, ..., x") and & + X, ..., xX* + 5xX*) of space-timex, X4, X° represent the
geometric variables, and represents the temporal variable. The normalizednsiof
theg,s will be denoted bg™.

Let M@ be a multiplier, which is a function of tlg” and their derivatives with

respect to the, ..., x*. It is thegravitational characteristic functionit will be defined
p

later on [form. (11)].
Let M be another multiplier, which can depend upon physical digsnsuch as

mass and charge densities, velocities, etc., in additidheg,s and their derivatives. It
is thephenomenological characteristic functiats form will be specified later on.
The main variational principle of gravity is expressedheyvariational equation:

S[[[ [, (M + My 0x'= 0, @

in whichQ is a portion of space-time upon whose boundary#ngations must vanish.
When one varies this with respectg®, while leaving the other functions that enter

into M fixed, one will obtain the ten Lagrange equations:

M@ + M) _

59 0, 3)

in which @):

() See la], [1b], [1c], [1d], and [le]. — The bold numerals refer to timelex of Cited Authors.
() The derivative® / dg” arepartial derivatives (seelp], pp. 4). One will have, for example:

0 5 0 1,5 45 1
aglgg _aglgi(g +g )_E!
while:
12921:1'

dg
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o 0 d 0
2 = " - + a,ﬁ,y: 11---141 (4)
og B Jag ’ dx’{ag"éyj
with:
og“
gaﬂ,y:%- ()

It goes without saying that before the operationsweae indicated in (3) are performed,
one must give the specific form @#(, becauseM will depend upon tensors and vectors

and rules for raising and lowering their indices can mélee gravitational potentials
appear or disappear in the functions.
One introduces the notations:

7y =225 Ty=-5 ©)
Equations (3) are then written:
T =Tap. (7
However, by virtue of the Hilbert identities, one widve:
T 4=0, ®)
in which the symbol /5 denotes a covariant derivative with respeot”fo Set:
Fa=T/lp. 9)

One infers theheorem of the total generalized force or the pinemaological tensor
from (7) and (8):
Fa=0. (10)

These equations generalize the equations of dynamidb@dnservation of energy.
They are consequences of (7).

Since they do not depend upon the form of &, one can consider them to be

necessary relations between the functions that emte/ .
From Th. De Donder, the gravitational characteristiction is:

M9 =(@a+b0) [-g, (11)
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in which a and b are two universal constantd),(and C is the Gaussian curvature
invariant that relates to the metric (&))is the value of the determinangljz ||. Due to
(11), equations (7) will becomd){

_% (a + bC) gaﬂ + b Gaﬂ = Taﬂ . (12)

The choice of phenomenological characteristic flamctiepends upon the phenomena
that one assumes to be realized in space-time. NofBblyDe Donder studies various
important special cases in hitiéorie des Champs gravifique§Ve shall first examine
some results that relate to purely massive fields; wik then study the massive
electromagnetic field.

2. Massive field.— Let V (X', ..., x*) denote a mass density factor andPgg (x', ...,

X) = Pso (X, ..., X%) denote a massive symmetric tenspr (
From Th. De Donder, the characteristic functionhaf gravitational field that is due
to the masses is:

M ==g% (N Ug Us + Pap), (13)

in whichu, are the covariant components of the velocity in egane; they are functions

of thex!, ..., x*. One has:
ua = % , (14)
ds

ds=+/ g,, dX d¥ (15)

denotes the interval between infinitely-close poirftat tare both situated along the
trajectory of a massive point. One will deduce from @) (15) that:

in which

W2=gge uTUP=1. (16)
Equations (12) become:

-1(@a+bC) geys +b Cop=Nuyug+ Pyp. a7)

The theorem of the phenomenological tensor is writte

() ais a cosmic constant is related to Einstein’s constafitby the relatiork = —c? / b, wherec is
the speed of lighin vacuo(K = 1.87x 10% cm/qg).
(%) Conforming to the usual notations of tensorial aiais:

Tgﬁz N Tgp.
() The physical significance of these functions is djeecby some important theorems, and we shall
refer to the original paper for them (sek][ especially pp. 19). Here, we shall say only thats

proportional to the usual mass density and thatwill provide the massive stresses.
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Fa= MUg g’ +us W) p+Bf; = 0. (18)

Thanks to (16) and (18), one will obtain the continugyagion:

oNU’) |, A
GT+U RS =0; (19)
hence:
Fa==-Mug st —u 0 BS+ RS =0. (20)
If one has:
u"pf =0 (21)

then the equation of continuity will become:

AN _

o (22)

Furthermore, ifg{’ﬂ = 0 then equations (20) will simplify. One wikbe:
Ug P =0 (23)

at every point at whicl\/'is non-zero.
Thanks to (14), equations (23) will give the Lagya equations:

oW
ox“?

o 0o d( o
= — ——|—| 25
ox?  ox* ds(a o j (25)

=0, (24)

in which:

Due to (16), equations (24) can then be written:

SGW?)
ox“?

=0. (22

It results from (24) thatvhen one ha§?1), the trajectories of any massive point will
be such that they extremize:

S[Wds=0, or  [iW?ds=0. (26)

(The extremities of the path of integration areuased to be fixed.)
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Remarks. —
a) The four equations (24) are not independent. Indeed, one has

oW W=0,
ox?

becaus&V is homogeneous of first degreeuth

b) In the case of the incoherent fluid, one will hawe hypothesis:
PaﬂE O

The conditionspfﬂz 0 will then be fulfilled, and one will have the varmatal

principle (26). However, the theorem (26) will still balid when there are massive
stresses, provided that they satigly, = 0.

¢) When the conditions (21) are not fulfilled, therel\again exist a simple case that
corresponds to a variational principle that generali2és (Set:

P/, =MgN (in whichN=A\ ./-g). (27)

Equations (20) can be writteN ¢ 0):
Ug g U + Uy UM, + M, = 0.
However, if one takes (16) into account:

A

S(AW) _ , A, A,
- =) wir-Za |,
[uaﬁu Ty U

ox“?

A

Hence, if theM,, are the partial derivatives of a function of #le..., xX* with respect
tox? —ie., if:
_0logA(x,...,x*)

M, = ,
i ox“?

then equations (20) will be equivalent to:

I(AW) _
ox“?

Hence, one will have the variational principle:
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5j AW ds =0, (28)
which generalizes (26).

d) Equations (17) and (20), along with (16), are the fundarhentaations of the
theory of massive fields. Any system of functiang, u®, N, P,z that satisfies those
equations will define a massive field.

Two types of problems have been studied in particular:

1. Find the gravitational field that is produced by a givesshstribution that is at
rest with respect to the observer.

2. Find the motion of a test body irgevengravitational fieldg,sz . We only have
equations (24) or (26) in mind here. Tdigen or exterior gravitational field figures in
these equations.

3. Massive electromagnetic field.— From Th. De Donder, the characteristic
function will be:

ME_gaﬂ{NUguﬂ-*_Hﬂ_ 29 gﬂv Ha,uHﬂvj (O',IB,IU,V:]., ""4)’ (29)
in which Hgg = — Hp, are the six covariant components of the electrovaiag force.

(Here, we envision only the simple case in whiadrehis no electric or electromagnetic
polarization in the medium considered.) The fidig; satisfies Maxwell's equations)(

[ — ap
a—gH:gu”, (a)
ox”?
0H_.
% =0, )

ox?

(30)

in which aﬁ?ﬁ forms an even permutation of the numbers 1, 2, 3The multiplier or
density factoro represents the charge density in space. ThepledtiV represents a

mass density in space-time. The functionand \/ are coupled to the charge and mass

densities by some important relations. [See belomm). (58).]
Thec u” (X, ..., X% are the contravariant components of the veloaftglectricity.

By definition, one has:
P e

=4S (31)

() Unless stated to the contrary, we shall use theesstem of units as H. A. Lorentz. (S&g pp.
191))
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in which ds denotes the interval between two infinitely-close pothist are situated
along the space-time trajectory of a charged, massive (@ 0, V' # 0).
One will then have:

(d92=gpdd¥ and W?Z=gud¥d¥=1. (32)

Equations (12) are written explicitly as:

—3(@+bC) gap+b Gap=N Uz Us+ Pap + 4 9ap H Huw — Ho" Hpy (33)
here.
The electromagnetic tensor:
©)
T o5 =%9ap H* Huy — Ho" Hgy (34)

appears in (33), whose mixed components will be:
(e) _
T 7= 1(H™H ~ Hoy HY), (34)
by virtue of the identity: B
307 HY Huy= 3(H™H o + Hou HY),

In order to make the variance dﬂﬁ, apparent, one introduces the adjoint
electromagnetic tensor:

HY=H (35)

Fﬂ .

We recall the following important identity: K,z are the covariant components of an
antisymmetric tensor then one will have:

Jogar = D p (36)
\/__gaﬂ
hence:

Ag=- g™ g A (36)
N

The electromagnetic tensor can then be written:

(e)
T4 =3 (Ha H¥ +H HE). (37)

We now study the theorem of the phenomenologicadtgii®). We have:

(e)
T ﬂ =-3Ha Hﬁy,ﬁ_% HEpHgﬂ,ﬂ_%HaﬂvﬁHﬁy -1 H,, HH¥. (38)

au.B
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We utilize the identities:

~3Hy, HE = 4H, HY, +4H  H™,, } (39)
— | v
—3H,H", =3H HT, —5H, HY,.
It will result that:
©)
T4s=HauHY g+ HOHY . (40)
Thanks to (40) and (30), the law of total forcevidten:
a(MU*
NUg Ug+ U, (axﬂ )+7Djﬂ + OH =0 (41)
We place ourselves in the case where:
u” pf; = 0. (42)

We then deduce the equation of continuity for nfess (41) and the relation (32)
that:

oMP) _ .
=0 43)

hence, (41):
NUQ’ﬁuﬂ'l'UHaﬁuﬂ"' ﬂ,éﬂzo (44)

By virtue of (30,a), one will also havéhe equation of continuity for charge:

o(ou’) _

=0. (45)
ox?
One infers from (43) and (45) that:
de(x) _ 9&(x) _ _ 0
= =0, or E(X)= —. 46
ds ox” ®) N (46)
When one haﬂf’ﬂ =0, (44) will become:
NUg pWP+ oHgp P = 0. (42)

Remark. — Equations (33), (30), (31), (41), and (32) aeefundamental equations of
the theory of massive electromagnetic fields. Aystem of functions:

gaﬁ, Haﬁ, Ua, N, Paﬁ, g (47)
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that satisfies those equations will define a massikeetremagnetic, gravitational field.
One can further add the conditions (42); one will thetaioba particular massive and
electromagnetic field.

It seems almost pointless to us to remark that thetisos (47) can be obtained only
in very simple cases.

As for the massive fields, there are two types oblenms that one can envision,
above all others:

1. Calculate the gravitational fielgl,s for a given distribution of mass and charge
([1.d], Chaps. | and III).

2. Find the motion of a charged particle (i.e., a testypdhat is placed in an
externalgravitational and electromagnetic field.

Meanwhile, we shall prove, in full generality, a tremrabout the trajectories of the
points of a continuous distribution of mass and eleityri That theorem will be a
generalization of (26).

4. Equations of the space-time motion of points of a charged ismdistribution. —
Consider a massive gravitational and electromagnetid fibat is defined by the
functions:

9es,  Has, N, G, u?;

those functions will then satisfy equations (30)-(38d é44).
If one integrates the equations:

—=ur (LX) (48)
then one will have:

XT=X7(S,%0; Xy s X)) (49)
for the general solution with the initial conditions:

X =XT(S,0; Xy - X0

Let Ay denote the point with coordinateg/, and let A denote the point with

coordinates:
X7=x%(s, s ; Av).

As s varies, the poinA will describe the trajectory of the point that isAgtwhens =

S .
By virtue of the invariance relation (46), one will have:
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£(Ag) = (A). (50)

We now introduce the electromagnetic poterbialy way of the relations:

o, 0D,
Hop = —2-—2. 51
P ax (51)

Thanks to (48) and (51), equations (44) give four differeatjaations:
oW ouU
+e—=0, 52
ox’  oX (52)
where:

U=d, U (53)

The functions (49) will be solutions to the differenggjuations (52), or even, by virtue
of (50), the differential equations:

oW
ox“?

ouU
—=0. 4
+e(A) 5 0 (54)
Equations (54) can be written:
o _
— [W+ £ (A U] =0. (54)
OX

They express the idea that the trajectory of thegelth massive point that passes
throughAy is such that it will extremize:

5f [W + £ (Ag) U] ds= 0. (55)
A

(The extremitie\, andA are assumed to be fixed.)
We remark that the four equations '(5dre not independent. Indeed, one will have
the identity:
ox‘

(56)

Remark. — Equations (30.b) will be satisfied identically when @ssumes (51).
Equations (30.a) are nothing but:

c‘x% [M +20u" ®,] = 0.

Indeed:

5./\/{: 1) \/_ggydg,uvH H :_Za\l_gHaﬂ
o o2 e oxf

a
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These are the Lagrange equations of the variationaliplenc
v~—9 v
Sf[[ ]| X572 070" (®,,-9,,)(@s, =0, ) +oU'®, |6 .. & =0,
in which the functions being varied are the potdstb,, ..., P, .

5. Spatial motion of charged, massive points- It is sometimes convenient to
employ timet = x* to be the independent variable, instead oBet:

VsV, V= g, VV (@=1,2,3,4), (57)
pP=s/V, Am =NTV. (58)
We remark that:
i dxl 4 _
V—E, vVi=1 i=1, 2, 3). (59)

The first three equations (52) are identical ®ftilowing:

oW 5UD:

Pim 5y TP 57 =0, (60)
in which:
U =,V (@=1,2,3,4) (61)
and
o _ 0 d( 0 j
X oax  dtlav )
The fourth equation:
ov d(oV au” d{au”
pm{a E(a_\/‘ﬂw{ ot Ft[a\/‘ﬂ =0 (62)

is a consequence of the three equations (60).
The continuity equations (43) and (45) are written

0PV P _

: 0, 63

ox ot (63)

oV 9P, (64)
ox ot

here.
It then results that:
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% j P OXOXIXK= 0 @ =0) (65)
and
% j LOXORIR=0 & =0); (66)
in other words:
E Eij5x15x25x3 and Moc E.[D Py OXORIX (67)

are two integral invariants of equations (6@)is the total charge that is contained in the
volumeD at the instant, andM; is the total restassthat is contained i® at the instant
t.

On the other hand, one has (46):

de_o0e, 0¢.,_ inwhich =% =P (68)

Thereforegis a (point-like) invariant of equations (60).
Thanks to (68), we can interpret (55) in spated, x. Consider a poinP, whose

coordinates are at the instanty . £ has the value:

£(Po) = £(%, %, %, 1)
at Py at the instant, .
By arguing as we did in space-time, the motion of agddirmassive point that is
found atPy at the instanty will be defined at any instahby the equations:

X =X (1,4, %, %),
in which the X' (t,t,;X,..., X) are functions of that satisfy the differential equations:
5[\”;(5)”[] =0, i=1,23. (69)
X

It will then result that the trajectory and thdogaty of the charged material point that
passes through, at the instanty are such that they extremize:

oL dt=0, (70)
with
L'=V+e(Py) U, (71)
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6. Point-like particle. —

a) Equations in space and time.Let Av denote the volume that is occupied by a
particle at the instartt and set:

— 2 _
e= JAvp5X15X25X3’ myC™ = J'Av,o(m) IXOXOXR, (72)

in conformity with (67).
Multiply (60) by &' d¢ &¢ and integrate; one will get:

NV 2 ou” -
J’Avp(m)gdxldx 5)(3+'[Avp5—><5)(15)(25)€—0 (73)

The gravitational and electromagnetic fields at a poinf\v decompose into two
parts:

1. The “internal” field (which is due to the various poiofé\v).
2. The “external” field.

The action of the internal field upon the motionlud particle is assumed to be very
small in comparison to the action that is exertedhgyexternal field upon that motion.
When one supposes, in addition, that the particlpoist-like (*), one will infer the
equations of motion for a point-like particle that isgeld in a gravitational field and in
an (external) electromagnetic field from (73), namely:

O
N, eoU_y (74)
OX mcoxX
The trajectories of the point-like particle are tines that extremizé){
oL dt=0, (75)
with
L'=V+eU’ (e=e/mycd. (76)

Equations (74) are valid only when one can negleetreaction of the internal field
on the motion of the particle.

b) Equations in space-time- The variational principle (75) is equivalent tize
following one:

() Thatis, when one lefsv tend to zero.
() LEVI-CIVITA refers to the variational principle (73)y the name of the “Einstein-De Donder
principle.” (See 8] and [La], eq. (357).)
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Ol (W+eU)ds=0. (77)

In order to see that, one should refer to paragréjinsi5.
The Lagrange equations of motion can then be written:

oW+el) _y (78)
ox? ’
or rather, sinc&V = 1:
O(iW?+¢U
(2—0) =0. (79)
OX

We now pass on to Hamilton’s equations. The variadiegigate to” will be:

oL
Pa=—— (80)
ou
in whichL is the Lagrangian function:
L=1W +eU; (81)
hence:
Pa=Ugt+ EDP,. (82)
The Hamiltonian function is:
H (%, p) = 397 (pa— £ ) (ps= £Pp) . (83)
By virtue of (32) and (82):
H=1. (84)
The canonical — or Hamilton’s — equations will then bigtan:
@ _oH dp, __ OH (85)
ds op, ds ox”
Finally, introduce the Jacobian functirix’, ..., x*; s) by setting:
pr= 2 (86)

oxT’

The Jacobi equation that corresponds to (85) will be:

0S 0S 0 S
1 9B o) -, |[+—=0. 87
29 (ax" ”j(axﬂ ﬂj ds (87)
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However, by virtue of (84):

0S 1
= =-: 88
0s 2 (88)

hence:
S=-1s+S (X, ..., X). (89)
The functiong will satisfy the equation:
0S 03

W) D || —2-eb, [-1=0. 90
NN I &

That is Jacobi’'s fundamental equation that relatespirg-like particle of rest mass
mp and charge that is placed in a gravitational field along with é&ctromagnetic field.

c¢) Remark. — The components of the velocityn the geometric space’( X?, x°) are
coupled with the componentsf’ of the “velocity” in space-time by the relations (57):

i_Ui
vi=—.

(91)
u

The components of the impulse in the spacexbfxé, x°) will be nothing but the
expressions:

-mycp, (92)

in which thep; are the first three covariant components ofghéhat are defined in (82).
Conforming to (92), the expressiomg c p, are the covariant components of the impulse
in space-time.
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WAVE MECHANICS FOR POINT-LIKE PARTICLES
WITHOUT SPIN

1. Homogenization.— As L. de Broglie showed, despite its generality,rétativistic
mechanics of material points that was presented in #we@ing chapter () constitutes
only an approximation that is analogous to the relationshithe geometrical optics
approximation to physical optics. Now, geometrical opidsased upon an equation that
is homogeneouandquadraticwith respect to the first partial derivatives of adton of
four independent variables'( ..., .

The relativistic mechanicd,(§ 6) (*) of the material point is summarized by the
Jacobi equationl|[ (90)]. That equation us indeed a first-order partial difidal
equation, but it is not homogeneous with respect to theswatives. It is natural to
homogenizethe Jacobi equation,[ (90)] in order to compare it to the equation of
geometrical optics. That homogenization is accomgtistery simply by introducing a
fifth variablex’ in the following manner: Lef):

QK .. XX =50, .., X =X (1)

be a function of the five independent variablés (.., x*; x%). S will satisfy [I, (90)], so
Q will then satisfy the homogeneous, quadratic equation:

0Q 00 0Q 0Q \( 0Q Q) (0QY
2H | X7, X — ,— |= g% +ed +eb, — || — |, 2
( PN ax°j g (ax” ”aXOJ(a%’ ﬂafj (a%’j @)
since, by virtue of (1):
0Q
— =-1 3
ox° 3)

Equation (2) plays the same role in the wave machaof material corpuscles that
the equations of wave surfaces do in geometridadofsee § 3).

