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THE

BACKLUND PROBLEM

By E. GOURSAT

1. Statement of the problem. Generalities- Upon studying certain transformations
of surfaces with constant total curvature, A.-V. Baollwas led to pose the following
problem [1], which | call, to abbreviate, tH&éacklund problemor (B) problem:

Find two multiplicities M and M, of contact elements in three-dimensional space

that correspond element-by-element in such a fashion that the coordinate® of t
corresponding elemen(s, y, z, p, 9), X, Y, Z, p', ') verify four relations that are given
in advance:

(1) Fi(X, Y, Z, pi qa X',y',Z',p',q')ZO G = 1! 21 3! 4)

| will recall that a multiplicityMy of contact elementk (= 1, 2) in three-dimensional
space is a set of contact elements whose coordiratgsz, p, q are functions ok
independent variables that verify the relation:

(2) dz=p dx+qdy.

When k = 2, the point X, y, 2, where the coordinates are functions of two vaeiabl
parameters, generally describes a surfacand the elements @&fl, are composed of
points ofS each of which is associated with the tangent plaui$sat that point. One says
that the multiplicityM, has the surfac for its point-wise support However, it might
happen that the poink,(y, z2) describes a curv& (or even remains fixed). In the former
case, one obtains an elemenibfby associating an arbitrary point of the cuGrevith a
plane that passes through the tangenCtat that point; that set depends upon two
parameters, and the point-wise suppomlefis the curveC. If the point &, y, 2) remains
fixed then the point-wise support Bl reduces to a point, and one obtains an element of
M. by associating that fixed point with an arbitrary plama fpasses through that point.
One likewise obtains elements of a multiplickly by associating a point of a cur@
with a plane that passes through the tange &b that point, or by associating a fixed
point P with a tangent plane to a cone that has its sumrtiaipoint ).

Backlund has studied only the case where the multipbcM,, M, have two

surfacesS, S for their point-wise supports. The problem then amotmtiinding two
surfacesS S such that it is possible to make them correspond [ywgeint in such a
fashion that the corresponding contact elements séthwo surfaces verify relations (1).
This is what we call the (B) problem the strict senseHowever, there is good reason to

() In the pages that follow, we consider only analytiatiens and analytic multiplicities.
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pose the problem in the more general form that was gtatbd beginning; when there is
cause to make that distinction one will say thatribes problem is (B) problenm the
broad sense.That extension presents the same advantages asngmalged definition

of S. Lie for the integral of a partial differenteduation. One knows, moreover, that a
multiplicity M, that has a curve or a point for its point-wise supgets converted into a
multiplicity M, that has a surface for point-wise support by means bégendre
transformation. In a general manner, if one subjdesmultiplicitiesM,, M, to two

arbitrary contact transformations)( (T") then they change into two new multiplicities of
the same type, and the relations (1) are replaced by &wunrelations that are deduced
from the original ones by performing a system of tvamsformationsT), (T") on the
elementsX, y,z p, q), X,VY, Z, P, d). We will not regard two problems (B) as distinct
when they go to each other under a system of two tnanafons T), (T").

If one takes the (B) problem in the strict sense then arst regardz andz as two
unknown functions in equations (1), the former, of tagablesx, y, and the latter of the
variablesx', y', while the letter, g, p’, g have the usual sense. It may happen that the
elimination of the primed variables leads to just ondigdadifferential equation of
second orderH) for the functionz(x, y), while the elimination of the unprimed variables
also leads to just one partial differential equationemfosd order ') for the function
Z(X,y'). Equations (1) then establish a correspondence betieentégrals of the two
equations ), (E') that is different from the transformatioril){( These new
transformations are th@acklund transformationsor (B) transformations. The essential
properties of these transformations are deduced very &&@sn the general study of (B)
problem.

A patrticular case of (B) problem in the strict serfsa# is far-reaching has already
given rise to a great number of papers. When thetfustequations (1) aré =X,y =V,
the system (1) reduces to a system of two first-ordgrapdifferential equations in the
two unknown functions:

(3) Fxy.zZ,pp,ad)=0, ®(xy,z2,p,p,0d)=0.

For a long time, systems of this type have been knoatl¢had to a second-order partial
differential equation for each of the unknown funcsion
For example, the system of two equations:

z=fxy,zpa), z=4KXVy.Z,p.q)

leads, upon eliminating, to second-order partial differential equatioByit z, while the
elimination ofz leads to a second-order equati&") (n Z. The integrals of these two
equations correspond in a ont-to-one fashion. Thesefdraraions, in particular,
comprise the celebrated Laplace transformation. viige, the elimination o between
the two equations:

p=f(xy Z,p,q), g=Z

leads to a second-order equati®) (n z, while the elimination ok leads to another
equation E') in Z; each integral oE corresponds to just one integral &f)( while each
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integral of E') corresponds to an infinitude of integrals &) that depend upon an
arbitrary constant.

We again take the systgth=a(x, y) p, d =b(x, y) g. The elimination of one of the
unknownsz or Z leads to a second-order linear equation for the determmatithe other
unknown, and any integral of one of these equationsesponds to an infinitude of
integrals of the other one that depends upon an arbitogastant. Ifa + b = 0 then one
recovers a well-known transformation of Moutadd][

When the two function§ and ® are linear inz, Z, p, p’, 4, , one may obtain
numerous transformations that are analogous to thegirecones, which permits us to
pass from a second-order linear equation to another equdtibe same type. The study

of these transformations has been carried a long[2&y6], but it is outside the scope
of our subject.

2. Associated Pfaff system— Any solution of (B) problem is represented by a
system of ten functions(y, ..., d) of two independent variables that satisfy equations
(1) and two relations:

(4) dz=p dx+qdy dZ =p dX +q dy.

The four equations (1), which are assumed to be distimttcampatible, permit one to
express, Y, ..., p', d by means of six parametexs X, ..., Xs, in such a fashion that a
system of values oX, y, ..., d corresponds to just one system of valuessodnd
conversely, at least, in sufficiently restricted dorea When one makes this substitution
in equations (4), they change into a systofitwo Pfaff equations in six variables:

(5) Ww=Yadx=0, w@=2Xbdx=0 i=12 ..,6),

that we call theassociated systerto (B) problem. Any solution to (B) problem
corresponds to a two-dimensional integb@d of the associated system. Conversely, any

integral multiplicity 971, of S corresponds to a two-dimensional multiplichl that is

described by the point with coordinatesy ..., q') in six-dimensional space, since there
is a bijective analytic correspondence between these nwiltiplicities. The two
elementsX, y,z p, q), X, Y, Z, p, q) describe multiplicitied1 andM’ that are generally
two-dimensional. However, it might happen thdt for example, is only one-
dimensional, while the element' (y, Z, p', ') describes arM,. Each element d¥l;
then corresponds te! elements ofM,. It might likewise happen that these two
elements each describe a one-dimensional multiplicifihis is what happens, for
example, if the two equatiorts = 0, F, = O refer only tox, y, z p, g and the last two
primed variables. If these two systems do not admib-dinensional integral
multiplicities (which is the general case) then (B) lgjeon correspondingly does not
admit solutions, even in the broad sense. Meanwhileaskeciated Pfaff system has
integralsM, . Indeed, leM; be an integral of the systeffa = F» = 0, and leM, be an

integral ofF; = F4 = 0. AlongMy, X, Y, z p, g are functions of a parameteralong M, ,
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X,Y,Z,p, q are functions of another parameterThe point with coordinateg,(..., d)
thus describes a multiplicitiN, in six-dimensional space, which corresponds to an
integrali, of the Pfaff system. In this case, two arbitragnents that are taken dh

and M; will correspond. One might also arrange that trst finultiplicity M reduces to
just one element, while the second oNE is two-dimensional. The corresponding
multiplicity 971, again possesses two dimensions. One then sees ribatudher

generalizes the problem by replacing (B) problem, likewisihe broad sense, with the
search for integral§)t, of the associated Pfaff system. In particular, ee that the

formation of the systen® demands only that the four equations (1) be distinct and
compatible, while the (B) problem, likewise in the broad semsght have no meaning
for certain systems of relations (1), like the ored tve just cited.

Equations (1) permit us to express the ten variables.( ) by means of six
parameters in an infinitude of ways. If one expredsestby means of six parametgrs
that are different from thg then one is led to another Pfaff system in which ike s
variablesy; appear. However, theare also expressed by meanyg;@nd, as a result, the
new Pfaff system reduces to the first one by a changardables. The associated Pfaff
system to a (B) problem is therefore defined up to agdhahvariables.

For example, if the equations (1) may be solved vatpect to the, vy, p', g then
one may take, y, z p, g, Z for parameters. The associated system will be coadpob
equation (2), and a second equation in which the diffedenix, dy, dp, dg, dZ appear.

Conversely, any syste@of two Pfaff equations in six variables may be assatiate
with an infinitude of problems (B), provided that they ar¢ completely integrable.
Indeed, leQ; = 0,Q, = 0 be two distinct linear combinations of two equatians 0, a»
=0 of S If these equations are of the fifth class (whicthesgeneral case) then one may
convert them into the canonical form (4); the varialgley, z p, ), X, VY, Z, p’, ) that
figure in these two forms are functions of the six \@eax;, and, in turn, are coupled by
just four relationsF; = 0, in general. The systeBiis associated with (B) problem,
corresponding to that system of relations. There ¢iigls an infinitude of problems (B)
that have the same associated Pfaff system. Weosabpreviate, that they belong to the
same class. There are then some problems (B), icydartithat are converted into each
other by two transformation3), (T').

3. Singular elements of the associated system.We first recall some definitions
and some properties of Pfaff systerhi§,[11]. Any system of valuesdf, dx, ..., dX)
that are not all zero and verify equations (5) Isaear integral elemenbf that system
that issues from a poink( X, ..., Xs) in six-dimensional space. An element will be
represented b or by @dx). Two elementsdx) and k dx) are not considered to be
distinct, in such a way that any point of six-dimensispace is the origin ob* linear
integral elements. Two linear integral elemedts) @nd ©x) are said to b& involution
when one has the two relations:
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da, 0
("{:Zaik(d)ﬂa_)ﬁ—d)ﬁé_)l():O, @:_a’—i

(6) o 0x
= - = :%—%
W =)l (dxdx - dxd =0, R o o

between the coordinates of these elements, the suommia¢ing extended over all
combinations of the indicasandk. The left-hand sides of these relatiads «, are the

bilinear covariantsof the Pfaff formsw, «» . In a general fashion, two elemends;),
(ox) are in involutionrelative to a Pfaff equatio2 = 0 if they annul the bilinear
covariantQ’. This property is invariant with respect to an arbitidrgnge of variables.
We have already observed that the systemmay be written in an infinitude of
manners by replacing the variablesvith a new arbitrary system of variablgghat are
distinct functions of the former ones. It mightppan that by suitably choosing the
variablesy; the system may be written in a form in which lesmtkix variables appear.
Let r be theminimumnumber of variables that appear in a system that is dédwoma S
by an arbitrary choice of variables; the syst8ns said to be o€lassr. In general, a
system of two equations in six variables is of clagsu6jt might be of class 5, 4, or 9.(
The class of a system is determined by lookingcfuaracteristic elements i.e.,
elementsdx) that are in involution with all of the other lineategral elementsd;). In
order for an elementdg) to be characteristic, it is necessary and suffictbat the
equationse = 0, «J, = 0 be verified by all the integral elementx. Upon writing

down these conditions, one obtains a certain numbénedr relations indx, ..., dXs,
which, when combined with the equatioas = 0, & = 0, determine the characteristic
elements. If this system admits no other solutions dike= O (which is the general case)
then there are no characteristic elements, and gtera$ has class 6. If the equations
that determine the characteristic elements admit atblkertions thardx = 0 then they
reduce ta distinct equationsr(< 6); this system of equations is completely integrable,
and may be converted into the fodf = O, ...,df, = 0. If one takes a system of six
variablesy; such thaty; = fi, ..., y» = f; then these variableg, y», ..., yr and their
differentials appear in the equations of the system dtdy the transformationss is of
class r. One generally denotes a system of gtasg S, .

