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 1.  Statement of the problem. Generalities. – Upon studying certain transformations 
of surfaces with constant total curvature, A.-V. Bäcklund was led to pose the following 
problem [1], which I call, to abbreviate, the Bäcklund problem, or (B) problem: 
 
 Find two multiplicities M2 and 2M ′  of contact elements in three-dimensional space 

that correspond element-by-element in such a fashion that the coordinates of two 
corresponding elements (x, y, z, p, q), (x′, y′, z′, p′, q′) verify four relations that are given 
in advance: 
(1)   Fi(x, y, z, p, q; x′, y′, z′, p′, q′) = 0 (i = 1, 2, 3, 4). 
 
I will recall that a multiplicity Mk of contact elements (k = 1, 2) in three-dimensional 
space is a set of contact elements whose coordinates x, y, z, p, q are functions of k 
independent variables that verify the relation: 
 
(2)      dz = p dx + q dy. 
 
When k = 2, the point (x, y, z), where the coordinates are functions of two variable 
parameters, generally describes a surface S, and the elements of M2 are composed of 
points of S, each of which is associated with the tangent plane to S at that point.  One says 
that the multiplicity M2 has the surface S for its point-wise support.  However, it might 
happen that the point (x, y, z) describes a curve C (or even remains fixed).   In the former 
case, one obtains an element of M2 by associating an arbitrary point of the curve C with a 
plane that passes through the tangent to C at that point; that set depends upon two 
parameters, and the point-wise support of M2 is the curve C.  If the point (x, y, z) remains 
fixed then the point-wise support of M2 reduces to a point, and one obtains an element of 
M2 by associating that fixed point with an arbitrary plane that passes through that point.  
One likewise obtains elements of a multiplicity M1 by associating a point of a curve C 
with a plane that passes through the tangent to C at that point, or by associating a fixed 
point P with a tangent plane to a cone that has its summit at that point (1). 
 Bäcklund has studied only the case where the multiplicities M2, 2M ′  have two 

surfaces S, S′ for their point-wise supports.  The problem then amounts to finding two 
surfaces S, S′ such that it is possible to make them correspond point-by-point in such a 
fashion that the corresponding contact elements of these two surfaces verify relations (1).  
This is what we call the (B) problem in the strict sense.  However, there is good reason to 
                                                
 (1) In the pages that follow, we consider only analytic relations and analytic multiplicities. 
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pose the problem in the more general form that was stated in the beginning; when there is 
cause to make that distinction one will say that the new problem is (B) problem in the 
broad sense.  That extension presents the same advantages as the generalized definition 
of S. Lie for the integral of a partial differential equation.  One knows, moreover, that a 
multiplicity M2 that has a curve or a point for its point-wise support gets converted into a 
multiplicity M2 that has a surface for point-wise support by means of a Legendre 
transformation.  In a general manner, if one subjects the multiplicities M2, 2M ′  to two 

arbitrary contact transformations (T), (T′ ) then they change into two new multiplicities of 
the same type, and the relations (1) are replaced by four new relations that are deduced 
from the original ones by performing a system of two transformations (T), (T′ ) on the 
elements (x, y, z, p, q), (x′, y′, z′, p′, q′).  We will not regard two problems (B) as distinct 
when they go to each other under a system of two transformations (T), (T′ ). 
 If one takes the (B) problem in the strict sense then one must regard z and z′ as two 
unknown functions in equations (1), the former, of the variables x, y, and the latter of the 
variables x′, y′, while the letters p, q, p′, q′ have the usual sense.  It may happen that the 
elimination of the primed variables leads to just one partial differential equation of 
second order (E) for the function z(x, y), while the elimination of the unprimed variables 
also leads to just one partial differential equation of second order (E′) for the function 
z′(x′, y′).  Equations (1) then establish a correspondence between the integrals of the two 
equations (E), (E′) that is different from the transformation (T).  These new 
transformations are the Bäcklund transformations, or (B) transformations.  The essential 
properties of these transformations are deduced very easily from the general study of (B) 
problem. 
 A particular case of (B) problem in the strict sense that is far-reaching has already 
given rise to a great number of papers.  When the first two equations (1) are x′ = x, y′ = y, 
the system (1) reduces to a system of two first-order partial differential equations in the 
two unknown functions: 
 
(3)   F(x, y, z, z′, p, p′, q, q′) = 0,  Φ(x, y, z, z′, p, p′, q, q′) = 0. 
 
For a long time, systems of this type have been known that lead to a second-order partial 
differential equation for each of the unknown functions. 
 For example, the system of two equations: 
 

z′ = f(x, y, z, p, q), z = ϕ(x, y, z′, p′, q′) 
 
leads, upon eliminating z′, to second-order partial differential equations (E) in z, while the 
elimination of z leads to a second-order equation (E′) in z′.  The integrals of these two 
equations correspond in a ont-to-one fashion.  These transformations, in particular, 
comprise the celebrated Laplace transformation.  Likewise, the elimination of z′ between 
the two equations: 

p = f(x, y, z′, p′, q′), q = z′ 
 

leads to a second-order equation (E) in z, while the elimination of z leads to another 
equation (E′) in z′; each integral of E corresponds to just one integral of (E′), while each 
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integral of (E′) corresponds to an infinitude of integrals of (E) that depend upon an 
arbitrary constant. 
 We again take the system p′ = a(x, y) p, q′ = b(x, y) q.  The elimination of one of the 
unknowns z or z′ leads to a second-order linear equation for the determination of the other 
unknown, and any integral of one of these equations corresponds to an infinitude of 
integrals of the other one that depends upon an arbitrary constant.  If a + b = 0 then one 
recovers a well-known transformation of Moutard [41]. 
 When the two functions F and Φ are linear in z, z′, p, p′, q, q′, one may obtain 
numerous transformations that are analogous to the preceding ones, which permits us to 
pass from a second-order linear equation to another equation of the same type.  The study 
of these transformations has been carried a long way [22, 26′], but it is outside the scope 
of our subject. 
 
 
 2.  Associated Pfaff system. – Any solution of (B) problem is represented by a 
system of ten functions (x, y, …, q′) of two independent variables that satisfy equations 
(1) and two relations: 
 
(4)    dz = p dx + q dy, dz′ = p′ dx′ + q′ dy′. 
 
The four equations (1), which are assumed to be distinct and compatible, permit one to 
express x, y, …, p′, q′ by means of six parameters x1, x2, …, x6, in such a fashion that a 
system of values of x, y, …, q′ corresponds to just one system of values of xi and 
conversely, at least, in sufficiently restricted domains.  When one makes this substitution 
in equations (4), they change into a system S of two Pfaff equations in six variables: 
 
(5)   ω1 = ∑ ai dxi = 0, ω2 = ∑ bi dxi = 0 (i = 1, 2, …, 6), 
 
that we call the associated system to (B) problem.  Any solution to (B) problem 
corresponds to a two-dimensional integral M2 of the associated system.  Conversely, any 

integral multiplicity M2 of S corresponds to a two-dimensional multiplicity N2 that is 

described by the point with coordinates (x, y, …, q′) in six-dimensional space, since there 
is a bijective analytic correspondence between these two multiplicities.  The two 
elements (x, y, z, p, q), (x′, y′, z′, p′, q′) describe multiplicities M and M′ that are generally 
two-dimensional.  However, it might happen that M, for example, is only one-
dimensional, while the element (x′, y′, z′, p′, q′) describes an 2M ′ .  Each element of M1 

then corresponds to ∞1 elements of 2M ′ .  It might likewise happen that these two 

elements each describe a one-dimensional multiplicity.  This is what happens, for 
example, if the two equations F1 = 0, F2 = 0 refer only to x, y, z, p, q and the last two 
primed variables.  If these two systems do not admit two-dimensional integral 
multiplicities (which is the general case) then (B) problem correspondingly does not 
admit solutions, even in the broad sense.  Meanwhile, the associated Pfaff system has 
integrals M2 .  Indeed, let M1 be an integral of the system F1 = F2 = 0, and let 1M ′  be an 

