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 1. – I propose to complete the results of my previous article “Sur les invariants intégraux” 

[Journal de Mathématiques (6) 4 (1908), 331-365] concerning a few points. I shall employ the 

same notations as in that work, except that in order to abbreviate, I shall write just one  sign in 

order to denote a multiple integral, which one can infer with no ambiguity. 

 Let x1, x2, …, xn be a system of n independent variables, and let 
1 2, , , p

A   (p  n) be a system 

of functions in those n variables, each of which is affected with p different indices 1, 2, …, p 

that are taken from the first n numbers. The functions whose indices differ by only their order are 

equal up to sign. If 
1 2( , , , )p      is a new permutation of the indices (1, 2, …, p) then one 

will have: 

1 2, , , p
A  

= 
1 2, , , p

A     , 

 

in which the + sign pertains to the case in which the two permutations belong to the same class, 

and the – sign, to the case in which those permutations belong to different classes. The expression: 

 

Ip = 
1 2 1 2, , , p p

A dx dx dx      , 

 

in which the  sign extends over all arrangements of the first n numbers taken p at a time, 

represents a multiple integral of order p. In order to have the value of that integral, when extended 

over a multiplicity (Ep) in the n-dimensional space (x1, x2, …, xn), we suppose that the coordinates 

of a point on that multiplicity are expressed by means of p parameters u1, u2, …, up, in such a 

fashion that the multiplicity (Ep) will correspond point-by-point with another multiplicity (ep) in 

the p-dimensional space (u1, u2, …, up). The value of the integral Ip, when extended over the 

multiplicity (Ep), can then be written in one or the other of the two forms: 

 

Ip = 1 2

1 2, , , 1 2

1 2

p

p p

p

xx x
A du du du

u u u

 

  

  
     
 , 

 

in which the  sign extends over all arrangements of the indices, taken p at a time, or: 
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Ip = 
1 2

1 2, , , 1 2

1 2

( , , , )

( , , , )

p

p p

p

D x x x
A du du du

D u u u

  

  

 
 
  
 , 

 

in which the  sign extends over all combinations of the indices, taken p at a time, and the two 

integrals are extended over the multiplicity (ep). When one changes the order in which one writes 

the variables u1, u2, …, up, the value of Ip might change sign, just as a surface integral changes sign 

when one changes the side of the surface on which it is taken. In what follows, we will have to 

consider integrals that are extended over a multiplicity (Ep) that varies in a continuous manner with 

a parameter t. The coordinates of a point of that multiplicity are functions of p parameters u1, u2, 

…, up, and t. Once one has chosen the order in which one writes the variables xi and the parameters 

(u1, u2, …, up) for a particular value of t, one will keep the same order for all values of t. Ir is clear 

that the value of the multiple integral is a continuous function of t. 

 

 

 2. – Let: 

 

(1)  Ip = 
1 2 1 2, , , p p

A dx dx dx       

 

be an integral invariant of order p of the system: 

 

(2)  1

1

dx

X
= 2

2

dx

X
= … = n

n

dx

X
= dt .  

 

I suppose, to fix ideas, that I have written all of the coefficients 
1 2, , , p

A  
 that correspond to all 

arrangements of the first n numbers taken p at a time. Let Ep−1 be a (p – 1)-dimensional multiplicity 

in the n-dimensional space (x1, x2, …, xn) that is not composed of characteristics, i.e., of integral 

curves of equations (2). When one varies t from 0 to T, the point (x1, x2, …, xn), which coincides 

with a point 0

1x , 0

2x , …, 0

nx  in Ep−1 for t = 0, will describe a segment of the characteristic C that 

goes from the point 0 0

1( , , )nx x  to a point 
1 2( , , , )T T T

nx x x , and those segments of the characteristics 

will generate a multiplicity Ep that is bounded by Ep−1, the multiplicity 
1pE −

  that is described by 

the point 
1 2( , , , )T T T

nx x x , and another multiplicity 
1pE −

 that is generated by the segments of the 

characteristics that issue from the various points of the multiplicity Ep−2 that bounds Ep−1 . We shall 

calculate the value of the integral Ip when it is extended over that multiplicity Ep . In order to do 

that, suppose that the coordinates of a point of 0 0

1( , , )nx x  are expressed by means of p – 1 

independent variables u1, u2, …, up−1 . The coordinates of a point on the multiplicity Ep will then 

be functions of u1, u2, …, up−1, and the variable t, for which one will have: 