2. Variational principle. — Recall the left-hand side of (2) and set:
_ awf0X ox [ ox 6)() («b{jz
J(n)=g” +&P +ep, 2 |- | 4
=9 (ax” ”aXOJ(a%’ FoaxX) \axX )

() The Roman numeral | always refers to Chapter I.
() One can first writd) = § — ¢ (), in whichs will be the fifth variable, and will be an arbitrary
function. One will then pass to (1) upon then settfyg ¢ (s).
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in which y (<%, ..., x*; x0) is areal function of the spatio-temporal variables ..., x*, and
the fifth variablex’ that was introduced in the preceding paragraph. Failpwh. De
Donder {), we write the fundamental equation of the wave meckanf the charged
material point by means of the following variational pihe:

5\/—_2 W, -
X

in which:

s_0_ s d[a) o
o oy ﬂ:(lzl;._,4dx”(6)(ﬂj’ X = o

Upon making (5) more specific, it become:

0%y
Dy=0Oy+2cd” +
==X ox® 0xP

2 a a X 1 a ! X

B _ 1)
(PP S \/ a“; Q‘LaP 0, (6
in which:

SRR

a=1

(\/_;gaﬂ 5)(} 7)

(6) is thefundamental equation of wave mechanics for pok&-iarticles without spim
the five independent variabled, ..., x*, x°. That equation is linear with respect to the
first and second derivatives of the functpn
3. Waves and rays— Waves {):
QK ... x50 =0 (8)
that are compatible with equation (6) must satisé/equation:

o [ 0Q Q[ 9Q Q) _(0QY _
g (6x”+£¢”6x°j(6>?+£¢ﬂ6>8j (6)@} 0 ®)

That is precisely equation (2).
Introduce the function:

H (%, p) =1[0% (Pa + £ P Po) (Ps+ EPs o) — (07, (10)

() See#, pp. 79.
(®) For details, consulg].
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that is obtained by replacirdf2 / x* with the variable®, and replacingQ / x° with the

variablepy in H (x", XOST%Z_SJ as it was defined in (2). The characteristiedirof

equation (9) are defined by the equations:

gﬁl = dapﬁ =dég, #=0,1,2, 3,4, (11)
ap, ax*
with the condition:
H(x, 1) =0; (12)

@is an arbitrary parameter. Equations (11) haeeHamiltonian form; the variablgs,
are canonically associated with tkie Let:

X' = X4(6), (3 (13)
p,=F,©) (b

be a solution to the system (11) and (12). Onkhaie:

H (X(8),P(§) =0
identically iné.
Equations (1%) are the parametric equations ofag in the five-dimensional space
xt, ..., X%, X. Conforming to the theory of characteristic soefa (), that ray will be
found entirely upon a wave surface.

4. Extremals.— In this paragraph, th€ and thep, are no longer forced to be coupled
by the relation (12). Equations (1) have the Hamian form. As is well-known, one
passes to the Lagrangian form by introducing thgraiagian variables:

_oH 4=01,2, .., 4
ap,
Explicitly:
Wo=g®(p,+eD, p)- R,
3 o (pa a Fb) Fb (14)
W= g" (g +e®, R);
conversely:
P, =€ ®,W - W,
0 ~ , 5 14
P, =(Qy —&° P, PHW +£ D W,

() See§), pp. 21.



22 Chapter 1l — Wave mechanics of point particles withourt. spi

The Lagrangian functiob, which is a function of the“ andW,, , is defined by:

OoH .

L=—H+p,— o, (15)
explicitly, when one utilizes (1% it will be:
L (W) =1(gys—& Da®p) —W W+ 2D, W - (WO?2 (18)
By virtue of (15):
L =H. (16)

The Hamiltonian equations (11) are equivalent to the Lagrarequations:

ax* —WH
d6 (17)
oL _d oL _
ox*  dg oW
If:
X'=x(0), (3 } (18)
WE=W'() (b

is a solution of (14, b) then equations (18) will define anextremal line.When the
functions (18a, b) are also such that[x. (8, W.(8)] = 0, the extremal considered will be
aray.

Now let:

=% (9

be the parametric equation of an arbitrary cuggen the space ofd, ..., x%) that passes
through the pointé andB with the coordinates:

X =X (), X =—x'(8).
Set:
dx“(6)
dg '

Xt =

| = jL(x,X)de.

IAB

The integral is taken fror to B alonglag.
The first variatiord is given in full generality by the formula:

B

J= j(aL(X X __d 9L ”j(a X - X30) d€+[a XY 53— wam)+ LJH}
' d6 ox

8 A
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If the curvelas is an extremal then, by (17), the functiofs(8 will satisfy the

equations:
oL(x,x) d (GL(x »j
- | =227 | =0, 19
ox* dg\ ox (19)
In that case:

. B
J = [aLa(?‘;, X (% - x30) + LdH} | (20)

X A

5. Fermat's theorem(}). — Now suppose that the extremal considered4risga ray
Lag . With the notation (13), one will then have:

L (X(8, X(8))=0.

The varied curves that are close to the g will likewise be subject to the
condition:

L (x, x) =0; (21)

hence, upon solving fof:
= gDy X+ [ g, X5 . (21)

Sincel is identically zero for any varied curve, as wadl for the ray, the integrél
will be identically zero when it is taken along asithose curves. Similarly:

d=0.

Now, by virtue of (19) and (20), one will then leav

. B
{Mw} =0 (22)
ox* A

when one takes into account thafx, x) is a homogeneous function (of second degree)
in X°, X, ..., X*. (21) is a relation between thé{), and the &")s .

We remark that since the extremal considered mya if the pointA is taken
arbitrarily then the poinB will no longer be arbitrary. Furthermore, one gare four of
the five coordinates of the poiBta priori. (That will result easily from the remark that
was made at the end oB§ The interesting case is then one in which the space-time
coordinatessg (a=1, ..., 4) are taken arbitrarily.

() The proof of Fermat's theorem in the most genera gess done by Th. De Donder (s&a][or
[5b], pp. 178-183.) Here, we shall follow the method that emaployed by Th. De Donder.
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The parametric equations of the r8ys considered are assumed to be written as in

(13a). The coordinates of the extremitidasandB are obtained by giving the valués
and & to the parametefl.
In the space-time® = 0, the rayLas corresponds to the curve whose parametric

equations are:
x7=X7(6.

Finally, consider the case in which the coordinates= x7, X3 = X3, are fixed; i.e..
(d(”)A:(d(")BZO, a=1, ..., 4

(21) will then become:

. B

{&.’OX)M} = 0. (23)
oX

A

However L does not depend upahexplicitly; by virtue of (19), one will then have:

i(aL(x,X)j:O . oL(X, X)) _ (oL(X, X)
dol ox ’ x° )L oax® )

Upon taking that property into account, (23) gilte:

()a = ()s = 0;
hence:
S| %°dé =o. (24)
IAB

Due to (21), one will have:

ijde = '[(é‘CDa)'(”L/ Gy X X) B

for both the ray and the varied path.
The variational equation (24) can then be written:

5j(gq>ax”iﬂ/gaﬂx’>€)d9:o. (22)

CAB

The integral whose variation we take does not igpgon@ explicitly; it has the
parametric form. In addition, it does not depeponu’. If | denotes any of the varied
curves in the five-dimensional space, a@ndenotes the projection bbn space-time then
we will have:

J.(SCDH)'(”L/ Gy X' ¥) B = J.(SCDH)'(”L/ Gy X ¥) B
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= [(e®,dx" +./ g, X df).
A
Thanks to those relations, (24vill become:

s | (e®,dX +,[ g, d¥ df)=0. (25)

Apg

If one takes the + sign then one will recover ¢igua[l, (77)] for the motion of a
charged, massive point with a charge ofe)(4in a gravitational field and an
electromagnetic field. With the — sign, one wiitghe equation of motion of a charge
(—e) that is placed in a gravitational field and aeclomagnetic field.

One can formulate that property in the followingmmer: The projections onto space-
time (C = 0) of the bicharacteristic lines — or rays -t th@ associated with the second-
order partial differential equation (6) are thgdctories of charged material points with
charges + or —e of the classical theory.

6. Fundamental equations in space-time- Let¥' and¥" be two real functions of

X%, X%, ..., x*that are each required to satisfy the (real) egu#6); One will then have:

DW)=0 and D(W")=0.
Those two equations can be replaced with the ssiagliivalent equation:

DWW =0, (26)
in which:

W=y iy (i=-1).

The coefficients of (26) do not depend up8n We then seek the solutions of the
form:

c
MyC 0

WO, )=l e

in whichh is an (undetermined) constant that has the dirmagasf action. The function
W thus-defined will be a solution of (26)¢f (X', ..., x") satisfies the equation:

dime 0y (2m\ (€& .. _2me 1 30°\[-g _
Oy hch ax"{hj(écw” moczjw h o/ 9% @ =0. (27)

That is the relativistic equation of wave mechanit space-time. It includes a new
fundamental constait Schrodinger has shown thamust be identified with Planck’s
constant.
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Remark. —

a) When one takes into account the complementary Maxgehtion:

0\ -g ®” o

ox“
equation (27) will become:
dime 00 (2m) /(€ )
Oy ———=o° + — ' -ny & =0. 2
whcaxa[hj[g =M |y (27

b) In order to eliminate®, one can likewise set:

—2i1'rm:x0
h

W X0 =g, . xB) e

ThisW will be a solution of (26) if the complex functigh(x’, ..., X*) satisfies:

4 dime , 0f (2inj2 € o 22,
Og¢ hCCD 6x"+ n éCDCDa g ¢ |¢ =0, (28)
when one takes the complementary Maxwell equatibm account. One passes from
(27) to (28) by changing into —i in the coefficients of (2}, or also by changing into

—e (andy into ¢). That remark should be compared with the sthdy wvas made in 88

3 and4. Indeed, we have seen that the rays that areilbledan five-dimensional space
correspond in space-time to the trajectories ofenmt points of charge & or —e.
Similarly, here, when the fundamental equation {&&yritten in five-dimensional space,
it will correspond to the two equations (27) an8)(ih space-time, and one passes from
(27) to (28) by changing into —e. Hence, ify refers to the particlarp, €) theng will
refer to the particlen(p, — €).

7. Other forms of the variational principle. —

a) In the space of’, X', ..., x*). — Instead of taking the (real) fordn(x) to be the
form that serves as the basis for the variatiomaicjple (8 2), one can take the (real)
function:

K

iaﬂ(a_”’+g a_‘“j M L Y| Lovaov
m o (ox T a@ )\ aX TP aR) moRoR

One will immediately verify that:
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N-OK__ 1 5o and N-OK__ 1y
M 2m, M 2m,

The equations:

5’/_9K—0 5’/_9K—0
N ’ "
are then equivalent to (26) and its conjugate.

27 R
b) In the space-timé®, X', ..., X). — WhenW has the form¥ = geh , the
functionK will become:

1 (ow 2ne oy" 2mie . 277imocj2 .
K=—g¥% Z-"0o o) :
m)g (6)(’ hc ”wj(a% "The A j{ h W

Set:

S P LT (R L7 M :
L_ng (ZITiaX” Cq)”wj( 2771 95 Cq)ﬂl/l j"‘”bczl/’w- (29)

Upon settingy, o = 0/ X%, and similarlyy’, =0y I x*:

s E 27 c
hence:
4rm, 0\ -g L
h? "
4riie 2mi [ € ome 1 0-go°
=OY -———0%Y +| — | | S PO —-nf & |- :
v 5] [Goe mme - R 2008
It will then result that the equation:
J-glL
5—8:0 (30)
oy

is identical to (27). Similarly, the equation:
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oJ-gL
OoNT9L_ 0 (30)
oy

is identical to the conjugate of (27). The fundamental tmug27) of wave mechanics
for a charged, massive particle of magssand charger e, will then be derived from the

variational principle:
S[[[[V=9 Lax...a¢ =0,

8. Th. De Donder’'s correspondence principle— In the beginning of the first
paragraph, we briefly recalled how L. de Broglie was tedobk for a new mechanics
that was based upon an equation that is analogous tturtdamental (second-order
partial differential) equation of Fresnel's physicalicgt The presentation above showed
that it is only in the five-dimensional space that oae speak in full generality of a real
wave functiony (0, X', ..., x*) in wave mechanics.

Now, as of today, there seems to be no physical meamitiwt fifth variabled ; it
plays only the role of an auxiliary parameter that ba eliminated in the final analysis.
The equation that is actually interesting is therefuoethe equation that is written in
five-dimensional space, but (27). In general, that equé2idnhas complex coefficients,
and the wave functiog (', ..., X*) will generally be complex. It is that complex wave
function ¢ that represents the state of the particle studied iredjpae. In other words,
all of the physical properties of the particle will bgeessed in terms af .

The theory of gravitational and electromagnetic fiekladies certain physical
guantities whose very general expressions were givethenfirst chapter. The
correspondence principleessentially consists of making any physical quantity of
Einstein’s theory correspond to an expression as aifunaf ¢ and ¢ .

The electric current-density? and the energy-impulse tensof? are two particularly

important quantities. In the theory of gravitationaledectromagnetic fields, one hds [

(6):

. OM
Top= —590[, : (31)
and by virtue ofl[, (29), (51)] and Maxwell's equations:
Cc% = _35_/\/{ (32)
200,

Following Th. De Donder, we define a vectfrand a tenso¥,z in wave mechanics
in a formally-identical manner. Therefore, we Sgtdefinition:

Tap=—"—5 (33)
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C9= _Ei (34)
200

in which £ is the Lagrangian function (29), multiplied Q}(/_—g :

The analogy between (31), (32), (33), and (34kuiormal. Indeed, in (31), (32),
0ap and @, represent the total gravitational field and thealte@lectromagnetic field,

respectively. 7,z andC? define the total energy-impulse tensor and thal tatrrent, resp.
On the contraryg,z and®, represent the external fields in which the pagtabnsidered
has been placed, whil&,; and C? define an “energy-impulse tensor” and a “current,”

respectively, that relate to the particle undedgfisince they are expressed with the aid
of the wave functiony.
Here are the explicit values of the left-hand sidg(33) and (34):

The electric current(*, C 2, C ) and the charge density” are:

a \/_gg af D(_h __e j }
C _—Zmo Cg 7] Zﬂiw’ﬂ C(Dﬁt/l +conj.|. (33)

Upon remarking that:

5/~s _o/5_-[7g

og”  oag” 2 Ju

one will obtain the expression for the massive sytnimitensor:

_g O h e j( h O e Dj - gaﬂ
Top= -0 -—yYl - J+=EL. 4
= 7/ (2 iw,a c W/ iw,ﬂ " AU |+conj. |+ 5 L (34)

Finally, by correspondence, we write down the Mabkwquations [cf.|, (30)]:

[ HaP
Oy-gH” _ e (35)
ox”

in which theC” are given by (33. The arc over the symbols signifies the diffeen

between the fields that are calculated by startimdp the equations above and the
external fieldsg.z , ®,, which are givera priori and figure in the right-hand sides of
(35).

One can study the gravitational problems in anogmaus manner by starting from the
tensorT,s that is given by (34. Conforming to [, (12)], one will be led to write the
equations:

1(a+bQ0) g, + bG, =Taps. (36)
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For example, consider the case in whadh zero. Set:
gaﬂ: B 5a,8+ Vap,

in which d,5= 0 whena # §, & = + 1,4 = — ¢, and assume that the products of he
Em, i2y44, taken pair-wise, are negligible compared to 1. Onevknihat the left-
c c

hand sides of (36) will then simplify considerably. Baling Einstein’s method', one
will have:

b~ _ - b
_EC gaﬂ + bGaﬂ = _ED(yaﬂ _% aﬂy) )
in which:
62
V=D 0o and 0= 25"”W'
Equations (35) become:
2
D(yaﬂ _%50[31/) == BTUﬂ’

which are equations that one solves by the thebigtarded potentials.
By reason of the value &f= — 4.8 x 10" cm-g / §, the fieldsy,s that one obtains
have hardly attracted the attention of physicispsto now.

DIMENSIONS. — Denote the dimension of the quantity O by {0}.
To fix ideas, we takex} = L = length, '} = T =time; hence, §} = L* T2
We will then have:

{L} = energyx LT x {¢ 4},
{CY={ed{y ¢
{CY={e{ ¢ @

{T,} =energyx {¢ ¢}, etc.

It will result from these formulas and the physisgnificance of fgl/* Y} that it has
the dimensions of the inverse of a volume.

9. Conservation of electricity.—

THEOREM. - By virtue of the fundamental equation@0) and (30):

*) SeeTl.
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o0C? _
ox“
Proof:
Calculate:
oL oL
X= a =l{)—.
v oY" waw

One will first get:

0 oL oL oL oL oL oL
X=- pv (lﬂm Y jﬂﬂm —Y—+y, Y. :

oy oy oy~ Toyw oy, oy,
However:
o_[,0 0L 0L
C'{ o wawj
In addition:
w2l wyp 28 2y Ly 08

oy oy, oy oy,

sinceC is a bilinear function iy, ¢, , andy ™, ¢ . It will then result that:

c aC”

T oo

31

(37)

(38)

(37) will result immediately from (38), sinc€is obviously zero, by virtue of equations

(30) and (30.

That theorem succeeds in justifying the definition (34hefelectric current.

10. Law of impulse and energy— By virtue of the fundamental equations (30) and

(30), one will have:

B —
T+ HoC” =0,

in which , Bis the symbol of the covariant derivative with respgec”.

(39)

Proof. — We apply the generalized Hilbert identiti®sto the multiplier£. That will

immediately give:

() Seet.a]andT.h].
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-277 +ZCﬂHa+ZCﬂCDa+ Ly + wD—o
B B B oY B 54[/ B

hence, one will have the theorem thanks to (37).

Remark. — As in the case of electric current, the property (88teseds in justifying
the definition (33) of the energy-impulse tensor.

11. Approximations. —

a) We place ourselves in the case where the gravitatiehd is that of Minkowski;
we will then have:

0is=0; Oas = ¢
Setx* =t and:
27
WO R ) =08 % e
Suppose that:
h o e
_, sy ¢)) , eCDi
271 ot g e J

are very small of first order with respectrg ¢ & Equation (27 will then give the
approximate equation:

4rim, 08 4Amed 65 8

A
" Th at hc,l ax K

—myeldé=0. (40)

With the same approximation, the componehtsindC * = p of the electric current
and charge density will become:

Cl= iigiigﬂ(_hi——%b jf + conj C'=p=eé'& (41)
2m <7 " \2miox ¢ X |

Similarly:
T4 = i%gii {ED(LL_SCDJQ(’LCO”J}: Mo %I,
(42)
— Og 41 DL% i 0 i| 20 Q(
= mé E+2(5 o ot +conj.j 5E+ ZCD (5 p——— conjj

The link betwee ¥ andC' is indeed consistent with their physical significe.
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b) Another particularly-interesting case is that of:

CDi = CD4 = 0,
as well as:
O = 0;

Qus = & (1+%j .

The @92 can then be written:

however:

(92 = - (XY = (D - ()2 + ¢ (1+%j (dv>.