integral of F3 = F4 = 0.  Along M1, x, y, z, p, q are functions of a parameter u; along 1M ′ , 
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x′, y′, z′, p′, q′ are functions of another parameter v.  The point with coordinates (x, …, q′) 
thus describes a multiplicity N2 in six-dimensional space, which corresponds to an 
integral M2 of the Pfaff system.  In this case, two arbitrary elements that are taken on M1 

and 1M ′  will correspond.  One might also arrange that the first multiplicity M reduces to 

just one element, while the second one 2M ′  is two-dimensional.  The corresponding 

multiplicity M2 again possesses two dimensions.  One then sees that one further 

generalizes the problem by replacing (B) problem, likewise in the broad sense, with the 
search for integrals M2 of the associated Pfaff system.  In particular, we see that the 

formation of the system S demands only that the four equations (1) be distinct and 
compatible, while the (B) problem, likewise in the broad sense, might have no meaning 
for certain systems of relations (1), like the ones that we just cited. 
 Equations (1) permit us to express the ten variables (x, …, q′) by means of six 
parameters in an infinitude of ways.  If one expresses them by means of six parameters yi 
that are different from the xi then one is led to another Pfaff system in which the six 
variables yi appear.  However, the xi are also expressed by means of yi and, as a result, the 
new Pfaff system reduces to the first one by a change of variables.  The associated Pfaff 
system to a (B) problem is therefore defined up to a change of variables. 
 For example, if the equations (1) may be solved with respect to the x′, y′, p′, q′ then 
one may take x, y, z; p, q, z′ for parameters.  The associated system will be composed of 
equation (2), and a second equation in which the differentials dx, dy, dp, dq, dz′ appear. 
 Conversely, any system S of two Pfaff equations in six variables may be associated 
with an infinitude of problems (B), provided that they are not completely integrable.  
Indeed, let Ω1 = 0, Ω2 = 0 be two distinct linear combinations of two equations ω1 = 0, ω2 
= 0 of S.  If these equations are of the fifth class (which is the general case) then one may 
convert them into the canonical form (4); the variables (x, y, z, p, q), (x′, y′, z′, p′, q′) that 
figure in these two forms are functions of the six variables xi, and, in turn, are coupled by 
just four relations Fi = 0, in general.  The system S is associated with (B) problem, 
corresponding to that system of relations.  There thus exists an infinitude of problems (B) 
that have the same associated Pfaff system.  We say, to abbreviate, that they belong to the 
same class.  There are then some problems (B), in particular, that are converted into each 
other by two transformations (T), (T′). 
 
 
 3.  Singular elements of the associated system. – We first recall some definitions 
and some properties of Pfaff systems [10, 11].  Any system of values (dx1, dx2, …, dx6)  
that are not all zero and verify equations (5) is a linear integral element of that system 
that issues from a point (x1, x2, …, x6) in six-dimensional space.  An element will be 
represented by e or by (dxi).  Two elements (dxi) and (k dxi) are not considered to be 
distinct, in such a way that any point of six-dimensional space is the origin of ∞3 linear 
integral elements.  Two linear integral elements (dxi) and (δxi) are said to be in involution 
when one has the two relations: 
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between the coordinates of these elements, the summation being extended over all 
combinations of the indices i and k.  The left-hand sides of these relations 1ω′ , 2ω′  are the 

bilinear covariants of the Pfaff forms ω1, ω2 .  In a general fashion, two elements (dxi), 
(δxi) are in involution relative to a Pfaff equation Ω = 0 if they annul the bilinear 
covariant Ω′.  This property is invariant with respect to an arbitrary change of variables. 
 We have already observed that the system S may be written in an infinitude of 
manners by replacing the variables xi with a new arbitrary system of variables yi that are 
distinct functions of the former ones.  It might happen that by suitably choosing the 
variables yi the system may be written in a form in which less than six variables appear.  
Let r be the minimum number of variables that appear in a system that is deduced from S 
by an arbitrary choice of variables; the system S is said to be of class r.  In general, a 
system of two equations in six variables is of class 6, but it might be of class 5, 4, or 2 (1). 
 The class of a system is determined by looking for characteristic elements – i.e., 
elements (dxi) that are in involution with all of the other linear integral elements (δxi).  In 
order for an element (dxi) to be characteristic, it is necessary and sufficient that the 
equations 1ω′  = 0, 2ω′  = 0 be verified by all the integral elements (δxi).  Upon writing 

down these conditions, one obtains a certain number of linear relations in dx1, …, dx6, 
which, when combined with the equations ω1 = 0, ω2 = 0, determine the characteristic 
elements.  If this system admits no other solutions than dxi = 0 (which is the general case) 
then there are no characteristic elements, and the system S has class 6.  If the equations 
that determine the characteristic elements admit other solutions than dxi = 0 then they 
reduce to r distinct equations (r < 6); this system of r equations is completely integrable, 
and may be converted into the form df1 = 0, …, dfr = 0.  If one takes a system of six 
variables yi such that y1 = f1, …, yr = fr then these variables y1, y2, …, yr and their 
differentials appear in the equations of the system only after the transformations; S is of 
class r.  One generally denotes a system of class p by Sp . 
 Having recalled these properties, let (dxi) be an arbitrary linear integral element of S.  
The coordinates of dxi of another element in involution with the first one must verify the 
two equations (5), where d is replaced with δ, and the two equations 1ω′  = 0, 2ω′  = 0.  

These four equations are generally distinct if the element (dxi) is not chosen in any 
particular fashion, and consequently, there are ∞1 linear integral elements in involution 
with the first one. 
 However, there may be an exception if the coordinates dxi of the element e has been 
chosen in such a fashion that the four linear equations that determine the elements in 

                                                
 (1) It cannot be of class 3.  Indeed, a system of class 3 will be of the form dy2 + A dy1 = 0, dy3 + B dy1 = 
0, A and B being functions of y1 , y2 , y3 .  This system of differential equations is equivalent to two 
equations df1 = 0, df2 = 0. 
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involution with e are not distinct.  Such elements are the singular elements of S.  It is easy 
to prove that there are, in general, two distinct families of singular elements. 
 One may always suppose that the equations of S are solved with respect to two of the 
differentials – dx5 and dx6, for example – which amounts to writing the equations of S as: 
 

(7)   1 5 1 1 2 2 3 3 4 4

2 6 1 1 2 2 3 3 4 4

0,

0.

dx a dx a dx a dx a dx

dx b dx b dx b dx b dx

ω
ω

= + + + + =
 = + + + + =

 

 
Any system of values for dx1, dx2, dx3, dx4 that are not all zero determines a linear 
integral element e, which we will make correspond to the point m of the three-
dimensional space whose homogeneous coordinates are dx1, dx2, dx3, dx4 .  If one replaces 
dx5, dx6, δx5, δx6 in equations (6) with their values that are derived from equations (7) and 
analogous equations in which d is replaced by d then it is easy to verify that these two 
equations take the form: 
 
(8)   1ω′  = ∑ Aik (dxi δxk – dxk δxi) = 0  (i, k = 1, 2, 3, 4), 

(9)   2ω′  = ∑ Bik (dxi δxk – dxk δxi) = 0 

 
in which the coefficients Aik , Bik are expressed by means of functions ai , bi , and their 
partial derivatives.  Let m, m′ be the image points of the two elements in involutions (dxi), 
(δxi).  The conditions (8) and (9) express the idea that the line m, m′ belongs to two linear 
complexes C1 and C2.  If these two complexes C1 and C2 are distinct then line m m′ 
belongs to a linear congruence.  The integral element (dx1, dx2, dx3, dx4) being given, the 
elements (δxi) in involution with it are replaced with the points of a lines that issues from 
m; that element is therefore in involution with ∞1 linear integral elements that issue from 
the same point. 
 Things are no longer the same if the point m is situated on the one of the rectilinear 
directrices ∆1, ∆2 of the linear congruence.  Any element (dxi) that is represented by a 
point m of ∆1, for example, is in involution with another element that is represented by a 
point m′ of the plane that passes through m and ∆2 ; that element (dxi) is in involution 
with ∞2 other integral elements.  There are thus two distinct families of singular elements, 
which are represented by the points of the two lines ∆1, ∆2 . 
 This intuitive result is easily verified by means of the following calculation, which 
permits one to form the equations that determine the singular elements.  In order for the 
two equations (8) and (9), which determine δx1, δx2, δx3, δx4, to not be distinct, it is 
necessary and sufficient that there exist two coefficients λ, µ such that one has 1 2λω µω′ ′+  

= 0 identically, for any δx1, δx2, δx3, δx4, which demands that dx1, dx2, dx3, dx4 verify the 
four equations: 
 

(10) 1 1 1 2 2 2 4 4 4( ) ( ) ( ) 0,

0, 0 ( 1,2,3,4).
i i i i i i

ik ki ik ki

A B dx A B dx A B dx

A A B B i

λ µ λ µ λ µ+ + + + + + =
 + = + = =

⋯
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In order for these equations to be verified by values of the dxi that are not all zero, it is 
necessary and sufficient that the determinant D(λ, µ) of the coefficients be zero: 
 
(11)    D(λ, µ) = || λ Aik + µ Bik || = 0. 
 
