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 Introduction. – This article is the development of four notes that were published last Summer 

in the Comptes-rendus de l’Académie des Sciences (1). Our purpose is to show, on the one hand, 

that the expression for the Lorentz force will necessarily lead to the consideration of a parallel 

displacement in a five-dimensional space whose metric is, admittedly, degenerate, like the one in 

Galileo-Newtonian space. On the other hand, we shall look for some consequences that one can 

infer from the study of that space when we have specified its nature by some hypotheses. We will 

recover some results that are due to Kaluza and relate to the Maxwell equations (2), and we will 

obtain a new interpretation of the equation that Schrödinger placed at the root of his wave theory 

of mechanics. 

 It should be said that it was by meditating on the fundamental paper by E. Cartan on manifolds 

with affine connection (3), those of E. Vessiot on the propagation of waves (4), the chapters that 

Hadamard dedicated to the theory of characteristics and bicharacteristics in his two great works 

(5), the beautiful thesis (6) and suggestive book (7) of L. de Broglie, as well as the brilliant papers 

of Schrödinger (8), which led us to the synthesis that we propose. Neither would we like to 

overlook Kaluza (9), who was the first to have interpreted electromagnetism in a five-dimensional 

space, or O. Klein (10) and Fock (11), whose work on those questions was rife with interest. 

Meanwhile, we shall depart from those three authors at some points. Our method is different, and 

we seem to conform more to the nature of things, and furthermore our results are more complete 

and lead to wave mechanics, as well. 

 
 (1) C. R. Acad. Sci. Paris 185, pps. 341, 412, 448, 535.  

 (2) Sitzungsber. Berlin (II) (1921), 966-972.  

 (3) Ann. Ec. norm. sup. (3) 40, pp. 325, ibid., 41, pp. 1  

 (4) “Essai sur la propagation par ondes,” Ann. Ec. norm. sup. (3) 26, pp. 403. “Sur l’interprétation mécanique des 

transformations de contact,” Bull. Soc. math. de France 34, pp. 265. 

 (5) Leçons sur la propagation des ondes, Paris, 1903, and Lectures on Cauchy’s Problem in linear partial 

Equations, New Haven, 1923.  

 (6) Thesis, Paris, 1924.  

 (7) Ondes et Mouvements, Paris, 1927.  

 (8) Ann. Phys. (Leipzig) (1926), passim.  

 (9) Loc. cit.  

 (10) Zeit. Phys. 37, pp. 895.  

 (11) Zeit. Phys. 39, pp. 226. 
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 Without pretending to give an exhaustive bibliography, we can further cite some works of L. 

de Broglie (1), Schidlof (2), and Rosenfeld (3) that appeared while our notes in the Comptes-rendu 

were being written and sent, or as they just appeared. In any event, we could not have been inspired 

by them; their viewpoints differ from ours, moreover. Finally, J. Struik has advised one of us that 

a paper that was written in collaboration with N. Wiener will appear and that it will treat a five-

dimensional universe. We have seen that paper (4) while our article was being written, but the 

methods are quite different. 

 One then sees that the consideration of a five-dimensional space has been the subject of several 

works. It would seem that what some believe to be merely an artifice that was created by 

mathematicians is, on the contrary, imposed or at least suggested by the nature of things. 

 

 

I. – On the equations of electromagnetism. 

 

 1. – Consider a material point in a Minkowski space E4 whose rest mass is m, and whose 

charge is e. Let 
0u , 

1u , 
2u , 

3u  be the components of the world-velocity of that point, and let 0 , 

1 , 2 , 3 , with i  = imu  denote the components of the world-impulse of that same point. 

Imagine that there is an electromagnetic field in E4 whose tensorial components are the functions 
ikF . That field exerts a force on the charged point, namely, the Lorentz force, whose components 

are calculated by means of the ikF  and the components 0s , 1s , 2s , 3s  of the current that the 

moving point creates. The is  are given by the formulas: 

 
is  = 

ie u . 

 

The Lorentz force 
0p , 1p , 2p , 

3p  is , moreover, defined by the equations: 

 
ip  = − ik

kF s  . 