If 44 does not depend upon time then one can obtaistatienary solutions:

w33, 3, 1) =a (X, X, X°) e%

The complex functiom must satisfy:

3 1< 0g,, 0a 4772 2 _ _
|kz(ax) zax' 6>é rF n¢ &-ng éy,)a=0,

or, upon setting:
E=£+myc,

Vu | 0%a Oy, 0a 4 (€ _
(1 j;(axj) "202 0% ox ﬁ(é*z‘g”’o ”ﬁ"Mja o

That equation is rigoroud)( Neglect the terms in that equation that inclodim the
denominator. One will then have the approximateaéqn:

d’a 8772m0 yMJ B
Yoyt ( Y A

The approximation that we just made can be caled'Newtonian” approximation.
In effect, it consists of considerimg ~ co

() One will obviously arrive at the same equation notenavhat value the electromagnetic field has
when the particle under study has an electric chargerof
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12. Equivalence of the variational principle and the operator pinciple. — In
paragraphs2 and 5, we showed how one can pass from the classicativista
mechanics of a charged material point to the equationgagé mechanics thanks to a
variational principle. One can obtain the fundameatplations of wave mechanics in
space-time by the following symbolic process:

The Hamiltonian function of the relativistic mechanmk the point (h, € was
defined by [, (83)] in Chaptet, namely:

> _1,
m)czH=§gﬂ(m)cg,—§¢aj(na cp——sdaﬂj. (43)

In addition, one has the conditidn (84)]:

H=2lu"u,=13. (44)
Introduceoperatorsinto (43) by replacing:
. h
My C Po with —(). a, (45)
27

in which the symbol (), denotes the covariant derivative of the functioat is placed
inside of the parentheses with respect®toH will then be replaced with the operator:

= 1 1' ap L —_e _h —_e
HOP-_ n_ﬁ C2 29 |:27T|( ),a CCDH}I:ZHT( ),ﬂ chﬂ:li (46)

and the relation (44) will be replaced by the syhabequation:
Hop. = £. (47)

Equation (27) can then be written:

Hop.f = 3¢ . (48)
Indeed, one will have:
= 2] gm0y, -3y L Eora
M ¢ Hon =2 2 @ e Ye T pgic W g2 e

if one takes into account that:
g% 5=0. (49)
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The equation that is conjugate to (27) is obtained in an @mado manner by
replacingp, with the operator % (. 2 in (47). That equation will also be obtained by

starting from the Hamiltonian:

which relates to a particle of mass and charge €, and replacingn, ¢ p, with % 0.,

as in the case of a particle with charge +

Remark. —

a) One can invert the order of factors in (46) bstue of (49). That inversion will
not be permitted when one does not utilize the riamh method and covariant

derivatives.

b) We place ourselves in a Minkowski field and takesystem of tri-rectangular
coordinates. We will then have:

(d9)? = — (dx)? = (d¥)? = (dx°) + ¢ (db). (50)

Due to the physical significance ab ¢ ps, (45) will express the idea that the
components< my ¢ p) of the (spatial) impulse correspond to operafrs

_h o (51)
271 ox’
and that the energy, ¢ pu corresponds to the operator:
h o
—_— 52
271 ot (52)

However, the (spatial) velocity will correspondthe operator:

u I’TbCFf—ECDj
-~ =___Cc (53)
u® Cp4_§¢4

™ C

() Very often, one can take those operators to havetttee sign.
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13. Operators and mean values- At the beginning in wave mechanics, one finds
out that the new mechanics is characterized by the tfet it makes an operator
correspond to each physical quantity in the classicahargcs of a material point. Here,
we shall confine ourselves to establishing a link betwd®set operators and the
correspondence that was considered in paragr8ptpf. 37).

That link is remarkably simple for the current. Indd®dyirtue of (45) andl| (82)]
the velocityc u, will correspond to the operator:

ct,= =" (), -%o,. (54)
m,2m 7 cC

The components of the electric current will beoagged with the operatoescT, .

On the other hand, if one uses the operator ablee the current (38 can be
written:

C%= 1y ecty + conj. (55)

Conforming to the usual terminology of wave medtsnthe four component¥’ of

the current that are defined by (B&e then be the mean-value densities of the operat
ecu’.
For the energy-impulse tensor, Einstein’s theeags to the operator:

(Tedop= M, C G, Ty, (56)
and thus, the mean-value densities:
YmCh Gy, (57)

These densities are not identical to the comp@nehthe operator (34 However,
the calculation shows that by virtue of the fundatakequations, those two tensors (57)
and (34) differ only by terms of the form:

X,

In the non-relativistic theory, formulas (41) shahat the components ' of the
velocity (in rectangular Cartesian coordinatesyespond to the operators:

1 h 0 e

vl =—— —Cmi

m 2mox ¢

The difficulty (53) is avoided here, since onel\wdve:
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L(Li_§¢j~cz
m\2miot ¢ * ’

up to terms that are very small of first order.

37



CHAPTER Il

WAVE MECHANICS OF THE ELECTRON WITH SPIN.
MINKOWSKI FIELD.

1. Notations.— The position of a point in space will be determined atiastant by
its right-handed rectangular Cartesian coordingitesx, X’ =y, x* =z It is convenient to
takex® = ct, wheret is time. The square of the elementary interval thiéh be:

(d9% =D &, (dx)?, a=1, ..., 4, (1)

in which:
s=6=&=-1, &=+1. (2)

The covariant component, and the contravariant ond¥’ of the electromagnetic
potential are coupled by the relations:

D, =g, P
Recall that:
op. 0P
Hop= —2-—~. 3
P o S
With vectorial notation in space:
o=V, =V, (4)

in which V), are the components of the vector poterabndV is the scalar potential.
Finally:
Ha=H,, Ha=H, (, k | = even permutation of 1, 2, 3),

in which H ; and H; represent the components of the electric and ntigfield,
respectively. For ease of notation, we write:

h 9
271 ox°

Pa (5)

The symbolp, will no longer denote the classical impulse, ashm preceding chapter,
but theimpulse operatot®). We also write:

PaEpa_g cDa- (6)

() In many works, this operator is taken with the minga.si
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Recall thate denotes the charge of the electron, taken withgts, shuse=-|e|.

2. Introduction. — Equationsl|, (27)] are relativistic; however, they do not take the
spin of the electron into account. One knows hova®was led to replace the second-
order equationl[, (27)] by the system of four first-order equations inftha functions

U O, X, o ¢ LX)
{P”iajpj—%%(?jwﬁ:O, LB=1, .., 4 (7)

Thea;, a, are the Dirac matrices)(

1 i A -1
0'1:..1.,0'2:..—i.,0'3:---_1,0'4:-_1--.(8)

L L S o
In order to make the proper magnetic moment of thérele@appear explicitly, Dirac
left-multiplied (7) symbolically by the operator:

P->aP +amc (9)
]

He then obtained the second-order equations:

D & (P)-mpd+2ma,> ¥ H,, aB=1 ..4, (10)
a aB

in which them® are the Hermitian operators:

:Ei_eiaﬁa/‘h mk|:+él_eia/ka/|a’4, j,k,|:l,2,3. (11)
22irmyc 22irmyc

m4

The symbolz indicates a summation over the combinations ohtlrebers 1, ..., 4
aB
without repetitions. The term in brackets in (i)he usual Schrédinger operator, but a
new operator has been added to it, namelyy & m* Hap).
We point out another process that will lead tgsiesn that is equivalent to (11) when
we start from (7). That process does not utiliee iew operator (9). We infer from (7)
that:

() See §]. Very often, one can take matrices that are expdessth the aid of (8) by, — s, a3, —
ay, respectively, instead of thege
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a .
Wp=—=Q aP +P,.
mct" ’
Upon substituting this value @fzin (7), one will get:
3 . a 3
[me+ﬁ}i{zm#+#%%=m%cw,
=1 My C\ k=1

or, upon performing the calculations:

{;; A2 (P =M+ 3 H,ﬂ}= 0. (12)

These equations are equivalent to (10). OneyesBdws (8], pp. 141) that in the
non-relativistic approximation thdermitianterm:

- Y mH,, (13)
ap

can be considered to correspond to a supplemeptdaential energy that is due to the
action of the external electromagnetic field on #lectromagnetic moment of the
electron, which is represented by the tensor-openatt’.

Remark. — We introduce the notations:
uw=-m, W=-m W=-m u=L1 (14)

Here again, the&” will denote operators from now on. Later on, vmalssee that
they correspond to the space-time velocity (divitbget). The system (7) will then be
written:

(Pau”) y=asmoc ¢, (15)

if the summation is implied and one writgor ¢4, b, s, Y .
On the other hand, with the present notations, Shbrodinger equation will be
written:

P
[Pa ”jw=mocw- (16)
m, C
One will see the difference between the symbailacess that led to the Schrddinger
equation and the one that yields the Dirac systgranucomparing (15) to (16).
Classically (hence, in ordinary numbers), one haveP, u” =P, P/ myc. However,

in Dirac’s theory, one neatly distinguishes betwéandynamicaloperatorP, and the
kinematicalquantityu®. The operator®, are defined by (6), while the operatafsare
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not equal toP? / mg ¢, but rather, they are essentially different opesataamely, (14).
Here, we note that, conforming to the classical dedimibf the velocity in space, one
will have:

vi=c—="=—=cU (17)

for the operators that correspond to that veloditg three components of the spatial
velocity operator will then be equal to the threenponentsu®, ci?, cu® of the operator

(14). In addition, (15) will show that the quanptthat takes the form of the rest mass of
the electron corresponds to the operatpm, . Once more, energy corresponds to the

operatori_i. However, equation (7), namely:
27 ot

h oy
Hy=—-2% 13
v 27 ot (13)
in which:
H=-Yca,P' +ed*+amdc’ (18)

J

expresses the equivalence of the operditavith ZL% for any ¢ that represents the
7ai

state of an electron. The operatdris referred to by the name of the “Hamiltonian
operator.”

3. Second-order Dirac equation— Conforming to (12), we will use that name to
refer to the equation:

oy =0, (18)
with

OE%[Zea(P”)Z—mfc%zz ¥ H, . (19)
a a p

Any solution of the system (7) will satisfy (18Jhe converse is not true: There exist
solutions to (18) that do not satisfy (7). We EBhbw that the functiokV can represent
either the state of an electron or the state ofositqon of positive energy without
appealing to the “hole hypothesis.”

Theorem. —

a) The system of four second-order equations (18qigivalent to the system of
eight first-order equations:
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CaP +PW=amg, (3

. 20
CaP +P)y=a,m&. (Y )

In order to see that, it is sufficient to replace thin (20b) with its value in (2G);
one will then obtain the system (18).

b) Set:
w=1W+y, =W -x. (21)

The system (20) is equivalent to the following one:
(P*+> a,P' ~aamyc) ¢=0, (22)
i

WHZ%W+m%quQ (23)

Any solution of (18) will then have the form:
W=y-g" (24)

c¢) Equations (22) are the first-order Dirac equations. Aaltion ¢ will then
represent the state of the electron.

On the other hand, let, be the conjugate functions #j,. By virtue of (23), those
@ will satisfy the system:

(¢ egor)eet(rego)ec( o+ g s=o. 9

One passes from (22) to (25) by changing the sign of thegehand taking the
conjugate matricesr” in (25). The system (25) is a Dirac system for thetpsi

because the change of matricgs— a; is not essential. Any solutiog will then
represent the state of a positron.

Remark. — If the ¢ are solutions to (22) then the functions:
Gy =i asyp (26)

will be solutions to (23), as one verifies immediateyonversely, if the¢; satisfy (23)
then the functions:
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Yp= i ax as ¢; (28)

will satisfy (22). In other words, any solution to (22)lworrespond to a solution of (23)
by means of (26), and conversely.

4. Variational principles. — Introduce the real function:
L=- g(w* OW + conj.). 27)

In (27), we have omitted the indicesin the functions¥, W*, and the summations over
those indices, as we shall often do. Set:

0 =203 g (P2 -nE ] (28)
m =z
One will verify that:
W OW=s Z{(ijm)ﬂ(P"W)— nf W diwsy g(qﬁﬂ FWJH; (29)
a m, m a m
hence:
- Cydw=- Cyoryrr I
2 2 ~ Ox“
in which:
K= —Ei_ wedipay ||+ con.
2 2m m,
Hence:
£:—CWDOW—Z(ZCH . (a)
“ axic ) (30)
=-cWOoW '+ , (b
; ox” (®)
and also:

£=-cl(PY) s (pwy-nfewrLey |- @off Hw-2 [qﬂﬂwj, 31
c| ( )mo( )- n§ m Hs > p b na (31)

in which the summation is implied.
Thanks to those formulas, and making use of taetity:
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o (oK”) _
A A )
W, ox?

&D:—cowa and %z—c(f\l—'g. (32)

a a

we will get:

It will then result that equations (18) are the Lagraegeations of the variational

principle:
5mjcdx1 dx dx dx = 0. (33)

Remark. — The first-order Dirac equation is the Lagrange equdtiothe variational
principle:

S[[[[41¢ (Pau”—asmoc) @+ conj]dx' di dx dx* = 0; (34)
similarly, equation (25) is the Lagrange equation for:
5JJJ J 11¢ (-PY(UY —asmoc) ¢ + conj.]dx" dxX dx’ dX' = 0. (32)
5. The electric current-density vector.— Since equations (18) are deduced from a

variational principle, we can once more define an stedurrent-density, as in the
preceding chaptetl], (34)], by the variational derivatives:

cr=-2 9L (35)
2 0
That current is the sum of two terms:
c = —Ei[—f(wﬂéwmonj.)} (36)
200, 2
and
s_ 10
C rEE[_CmeBW Hy, |- (37)
Explicitly:
co = f[wﬂﬂ X0 +conj.j , (36)
2 m,
cs” = icwﬂm"ﬂ Wy, (37
oxP

and
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7 = g[uﬂ% P”\P+conj.j +aiﬂcwmnf’ﬂw. (38)
X

(36) is the analogue of the current in Schrédinger’smh@id, (33)]. The term (37
is new. Now, in Maxwell's theory, a polarized mediwhose polarization tensor is

M will give rise to a curredM% [ 3x°. The tensor:
MP=cw mPy,
will then be, by definition, the “mean-value densifytloe electromagnetic polarization”

tensor. That interpretation conforms to the rexfli§2. That expression for the current
will transform with the aid of (20) and (21); one wilMea

C'=-ceaw-gad’), =123, @) } (39)

C* =ce( y - ¢9"). (b

In order to see that (39) is indeed equal to (38), the eghplay is to remark that,
thanks to (21), (39) can be written:

¢l ==Z(Waytx°a W)
40
4_C€ 0 0 (40)
C —E(LP X+ xW.

In order to obtain (38), it will suffice to replageand ¥* in (40) with their values that
one infers from (39).
The electric current-density is then composed of twtspddne of them:

Cl=-ceyay <C=ceyy (41)
is a current-density of negative electrons. The ather

‘Cl=ced a ¢, C'=-ceg o (41)
is a current-density of positive electrons. With tbéations of (14), those formulas will
become:

C'=eyc Uy, C=-ey(cu) y. (42)

We also point out that the tensor-operabf can be written:
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22mcm

mf=1h ed ap

Remark. — Thanks to the property (26), one can also défimevectors:

Al=-ceyimamg, .. A=ceyimmasd, (43)
and
D=-cedimazyy, ..., D'=cediamasif. (43)

Theorem.— One has:
0Cc”
ox“?

0, (44)

identically, sinceM = - A% On the other hand, as in Schrodinger’s thebry§7),
one shows that:
ace
ox”

0, (45)

by virtue of equations (18). Finally, one willéwise have:

ocC”
=0, 46
PV (46)
by virtue of equations (22), and similarly:
g Ca =0, 47)
ox

by virtue of (23).
There is then conservation of the negative electrrent and conservation of the
positive electron current.

6. — The energy-impulse tensor— As in Schrodinger’s theory, the tensbf? will
be such that:
o7

o =+C*Hg,. (48)

The first three terms in the right-hand side &)(#%epresent the Lorentz force, up to a
factor ofc ; recall that:

cl=¢y, C*=pc
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The present theory satisfies only the principle of ispeelativity. It will therefore
not be possible to define the energy-impulse tenser Iygia variational derivative, as in
[, (33)]. Inthe case of electric current, we havendbat one of the terms in the current
of Dirac’s theory corresponds to the Schrédinger ctrr&ve can likewise define a term
in the energy-impulse tensor here that correspondbletdsthrédinger energy-impulse

tensor. It is easy to introduce directly a terB4F that will satisfy the condition (48).

The form (40) of the current points to a manner of @eding for us. Consider the
tensor-operator:
t¥ =P (49)
and form the asymmetric tensor:

TP=1(W PP y+x PIULW). (50)
Theorem.— By virtue of equations (20), one has:

0
oxP

%[W*P”uﬂ)(+)(*P”uBW]—CﬁH/;. (51)
Proof. — Thanks to (20):
X WY, =X aamy.+tex us®W ,+exy g, ¥,
~Xa W) W =-x,amc X —ex . u; oY,
W (U)W =W oamCW —eW U 0y

W usplra =V amcW  reW us Py teW P dg, x

Add corresponding sides of these four relations and get:

a * * * *
67()( Wp,W +W i pay)=e(y Pdz,W +WUFdg40) .
The proof is completed by adding the term:
-e ()(* U'BCDH"HLIJ + W*U'Bcba”gX)
to both sides of the latter relation.

Remarks. —

a) The tensofl “’is defined by the conditions (48) only up to terms of thenfaf””
such that:
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oX P
ox”

There then exist other tensors than (50) that sad$fy (
In particular, theeal tensor:

T =1(T % + conj.) (51)

obviously satisfies the condition (48), since the rigéd side of (48) is real; one will
then have:

Ty s
— = Ha. (52)

It is interesting to decompose the asymmetric te(Ehrinto its symmetric part:

(s)
T =3T3 + 1) (53)

and its antisymmetric part:
(a)
aﬂ_ af _ 7 Ba
2Ty ~Tey) - (54)

When one letsZ, denote a summation that is performed over indieékat are
different froma and g, one will easily find that:

(77 - T(r[?”) =1W U am W+ Y u  aamo )
LW U PP x+ X U EWP,W).
Hence, upon taking into account the Hermiticity oftericesu” anday :

(a) . .
27 #=7% izl%cv v xy+x i oY) (azBz)). (55)
JT OX

The Hermitian operator:
h. 4
Supy=—i U P 56
apy A (56)

appears in the right-hand side, along with the completetisymmetric tensor:

Sy =% (¥ Sap X + X Sap,W); (58)
explicitly:

h . h . h . h .
Sio3=— 101 O A3, S124=—101 Ao, Du=——I10203, SuUuUu=——10301.
4 4 4 4
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One can define a vector whose covariant componests ar
N]_ = 8234, N2 = §l4, N3 = 8124, N4 =- 8123 (57)

with the aid of the four componerﬁ”yof the completely-antisymmetric tensor (66
The relations (55) are then written:

2T o= %—aNﬁ ,
oxP  ox?

(58)

in which aBaf forms an even permutation of the numbers 1, 2, 3t #illlthen result
that:

hence:

= C'B Hﬁa . (59)

The symmetric tensor (53) also satisfies the comd{d®) then.
Finally, like the current, the tens®r*” decomposes into two terms:

TP=y P Py-pP Pg.

We then set:
“Tos= 4 Pa w—wﬂ(i ) _€4 ju W (60)
% a s 2mox” ¢ )P
. . h 0 e
“Tws=—¢ (Pyu = ¢"| — +=0_ |ulg. 61
Bp=—@ (Paup ¢ ¢(2maxacajﬂ¢ (61)
One has:
0 T% 0*T%*
=H?— and =HA "¢, 62
6xﬂ B 6xﬂ B ( )
The tensor:
Th+TP (63)

will likewise satisfy the conditions (48); i.e., ®will have:

O(T¥+'T"
LT g, (64)

Remarks. — The presentation in this chapter shows thatmérge mechanics that is
based upon the second-order Dirac equations catestionly a juxtaposition of the
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theories of the electron and the positron. It willrpie one to pass to states of negative
kinetic energy as long as one confines oneself to dmystudy of non-interacting
electrons and positrons. However, some important phena, such as materialization
and dematerialization, cannot be explained by it. Indbgdvirtue of the continuity
equations, one will have both conservation of the edlacumber and conservation of
the positron number.

Moreover, one knows that in order to study phenomena asithe appearance and
disappearance of electron-positron pairs, one willedetd quantize the wave functions
(). Thanks to second quantization, one can obtained tleediessults, but only by
introducing some interaction terms that include the idleas(43) and (43 into the
expression for the for the energy artificially.

7. Action of a light wave upon an electron- Let:

3
H=Yca [0 +8 V, | +eV—aymc? 65
,Z:;‘ ( 2m ox! ¢ Xj ) (69)

denote the Dirac Hamiltonian operator, in whigh are the components of the magnetic

potential, anaV is the electric potential of theonluminous Maxwell field (which we
assume to be time-independent) in which the eladg@laced. Letf(x, y, ) denote a

complete system of wave functions such that:
Hf = E" f. (66)

In order to simplify matters, we suppose that pheper values of (66) are discrete
and non-degenerate; the general case will introdaége complications in the notations.