This skew-symmetric determinant is equal to the square of a quadratic form [F(λ, µ)]2, 
and the ratio λ / µ must be the root of a second-degree equation: 
 
(12)     F(λ, µ) = 0. 
 
Let λ = λ1, µ = µ1 be a system of solutions to this equation.  Since all of the first-order 
minors of the determinant D(λ1, µ1) are zero, the four equations (10), where one has λ = 
λ1, µ = µ1  reduce to just two equations, and that solution of equation (12) indeed 
corresponds to a family of ∞1 singular elements. 
 The same interpretation permits one to find the case where the determinant D(λ, µ) is 
identically zero. 
 For this, we remark that the relation || Aik || = 0 is the necessary and sufficient 
condition for the complex C1 to be a singular complex that is formed of lines that meet a 
fixed line ∆1, because one obtains that condition by expressing the idea that there exist 
points (dx1, …, dx4) such that any line that passes through one of these points belongs to 
the complex. 
 In order for the determinant D(λ, µ) to be zero identically, it is therefore necessary 
that the two complexes C1 and C2 be singular complexes and that the same thing is true 
for all the complexes of the sheaf that is determined by these two complexes C1 and C2; 
this will be true if the axes ∆1 and ∆2 of the two singular complexes C1 and C2 have a 
common point P, and only in this case.  The point P then represents an integral element 
that is in involution with all of the other integral elements of S – i.e., a characteristic 
element – and the system S has a class that is less than six. 
 Conversely, if the system S has class less than six then a characteristic element (dx1, 
…, dx4) is in involution with any other linear integral element, and the line that joins the 
two image points of these elements belongs to all of the complexes of the sheaf that is 
determined by C1 and C2 ; dx1, …, dx4 thus verify equations (10) for any λ and µ, and, in 
turn, the determinant D(λ, µ) is identically zero. 
 When the two equations (8) and (9) are not distinct then two complexes C1 and C2 are 
identical, and the argument no longer applies.  One may then find two coefficients λ, µ 
such that at least one of them is non-zero and 1 2λω µω′ ′+  is identically zero for arbitrary 

integral elements.  The bilinear covariant 1′Ω  of the equation Ω1 = λω1 + µω2 is zero for 

any two integral elements.  We take that equation Ω1 = 0 to be one of the equations of the 
system, and suppose that it has class five and reduces to the canonical form: 
 

Ω1 = dy3 + y2 dy1 + y4 dy3 = 0. 
  
 One may take the second equation of the system to be an equation that does not refer 
to dy5 : 

Ω2 = Y1 dy1 + Y2 dy2 + Y3 dy3 + Y4 dy4 + Y6 dy6 = 0. 
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 The covariant 1′Ω  = dy1 δy2 − dy2 δy1 + dy3 δy4 − dy4 δy3 might not be zero for two 

arbitrary integral elements if Y6 is non-zero, since dy1, …, dy4, δy1, …, δy4 might then be 
chosen arbitrarily.  If Y6 = 0 then the equation Ω2 = 0 represents a plane P, upon adopting 
the same geometric interpretation, while the equation 1′Ω  = 0 represents a non-singular 

complex C.  In order for 1′Ω  to be zero for any arbitrary integral elements, one must 

therefore have that any of the lines of the plane P must belong to the complex C, which is 
impossible.  The equation Ω1 = λω1 + µω2 must therefore not be of class five.  One 
confirms in the same fashion that it is of class three, so the system S is of class five.  If S 
is of class six then one must thus have that Ω1 is of class one, and this system admits an 
integrable combination Ω1 = dy5 = 0. 
 The converse is immediate.  If a system S of class six admits an integrable 
combination dy5 = 0 then it is composed of that equation, combined with another 
equation of class five.  Any arbitrary integral element is in involution with ∞2 integral 
elements, and there are no singular elements. 
 In summary, any system S6 for which there exists no integrable combination admits 
two families, which are distinct, in general, of ∞1 singular elements, each of which is in 
involution with ∞2 integral elements.  The singular elements of each family are 
determined by a system of four distinct Pfaff equations; one may obviously take two of 
them to be the two equations ω1 = 0, ω2 = 0 of the system S6 .  Let: 
 
(13)   ω1 = 0,  ω2 = 0,  ω3 = 0,  ω4 = 0 
 
be the equations that define one of these families of singular elements.  There exists a 
family of one-dimensional integrals of that system that depend upon an arbitrary 
function, because if one establishes an arbitrary relation between two of the variables, 
such as x2 = f(x1), then what remains is a system of four differential equations between 
five variables.  These one-dimensional integrals of the system (13) are the Monge 
characteristics of the system S6 .  There are thus, in general, two distinct families of 
Monge characteristics for the system S6 .  These multiplicities enjoy properties that are 
analogous to those of the characteristics of a second-order partial differential equation. 
 The ∞2 integral elements of a multiplicity M2 that issue from a point of that 

multiplicity, being pair-wise in involution, are represented by the points of a line of the 
linear congruence that is represented by the relations (8) and (9), and the two points 
where that line encounters the directrices ∆1, ∆2 represent two singular elements.  Any 
point of M2 is therefore the origin of two tangent singular elements to M2, and one easily 

concludes that M2 may be generated by the Monge characteristics of each of the two 

families (1). 

                                                
 (1) In this discussion, one always supposes that the elements (dxi), (δxi) issue from a point (xi) of the 
general situation in six-dimensional space.  For certain systems, it might happen that there exists a 
hypersurface Hk (k < 6) such that the two equations (8) and (9) reduce to just one when the point (xi) is 
situated on Hk .  All of the linear integral elements that have their origin at a point of Hk may thus be 
considered to be singular elements.  Any integral multiplicity of S that belongs to Hk is a singular integral.  
The coordinates of a point of Hk may be expressed by means of k variables, so the search for these singular 
integrals may be reduced to the integration of a system of less than six variables. 
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 4.  Reduced forms for a system S. – Let S6 be a system of class six that admits no 
integrable combination.  Let (λ, µ) be a system of solutions of equation (12) that are not 
all zero.  From the same way that one has obtained that equation, there exists a family of 
singular elements (dx1, …, dx4) that are in involution with any other integral element 
relative to the equation: 

Ω = λω1 + µω2 = 0. 
 

