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OPTICS.

Purely geometric proof of the fundamental principle
of the theory of caustics

By M. GERGONNE.

Translated by: D. H. Delphenich

On page 14 of the present volume, we expressed the viéwvéhaould provide our
readers with a proof of the fundamental principle of tteory of surface caustics for
refraction that is just as simple as the one tha green by Dupin for caustic surfaces
under reflection. An article by Timmermans, a professomathematics at the royal
college of Ghent, that was inserted into @@respondance mathématique et physighie
the kingdom of the Netherlands (tome I, no. 6, page 33&@ihws a collection that is not
widely distributed in France, put me into a position oliiaving that goal beyond my
hopes. It is true that the author falls a little $hand his proof relates to only plane
curves. However, there is little to be done in ordesxtend it to curved surfaces, and, at
the same time, to give it all of the development thageems to lack. That is then the
objective of what we propose to do here.

Let two arbitrary curved surfaces be situated in whatesy that one desires with
respect to each other, but absolutely fixed in spacagiima two concentric spheres that
are moving and have variable radii, but in such a mannethé@tradii always preserve
a constant ratio between them. Furthermore, suppaséiese spheres move and vary in
size in space in such a manner that they are constantent to the two surfaces in
guestion, respectively. Their common center will gateer third surface that one must
relate to the other two.

Suppose, to begin with, that the two given surfacespéear surfaces that we
represent by andp’, respectively. It is easy to see that the third Bneill also be a
planar surface that passes through the intersectidimediirst two. Indeed, let there be
two spheres of arbitrary locations and sizesMédie their common center, and tetand
m' be the points of contact with the two plapeandp’, respectively, in such a way that
Mm andMnt are radii of these two spheres, radii whose ratiassumed to be constant.
Let a third planeP be laid through that cent& and the common section of the two
planesp andp’, and choose the poiM; on it arbitrarily. Drop perpendiculaké;m; and
M,m; from that point onto the plangsandp’, resp.; these perpendiculars will be parallel
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to Mm andMm, respectively. Upon then lettingdenote the point where the liléM;
meets the common section of the three planes, ohbavik:

Mm _ IM Mm _ IM
Mlm_ lMl, Mlni_ lMl,
and, in turn:
Mm _ Mm M.m _ Mm

or furthermore

Mlm Mln.g , Mln.g Mm’ .
Therefore, one describes two concentric spherdsegtdintM;, which is taken to be the
common center, that have the radiim, and M,m . These spheres will be tangent to the

two planesp andp’, respectively, and their radii will have a given constatio. That
will be one of the locations of our two spheres whiosations and sizes vary in space.
One thus sees that all of the poiis of the planeP will be centers of such systems of
spheres, and it is, moreover, easy to see that thelgenihe only ones in space.

Now, suppose that the two given fixed surfaces are anpjtdenote them byands,
and letS be the unknown surface that is the locus of the ceotfethe spheres. L&f be
one of the locations of the common center on thdaser For that location, leh andnY
be the points of contact of these two spheres welsthifaces ands, respectively. For
an infinitely small change in the position of the comna@nter, and as a result, in the
size of the spheres, one can replace the two sureaneds with their tangent plangs
andp' atmandm, resp., and then, from what was proved above, the concewter
can be assumed to move on a plénihat passes through the intersection of the other
two. That plané® is then the tangent planeMtto the surfacé&that is described by the
common center. Therefore, in all of the positiofigsh® common center of the two
spheres, the plané p, p' that are tangent to the surfa&®s, s at the pointsvl, m, m
will intersect along the same line, which varies initgms like the pointM.

Imagine a planél through the poinM that is perpendicular to that line, so the line
will be reciprocally perpendicular to it. The plarig$, p', in which that line is likewise
found to be contained, will thus also be perpendidwlahe plandl. It will then result
from this that the radiMm and Mm', which are perpendicular to the planesndp’,
respectively, and consequently normal to the surfaeesls, resp., will be in that plane,
and that the same thing will be true for the perpendidbktris drawn through the point
M to the pland® that is normal to the surfa&at that point.

Let| be the point where the intersection of the thremgsdP, p, p’ is cut by the plane
1, and consider what happens in the latter plane. (e ha

sinnMm= sinmIM = %

sinnMm = sinm'IM = %
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Therefore:

sinnMm _ Mm

sinnMm~ Mm

Due to the fact that the right-hand side of this equatiassumed to be constant for all

sizes and locations of the system of two sphereslefhrhand side must be constant, as
well. The characteristic property of the surface th#é the locus of the centers of two

spheres can thus be stated as follows:

If two concentric spheres move in space with variable radii (althoughattie still
have a constant ratio, moreover) in such a manner that that they are conssauggint
to two arbitrary, but given, fixed surfaces, respectivelyn ttie locus of their common
center will be a third surface such that if one draws normalh¢oother surfaces from
any of its points then these normals will be in the same plane astimal that is drawn
from the same point to the surface that is the locus of the certeesddition, the sines
of the angles that are defined by the first two normals with ithalle a constant ratio
that is equal to that of the radii of the two sphe(rgs