Having recalled these properties, léx) be an arbitrary linear integral elementSof
The coordinates afx of another element in involution with the first omeist verify the
two equations (5), where is replaced withd, and the two equationa] = 0, «, = O.

These four equations are generally distinct if the eléni@q) is not chosen in any
particular fashion, and consequently, thereoafdinear integral elements in involution
with the first one.

However, there may be an exception if the coordindtesf the elemené has been
chosen in such a fashion that the four linear equatiogisdetermine the elements in

() It cannot be of class 3. Indeed, a system of clas#l Bavwf the formdy, + A dy = 0, dys + B dy, =
0, A andB being functions ofy; , y., ys . This system of differential equations is equivalentwo
equationgif; = 0,df, = 0.
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involution withe are not distinct. Such elements aredimgular elementsf S It is easy
to prove that there are, in general, two distinct feibf singular elements.

One may always suppose that the equatior$sasé solved with respect to two of the
differentials —-dxs anddxs, for example — which amounts to writing the equatiors as:

o W =dx +adx+ ady+t gdyt g de0,
w, =dx,+hdx+ bdx+ Qdx+ bdx0.

Any system of values fodx;, dx, dxs, dx, that are not all zero determines a linear
integral elemente, which we will make correspond to the point of the three-
dimensional space whose homogeneous coordinatesiack, dxs, dx,. If one replaces
dxs, dXs, s, Xs IN equations (6) with their values that are derived frqomaéons (7) and
analogous equations in whichis replaced by then it is easy to verify that these two
equations take the form:

(8) o =2 Ak (dx o —dx ) =0 i,k=1, 2,3, 4),
9 o), =2 Bik (d% I« —dX ) =0

in which the coefficient®\x , B are expressed by means of functiansb; , and their
partial derivatives. Letn, m be the image points of the two elements in involut@g,
(ox). The conditions (8) and (9) express the idea tleatile m, m' belongs to two linear
complexesC; and C,. If these two complexe€; and C, are distinct thedine m m
belongs to a linear congruencé&.he integral elementlks, dx, dxs, dx;) being given, the
elements §x) in involution with it are replaced with the pointsafines that issues from
m; that element is therefore in involution wit linear integral elements that issue from
the same point.

Things are no longer the same if the pamis situated on the one of the rectilinear
directricesA;, A, of the linear congruence. Any elemedk) that is represented by a
point m of A;, for example, is in involution with another elemémit is represented by a
point m of the plane that passes throughandA; ; that elementdx) is in involution
with co? other integral elements. There are ttws distinct families of singular elements,
which are represented by the points of the two lkea, .

This intuitive result is easily verified by meanstbé following calculation, which
permits one to form the equations that determine tiguksr elements. In order for the
two equations (8) and (9), which determidq, Jx,, X3, 4, t0 not be distinct, it is
necessary and sufficient that there exist two coefitsi/, 7 such that one halsJ + ua,

= 0 identically, for anyx;, o, s, o4, Which demands thabq, dx,, dxs, dx, verify the
four equations:

(10) (AA, +uB) dx+(A A+ u B)) dx+---+(A A+u B) dx=0,
A+A =0, B+B=0 (i=1234).
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In order for these equations to be verified by valuethetlx that are not all zero, it is
necessary and sufficient that the determifi(uk, 1)) of the coefficients be zero:

(11) D(A, 1) = ||A A+ 4 Bi || = 0.

This skew-symmetric determinant is equal to the squareqofadratic form (A, £)]?,
and the ratiol / £ must be the root of a second-degree equation:

(12) F(A, 1) = 0.

Let A= Ay, i = 14 be a system of solutions to this equation. Sincefathe first-order
minors of the determinam(A,, t4) are zero, the four equations (10), where onedhas
A, 4 =t reduce to just two equations, and that solution of equdti@h indeed
corresponds to a family ef* singular elements.

The same interpretation permits one to find the caszenie determinam(A, L) is
identically zero.

For this, we remark that the relationAl} || = O is the necessary and sufficient
condition for the comple&; to be a singular complex that is formed of lines thaétna
fixed line A;, because one obtains that condition by expressingdd#that there exist
points @xi, ..., dxs) such that any line that passes through one of thests i@longs to
the complex.

In order for the determinam(A, 1) to be zero identically, it is therefore necessary
that the two complexeG; andC, be singular complexes and that the same thing is true
for all the complexes of the sheaf that is deterohing these two complex&€s andC;
this will be true if the axeA; andA, of the two singular complex&s; andC, have a
common pointP, and only in this case. The poidtthen represents an integral element
that is in involution with all of the other integral elents ofS — i.e., a characteristic
element — anthe systens has a class that is less than six.

Conversely, if the syste®has class less than six then a characteristicesie @,

..., dxy) is in involution with any other linear integral elerheand the line that joins the
two image points of these elements belongs to all @fcimplexes of the sheaf that is
determined byC; andC;; dx, ..., dx thus verify equations (10) for anlyand/, and, in
turn, the determinarid(A, 4) is identically zero.

When the two equations (8) and (9) are not distinct tlvencomplexe€; andC; are
identical, and the argument no longer applies. One theay find two coefficients, ¢
such that at least one of them is non-zero aafl+ i, is identically zero for arbitrary

integral elements. The bilinear covaridd} of the equatio2; = Aa + pa is zero for

any two integral elements. We take that equaler O to be one of the equations of the
system, and suppose that it has class five and redudescartonical form:

Q= dy3 +Vyo dyl /! dy3 =0.
One may take the second equation of the system to bgumtion that does not refer

to dys :
Q=Y dy]_ +Y> dy2 + Y3 dy3 + Yy dy4 + Y dye =0.
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The covariantQ; = dy; dy» — dy, dy1 + dys dya — dya dys might not be zero for two

arbitrary integral elements ¥s is non-zero, sincdys, ..., dys, dy1, ..., dy4 might then be
chosen arbitrarily. I¥s = O then the equatiaR; = O represents a plai upon adopting
the same geometric interpretation, while the equafiyrn= 0 represents a non-singular

complexC. In order forQ; to be zero for any arbitrary integral elements, onstm

therefore have that any of the lines of the pRmaust belong to the complé&x which is
impossible. The equatioQ: = Aw + pap must therefore not be of class five. One
confirms in the same fashion that it is of clds®e so the systerSis of class five. I5

is of class six then one must thus have fhats of class one, and this system admits an
integrable combinatio®; = dys = 0.

The converse is immediate. If a syst@nof class six admits an integrable
combinationdys = O then it is composed of that equation, combined withiheen
equation of class five. Any arbitrary integral elemeninisnvolution with «? integral
elements, and there are no singular elements.

In summary, any syste® for which there exists no integrable combination admits
two families, which are distinct, in general, «of singular elements, each of which is in
involution with «? integral elements. The singular elements of eachilyfaare
determined by a system of four distinct Pfaff equatiom& may obviously take two of
them to be the two equations = 0, &3 = 0 of the systerfs . Let:

(13) @ =0, w =0, ay =0, w=0

be the equations that define one of these familiesngliar elements. There exists a
family of one-dimensional integrals of that systemtthapend upon an arbitrary
function, because if one establishes an arbitrary oaldietween two of the variables,
such asx; = f(x1), then what remains is a system of four differergé@hations between
five variables. These one-dimensional integrals of sistem (13) are th&longe
characteristicsof the systentss . There are thus, in general, two distinct familiés o
Monge characteristics for the syst&n. These multiplicities enjoy properties that are
analogous to those of the characteristics of a secated-partial differential equation.

The «? integral elements of a multiplicityit, that issue from a point of that

multiplicity, being pair-wise in involution, are represehtey the points of a line of the
linear congruence that is represented by the relationan@)(9), and the two points
where that line encounters the directridgs A, represent two singular elements. Any
point of 91, is therefore the origin of two tangent singular eletsmém?i,, and one easily
concludes thafmt, may be generated by the Monge characteristics of eatte two

families ¢).

() In this discussion, one always supposes that theealsnlx), () issue from a pointx) of the
general situationin six-dimensional space. For certain systems, ghimhappen that there exists a
hypersurfaceHy (k < 6) such that the two equations (8) and (9) reduce to fustvien the pointx( is
situated onHy . All of the linear integral elements that have tharigin at a point ofH, may thus be
considered to be singular elements. Any integral miditip of Sthat belongs tély is asingular integral
The coordinates of a point bl may be expressed by meankefriables, so the search for these singular
integrals may be reduced to the integration of a sysfdass than six variables.
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4. Reduced forms for a systens. — LetS be a system of class six that admits no
integrable combination. Le#( /) be a system of solutions of equation (12) that are not
all zero. From the same way that one has obtalmedequation, there exists a family of
singular elementsdé, ..., dxs) that are in involution with any other integral elemnen
relative to the equation:

Q=4 + uwy =0.

We say that this equatid@2 = 0 is asingular equatiorof the systen%s ; the properties
that define it are independent of the choice of variabldsy singular equation thus
changes into a singular equation when one performslatiaay change of variables.
First, suppose that the singular equation has class @we. may then choose a system of
six variablesx, y, z, p, g, uin such a fashion that the singular equation is put im¢o t
canonical form, and the equations of the systgtrecome:
(14) Q, =dz- pdx- qdy=0,
Q,=Xdx+Ydy Pdp Qdg UduO.

If the second equation contaids then the condition:
Q =dpXx-dxdp+dpdy—dyd=0

cannot be satisfied, no matter what the eleméqtdy, ..., Au), only by supposing thatx
=dy=dp=dg= 0, and, in turndz = du = 0, sinced, Jdy, P, & may be chosen
arbitrarily. If Q; = 0 is a singular equation then one necessarilylthas0. If that
condition is satisfied then the equati®) = O will be identical to the second of equations

(14), whered has been replaced with provided that the integral elemedi(dy, dp, dg,
d2) verifies the relations:

dx _dy _-dp _-dq_ dz

(15) — = :
P Q X Y Pp+ Qq

and one arrives at the following conclusiédmy system of two Pfaff equations of class six
may, in general, be converted in two different waysl only two, to the reduced form:

(16) Q, =dz- pdx- gqdy=0,
Q,=Xdx+Ydy Pdp QdgO.