The functionsf are normalized and orthogonal:

J'Hg(f”)mf”dxdydz: 1; mg (f"Yf'dxdydz=0 forn' #n. (67)

The integration extendasser the entire space of the variables x, yThe function:

LmE”

w=tre

represents the state of an electron with en&fgyThe state of an electron that is placed
in the fieldV, V in the absence of a light field will be definedairgeneral fashion by the
sum or series:

W=y aw,, n=1,2, ..., (68)

() See®]and[1L0].
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in which thea, are constants. If one normalizgghen one will have:

dlaf =1 (69)

One then knows that, in the convenient languagbeo€alculus of probabilitie$a, f
represents the probability for the electron to denfl in the state of enerdy. In the
absence of perturbations, thels® f will remain invariant in the course of time. A
Maxwellian light wave will be defined by the elemtnagnetic potential3®(x, v, z, t),

VO(x, y, z t). Physically, the light wave will have the effedtprovoking “transitions” in
the state of the electron that will be represeritgd(68) at a well-defined instant.
Mathematically, those transitions will be expresdgdthe idea that the, vary in the
course of time. The study of those transitionstbensists in the study of the way that
thea, can vary in the course of time under the actioa bdght wave. In other words, the
presence of the light field will transform (68)ant

W= Zan(t)w; ; (70)

and the problem will come down to that of findirgetequations that tha,(t) must
satisfy.

With the notations that were introduced above,vdugational principle (34) will be
written:

5”]%{405[H +1 —Zlni%}zwconj} dx dy dz dt (71)

in which| denotes the interaction factor between the elacmal the light wave:

3
| se[ZaJVX‘j” +v<'>j. (72)
j=1

That variational principle provides the equatiotigmat the a,(t) must satisfy.
Conforming to (67), the domain of integration thalates to the, y, z is all of the space

£. The variational principle (71) must then be iipteted in the following manner:
One varies thay, ¢ only by the intermediary of thay(t), a (t). The variational
equation(71) will then become:
5[ Ldt=0, (73)
in which:
L= J'chdxdydz, (74)
with
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h o .
L= %wD[H +1 —Z—ME} con;.

If one takes (66) and (67) into account then:

_ h d .
L= %{Zn:;aﬁlm a, —Zn: aEZ_Md_?}F con;.

in which one has set:

I = []], @)1 9" dxdydz.

ThelLagrangeequations for (73) are:

oL _d oc _
o3, dtog
and the conjugate equations:
oL _dor _
da, dtag
with
_ da, - _ da
a, = ot and &, = ot

Explicitly, (78) and (79) are written:

h .
2_77ian: ;Ln,n’ arf’

_L-D: O
o7 o ;dw Lo

(75)

(76)

(77)

(78)

(79)

(78)

(79)

Those equations are well-known. Here, we havevehtmow one can obtain them by

starting from the general variational principle X34

As one knows, equations (78) are not sufficiefihey do not take into account the
reaction of the electron on the field in whichstembedded (seé][ § 6). Notably, they
do not explain spontaneous emission. In ordeikeaise obtain that phenomenon, one
must appeal to second quantization. Now, it sedatssecond quantization must appear
only when one deals with ensemblesnotorpusclesr{ > 1), since the commutation
relations that are introduced into that theorylzased upon statistical consideratioBs (
The phenomenon of spontaneous emission will stillirbe in the absence of Maxwellian
photons, so one must be able to find an explanaobonthat phenomenon without

() See, for example2f], pp. 229 et seq.



§ 7. — Action of a light wave upon an electron. 53

utilizing second quantization in a theory of elementatgraction phenomena between a
photon and an electron.

In Chapter VII, we will see that the wave mechanitshe photon permits one to
envision those problems in a satisfactory fashion.

Remarks. —
a) Equations (78 79) can take the Hamiltonian form. Indeed, set:

h

N 80
d o o (80)

and introduce the Hamiltonian function:

K= ZZaEInY”aH. (81)

One easily verifies that equations '(789) are nothing but:

dg, _ oK
dt  ad’
- (82)
dd”:—a_lC
dt  ad

b) The presentation in this paragraph constituted an apphcaf the theory of
transitions that are caused by a perturbation. In argemeanner, letH, be the
Hamiltonian operator of an arbitrary system, andlldte the energy operator of the
perturbation that perturbs the system under study;eircéise of §, Hp will be given by
(65), and will be given by (72).

Let ¢, be the complete system of proper functions such that:

Ho " =E"¢". (83)

The general solution of the equation:

h 0
Ho "= — — 84
oW (84)
will be:

w=>ay", (85)

in which thea, are constants. By hypothesis, the perturbdtianll have the effect of
stimulatingtransitionsin the system (85). In other words, thewill become functions
of time as a result of the perturbatibon The problem that is then posed in the study of
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transitions is not that of studying the functignghat define the state of system when one
takes the perturbation into account, but only that of deteng the functionsa(t).
Those functions,(t) must satisfy a variational principle that is analog®o the one that
yields the Dirac equation. However, here there isqugt independent variable — viz.,
timet — and the unknown functions that are ihen Dirac’s theory are tha,(t) here. By
virtue of the study that was made above, it seems rabkoror us to consider the
variational equation:

5j Ldt =0 (86)

in full generality, with:

= _1 h d .
C EE{ZZQEIHYdad—ZaEZ—Md—?} conj. (87)

as the fundamental variational principle of the tlyemirtransitions that are caused by a
perturbation. Thel, » are the elements of the matrix of the operaton the system of
proper functiongy". In order to be able to write that functidh, it will suffice to know:

1. The perturbation operatbr

2. The proper functiong/" that are defined by (83) and relate to the Hamiltonian
operator of the system when one neglects the petinmba

We will utilize the principle (86) in Chapter VII.

¢) The elements, » depend upon time; one has:

2—’ﬂ(E”'—E")t
|n’ n' = |n’ n (O) e h ’ (88)
in which:
In.wv (0) :J'Hg(f”)ml f "dx dy dz. (89)
Upon setting:
Lm n

A,=a e - (90)

equations (78 can be written:

: h dA

| (0)+J E"]A, = ——". 91
;[n,n() wE 1A= S (91)

Finally, we letA denote the “vector” whose components&yén the space of proper
functionsf, , while Z andHp will denote the operators whose corresponding iogin

the space of functiorfs will be I, v (0) and &, » E", respectively. Equations (91) will
then take the form:

h dA
(Hopt 1) A = o dr (92)
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These equations (92) have the usual form for the equatibesolution in wave
mechanics.
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CHAPTER IV

THE PHOTONIC FIELDS OF
TH. DE DONDER-J. M. WHITTAKER

1. Fundamental equations.— One remembers some research that was carried out
some years agd)(in order to establish the fundamental equations of weehanics in
Maxwellian form. In 1928, J. M. Whittaker wrote the fundanrtal equations of the
electron in the following form (the summation sigrnmplicit):

{aﬁu”ﬂ_#_—ggaﬂ‘al _—(zm;bcsz—_g -

ox’ | | 0XF |
(a)
oU,; | (03 (2mmyc)’
B |- [Tqq® _ _
{axﬂ_ J-99 o | ( - j\/ 9@,
(b)

i ] (1)
0J-g P |_ —
o |TYT9h

0J-g Q" |_
e |7Ye

U = aP[,_GPﬂ +gaygﬂ5 a(}_an . (©
Pl x| J-g|oX X
One has set:
0 0 2rie
= - d =——d,,
[GX”} ox“ ¢a an ¢a he

in which®,, are, as usual, the four components of the electrogstizgrotential in which
the electron is embeddedy, e are the rest mass and charge of the electron.
Those sixteen equations are linear in the sixteemponfunctions:

Ugs, Poa, Qo |, J, (2)

and their first derivatives. The first eight of thdrave the Maxwellian form that is
characterized by the divergence that enters into théded sides. Equations f}.are

() Seel1], [12], and [L3].
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the complementary equations that relate to the pote®igal Q,. Finally, the six
equations (L) are the defining equations of the fields as functidrieepotentials.

J. M. Whittaker showed that the particular solutionshoe equations are solutions
of the Dirac equation. Those particular solutions @tined by establishing twelve
relations between the sixteen functions (2). Four onknfunctionsy, (a =1, ..., 4)
will then remain. However, it is easy to see thatvioyue of the invariance of the
guantities (2), those twelve relations are not invariant that J. M. Whittaker'g/, do
not vary like a semi-vector. If the equations thatghesatisfy in a particular coordinate
system are Dirac’s then that will no longer true iotaer system that is obtained by
starting from the first one by a Lorentz transformati It then results that J. M.
Whittaker’s equations, to which one adjoins the aforeimeet twelve equations, cannot
be considered to be the fundamental equations of the wachanics of @irac
electron.

2. Variational principle. — The eight Maxwellian equations &1.will yield a
variational principle when one takes lfjl.and (1c) into account. Indeed, they are
equivalent to the Lagrange equations:

5_M =0 and 5_M: 0, 3)
5P, g

a

in which

M= [-g{3UP Uy, +(11°-339-(P'R’- T Q)} . (@)

3. Correspondence principle.— By virtue of the correspondence principle, the
current-density vector will be defined, aslih, [(34)], by:

cr=- 1M 5)

200,

and the energy-impulse tensor will be:
gz 1M ®)
209,
Explicitly:
a_ _ 270€ |  .son Uﬂ? 0_ 1o :

C'=-——UTP+ Q;—J Q¢+ conj. (7)

hc -9

We have no need for the very complicated explagin for the tensof . One can
prove that by virtue of equations (1), one will Bdke continuity equation:
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oc”

ox” - ®)
and law of energy-impulse:

oT %

v CPHpy . (9)

4. Photonic fields.— According to Th. De Donder, wave mechanics is charnaed
by the study of a new field that he referred to by theenaf thephotonic field(®). In his
way of looking at things, the general theory of the photdéiald applies to not just the
electron, but to any corpuscles, charged or not, as wéheaphoton.

After J. M. Whittaker’s article appeared, Th. De Dondansidered equations (1) to
be the fundamental equations of the photonic field. juge pointed out that those
equations cannot serve to define the Dirac electron. Hawéhose equations must be
valid for the photon, since they have a Maxwellianmfo For the photon, one must get
= 0 in (1) and replacey with the masss of the photon?. Equations (1) will then

become:
0 - gu” _ ﬁL,al 2mmyc)’ —

axﬂ X’

2 Ve () ae
‘”_P”—Fu (10)
aFQ /93,

U 6P 6P gaygﬂ5 aQ? aQ(y
BP9 4/ X  o¥

Those equations generalize the classical Maxwell emngati

() See 4], pp. 8. The author reprised and developed that studbjnpp. 77.
() We can annulp here with no inconvenience.



CHAPTER V

WAVE MECHANICS OF THE PHOTON.

1. Introduction. — In the beginning, the wave mechanics of material glastiwas
developed by analogy with Fresnel's theory of light. aMehile, that wave mechanics
was soon constructed in an autonomous fashion by basing it apmew and
characteristic formalism that was analyzed in tleceding chapters.

For reasons of unity, it would be natural to try ttabbsh the theory of the photon
and the electron upon the same general principles. Notablinteraction between light
and matter demands to be envisioned from that viewpoint.

Furthermore, for quite some time, certain imperfetidhave been glimpsed in
Maxwell's theory, which does not account for the corplacaspect of light. The
guantization of fields eliminates that imperfectiont hhs achieved great successes
(fluctuations of black-body radiation, the phenomena aggion and absorption of light
atoms, etc.), but only at the expense of new diffiegltisuch as infinite energy at
absolute zero, non-commutation of the vector potenttél the divergence of the electric
field. Those new difficulties have been eliminated aspnt only in an artificial manner.

De Broglie has shown that his wave mechanics of tlmtophhas eliminated those
contradictions and has yielded the theory of ensemblpbaibn by second quantization,
just as the theory of ensembles of electrons is deduoadtfre wave mechanics of the
electron by second quantization.

We briefly summarize some of the ideas that have duidede Broglie in his
research:

a) The photon will not be a Dirac corpuscle, since é&nsg certain that an ensemble
of Dirac particles must obey Fermi statistics. Asyatem of photons that obey Bose
statistics, it seems more natural to suppose that tomphe a complex particle that is
composed of two Dirac particles (more precisely, a cotpast an “anti-corpuscle”).

b) In the interaction between light and matter, thseatial elementary phenomenon
is the photoelectric effect. A photon will disappé@a the course of the phenomenon.
One seeks to express that fact in the language of maebanics in the following form:
The photon passes from the state that is representes dgrtain number of wave
functions®; to the “annihilated state®. That annihilated state plays a very special
role: It represents a photon whose measurable chasticteare all zero.

c) Light can be polarized. In addition, the photoeleatffect is influenced by the
polarization of the absorbed light. That indicatiest tthe new theory must possess an
element that is capable of attributing a polarizatiotedtaeach photon.

d) The theory of the electromagnetic field introducee ithportant notions of the
electric and magnetic fields. Those fields are measuwnly by means of the
intermediary of the interaction of matter and lightonforming to remarl) and the
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general principles of wave mechanics, one must think tthede fields appear to be
densities of the matrix elements that are associaitedhe transitionsp — ®©.

e) The wave functior®p, of a photon that has not been annihilated satisfidaine
fundamental equations. By virtue of the field equatiord tiere defined above, it is
necessary that they must satisfy some equations ofvislban type.

The presentation that follows is based upon L. de B¥sgliew conception of light.
He proved that wave mechanics permits one to simdiéystudy of the properties of
light and make it more precise.

2. Fundamental equations.— The Dirac equations that relate to the electron are
written:

HyYy=——, 1)

in whichH is the Hamiltonianl[l , (15")]. Similarly, the first task in the wave mechanics
of the photon was to establish equations:

Ho=_-2% )

that would be analogous to (1) in order to determine the #nolution of the wave
functions®,. If the relativistic wave mechanics of systemswad Dirac corpuscles were
known then one would only have to apply it to the cdgd@ephoton, while utilizing the
hypothesis (81, a), in order to obtain the desired equations. HowevVet theory of
systems is not known. In order to find the fundamentaltemsaof the photon, L. de
Broglie appealed to a process that is less rigords}, (pp. 37), but still partially justified
([18], pp. 105). Here, we are content to refer to the walgmemoirs, and we shall note
simply that it results from those works that the dimatesx, y, z that figure in the
fundamental equations can be interpreted as the cooslimiiige center of gravity of the
photon.
The equations of the (un-annihilated) photon é)re (

}acbaﬂ_ 0 0 N i+2ni,uoc
c ot

—+ A — A, | Pas, |
1ax 2ay 362 h 4} /4 ()

100, 0. 0 . .0 27muc
——E = | B—+B,—+B,—+—B,| Py, I
c ot ( "ox 9y ‘9z h 4} » ()

(") Translator’s note: It was not clear in the origjithat he actually mea®,zin both equations.
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in which @45 = ®4p (X, Y, z t) are sixteen wave functions. (The coordinate trihedso
tri-rectangular.) A, ..., As, By, ..., B4 are eight matrices with sixteen rows and columns
that are defined with the aid of the Dirac matric®s (

("41)aﬂ,y£ = (al)ayéﬂsi (Az)aﬂ w® (az)ay5ﬂ£7 (-Aa)aﬁ e = (@ 3)ay5ﬂ£'
(A appe = (A1) 4y 0p

(Bl)aﬂ,ys = (al)ﬂg 5ay’ (Bz)aﬂys = _(az)ﬂg 5ay’ (Ba)aﬂys =(a 3)ﬂ£ 5ay’
(64)aﬂ,y£ = _(a4)ﬂg 5ay’

3)

(Ona=1,0sp=0fora# B.) For example:
A1 Pop=2 2 (A1) ap o Py -

L. de Broglie showed that these equations can be coedide be “the wave
equations that correspond to the motion of the centgranfity of the (un-annihilated)
photon.”

The system (I), (Il) is equivalent to the system:

(M”+M%¢=£%%?, )
(H® -H®)Y o =0, (V)

in which:

H(a)Eh_C_ ‘Ali+...+2m’uoc‘,4 ,
4 ox h

H® Eh—c.{61%+---+—2’"rf‘oc 64}.

4)

The sixteen equations (Ill) are the “evolution equatiahat were mentioned in (2),
and:
H=H® +H® (5)

is the Hamiltonian of the theory of the photon. Tix¢egn equations (IV), which do not
include time derivatives, are the “condition equation$lose thirty-two equations are
compatible, they are invariant under any Lorentz transitiom, and theb,s; vary like
the productsy, ¢, in which they, are Dirac wave functions.

In order to make the significance of the conditiquations (IV) somewhat more
precise, we shall study the case of a monochromatiew

() For example, the matri&, is equal to the direct product of the maisixand the identity matrix&,
=a x|. Similarly,B; =1 x a.
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27mE

Pop= ¢aﬂ en ’

and start from equations (lI). By virtue of (llI):

Hg =E.

If one adds the conditions (IV):
H® =H®

then:
E E
H® g= =g HO® =54
$=29 $=29

The condition equations (IV) will then serve to defsmme pure states for energy for
which the proper values of the operatdf8 andH® will be equal.

Now, consider the annihilation solutiomgﬂ. The energy and impulse of an

annihilated photon must be zero. It will then resudit tthe functions;bgﬂ are constants
that satisfy the equations:
(As + Ba) @Y, = 0; (6)
hence:
O}, = @, = Po=Py, = Py =d),= O, = @y, =0. (7)

It is natural to suppose, in addition, that this anrtileilasolution preserves its form in
any Lorentz system; i.e., that it is invariant witlspect to any Lorentz transformation.

That condition can succeed in determining th% One will have:

cbg/]: (a8)ap 8

up to a multiplicative constant. Those functions sotitions of (lll), but not of (V).
One easily sees that (8) is a solution for whih andH® have the proper valuesuoc®

and-1 /¢, resp.

Remarks. — Like the Diracy, , the ®45 will have the dimension T, where L=
length. In order for the annihilation solution to likewis&ve those dimensions, it will
suffice to take:

P2 = A (a)ap, (8)

instead of (8), in which has the dimensions of (lengtj. In practice, that annihilation
solution will appear only in the densities of matrigraknts that are associated with the
disappearance or appearance of a photon. Those derdigady include an arbitrary
multiplicative constank, into which the constant can always be absorbed.
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3. Operators.— The main operators that have been encountered ihdbeytof the
photon up to now have had the form:
F @ 4+ F (b) :

i.e., they are composed of the sum of a (linear, He&mn)ioperator “of typed)” and a
(linear, Hermitian) operator “of typd)’. An operator of typed) does not act upon the
second index ofp,z , while an operator of typeb)X does not act upon the first one.
Therefore, lef @, f ® be the operators of Dirac’s theory that correspongl £, F ®
respectively. If the summation sign is implicit theme will have:

FOdu,=0F(,0, and FOdu=F®)5d, ; (10)
for example:
Az ®op= () 0y Dyp and By ®gp= (- a2) 5y Poy.

More generally, for an operator of the fofn® F ®, one will have:
FOFO o= @)a(fO)pde. (10)

Since the matriceg! satisfy the same commutation relations as the Dmatrices,

one can form a table of sixteen operators with th@fitde A and the identity matrix that
is analogous to the table of sixteen fundamental p@rators. One operates upon the
B similarly. One will then have two tables of sixtefemdamental operators) ([of the
type (9)], namely:

1(As £ Ba), (11)
1(A1£B), 1(AxB), 1(As£Bs), (1), (12)
{ 1A AA £ BB } (13)

3 AAA I BBB,,
1), ..., 1(si+9), (14)
1 (A1 A2 A3 A4 + B1B3B3Bs) (15)

Those operators play a very important role in the thedn particular, the study of the
operators of the typé (A + B) parallels that of the corresponding operatmis Dirac’s
theory.