We say that this equation Ω = 0 is a singular equation of the system S6 ; the properties 
that define it are independent of the choice of variables.  Any singular equation thus 
changes into a singular equation when one performs an arbitrary change of variables.  
First, suppose that the singular equation has class five.  One may then choose a system of 
six variables x, y, z, p, q, u in such a fashion that the singular equation is put into the 
canonical form, and the equations of the system S6 become: 
 

(14)   1

2

0,

0.

dz p dx q dy

X dx Y dy P dp Q dq U du

Ω = − − =
Ω = + + + + =

 

 
If the second equation contains du then the condition: 
 

1′Ω  = dp δx − dx δp + dp δy – dy δq = 0 

 
cannot be satisfied, no matter what the element (δx, δy, ..., δu), only by supposing that dx 
= dy = dp = dq = 0, and, in turn, dz = du = 0, since δx, δy, δp, δq may be chosen 
arbitrarily.  If Ω1 = 0 is a singular equation then one necessarily has U = 0.  If that 
condition is satisfied then the equation 1′Ω  = 0 will be identical to the second of equations 

(14), where d has been replaced with δ, provided that the integral element (dx, dy, dp, dq, 
dz) verifies the relations: 
 

(15)   
dx

P
 = 

dy

Q
 = 

dp

X

−
 = 

dq

Y

−
 = 

dz

Pp Qq+
, 

 
and one arrives at the following conclusion: Any system of two Pfaff equations of class six 
may, in general, be converted in two different ways, and only two, to the reduced form: 
 

(16)   1

2

0,

0.

dz p dx q dy

X dx Y dy P dp Q dq

Ω = − − =
Ω = + + + =

 

 
Each reduced form corresponds to a family of singular elements that are defined by the 
four equations (15).  These four equations determine the ratios of five variables dx, …, 
dq, but du remains arbitrary.  The proof shows, at the same time, what the operations are 
that must be performed in order to obtain that reduced form.  If the equation F(λ, µ) = 0 
has been solved then one will have to convert the singular equation λω1 + µω2 = 0 into a 
canonical form.  The variables x, y, z, p, q that figure in this canonical form are 
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determined up to a transformation (T).  As for the sixth variable u, one may choose it at 
will, provided that it is distinct from the five variables x, …, q. 
 One may profit from this indeterminacy in u to further simplify the second of 
equations (16).  Upon first performing, if necessary, a convenient transformation (T), one 
may suppose that the ratio Q / P contains the variable u, and take this ratio itself to be the 
last variable.  Equations (16) then become: 
 
(I)   dz = p dx – q dy = 0,  dp – u dq – a dx – b dy = 0, 
 
in which a, b are functions of the six variables x, y, …, u.  Duport [24] was the first to 
prove, by a different method, that a system S in which six variables appear may generally 
be converted into the form (I) in two different ways.  Two arbitrary functions of six 
variables appear in this reduced form.  If the system S is arbitrary then one cannot obtain 
a reduced form in which less than two arbitrary functions appear.  Indeed, if the system is 
assumed to have been solved for two of the differentials then it contains eight arbitrary 
coefficients.  When one performs a change of variables, one disposes of six arbitrary 
functions that one may choose in such a fashion that six of the coefficients of the new 
system have expressions that are given in advance; there thus remain two indeterminate 
coefficients in the new system of equations. 
 Upon seeking the singular elements of the system (I) directly, one first obtains the 
system that is defined by the relations (15), which become: 
 

(15)′    
1

dx
 = 

dy

u−
 = 

dp

a
 = 

dq

b
 = 

dz

p qu−
 

 
here, and a new family of singular elements that is determined by the four equations: 
 

(17) 
1 20, 0, 0,

( ) ( ),

a b
dq dx dy

u u
b a b a

A B C u dx dy u b B dx C dy du
u u u u

∂ ∂ Ω = Ω = + + = ∂ ∂
 ∂ ∂ ∂ ∂    + − + = − − + −    ∂ ∂ ∂ ∂   

 

 
in which we have set: 
 

A = 
db da

dx dy
− ,  B = 

a a
u

q p

∂ ∂+
∂ ∂

, C = 
b b

u
q p

∂ ∂+
∂ ∂

, 

 
d

dx
 = p

x z

∂ ∂+
∂ ∂

, 
d

dy
 = q

y z

∂ ∂+
∂ ∂

. 

 
 The corresponding singular equation is: 
 

(18)   2 1

b a b a
u b A B C

u u u u

∂ ∂ ∂ ∂   − − Ω − + − Ω   ∂ ∂ ∂ ∂   
 = 0. 
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 If 
b a

u b
u u

∂ ∂− −
∂ ∂

 is not zero, which is the general case, then the two families of 

singular elements are distinct.  When 
b a

u b
u u

∂ ∂− −
∂ ∂

 is zero, without 
b a

A B C
u u

∂ ∂+ −
∂ ∂

 

being zero, the two families of singular elements coincide.  Finally, if the coefficients of 
Ω1 and Ω2 in equation (18) are both zero then the system admits characteristic elements 
that are defined by the five relations: 
 

u dx + dy = 0,  dq + 
a b

dx dy
u u

∂ ∂+
∂ ∂

  = 0, 

 
B dx + C dy – du = 0,  Ω1 = 0,  Ω2 = 0, 

 
and the system is of class five. 
 Conversely, any system S5 may be converted into the form (I) in an infinitude of 
ways, where the coefficients a and b verify the stated conditions.  Let Ω1 = 0 be an 
equation of class five of the system S5 ; if one assumes that it has been converted into the 
canonical form then the second equation of the system can contain the differential du of 
the sixth variable.  Indeed, in order for an element (dx, dy, dp, dq) to be a characteristic 
element it is necessary that the relation: 
 

dx δp – dp δx + dy δq – dq δy = 0 
 
be verified for any integral elements (δx, δy, δp, δq), which is impossible if the second 
one contains du, since the values of δx, δy, δp, δq may then be taken arbitrarily. 
 A singular equation of a system S6 may also be of class three, and conversely; if one 
may deduce a combination λω1 + µω2 = 0 of class three from the equations ω1 = 0, ω2 = 0 
of a system S6 then that equation Ω1 = 0 is one of the singular equations of the system.   
Indeed, let du – w dv = 0 be a canonical form for that equation.  Upon adding the second 
equation of the system S6 to the three relations du = 0, dv = 0, dw = 0, one obtains a 
family of singular elements, each of which is in involution with any other integral 
element relative to the equation Ω1 = 0.  There is no reason to return to the case where the 
system S6 admits an integral combination, since there are no singular elements. 
 The discussion of all the possible singular cases is somewhat long, but presents no 
difficulties [30].  I will recall only the results. 
 
 1. General case. – Equation (12) has two distinct roots, and each of them 
corresponds to a singular equation of class five.  The system S6 may be converted into the 
form (I) in two different ways.  There are two distinct families of singular elements, and 
the differential equations that define one family admit at most two distinct integrable 
combinations. 
 
 2. Equation (12) has a double root that corresponds to a singular equation of class 
five.  The system S6 may be converted into the form (I) in only one way, and one has: 
 



Goursat – The Bäcklund problem.                                          13 

a b
b u

u u

∂ ∂+ −
∂ ∂

 = 0 

for this reduced form. 
 
 3. Equation (12) has two distinct roots, one of which provides a singular equation of 
class five, and the second of which provides a singular equation of class three.  The 
system S6 may be converted into the form (I), and into another reduced form: 
 
(II)   Ω1 = dy3 – y2 dy1 = 0,  Ω2 = dy5 – y6 dy4 − a dy1 − b dy2 = 0, 
 
in which a and b are not both zero.  The differential equations of the family of singular 
elements that correspond to the singular equation Ω1 = 0 are dy1 = 0, dy2 = 0, dy3 = 0, dy3 
– y6 dy4 = 0, and admit three distinct integrable combinations. 
 
 4. Equation (12) has two distinct roots, each of which corresponds to a singular 
equation of class three; S6 may be converted into the canonical form: 
 
(III)  Ω1 = dy3 – y2 dy1 = 0,  Ω2 = dy6 – y5 dy4 = 0,  
 
and the differential equations of each family of singular elements admit three integrable 
combinations. 
 
 5. Equation (12) has a double root that gives a singular equation of class three; S6 
may be converted into a canonical form: 
 
(IV)  Ω1 = dz – p dx – q dy = 0, Ω2 = du – q dp = 0, 
 
and the differential equations of the singular elements form a completely integrable 
system. 
 
 6. When the two equations (8) and (9) are not distinct, we have already remarked 
that the system S6 admits an integrable combination; it may then be converted into the 
canonical form: 
 
(V)   Ω1 = dz – p dx – q dy = 0, Ω2 = du = 0. 
 
In this case, where or not one has singular elements, equation (12) has a double root that 
corresponds to the equation Ω2 = 0. 
 
 In order to complete the enumeration of the reduced forms into which one may 
convert a system of two Pfaff equations in which six variables appear, it is necessary to 
add the forms that agree with the system S5 and S4 to the preceding types (26). 
 A system S5 may generally be converted in an infinitude of ways into a reduced form 
[26]: 
(VI)  Ω1 = dy3 – y2 dy1 = 0,  Ω2 = dy4 – f dy1 – y5 dy2 = 0, 
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where f is not a linear function of y5, and in certain cases, into the canonical form: 
 
(VII)  dy2 – y4 dy1 = 0, Ω2 = dy3 – y5 dy1 = 0. 
 