Each reduced form corresponds to a family of singular eésnthat are defined by the
four equations (15). These four equations determine tlues rat five variableslx, ...,
dg, butdu remains arbitrary. The proof shows, at the same tirhat the operations are
that must be performed in order to obtain that reduced. fdfrthe equatior-(A, 1) = 0
has been solved then one will have to convert the singgjuatioMa + (e = 0 into a
canonical form. The variables y, z p, g that figure in this canonical form are
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determined up to a transformation).( As for the sixth variable, one may choose it at
will, provided that it is distinct from the five variallg, ..., q.

One may profit from this indeterminacy un to further simplify the second of
equations (16). Upon first performing, if necessary, a eoient transformationl], one
may suppose that the rat/ P contains the variable and take this ratio itself to be the
last variable. Equations (16) then become:

0] dz=p dx—q dy=0, dp—udg—-adx—-bdyO0,

in which a, b are functions of the six variablesy, ..., u. Duport P4] was the first to
prove, by a different method, that a systeém which six variables appear may generally
be converted into the form (I) in two different way3wo arbitrary functions of six
variables appear in this reduced form. If the syssegmarbitrary then one cannot obtain
a reduced form in which less than two arbitrary functmsear. Indeed, if the system is
assumed to have been solved for two of the differisrtiieen it contains eight arbitrary
coefficients. When one performs a change of varialles, disposes of six arbitrary
functions that one may choose in such a fashiondikadf the coefficients of the new
system have expressions that are given in advance, ttes remain two indeterminate
coefficients in the new system of equations.

Upon seeking the singular elements of the system r@ctlly, one first obtains the
system that is defined by the relations (15), which become

(15) =2 =TT =""=

here, and a new family of singular elements that isrohited by the four equations:

Q=0 Q,=0, dq+% dx+@ dy= 0,
ou Ju
(17) ob 0 b 0
(A+ B——C—aj(udx+ dy:( A b—aj( Bdx Cdy a1
ou Ju Ju Jdu
in which we have set:
A:d_b—ia’ B:%-}-u%, C:@-}-ua_b’
dx dy Jdg Odp Joq dp
d_o0,.90 d_090_,9

ax ax Foz’ dy oy 99z

The corresponding singular equation is:

(18) (u@—b—%jQz—(A+ B@— Ca—an1 =0.
ou ou oJu Jdu
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If u?—b—g—a iIs not zero, which is the general case, then the famalies of

u u
singular elements are distinct. Whell‘-!a—b—b—% IS zero, without A+ B@—C%l
ou ou ou ou

being zero, the two families of singular elements ddenc Finally, if the coefficients of
Q; andQ; in equation (18) are both zero then the system adnmatscteristic elements
that are defined by the five relations:

udx+dy=0, dq+%dx+@ dy =0,
ou ou
B dx+ C dy—du=0, Q,=0, Q,=0,

and the system is of class five.

Conversely, any systei® may be converted into the form (I) in an infinitude of
ways, where the coefficients and b verify the stated conditions. L&4 = 0 be an
equation of class five of the syst&; if one assumes that it has been converted into the
canonical form then the second equation of the systenc@atain the differentiadu of
the sixth variable. Indeed, in order for an elemeémnt dy, dp, dg) to be a characteristic
element it is necessary that the relation:

dxp-dpXx+dydg-dqdy=0

be verified for any integral element&( dy, &, &), which is impossible if the second
one containslu, since the values ak, dy, dp, & may then be taken arbitrarily.

A singular equation of a syste® may also be of class three, and conversely; if one
may deduce a combinatioliy + (ap = 0 of class three from the equatians= 0, a» = 0
of a systenty then that equatio@; = 0 is one of the singular equations of the system.
Indeed, ledu—w dv= 0 be a canonical form for that equation. Upon addiagsétond
equation of the syster® to the three relationdu = 0, dv = 0, dw = 0, one obtains a
family of singular elements, each of which is in involutimith any other integral
element relative to the equatiin = 0. There is no reason to return to the case where t
systemS admits an integral combination, since there are rgquian elements.

The discussion of all the possible singular casesnsewhat long, but presents no
difficulties [30]. | will recall only the results.

1. General case.— Equation (12) has two distinct roots, and each of them
corresponds to a singular equation of class five. Teegys may be converted into the
form (1) in two different ways. There are two distifamilies of singular elements, and
the differential equations that define one family adatitmost two distinct integrable
combinations

2. Equation (12) has a double root that corresponds to a simgation of class
five. The systen® may be converted into the form (I) in only one way] ane has:
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%+b—u@ =0
ou odu

for this reduced form.

3. Equation (12) has two distinct roots, one of which prevasingular equation of
class five, and the second of which provides a singular iequat class three. The
systemS may be converted into the form (1), and into anothduced form:

(||) ledy3—y2 dy1:0, szdy5—y6 dy4—ady1—bdy2: 0,

in whicha andb are not both zero. The differential equations offémily of singular
elements that correspond to the singular equ&ion 0 aredy; = 0,dy, = 0,dy; = 0,dys
—Ve dys = 0, and admithreedistinct integrable combinations.

4. Equation (12) has two distinct roots, each of whichesponds to a singular
equation of class thre& may be converted into tleanonical form

(|||) Q; :dy3—y2 dyl =0, Q, :dye—y5 dy4 =0,

and the differential equations of each family of siagwlements admthree integrable
combinations.

5. Equation (12) has a double root that gives a singular equatticlass threeS
may be converted intoanonical form:

(v) Q) =dz-pdx—-qdy=0, Q,=du-qdp=0,

and the differential equations of the singular elemdotsn a completely integrable
system.

6. When the two equations (8) and (9) are not distincthawe already remarked
that the systen admits an integrable combination; it may then be conventedtihe
canonical form:

V) Q;=dz—pdx—qdy=0, Q,=du=0.

In this case, where or not one has singular elements,i@ya2) has a double root that
corresponds to the equati@a = 0.

In order to complete the enumeration of the reducethdointo which one may
convert a system of two Pfaff equations in which sixaldes appear, it is necessary to
add the forms that agree with the sys&®mandS, to the preceding types (26).

A systemS; may generally be converted in an infinitude of ways amteduced form
[26]:

(V|) Q= dy3 —VY2 dyl =0, Q, = dy4 —f dyl —Vs5 dyz =0,
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wheref is not a linear function ofs, and in certain cases, into the canonical form:
(V||) dy2 —VYa dyl =0, Q, = dy3 —Vs5 dyl =0.
A systemS; may be likewise converted into one of the canonicah$or

(VI Qi1 =dy, —ysdy1 = 0, Q> =dys —ysdyr = 0,
(|X) Ql = dy2 = 0, Qz = dy3 — Vs dyl =0.

A systemS that is associated with a (B) problem cannot be cawelglentegrable,
because a linear combination of two equatiias 0, df, = 0 cannot be of class five.

The reduction of a given systegto one of the forms that were just enumerated
demands the integration of one or more systems fardiftial equations and changes of
variables.

5. Search for integrals?t, . Resolvents of the first kind.— The determination of

the integral9t; of the systen®is simple when the system has been reduced to ohe of t

canonical forms (Il1), (1V), (V), (VII), (VIII), (IX). For example, in the case of the form
(IV), all of the integral9Jt, are given by a system of four equations:

(N u=f(p), q="F"(p), z—px -y f(p) = &(p), x+yf(p)=-¢"(p),
) p=Cs, u==Cz, z-Gx=¢(y), a=¢’(),
(1 p=C, u=0_C,, z-Gx=0C;g, y=C4.

We remark that whe® may be reduced to one of the forms (VII), (VIII), jIXhat
system admits integraf8t; . When the system is of class five and has been fmthe

reduced form (VI), all of the integraf8i, are further defined by one of the systems of
four relations:

@ {y3= FOW, Y= F(W, %=P(W,

qJ'(Yl) -f- Y5 F"(yl) =0,
05) y1=Cy, y3=Cg, Ya=DP(y2), Ys=D'(y2),
(W Yl:Cl1 Y3:C:3, YZ202, y4:C4.

In any case, the syste®admits an explicit general integral that is represkhtieone
or more systems of relations between the variablés

() In certain cases, there might also exist integrals dha callssingular that are not given by the
application of general formulas. The transformatibrad permit one to convert the system into a canbnica
form do not apply to these integrals. This is a gdizataon of a well-known fact for first-order partial
differential equations.
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Here are some examples of problems (B) for which sBe@ated systei@falls into
one of the preceding categories. The four equakonx, y =y,p' =—q, q =p lead to
the Pfaff systemdz = p dx+ q dy, dZ = — g dx + p dy, which is converted into the
canonical form (lII):

d(z +iz) = (p —ig) d(x + 1y), d(z —-iZ) = (p + iq) d(x — iy);

this is, in another form, a classical result oftieory of analytic functions.
The (B) problem that is defined by the relatiphs p, g =q, X =X Y =y + p leads
to the system in canonical form (IV):

dz-pdx-qdy d(z-Z)=qdp

The solution is given by two developable surfaces with llpargenerators that
correspond point-by-point, from the given relations.

There also exists an infinitude of problems (B) whossoaiated systel® may be
converted into the canonical form (V). Suppose thattheationd; = 0 permit one to
expres, VY, Z, P, d by means ok, y, z, p, q, and a sixth variabla. If the associated
system is reducible to the form (V) then one has anitgesftthe form:

dZ-p dX -q dy =AdU+ u(dz—p dx — g dy,

in whichU, A, are functions of the six variables that may be arbitaapyiori. If one
adds the equatiod = C to the four relations (1), which determineas a function ox, y,
z, p, g, and the consta@ then the five functiong', y, Z, p', g of the variables, y, z p,
g thus obtained satisfy the identity:

dZ-p'dX-q dy =u(dz—-pdx—qdy

these formulas thus define an infinitude of contactsfaamations that depend upon an
arbitrary constant. One may choose the multiplisgyarbitrarily, and it corresponds to
o' multiplicities M. . For example, the (B) problem that is defined by #tations:

X-X_Y-y_ z’—z:u
Y q -1

has the canonical system:

dz=p dx+qdy, d(uyl+ P+ ) =0

for its associated system; the general propertyesfied immediately because the
preceding formulas express the parallelism of twdeses.
The four equations:
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X+
X=qy- qy’ y=z-px p=p Z=y+px

have the syster&:
dz-py=ydn qdy=(x+y)dp

for their associated system, whose general integrapiesented by a system of just three
relations:

z=px +f(p), y=f'(®,  x=qf(p) - (p),

where the independent variables pr@ndg. On has, in turn:
X=uf'(E)-f"(p, y =P, zZ=px+f(p, P =p, q=u,

whereu denotes a new independent variable. The two multigl&ifi, and M, have

their point-wise supports on two ruled surfaces whose gemsr@ = const.) correspond,

but one may make the elements of these two multiglécitorrespond in an infinitude of
ways, because one may choaos® be an arbitrary function @f This is attached to a
general property of problems (B) whose associated syséeimst three-dimensional
integralsMs . The point X, ¥y, z ..., q) then describes a multiplicitiNz in ten-
dimensional space, but the elementy z p, ) must generate a multiplicityl; whose
coordinates, Y, z p, q depend upon at most two independent variables, and feathe
reasonx, Yy, Z, p, g depend upon at most two independent variables. Suppose, to b
specific, that these two elements describe two niigities M2, M. Xy, z p, q are

functions of two parametetsv, andx, Yy, Z, p', d are functions of two other parameters
u', v, but these four parameters are coupled by a relato®, since the multiplicityNs

is three-dimensional. If one establishes anothatioel of the fornf, = 0 between these
four parameters then one establishes a correspondemezehdhe elementd, and M, .