 

 The charged material point has a world-line whose differential equations are: 

 
id  = ip ds , 

 

in which ds is the element of arc-length of that line. One knows that this element is defined by its 

square, which is a quadratic form in 
0dx , 

1dx , 
2dx , 

3dx  that is reducible to a sum of four squares 

of conveniently-chosen differentials. We suppose that they are the same ones that we have chosen. 

We further remark that: 

 
 (1) Journal de Physique 6, pp. 65-73, 225-241.  

 (2) C. R. Acad. Sci. Paris, t. 185.  

 (3) Bull. Acad. roy. de Belgique, Classe des Sciences (5) 13, no. 6. 

 (4) Publ. from the Massachusetts Institute of Technology, 2, 133, Dec. 1927.  
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iu  = 
idx

ds
. 

 As a consequence, one will have: 

id  = − i k

k

e
F ds

m


   (i = 0, 1, 2, 3).         (1) 

 

Those equations express the idea that one passes from the impulse vector 0 1 2 3( , , , )     in E4, 

which is located at the point 
0 1 2 3( , , , )P x x x x  of the world-line to which it is tangent, to the vector 

 that is located at the neighboring point ( )i iP x dx+  along that line by adding the small vector 

d   whose components are id  to  when it is transported parallel to itself from P to P  . That 

small vector is not zero, in general, since the world-line is curved. It is not a straight line, i.e., a 

geodesic, of E4, and as a result, the Lorentz force has a significance that is not purely geometric 

with respect to Minkowski’s E4. 

 One knows that Weyl gave a new extension of differential geometry by introducing the notion 

of gauge in order to succeed in geometrizing electromagnetism. We shall proceed differently and 

preserve classical differential geometry but introduce one more dimension. 

 

 

 2. – Indeed, introduce a coordinate 4x  without, nonetheless, specifying the metric on the five-

dimensional universe E5 that is composed of the set of points 
0 1 2 3 4( , , , , )x x x x x . We shall simply 

define the differential 
4dx  of the fifth coordinate of the material point in question, and in that way, 

we can interpret equations (1) as being those of the parallel displacement, or if one prefers, Levi-

Civita transport, of a certain vector in the space E5. 

 Those desiderata will be realized if one sets: 

 

4dx  = 
e

ds
m

, 

 

in which ds is the arc-length element of the world-line in E4, and one chooses the vector whose 

components are 
0 , 

1 , 
2 , 

3 , which was defined before, and: 

 

4  = 
4dx

m
ds

 = e . 

 

If that is the case then equations (1) can be written like the equations of parallel transport in E5 : 

 

d   = − G dx  

         (, ,  = 0, 1, 2, 3, 4),       (2) 

 

in which G 

  are the components of the affine connection at each point of E5. One will have: 
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 4 4

4 4 4

44 4 44

0,

,

0

l

ik

l l l

i i i

l

il i

G

G G F

G G G G



=


= = 
= = = = 

  (i, k, l = 0, 1, 2, 3). 

 

 The first four equations (2) are nothing but equations (1), and the fifth one can be written: 

 

de = 0 , 

 

which expresses the conservation of charge of the moving point. 

 

 

 3. – One can see that this geometrization extends immediately to the case in which E4 is no 

longer Minkowskian, but Einsteinian, i.e., the case in which it is pervaded by a gravitational field. 

 Let l

ik  denote the components of that field, i.e., the components of the affine connection on 

the Einsteinian E4. 

 The electromagnetic field that is embedded in E4 will have the functions ikF  for its 

components, although it is not necessary to specify them, and we will see that the: 

 
ip = − ik

kF s  

 

are the components of the Lorentz force that act upon the charged point. 

 Furthermore, the equations of motion of that are: 

 
2

2

i k l
i

kl

d x dx dx
m

ds ds ds

 
+  

 
 = 

ip   (i = 0, 1, 2, 3).   (3) 

 

One transforms them into the following ones: 

 

i i k l l k

kl k

e
d dx F ds

m
  

+  +  = 0    (4) 

by setting: 

i  = 
imu  = 

idx
m

ds
. 