Therefore, if one supposes that the surfage the separating surface between two
media for which the sines of incidence and refractioretthe same constant ratio as the
radii of the two spheres and that the incident ragsatirnormal to the surfacethen the
refracted rays will all be normal to the surfateOne then has this theorem:

Imagine two homogeneous media with unequal refringent powers that are separated
from each other by a surface of an arbitrary nature, and rays of light thretgzge from
one of these media into the other. If the incident rays are ditantspace in such a
manner that they can traverse the same surface orthogonally then theefrags will
also be directed in space in such a manner that they will traversemanon surface
orthogonally, and conversely. In addition, each orthogonal trajectory surfaceident

() The editors of th€orrespondencadvised us in a note that Timmermans was in possesbibis
theorem before he was made aware of the article @& $4b of our volume XV.
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rays will always provoke an orthogonal trajectory surface of refractsg@ such that at
any point of the separating surface between the two media where onerinamas to

these other two surfaces the lengths of these respective nonth&ksve a constant ratio
that is equal to that of the sine of incidence to the sine iafatesn.

It has already been observed several times beforknatably on page 14 of the
present volume, that reflection is only a special a#seefraction, namely, the one in
which the sines of incidence and refraction differ onlythgir signs. Therefore, the
foregoing will implicitly contain the entire theory caustic surfaces for reflection.

It was observed on page 15 that the theory of planaticaueither by refraction or
by reflection, is only a special case of that of dausirface. Therefore, what little that
we have just said implicitly contains the entire tlyeof planar caustics and caustic
surfaces, whether by refraction or by reflection.

Let us take a look back at this point. We shall refar thinking to the point of
departure of the geometers in the theory that we wilsicier and rapidly survey the
space that one traverses. In 1682, Tschirnhausen wasstht® ftomment on the planar
caustic that is formed by parallel rays that are cédié in the circle and propose to look
for the equation. This problem, which is only a diverdimthay, was quite difficult back
then. He gave a solution that was falsely attribute@assini, Mariotte, and de la Hire,
who were commissioners of the royal academy of seian Paris. That effort was
unsuccessful in attracting geometers to that sort ofesurwhich one soon perceives
might give the true key to all of the mysteries of cgti Bernoulli, 'Hépital, Carré, and
some others have, in due course, made it the spec&dtoddj their research and gave
general methods for obtaining the equation of an arbitpdeipar caustic, either by
reflection or by refraction.

In 1810, Malus was the first to consider the general thebrcaustic surfaces and
found some beautiful theorems. However, some errotha calculations, which is an
almost inevitable result of a very complicated analysd,him to deny these theorems
the generality that they actually deserve. In 1822, Drgualled Malus’s theory, gave it
the complement that it was lacking, and in 1823, in an aisathat is likewise quite
complicated Annales t. XIV, page. 129), we dedudbe possibility of replacing the
effect of an arbitrary number of refractions and reflections on thettetsare originally
normal to the same, arbitrary surface with either one refraction orrefiection.

Some research that related to some special caseffeation and refractionAnnales
t. V, page 283, t. XI, page 229, and t. XIV, page 1) led us in 18Ebgpect that most
oftenthe especially complicated caustics might very well be onlglalewents of other
curves that are really quite simpldn 1825, Sturm, by characterizing the curve whose
caustic relative to a circle is a developal®arfales t. XV, page 205), gave new weight
to that conjecture. Almost at the same time, Quepelbtished some elegant theorems in
planar caustics, in generdflémoires de I’Académie royale des Sciere®Bruxelles, t.
lll, page 89), where those of Sturm related to only speesds, moreover. After having
proved these theorems by analysis (t. XV, page 345), wended them to caustic
surfaces on the first page of the present volume, altigSarrus, almost at the same
time as us, or rather, we gave a simple and gerferatém that contains all of the theory
of caustics and surface caustics, whether by refractidoy reflection. All that remains
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to be desired is a simple proof of that theorem, and himmwnermans has produced one
that has reached such a stage that it can be introducedne’s education at even the
most elementary level, and one can only be surprisadiththe interval of nearly a
century and a half so many geometers have worked so dratdmade so many
calculations in order to finally arrive at a resulatthvas, so to speak, right under their
noses. Except for the applications, which alwaysr gifactical difficulties, that theory
can presently be regarded as complete. However, onepamssthrough various detours
in order to reach that point, because in all situationghich there are both more general
and simpler things at the same time, it is the orglinhat last presents itself to one’s
thinking. Many other theories are also associated anthapparent perfection of the
collective efforts of geometers, and they have prawezful to science only by directing
one’s meditations towards a very important objectivd. the point to which we have
arrived today, we have, indeed, much less of a need teeaneat theories as a need to
reduce the theories that are already known to theiplest forms, if one might be
permitted to say that.