It finally remains for us to examine the general casa gfystemS that may be
converted into the reduced form (16). B#b be an integral of this system for whigh
andy are not related by any relatioh).( If one takesx andy to be the independent
variables thefi; is represented by a system of relations:

() If the systents; admits integral)t, for whichx andy are not independent then the elemeny,(z

p, ) always describes a multiplicityl, or a multiplicityM; . If the element describes a multiplicNp
then it will suffice to perform a transformatiom) (that will convert it into the general case. If #¢lement
(%, ¥, z p, g) that is described by a multiplicity, is represented by the formulas:

x=fi(a), y =fa(a), z=13(a), p= ¢i(a), q= ¢(a),

a being a variable parameter, then it must be truetifeasecond of equations (14) is verified identically
for anyu when one replaces y, z p, g by their parametric expressions. The coordinates ofra fid,
then depend upon the two parametesndu.

A systemS; admits an infinitude of integrals of that type when tbsolventE; is a Monge-Ampére
equation, and the corresponding multiplicitMsare the first-order characteristicstaf.
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(19) 2=f(xy), P q:‘;—f, U= g(x.y).
Yy

s

ox’
The second of equations (15) proves thatust satisfy two conditions:
(20) X+Pr+Qs=0, Y+Ps+Qt=0,

in whichr, s, t denote the second derivativesfof y). The elimination oli from these
two relations leads to a second-order partial diffea¢ejuation irz:

(21) F(x, v,z pqr,st)=0,

whose integration will make known all of the integrails of the systen& for which

there is no relation betweenandy. That second-order equation does not have an
arbitrary form. Indeed, if one regamdsy, z p, g in equations (20) as having given values
andr, s, t as the Cartesian coordinates of a point then thesei@giagpresent a line that
is parallel to a generator of the came- & = 0 that depends upon a parameteand the
elimination of that parameter leads to an equation thah the same conventions,
represents a ruled surface whose generators are eadelpgaral generator in a general
variable of the cong — & = 0. We say, to abbreviate, that equation (20)résalvent of
the first kindof the systens and represent it by; .

The equations of this type admit a family afaracteristics of the first kind26],
chap. IV). Upon eliminating the parametefrom the four equations (15), one obtains
two homogeneous relationsdw, dy, dp, da:

(22) P4(X, y, z dx, dy, dp, dg) =0, (X, Y, z dx, dy, dp, dg) =0,

which, when combined with the equatidn= p dx + q dy determines a family of first-
order characteristics of equation (21).

Any systemS may generally be put into the form (16) in two differertys; so one
concludes thathe search for integral®1, of the systemg3nay generally be converted in

two different ways to the integration of a secondeo partial differential equation that
admits a family of first-order characteristics.

In other words, any systef generally possesses two distinct resolvents of tee fi
type E; , E/, which are defined only up to a transformatidn There is only one

resolvent of the first kind when equation (12) has a dotdaé that corresponds to a
singular equation of class 5, or when one of the singagaations is of class 5, while the
other one is of class 3. There is no resolvent®fitat kind wherss may be put into one
of the canonical forms (1), (1V), (V).

Let E; be the resolvent of the first kind that is represgrdg equation (21). Other
than the first-order system of characteristics (22t gguation admits another system of
characteristics that are of second order, in gen&appose that the systéghas been
converted into the reduced form (I). Equatifins obtained upon eliminatingfrom the
two equations = us+ a, s = ut + b that one might consider to define two functiorend
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uofxy zp g st The usual rules of differential calculus easilyegthe following
expressions for the partial derivatives:

or ( aaj ( abj or ( aaj,( abj
— =u+|s+— ;| t+— |, — U+ | s+— || t+—|.
0s ou oJu ot ou ou

The differential equation idy / dx that determines the two families of charactersstic
on an integral surface admits the ralgt/ dx = — u, which agrees with the first-order

characteristics, and a second rdgf dx = (s+%} : (t+%ﬁ.

In order for the two families of characteristias ¢oincide, it is necessary and
sufficient thata andb verify a relation that was already obtained:

%+b—u@: 0
ou odu

(page 12), which also expresses the idea thatnbdamilies of singular elements &
coincide. Upon preserving the conventions thatevadready specified, equati@&a then
represents a developable surface whose tangerd mamains parallel to a plane tangent
to the conet —s* = 0.

The system& are not the only ones that possess first-orderlvests. Indeed, we
have seen that any systé&nmay be put into the form (14) in an infinitudewdys. If
the ratios of the coefficientX)Y, P, Q are not independent af then the system is
generally of class 6, but it might be of class Bny systemS thus possesses an
infinitude of first-order resolvents, but thesealgents for aspecial clasghat possesses
very particular properties. The conditions obtdiep. 12) that express the idea that the
system (14) is of class 5 also express the iddgdhbacorresponding resolvelit has two
families of characteristics that coincide, and Hartmore, that the equations that
determine the intermediate integré(s, y, z, p, g) = C of equationE; form a system in
involution One may explicitly write the general integral arf equation of this class
when one has integrated the system that deterniheesntermediary integrals df;,
which is indeed in agreement with what was saidralfor the systemSs [11, 36].

In summary,the only systems; $hat possess resolvents of the first kind are the
systems & which cannot be converted into one of the canorficahs(lll), (1V), (V),
and the systemss S A system §Shas at most two resolvents of the first kind, while
system $Shas an infinitude that belong to the special class.

Converselyany second-order partial differential equation Eatlpossesses a family
of first-order characteristics is a resolvent okthirst kind for a systemg ¥ it does not
belong to the special class, and for a systemhiSdoes not belong to the special class.

Indeed, let:

(23) X+Pr+Qs=0, Y+Ps+Qt=0

be the equations that represent a rectilinear gémeof the surface that is represented by
the equatiorkE in the spacer( s, t), whereX, Y, P, Q are functions ok, y, z, p, q and a
parameteru. The equatiorE is obtained by eliminating the parameterfrom the
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relations (23); it is therefore a resolvent of thistfkind for the system (14), whexe Y,

P, Q are the same as in formulas (23). This system isasé@, at least whdhdoes not
belong to the special class, and in the latter cageaf class 5. The equations of a
generator oE may be written in an infinitude of ways in the for@8) by changing the
parametew, but the systemS thus obtained are not distinct, and can be converted int
each other by a change of variables.

If equation E is a Monge-Ampere equation with two distinct familie$ o
characteristics then each of them corresponds tstarags for whichE is a resolvent of
the first kind. For examples,= 0O is a resolvent of the first kind for the two ®yst (z=
pdx+qgdydp=udy, (dz=pdx + qdydg=u dy).

When a systen¥ possesses two distinct singular equations, one of Blassl the
other of class 3, it has only one resolvent of tre KmdE;, andthat resolvent admits an
intermediate integral that depends upon an arbitrary functitmleed, suppose that one
may deduce an equation of class 3 from the equations (16¢lynauU =W dV, whereU,

V, W are functions ok, y, z, p, g, u. For any integral of the system (16), one has two
relations of the fornrU = F(V), W = F’ (V), whereF may be chosen arbitrarily. The
elimination ofu leads to a relation betwegny, z p, q; i.e., to an intermediate integral of
the resolvent that depends upon the arbitrary funétion

Conversely, if a second-oder equati®admits an intermediate integral that depends
upon an arbitrary function, or, what amounts to theesimng, an intermediate integral
that depends upon two arbitrary constants, such asV(x, y, z, p, g, &), then that
equation may be obtained by eliminatamfrom the two relations:

av+pa_v+a_vr+a_vs :0, a_v+qa_v+a_vs+a_vt:0_

X dz 0Jdp 0¢ oy dz dp 0d¢Q
It is therefore a resolvent of the first kind of gystem:

dz=pdx—-qgdy0,

(a_v+ pa_dex+ Vo @Yy Y ap2Y =0
ox = 0z oy 0z op  0q ’

in which the six variableg, y, z, p, g, a appear, and one may immediately deduce an
equation of class 3V —(0V / 0a) da= 0 from them. This general fact gives the reason
for a remark of Clairin13]. Suppose that one deduces a relation that containx'ogly

Z, P, q from the four equations (1); indeed, by performing a suitablesformationT),

one may assume that this relatiory'iss 0. Upon taking the variables to key, z p, q,

and one of the primed variables, the associated systemmen:

dz=pdx+qdy dZ =p dXx.
This system therefore admits a singular equation s6c@a and consequently, if it is

not reducible to one of the canonical forms (IV) or (8,there is a resolvent of the first
kind that possesses an intermediate integral that depeodisan arbitrary function. We
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further remark that in a systef3 one may find an infinitude of equations of class 3,
which is completely in agreement with the propertiethefresolvents of that system.

6. TheB; transformations. — Let E;, E| be two resolvents of the first kind of a

systemS . This system may be written in the form (16) witpaaticular choice of the
variablesx, y, z, p, g, u, and in an analogous form with another system oabséasx, vy,
Z,p, d, U, where the letters y, z ... are replaced by the primed letters. The resolvents
Ei, E| correspond to the two forms in which one may writesygemSs, respectively.

The integrals of the two equations, EE, correspond to each other in a one-to-one
fashion Indeed, any integrdl, of E; is contained in one and only one integbal of S,
and that integrai, itself contains one and only one integralEjf. In a more precise
fashion, letz =f(x, y) be an integral o; ; one has:

=, q= T
dx’ dy’

andu is given by the two compatible equations (20). Sincevén@blesx', y', ... are
expressed by means of the first ones, the formulagthax, vy, Z, p', d by means of
two independent variablesandy define an integral oE; . In the same fashion, one may

deduce one and only one integralEaffrom any integral ofg; . With the classification
of Clairin [13], we say that one passes from one of the two equdiion&, to the other

by aBacklund transformation B

The elimination of the parameterfrom the five equations that permit one to express
X,Y,Z,p,q interms ofx, vy, z p, q, uwill lead to a system of four relations between the
coordinates of the two contact elements. Converdming given a system of four
relationsF; = 0 between the coordinates of two elements, we deekdses in which
these relations define By transformation. We always set aside the case inhamne
may deduce an equation that contains only the coordioatese of the elements from
the relationd= = 0. Indeed, we have remarked that the associated sgatamt admit
two resolvents of the first kind if it is of class%.(Upon taking the variables to key,
z, p, q, and a sixth variabla that is distinct from them, in such a fashion that, z, p, q
are expressed by means of ey, Z, p, ¢, U, the associated Pfaff system to the (B)
problem that is defined by the relatidhs= O is:

(24) dz=pdx + qdy dZ =p dX +q dy.