(l) We utilize the notationsf =i A A, sj =i A; A, Az, and analogous notations for #Benatrices.
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4. Mean values and matrices— By analogy with the wave mechanics of the
electron, one can be tempted to take:

o FO+FO) o (16)
to be the expression for the mean-value density tha¢smonds to the operatbr® + F

®  However, that definition is not admissible, by remebvariance. Indeed, consider,
for example, the case of the operators:

Uy ==A, Uy =1 Yy ==B, Uy =1 i= 1,2,3,} (17)
u? =3 (U, + Up), a=1,--,4.
The densities:
D cud

are not the components of a vector; they are thgpooents ¢ 4) of a tensor:
cDD%(U(Ha) Uey + Uiy ) P - (18)
On the contrary, the densities:
CDDg(B4 Ul + AU YO (19)
are the components of a vectdr (Generalizing that result, one will be led tkea

O BiF@+ AFO) @ (20)

to be the definition of the mean-value densitied,[instead of (16).
The tensors that are obtained in that fashion ahWllays have the proper variance.
The mean values will then be given by the integrals

j O (BsF @ + A,F ®) @ dx dy dz (21)

the integration extends over the entire spacee¥éhiablex, y, z
Similarly, let ®® (p = 1, 2, ...) be a complete system of wave functiorhe
densities of matrix elements that correspond togrerator will then be:
(cD(IO))* (BsF @ 4+ ALF (b)) (cD(IO')) (22)

in the systen®®, and the matrix elements will be:

() As in Chapter IV, the square of the elementary wmewill be [d9)? = — (dx})? — ... + (dX)? here,
and the variance will mean under any Lorentz transdtion.
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[ (@®) (B, F @+ AF ©) (@) dx dy dz (22)

The reasons that led us to take (20), instead of (16), hega bf a purely
mathematical order up to now. According to L. de Broflieseems possible that the
modification in the usual definition g whose necessity we have seen in the theory of
the photon is related to the fact that the photonasmaplex corpuscle that is subject to
Lorentz contraction in its internal structure.”

A good relativistic theory of systems of two corpusciasst be able to express that
difference logically. In the absence of that theave will justify the definition (20) by
showing that it leads to some results that are coelplsatisfactory™).

5. Densities of matrix elements associated with the anniiion of the photon. —
L. de Broglie defined five tensorial quantities that wegkated to the passage of the
photon from the stat® to the annihilated sta®@’. Those five tensors can be divided
into two groups:

a) Maxwellian quantitieg?). Namely, one has @ector (viz., the electromagnetic
potential):

Pi:Kd)OwQ""P‘l:_KQDOWQ (23)

and amantisymmetric tensdwiz., the electromagnetic field):

Ut = ZTHE o BAAA~ABB, )

A @ (24)
U23:K2WOC¢OB4 A4_A4§1 B4¢m
h 2 ’
b) Non-Maxwellian quantities Namely, one has anvariant
lgy=-@° B4A4;A4B4CD’ (25)

a completely-antisymmetric tensof rank three, or what amounts to the same thing, a
vector with contravariant components:

B, ) +A, éb) P .

. L Of=-kot B s, (26)

ol = K @° ) ;A4 )

() Except in the case of annihilation solutions (see § 11).
() They are called that because they satisfy equatidn$laxwellian type (see § 6). The
electromagnetic quantities will be expressed in Heavisateritz units; one will then hawe = h / 277

s
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and acompletely-antisymmetric tensor of rank foar what amounts to the same thing,

an invariant:
|(2) - _ CDO 64 -’41-’42-’43’44;-’44618 ﬁﬁ ol (27)

In vectorial notation, we set:
Pl=V, ...,P*=V,
U¥=-H_....
{U23:’]—(x).(..
Q'=K g, ...,Q* =K ¢&.

The V), are the components of the (complex) vector potewtiaV is the scalar potential.

H andH are the components of the (complex) electric field dne (complex) magnetic

field, resp. The explicit form of those expressicas,well as their variance, is easily
obtained by remarking that (with an implied summation):

l@) = (2) gy Py,
Pl =-K (al)/;,,CDyﬂ, P2 =-K (az)/;,,CDyﬂ, .

_ Kuy,ce2mr

Ul4 = (I m 04)ﬁyq3yﬁ, cery

Ql = (i ar 03)ﬁyq3yﬁ, ceny
l@)= (01 02 a3 Au) gy P .

The Maxwellian quantities are provided by operators eftéble (11 — 15) of typed(—
B). On the contrary, the non-Maxwellian quantities densities of matrix elements that

correspond to the operators of the table (11 — 15) of type ). All of the other
tensors that are inferred from (11 — 15) by the processea@videntically zero.
The sixteen linear combinations (23 — 27) of the sixta@ep are linearly-

independent. One can then solve inversely, and expressxteen®,z as functions of
the sixteen components of the tensors (23 — 27). Hehe iresult of that solution:
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4o, =2v+ Ty ~1—0,,
K H,C
a0, =1lv-"g ~1y*0,,
K H,C
10, =2v-" gy |41, -0,
K H,C
4CD44=i V+iHZ +ly,to,,
K M,C
4cb13=i —Vz+iin =il ,, + 0,
K H,C
4cp31:i _Vz+iin +i|(2)+041
K H,C
A'cbz4=i +Vz_iin _“(2)"'0'41
K H,C
4CD42=i +Vz+iin +i|(2)+041
K M,C
7 . .
4¢12:m(HX+|Hy)_0-X_|0'y,
0
. . 1 .
40, :&. (H.+iH,)——(n4 ).
0
no. . 1 .
40, = s (-H,-iH y)—E(VXH V),
0
7 . .
403 = K,UC(_HX_IHV)_JX_IJW
0
4P, = KZC(HX—iHy)—JXHay,
0
no. . 1 .
40 = ! (H,-iH y)—E(VX—I V).
0
. . 1 .
4d>41:K'ch(—HXHHy)—E(VXﬂ Vy),
0
40, = KZC(—HX+iHy)—JX+in,
0

(A=h/2m).

(28)

(28, cont.)

67
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These formulas permit us to replace the wave furstwith the components of the
five tensorial quantities (23 — 27) in every expression fah@ory of the photon. Since
the electromagnetic field and potential figure among itleeténsors, one must agree that
such a transformation is interesting. One can conmdpieompare the results of the
wave mechanics of the photon to the corresponding sesuaxwell’s theory by using
that transformation.

Remarks. — We note, in passing, the following theorem: Kejz be a system of
sixteen arbitrary functions, and lét;; be the annihilation solution. One has:

D A By D =- D, D Ay By P° = - 0% P, (29)

The verification is immediate.
For example, one infers that:

Pt=-K®° —84“41;“4481 ®=-K° —A4“412_B481 >,

hence:
D% (A4 + By) (A1 - By) =0,

which one obtains directly, moreover, upon remarking ®B(A; + Bs) ® = 0. By
contrast:

LP°=-K® Lo

(PY =Ko —84“41;“448

. A A-BB
2

hence, upon taking into account the commutation relabetseen thed and thes:

(P =K ®" (As + Bs) (A1 — By) &°.

6. Tensorial form of the equations of the photon- L. de Broglie showed that the
system (1), (II) can be replaced with an equivalesteay of thirty-two equations that are
obtained by forming thirty-two linearly-independent lineambinations of equations (1),
(1) in such a manner as to make the tensorial quant&27) appear.

Those equations divide into two distinct groups: A firstugrof sixteen relations of
Maxwellian form into which only the electromagneticgatials will enter and a second
group of sixteen equations into which only the non-Maxamjuantities will enter.

In tensorial form, the first group is written:
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0-gU¥ _ (2mucY .,
U h i @
ou
% =0, ©)
6xﬂ (30)
_0P, _Gj ©)
PP X
a—v—gpazo’ d)
ox“?
and when one sets:
2 2
| :ZITK'UOC |(1), J:27TKIUOC I(2)1
the second group will be:
a1l
e @)
0J 2muc
5-(2efa, o
0Q, 0Q; _ (31)
X’ ox =0 ©)
| =0 d)
a _ a
—Vang =J3/-g. C

When the square of the line element is put into the faig)? = — X (dx )? + (dx)?,
one will have,/ —g = 1. However, in the form (30, 31), the equations wil/akd in an
arbitrary coordinate system for which the square of Bm@entary interval is:

(d9*=gapdX’d¥’ and g =1|gasll-

They will likewise be valid in an arbitrary Riemanngpace.
Equations (30) justify the terms that were introduceplawragraph (5). The functions

Y andV are the vector and scalar potential, respectiveljled andH represent the
electric and magnetic field, resp. In vectorial notatjq30), (31) will take the form:

2
rotHzia_H_(Mj V.
c ot h

2y,
div H :(—:0 j v,
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rotH = _E@_’H

c ot
divH =0,

H =-graav _loy :
c ot

H =rotV,

divV+Ea—V =0,
c ot

gradl =0, Ea—lz 0, | =0,
c ot

gradJ = - (—ZH”OCJZ Ko L9 (—Znﬂocjz K o
h " cot h ’

rotKk =0, grado; + Ea_a: 0,
c ot

divkK o+ 1Ko, =
c ot

J.

Meanwhile, one must remark that in wave mechames/e functions are general

271

T Et .
complex. For example, one must takeé  for a monochromatic wave, and not

COSs

by (23) are complex, in general. That situationnteresting, because complex fields
suggest themselves in many fundamental questiditgably, it is well-known that the
guantum theory of fields can be presented in a nsatéesfactory fashion when one
utilizes complex fields. Similarly, they are inthaced quite naturally in the theory of the
interaction of light and matter. One can say thatelectromagnetic fields that intervene
in elementary phenomena are complex. It remainexjgain how one can effect the
passage from those “microscopic fields” to the readcroscopic fields” of Maxwell’s
theory. That is a point upon which L. de Broglaslalready insisted 9.

Si
}%Et. It then results that the electromagnetic fiegldd potentials that are defined

Remark. —
a) There exist wave functior®,z of the photonn vacuosuch that:

|(1):|(2):0;(:0§,:02:021:0_



8 6. — Tensorial form of the photon equations. 71

We refer to these solutions by the nam#&lakwellian waves.
b) Equations (30), (31) are nothing but equations [VI, (10)], hicky one adds the

conditions:
=0

(Zn,uocjz N

h T XY

c) There exists another way of grouping the equations qfttbeon.
Indeed, the system (1), (Il) is equivalent to the esyst

and

(BaH® + AyH®) & =1 (A4, +B4)L%D V)
. h oo
(BaH® - A, HO) b =1 (A, - 34)—% )

The first group of sixteen equations (V), when writtethwhe aid of the tensorial
guantities, is nothing but the system that is composetheofdur Maxwell equations
(30a), the six equations (3€). that define the fields as functions of the potestidhe
four equations (3b), equation (34), and equation (34).

We make two remarks on the subject of the systemg\W)),

a) The system V is invariant, as is the system Vlathhill result immediately from
what we said about (V).

b) The system VI is a consequence of system V. IndéedMaxwell equations
(30b) are satisfied identically by virtue of (8). Equations (3&) are always verified
due to (31d), and equations (3d). are satisfied by virtue of (39).

The system V then appears to be the essential sysieoe it defines the wave
functions that relate to the un-annihilated photon inammer that is as complete as (1),

().

7. Variational principle. — We have seen that the Dirac equations are the Lagrange
equations of the variational principle:

S[[[]4 { (H ———j¢/+conj}d><1d><2dx3dx—

The function under the integral sign is the real pdérthe mean-value density that is
associated with the operator:
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_ho
27 ot

Similarly, in the theory of the photon, the sixtesquations (V) are the Lagrange
equations of the variational principle:

B,+A, h 0 .
1 o (a) (b) _ ~4 g4 1Y A —
5”'”5{613 (B;H +A,H — s atjclﬂconj.}dxl dddd¢'=0, (33)
in which, conforming to the general definition of the meafue densities, the function
under the integral sign is the real part of the medmevdensity that is associated with
the operator:

HO oo - 2

27 ot

The varied functions are the sixte®ps .

The system VI is likewise derived from a variational ppfec However, since it is a
consequence of V, that principle has only secondaeydst.

It should be remarked that the variational principle (83nore satisfying than the
one that is used in classical Maxwellian theory.

Indeed, in Maxwell's theory, one obtains only the equmstithat the electromagnetic
potentials must satisfy by a variational principle. Ek@ations that define the fields as
functions of the potentials must be added to them. h@rcontrary, here, the variational
principle will provide not only Maxwell equations, but alé® defining equations of the
fields as functions of the potentials.

8. The current-density vector.— L. de Broglie has shown that the four operators:
o o
- — (A4 + Ba), S e ¢/ |
5 (As + Ba) 5 ( )

can be taken to be the components of the current-denmstyator. Conforming to (20),
the quadri-vector “mean-value of current-density” willrihee:

*MQ U“Ecp:cCD*MCD- (34)

uls =—c®
P U .

Indeed, by virtue of (I and Il), the continuity equation:

ou“ _
ox“

We utilize the inversion formulas (28) and gki¢he value:
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K= h ; (35)
2y
recall that the Heaviside-Lorentz system of units ésahe that was chosen.
One also has:
ou :%{[VDH] +VH - JQ} +conj,
i (36)
— 0 0 H
=on{(VH) = 3°Q} +conj
or, in tensorial form:
U=-—{U%P] -] + con;. 36
2hC{ 7 Q% j (36)

The vectoiU? depends upon the electromagnetic potentials explicitdyséime thing
will be true for the other mean-value densities. Thaingjgishes the wave mechanics of
the photon from Maxwell's theory. Indeed, in the dattheory, one is accustomed to
considering the potentials to be auxiliary functioret #ppear in the quantities that take
on some physical sense only by way of the electricnaaginetic fields. The well-known

indeterminacy in the potentials will then result, whichnpies one replac®’, V with:

V’=V + gradf, V'=V- Eﬂ, (37)
c ot

such that:

2 2
Zaf 1 9%f _ (38)

0% & (097

The relations (37), (38) will no longer be rigosbuvalid when one supposes that
# 0, because iV, V are solutions to (30) then that will no longer tbee for V', V"
Meanwhile, an indeterminacy that is similar to (3({@38) persists in the theory of the
photon. For example, in the case of a plane ware,can show') only that potentials
that differ by finite quantities (which will remafinite when one letgg tend to zero) will
correspond to fields that differ by only negligiltégms (which will tend to zero withy).
The same remark applies to the multipolar wafes The indeterminacy will be removed
only when the negligible terms (which are proparéibto () in the fields lead to
measurable consequences. One can say that thieseigle define the same fieltls H
in the wave mechanics of the photon “approximately.

Consider two Maxwellian waves £ J = Q, = 0):

®,; or P9 U

() SeepQ].
(®) See Chapter VI, § 4.
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(D’

' 7 Qy
s or  PLU

in which theP'? are coupled to the” by the relations:

P,a — Pa + af
oxe
One will have:
Ua,B — U /a,B
“approximately.”
Hence, (39 will become:
2m 0 271 oJ %P .
U=U%+{| -—— U fH+— 1+ conj.;. 39
{ 4h6x”( ) 4h 0¥ } J} (39)

The mean-value densitiés’ “ andU“? are then different, in general. Here, we shall
confine ourselves to proving that, and we shallnmreto the question of the determination
of the potentials in a later paragraph (VH)§

Remarks. —

a) In the case of a monochromatic Maxwellian wavee @an always annul the
scalar potential. One will then have, for a freqgyey = E / h:
H=--— = 2 V, (40)
and
Epu :%[ H"H] +conj., (a)
Ep=3[H]" (b)

(41)

One recognizes the classical expression for tiyatihg vector in (41), while (41b)
will be equal to the Maxwellian energy density wHet F = | H . Meanwhile, one
must note that the fields are complex here andrakppon time by the exponentéfm,
whereas in the classical Maxwell theory, the fiedds real expressions that are sinusoidal
functions of time. In Maxwell's theory, the enerdgnsitys will then remain a function
of time. Meanwhile, for light, the measurable ditgns not &, but £; i.e., the mean
value ofe over time. The essential quantity will then be and that is indeed what one
recovers in the theory of the photon.

We note that the choice (35) of the consténtvas imposed by the fact that we
wished to obtain (41) with good coefficients.

b) The expressions (36are close to formulas [IV, (7)]. The vectof / c in [IV,
(7)] differs from the current-density vector (B6nly by the terms:
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0
2h\/waﬁQﬁ+conJ aﬂ[ —(U I+ conj}

which are space-time divergences. Those termdeillero whed is constant.

9. The energy-impulse tensor- That tensor will be defined as it is in Dirat’gory.
One makes the space-time impulse vector corresjootig operator:

1._ho 2__ N 0 .
T Ty 27 0z 2ricot’

while the current-density operator correspondséodperator:
—_ C a a
cu= E(u(a) +ug,). (43)

As in [lll, (60)], one forms the tensor-operator:
tP=c g (44)
from those two operators, and conforming to (28)mean-value densities will be:
T?=0" 77 (B,ul, + A, uf)) ®. (45)

That asymmetric tensor is doubly-contravariant.
On the other hand, with the operators (43), omefaan the symmetric tensor:

vy
M % = 1y @ @ (b)zuéx) Yy ® (46)

that we spoke of above (18). Furthermore, we Ishesvn R0], by utilizing the inversion
formulas (28), that this tensor is equal to thessitzal Maxwell tensor (with complex
electromagnetic fields), plus some terms that ohelanly non-Maxwellian quantities and
terms that are negligible compared to the Maxwelterms. The tensors (45) and (46)
are coupled by some important relations, namely:

hc o™ h oV

T#=M%+ +t——&u :
4 ox¥  4dmi ox“

(47)

in which:
fy=&=8)="1 gy=+1,

andA”? is tensor that is antisymmetric in the extreméciasiay.
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A = = DA, UG Uy Wy + B, Uy Uy Yp) P, 7 Y, } o

AP = pP" i=1,2,3y=1,.. ,4.

Remarks. — As in Dirac’s theory, when one starts from (45), caa define a real
tensor:
T %= 1(T%+ 774, (48)

and also a real, symmetric tensor:
TP = 1T P +T5), (48)

By virtue of (47), the tensof” % is likewise different from the Maxwellian tensor
M ?. In the wave mechanics of the photon, the energy-isepteinsor is (45) [or (45or
(45]. It is of the canonical type (20), while the Maxveatl tensor (46) is not.
Meanwhile, thanks to (47), one understands how oneteanfrom (45) and recover the
results that were obtained in Maxwell's theory by zitilg (46). Moreover, in the case of
the monochromatic wave, one will have:

cT¥=puE and T*=pE (49)
By virtue of (41), one will also recover the Maxwelhser in the case of just one

monochromatic Maxwellian wave whose scalar potehtalbeen annulled.

10. Moments of impulse~ As in Dirac’s theory, the spatial vector operatothaf
“orbital moment of impulse” with respect to the coordiatigin is defined by:

m° =r, JI, (50)
in whichr is the (spatial) vector whose origin isaand whose extremity is y, z

One knows tham?® is not a first integral in the theory of the phatoHowever, the
operator:

m=m’+mS, (51)
in which:
s _ hiA, A +iB,B5,
= — 52
m=o > (52)

is a first integral. m is the operator that corresponds to tibtal moment of the photon.

m?® is thespinoperator. Conforming to the definition (20), the meanas of the orbital

moment and spin will then be:

A, +B,
2

M=o [r, J] P, (53)



§ 10. — Moments of impulse. 77

N =L P (Bssat+ Ass) D, (54)
ar
respectively, in which:
S)((a): S(la) =A; Ay, ...
s”= s, =B B, ...

The mean-value density of the total moment is obviously:
M =M°+N. (55)
We shall not reproduce the study of these space-timdijesmere 20]. We shall add
only a few words about the mean-value density of spiMy, Ny, N, are the spatial

components of a space-time vector (or, what amowontke same thing, a completely-
antisymmetric tensor of rank three):

h DB4S(1a)+'A4 §b)q) )

N, =N'=—o
2T 2 (56)
N4 - _Lq)ﬂ 64 #ﬁ) +A4 #b) q)
2ir 2
Explicitly:
2., _
TNZ_ |ch1|2— |CI)22 F_ |CD331+ FD442|
—|¢14|2+|¢32f—|¢4lf+ FD232| , (57)
2
T N, = %{( q)lml_ CDE,Q( D+ 12 +( CDDzz_ CDDAX D GFP )4
+ (chDZ - CD§4)(CD 2t @ 11) + (CDD21_ CDDQ(CD 25t @ A)1+ conj.}
Upon utilizing the inversion formulas (28), we will get:
N :i{—[ VH] +V"H + 1°Q +conj.
4c (58)

N* :i{+[ VH] + 17Q* +con.
4c
or rather, in tensorial form:

Saﬁy:_jlc{u PR/ +UYRT + UM R + 1°Qf} + conj. (58)
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in which afyd is an even permutation of the numbers 1, 2, 3, 4. Trsotgb8) is
completely antisymmetric in the indicegy.