 

(2)  idx

dt
 = Xi  (i = 1, 2, …, n). 
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 The desired integral can be written: 

 

  Ip = 
1 2 1 2, , , p p

pE
A dx dx dx       

= 1 2

1 2, , , 1 1

1 2

p

p
p

p
E

xx x
A du du dt

u u t

 

   −

 

  
 , 

 

in which the summation indicated by the  sign extends over all arrangement of indices taken p at 

a time. From the relations (2), one can again write Ip : 

 

(3)  Ip = 
11 2

1 2 1
1

, , , 1 1

1 2 10

p

p
p

T

p
E

p

xx x
dt C du du

u u u

 

  

−

−
−

−

−

 

  
  , 

upon setting: 

 

(4)  
1 2 1, , , p

C   −
= 

1 2 1, , , ,

1
p

n

i i

i

A X   −

=

 . 

 

That expression for Ip also takes the equivalent abbreviated form: 

 

(3)  Ip = 
1 2 1 1 2 1

1
, , ,

0

p p
p

T

E
dt C dx dx dx     − −

−
  . 

 

The value of Ip is a function of the variable T whose derivative at T = 0 has the value: 

 

(5) 

0

pdI

dT

 
 
 

= 
1 2 1 1 2 1

1
, , , p p

pE
C dx dx dx     − −

−
 . 

 

 In the second place, consider a multiplicity Ep that is defined by starting from Ep−1 in a more 

general manner. Make each point 0 0 0

1 2( , , , )nx x x  of Ep−1 correspond to a value of  that varies 

continuously with the position of that point. The segment of the characteristic that issues from the 

point 0 0 0

1 2( , , , )nx x x  and is described by the point (x1, x2, …, xn) when t varies between 0 and  

generates a multiplicity Ep that is bounded by Ep−1 and another multiplicity Ep−1 that is the locus 

of the extremity of the variable segment of the characteristic. If one varies t from 0 to T then the 

point m will occupy a position m  whose locus is another multiplicity that one can obviously 

deduce from Ep by adding to it the multiplicity 
p  that is described by 

1pE −
  when one varies t 

from 0 to T. Since Ip is an integral invariant, the integral Ip will have the same value for the 
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multiplicities Ep and 
pE , and as a result, for the multiplicities p and 

p . The derivative 

0

pdI

dT

 
 
 

will then have the same value for the two multiplicities Ep−1 and 
1pE −

 : 

 

(6)  
1 2 1 1 2 1

1
, , , p p

pE
C dx dx dx     − −

−
  = 

1 2 1 1 2 1
1

, , , p p
pE

C dx dx dx     − −
−
 , 

 

no matter how one varies  with the position of the point 0 0

1( , , )nx x  on Ep−1 . In particular, if one 

supposes that  has a constant value then one will see that: 

 

(7)  Ip−1 =
1 2 1 1 2 1, , , p p

C dx dx dx     − −  

 

is an integral invariant of order p – 1 for equations (2). However, it is an integral invariant of a 

particular type because it preserves the same value for all multiplicities that one deduces from Ep−1 

by making each point of Ep−1 describe the characteristic that issues from that point according to an 

arbitrary law. Upon continuing to employ the geometric language, if we say tube of characteristics 

to mean the multiplicity of order p that is generated by the characteristics that issue from the 

various points of a multiplicity of order p – 1 that is not composed of characteristics then we can 

say that the integral Ip−1 has the same value for all sections of a characteristic tube. We say, to 

abbreviate, that any integral invariant that enjoys that property is attached to the characteristics. 

From that, any invariant that is attached to the characteristics will also be an integral invariant for 

the system of differential equations that are obtained by multiplying X1, X2, …, Xn by an arbitrary 

function  (x1, x2, …, xn) since the characteristics will remain the same. 

 The foregoing is basically just the argument that Poincaré (Acta mathematica, t. XIII, pp. 66) 

presented in its most-general form. The result can be stated as follows: 

 

 One can deduce (in general) an invariant Ip−1 that is attached the characteristics of the system 

(2) from any absolute integral invariant Ip of that system. 

 

 One will then be led to pose the following two questions: 

 

 1. Can one obtain all of the integral invariants that are attached to the characteristics by that 

process? 

 

 2. If an integral invariant is given then how does one recognize whether it is attached to the 

characteristics? 