In order for the elimination of the variahldo lead to a resolvent of the first kind for
the determination ot as a function ok andy, it is necessary and sufficient that the

() Any systemS may be converted into the form (16) in an infinitude @fysy so it possesses an
infinitude of resolvents of the first kind that are bétspecial class that was defined above. Cartan has
proved that all of these resolvents may be deduced fromather by contact transformatiorisl].
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second of equations (24) does not refedpand contains only the differentials, dy,
dz dp, dg. If that is true then the relatiadZ = p' dX + ' dy is a consequence of the
relationsx = Xo, Y = Yo, Z = 2, P = Po, g = (o, and consequently the relatiolis= 0 make
an arbitrary elemenix4, yo, zo, po, go) correspond to a multiplicityl; of elementsx(, y,

Z,p,d). One likewise verifies that the elimination oéthnprimed variables will lead to
the second resolvent of the first kirif] of the systen® if the equation$; = 0 make an
arbitrary elemen(x, ¥,, Z,, B, ¢) correspond to a multiplicityl; of elementsx, y, z, p,
g). Therefore,in order for the relations F= 0 to define a B transformation it is
necessary and sufficient that an arbitrary elements of each familgspamd toco®
elements of the other family that form a one-dimensional multiphtity

J. Clairin, to whom one attributes this interpreta{it3], has pointed out a very broad
case in which these conditions are verified. Let:

g%y, zp,q)=Ci, ¢ X,¥,Z, P ¢=C (i=1,234)

!

be the equations of two families of multiplicitidd,, M, that depend upon four
parameterE; or C', respectively. It is obvious that the equatighs ¢ indeed satisfy

the conditions of the statement, and consequently defirensformatio; .
In order for the four equations:

X=x Y=y, Fix,y,Z,p,q, P,q)=0, Fux ...)=0

defineB; transformation, it is necessary and sufficient ttZ|at 0 be a consequencedX
=0,dy=0, ...,dg= 0, and likewise thadz= 0 be a consequenced =0, ...,dq = 0.
One may thus conclude valueszandz from the two equations; = 0, F, = 0 such that
Z=f(x,y,zp, Qq),z=FX,Y,Z,p,q). The converse is obvious. In the particular case
wheref, is deduced fronfy, by putting primes on the lettersp, g, it is clear thatE, is

deduced fronkE; by putting primes on the lettersp, q, r, s t. TheB; transformation
thus permits one to deduce a new integr&d;dfom an integral of that equation.

Any second-order equation to which one may apply a wamstionB; necessarily
possesses a family of first-order characteristichis Tondition is, in general, sufficient.
Indeed, suppose that this equation possesses two distindiegaofi characteristics of
first order and one of second order, and that it doeadmit an intermediate integral that
depends upon two arbitrary constants. This equation isathesolvent of the first kind
of a systents that is completely determined and which possessesoadeesolvent of

the first kind E; that is itself completely determined up to a transfeiongT). From the

given equation E, one may thus deduce another equation of second grded Enly
one, up to a contact transformatioby a B transformation(*) (13. 30). At the same
time, the proof shows that this is the path to follbane is to obtain this transformation.
The second singular equation &f is determined by linear calculations, and one must
then convert this Pfaff equation to a canonical forme [Blter problem indeed admits an

() This result was obtained for the first time by [hith [15] by a totally different method.
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infinitude of solutions, but the second-order equationshicinwone is led can be deduced
from each other by transformatiors.(

The conclusion is incorrect if the two families afaracteristics coincide, at least if
the equatiorE does not belong to the special classethe note on page 20). It is also
incorrect if, the two families of characteristicargedistinct — one of first order, one of
second order — the equati@admits an intermediate integral that depends upon two
arbitrary constants. Finallyf the equation E is a Monge-Ampeére equation that has two
distinct families of characteristics then the equation E provides dvgtinct B
transformations provided that it does not admit an intermediate integral that depends
upon an arbitrary function for any system of characteristics.

Let z = f(x, y) be an integral oE; and letZ = ¢(X, y') be the integral of that it
corresponds to by thB; transformation. The characteristics correspond to these two
integrals. Indeed, leM; be a characteristic of the first integral — i.emuatiplicity of co®
first-order elements that also belongs to an infinitedeother integrals ofE;. In
particular, there exist an infinitude Bf that have second-order contact with the first one
at each element ofl,;. AlongMy, X, ¥,z p, q, I, S, t have the same values for all of these
surfaces and are functions of one parameteimhe corresponding elemenss, §/, Z, p',

q'), which are expressed by meanxof, z p, g, 1, S, t, thus generates a multiplicityl,
that belongs to an infinitude of integrals & . The point-wise support oM, is
therefore a characteristic curve that is common tofdhese integrals.

In order to specify the correspondence between the twitida of characteristics, we
remark that the equatidfy that is from the reduced form (16) has a first systéfirsi-
order characteristic€; that are defined by the relations (15), and a secondnsyste
characteristicE, that are of second order, in general. To abbrewaesay that th®;
transformation by which one passes fr&mnto E is deduced from the famil¢; of
characteristics. The equatidf| likewise admits a family of first-order charactedsti
C, whoseB; transformation is deduced, relative to that equatioth,sasecond family of
characteristicsC, that is of second order, in general. Now, the two ilfas of
characteristic®C; and C; belong to two distinct families of singular elementsSp .

These two systems of characteristics cannot thereforrespond, and consequenthg
characteristics C, andC, of E correspond to the characteristics, @nd G of E,

respectively13).

Examples

1. A second-order equatierF f(X, y, z p, Q) is a resolvent of the first king, for the
systems :
(25) w=dz—-pdx—-qdy 0, w=dp—-udx—-fdyO.

Upon applying the general search method for singular @lsnieo. 3), one finds two
families that are defined by the following equations:

dy=0, dg="f dx dz=pdx dp=u dx
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dx =0, dz=qdy  dp=fdy  du=| 2 +pdeus gy,
ox 0z Jdp O0q

in which the first one gives the singular equatian= 0, while the second one provides
the second singular equation:

%:@_ﬂﬂzdp—ﬂdZ- u—pi dx- f—qi dy= 0,
oq aq op 09

which must be converted into a canonical form in ordeletduce the second resolvent of
the first kind of the system (25).

If f does not contaig then the second singular equatiorcds= 0, and it is has a
canonical form. The (B) problem that leads to theéesyq25) belongs to a category that
we have already pointed out.

In the case of the Laplace equation, onefhas- ap — bq — czwherea, b, ¢ are
functions ofx andy, so the equations = O is easily put into a canonical form:

- b}) d=0.

In order to achieve this calculation, it is suffidcieo observe that the Laplace
equation provided by (B) problem is defined by the formulas:

S4E

d(p + b2 - {zg—s+ ap— cz} dy{

X =X, Yy =Y, Z=p+bhz q’:zg—5+ap—cz

from which, one conversely infers%’13 +ab — c=kis not zero, that:
y

g+az ID:z_bq'+abz
k k '

The elimination ofz leads to a new linear equation of the same form, hedt
transformation is identical to the Laplace transfation 22, 261].

2. The equation of Gomes Teixeidd]:
s—AKXY,zp)q-BXxy,pr)=0
is a resolvent of the first kind for the system:

dz-pdx—-qdyO0, dp —udxAq+ B)dy=0,
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in whichr is replaced by in B. The second singular equation of the system is:
dp=Adz—H{u—-Apdx—Bdy=0.

In order to convert this equation into a canonical formsuffices to find an
integrating factom for the Pfaff expressiodp — A dz wherex andy are regarded as

parameters. The prodygt(dp — A dzis indeed of the forrdg — g—fdx—% dy, and the

preceding equation is then put into canonical form.

The calculations are easily carried out. Upon assyirthatB is independent of,
one has the Imschenetsky transformati®r].[ This example was further generalized by
J. Clairin [L3].

By starting with a Laplace equation, one may generalhpeat theB; transformation
indefinitely in the two senses of application; the openat&yminates in one sense only if
one arrives at a Laplace equation that admits anmetdiate integral with an arbitrary
function. It is clear that the same property belomgarty Monge-Ampeére equation that
reduces to a Laplace equation by a transformafipn It will be interesting to examine
whether these are the only ones that possess this fy;ogoed, more generally, form all
of the Monge-Ampeére equations that give another Monggéke equation under B
transformation.

This problem was studied by J. Clairih9] by assuming that the sequenceBaf
transformations preserves the independent variablesh tW# restrictive condition, it is
proved that any second-order equation that one may deduca, degjuence oB;
transformations of this type, more than three consexeguations, can be converted into
a Laplace equation by a transformatidi), (or to one of the equations that were studied
by Moutard 1], which also reduce to Laplace equations.

7. Resolvents of the second kind: The integration of a system of class 6 may, in
certain cases, be converted into the integration efsatond-order equation in another
fashion. Leta = 0 be a non-singular equation of that system; it meséssarily be of
class 5. If one has put it into a canonical fatz+ p dx + q dythen an equation of the
systemS that is distinct from it contains the differentdl of the sixth variables, since
otherwisew = 0 will be a singular equation &(no. 4). This system is thus composed
of two equations:

26 @ =dz- pdx- qdy=0,
(26) {wz =du- Xdx- Ydy- Pdp QdgO0,

X, Y, P, Q being functions oX%, y, z, p, g, u. Any system of class 6 may be converted into
the form (26) in an infinitude of ways, and we have remaedmale (page 13) that any
system of that form is of class 6.
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Let M, be a integral of this system, such thandy are not coupled by any relation
(*). If one takesx or y to be independent variables then this multiplic#y, is
represented by a system of four equations:

ot

(27) z=f(xy), P =% u=g(xy).

o
ox’
Upon replacingdp with r dx + s dyanddqg with s dx + t dyin the second equation

(26), it becomes:
(28) du=X+Pr+Q9dx+ (Y +Ps+Q)dy.

By developing the integrability condition for this equaticone obtains a linear
equation i, s, t, rt — %
(29) Hr+ 2Ks+LtM+ Nrt—<) =0,

when the coefficienthl, K, L, M, N have the following values:

H :E—G_Y+Y6_P_ P_Y, L:Q(_EQ.y Qa_x_ Xa_Q,
dy op du 0

u )
(30) ok =X, pdX,4Q, 9Q dY 0P 0P
op ou dy oOu Ou Odu Ou

=09 9, oX oy 0P 2Q QP 9Q
dy 0x Ju Jdu 0dg dp du 0u

In general, the ratios of these coefficients ddpepon u, and equation (29)
determinesl as a function oX, y, z, p, g, r, S, t. Upon writing down that the function thus
obtained is an integral of equation (28), one oistaio third-order partial differential
equations that determine the functigx y). These equations are not arbitrary, moreover,
since we knowva priori that they admit an infinitude of common integrals.

For certain functionX, Y, P, Q, it might happen that the ratios of the coeffitse{80)
do not depend upono. Equation (29) is then a Monge-Ampere that deireemthe
functionf(x, y). Any integral of that equation corresponds toirdmitude of integrals
M, of the systen® that depend upon an arbitrary constant, because&etermined by a

completely integrable total differential equation.