 A system S4 may be likewise converted into one of the canonical forms: 
 
(VIII)  Ω1 = dy2 – y3 dy1 = 0,  Ω2 = dy3 – y4 dy1 = 0, 
(IX)  Ω1 = dy2 = 0,   Ω2 = dy3 – y4 dy1 = 0. 
 
 A system S that is associated with a (B) problem cannot be completely integrable, 
because a linear combination of two equations df4 = 0, df2 = 0 cannot be of class five. 
 The reduction of a given system S to one of the forms that were just enumerated 
demands the integration of one or more systems of differential equations and changes of 
variables. 
 
 
 5.  Search for integrals M2 .  Resolvents of the first kind. – The determination of 

the integrals Mi of the system S is simple when the system has been reduced to one of the 

canonical forms (III), (IV), (V), (VII), (VIII), (IX).  For example, in the case of the form 
(IV), all of the integrals M2 are given by a system of four equations: 

 
(I)  u = f(p), q = f′ (p), z – px – y f′ (p) = ϕ(p), x + y f′ (p) = − ϕ′ (p), 
(II)   p = C1 , u = C2 , z – C1 x = ϕ(y), q = ϕ′ (y), 
(III)  p = C1 , u = C2 , z – C1 x = C3 ,  y = C4 . 
 
We remark that when S may be reduced to one of the forms (VII), (VIII), (IX), that 
system admits integrals M3 .  When the system is of class five and has been put into the 

reduced form (VI), all of the integrals M2 are further defined by one of the systems of 

four relations: 
 

(α)   3 1 4 1 4 1

1 5 1

( ), ( ), ( ),

( ) ( ) 0,

y F y y F y y y

y f y F y

′= = = Φ
 ′ ′′Φ − − =

 

 
(β)   y1 = C1 , y3 = C3 , y4 = Φ(y2), y5 = Φ′(y2), 
 
(γ)   y1 = C1 , y3 = C3 , y2 = C2 , y4 = C4 . 
 
 In any case, the system S admits an explicit general integral that is represented by one 
or more systems of relations between the variables xi (

1). 

                                                
 (1) In certain cases, there might also exist integrals that one calls singular that are not given by the 
application of general formulas.  The transformations that permit one to convert the system into a canonical 
form do not apply to these integrals.  This is a generalization of a well-known fact for first-order partial 
differential equations. 
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 Here are some examples of problems (B) for which the associated system S falls into 
one of the preceding categories.  The four equations x′ = x, y′ = y, p′ = − q, q′ = p lead to 
the Pfaff system dz = p dx + q dy, dz′ = − q dx + p dy, which is converted into the 
canonical form (III): 
 

d(z + iz′) = (p – iq) d(x + iy),  d(z − iz′) = (p + iq) d(x – iy); 
 

this is, in another form, a classical result of the theory of analytic functions. 
 The (B) problem that is defined by the relations p′ = p, q′ = q, x′ = x, y′ = y + p leads 
to the system in canonical form (IV): 
 

dz – p dx – q dy, d(z − z′) = q dp. 
 
 The solution is given by two developable surfaces with parallel generators that 
correspond point-by-point, from the given relations. 
 There also exists an infinitude of problems (B) whose associated system S6 may be 
converted into the canonical form (V).  Suppose that the equations Fi = 0 permit one to 
express x′, y′, z′, p′, q′ by means of x, y, z, p, q, and a sixth variable u.  If the associated 
system is reducible to the form (V) then one has an identity of the form: 
 

dz′ − p′ dx′ − q′ dy′ = λ dU + µ (dz – p dx – q dy), 
 

in which U, λ, µ are functions of the six variables that may be arbitrary a priori.  If one 
adds the equation U = C to the four relations (1), which determines u as a function of x, y, 
z, p, q, and the constant C then the five functions x′, y′, z′, p′, q′ of the variables x, y, z, p, 
q thus obtained satisfy the identity: 
 

dz′ − p′ dx′ − q′ dy′ = µ (dz – p dx – q dy); 
 
these formulas thus define an infinitude of contact transformations that depend upon an 
arbitrary constant.  One may choose the multiplicity M2 arbitrarily, and it corresponds to 
∞1 multiplicities 2M ′ .  For example, the (B) problem that is defined by the relations: 

 

p′ = p,  q′ = q,  
x x

p

′ −
 = 

y y

q

′ −
= 

1

z z′ −
−

 = u 

 
has the canonical system: 
 

dz = p dx + q dy, 2 2( 1 )d u p q+ +  = 0 
 
for its associated system; the general property is verified immediately because the 
preceding formulas express the parallelism of two surfaces. 
 The four equations: 
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x′ = q′ y − 
x y

q

+
, y′ = z – px, p′ = p,  z′ = y + p′ x′ 

 
have the system S4: 

d(z – px) = y dp, q dy = (x + y) dp 
 
for their associated system, whose general integral is represented by a system of just three 
relations: 

z = px + f(p),  y = f′ (p), x = q f″ (p) − f′ (p), 
 

where the independent variables are p and q.  On has, in turn: 
 

x′ = u f′ (p) – f″ (p), y′ = f′ (p), z′ = p x′ + f′ (p), p′ = p,  q′ = u, 
 
where u denotes a new independent variable.  The two multiplicities M2 and 2M ′  have 

their point-wise supports on two ruled surfaces whose generators (p = const.) correspond, 
but one may make the elements of these two multiplicities correspond in an infinitude of 
ways, because one may choose u to be an arbitrary function of q.  This is attached to a 
general property of problems (B) whose associated systems admit three-dimensional 
integrals M3 .  The point (x, y, z, …, q) then describes a multiplicity N3 in ten-

dimensional space, but the element (x, y, z, p, q) must generate a multiplicity Mi whose 
coordinates x, y, z, p, q depend upon at most two independent variables, and for the same 
reason, x′, y′, z′, p′, q′ depend upon at most two independent variables.  Suppose, to be 
specific, that these two elements describe two multiplicities M2, 2M ′ .  x, y, z, p, q are 

functions of two parameters u, v, and x′, y′, z′, p′, q′ are functions of two other parameters 
u′, v′, but these four parameters are coupled by a relation f1 = 0, since the multiplicity N3 
is three-dimensional.  If one establishes another relation of the form f2 = 0 between these 
four parameters then one establishes a correspondence between the elements M2 and 2M ′ . 

 It finally remains for us to examine the general case of a system S6 that may be 
converted into the reduced form (16).  Let M2 be an integral of this system for which x 

and y are not related by any relation (1).  If one takes x and y to be the independent 
variables then M2 is represented by a system of relations: 

                                                
 (1) If the system S6 admits integrals M2 for which x and y are not independent then the element (x, y, z, 
p, q) always describes a multiplicity M2 or a multiplicity M1 .  If the element describes a multiplicity M2 
then it will suffice to perform a transformation (T) that will convert it into the general case.  If the element 
(x, y, z, p, q) that is described by a multiplicity M2 is represented by the formulas: 
 

x = f1(α), y = f2(α), z = f3(α), p = ϕ1(α), q = ϕ2(α), 
 
α being a variable parameter, then it must be true that the second of equations (14) is verified identically 
for any u when one replaces x, y, z, p, q by their parametric expressions.  The coordinates of a point M2 

then depend upon the two parameters α and u. 
 A system S6 admits an infinitude of integrals of that type when the resolvent E1 is a Monge-Ampère 
equation, and the corresponding multiplicities M1 are the first-order characteristics of E1 . 
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(19)  z = f(x, y), p = 
f

x

∂
∂

, q = 
f

y

∂
∂

, u = ϕ(x, y). 