What is the tensor in Maxwell’'s theory that copmsds to (587

E. Henriot was the first to draw attention to quasitof that kind just a few years
ago (). By a deeper analysis of couples and moments ofreteagnetic impulse, E.
Henriot was led to define a third-order tenddfqj in the classical Maxwell theory that
represented the moments and flux of electromagnetiments of the second kind, or
“‘momentors.” That tensor, which is antisymmetric e textreme indicesr and £,
appears quite naturally in the expression for the lavearfservation of moments of
impulse in Maxwell's theory. It resembles the tensof)(3&it it is not identical to it, as
one sees immediately upon remarking th&f” is not completely antisymmetric. It is
easy to write down the tensor that correspondd¥¥ in the theory of the photon. That
tensor, which is nothing but (48), does not have the cealtype (20).

From a general standpoint, one is now in possesdiawm types of moments of
electromagnetic impulse in Maxwell’'s theory: The maise‘of the first kind,” which are
calculated by means of the Poynting vector, and Eribtésh moments “of the second
kind,” or “momentors.” The question is then to knowat the links that exist between
those two types of moments. In what cases does rop@®y one of them or the other
one? The momentor leads to some good results fantm®chromatic plane wave. For
the electric dipole wave, Sommerfeld showed that dieis the exact formula for the
flux at infinity by utilizing the moment of the first kih The momentor, in its present
form, does not yield satisfactory results for that tpeave.

On the contrary, in the theory of the photon, glemeral theory shows that the total
moment is always the sum of two terms: The orbitaimant and the spin. Moreover, we
have shownZ0] that this definition does yield good results in the aafselectric dipole
and quadripolar waves, as well as in the case of the plave. In the next chapter, that
study will be make more precise, as well as generalizé@davisioned in a new manner.

11. The operator(A4 + Bs) / 2. — The physical quantity that the operatpmy in the

Dirac equation corresponds to is “proper mass.” In ## ©f a monochromatic plane
wave, the integral:

['medt=moc [dt [[] ¢°as wdx dy dz (59)
is nothing but the action integral:

t V2
j m()q/l—? dt

of relativistic dynamics §], pp. 223). The integration over the spatial variaklgs z in
(59) extends to the entire spatef those variables.

) Seell].
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Similarly, the operatopsy (A4 + Bs) / 2 corresponds to the physical quantity of the
“proper mass of the photon” here. Conforming to the d&fim (20), the mean-value
density that relates to the operatords ¢ B.) / 2:

Q(l) = CD*B4 .A4 d. (60)
It is an invariant. Explicitly:

Q(1)5_|q311|2+|q)22r_ |(D33f—
+|q)13|2+|q)24f+ |¢31f+
—|(Dlz|2—|cb3lf+ |q)14f+

+

P
;2423] (61)
_|q321|2_|q)43r_|¢41f FD ZI

or rather, upon utilizing the inverse formulas (28):

HoC Qqy =
ﬂmf—mr{%j @1V {22 @3- @'y a1 % (61)
The mean value gfp will then be:

o= 'UO.UL Q,,dxdydz,

in which the integration is performed over the entirsdim £ of the variables, y, z

Now consider the case of a monochromatic plane wheae is Maxwellian, to
simplify things. The solution will then depend upon thresstantsa, b, ¢; upon setting:
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27 o
P:eT(Et p), Ac= E+’uoé,
VX=(b—c)EP, Vyzi(b+a)EP, szdﬂ:p’)
A TA A
v =dCp
A E
one will have: (63)

2

. E E . Euc
H,=-2i—b-a)P, H,=2—(b+a)P, =-2i0——"2—,
(=2 b-a)P, H,=2 (+aP  H=-2id

C . pcC
sz—z%(ma)P, Hy=—2l%(b—a)P, H,=0.

E andp are coupled by the condition:
E2 = p2 A +,u§ ct. (64)
One easily finds that for that plane wave:

CZ
Quy=p ’u‘é : (65)

in which pis the value of the density (36) in the case of theaw&8).
Due to (64), (65) can be written:

202
Qqu) = ,01/ 1- pEz : (66)

Integrate this over all of the spa€e while taking into account the normalization
condition:

HL,O dx dy dz= 1.
Hy= /JO\’ 1- p;gz
- ¢ p202
I H,cdt = j H,Cy| 1— £z dt, (67)

which is indeed the action integral for the photon thatnalogous to (3% since one
easily sees that the speed of the photon is:

One will then get:

and
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2mu,c

2
Remarks. — Up to terms ir{ j , the right-hand side of (61) is nothing but the

transposition of the Lagrangian function that was utlize Maxwell’s theory (I, § 4,
remark) into complex fields.
The Lagrange equations of the variational problem:

5j j j j Q,, dx dy dz d& 0 (68)
are
0%y _ 0 and 0%y _ 0.
oP, oP’

These are precisely Maxwell's equations (30) and tlmajugates.

12. On the annihilation solution.— In the case of the annihilation solution, the
definition (20) gives:
p=0,

Q,=-1,

(69)

which are results that are obviously unacceptabls;gbod to reflect upon that fact.

We obtained (69) by starting with the definition (20).séems that the necessity of
taking (20), instead of (16), comes from a relativistic gfighich must unavoidably be
taken into account if the photon is to move with ae#y that is close t@. However,
the annihilation solution represents the state of a phetwse energy, impulse, mass,
and spin are zero. Relativistic effects are therefor®nger relevant. We are thus led to
think that it is more natural to return to the defimtid6) for the annihilation solution.

With that, one will find that the probability densityporesence is:

o= 0% 0% = 44,

and the mean-value density of proper mass is:

o© =,

2

This time, the results are acceptable. The normalizadf the wave®© is
performed, as usual, by expressing that:

[madxwdpx
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hence, upon letting denote the volume of the spatef the variables, y, z

4)%v = 1. (70)

Ordinarily, the volume is infinite. One can avoid that difficulty, as Imetcase of the
monochromatic plane wave, by first bounding the sgacand then letting it increase
indefinitely in turn.

Remark. — The following remark will confirm the ideas that wereposed above in
regard to the definitions (20) and (16):

Let ® be a monochromatic, plane, Maxwellian wave tharesents a photon with
velocity zero. That wave will be nothing but (63) witere setp = 0. For example, one

will then find that:
,UOCDDB4-’44CD = /JOCDDBA'-FTJ44 o,

CDDMCD = CDDCD,

ooBit A h 00 _ o h 0d (71)
2 27 ot 27 &

o BiSV T ASY h 0v_ 80+ & 00
2 271 ot 2 ot

The left-hand sides of these equalities represent tlan-weue densities of mass,
presence, energy, and spin, respectively, which are a¢endiat one calculates with the
aid of formula (20). On the contrary, the right-hartesiof these equalities represent the
mean-value densities of mass, presence, energy, anthapare calculated by adopting
the definition (16). The relations (71) then expressdia that the definitions (20) and
(16) will be equivalent when one is dealing with Maxwaellghotons of velocity zero.

13. Some important matrix elements— Let®” (p = 1, 2, ...) denote a complete
system of wave functions that satisfy the photon egust(l), (I). The annihilation

function will always be represented . Let A be any of the sixteen matrices of type
(a) that figure in the table (11) — (15), whifeis the matrix of typek)) that corresponds
to A. The densities of elements that correspond to thextmper

1(A+DB) (72)
are



§ 13. Some important matrix elements. 83

@22 or, (o)
) (73)
@2 A e (g

The elemen®® —. ®° was examined in the preceding paragraph. Thanks to the
inversion formulas, one can write those expressionduastions of the tensorial
quantities (23-27). One will then see (cf., 88 7, 9, 10) timatelements (78) that are
linked with the transitiop’ — p are not zero. By contrast, the elementsiy,7§.will be
identically zero for:

A=Ay, Ay, Az, 1,
iA1Aa, ..., 1AAs, ...
As.

Apart from A4, these matrices are the ones that appear in theitidefin of the

Maxwellian quantities. For the other matrices of ty{@e) in the table (11-15), the
elements (7&) will define non-Maxwellian quantitiess, ..., g, (o) that are associated
with the statep.

Things are different for the operators:

1(A-B).

Here, we shall consider only the case of the oper§t@)s which we shall appeal to
in what follows. Upon utilizing the notations (17), tthensities of matrix elements here
will be:

(CDP)D 64 ug’s\) —.A4UEL) (Dp', (a)
oo Bl = Ao 4o (74)
(@ p)DB4 U ;A4 Uy )

We remark that the operat@(u(“a) - u(‘L)) — (1 —-1) corresponds to a densiy (B4

—A4) @/ 2 that is not identically zero. That element isassary for reasons of variance,
as we shall see. Upon using the inversion formulayoth&nd that:
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¢DB4A_A4B¢
2
2 1. .. . h . h . h h
=ik KB R VA PR -[Ho] ——+I1,\V+0oH +HoH s
h 4{\; T T e e Y T e T e (75)

2

- 2
o B ”h"OE{—vDI(n—(HDa) [ AdCa }
4 2ru,c yIN

It will then result that:

1. The elements (7&). will be zero if the non-Maxwellian quantities trae linked
with the stateg’ andp are zero.

2. The elements (74). will be equal to:

_cDDB4A_'A4Bch_ 21 'uO vP,
st BT A o TN Ho
h

The elements (7d). are the conjugate expressions to (76).
Those densities play an important role in the thexdrthe interaction of light and
matter.

14. Non-Maxwellian quantities.— The wave mechanics of the photon permits one to
have (un-annihilated) states that correspond to zectr@hagnetic fields and potentials.
One will then have:

¢11:—d)22:d)33:—(b44
¢13:d)24, q)31:q)42 ¢12:q>34 ® 21:q) 43 (77)
(]314:(1332:(])23:(])4120_

Meanwhile, the photons that are represented by suchidna can transport energy.
For example, consider the case of the monochromktiepvave that propagates along
Oz With the notations that were introduced above, tioat-Maxwellian wave will be
defined by (17], pp. 51):

ly=0,=0,=0,
o,=ipcd P, g,=ied R (78)
| o) = tcd P.
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(d”is an arbitrary constant.) Only the componéhtg of spin zero are non-zero. The
functions (78) then define a photon state of zero, dpih energye. The calculation of
mean values will then give:

Nx=Ny=N;=Ns=0,

and
p:—l-| Oz pu :—l-| Io
2he 27 ‘ 2he @ 7
SO:
CZ

which is indeed the relativistic expression for velocisyaafunction of the quantity of
motion and energy.

Spherical waves give rise to some remarkable anal¢sgesVI, § 2, Remark). At
present, no physical manifestation of these non-Maiavepihoton states is known. It is
possible that these non-Maxwellian states do not emistacuqg and that the non-
Maxwellian quantities are non-zero only in matter. Ghbestion remains open.

APPENDIX

A general method for transforming expressionsd” BA ®.

Let AP denote any of the sixteen matrices of tyagtat figure in the table (11-15),
and letB” denote the corresponding matrices of tygle One has:
(AZ)"V’“ :a‘% e (86)
(B )ﬂy,)s = ﬁyg 5,6/1'

a’® is any of the sixteen Dirac matrices, whilg, is the element that is found on rgiv

and columni of the matrixaP. By virtue of the definitions (3) of the matricsS, the
matricesB® will be equal to #®. W. Pauli proved the following general theorem:

oo p,0=1 .., 4. (89)

16
datah =40,,9,,,
p=1

Thanks to that theorem, we shall prove some istiage properties of the bilinear
quantities in®; , and ®_ ,, where®,zand @, , are two systems of wave functions. Like
theorem (87), these properties are independetieddpgecial form of ther matrices. It is
based solely upon the definitions (86) of the maid and B and the commutation
relations:
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apay+ ayap=20dp. (88)
By virtue of (87), one will have:

za’ﬁg(a’qa’par)pﬁ:mﬂ a’ p,g,r=1, ..., 16. (89)
p

po~ pa !
Multiply both sides of (89) byp’ , @’ and sum ovep, 0,p,0. If the summation
sign is implicit then one will get:

[®abl(a‘a’a’) ,, @, ] =40 alal & (90)

po po pg ™ op*

These identities can be written with the aid oé¢ thmatrices.A and B and the
annihilation solutiorb® = (ay):

> OB, AP DB, AIAPAD =+ 407 (BY) A @ (91)
p
In the right-hand side of (91), one takes theghsirhena ® = + 89 and the — sign

whenag 9 =- 39,
In the same way, if one starts with the identities

16
Z‘iﬁﬁgﬁp‘% = 40,,0,5
p=

then one can show that:

> DA, BPO° [@°A, BIBB'D =+ 40" (BY) AP (92)
p

In the right-hand side of (92), one takes thegnsihena' = + 8" and the — sign
whena'=-3".

One can deduce from these very general identitieparticular, the expression for
the mean-value densities that are associated Wéloperators in the table (11-15) as
functions of the tensorial quantities in the theofythe photon. In order to see that, it
will suffice to remark that, up to constant factdhe expressions:

P4, B8°d  and DBy AP P°

are equal to the aforementioned tensorial quastdiad their conjugates. Finally, one
setsAY = A4 andB? = B4 in (91); hence:

> OB, AP DB, AAPAD = £ 4D By AP (93)
p
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Similarly, upon settingd" = A4 andB' = B, in (92), one will have:

> A, BPO° [@°A, BB BY = F4D BT A D (94)
p

In the right-hand side of (94), one takes the — sign vl#fen (8% and the + sign when

B =-(BY".

Thanks to the identities (93) and (94), all of the mednevalensities that are
associated with the operators in the table (11-15) can bessga as functions of the
tensorial quantities in the theory of the photeith no numerical specialization of the

Dirac a matrices.




CHAPTER VI

SPHERICAL WAVES IN THE THEORY OF THE PHOTON

1. Classical theory.— The problem of multipolar waves has been the object of
numerous works in the classical Maxwell theory. We arainly interested in the
guestion of the moments of impulse that are transpdrge¢hose waves.

For adivergentelectric dipolar wave, Sommerfeld especially has d¢atled the flux
of the moment of electromagnetic impulse acros®sed surface that tends to infinity;
he used the classical expressions:

M@P)=[r G(P), G:%[H - H]. (1)

(M = density of the moment of electromagnetic impulgé wespect to the poid, r
= OP) G is the electromagnetic impulse density vector. Cae likewise employ the
densities of impulse flux that are give by the compandnt (i, j = 1, 2, 3) of the
Maxwell tensor.

The same method can apply to the case of a divergifigpoiar wave of any order.
To our knowledge, those calculations, which are quite doatpd, have not been done
yet.

W. Heitler ¢) has made a deep study sttionary multipolar waves that are
contained inside a sphere with perfectly-reflectinglsvall hese stationadypolar waves
are the sum of a divergehpolar wave and a convergeRrpolar wave; they no longer
have a pole at the origin (se€28 W. Heitler obtained a classification of the staary
multipolar waves. They are characterized by two “quantumbers”l, m; the system
thus-formed is complete and orthogonal. In addition,an I-polar wave I, m) of
frequency and total energy, the total angular moment will be:

U
M, = m—, My = 0, My = 0.
z 2]7]/ X Yy

(Ozis the spherical coordinate axis.)

The theory of the photon permits one to envision éhggestions in terms of the
general principles of wave mechanics, and to generalee tieaning and make them
more precise from the macroscopic viewpoint.

2. Spherical waves— Spherical waves can be obtained in L. de Broglie’srihef
light in a manner that is analogous to the one thatsed in Dirac’s theory of the
electron.

In the case of a monochromatic wave:

() Seep2.
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271w

Pp (XY, Z) =g (XY, e ",

the equations [}l Chap. V] are written:

2m | W 0 0 0 _
;{T[?aﬂs _:uoc(a4)ﬂs} _&(al)ﬂs _a_y(az)ﬂs _6_2(0'3)[78} ¢8y_ 0, ("

and the equations [(II), Chap. V] are written:

2m|W 0 0 0 _
;{T[;% +u00(a4)4 T @k 5 (e —a—z(aaw} b= 0. (i

The system (1) will then be composed of the four Dsgstems that are obtained by
settingy=1, 2, 3, 4in (I).

One passes from (I) to (Il) formally by changinmto —i, W into —W, and ¢, into
¢z . When one appeals to the known results of Dirtlee®ry, one can write down a
solution @, of system (I) and a solutio®,, of system (Il) and then identifgp), =

I
Dy, .

2w
A. THE SOLUTION®' = @' e " . — The formulas that were obtained by C. G.
Darwin in the solution of the Dirac equatior$ permit us to write down two types of
solutions of equations (1) directly:

Type (+) Type £)

¢1y = I I:JrIyYITl’ I(I _m) F_Iy Y|T11
#,, = =1F, NI i1 +m-1F, YT,
¢3y:(|_m+1)G4ler|m! c;—y Yn, (3)
¢4y = (I +m) GJIry Ylm_l’ - c;—y Yn_l,

1=0,1,2;-- l=12,..

m=-1,-(1-21,-,0+21), m==1~-(-2);-1|.

F.,, G,,, F,, G, are radial functions; for any index they will satisfy the
equations:

() See §], pp. 231¢t seq.
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_2_IT(V_V+,uOchL +F +—I+ 2 F =0,
c r
2m(W [+1 @)
—(—+,uocj F'+G +—G =0,
h{c r
—2_”("_V+ ,uoch'_+ g-1"2p -
h\c r
(The dot above the functiosandG indicates a derivative with respectrtd
TheY"=Y," (6, ¢) are Laplace’s spherical functions:
: dm coso-1) _.
Y™8,¢)=(1-m)! ™ rs8in™ 4
H@g)=(-m (dcose)”"[ 20! j
1=0,1,2;-- (5)
m=-1,—-(1-1),--- ,+I.

(r, 6, ¢ are the spherical coordinates aboutzais.)

Each of the two systems of functiong ¢@hdb) satisfies (I). However, in view of the
identification that was mentioned above, one mustidensa more general solution,
namely:

By =X T IR, YIRS +i(l+1-m-g) E 1+ Y7 i(1-m-¢,

) F

IB!

Brp =Y P CIR) Y P [SIRS +i(+mt ) BRI+ Y i1+ meg, - B,

(6)

B =X 16 + XTI [ Gy (1= Mgy +1)GL1+ YT (1-m-s) G,

B =Y (-GN FYTII[= G+ migy) Gl T (b e -D) G
The & are undetermined whole numbers; we immediately poirit that the
identificationg' = ¢" will show thats, = &=0,& =& = 1.
We remark that by virtue of (4), the functiof}s (
F*, G, F" & (7)

all satisfy the same second-order differential equation:

*) The functionsF, and G’ that one obtains by settihg 0 in (7) are set to zero identically.
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24 S| 1D ®

r h? | c?

for any value of the indeg&.

Such an equation (8) has two linearly-independent soijtiome of them is
everywhere finite, while the other one has a poléabrigin.

Conforming to the theory of retarded potentials and thessdevelopments in which
the multipolar waves appear, one takes:

C . 2mnv
fa(kr)= —={J (k) +i(-1)'J . (kr (h:—j 9
¢k = {3,000+ 3, (k) ’ (©)
for a diverging spherical wave, in which tli& are arbitrary constants (which are
determined by the normalization conditions), ahd , J__, are the well-known Bessel

functions.
For a converging spherical wave, the radial fuurcis deduced from (9) by changing
i into —i (); hence:

D, €°

—i\/ﬁ

in which D, are arbitrary constants, agfl is a phase factor that we have introduced as a
result of the calculations above. Moreover, thgudar distributions of the functiong,s
are obviously the same in the two cases of divgrgimd converging waves.
Finally, consider a wave that is composed of tigesgposition of two spherical waves
with the same center, one of whigfl = ¢ ¢ €™ is diverging, and the other of whighf
= ¢° €™ is converging, and they have the same frequeiheysame amplitudeC( =
D)), the same angular distribution, and preut of phase; hence, one will wripe= 77in
(10). By virtue of (9) and (10), the radial furmctiwill then be:

£°(kr) = {JH% (kn=i(-1)'J__, (kr)} , (10)

fs(kr)= (11)

CI
—=J . (kn).
i 0

The waves thus-obtained are stationary. Theyongdr have a pole at the origin,
sincezthe radial function is (11). That is theectsat was envisioned by W. Heitléod.
cit.) ().

Depending upon whether one is dealing with a divgy, converging, or stationary
spherical wave, the functions (7) will be propamabdto (9), (10), or (11), resp., no matter
what the value of the inde&that the functions (7) are affected with. Thepmionality
factors will naturally depend upon the indiceg,+ S, as well ad.