In this case, equation (29) igesolvent of the second kitd of the systeng, and it
results from the form itself of system (26) thag gystems that admit a resolvent of the
second kind are of class 6. A system of class ghtradmit several resolvents of the

() If M, is an integral os; on whichx andy cannot be taken to be independent variables then the
element %, v, z p, q) describes a multiplicityM, or M; . In the first case, it is sufficient that a
transformation T) converted it into the case that was studied in tkie {Bhe second case must be rejected,;
indeed, ifx, y, z p, g are functions of one variablethen the second equation = 0 becomesu = F(a, u)
da, and in turnp will also be a function of just the variahte
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second kind, and we remark that a sys&mmight have resolvents of the second kind
without having resolvents of the first kind. For examphe canonical system:

dz= pdx+qgdy du=-qgdx+pdy

admits the resolvent of the second kindl t = 0. Likewise, the canonical system (1V)
admits the resolvemt — & = 0.

When equation (29) is a resolvelt of the system (26), each family of singular
elements of corresponds to a family of characteristicEgf In order to prove this, we
may suppose that equation (29) contains a term ns’, since it suffices for it to be
converted into this case by a transformatién (In order for two integral linear elements
(dx, dy, dp, dog), (%, Jy, p, A) of the system (26) to be in involution; these elements
must verify the two relations:

dp & + dq dy — dxdp — dydy = 0,

L(dx & — dgdx) + 2K(dx dp — dpdx) + M(dx Jy — dydx)
+H(dp dy — dydp) + N(dp &g —dgop) = 0.

In order for an elementdyx, dy, dp, dg) to be a singular element, it is necessary and
sufficient that the coefficients ofx, dy, dp, & in the two preceding equations be
proportional. Upon writing down these conditions, omeld thatdx, dy, dp, dq must
satisfy one of the following relations:

(31) Ndp+Ldx+Ady=0, Ndq+A,dx+Hdy=0,
(31Y Ndp+Ldx+4ddy=0, Ndq+A;dx+Hdy=0,

A1 andA; being the two roots of the equation:

(32) Ay + 2K A+ HL - MN= 0.

One obtains the equations that define a family of samgelements of the system by
adjoining equations (26) to one of the systems (31). Nmpan adjoining only the first
of equations (26) to one of the systems {31 (31f, one obtains the equations that
define a family of characteristics Bf, which proves the stated theorem.

Any characteristitVl; of E; is formed ofw® elementsX, y, z p, q) that verify one of
these systems. Upon replacikg, z p, q with their expressions in terms of a parameter
variable in the last of equations (26), one obtains &dimder differential equation to
determineu, and consequently any first-order characteristi€obelongs too' Monge
characteristics o6 (no. 3), and conversely any Monge characteristiS @bntains a
characteristic oE, . It also results from that study that if the &ueristic equations of
E, admiti integrable combinations € 1, 2, 3) then the differential equations of the
corresponding system of singular elementS$ afimit at least integrable combinations.
If the two families of singular elements for a syst&ncoincide then any resolveBt of
this system also has two families of characterigties coincide, and conversely.
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The integrability condition (29) generally containsesnt inrt — &. In order for this
term to not exist, it is necessary that one Hdve 0, a condition that expresses the idea
that the equatiodu =P dp + Q dq where one regardsy, z as parameters, is completely
integrable. LeU(Xx, Y, z p, g) = const. be one of the forms into which one maytpet
general integral of that equation. The functibmerifies the two relations:

a_U+Pa_U =0 a_U+Qa_U =0,

0q ou

and, if one takedJ(x, y, z, p, g, U) to be the variable in place afthen the second of
equations (26) is replaced by:

du = (a_u.i.a_u pj dx+ a_U+a_U q dX+6_U( X dx Y dy,
ox 0z dy 0z Ju
and the system takes the form:
(26) dz=pdx + qdy du=f(x,y,z p, g, u) dx+ @¢(x VY, z, p, g, u) dy,

the variableu no longer being the same as in the system (26). Cohyefse any
functionsf and ¢, it is clear that the integrability condition of sy (26) does not refer
to the term it — &,

In particular, when equation (29) is independenti,adne may, by a transformation
(T), convert it into one that does not refertte- . Any resolvent of the second ki
of a systen& that is linear irr, s, t is therefore identical to the integrability conditiof
an equation of the form (26)where one must have, moreover, thahd ¢ are such that
this condition does not depend upon

Condition (29) refers to neithemort if sis independent af and¢g is independent of
p. The system (26) takes the form:
(26) dz=pdx +qdy du=1f(x,y,z p, u) dx+ @¢(x, y, z p, u) dy.

The integrability condition is then:

(33) (ﬂ_%js :%—ﬂ+%f —ﬂ

op 0q dx dy odu du
This integrability condition contains no second-ordeivagive if one has:
f=AXY,zu +CXYy,zup, ?=B(xy,zu)+C(xY, z U) Q.
The system (26) then contains an equation:

du=Adx+Bdy+Cdz
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which refers to onlyx, y, z, u, and which is, consequently, of third class. If that
integrability condition does not refer tp but contains at least one of the derivatpges,
then one has a resolvent of the second kind and fidggr.orOne may suppose that one
has converted it into the form= 0 by a transformationT§. The coefficient#A, B, C
must satisfy the two conditions:

6A+6AB :a_B-{-@A, a_A+Ca_A :a_C+AaC

ay odu ox ou 9z du ox  au’

the first of which expresses the idea that the equahtios A dx + B dy where one
regardsz as a parameter, is completely integrable. One asesge will quite soon, that
by a change of the variahlethe system (26) is converted into the form:

(34) dz=p dx + g dy du=¢(x,y, 2 dz

which is reducible to the canonical form (IV), because tWwo families of singular
elements coincide, and admit the four integrable combimdk= 0,dy= 0,du= 0 ¢).

One sees, in the same fashion, that if the comdi{®9) does not refer to any
derivative ofz then the second equation may be converted into the form

du=¢(x,y, u) dx

Finally, it might happen that the integrability conditi®9) is verified identically. In
order for this to be true, it is necessary that thectionsA, B, C verify three conditions
that express the idea that the equation:

du=Adx+Bdy+ Cdz

is completely integrable, and in this case, it sufficeeplaceu with a functionU(x, v, z,
u) in order to convert the system (26) into the canofficrah:

dz—-pdx—-qdy 0, dUu=0.

We recall a particular case that was examined alpypu€elb).

The problems that relate to the resolvents of thergkkind are generally much more
difficult than the analogous problems that concern tkelvents of the first kind. The
principal questions that one poses are the following two:

() The integrals that satisfy the relatipre 0 aresingularintegrals éeethe note on page 9), and these
integrals depend upon only an arbitrary functzenf(y), u being given by the integration of a differential
equationdu = gy, f(y), u], f'(y) dy. Thegeneralintegral is given by the formulas:

y =f(x), z=9(x), pP=g(¥)—-aqf(X),
u being determined by the differential equation:

du = ¢[f(x), 9(x), u] g'(x) dx
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1. Being given a system,Sind the resolvents of the second kind of the system, if
they exist.

2. Being given a Monge-Ampére equation, find the systenfer Svhich it is a
resolvent of the second kind.

The results indicated above (pp. 25-26) permit us to stageessarycondition for a
systemS to admit a resolvent of the second kind. Indeed, we baen that in this case
the differential equations that define the singular eteémef each family involve three
distinct equations in which only five variables appear.

Therefore:In order for a systeme30 admit a resolvent of the second kind, it is
necessary that one may deduce three equations that form a systens diveléom the
four differential equations that define the singular elements of eachyfamil

This is a particular case of a very general problermnrilates to Pfaff systems that
does not seem to have been studied up to the presentvilMgenfirm later on (no. 10)
that there are systerfisthat admit an infinitude of resolvents of the secomdi ki

In order to study the converse problem, one may limiseihéo the case of a Monge-
Ampere equatiolt that is linear i, s, t.

In order forE to be a resolvent of the second kind of a syskent is necessary and
sufficient that one may find two functions:

fx v, z p, q, v), (X Y,z p, q, u),

such thatE is identical to the integrability condition of the eqaatdu = f dx + ¢ dy.
This is not always possible.For example, ifE does not refer to the second-order
derivativer thenf must be independent gfand¢@ must be linear i, and in this casthe
integrability condition is bilinear in r and .q On the other hand, a Monge-Ampére
equation may a resolvent of the second kind for distipste s .

Therefore, the canonical system (IV) admits a resdlthat one can convert into the
forms=0 (pp. 26). This equation is also a resolvent of thergkkind for the systemz
=pdx + gdydZ =z dx + x q dythat is distinct from the first, since it admitseth
resolvent of the first kinds — g = 0.

One has, above all, studied the syst&that admit a resolvert, that refers to only
the second-order derivatige J. Clairin [L4, 17, 18, 20] has determined the systems that
admit a resolvent of the first kind and a resolventhef second kind of that form, with
the same variablesandy, when one of these resolvents of a Laplace equation.

One has also determine8il] 33] the systemss that admit a resolvent of the second
kinds=ppq + ap + bg + ¢ wherea, b, c, p are functions ox, y, z

If a systemS admits a resolvenE; that is reducible to the form = 0 by a
transformationT then this system may be converted into the canoracad (IV). Indeed,
the two families of singular elements must coincidel, their differential equations admit
at leastthree integrable combinations (pp. 26). Now, we have seen (nthad)if a
systemS admits a resolver; then the differential equations of the singular elesent
cannot admit more than two integrable combinations. Ysies:
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dz=pdx+qdy  dZ -Adz=(p-Ag)* (A dx +dy),

belongs to that category, wheteandk are constants that were encountered by E. Picard
[42, 43] in the context of a question on partial differengglations.

8. TheB, and B; transformations. — LetE; andE; be two resolvents of a systedy)
the one, of the first kind, and the other, of the mdc&ind. An integrall; of E;
corresponds to one and only one inte@ial of S (no. 5), and in turn, one and only one
integrall, of E; . Conversely, an integréd of E» belongs too! integralsi, of &, and
in turn, one may deduce integralsE@ffrom it. The transformation by which one passes
from E; to E,, or vice versa, is B, transformation(J. Clairin, L3]). One sees that the
two equationds;, E; do not play the same role in this transformationoné may pass
from an equatioi; to an equatioie; by aB, transformation then it is clear that the same
is true for the equations that one may deduce fromatrbirary (I) transformations.

Likewise, letE,, E, be two resolvents of the second kind of a sysm Each
integral of the one of the equations corresponds'timtegralsii, of S, and in turneo®
integrals of the second equation, and conversely. Thmsforanation by which one
passes fronk; to E,, or vice versa, is Bz transformation(13); the two equations play a
symmetric role in this transformation. One provesnaso. 6, that if two second-order
equations can be deduced from each other B, @r B; transformation then their

characteristics correspond in the corresponding inegifaihe two equations. If one of
them is integrable by the method of Darboux then theesarmue for the second ork3|

22].

Let E; be a resolvent of the first kind of the syst&n whereE,, E, are two
resolvents of the second kind. TBegtransformation by which one passes frestoE,
may obviously be replaced by the sequence of two tranatamsB,, B, by which one
passes fronk, to E; and then fronk; to E,. SinceSs generally admits two resolvents of
the first kind, one sees thaty B transformation may, in general, be decomposed into a
sequence of two Btransformations in two different fashionsAt the same time, the
argument shows what the exceptional cases are.