 

 One will see that those two questions can both be answered at the same time in a very simple 

manner. 
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 5. – In the previous article that was cited above, I let (E) denote the operation by which one 

passes from the invariant (1) Ip to the invariant (7) Ip−1. The link between those two invariants can 

be summarized by the relation: 

(8)  

0

p

T

dI

dT
=

 
 
 

= Ip−1 , 

 

in which the invariant Ip−1 extends over an arbitrary multiplicity Ep−1, and the invariant Ip extends 

over the multiplicity Ep that one deduces from Ep−1 by the process that was explained above. It is 

clear that this relation preserves when one changes the unknown functions x1, x2, …, xn arbitrarily 

without changing the variable t. In other words, the operation (E) is covariant for any 

transformation of the form: 

  xi = i (x1, x2, …, xn)  (i = 1, 2, …, n). 

 

From that transformation, equations (2) are replaced by a new system: 

 

(2)  1

1

dy

Y
 = 2

2

dy

Y
 = … = n

n

dy

Y
 = dt , 

 

whereas the invariants Ip and Ip−1 will become: 

 

pI   = 
1 2 1, , , p p

A dy dy    
 ,  

1pI −
  = 

1 2 1 1 1, , , p p
C dy dy    − −

 , 

 

respectively. The invariant 
1pI −

  is deduced from 
pI   in the same way that Ip−1 is deduced from Ip, 

i.e., one will have: 

1 2 1, , , p
C   −

  = 
1 2, , ,

1
p

n

i

i

A Y  
=

 , 

as one can verify directly. 

 When the operation (E) is applied to an invariant Ip, that will lead to an invariant Ip−1 that is 

identically zero if the coefficients 
1 2, , , p

A   verify the relations: 

 

(9)  
1 2, , ,

1
p

n

i

i

A X  
=

 = 0 

 

for all arrangements of the indices taken p – 1 at a time. I shall denote the invariants that enjoy that 

property by ( )e

pI . One sees immediately that any invariant Ip that is deduced from an invariant Ip+ 

by the operation (E) is an ( )e

pI .The converse will be established a little later. 

 One can characterize the invariants ( )e

pI  by the following property: 
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 The value of an integral invariant ( )e

pI , when it is extended over an arbitrary multiplicity of 

order p that is generated by characteristic curves, is always zero. Conversely, any integral 

invariant that enjoys that property will be an integral invariant ( )e

pI . 

 

 Any multiplicity of order p that is composed of characteristics can be defined to be the 

multiplicity Ep that was considered above. The coordinates (x1, x2, …, xn) of a point in that 

multiplicity are functions of p independent variables u1, u2, …, up−1, t whose partial derivatives 

/ix t   are equal to functions Xt . The value of the integral invariant Ip, when extended over a 

multiplicity of that type, will then have the expression: 

 

Ip = 
11

1 2 1, , , , 1 2 1

1 1

p

p
p

i i p
E

p

xx
A X du du du dt

u u



  

−

− −

−



 
 , 

 

which can be further written: 

 

Ip = 
11

1 2 1, , , , 1 2 1

11 1

p

p
p

n

i i p
E

ip

xx
A X du du du dt

u u



  

−

− −

=−

  
 

   
  . 

 

 That integral can be zero for any multiplicity that one might consider only if all of the elements 

are zero, i.e., if one has: 

11

1 2 1, , , ,

11 1

p

p

n

i i

ip

xx
A X

u u



  

−

−

=−

  
 

   
   = 0 

identically. 

 That will obviously be true if the coefficients 
1 2, , , p

A    of the integral invariant Ip verify the 

relations (9). Conversely, those conditions are necessary because for a given system of values of 

x1, x2, …, xn, one can choose the values of all the partial derivatives xk / ui arbitrarily. The 

invariant considered is then an invariant ( )e

pI . 

 It is obvious that this property is independent of the choice of unknowns. If a change in 

variables xi = i (y1, y2, …, yn) reduces the system (2) to the system (2), and the integral invariant 

(1), to the form: 

pI   = 
1 2 1, , , p p

A dy dy    
  

 

then the coefficients of the new invariant 
pI   will verify the relations: 

 

(9)  
1 2 1, , , ,

1
p

n

i i

i

A Y   −

=

 = 0 , 

if the relations (9) are verified. 
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 4. – In particular, suppose that one has reduced the system (2) to the reduced form that Poincaré 

often employed in his arguments by a change of the unknown functions: 

 

(10) 1

0

dy
= 2

0

dy
= … = 1

0

ndy − = 
0

ndy
= dt . 