If one agrees that: 

4dx  = 
e

ds
m

,       (5) 

 

and one defines the components G 

   of the affine connection on a space E5 by the equations: 
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4 4

4 4 4

44 4 44

,

,

0

l l

ik ik

l l l

i i i

l

il i

G

G G F

G G G G



 = 


= =
 = = = =

 (i, k, l = 0, 1, 2, 3) (6) 

then equations (4) can be written: 
i id G dx 

 +  = 0 

and the equation: 
4 4d G dx 

 +  = 0 

 

will be satisfied identically if one assumes the invariability of the charge. One can then state the 

following theorem: 

 

 If one associates a material point of mass m and charge e that moves in an electromagnetic 

field and a gravitational field with the vector whose components in five-dimensional space are: 

 
0dx

m
ds

, 
1dx

m
ds

,  
2dx

m
ds

, 
3dx

m
ds

,  e 

 

then that vector will displace parallel to itself, Here, ds is the element of the projection of the 

world-line in E5 onto E4 . 

 

 It is therefore possible to define inertial systems for both gravitation and electromagnetism in 

that way. 

 

 

 4. – However, we have not constructed a five-dimensional relativity yet, because the preceding 

considerations and the fact that we do not know the phenomena in which a variation of charge 

would be involved compel us to consider only the changes of variables: 

 
0 1 2 3 4( , , , , )x x x x x  into 

0 1 2 3 4( , , , , )x x x x x  

for which: 

 
0 1 2 3( , , , )x x x x  are functions of only 

0 1 2 3( , , , )x x x x , and 
4x  is a function of only 4x , (7) 

 

and we assume that the functions that enter into our reasoning do not depend upon 
4x . Moreover, 

it is only under those conditions that equations (5) will present any character of invariance. 

 Indeed, calculation will easily show that if one makes a change of variables (7) then the 

components of the affine connection G 

  on E5 with respect to the x
 can be expressed in terms 

of the components of the affine connection i

kl  and the field ikF  by the following equations: 
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4 4

4 4 4

44 4 44

,

,

0,

l l

ik ik

l l l

i i i

l

il i

G

G G F

G G G G



 = 


= =
 = = = =

 

 

which are identical to equations (5), except for the overbar, which indicates that the overbarred 

functions relate to the new coordinates. 

 That calculation is based upon the transformation formulas for the components of the affine 

connection. They do not constitute a tensor. On the contrary, one has: 

 

G 

  = 
2x x x x x

G
x x x x x x

    




     

    
+

     
, 

 

and the last group of terms on the right-hand side exhibits that fact quite well. Now, if one 

introduces the hypotheses (7) and the values (6) into that right-hand side and takes the formulas: 

 

l

i k  = 
2r s l s l

t

r s

i k t i k i

x x x x x

x x x x x x

    
 +

     
, 

and 

i

kF 


 = 

i s
r

s

r k

x x
F

x x





 

 
 

 

into account then one will obtain the stated result. 

 

 

II. – On the metric on E5 . 

 

 5. – We have therefore seen that in the universe E5 that we have defined, the coordinates 
0 1 2 3( , , , )x x x x  are still separate from 

4x , and in particular, we have: 

 

  l

i kG  = l

i k  (i, k, l = 0, 1, 2, 3), 

 

in which the l

i k  are the Christoffel symbols of the second type for the 
2ds  of the E4 of the 

0 1 2 3( , , , )x x x x . Under those conditions, the transformation law for the G 

   in E5 will demand 

simply that the l

i k  must transform like the components of an affine connection on an E4, and the 

i

kF 


 transform like those of a tensor in that same E4. 

 Such a connection possesses a fundamental group with 15 parameters. That group plays the 

same role vis-à-vis the Lorentz group of displacements in E4 that the Galilean kinematic group of 

classical mechanics plays vis-à-vis the group of displacements in E3. Now, the Galilean kinematic 
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group cannot be characterized by a non-degenerate four-dimensional 2ds . The fusion takes place 

only thanks to the Lorentz group. The same thing will be true in our E5. The 15-parameter group 

cannot be characterized by a non-degenerate 2ds  on E5. 

 Meanwhile, we shall determine a 2ds  that will produce almost the same connection, i.e., we 

shall work with a union of the fifth coordinate with the other ones that is analogous to the way that 

one works when one bases space and time in the Minkowskian synthesis, or if one prefers, similar 

to the one that allows us to pass from the classical Galilean kinematic group to the Lorentz group. 