When twoB; transformations are applied to an equation that adonity one system
of first-order characteristics, this leads to two hesats of the second kind of the same
systemSs, and consequently, may be replaced by a ursjueansformation.

When the twoB; transformations are applied to a Monge-Ampeére equattus,
might lead to two equatiorts, that are resolvents of the second kind of the twondisti
systemsSs, S;. It might happen that one cannot pass fremto E, by a Bs

transformation; later on (no. 9), we shall discussse in which one passes fré&@nto
E, by aB; transformation.

A sequence of tw; transformations may also sometimes be replaced bycue!
transformation of the same kind. LEt E,, E; be three resolvents of the second kind

S . TheB; transformation by which one passes fr&nto E; may obviously be
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obtained by the succession®fand B, transformations by which one passes fieno
E,, and then fromE, to E;. This is no longer true E, and E, are resolvents o,
while E, and E; are resolvents of a different systegf. The two equationg, andE;

are not necessarily resolvents of the same system.
The importance of resolvents of the second kind insdach for integral®i, of a

systemS amounts to the following property, whose proof is imratgif one knows one
resolvent of the second typgdE a system&hen one may dedue€ integralsdt, of the

system from any integrabi, of that same system by the integration of a first-order
differential equation.
Indeed, let)t, be an integral that is represented by the equations:

z=f(x,y), p=—, q=—y, u=g@(x,y)

of a systenty that has been put into the form (26), where the inb#iggacondition of
the second equation does not depend wpohhis integrability condition is a resolvent of
the second kindE; of S, wheref(x, y) is a particular integral. That integfék, y) of E;
corresponds to an infinitude of functiopé, y) that one obtains by the integration of a
completely integrable total differential equation for @fhone already knows a particular
integral. If one knows only one integral Bf then that integral belongs to" integrals
M, of S that one determines by the integration of the sameditetential equation, no
integral of which is assumed to be known.

Now suppose that one knows two resolvents of the dekioil E;, E, of S&. One

may deduceo® integrals ofS from an integral., of E; by the integration of a differential
equation, and in turre® integrals ofE,. One may then deduee integrals ofS andE;

from each of these new integral§ by the same process, and since these integfals

themselves depend upon an arbitrary constant, one willhdneso? integrals ofS, and
in turn, ©® integrals ofE, . This alternating process may obviously be continued
indefinitely, and one imagines that its application mightd, upon starting with just one
integral ofS, to an infinitude of integrals of the same system tiegtend upon as many
arbitrary constants as one desirese(no. 10). However, it might also happen that the
application of this method permits one to obtain onlegdnals that depend upon a
definite number of arbitrary constants, no matter hmwohe prolongs it (no. 9).

All of these remarks are naturally extended to tise @a which one knows more than
two resolvents of the second kind.

Remark— Being given a system of four equatidfis O that may be solved for tke
Y,Z,p,d, we have seen above that that the eliminatiom®frimed variables leads to
a resolvent of the second kiid if the integrability condition of the equatiaiz = p’ dX
+ (' dy is independent of. This integrability condition is expressed by means digla
derivatives ofX, y', Z, p', d with respect to, vy, z p, q, Z, derivatives that one always
calculates by means of the classical rules that dneederivatives of implicit functions.
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One may arrive at this integrability condition by a metegant process2g], chap. XlI).
From equations (1), one infers the relations:

dF dF dF ., dF ., dF . dF
— |dx+ dy+—- dx+— dk+— d dc=0, =1, 2, 3, 4),
(dxj (dyj o ¥ g e P g “ )

where one has set:

(dFj oF OF oF  OF dF 6F oF
—L | =—1+—1p S, i e+ —Lt,

dx ox 0z dp dq 6y 0q

These four equations, when solved dory dy, dp, dg, give expressions of the following
form:

N dp =H dx +K dy, N dd =L dX +M dy,

whereH, K, L, M, N are linear functions of, s, t, rt — <. In order forp’ andq to be
partial derivatives of the same function with respect andy’, one must hav = L.

Upon carrying out the calculations, one arrives afdhewing condition, which was
given by BacklundZ]:

(35) (12)F3 Fa] + (13)[F4 F2] + (14)[F2 F4]
+ (34)F1 Fo] + (42)[F1 F3] + (23)[F1F4) = 0

(G5 HELS)
dx J{ dy dx/{ dy
and where the bracket [ ] has its usual sense.

If the five equations (1) and (35) may be solved with retsfgex', y', Z, p', ', upon
writing that the expressions obtained satisfy thati@hdz = p' dX + ' dy, then one is
led to two third-order equations m If the elimination o', y', Z, p', d from these five

equations is possible thenis determined by a Monge-Ampére equation, which is a
resolvent of the second kind.

where one has set:

9. SystemsS that admit a continuous group — Let& be a system that admits a
continuous, one-parameter group of transformatignghat are derived from an
infinitesimal transformatiors. Choose the variablesin such a fashion that the symbol
of that infinitesimal transformation & / dx,. With this choice of variables the syst&n
IS written:

(36) aw=dx+Q:1=0, w=Q=0,

Q; andQ; being two Pfaff forms in which only the five variablegi < 6) appear, along
with their differentials. In order to determine thegsilar elements, one must write down
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the idea that for certain values of the the equationsd = Q; =0, w, = Q, = 0 reduce

to just one. The coefficients of equations (8) and (9) do not depend uggrand as a
result the two roots of the equationAn i are also independent &f . One may leave
aside the case of a double raobt 0, because the only singular equation of the system
will be Q, = 0, and it cannot be of class five. The systemthéh be reducible to the
canonical form (IV). If one sets aside this very spletase then one sees that the system
S admits at least one singular equation of the fdxn+ Q3 = 0, whereQs; does not
depend upons . There is at least one of these singular equafaynshich Q3 is of class

five or four; in other words, the systegwill be reducible to one of the canonical forms
(1l or (IV). If one convertL23 into a canonical form then the syst&will be written:

dxs + dys —y2> dyr —ya dy> = O, Q, =0,

in which Q, does not contairs . In order for the first equation to be a singular equati
one sees, as in no. 4, tliat must not refer talys . It will thus suffice to make a simple
change of notations in order to be able to writesifstemS; in the form:

(387 dz-pdx—-qdy0, Xdx+Ydy+Pdp+Qdg0,

in which X, Y, P, Q do not depend upon ZThe corresponding resolvent of the first kind
will no longer depend upan it thus admits the infinitesimal transformatify 0x; .

Conversely, any equation that has a system of fid#rarharacteristics and admits an
infinitesimal transformationT) is a resolvent of the first kind for a syst&that admits
an infinitesimal transformation. Indeed, if one suppdbasE; does not contaia then
the equations of the generators of the surfacegrt (no. 5):

X+Pr+Qs=0, Y+Ps+Qt=0

no longer depend upan and the Pfaff system that adniisas its resolvent of the first
kind does not change when one chargeso z + C. Thereforewhen a systems@dmits
an infinitesimal transformation, a resolvent of the first kind of thystesn admits an
infinitesimal contact transformatiofT), and conversely.

From any infinitesimal transformation &, one may likewise deduce a resolvent of
the second kind of that system. Suppose that the sed@aiations (37) is put into the
canonical forndZ =p' dX + g dy, wherex, Yy, p', g are functions ox, y, p, g, U, so the
first equation takes the form:

dz=X'dX +Y dy +P dp +Q dd,

in whichX', Y, P, Q" do not depend upan) and the integrability condition for the latter
equation is a resolvent of the second kiedin Z of the system. The conclusion is not
true if the second of equations (37) is of class threme. In the latter case, the system
is of the form (V), and admits anfinite group of transformations. In the other case, the
resolvent of the first kind will admit an intermetiaintegral that depends upon an
arbitrary function. By setting aside this exceptiorate; one may thus say thaty



Goursat — The Béacklund problem. 34

infinitesimal transformatior{¢) of a system gcorresponds to a resolvent of the second
kind E of that system

We say, to abbreviate, th&: is deduced from the infinitesimal transformatian
One does not therefore obtain all of the resolventh@fsecond kind; indeed, we will
study (no. 10) the systen% that have resolvents of the second kind, but admit no
continuous group. The resolverts that are deduced from a transformatiomay be
characterized by the following properiyhe integral9)i, that correspond to a particular
integral of & are deduced from each other by the transformations of a one-parameter

group g
A Monge-Ampére equatio; that admits a transformatians a resolvent of the first

kind for two systemsS that admits two resolvents of the second kg E,,

respectively, that are deduced from the transformationThe integrals of these two
equations correspond to each other in a one-to-one faskiace each of them
corresponds teo integrals ofS that are deduced from each other by transformations of
the groupg that is deduced fromm One passes from;Eo E, by a B transformation

Indeed, suppose thd&; does not refer t@, the formulas for theB, transformation
betweerkE; andE; refer to onlyx, y, z p, q, X, Y, Z, p', q, and likewise the formulas for
the B, transformation betweel; and E, refers to onlyx, vy, z, p, g, X", y', Z', p", q".

The elimination ok, y, z, p, g will thus lead to four relations between the coordimate
the two elementsx(, y, ..., ). For example, the equatian= 2A(Xx, y),/pg is a
resolvent of the first kind for each of the systems:

dz=pdx+qdy  dp=udx+21/pqdy,
dz=pdx+qdy  dg=21/pgdx+udy

each of which admits a resolvent of the second kindigshdeduced from the infinitesimal
transformatiordf / 0z These two resolvents are obtained by taking theawks to be

\/B or \/a , and are two Laplace equations that are deduced from atheh by a

Laplace transformatior2f/, 28].
If the systents admits a continuous gro, with n parameters then any resolvent of

the first kindE; also admits a continuous gro@j with n parameters, and conversely.

Each infinitesimal transformation @, corresponds to a resolvent of the second kind,
andS admits an infinitude of resolvenkEs that might not all be different, moreover. Let

M, be an integral of; the knowledge of the grou@, permits one to deduce an
infinitude of other integrals from that integral that degpheiponm (m < n) arbitrary
constants, the set of which we denote fay. Let £ and £ be two infinitesimal
transformations oG, that give rise to two one-parameter grogpg’. We likewise let
&, &, denote the two sets of integrals that are deduced tymby means of the
transformations off andg’, respectively. If the s&is depends upom parameters then it

is composed of™ ! sets§;andeo™* sets€’ . Having said this, IeE,, E, be resolvents
g g 2
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of the second kind that provide transformatiens. From an integrdk of E;, one may,
by the integration of a differential equation, deduceta&gof integrals ofS that belong

to a setfs of o™ integrals 0ofS . Each integral ofy corresponds to an integré] of the
second resolvenE,, from which, one may further deduce a new&ebf integrals ofs
by the integration of a differential equation. Howesnce all of these set§, have a

common integraflt, with & they must be a subset & . The same thing is obviously

true for the integrals d&% and ofE, that one might obtain by pursuing the application of
the same process. Consequently, if two resolventeecdecond kiné,, E, provide two
infinitesimal transformations of a group of & then the repeated application of e
transformation between these two equations, upon gtantith an integral of one of
them, cannot furnish other integrals of these two equatlmars the ones that one may
deduce from the knowledge of the gro@ which depends upom — 1 arbitrary
constants. This result is clear priori, since the resolventg;, E, are themselves

deduced from the group.
Examples.