 
The second of equations (15) proves that u must satisfy two conditions: 
 
(20)   X + Pr + Qs = 0, Y + Ps + Qt = 0, 
 
in which r, s, t denote the second derivatives of f(x, y).  The elimination of u from these 
two relations leads to a second-order partial differential equation in z: 
 
(21)    F(x, y, z, p, q, r, s, t) = 0, 
 
whose integration will make known all of the integrals M2 of the system S6 for which 

there is no relation between x and y.  That second-order equation does not have an 
arbitrary form.  Indeed, if one regards x, y, z, p, q in equations (20) as having given values 
and r, s, t as the Cartesian coordinates of a point then these equations represent a line that 
is parallel to a generator of the cone rt – s2 = 0 that depends upon a parameter u, and the 
elimination of that parameter leads to an equation that, with the same conventions, 
represents a ruled surface whose generators are each parallel to a generator in a general 
variable of the cone rt − s2 = 0.  We say, to abbreviate, that equation (20) is a resolvent of 
the first kind of the system S6 and represent it by E1 . 
 The equations of this type admit a family of characteristics of the first kind ([26], 
chap. IV).  Upon eliminating the parameter u from the four equations (15), one obtains 
two homogeneous relations in dx, dy, dp, dq: 
 
(22)  Φ1(x, y, z, dx, dy, dp, dq) = 0,  Φ2(x, y, z, dx, dy, dp, dq) = 0, 
 
which, when combined with the equation dz = p dx + q dy, determines a family of first-
order characteristics of equation (21). 
 Any system S6 may generally be put into the form (16) in two different ways, so one 
concludes that the search for integrals M2 of the system S6 may generally be converted in 

two different ways to the integration of a second-order partial differential equation that 
admits a family of first-order characteristics. 
 In other words, any system S6 generally possesses two distinct resolvents of the first 
type E1 , 1E′ , which are defined only up to a transformation T.  There is only one 

resolvent of the first kind when equation (12) has a double root that corresponds to a 
singular equation of class 5, or when one of the singular equations is of class 5, while the 
other one is of class 3.  There is no resolvent of the first kind when S6 may be put into one 
of the canonical forms (III), (IV), (V). 
 Let E1 be the resolvent of the first kind that is represented by equation (21).  Other 
than the first-order system of characteristics (22), that equation admits another system of 
characteristics that are of second order, in general.  Suppose that the system S6 has been 
converted into the reduced form (I).  Equation E1 is obtained upon eliminating u from the 
two equations r = us + a, s = ut + b that one might consider to define two functions r and 
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u of x, y, z, p, q, s, t.  The usual rules of differential calculus easily give the following 
expressions for the partial derivatives: 
 

r

s

∂
∂

 = u + :
a b

s t
u u

∂ ∂   + +   ∂ ∂   
, 

r

t

∂
∂

 = u + :
a b

s t
u u

∂ ∂   + +   ∂ ∂   
. 

 
 The differential equation in dy / dx that determines the two families of characteristics 
on an integral surface admits the root dy / dx = − u, which agrees with the first-order 

characteristics, and a second root dy / dx = :
da db

s t
du du

   + +   
   

. 

 In order for the two families of characteristics to coincide, it is necessary and 
sufficient that a and b verify a relation that was already obtained: 
 

a b
b u

u u

∂ ∂+ −
∂ ∂

= 0 

 
(page 12), which also expresses the idea that the two families of singular elements of S6 
coincide.  Upon preserving the conventions that were already specified, equation E1 then 
represents a developable surface whose tangent plane remains parallel to a plane tangent 
to the cone rt – s2 = 0. 
 The systems S6 are not the only ones that possess first-order resolvents.  Indeed, we 
have seen that any system S6 may be put into the form (14) in an infinitude of ways.  If 
the ratios of the coefficients X,Y, P, Q are not independent of u then the system is 
generally of class 6, but it might be of class 5.  Any system S6 thus possesses an 
infinitude of first-order resolvents, but these resolvents for a special class that possesses 
very particular properties.  The conditions obtained (pp. 12) that express the idea that the 
system (14) is of class 5 also express the idea that the corresponding resolvent E1 has two 
families of characteristics that coincide, and furthermore, that the equations that 
determine the intermediate integrals f(x, y, z, p, q) = C of equation E1 form a system in 
involution.  One may explicitly write the general integral of an equation of this class 
when one has integrated the system that determines the intermediary integrals of E1, 
which is indeed in agreement with what was said above for the systems S5 [11, 36]. 
 In summary, the only systems Si that possess resolvents of the first kind are the 
systems S6, which cannot be converted into one of the canonical forms (III), (IV), (V), 
and the systems S5 .  A system S6 has at most two resolvents of the first kind, while a 
system S5 has an infinitude that belong to the special class. 
 Conversely, any second-order partial differential equation E that possesses a family 
of first-order characteristics is a resolvent of the first kind for a system S6 if it does not 
belong to the special class, and for a system S3 if it does not belong to the special class. 
 Indeed, let: 
(23)   X + Pr + Qs = 0, Y + Ps + Qt = 0 
 
be the equations that represent a rectilinear generator of the surface that is represented by 
the equation E in the space (r, s, t), where X, Y, P, Q are functions of x, y, z, p, q and a 
parameter u.  The equation E is obtained by eliminating the parameter u from the 
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relations (23); it is therefore a resolvent of the first kind for the system (14), where X, Y, 
P, Q are the same as in formulas (23).  This system is of class 6, at least when E does not 
belong to the special class, and in the latter case it is of class 5.  The equations of a 
generator of E may be written in an infinitude of ways in the form (23) by changing the 
parameter u, but the systems S thus obtained are not distinct, and can be converted into 
each other by a change of variables. 
 If equation E is a Monge-Ampère equation with two distinct families of 
characteristics then each of them corresponds to a system S6 for which E is a resolvent of 
the first kind.  For example, s = 0 is a resolvent of the first kind for the two systems (dz = 
p dx + q dy, dp = u dx), (dz = p dx + q dy, dq = u dy). 
 When a system S6 possesses two distinct singular equations, one of class 5 and the 
other of class 3, it has only one resolvent of the first kind E1, and that resolvent admits an 
intermediate integral that depends upon an arbitrary function.  Indeed, suppose that one 
may deduce an equation of class 3 from the equations (16), namely, dU = W dV, where U, 
V, W are functions of x, y, z, p, q, u.  For any integral of the system (16), one has two 
relations of the form U = F(V), W = F′ (V), where F may be chosen arbitrarily.  The 
elimination of u leads to a relation between x, y, z, p, q; i.e., to an intermediate integral of 
the resolvent that depends upon the arbitrary function F. 
 Conversely, if a second-oder equation E admits an intermediate integral that depends 
upon an arbitrary function, or, what amounts to the same thing, an intermediate integral 
that depends upon two arbitrary constants, such as b = V(x, y, z, p, q, a), then that 
equation may be obtained by eliminating a from the two relations: 
 

V V V V
p r s

x z p q

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

 = 0, 
V V V V

q s t
y z p q

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

 = 0. 

 
It is therefore a resolvent of the first kind of the system: 
 

dz = p dx – q dy = 0, 
 

V V V V V V
p dx q dy dp dq

x z y z p q

 ∂ ∂ ∂ ∂ ∂ ∂ + + + + +  ∂ ∂ ∂ ∂ ∂ ∂   
 = 0, 

 
in which the six variables x, y, z, p, q, a appear, and one may immediately deduce an 
equation of class 3, dV – (∂V / ∂a) da = 0 from them.  This general fact gives the reason 
for a remark of Clairin [13].  Suppose that one deduces a relation that contains only x′, y′, 
z′, p′, q′ from the four equations (1); indeed, by performing a suitable transformation (T), 
one may assume that this relation is y′ = 0.  Upon taking the variables to be x, y, z, p, q, 
and one of the primed variables, the associated system S is then: 
 

dz = p dx + q dy, dz′ = p′ dx′. 
 

 This system therefore admits a singular equation of class 3, and consequently, if it is 
not reducible to one of the canonical forms (IV) or (V), so there is a resolvent of the first 
kind that possesses an intermediate integral that depends upon an arbitrary function.  We 
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further remark that in a system S5 one may find an infinitude of equations of class 3, 
which is completely in agreement with the properties of the resolvents of that system. 
 