 

Any integral invariant of order p has the form: 

 

1 2 1 2, , , p p
B dy dy dy      , 

 

in which the coefficients 
1 2, , , p

B  
 do not depend upon yn and can be arbitrary functions of y1, y2, 

…, yn−1. With that system of variables, the conditions (9) will become: 

 

1 2, , , p
B  

= 0 . 

 

Therefore, the differential dyn must not appear in the expression for the invariant if it is to be an 

invariant ( )e

pI . An invariant of that type will therefore contain neither yn nor dyn, while an arbitrary 

integral invariant will not contain yn, but it might contain dyn. In order to apply the operation (E) 

to an invariant Ip, we suppose that we have written it out while including the combinations of n 

indices taken p at a time, and always putting the factor dyn last in the terms where it appears. In 

order to pass from Ip to the invariant ( )

1

e

pI −
 that is deduced from it, it will then suffice to suppress 

the factor dyn in every term where it appears and suppress all of the terms that do not contain that 

factor. 

 Conversely, if one is given an invariant ( )e

pI  then one can deduce it from an invariant Ip+1 by 

the operation (E) (and generally in an infinitude of ways). Indeed, if that invariant ( )e

pI  is written 

by selecting only the combinations of n indices taken p at a time then it will suffice to add the 

factor dyn to each term in ( )e

pI  and then add an arbitrary invariant ( )

1

e

pI +
 in order to get an invariant 

of order p + 1 whose invariant ( )e

pI  is deduced by the operation (E). It is clear that one will then 

have all invariants of order p + 1 whose given invariant ( )e

pI  is deduced by the operation (E). There 

is only one way of applying that procedure when p = n – 1 because there obviously exists no 

invariant ( )e

nI  except zero. Any invariant ( )

1

e

nI −
 will then correspond to a well-defined system of 

differential equations, and conversely. It was, moreover, by starting from a multiplier that Poincaré 

gave the general construction of an invariant In−1 that is attached to the characteristics in the 

particular case where n = 3 (see also no. 16 in my first article). The other theorems that were proved 

in that work (nos. 6-9) concerning the invariants ( )e

pI  can also be easily established in the reduced 

form. I shall not stop to do that here. I remark only that it is obvious from the expressions for those 
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invariants that they are attached to characteristics. Suppose, to simplify, that n = 3. An invariant 
( )

2

eI  will then have the form: 

( )

2

eI  = 1 2 1 2( , )B y y dy dy . 

 

The characteristics are lines parallel to the Oy3 axis. If one is given a tube of characteristics then it 

is clear that the value of the integral ( )

2

eI , when extended over an arbitrary section of that tube, will 

be the same for all of those sections. 

 

 

 5. – It remains for us to prove that the invariants ( )e

pI  are the only invariants that are attached 

to the characteristics. The following direct proof applies to both the proposition itself and its 

converse. As in no. 2, take a multiplicity Ep (p < n) that is not composed of characteristics and is 

bounded by a multiplicity Ep−1 that can vanish if Ep is a closed multiplicity. A characteristic starts 

from any point m of Ep, and along that characteristic, we can take a point m  arbitrarily in such a 

fashion as to respect its continuity. When the point m describes Ep, the segment mm  of the 

characteristic will generate a multiplicity Ep+1 whose boundary is composed of: 

 

 1. The given multiplicity Ep . 

 

 2. The multiplicity 
pE  that is described by the extremity m  of the segment of the 

characteristic considered when m describes Ep . 

 

 3. The multiplicity 
pE  that is generated by the segments of the characteristics that issue from 

the various points of Ep−1 . 

 

 That being the case, let Ip be an integral invariant. From the generalized Stokes theorem, the 

difference between the values of the multiple integral Ip, when it is extended over two multiplicities 

Ep and 
pE  in the corresponding sense (no. 1), will be equal to the integral Ip , extended over 

pE , 

plus an integral ( )

1

d

pI +
 that is extended over the multiplicity Ep+1, where ( )

1

d

pI +
 is an integral invariant 

of order p + 1 that is deduced form Ip by the operation (D) (see the cited article, no. 2). In order for 

that difference to always be zero, it is necessary and sufficient that the integral Ip, when extended 

over 
pE , and the integral ( )

1

d

pI +
, when extended over Ep+1, should be separately zero. 