1. A Laplace equatios=ap + bq + czis a resolvent of the first kind for a syst&n

(no. 6) that admits the transformatimqgi+ pg—f+ qg—f The resolvent of the second
z p q

kind E; provided by this transformation is obtained by settirge” and then takingf /
0x to be the unknown, which leads to a transformatiat tvas known to Moutardi{).
Likewise, ifz is a particular integral of the Laplace equation ther €quation does not
change when one changesto z + az ; the resolvenE, of & that is deduced from this

one-parameter group is obtained by taking the unknown teagt{ezj and theB;
X\ 4

transformation is identical to the transformatiorLo€ien Lévy B8].

2. A systents of the formdz+ Q; = 0,dZ + Q, = 0, whereQ; andQ, are two Pfaff
forms in four variableg;, xp, X3, X4 , admits two permutable infinitesimal transformations,
each of which leads to a resolvent of the second kifithe integrals ofE, that
correspond to an integral & are obtained by adding an arbitrary constant to dne o
them, and conversely. The groGphas two parameters, and the integral&.0énd E,
correspond to each other by sets that depend upon one paramhete particular, the
systemS has the form (7):

dz=p dx + g dy dZz =1f(p, g) dx + ¢(p, q) dy

then the resolveri; has the fornH r + 2K s + L t= 0, whereH, K, L depend upon only
p, g, and may be converted into a Laplace equation.
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10. Examples— It was the research of BiancH] [on surfaces of constant negative
curvature that led A,-V. Backlund to pose the generablpro that was studied here.
Bianchi had proved that from any surfatef constant negative curvature — &%/ one
may deduce an infinitude of other surfazéshat enjoy the same property. The polts
andM' of Z and a transformel' correspond to each other in such a fashion as sf\sati
the following conditions: The distan®&M’' is constant and equal & while the tangent
planes atM and M' contain the lineMM' and are orthogonal. It is clear that these
conditions translate intfour relations between the coordinates of an elememnt, ¢ p,

g) of ~ and the coordinates of the corresponding elemeény/( Z, p', ) of . Upon
replacing the orthogonality condition for the tangelaines with the condition of making
a constant angle, Backlund was led to a more genexhlgmn that gave a new method of
transforming surfaces of constant total curvature.

G. Darboux further generalized the problem by replacingBé#eklund conditions
with the following ones: The system that is composedwaf pointsM, M’, and the
tangent planes to the surfages’ at the pointd andM’, respectively, has an invariable
form. Abstracting from parallel surfaces, one furthieds that the surfaces Z' must be
parallel to minimal surfaces or to surfaces of coridiatal curvature. Finally, J. Clairin
[13] extended this result to non-Euclidian space.

The study of Bianchi and Backlund transformations ledat system of two
simultaneous equations of a very simple form, and whichsgsses remarkable
properties. The search for surfaces of total curvaturk [22] depends upon the
integration of the second-order partial differential ¢

0’6
oxoy

=sin@cosé

(38)

One sees immediately thatéf= f(x, y) is a particular integral thefi= f (mx,%j IS

also an integral for any constamt this is the Lie transformation. The study of the
Bianchi transformation leads to the study of thetam:

99,99
ox 0x
060 0¢ _ _.
————=sin@@+9),
ox 0X G+9)

=sin(@-¢),
(39)

which, along with the relations = x, y =y, forms a Backlund system. The elimination
of ¢ from the two equations (39) leads to equation,(88y, by reason of symmetry, the
elimination of@likewise leads to the equation:

2
(40) ¢ =sindcosd,
oxay
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the two equations (38) and (40) are two resolvents odebend kind of the system (39).
The knowledge of a particular integ@dk, y) of the resolvent (38) permits one to obtain
an infinitude of integrals of equation (40) that depend upoarbitrary constant by the
integration of the completely integrable system (39),ctviiomes down to a Ricatti
equation. Upon operating likewise on the integii y) of (40) thus obtained, one may
deduce new integrals that depend upon another arbitraryaobnand so on. For the
study of this sequence of operations and the integrati@ist demands, | will refer the
reader to Chapter XllII of theecons sur la théorie générale des surfask&. Darboux
(tome 3, book VII).

The Béacklund transformation leads to the more gésgsiem:

9949 = msin(@- ),

(41) ox 0x
9992 = "sin@+),
0x 0Xx m

wherem is an arbitrary constant. The eliminationgofurther leads to equation (38) and
that of , to equation (40), in such a way that these two equatiesn@reover, two
resolvents of the second kind for the more generaésy41). However, this system
may itself be converted into the simple form (39) byirtgkhe new variables to beé =
mx y = (1 /m)y, in such a way that the Backlund transformation fa surfaces of
constant curvature is a combination of the two transditions of Lie and Bianchi.

Let &%, y) be a particular integral of the resolvent (38), andletg;(x, y, m, C) be
the general integral of the system (41) that depends up®rpdarametem and the
constant of integratiof. If one replace® with ¢; andm with a new constanty then
the system:

%+%:msin(@—¢l),
0xX 0X

(42) 06 o0¢, _1
o ox et

is again completely integrable, and it results frorbeautiful theorem of Bianchi on
permutability [9] that this system can be integrated by algebraic apesatand
differentiations if one has obtained the generalgrakof the first system for any. In
this case, one may thus deduce from the inteffpaly) of (38), an infinitude of other
integrals that depend upon as many arbitrary constantseagesires, without any new
integration.

An important theorem of Weingarte®l] on the deformation of surfaces may also be
attached to the Backlund problem. [Sdbe a surface that admits the linear element:

(43) ds = di? + 2dv dy,

whereyAu, v) is a given function odl, v. The rectangular coordinates of a pamof that
surface are functions of the variablev that verify the classical equations:
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6_j1 g 0x_ oy S(axj: w

(44) S( —_— = — .
ou ov ov

dudv odu’

One makes the poimh of S correspond to the poii with the coordinates:

(45) x:%, Y=
ov

2

) Z = % )
ov
and one easily deduces from the relations (44) thatremefore has:

(46) %dx +ﬂ dY+a—Z dz=0.
ou Ju Ju

When the point describes a surfacgthat admits the linear element (43), the point

M describes a surfaégewhose normal has the direction cosingé(s, ? % LetP, Q
u odu ou

be the angular coefficients of the plane tangertab surface; one has:

P_Q_-1
du Ou du

and some simple combinations show that the common eéline ratios is equal to:

PXB—EIY_Z: 1+P?+ Q.

ou

One thus has the following four relations:

Z:%, X2+ Y+ 22:26—‘/',
48 ov ov
(48) 0z_ 1 Y _ PX+ QY- Z
ou  f1+P2+Q? ou 1+ P+
0z 0z . . . .
betweenX, Y, Z, P, Q, u, v, PRV This is a Backlund system in whighdoes not
u ov

appear; the Pfaff system thus admits an infinitestmansformation that corresponds to a

resolvent of the second kind (no. 9). In ordeoltain it, it suffices to deduaeg v, %
u
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? from the preceding formulas by meansxotY, Z, P, Q, and to write the integrability
vV

condition for the equation:

dz= %du+a—z dv.
u ov

The Monge-Ampére equation to which one is led is precited second-order equation
into which Weingarten converted the determination of thiéases that admit the linear
element (43).

The system (48) admits another infinitesimal transédion. Indeed, if one se¥=
pcosa Y = psin wthen these equations become:

Z:%, p2+22: Za_w,
ov
2 2 2
(%j 1+ % +i(%j =1,
ou odp) p*low

2 2
o 1+ 24 +i2(6_2j :pa—Z—Z,
ou op p\dw 0p

and do not refer tau The corresponding resolvent of the second kind istickrwith
the classical equation that must satisfy when considered as a function of the two
parameters, V.

The search for surfaces that are mappable to a sufaeeond degree that is tangent
to the circle at infinity is thus converted into théedmination of the surfaces of constant
curvature 23].

11. Diverse generalizations— The statement of the Backlund problem may be
generalized in various ways. Indeed, one may augmentrti@asions or the order of the
contact elements of the two multiplicities that omakes correspond element-by-element,
or the number of relations between these two elemedrst [L2] has studied in detail the
case where one establisHear relations between two elements of arbitrary ordemof
two-dimensional multiplicities, and showed that ifte@r conditions are satisfied then the
solution of this new problem comes down to the integraifgast one partial differential
equation. Backlund himself has studied the corresponddetesen two multiplicities
of first-order elements in spaces of dimension ntben three, where the number of
relations is augmented]] No matter what the manner by which one generalizes t
problem, one always comes down to the search for irteguétiplicities of a Pfaff
system with a known number of dimensions. It resfitben the foregoing that the
integration of such a system is, is in certain casdsraseveral ways, converted into the
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integration of just one partial differential equatibnt one is still quite far from a general
solution to the problem.

| shall point out only the various circumstances tireg may expect in a particularly
simple cased5]. The integration of the second-order equation:

(49) r=f(x,y,zp, g, st

may be replaced with a slightly more general problein, the search for the two-
dimensional integrals of the syste&nof three Pfaff equations in seven variabtey, z,

p,q St
(50) dz=pdx+qdy dp=fdx+sdy dg=sdx +tdy

which is not, moreover, the most general of this tygequation (49) is obviously a
resolvent of this system, but it might admit othefsis is what happens, in particular, if
one might find two equations @, that form a systen® of class 6. The various
resolvents o, will also be resolvents & . The same is true, in particular, if equation
(49) does not refer ta The last two equations (50) then form a system withiagiables
XY,z p g St Since any second-order equation that admits an infimgéésontact
transformation may be converted into an equation that doerefer taz, one concludes
from this that the integration of a second-order equati@h admits an infinitesimal
contact transformation may be converted into the iatégr of a second-order equation
that possesses at least one system of first-ordesatbastics {1, 35).

The systenss may admit resolvents of another kind. Xety, Z, P, Q, U, V be a new
system of variables such that the equatlgrare, with these variables:

dZ = PdX+ QdYy
(51) dU = AdX+ BdY+ CdR EdQg
dV = AdX+ Bdy+ CdR Ed(

in which A, B, C, E, A4, B1, C, E; are functions of the new variables. If one takesnd
Y to be the independent variables, and if one supposeZ ihatplaced by a function
F(X,Y), andP, Q, by the partial derivatives &f then the integrability conditions of the
last two equations furnish two linear equationgRjrS, T, RT— . It results from the
special properties of the system (50) that these twdittons must reduce to just one
that generally contairld andV. If it contains neithet norV then it forms a resolvent of
the system, such that to any integral of that equatiene ttorresponeb? integrals 0fS; .
The system (50) may berolonged by introducing the derivatives of up to an
arbitrary order, and the properties of the system (50) aisy be extended to these new
systems. These considerations are attached to tkeagjessults that were due to Clairin
[14, 17] on the second-order equations that admit a group of tnanafions and some
other transformations that were pointed by Gza). [
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