 
 6.  The Bi transformations. – Let E1, 1E′  be two resolvents of the first kind of a 

system S6 .  This system may be written in the form (16) with a particular choice of the 
variables x, y, z, p, q, u, and in an analogous form with another system of variables x′, y′, 
z′, p′, q′, u′, where the letters x, y, z, … are replaced by the primed letters.  The resolvents 
E1, 1E′  correspond to the two forms in which one may write the system S6, respectively.  

The integrals of the two equations E1, 1E′  correspond to each other in a one-to-one 

fashion.  Indeed, any integral M2 of E1 is contained in one and only one integral M2 of S6, 

and that integral M2 itself contains one and only one integral of 1E′ .  In a more precise 

fashion, let z = f(x, y) be an integral of E1 ; one has: 
 

p = 
df

dx
, q = 

df

dy
, 

 
and u is given by the two compatible equations (20).  Since the variables x′, y′, … are 
expressed by means of the first ones, the formulas that give x′, y′, z′, p′, q′ by means of 
two independent variables x and y define an integral of 1E′ .  In the same fashion, one may 

deduce one and only one integral of E1 from any integral of 1E′ .  With the classification 

of Clairin [13], we say that one passes from one of the two equations E1 , 1E′  to the other 

by a Bäcklund transformation B1 . 
 The elimination of the parameter u from the five equations that permit one to express 
x′, y′, z′, p′, q′ in terms of x, y, z, p, q, u will lead to a system of four relations between the 
coordinates of the two contact elements.  Conversely, being given a system of four 
relations Fi = 0 between the coordinates of two elements, we seek the cases in which 
these relations define a B1 transformation.  We always set aside the case in which one 
may deduce an equation that contains only the coordinates of one of the elements from 
the relations Fi = 0.  Indeed, we have remarked that the associated system cannot admit 
two resolvents of the first kind if it is of class 6 (1).  Upon taking the variables to be x, y, 
z, p, q, and a sixth variable u that is distinct from them, in such a fashion that x, y, z, p, q 
are expressed by means of the x′, y′, z′, p′, q′, u′, the associated Pfaff system to the (B) 
problem that is defined by the relations Fi = 0 is: 
 
(24)   dz = p dx + q dy, dz′ = p′ dx′ + q′ dy′. 
 

 In order for the elimination of the variable u to lead to a resolvent of the first kind for 
the determination of z as a function of x and y, it is necessary and sufficient that the 

                                                
 (1) Any system S6 may be converted into the form (16) in an infinitude of ways, so it possesses an 
infinitude of resolvents of the first kind that are of the special class that was defined above.  Cartan has 
proved that all of these resolvents may be deduced from each other by contact transformations [11]. 
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second of equations (24) does not refer to du, and contains only the differentials dx, dy, 
dz, dp, dq.  If that is true then the relation dz′ = p′ dx′ + q′ dy′ is a consequence of the 
relations x = x0, y = y0, z = z0, p = p0, q = q0, and consequently the relations Fi = 0 make 
an arbitrary element (x0, y0, z0, p0, q0) correspond to a multiplicity 1M ′  of elements (x′, y′, 
z′, p′, q′).  One likewise verifies that the elimination of the unprimed variables will lead to 
the second resolvent of the first kind 1E′  of the system S if the equations Fi = 0 make an 

arbitrary element 0 0 0 0 0( , , , , )x y z p q′ ′ ′ ′ ′  correspond to a multiplicity M1 of elements (x, y, z, p, 

q).  Therefore, in order for the relations Fi = 0 to define a B1 transformation, it is 
necessary and sufficient that an arbitrary elements of each family correspond to ∞1 
elements of the other family that form a one-dimensional multiplicity M. 
 J. Clairin, to whom one attributes this interpretation [13], has pointed out a very broad 
case in which these conditions are verified.  Let: 
 

ϕi(x, y, z, p, q) = Ci , ( , , , , )i x y z p qϕ′ ′ ′ ′ ′ ′ = iC′  (i = 1, 2, 3, 4) 

 
be the equations of two families of multiplicities M1, 1M ′  that depend upon four 

parameters Ci or iC′ , respectively.  It is obvious that the equations ϕi = iϕ′  indeed satisfy 

the conditions of the statement, and consequently define a transformation B1 . 
 In order for the four equations: 
 

x′ = x, y′ = y, F1(x, y, z′, p, q, p′, q′) = 0, F2(x, …) = 0 
 
define B1 transformation, it is necessary and sufficient that dz′ = 0 be a consequence of dx 
= 0, dy = 0, …, dq = 0, and likewise that dz = 0 be a consequence of dx′ = 0, …, dq′ = 0.  
One may thus conclude values of z and z′ from the two equations F1 = 0, F2 = 0 such that 
z′ = f1(x, y, z, p, q), z = f2(x′, y′, z′, p′, q′).  The converse is obvious.  In the particular case 
where f2 is deduced from f1 by putting primes on the letters z, p, q, it is clear that 1E′  is 

deduced from E1 by putting primes on the letters z, p, q, r, s, t.  The B1 transformation 
thus permits one to deduce a new integral of E1 from an integral of that equation. 
 Any second-order equation to which one may apply a transformation B1 necessarily 
possesses a family of first-order characteristics.  This condition is, in general, sufficient.  
Indeed, suppose that this equation possesses two distinct families of characteristics of 
first order and one of second order, and that it does not admit an intermediate integral that 
depends upon two arbitrary constants.  This equation is then a resolvent of the first kind 
of a system S6 that is completely determined and which possesses a second resolvent of 
the first kind 1E′  that is itself completely determined up to a transformation (T).  From the 

given equation E, one may thus deduce another equation of second order E′, and only 
one, up to a contact transformation, by a B1 transformation (1) (13. 30).  At the same 
time, the proof shows that this is the path to follow if one is to obtain this transformation.  
The second singular equation of S6 is determined by linear calculations, and one must 
then convert this Pfaff equation to a canonical form.  The latter problem indeed admits an 

                                                
 (1) This result was obtained for the first time by J. Clairin [15] by a totally different method.  
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infinitude of solutions, but the second-order equations to which one is led can be deduced 
from each other by transformations (T). 
 The conclusion is incorrect if the two families of characteristics coincide, at least if 
the equation E does not belong to the special class (see the note on page 20).  It is also 
incorrect if, the two families of characteristics being distinct – one of first order, one of 
second order – the equation E admits an intermediate integral that depends upon two 
arbitrary constants.  Finally, if the equation E is a Monge-Ampère equation that has two 
distinct families of characteristics then the equation E provides two distinct B1 

transformations, provided that it does not admit an intermediate integral that depends 
upon an arbitrary function for any system of characteristics. 
 Let z = f(x, y) be an integral of E1 and let z′ = ϕ(x′, y′) be the integral of 1E′  that it 

corresponds to by the B1 transformation.  The characteristics correspond to these two 
integrals.  Indeed, let M1 be a characteristic of the first integral – i.e., a multiplicity of ∞1 
first-order elements that also belongs to an infinitude of other integrals of E1.  In 
particular, there exist an infinitude of E1 that have second-order contact with the first one 
at each element of M1.  Along M1, x, y, z, p, q, r, s, t have the same values for all of these 
surfaces and are functions of one parameter α.  The corresponding elements (x′, y′, z′, p′, 
q′), which are expressed by means of x, y, z, p, q, r, s, t, thus generates a multiplicity 1M ′  

that belongs to an infinitude of integrals of 1E′ .  The point-wise support of 1M ′  is 

therefore a characteristic curve that is common to all of these integrals. 
 In order to specify the correspondence between the two families of characteristics, we 
remark that the equation E1 that is from the reduced form (16) has a first system of first-
order characteristics C1 that are defined by the relations (15), and a second system of 
characteristics C2 that are of second order, in general.  To abbreviate, we say that the B1 
transformation by which one passes from E1 to 1E′  is deduced from the family C1 of 

characteristics.  The equation 1E′  likewise admits a family of first-order characteristics 

1C′  whose B1 transformation is deduced, relative to that equation, and a second family of 

characteristics 2C′  that is of second order, in general.  Now, the two families of 

characteristics C1 and 1C′  belong to two distinct families of singular elements of S6 .  

These two systems of characteristics cannot therefore correspond, and consequently, the 
characteristics 1C′ and 2C′  of 1E′  correspond to the characteristics C2 and C1 of E1, 

respectively (13). 
 