() See, for example2p], pp. 84.
() When these waves are contained in a sphere of fatias, the frequenciesmust satisfy a relation
that is of no interest to us here. (S28.)
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B. THE SOLUTION®" = ¢" ™. — The solutiord", which will be identified with
@', is easily obtained by noting that one passes fromo (lj) formally by changing and
—iandW into —W. The two solutions (3) correspond to the following twluons here,
upon using the property:
(Ylm)D: (_ 1)m Yl—m;

Type (+) Type £)
¢al:_iH4lraYlT1’ _I(I +m)Hla YITl’
¢02 :_iHJIraYITlﬂi I(I _m_l)Hl—aer—Tl’
¢03 :(I +m+1)|4lraYlm’ Ila Ylm’ (13)
¢H4 = _(I _m) I-l-a Y|m+l’ Ila Ylm’
1=0,1,2;- | = 1,2
m=-(1+1),-l,--,+I m=-1-(0-2);--,[- 1.
H.,, 1., H, I', are radial functions. For any index they will satisfy the
equations:
—| ——+pyc|H, +1,——1, =0,
h ( C :uO j + + r +
R
h c r
(14)
—| ——+yc|H.+ 1. +—=1_=0,
h c r
_ZLT(_W—,UOCJI'_+H'_—|;1H'_=O.
h c r
By virtue of (14), the functions:
HI L1, 1 (15)

likewise satisfy equation (8).
In view of the aforementioned identification, owman consider a more general
solution, namely:

Por =Y (CTHL) HY ™ [ THG (141 m+ A ) HET+ YT (- 1+ me 4) H,

+a

Bo =X THL) +Y ™ TH (=M= 2,) HT+ YT+ (1= mea, D) H)

(16)

=Y™A ey ™ [ (1A mAA ) ] (14 mt A ) I
a3 a T a al’+p -1 a

1+1 +a !

¢a4 =Ym+/la+1 II_;l +Y|m+/la+l[ Il_a _( I _ m_/]a) I|+a] + er_T'/la+1[_( I_ m_/]a _1) ||+;1 .

1+1
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The A, are undetermined whole numbers. We see that the idatith ¢ ' = ¢ " will
give)ll :A3 = O,Az :A4 =-1.

C. IDENTIFICATION. — One can distinguish two cases tivat shall refer to by the
names electrical and magnetic spherical waves, resmforming to the usual
terminology {):

1. Electrical spherical wave One annuls:

F,=F, =F, =F, =0, } a7)

Pt =l =R =R =0,

We then remark that wheR,, = F, ;, we will also haveG,, = G, by virtue of (4).

+041
Upon settings; = 0, one will immediately get:

a==M1=A43=0;, £==1; A2=A4=0. (18)

As a result, upon identifying ﬂ'@g , ¢14 , ¢23 , and¢31 , ¢32 , ¢41 .

iFl :|F| :||+l:| | +1
- . +3 +4 -1 —2_ ) } (19)
i (l _m)Gl-s =-i(l +m)GI—4 =(l+m) H|+1l =(l-m |_|+21’
F|+l:F|+1:_'I| :'I|
g e (20)
(I-mF ==(+mE ==i(+m) Il =-i( -m)I,,
and upon identifying thé1, @12, @1, @22, and taking (19) and (20) into account:

iF+H(-m+DF = -G+ (+m+1)G,;, (a)
iF,'+ i(-mF'=-GL-(-mG, (b

T (21)
—I F+I11+ | (l +m)F—|irl = Gl—a_(l +m)G‘I+3’ (C)
—iF i +m+)F T = G+ (-m+DG,;. (d)
In addition, it results from (19) and (20) that:
¢13 = _¢24; ¢31: _¢4£ } (22)
¢11:¢44; ¢22:¢3§ ¢12:_¢331 ¢21:_¢ 3

These relations (22) express the idea that:

() Cf., the end of &.
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|(1):|(2):0;(:0§,:02:021:0; (22)

i.e., that the six non-Maxwellian quantities are zEmoan electric spherical wave. In
order to verify (22, one refers to the inversion formulas [V, (28)]. Eaquet (214, b, c,

d) are not independent. If one adds corresponding sides,of (b), and €) then one
will get (d). Moreover, forl # —m, (b) will be a consequence of)( and forl = - m,
equation €) will be satisfied identically, since by virtue of (19)daf20):

(I-mF2=-(-mFy (a) } (23)

(I—m)GlS=—(I+m)G_4. (t)

Finally, all of the functiond-:, F-, G, , G-, that were introduced in (6) can be
expressed as functions of two of the other ones; ieratiords, thep,z again include two
arbitrary constants. We suppose that these constant®atained implicitly inG., and
G, forl #-m, and inG,, and G, for| =—m. In order to consider these two cases
simultaneously, we shall leav@., and G', in these formulas, as well &',. It will

always be easy to take the condition (23nto account. The solution of equations (21)
will then give:

2+, =-GL+2(+m)( + 1B,
(2 +1F, =-GL-2(-m)(+1B.,, (24)
i(2+1F*=G',-G,+G,,.

The other functions:
G;, G,, Gi', Fy Fh, F, (25)

are likewise expressed as functions of@lg, G',, G',, thanks to equations (4).

Here are the explicit values of the functighsg .

=P =Y"[- G +(1+ m+1) G,
¢22 :¢33:Y|m[G—|3+( |=m+1) Gl?]1
2 :¢13:Y|T1i F+I3+Y|£n1i(| -m l_i’

~Pi =0 =Y G+ Y (- M G,
~@., :¢34:Y|T1[G—|4+( I=m) q:]’
¢14 :Y|Tfli F+I3+Y|£nzli(| - m—l)F_'4, (26)
3, :Y|T1+1G—I+11 + Yinil( I= m-1) G’_zl’
~ P :¢21:Y|m_l[G—|3_( I+ Gl?]’
¢23 :Y|T1_l(_ i F+I3) +Y|£n£1i(| +m-1) F—la,
G =Y (-G + YL+ mr1) G
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It is pointless to replace the functions (25) in thiesmulas with their expressions as

functions ofG,, G',, G, that one infers from equations (4).

The electromagnetic fields and potentials that epoad to (26) are deduced
immediately from (26) and [V, (28)]. Upon absorbing theltiplicative constant
4niK u,c/h into the two arbitrary constants that were pointedaiove and not writing

2w

out the temporal factog " , one will have the electric field:

Hy +i Hy = Y,T;l(u ! G'*1)+ Ly me1)(i F - G,

Hy— i Hy 1\(,2*;1( iF+'3+Gl*11)+i—1YT[1(|+ m-1)(iF,- &),

M= SYG( R, = G2 +2YT(1- m(iF,- 63,

the magnetic field:

H, +iH, =Y™2(-Gl, - (I-m)G,),
M, ~iH, =Y,"2(G, - (1+ M) G,),
H, =Y"2(- G, - G, +2mG,),

(27)

the vector potential:

- N L G Y- me(iE,+ G

Ve+i =
Vemi V== (1R, -G + YO e me( i Fyr G}
Y, =- ZLC{Y.E( FL 4G + Y7 - i iF,+ G},

the scalar potential:
Ve (-G, + G, +2(141) G

0

Any spherical wave is characterized by two whalenhersl andm; | can take all of
the positive whole number values:

() The case wherle= 0 will be considered later on (end of§
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1=1,2,.., (28)
and for a given value ¢f m can take any of the [(Z 1) values:
m=-1,-(1-1), ..., H. (29)

An “electric spherical wave” of frequeney= W/ h will then have the form:
P 'a“}, =¢ 'a“}, e”™, (30)

in which the 2',,"}, are defined by (26). In addition, that wave will be quedifby

diverging, converging, or stationary according to whethes uses (9), (10), or (11).
However, it is important to point out that this waw gicludes two arbitrary constants.
We shall return to that point later on4g

2. Magnetic spherical wavéne annuls:

F, =F, =F, =F, =0,
F|3—l:F|f1:F|+3l:FI+Sl:O } (31)
+1 +2 -4 -2 :
Upon following the same method as in 1., one will firstl (18); as a result:
iF. =iF,=-iH' =iH',
Gll+l - G|2+1 - |I+l i _||+l ’ } (32)
-3 —4 -3 -4
i(| —-m)F, ==i( +m)F, ==i( +m)H' ,=—i( -m)H",, } (33)
(I-m)G3 =-(+m Gl =(1+m I3=(1-m L7}
and
iF5 +i( -mFST =7[-GL+(1+m+1)G,], (3
iF i -mF=r[-G,-(1-mG] (B (30
~iFi i +m)FS =7[GL, ~(1+m) G ), (9
—iFt+i(+m+)F S =7 [G,+(1-m+DG,,], (d)
in which we have set:
=WotC (35)
W + 44, &

to simplify the writing.
It results from (32), (33), and (34) that:
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=00 Pu="Pu @) } (36)
3570 Pu="TPs Po= T4 TPy O
Upon utilizing the inversion formulas, the six relasg36) can be written:
l,=0, @
o @) (38)
V=0, (b)
H =—2vax’ Hﬁ-ﬂVy, sz_ﬂyz, @)
c c c (36)
o, =iV ®)
4 luocz (2)

One must obviously have (38 and (36.b) due to the equations of the photon. On

the other hand, the condition (3§ implies (36.b) by virtue of the defining equations of
the fields as functions of the potentials.

Equations (34) are formally the same as (21).
The four equations (34) are therefore not independdhts (a consequence od)(

(b), (c), and one can make the same remarks aboui, (§4hat one makes about (B].
¢). Two arbitrary constants ultimately remain. Hoemvor the same reasons as in 1.,
we still leave the three symbo@},, G',, and G, in the formulas. Upon solving (34),
one will get (cf. 24):

i(2+1)F=r[-G +2(0(+m (+1)G.],
i(2+1)F=r[-G,+20-m(+1)G,],
i (2+1)Ft=71(G,-GL+G.)).

+

Finally, we give the explicit value @,z :

2 :¢11:Y|T1i F+I1+Y|£n1i(| -m F—lr
~Pu :¢31:Y|T1G—|3+ YTl( I=m) _é’
T¢42 :¢13:Y|m r[- G—|2+( I+ m+1) Glll]’
T¢31 :¢24:Y|m r[ G—|1+( |=m+1) ql]’
¢12 :YlTIl i F—I1+Y|£n1rli(| -m-1) F—|2'
¢y, =Y GT+ YT -m-1)G,,
—I s :¢14:Y|m+l - G—Iz_( I=m) GI
_T¢41:¢23:Y|m_lT[G—|1_(|+ m qﬂ’
¢21 :YITl_l (-1 F+I1) +Y|£n;1i(| +m-1) F—lr
@i =Y (- G+ YI'(1+ m-1) Gy

(38)
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One immediately infers the expressions for theaeakquantities from (38) and [V,
(28)]. Upon absorbing the multiplicative const&tério c / h into the two arbitrary
constants, one will get the electric field:

. 1 N
H +iH ==c— =~ [-G'. —(] - I 1y™
X I y |W+ﬂ002[ G—Z ( m)G—Z] | 1
1w o
H -iH,=-—2" G, —(I+ "
= el rm el Y (392)
1 N m | -1
H,=— 2 Y"(-G,-G,+2
z |W+/,10C2 | ( G—Z c;—l mG3)’

the magnetic field:

H, +iH, =YTF, -Gl + YT (1- m=1)(iF,- G,
H, —iH, =Y, (-iF, +GL) + Y (1+ m=1)(iF, - GY), (39b)
Hz = YITl_l(iF:1 - Gl+31) + YITl( = m( iF—Il_ Gll_al)-
Recall that the vector potential is given by’ (86

VX:——C_ Hy , Vy:_LHy, VZZ_L.HZ’ (39¢c)

and that the scalar potential is zero:
V=0. (39)

The non-Maxwellian quantities are not necessaselp. One has:

(0, +i6) == YTFL +6L) + YT 1= m( iR+ )
0
K(o,-io,) = —ZL{\GTJ —iF, —GL) + YT 1+ m-)(iF,+ G)}, (39¢)
T,C
h oo . . ]
KUz :_ﬁoc{Ylﬂ( |F+I1+Glal) +Y|T£ |- n)( |F—|1+ Glal)}

Recall thatos is expressed as a functionl@f by means of (3t). Finally:

hc

Klopy=——"0o
@ 2w+ 1, P)

YITl{ - G—Iz + G—l +2(1+1) Gll} : (39f)
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Any wave (38) or (39) is characterized by the two numbarsdm. | can take all
positive integer values)

1=1,2, .., (40)

whereas, for a given value lpim can take any of the (2 1) integer values:

m=-1, ..., +1. (41)

A “magnetic spherical wave” will then be representedhaynotation:
q) Im — ¢ Im eZI'.in, (42)

in which the;'m are defined in (38). That wave (42) will be diverging, cogwvey, or

stationary according to whether one uses (9), (10)1d), fesp. It still includes two
arbitrary constants, which will be examined in paragéaph

Remarks. —

a) Give all functions that relate to electric sphdriwaves an overheagland give all

functions that relate to magnetic spherical functam®verhead:. One effortlessly sees
that one can write:

£

[ — 'ul [ — 'ul [I— (-
G+3_G+1’ G—S_G—l’ G—l_G 2
hence, one likewise has:

£ 1% £ 1% £ H
Flil=71F'3, Flo=71F'}, Flil=7F".
It will then result that, up to terms of ordeyc® / W:

He=-1Hy,
H(gziH(g.

b) It might seem that the Maxwellian quantities €89.d) are necessarily associated
with the expressions (39§ for the non-Maxwellian quantities. That link is oulye to
the method of solution of the fundamental equationswigahave adopted. It is obvious
that the wave that is defined by the fields and poter(®8la — d and using:

0;(:05,:02:021:“2):0

in place of (3% — ) will likewise satisfy the equations of the photon.

() The case in which= 0 will be considered later on (end of)§
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Similarly, the wave that is defined by:
H =0, H =0, V=0, V=0,

and whose non-Maxwellian quantities are given byg30, is likewise a solution of
equations (1), (II). In that case, one can makes s@manks that are analogous to the
ones in paragraph2 of Chapter V. The non-Maxwellian photon that is esgnted by
(39, f) will transport an energW and a moment of impulse whose projection ontazthe
axis will be —mh/ 277and whose length-squared will be equall fo+ 1) h? / 477. (See §
3).

3. Moments of impulse.—In the theory of the photon, the total moment of irepul
operator is a vector whose projection into ztais is:

m,=m)+ni,

in which:
h 0
M= i 04

I’T‘lZ L(I A1 Ay +i By By).

The calculation ofnzdb'a"}, Is extremely simple. One immediately finds that:

h
mo” =-m—ao™ 44
”ﬂ 2 ]T Uﬂ ( )

for a electric or magnetic spherical wave.

£ u
The photon whose state is represented by the fuaetions ® 7, or @ 7, will then

transport a moment of impulse along #exis that is equal to mh/ 27z

On the other hand, the operatydoes not commute with the other componemts
andm, . Conforming to the general principles of wavechamics, that must say that one
cannot simultaneously determine two of the comptamag my,, m,of the total moment of
impulse vector for a photon. When one of the comets is fixed, which is the case that
we suppose, there will no longer exist relatiorst tire capable of determining the other
components.

By contrastnt does commute withy, . We calculater’ @™ and show that we will
have:

h2

Im__
e 4

(1 + D)™, (45)

in any case.
First, here are some general relations: By vidine definition of the vectan:
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h? 3 h?

2_ v h _ S
= (m)7+ 271(m0 S 4P S 241 (46)
Thanks to equations (4):
2 - P By
(m)’G —4ﬂ2I(I+1)G_, (47)

the same relation exists fd¢'*, F/™, and G,. Upon using the explicit form of the
matricess, ands,, one will have:

(mO’Sa + S)) cDaﬂ = (m?( + im?/)(aalcbal - 52ﬂcbal+ 50 3CD 46 - 5;Bcba 9 (48)
+ (m? - inllo)(aazq)w - 5]ﬂcbaz + 5a 4cD B 528q)a 4) + nf[(_l)ﬂ - (_1)0 ]cDaﬂ
and

3(5.8) q)aﬂ = _5/?2 (0,91, +9, @ 3) - 5[1 L0, $ 5+, P 3 } (49)
_5ﬂ1(50'1q) 22 + 50, 3(D 42) - 5ﬂ 3(50, fb 24+ 50' 9) 4) _% (_1)H+ﬂ cbgﬂ ’

in which ¢ = 1 anddyp = 0 fora# B. One remarks that:

m(‘)“mgz_zim ri{—sin@[é¢ai+ cog 2 + |ij} :

Z ox oy
(50)
my —im) = _Zini ri{—sin@[ﬁ”’ %+ cos9[E:—X— Iaiyj} :
Finally, set:
§M=f-—f,  nO=i+71, (51)
in whichf =f (r) is a function of. One has'}, upon writingg for & (r):
0 .0 m 1 m _
(&'Ha_yj f Y| :m{gl Y|+1l_( |- n)( |- m_l)/Z IY—nll}1
i—ii fym :_1 (=&Y +(1+m( 1+ mD) g Y73 (52)
6X ay | 2|+1 I 1+ I'-1 J»
0 m 1 m
EfY' :m{ﬁ Ya+(l+=m( = mrg Y3}

Note the following relations:

() See§], pp. 232.
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YT+ (I +m=)(I- m+ 1) YT = (2+ 1) co® Y™ ,

YO +(I-m+)(I-mY, =2 K Dsing & Y™, (53)
YT+ (I+m+)(I+ m YT = (2 +1)sing €7 Y™,

These few formulas will permit one to perform thécekation of then? @™ for an
electric or magnetic spherical wave with no difftgul For example, one can calculate

e & . One finds from (47) that:

[0} 2 [0}
e ' :;_,72'(' O™, (54)

Then, upon denoting the radial functions&»f“, c(lJJ'l"; ... byfi1,f12, ..., resp., one will
have:

y m h m

(Mo~ Sa+%) 1) =—5TY. [far (Il =m+1) +f1o (| + m+ 1)]
y m h m
%(Sa SO)¢I11 == _YI ( f22+% fll);

217

hence, upon replacing thig with their values:

h 1K cm__ N 3%
{E(mogaﬁL%)‘*Ezmz(% %)} n=" % (55)
(46), (54), and (55) give:
" Im _— h2 " Im
mZ(D11 __4;72|(| +1)P 7.

The calculations will have the same form for theeo components whose indices
“are of the same pair” (12, 21, 22, 33, 34, 43,(#4) One will have some simplifications
for the components whose indices “have differemspd13, 14, 23, 24, 31, 41, 32, 43).
For example, foPi4 :

£ m h2 £ m
(m)? @l = e 1+ +2)®7;,
£ h2 £
(m0'5a+5b)¢'1n2:‘ﬁz(|+2)¢|14’

£ 1 ea Eoim 16
7 (S %) ¢'14:‘§(—1)14¢'14 :§(DI14’

hence, one further infers that:

(") Translators note: The “pairs” in question are 12 andpgarently.
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h2
477

(M) g =-—11+DPy;.

One will encounter the same calculations as abotige case of a magnetic spherical
wave.