 That condition is necessary. Indeed, one can suppose that the multiplicity 
pE  vanishes. In order 

for that to happen, it is sufficient to bound Ep and 
pE  with the same multiplicity Ep−1 . The integral 

( )

1

d

pI +
, when extended over the multiplicity Ep+1, which is composed of characteristics, must then be 

zero, which demands that the integral invariant ( )

1

d

pI +
 must be an invariant ( , )

1

d e

pI +
 (no. 3). If that is 

true then the integral Ip, when extended over the multiplicity 
pE , which is an arbitrary multiplicity 
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that is composed of characteristics, must also be zero. Therefore, the invariant Ip must be itself an 

invariant ( )e

pI . The latter condition implies the former, as I proved in my first article (no. 8). 

 In summary, the only invariants that are attached to the characteristics are the invariants ( )e

pI  

whose coefficients verify the relations (9). 

 

 Remark I. – One can further prove that it follows that the conditions (9) are necessary for Ip to 

be an invariant attached to the characteristics. Indeed, if that is true then the conditions that express 

the idea that Ip is an integral invariant must once more be verified when one multiplies the functions 

Xi by an arbitrary function  (x1, x2, …, xn) since that will not change the characteristics. In order 

for that to be true, the function  must verify the relations: 

 

1 1

1 2

, , , ,p ph h h h

h h

A X A X
x x

   

 

     
+ +   

    
   = 0 , 

 

and since that function  is arbitrary, the coefficients 
1

A , …, 
p

A
 must satisfy the conditions (9). 

 

 Remark II. – It also results from the preceding proof that if an expression: 

 

U = 
1 2 1, , , p p

A dx dx      

 

is an exact differential, and if the coefficients verify the conditions (9) then that expression will be 

an invariant ( , )d e

pI  of equations (2). It is easy to verify that result by combining equations (9) with 

the relations that express the idea that U is an exact differential. 

 

 

 6. – Up to now, we have considered only absolute invariants. However, one can also define 

relative invariants that are attached to the characteristics. To fix ideas, let: 

 

J1 = 1 1 1nA dx A dx+ +  

 

be a first-order relative invariant of the system (2). One can then replace it with the absolute 

invariant: 

( )

2

dI  = i k
i k

k i

A A
dx dx

x x

  
− 

  
 . 

 

If that invariant ( )

2

dI  is ( , )

2

d eI  then the argument in the preceding section will prove that the integral 

J1, when taken along an arbitrary closed curve C0, is equal to the same integral, when taken along 

another closed curve C1 that is obtained by taking a point m  on the characteristic that issues from 

a point m on C0. Indeed, from the generalized Stokes theorem, the difference between those two 
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integrals is equal to the double integral ( , )

2

d eI , when it is extended over the multiplicity E2 that is 

generated by characteristic segments mm , which is an integral that will be zero, from the property 

that characterizes the invariants ( )e

pI . 

 One can likewise deduce an absolute or relative invariant of order p that is attached to the 

characteristics from any invariant ( , )

1

d e

pI +
. 

 It can happen that an integral invariant Ip is an invariant ( )e

pI  for only a set of characteristics 

that satisfy certain conditions. For example, suppose that equations (2) admit a first integral F = 

C. The characteristics for which the constant C has a well-defined value form a system that depends 

upon only (n – 2) arbitrary constants, and can be considered to be the characteristics of a system 

of (n – 1) differential equations that one will obtain by solving the relation F = C for one of the 

variables (xn, for example) and substituting that value in the equations: 

 

(2)  1

1

dx

X
 = … = 1

1

n

n

dx

X

−

−

 = dt . 

 

If one makes the same substitution in the invariant Ip then one will get the invariant 
pI   of equations 

(2), which might be an invariant ( )e

pI   for the system. However, one can dispense with that 

calculation by verifying that the integral Ip is zero over any multiplicity Ep that is composed of 

characteristics for which the constant C has the same numerical value. For example, consider the 

canonical system: 

(11) idx

dt
 = 

i

F

p




, idp

dt
 = −

i

F

x




 (i = 1, 2, …, n), 

 

which admits the integral invariant: 

 

(12) I2 = 1 1 n ndx dp dx dp+ + . 