 However, just as one abandons mechanics and classical kinematics when one passes from the 

absolute space and time to the Minkowski universe, we shall abandon Minkowski’s 

electromagnetism (and as a result, we shall modify the expression for the force that was given by 

Lorentz) upon passing from the Minkowski-Einstein universe to the universe of E5 . 

 

 

 6. – If one first supposes that the gik will be those of Einsteinian E4 for i, k = 0, 1, 2, 3, 4 then 

one will have: 
l

i kG  = l

i k . 

 The equations: 

4

l

iG  = 
4

l

iG  = l

iF 


 

will then give: 

G4l, i = Gl4, i = Fil ,     (8) 

because one indeed has: 

G4l, i = 4

4 4 4

r

ir l i lg G g G+  = r

ir lg F 


 = Fil , 

 

since Fil = 4

4

r

ir l i lg F g F 

 + , and 4

lF 


 has no meaning in its own right. 

 As for the functions that we consider to not depend upon 
4x  (one sees the analogy with the 

static case in relativity), upon recalling that: 

Fil = 
i l

l ix x

  
−

 
 , 

they can be written: 

4 4i l

l i

g g

x x

 
−

 
 = 2

i l

l ix x

   
− 

  
 . 

 We solve them by setting (1): 

g4l = 2 l . 

One will have, moreover: 

Gi 4, 4 = 4

4 4 44 4

l

l i ig G g G+  = 2 l

l iF 


, 

 
 (1) More generally, one can set: 

4 2l l

l

g
x





= +


, 

in which  is a function of 
0

x , 
1

x , 
2

x , 
3

x . 
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G44, i = 4

44 44 44

l

ilg G g G+  = 0 , 

so on the one hand: 

44

i

g

x




 = 4 l

l iF 


, 

and on the other hand: 

44

i

g

x




 = 0 . 

 

 It is then impossible to preserve the connection that was first introduced on the basis of classical 

electromagnetism. 

 

 

 7. – That is why we define a five-dimensional 
2ds  arbitrarily. Moreover, that will be the 

2ds  

that determines the affine connection. Meanwhile, the arbitrariness that we shall use will be 

moderated by the preceding considerations. We set: 

 

g44 = 2 , 

 

in which  is a function of 
0x , 

1x , 
2x , 

3x , and from now on, the 
2ds whose square root we propose 

to take and which has a new electromagnetic form is: 

 
2ds  = 4 2 4 44i k i

ik ig dx dx dx dx dx dx + + .    (9) 

 

The gik (i, k = 0, 1, 2, 3) are functions of 0x , 
1x , 

2x , 
3x  that will reduce to the coefficients of the 

Einsteinian 
2ds  that relates to the given gravitational field in the absence of an electromagnetic 

field. 

 The gi4 (i, k = 0, 1, 2, 3) are the components of the electromagnetic potential, up to the factor 

2. 

 The coefficient 
2  is the square of a function of the 

0x , 
1x , 

2x , 
3x . 

 The world-lines (in E5) of a charged material points are geodesics of that 
2ds . 

 

 We can postulate the equation: 
4dx

ds
 = 

e

m
 , 

or the equations: 
4dx

d
 = 

e

m
 , 
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in which d is the line element in the E4 that is defined by 4x  = const. They both define a variable 

ratio e / m. We might ask how that variability can be divided between e and m, respectively. 

 

 

III. – On wave mechanics. 

 

 8. – If one studies the papers of Vessiot (1), particularly the one in the Bulletin de la Société 

mathématique de France (t. XXXIV) on the mechanical interpretation of contact transformations, 

and most especially the conclusion of that paper, and some of Hadamard’s analyses of the 

bicharacteristics that are attached to an equation of propagation (2), then it will be possible to 

express the principles of wave mechanics in a very simple manner. 

 If one is given a second-order partial differential equation (0) that is linear in the second 

derivatives then one can define the characteristic multiplicities that are attached to (0) by means 

of a first-order partial differential equation (J) and curves, namely, the bicharacteristics of (0), that 

are the characteristics of (J). 

 If one identifies (J) with the Jacobi equation of the motion of a material point then the 

trajectories of that material point will be the bicharacteristics of certain second-order partial 

differential equations (0), among which one finds the Schrödinger equation. One can single out 

some of them by way of their invariance in a certain number of cases. 