Formulas (44) and (45) express the following fundataltheorem:A photon that is
represented by a Wav@'a"}, will transport a moment of impulse whose projection onto the

z-axis will be equal to — mh27z and whose length-squared will be equal b+ 1) h? /
ATt

We can deduce some theorems about the flux anch wedaes of the moment of
impulse from these general results.
First, consider a diverging spherical wave (Multiply both sides of (44) on the left

by c®; (As+ Ba) / 2, sum over the indicasandf, and integrate over a closed surface
that surrounds the origin and tends to infinityneQuill get:

A, +B A, +B h
cPP" AL ma S = chP" 2D LAS{- m—. 56
‘Jf S, gS . -m (56)
(Sis the closed surface around the origin that témdlsfinity.) The integral:
chcbDMcb (@S
< 2

represents the number of photons that cross tHacsus per unit time 20]. When
multiplied byhv, wherev is the frequency of the wave considered, it wélldgual to the
energy fluxz that crosseS per unit time. On the other hand:

A +B _ A +B h ¢ (A +B,(SS+9)
cPd’' A A mdp S = 0247 Ps +c— @A T4l & [dS. 57
gf Stm chScb S i S 2ﬂ<£> > 5 (57)

The first integral on the right-hand side of (53)the flux of orbital moment that
crossesSper unit time. Finally:

N o ArB st S o h Bt AS L h o ABS- 8, (g
2 2 2 2 2 2 2 2

The first term on the right-hand side of (58) e tmean-value density of spin,
conforming to the definition [V, (20)] of mean-valulensities. Upon using the inversion
formulas [V, (28)], the second term is written agjply as:

() For ease of notation, in what follows, we shall sepgrthe indicesandm that the symbol® z are
affected with.
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h
21

oA ;B4 B ‘2§ ¢ = 4ic(_\/DHZ -co’l,) + coni. (59)

(59) is zero for a wave whose scalar potential is,zeimcel;) = 0 for an un-
annihilated photon. We place ourselves in the case where

V=0. (60)
The expression:

0 A, +B _ DA4+B4 L DB4S§+~A4§ «
ciSqa o m® s = chScb Tmfcbtd& CZHgSScD S o0

will then represent the fluyM, of the total moment of impulse along thaxis that
crossesS per unit time, and the relation (56) can be wnitte

M, _ —m _ (61a)
2 2nv

On the other hand, upon using (50), (52), and, @3 will find that:
My=My=0. (61b)

In the case of an electric spherical wave, thaiing of the scalar potential will fix
one of the two arbitrary constants. The remaimogstant is then a multiplicative
constant that will determine the intensity of thave; it will be fixed by a normalization
condition. In the next paragraph, we shall se¢ tiva real part of the electromagnetic
field thus-specified will be that of a classicag@ticl-pole wave, up to terms of ordes
c?/W. For an electric dipole wave£ 1,m=-1, 0, or + 1), (61) is nothing but the well-
known Abraham-Sommerfeld formul§ (

In the case of a magnetic spherical wave, one fxaone of the two arbitrary
constants in such a manner as to obtain the eteatyoetic fields of a classical magnetic
multipolar wave (see @). Formulas (61) then generalize the Abraham-Soriaice
formula to the case of electric and magnetic malépvaves.

We remark, in passing, that in order to arrivéedta, b), the condition (60) can be
replaced with the less-restrictive hypothesis that:

<ﬁ (V' H, + conj.)dS= 0. (62)

S

Now consider the case of a stationary sphericaewaVultiply both sides of (44) on
the left by®™ (44 + Bs) / 2, and sum over the indicesand3. That will give:

() In [20], we have obtained formulas (@1b) in the cases of electric dipole and quadrupole waves by
direct calculation.
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A, +B +B h
®" 2 _—4m ®[xdyd= CD = oldxdy d4(- m—, 63
gS ‘m, y qS = yda- (63)

in which the integration extends over the domginf the entire sphere in which one
finds that stationary. The integral:

A, +
N = gScbD > 4cbmxdydz

expresses the total number of photons that are situatbd sphere; the product:
U=N hv

will then be the total energy in the wae When one takes (60) into account, the left-
hand side of (63) will become the valik of the projection onto theaxis of the total
(orbital and spin) moment of impulse of the wabe The relation (63) will then be
written:

M, = Zm (64)
Uu 2w’
On the other hand, one will find that:

W. Heitler obtained that result (2) in the classidéxwell theory R2] for a
stationary electric or magnetic multipolar wave (s of 84).

Some analogous theorems can be written down concettmngieans value of the
square of the length of the total moment that is tramegdy a “multipolar photon.” The
operatorn? does not have the canonical type (20), since it includesupts & ).
However, by virtue of the relations (45)¢ is equivalent to the canonical operaltdr +
1) h? / 477 in the case of spherical waves.

4. On the complete determination of spherical waves. Migbolar waves.— The
spherical waves that were defined in paragrapdtill include two arbitrary constants
whose role we shall now study more closely. Wetkaya spherical wave is completely

determined if the expressions fm';;, are given up to a multiplicative constant. They
will always be present, due to the fact that the equatdthe photon are homogeneous
in the ®,5 and their derivatives: P4z is a solution therC @44 will also be one =
constant). That constant will be fixed by a normaimacondition. For example, for a
stationary spherical wave, one can write:

<j’> CDD# ® [dx dy dz=

v
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For a diverging or converging wave, for example, cae write that the flux of photons
that crosses a closed surféggéhat surrounds the origin and tends to infinity is equal to
one photon per unit time. However, we are not intecks the normalization of the
wave here.

We shall show that, up to terms of orderc® / W (in which, W = hv), the electric and
magnetic fields of an electric and magnetic sphemeale of frequency will depend
upon the same single constant.

First, consider the case of alectric spherical wavelntroduce the notations:

G,=ag G,.=bg G, =bg

in which a, b', b" are three “finite” constants; i.e., they do not tendzéro when one
makestp — 0. By virtue of (23)b" andb” are coupled by the relation:

Il-mb=-(1+m)b".
Set:

__ h (_l j £ o h (g_|+1gj
27TW - 14, &) 9779) C2mW + 14, ) r)

_ 244, _b'-0+2la
a= : C=———.
(2 +HW - 14,c*) 21 +1

One will then have:

iF,-G''=iCf,+ia("-b -a)f,.,

iF, -G '=-i 'Iila +mCt+ialb-2a(+21)(+m)]f,
iF!, -Gl =i 'IL1(| -mCf+ia[b" +2a(l+1)(-m]f,

Gl +(1-mG,= 221 -m Cg,

Gl -(1+mG,= -1 +mcg,

-G, -G,+2mG,= 2|I—+1ng

Hence, up to terms of ordgg ¢ / W (or a):
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HXHHy:C[tMﬁLﬁ%}U—nNV‘m_DfYTﬂ’

HX4HY:C[—nm§LJ%Eu+nML+m—ntyT}, (662)

szc[tY,Tl—ll—ﬂ(H m(1-m in”l]

21+1
I

Hx—iHy:—CZII—H(I +m)g Y, (66b)

(I-mgy™,

H, +iH, =-C

#,=cZmgy’

It results from these formulas that in order toehé&finite” electromagnetic” fields
(i.e., ones with terms other than ones that aregotmmal toa), one must suppose that
# 0. In addition, any relation that establishes a liskween the two arbitrary constants in

order to completely determine the wa\tb'g"}, will change only the terms in the
expressions for the electromagnetic fields thatpaoportional toa ; the right-hand sides
of (66) will remain the same. However, the potenfil§/ can vary by finite quantities.
In order to see that, take an example. First set:

~b"+b +2(+1)a=0,

which expresses the idea that the scalar potential ne. zeThe radial function
(iF,+Gh/2mu.c that appears in the vector potential will then have iaitéf

coefficient; indeed, it is equal to:
hc

———af.
n (\N _:uocz)
Moreover, one will see that with the condition 6@ne will have:

_ 2mW
hc

H= V.

Now set:
a4 W+ b -b'+a_
W-u,¢  21+1

which expresses the idea thi#t, +G':" is identically zero. In that case, the scalar
potential will no longer be zero; it will be equal
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hc

——— (2 +1ag
R A

However, the fields (66) are the same in both cagesertain indeterminacy in the
potentials then persists in the theory of the photoh ¢beresponds to the well-known
indeterminacy in Maxwell’s theory. That indeterminadil se removed when the terms
in the fields that are proportional tg ¢ / W lead to measurable consequences. We have
seen that in order to obtain the theorems (69) and @&had to impose the conditidh

= 0. That condition determined an electric sphericmmr\m'a“}, completely, but it is not

also certain that it is essential. Indeed, the régmaoon the proper values (44), which is
more fundamental than (61) and (64), does not require thelra@nt of the scalar
potential. Rather, it seems that it is only by a stofdthe phenomena of the production
of electromagnetic waves and the interaction betwd®ions and electrons that these
problems can be solved in a satisfactory manner.

The case of a magnetic spherical wave is treatad mnalogous fashion. Thanks to
the correspondence that exists between the expressiotige felectromagnetic fields of
electric and magnetic spherical waves, it is no lomgeessary to redo the calculations.
Here, one necessarily h& = 0. Therefore, not only the fields, but also the vector
potential, will depend upon a single const@nup to terms of ordem, ¢ / W.

Multipole waves— The spherical waves for which the const@nis non-zero are
referred to in particular by the namerotltipole wavesThat term is justified by the fact
that the real parts of the fields thus-obtained willtlhe multipole fields of Maxwell’s
theory, up to terms of ordeg c® / W.

We point out that the expressions that are obtainezl frem multipole waves differ
from W. Heitler's expressions not only by the consitleraof the wave function® .z
and non-Maxwellian quantities and the proper massf the photon, but also by the use
of the radial function& and G, which seem to simplify the formulas. Finally, unlike
Heitler, we do not annul the scalar potential.

Remark. — The case in whic&@ = 0 merits attention. For an electric spherical ayav
the hypothesi€ = 0 defines a zero magnetic field, an electric fibkt is proportional to
Lo ¢ | W, a vector potential, and a scalar potential that ipqutmnal toh / 1o c. The
products of a component of the field with a componenthef potential will then be
“finite.” It will result, in particular, that the desity o will be finite (i.e., non-zero agop
~ 0). Inn other words, the fields of ordgg ¢ / W correspond to a “finite” current-
density vector. The states of the photon that areactexized byC = 0 must then be in
the same class as the non-Maxwellian states whaoskecein vacuois doubtful. Note
that the case in whidh= 0, which was not considered up to now, has that typeause
the two constantly’ andb” will be zero then.




CHAPTER VII

STUDY OF THE INTERACTION BETWEEN
AN ELECTRON AND A PHOTON

1. Wave functions of the electron and the photon- The coordinates of the electron
and the photon with respect to an inertial trihedaailéd fixed) areX *=X, Y!=Y, 7! =
Z andx' = x, ¥ =y, X’ = z respectively. The clock that is attached to thettial
trihedron will display the time.

The Dirac Hamiltonian operator, which was defined ihd Chapter IV [IV, (65)], is
now written:

0
H=SYca |22 +&y ] veviamc 1
Z_;‘ (2max1 c j ! @

Recall thatV and V are the electric and magnetic potentials, resp.the non
luminous Maxwellian field in which the electronfsund. We shall consider only the
case in which the non-luminous field is independeitime 7 ; V; andV will then be

functions ofX, Y, Z
As in [IV, (66)], the complete system of the fuoeisf" (X, Y, Z) will be such that:

Hefr= En g n=12, )
- v y=1,...,4,

with

mg[Z(fy”)ny”jdx dy dx=1,

(3)
mg[Z(fy”)ny”'jdx dY dx=0, for h# n

The function:

zﬂE”

w(xvzn = f(XYZ)e 4)

will then represent the state of an electron of@nE". In a general fashion, the state of
the electron that is placed in the fi@klV will be defined by the sum or series:

w=>ay", (5)

in which thea, are constants. We normalize them, so:

dla, f=1. (6)
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For ease of notation, we likewise write the comp#stetem of functiongy}, (x, y, 2
of the photon in the form of a denumerable sequenceBf definition, theg,, satisfy:

p=12,..

H® + H®ygP = EP P,
( 195 =E" 51 4 7)

(H® ~H")g, =o0.

Those functions are normalized and orthogonal:

I {ZZ(%)DA ggﬂj dxdy dz1,

(8)
.[.U (ZZ( gaﬂjdxdydz-o for pz p
the integration extends over the entire sgaoéthe variables, y, z
The functions:
2n EPr
Y, Z D= gl (xy, 2 el 9)
then represent the state of an un-annihilated photoreodeE".
The annihilation solution is [V, (8:
(Dgg = (0'4)57,8 . (9)

As we explained already in [V, (@ the constantl is introduced for dimensional
reasons, but it plays no essential role. One ha&)Y,

(H® + H?) o) = 0. (10)
In a general fashion, the state of the photon willl&ned by the sum or series:

Dag= D b, B, +by P, p=1,2, .., (11)
p

in which theb,, by areconstants.We also write:

D= D b, 4, u=12, .. (12)
U

() To that end, one must be able to suppose that therpiofound in a finite volume; for example, in
a cube of volumé®. That is a hypothesis that one frequently makes. {&eexample, 25|, pp. 41.)
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We normalize them; hence:

Db, f=1. (13)

U

Having done that, the state of an electron of gnéfgand a photon of enerdsf, when
envisioned simultaneously, but not taking the etéon into account, will be represented
by the products:

WY ZX Y, Z )= 0y, 2 ) ¢)(X Y, Z 7). (14)
When the photon is annihilated:

e

apy

XY, Z =Dy (XY, Z1). (15)

In a general fashion, when one neglects the ictierg the state of the electron-
photon system will then be defined by:

W = 22cpn¢gﬂw;+2con¢ggw;, pbn=12, .., (16)
p n n
or
Wagy= D > C Pl u=12 .., (19
“ n

in which thec,» areconstants.More especially, one can suppose that:

Wop, = [Zbﬂcbgﬂj(z :w;j; (17)

hence:

C,un = b/j an (18)
and

| Cun P = 10uF |an P (18)

By virtue of (6), (13), and (18), one will have:
>2lef=1. (19)

In the convenient language of the calculationrobgbilities, (18 expresses the idea
that the probability of finding the electron-photan the stater{ ) is equal to the
product of the probabilities of finding the electrm the stater() and the photon in the
state f/). It is natural to assume that this property niaestealized, which will lead one
to accept that th&’ ,5, must have the form (17). However, (18) will net ised in what
follows.
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2. Transitions caused by interactions— In Chapter 1V, &, we saw that the study of
the interaction between light and electrons consssentially of the study of the electron
transitions that are caused by the light wave. Thatl@nois now transformed into the
study of the interaction between a photon and an electibims time, the perturbation
that is due to the interaction will have the effecsiriulatingtransitions in the electron-
photon systeni16). The general form of the argument will then aenthe same as in
IV, 8 7; see remark. The ¢, become functions of tintehatmust satisfy the variational
equation:

h

1 d .
5.[5{2#:;;;C5n(lﬂw’d _5ﬂﬂﬂ'ﬁ2_niajcﬂ’h +CO”J-} dr=0, (20)

as in IV, (86), in whichon, 4n IS equal to unity fop = ¢ andn =n', and it is zero in all
other cases.
In (20),1 is the interaction energy operator, dpd, are the elements of the matrix
of that operator in the system of proper functions (14).
It remains for us to determine the operdtoWe suppose that this operator has the
form:
=1 @+ 0 (21)

like all of the main operators of the theory of thetom.
In Dirac’s theory, where the light field is a Maxhah electromagnetic field, we
have seen [IV, (72)] that the interaction is represkebie

o Sa v @2)

j=1

in whichY ® andV @ are the vector and scalar potentials, resp., of the Idkfield

considered.

The interaction operator of the theory that is beireg@nted is obtained by replacing
the electromagnetic potentials in (22) with operatorshos€é operators are not the
matrices:

_k AatBy k.1l (23)
2 2

that L. de Broglie associated with the potentials; wall See the reason for that later.
We shall show that one must takg (

() K’=K/A; see formula (9.
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- A
1@ =e| > a, %7—%3}5@ X)o(y-vo(z 2, (&

- 5 (24)
|0 =@ Z J[_ﬁ_j+%%}5(x X)o(y-Yo(z 3. (b

The productd (x — X) o(y — Y) 0 (z — 3 of three Dirac functions expresses the fact
that the interaction will take place only when therdimatesX, Y, Z of the electron and
thosex, y, z of the photon are identical at the same instarithe matrices (23) lead to an
operatorl ® of the opposite sign to (23). Recall that according to L. de Broglie, the
photon is composed of the fusion of a Dirac corpuscle ienatorresponding anti-
corpuscle] @ relates to the Dirac corpuscle, ant relates to the anti-corpuscle. One
can make the change of the sign that is introduced whermpasses from (24.to (24b)
more plausible by some considerations that are based lpsa temarks. However, the
necessity of the change of sign is seen clearlheneixpressions for the elements of the
matrix|m, un

Conforming to the general definition [V, (20)] of thetmaelements of the theory of
the photon, one has:

(a) (b)
SBI@ + A

lon, pri = j j L dXx dy dzj j L dx dy dzy"d") > OLLS (25)
lon, pirv = j j L dx dy dzj j L dxdydmw”da‘o))mwdﬂw”, (26)
| on o = j j L dx dy dzj j L dx dy dﬁqw”qop)ﬂwdo‘%”. (27)

As we are currently doing, we have omitted thacesla, S, yand the summation
signs over those indices from formulas (25), (26y (27).
In addition, one has:

|On, on — 0, (28)

with one or the other of the two definitions [Vﬁ(j?.or [V, (20)].
By virtue of the definitions (24) of @ andl ®, and upon using the definition [V,
(23)] of the electromagnetic potentials in the tigenf the photon, one will get:

lon, v = g [[].dx dy dz{Z(wn)Dajw' W+ @)y Dvﬂ, (26)
i

lonov = 2 [[[ ax aY dZ{Z(MP)DEﬂw“)%w” (V)@ } . (26)
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One now sees why we have taken the expressions (24f%and! ®. Thanks to
(24), one will recover some matrix elements in'Y2@7) that are comparable to the
matrix elements,  of the classical Dirac theory [IV, (77)]. Nevertées$, the elements
of Chapter IV, § 7 are not identical to (R&nd (27). They differ in two ways: In [IV,
(77)], the potentials weneal, whereas here they are complex; in addition, onenotle
the presence of the factor 1/2 in '(2énd (27), which did not figure in [IV, (77)]. The
meaning of those two differences is shown by the exampl¢hich the real wave is a
monochromatic, plane, Maxwellian wave that is pak rectilinearly. One can write:

V3=V, =acosw (t —%j : (29)
or, what amounts to the same thing:
_ [ Joft-x/c) | iaft-x/c)
V, = Z[e +e ] (29)

Now, the action of the wave on the electron decoepodo precisely two parts, as is
shown by (29. In the phenomenon of absorption, only the term:

Eeia)(t—x/c)
2
intervenes.
In the theory of the photon, the complex potentiat ttorresponds to (29) is:

Eeia)(t—x/c) .
2

In order to see that it Ig, pw that plays the role here of thgy in the classical theory
[IV, (77)], it will suffice to compare equations (37) (sbelow) with equations [IV,
(78)]; one will then understand the necessity of theoiatt2 in (26).

The matriced,n, pn are defined completely by (25), (26), (27), and (24). Now take
thevariational principle(20); i.e.:

5j L£dr=0, (30)
with:
h

D3 3ot e I

TheLagrangeequations of (30) are:

oL _d oL
occ, drac,

n

= O, (32)

with
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dc’

Cp = —2,
Moodr
and the conjugate equations:
—MD _1_6.5 =0, (33)
dc,, dr acgn
with
dc
¢ = —10
Moodr
Explicitly, equations (32) are written:
h . _
57 G = 22 gt G (34)
4 on

Equations (34) imply thelectron and photon transitiortbat are stimulated by their
interaction; they are represented by the opetator

3. Conservation law.— By virtue of equations (34) and their conjugate® has:

%[z;mﬂn rj -0, (35)

The verification is immediate.

Thanks to (35), if the condition (19) is satisfiadan initial instant then it will be
satisfied at any instant. That condition has gpenphysical meaning: It means that the
electron-photon system will certainly be found mewf the stateg«(n) at any instant.

4. Case of Maxwellian waves- At this point, the most interesting case isdhe in
which the waves®® are Maxwellian; i.e., all non-Maxwellian quantgighat are
associated with th@P are zero. Upon referring to [V, (75)], one wilkin have:

lyn, o = 0. (36)

All of the matrix elements that correspond to tlasgage of the photon from the stgte
to an arbitrary (un-annihilated) stag@re then zero. Equations (34) then become:

h .
Tmcpnzzlpnohcoh’ (a)

" (37
2_77iC0n = Zp‘,zn: Lon, g1 C s (b)
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These equations account for the elementary phenothanhaonsist of the interaction
of a Maxwellian photon and an electron. They arewknobut they were obtained by
methods that are sharply different from ours, in tiaty are more complicated and
utilize the quantum theory of the electromagnetiafi®). In Chapter IV, § 7, we made
some remarks on the subject of those methods.

() For example, see2fl], pp. 237,et seq. and P5. The case of a system of photons (both
annihilated and not) in interaction with an electrotrésited by using the wave mechanics of a system of
photons. One will recover the results of those ditveories when one makegend to infinity.
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