 

As long as F is not a constant, that invariant I2 will not be ( )

2

eI . On the other hand, the system (11) 

will admit the first integral F = C. We shall show that the integral I2, when extended over any 

multiplicity E2 that is generated by characteristics for which the constant C has a well-defined 

numerical value will always be zero. Indeed, the coordinates (xi, pi) of any point of a multiplicity 

of that type can be expressed by means of two independent variables t and u, so the derivatives 

with respect to t are given by the formulas: 

 

idx

dt
 = 

i

F

p




, idp

dt
 = −

i

F

x




. 

One will then have: 
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1

( , )

( , )

n
i i

i

D x p

D t u=

  = 
1

n
i i

i i i

p xF F

p u x u=

   
+ 

    
  = 

F

u




. 

 

 However, since F is constant along that multiplicity, one will also have: 

 

F

u




 = 0 , 

 

and as a result, the value of I2 will be zero (cf., Hadamard, Calcul des variations, pp. 154-155) 

 

 

 7. – The properties of the invariants ( )

2

eI  give the simplest explanation for why knowing an 

invariant ( )

2

e

nI −
 will permit one to find an equation Y (f) = 0 that will define a complete system, 

together with the equation: 

1

n

i

i i

f
X

x=




  = 0 . 

Suppose, first of all, that n = 3, and let: 

 

(13) ( )

1

eI  = 1 1 2 2 3 3A dx A dx A dx+ +  

 

be an integral invariant of the system: 

 

(14) 1

1

dx

X
 = 2

2

dx

X
 = 3

3

dx

X
 = dt , 

 

 whose coefficients A1, A2, A3 verify the relation: 

 

A1 X1 + A2 X2 + A3 X3 = 0 . 

 

Let  be a curve such that the coordinates (x1, x2, x3) of one of its points are functions of one 

parameter u that verify the relation: 

 

31 2
1 2 3

xx x
A A A

u u u

 
+ +

  
 = 0 . 

 

There obviously exists an infinitude of curves of that type since one can choose two of the 

coordinates x1, x2, x3 arbitrarily as functions of u. Suppose, moreover, that the curve  is not a 

characteristic. In order for that to be true, it suffices to take x1 and x2 to be functions of u such that 

1 2
2 1

x x
X X

u u

 
−

 
 is not zero. That being the case, the characteristics that issue from the various 
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points of  will generate a surface, and the integral 1 1 2 2 3 3A dx A dx A dx+ + , when taken along 

an arbitrary curve that is situated in S will be zero since that integral is zero along , and the 

invariant considered is ( )

1

eI . Any linear element of S will then satisfy the relation: 

 

(15) A1 dx1 + A2 dx2 + A3 dx3 = 0 . 

 

Since a surface of that type obviously passes through any point in space, it will follow that the 

preceding equation is completely integrable, and integration will give a first integral of the system 

(14). 

 That result is verified immediately by means of the relations: 

 

A1 X1 + A2 X2 + A3 X3 = 0 , 

 

  31 2
1 2 3( )i

i i i

XX X
X A A A A

x x x

 
+ + +

  
 = 0 (i = 1, 2, 3), 

 

which express the idea that ( )

1

eI  is an absolute invariant. Upon differentiating the first with respect 

to xi and comparing to the following ones, one will deduce that: 

 

1

3 2

2 3

X

A A

x x

 
−

 

 = 2

31

3 1

X

AA

x x


−

 

 = 3

2 2

1 1

X

A A

x x

 
−

 

, 

 and as a result: 

3 32 1 2 1
1 2 3

2 3 3 1 1 2

A AA A A A
A A A

x x x x x x

         
− + − + −     

         
 = 0 , 

 

which expresses the idea that the equation A1 dx1 + A2 dx2 + A3 dx3 = 0 is completely integrable. If 

the invariant ( )

1

eI  is not an invariant ( , )

1

d eI  then one can deduce an invariant ( , )

2

d eI  by the operation 

(D), and as a result, a multiplier. Integrating the system (14) will then be achieved by a quadrature. 

 More generally, consider an invariant ( )

2

e

nI −
: 

 
( )

2

e

nI −
 = 

1 2 2 1 2 2, , , n n
A dx dx dx     − − . 