 We shall see that in five-dimensional relativity, it is easy to give a very precise sense to the 

Schrödinger equation, and furthermore, we can show that this equation is obtained very naturally. 

 

 

 9. – The five-dimensional theory of relativity that we propose here is a theory of invariance in 

E5. However, like Einstein’s gravity, it is, moreover, a physical theory that permits us to define the 

coefficients of 
2ds  by means of masses and charges. 

 To begin with, we treat the motion of a material point by supposing that there is no 

electromagnetic field, so the potentials are zero. 

 From now on, the 
2ds  of E5 will have a coefficient matrix with the following appearance: 

 

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

2

0

0

0

0

0 0 0 0

g g g g

g g g g

g g g g

g g g g



 .     (10) 

 

The gik (i, k = 0, 1, 2, 3) are determined in Einstein’s theory by the equations: 

 

Rik = 0        (i, k = 0, 1, 2, 3)       (11) 

 
 (1) Loc. cit., note 4. 

 (2) Loc. cit., note 5. 
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in the regions of E4 where no mass is found. The Rik are the components of the contracted Riemann 

tensor relative to the 2ds  in E4. 

 We suppose that the gik and 2  are determined outside of any masses by the equations: 

 

R = 0        (,  = 0, 1, 2, 3, 4)      (12) 

 

in which the R are the components of the contracted Riemann tensor relative to the 2ds  in E5 

this time. 

 It is clear that equations (12) differ from equations (11) because in order to obtain the matrix 

(10), we had to modify the connection that was modified by equations (11). That modification will 

be very weak if one supposes that the derivatives i =  / xi are very small and negligible in 

comparison to the gik / xl, and all of the functions gik and  have derivatives with respect to 4x  

that are even smaller. 

 The calculation that allows one to find the R will be very simple then. One finds that the 

equations: 

 Rik = 0        (i, k = 0, 1, 2, 3) 

 

are precisely the Einstein equations that determine the gik of the Einsteinian E4. The equations: 

 

 Ri4 = 0        (i = 0, 1, 2, 3) 

are satisfied identically, and the equation: 

R44 = 0 

is written: 

( )hi
h iki
i h kh

g
g

x


  


+ 


 = 0 

or 
2 hi

hi h ik

i hi h h i

g
g g

x x x x

    
+  + 

    
 = 0 ,         (0) 

 

which is a second-order partial differential equation in  that is linear in the second derivatives. 

 

 

 10. – Let us look for the characteristics of that equation. Since the coefficients gik are functions 

of the 
0x , 

1x , 
2x , 

3x , and they do not contain either the unknown function or its first derivatives, 

the characteristics are not determined with the aide of a chosen integral of (0), but only by means 

of equation (0) (1). 

 Those characteristics are multiplicities: 

 
0( ,S x 1x , 

2x , 
3 )x  = 0 

 
 (1) Cf., Hadamard, Propagation, pp. 315.  
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that are defined by the first-order partial differential equation (1): 

 

ik

i k

S S
g

x x

 

 
 = 0 .     (J) 

 

 The equation (J) will also have characteristics, which will be curves. Those curves will then 

be the bicharacteristics of (0). Their equations are: 

 
0

0k

k

dx

S
g

x





 = 
1

1k

k

dx

S
g

x





 = 
2

2k

k

dx

S
g

x





 = 
3

3k

k

dx

S
g

x





 

 

= 
0

0

1

2

ih

i h

S
d

x

g S S

x x x

 
 

 

    
−   

    

 = 
1

1

1

2

ih

i h

S
d

x

g S S

x x x

 
 

 

    
−   

    

  

 

= 
2

2

1

2

ih

i h

S
d

x

g S S

x x x

 
 

 

    
−   

    

 = 
3

3

1

2

ih

i h

S
d

x

g S S

x x x

 
 

 

    
−   

    

. 

  

 Now one knows that those equations define the geodesics of the 
2ds  in E4, and their common 

ratio will have a value equal to one-half the arc-length element along the aforementioned 

geodesics. 

 However, it is known that in the Einsteinian E4, the trajectories of a material point are geodesics 

of 
2ds  the in E4. 

 One then sees that those trajectories are nothing but the bicharacteristics of (0). 

 

 

 11. – Meanwhile, under our hypotheses we have neglected the variability of the functions gik 

and y with respect to 4x , which amounts to considering the manifolds 4x  = const. in E5. We then 

have the following result: 

 

 If one considers an Einsteinian universe E4 to be a section 4x  = const. of a five-dimensional 

universe E5 of 
0 1 2 3 4( , , , , )x x x x x  whose 

2ds  has the functions in the matrix (10)  for its coefficients 

then the equations of gravitation will be the equations Rik = 0 (i, k = 0, 1, 2, 3) that relate to that 
2 ,ds and the trajectories of a material point of mass that is small enough that it will not modify 

 
 (1) Hadamard, loc. cit., pp. 271.  
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thee gravitational field perceptibly will be the bicharacteristics of the equation R44 = 0, which 

determines  when the ikg  are given. 

 

 The equation R44 = 0 governs the propagation of waves. One can take it to be the Schrödinger 

equation of the wave mechanics of a material point. 

 If the gravitational field is zero then equation (0) is quite simply the d’Alembert equation, or 

if one prefers, the Laplace equation in E4. Its bicharacteristics are the lines in E4 that carry the time 

vectors, i.e., the world-lines of a free material point. 

 

 

IV. – Return to the equations of electromagnetism. 

The field equations and the Schrödinger equation. 

 

 12. – We have obtained Einsteinian gravitation as an approximation to a five-dimensional 

theory of relativity by starting from a form 
2ds  that is defined by equation (9), in which we suppose 

that the i  are zero. 

 If one includes the 
i , i.e., if one seeks to establish the field equations that define the gik, the 

i, and  then one will be led to some complicated equations that one can approximate by further 

supposing that the aforementioned functions have derivatives with respect to 4x  that are 

negligible. One assumes, moreover, that the i and the ikF  are not considerable, so one can neglect 

them in comparison to . One will then see that the electromagnetic potentials have been 

introduced with a calculated degree of prudence in order to not rush the process of approximation. 

 With those hypotheses, the components of the affine connection on E5 will be: 

 

  l

i kG  = l

i k  (i, k = 0, 1, 2, 3), 

 

in which the l

i k  are the Christoffel symbols of the second type that are attached to the 
2ds  in 

Einsteinian E4 of 0 1 2 3( , , , )x x x x , and: 

4

l

iG  = 4

l

iG  = l

iF 

 , 

 

in which the index l was raised by means of the 
ikg  in E4 : 

 

  4

i kG  = 0 , 

  4

4iG  = i


, 

  44

iG  = − 
i  , 

  4

44G  = 0 . 
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 Here, it is intended that the G 

   are the Christoffel symbols of the second type for the 
2ds  of 

E5, but our hypotheses permit us to single out the Christoffel symbols of the 2ds  of E4, because in 

calculating the determinant of the g (,  = 0, 1, 2, 3, 4) and its minors, we neglected the i and 

the derivatives in comparison with . 

 

 

 13. – That being the case, one easily calculates: 

 

R  = 
G G

G G G G
x x

 

       

        

 
− + −

 
, 

 

and one has the following results: 

 

 The Rik (i, k = 0, 1, 2, 3) are those of Einstein. 

 

 The Ri4 (i = 0, 1, 2, 3) are the divergences of the electromagnetic field when taken with respect 

to the 
2ds  of the E4 (

1): 

Ri4 = 

h

i l h r h

i h l hr ih

F
F F

x



  

 


−  + 


 = 

/

h

i hF 


. 

Finally: 

R44 = − 
( )ri

h ii
i hr

g

x


 

 
+  

 
. 

 

 There is nothing difficult about that; it is a very simple algebraic calculation. 

 

 

 14. – We can no longer write R = 0 in order to determine the coefficients of the 
2ds  of the 

E5 because the presence of the field forces us to consider an energy tensor. As one knows, in an 

Einstein E4, one sets: 

  Rik =  (Tik − 1
2

gik T)  (i, k = 0, 1, 2, 3), 

 

in which Tik is the tensor of energy and quantity of motion, and  is a constant on the order of 

10−47 CGS. Now: 

  Tik = m ui uk and T = i

imu u  
i

i dx
u

d

 
= 

 
. 