 

 One can determine an infinitude of multiplicities En−2 that are not composed of characteristics 

such that the integral ( )

2

e

nI −
 will be zero when it is extended over those multiplicities. Indeed, 

suppose that the multiplicity En−2 is defined by the two equations: 

 

xn−1 = 1 (x1, x2, …, xn−2) , xn = 2 (x1, x2, …, xn−2) . 
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When the integral is extended over that multiplicity, it will have the expression: 

 

1 2 2nB dx dx dx − , 

 

in which B depends upon the variables xi and the first-order partial derivatives of the functions 1 

and 2. In the equation B = 0, one can choose one of the functions 1, 2 arbitrarily, while the other 

one is determined by a first-order partial differential equation. One can even choose the 

multiplicity in such a fashion that it will pass through a multiplicity that is given in advance and is 

not composed of characteristic curves. 

 Let En−2 be a multiplicity that is not composed of characteristics and satisfies the preceding 

condition. Let En−2 be the multiplicity that is generated by the characteristics that issue from the 

various points of En−2 . We shall show that the integral ( )

2

e

nI −
 will be zero when it is extended over 

an arbitrary multiplicity 2nE −
  that is situated on En−1. Indeed, 2nE −

  is deduced from En−2 by taking 

a point on each characteristic that issues from the various point of En−2, and from the essential 

property of the invariant ( )

2

e

nI −
, the integral that is extended over 2nE −

  will be equal to the integral 

that is extended over En−2, i.e., to zero. 

 Those multiplicities En−1, which are obviously integral multiplicities of the system (2), can be 

obtained directly. More generally, in order for the integral: 

 

Ip = 
1 1, , p p

A dx dx     

 

to be zero when it is extended over any multiplicity Ep that is included in the multiplicity En−1 that 

is defined by the equation F = 0, one verifies effortlessly that the function F must satisfy the 

following conditions, whose forms differ according to the parity of p : 

 

 1. If p is odd then one will have the conditions: 

 

1 2 2 1 1 1 1

1 1

, , , , , , , , ,p p p p p

p p

F F F
A A A

x x x
        

  
+ + −

+

  
− + +

  
 = 0 , 

 

with the signs + and − alternating. 

 

  2. If p is even then one will have only + signs: 

 

1 2 2 1

1 1

, , , , , ,p p p

p

F F
A A

x x
     

 
+

+

 
+ +

 
 = 0 . 

 



Goursat – On some points regarding the theory of integral invariants.  14 
 

 In the present case, in which p = n – 2, we know a priori that those equations must define a 

complete system. One immediately verifies that by supposing that the system (2) has been 

converted into the reduced form (10). 

 

 

 8. – In conclusion, I would like to show how one can complete a result that was proved in my 

previous article. Let: 

J = 1 1 n nA dx A dx+ +  

 

be a relative (or absolute) integral invariant of the system (2). The conditions for that to be true are 

then expressed by saying that the expression: 

 

(16)   
1 1 2 2

1 1 1

n n n

k k k k k nk n

k k k

X B dx X B dx X B dx
= = =

     
+ + +     

     
   , 

in which: 

Bik = i k

k i

A A

x x

 
−

 
 

 

is an exact differential dU, and it is clear that U = const. is a first integral of the system (2). 

Moreover, it can happen that the function U reduces to a constant, and in that case, I have indicated 

what one can infer from knowing the invariant J for the problem of integration. 

 Return to the case in which U (x1, x2, …, xn) does not reduce to a constant. Imagine that one 

makes a change of variables: 

  xi = i (y1, y2, …, yn)   (i = 1, 2, …, n), 

 

in such a fashion that the first integral will become yn = const. Equations (2) are replaced by a 

system: 

(2)  1

1

dy

Y
 = 2

2

dy

Y
 = … = 1

1

n

n

dy

Y

−

−

 = 
0

ndy
 = dt 

  

for which one has Yn = 0. As for the integral invariant J, it changes into an integral invariant J   of 

the system (2): 

J   = 1 1 1 1n n n na dy a dy a dy− −+ + + , 

 

and it is clear that the first integral yn must be deduced from the invariant J   in the same way that 

U (x1, x2, …, xn) is deduced from J. One will then have: 

 

dyn = 1 1

1 1

n n

k k k nk n

k k

Y b dy Y b dy
= =

   
+ +   

   
   , bik = i k

k i

a a

y y

 
−

 
, 
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and as a result, since Yn = 0 : 

 

(17) 
1

1

1

n

k k

k

Y b
−

=

  = 0 , …, 
1

1,

1

n

k n k

k

Y b
−

−

=

  = 0 , 
1

1

n

k nk

k

Y b
−

=

  = 1 . 