We then take the field equations in E5 to be the equations: 

 

R =  (T − 1
2

g T) ,   (13) 

 
 (1) Cf., Kaluza, loc. cit.  
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with T = m u u, T = mu u


,  is a constant that must coincide with  when one does not take 

the variations of 4x  into account. 

 Having assumed that, for ,  = 0, 1, 2, 3, equations (13) will give back the Einstein equations 

in the approximation that we have assumed. 

 For  = 0, 1, 2, 3, and  = 4, one will have: 

 

/

h

i hF 


 =  (m ui  u4 − 1

2
g4i T) , 

or 

/

h

i hF 


 =  m (ui u4 − )i u u

 . 

 Now: 

u4 = 
4g u

  = 
4

22
i

i

dx dx

ds ds
 + , 

and 

u u


 = g u u 

  = 1 . 

 

Consequently, upon neglecting 
i

i

dx

ds
  and i in comparison to 

4
2 dx

ds
  (which conforms to our 

hypotheses), we will have: 

/

h

i hF 


 =  m ui 

4
2 dx

ds
 . 

Now, we have set: 

4dx  = 
e

d
m

  

 

above, so we assume that in E5, we must set: 

 

4dx  = 
e

ds
m

, 

 

and if one further sets e u = s then the si will be the components of the current in E5, and s0, s1, 

s2, s3 will reduce to the components of the current in E4 if x4 = const. One sees that: 

 

/

h

i hF 


 =  2

is  . 

 

 Now, the Maxwell equations are written: 

 

/

h

i hF 


 = si 
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in any Einstein universe. Therefore, assume that  2  is very close to unity, which gives the order 

of magnitude of  since  is the order of . Equations (13) will then reduce to one of the Maxwell 

equations for  = 0, 1, 2, 3,  = 4, with our approximations. Kaluza has shown that the other group 

results from an identity that the Christoffel symbols for 2ds  must satisfy (1). 

 Finally, equation (13) is written: 

 

( )ri
h ii

i hr

g

x





+ 


 = − 

2
3 e

m
   

 

for  =  = 4, with the permitted approximations, and after dividing by . 

 Now, if  2  is close to unity then one will have: 

 
2( )ri

h ii
i hr

g e

x m


 


+  +


 = 0 .    (01) 

 

That is a second-order partial differential equation that will define  when the gik are known. The 

bicharacteristics of (01) are once more geodesics of the 
2ds  of E4, and consequently, the trajectories 

of material point, if the electromagnetic field is negligible in comparison to the gravitational field. 

It is the Schrödinger equation. 

 If one neglects the gravitational field, or rather, if one neglects the curvature of space, then that 

equation will reduce to: 
2e

m
 +  = 0 . 

 The periodic solutions of the form: 

 = 
2( , , ) i tx y z e    

are such that: 
2 2 2

2

4 e

c m

 
 

 
 + + 

 
 = 0 . 

 

That is just the Schrödinger equation with the additional term 2( / )e m  . Now, 2 /e m  will be 

negligible in comparison to 
2 2 24 / c   for the frequencies  that are of interest in the physics of 

the atom. Our approximation is therefore good enough. 

 

 

 15. – The simplifying hypotheses that have permitted us to neglect the electromagnetic 

potential in comparison with the gravitational potential and 
2 , which we can call the wave 

potential, give us Einsteinian mechanics as a first approximation and the equations of the 

 
 (1) Loc. cit.  
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electromagnetic field. Moreover, upon generalizing the theory of relativity by extending to E5, we 

have been able to give a new interpretation of the Schrödinger equation. 

 Dealing with equations (13) is much more complicated when one includes all of the factors. 

The relation between the bicharacteristics of equation (13), in which  =  = 4, and the geodesics 

of E5 is less simple than what had believed to begin with (1). 

 Meanwhile, the facts that we could recover the field equations and those of motion that are 

given by the theories in E4 in the context of a new theory of relativity in E5, and that we have 

obtained an interpretation of the Schrödinger equation, in addition, encourage us to pursue our 

attempt further. 

 If the electromagnetic field becomes dominant then the approximation methods must be 

transformed from one end to the other. What we have just said up to now concerns macroscopic 

wave mechanics. In order to recover the laws of atomic phenomena in their detailed form, one 

must first construct microscopic wave mechanics. 

 

__________ 

 

 

 
 (1) Cf., our fourth note, at the end.  