 

 From the remark in no. 3, the first n – 1 relations express the idea that the double integral: 

 

(18) ik i kb dy dy   (i, k = 1, 2, …, n – 1) 

 

is an integral invariant ( )

2

eI  of the system: 

 

1

1

dy

Y
 = 2

2

dy

Y
 = … = 1

1

n

n

dy

Y

−

−

 = dt , 

 

in which one considered yn to be a constant. One saw the simplifications in the integration that 

might result in the first article. 

 The conclusion will break down if the integral invariant (18) is identically zero, which would 

demand that 1 1 1 1n na dy a dy− −+ +  must be the total exact differential of a function: 

 

V = 1 1 2 2 1 1n na dy a dy a dy− −+ + + , 

 

while always regarding yn as a constant. Set: 

 

W = n

n

V
a

y


−


 = 11

1 1
n

n n

n n

aa
a dy dy

y y

−
−


− + +

  . 

One has: 

dW

dt
 = 1 1 1 11 1 1

1 1

n n n n n

n n n

a a dy a dydy a dy

y dt y dt y dt y dt

− − − −

−

   
+ + − + + 

    
 

 = 
1

1

n
n i

i

i i n

a a
Y

y y

−

=

  
− 

  
  , 

 

and the right-hand side is equal to unity, from the last of the relations (17). In that case, one will 

then have a new first integral that includes t : 

 

(19) 11
1 1

n
n n

n n

aa
a dy dy

y y

−
−


− + +

   = t + const. 

 

That will be true for n = 3, in particular. 
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 9. – Return to the case in which one knows an integral invariant ( , )

2

d eI  of the system (2): 

 

(20) ( , )

2

d eI  = ik i kA dx dx . 

 

The n relations: 

(21) 

11 1 12 2 1

21 1 22 2 2

1 1 2 2

0,

0,

.....................................................

0,

n n

n n

n n nn n

A dx A dx A dx

A dx A dx A dx

A dx A dx A dx

+ + + =


+ + + =


 + + + =

 

 

which reduce to n – p distinct relations (p > 0), form a completely integrable system whose 

integrals are also integrals of the system (2). If p > 1 then one can define a complete system that 

admits less than n – 1 distinct integrals that belong to the system (2). If p = 1 then the system (21) 

is equivalent to the system (2), but one can deduce a multiplier. 

 Suppose that p > 1. The equations (21) admit q = n – p distinct integrals that one will obtain 

by integrating a complete system of p equations. Imagine that one has made a change of variables 

xi = i (y1, y2, …, yn) in such a way that y1, y2, …, yn are precisely those n integrals. The invariant 

(20) will change into a new invariant of the same type ( , )

2

d eI : 

 

(20)  I   = ik i ka dy dy  , 

 

and the invariant system (21) will become: 

 

(21) 

11 1 12 2 1

21 1 22 2 2

1 1 2 2

0,

0,

....................................................

0.

n n

n n

n n nn n

a dy a dy a dy

a dy a dy a dy

a dy a dy a dy

+ + + =


+ + + =


 + + + =

 

 

That system must be equivalent to the system dy1 = 0, …, dyq = 0 . It would then be necessary for 

all of the coefficients aik for which one of the indices i or k is greater than q to be zero. Moreover, 

the system: 

a11 dy1 + … + a1q dyq = 0 , 

a21 dy1 + … + a2q dyq = 0 , 

…………………………… 

  aq1 dy1 + … + aqq dyq = 0 

 

must imply the relations dy1 = 0, …, dyq = 0 . The Pfaff determinant must be nonzero, and as a 

result q = n – p will be necessarily an even number 2r, which can also be easily deduced from the 

theory of the Pfaff problem. The conditions: 
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ik kl li

l i k

a a a

y y y

  
+ +

  
 = 0 , 

 

which express the idea that 
ik i ka dy dy  is an invariant 

2

dI , show, in addition, that the coefficients 

aik, in which i and k are equal to at most 2r, depend upon only y1, y2, …, yn . It is clear that knowing 

one such invariant cannot be of any use in achieving the integration of the transformed system, 

which has the form: 

1

0

dy
 = … = 2

0

rdy
=  1

1

n

n

dy

Y

−

−

= … = n

n

dy

Y
 = dt . 

 

____________ 