 Examples. 
 
 1. A second-order equation s = f(x, y, z, p, q) is a resolvent of the first kind E1 for the 
system S6 : 
(25)  ω1 = dz – p dx – q dy = 0, ω2 = dp – u dx – f dy = 0. 
 
 Upon applying the general search method for singular elements (no. 3), one finds two 
families that are defined by the following equations: 
 

dy = 0,  dq = f dx, dz = p dx, dp = u dx, 
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dx = 0,  dz = q dy, dp = f dy, du = 
f f f f

p u f
x z p q

 ∂ ∂ ∂ ∂+ + + ∂ ∂ ∂ ∂ 
 dy, 

 
in which the first one gives the singular equation ω1 = 0, while the second one provides 
the second singular equation: 
 

ω3 = ω2 − 
f

q

∂
∂

ω1 = dp − 
f

q

∂
∂

dz - 
f f

u p dx f q dy
p q

   ∂ ∂− − −   ∂ ∂   
= 0, 

 
which must be converted into a canonical form in order to deduce the second resolvent of 
the first kind of the system (25). 
 If f does not contain q then the second singular equation is ω2 = 0, and it is has a 
canonical form.  The (B) problem that leads to the system (25) belongs to a category that 
we have already pointed out. 
 In the case of the Laplace equation, one has f = − ap – bq – cz, where a, b, c are 
functions of x and y, so the equation ω3 = 0 is easily put into a canonical form: 
 

d(p + bz) − 
b b

z ap cz dy z bp dx
y y

   ∂ ∂+ − − −   ∂ ∂   
 = 0. 

 
 In order to achieve this calculation, it is sufficient to observe that the Laplace 
equation provided by (B) problem is defined by the formulas: 
 

x′ = x,  y′ = y,  z′ = p + bz, q′ = z 
b

y

∂
∂

 + ap – cz, 

 

from which, one conversely infers, if 
b

y

∂
∂

 + ab – c = k is not zero, that: 

 

z = 
q az

k

′ ′+
, p = z′ − 

bq abz

k

′ ′+
. 

 
 The elimination of z leads to a new linear equation of the same form, and the B1 
transformation is identical to the Laplace transformation [22, 26′]. 
 
 2. The equation of Gomes Teixeira [44]: 
 

s – A(x, y, z, p) q – B(x, y, p, r) = 0 
 
is a resolvent of the first kind for the system: 
 

dz – p dx – q dy = 0,  dp – u dx – (Aq + B) dy = 0, 
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in which r is replaced by u in B.  The second singular equation of the system is: 
 

dp = A dz – (u – Ap) dx – B dy = 0. 
 
 In order to convert this equation into a canonical form, it suffices to find an 
integrating factor m for the Pfaff expression dp – A dz, where x and y are regarded as 

parameters.  The product µ (dp – A dz) is indeed of the form dϕ − dx dy
x y

ϕ ϕ∂ ∂−
∂ ∂

, and the 

preceding equation is then put into canonical form. 
 The calculations are easily carried out.  Upon assuming that B is independent of r, 
one has the Imschenetsky transformation [37].  This example was further generalized by 
J. Clairin [13]. 
 By starting with a Laplace equation, one may generally repeat the B1 transformation 
indefinitely in the two senses of application; the operation terminates in one sense only if 
one arrives at a Laplace equation that admits an intermediate integral with an arbitrary 
function.  It is clear that the same property belongs to any Monge-Ampère equation that 
reduces to a Laplace equation by a transformation (T).  It will be interesting to examine 
whether these are the only ones that possess this property, and, more generally, form all 
of the Monge-Ampère equations that give another Monge-Ampère equation under a B1 

transformation. 
 This problem was studied by J. Clairin [19] by assuming that the sequence of B1 
transformations preserves the independent variables.  With this restrictive condition, it is 
proved that any second-order equation that one may deduce, by a sequence of B1 
transformations of this type, more than three consecutive equations, can be converted into 
a Laplace equation by a transformation (T), or to one of the equations that were studied 
by Moutard [41], which also reduce to Laplace equations. 
 
 
 7.  Resolvents of the second kind. − The integration of a system of class 6 may, in 
certain cases, be converted into the integration of one second-order equation in another 
fashion.  Let ω1 = 0 be a non-singular equation of that system; it must necessarily be of 
class 5.  If one has put it into a canonical form dz = p dx + q dy then an equation of the 
system S that is distinct from it contains the differential du of the sixth variable u, since 
otherwise ω1 = 0 will be a singular equation of S (no. 4).  This system is thus composed 
of two equations: 

(26)   1

2

0,

0,

dz p dx q dy

du Xdx Ydy Pdp Qdq

ω
ω

= − − =
 = − − − − =

 

 
X, Y, P, Q being functions of x, y, z, p, q, u.  Any system of class 6 may be converted into 
the form (26) in an infinitude of ways, and we have remarked above (page 13) that any 
system of that form is of class 6. 
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 Let M2 be a integral of this system, such that x and y are not coupled by any relation 

(1).  If one takes x or y to be independent variables then this multiplicity M2 is 

represented by a system of four equations: 
 

(27)  z = f(x, y), p = 
f

x

∂
∂

, q = 
f

y

∂
∂

, u = ϕ(x, y). 

 
 Upon replacing dp with r dx + s dy and dq with s dx + t dy in the second equation 
(26), it becomes: 
(28)   du = (X + P r + Qs) dx + (Y + Ps + Qt) dy. 
 
 By developing the integrability condition for this equation, one obtains a linear 
equation in r, s, t, rt – s2: 
(29)    Hr + 2 K s + L t M + N(rt – s2) = 0, 
 
when the coefficients H, K, L, M, N have the following values: 
 

(30) 

, ,

2 ,

, .

dP Y P Y X dQ X Q
H Y P L Q X

dy p u u q dx u u

X X dQ Q Y P P
K P Y Q X

p u dy u u u u

dQ Y X Y P Q P Q
M Y X N Q P

dy x u u q p u u

 ∂ ∂ ∂ ∂ ∂ ∂= − + − = − + − ∂ ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂= + + + − − − ∂ ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ ∂= − + − = − + − ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

 
 In general, the ratios of these coefficients depend upon u, and equation (29) 
determines u as a function of x, y, z, p, q, r, s, t.  Upon writing down that the function thus 
obtained is an integral of equation (28), one obtains two third-order partial differential 
equations that determine the function f(x, y).  These equations are not arbitrary, moreover, 
since we know a priori that they admit an infinitude of common integrals. 
 For certain functions X, Y, P, Q, it might happen that the ratios of the coefficients (30) 
do not depend upon u.  Equation (29) is then a Monge-Ampère that determines the 
function f(x, y).  Any integral of that equation corresponds to an infinitude of integrals 
M2 of the system S that depend upon an arbitrary constant, because u is determined by a 

completely integrable total differential equation. 
 In this case, equation (29) is a resolvent of the second kind E2 of the system S, and it 
results from the form itself of system (26) that the systems that admit a resolvent of the 
second kind are of class 6.  A system of class 6 might admit several resolvents of the 

                                                
 (1) If M2 is an integral of S6 on which x and y cannot be taken to be independent variables then the 
element (x, y, z, p, q) describes a multiplicity M2 or M1 .  In the first case, it is sufficient that a 
transformation (T) converted it into the case that was studied in the text.  The second case must be rejected; 
indeed, if x, y, z, p, q are functions of one variable α then the second equation ω2 = 0 becomes du = F(α, u) 
dα, and in turn, u will also be a function of just the variable α. 
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second kind, and we remark that a system S6 might have resolvents of the second kind 
without having resolvents of the first kind.  For example, the canonical system: 
 

dz =  p dx + q dy, du = − q dx + p dy 
 
admits the resolvent of the second kind r + t = 0.  Likewise, the canonical system (IV) 
admits the resolvent rt – s2 = 0. 
 When equation (29) is a resolvent E2 of the system (26), each family of singular 
elements of S corresponds to a family of characteristics of E2 .  In order to prove this, we 
may suppose that equation (29) contains a term in rt – s2, since it suffices for it to be 
converted into this case by a transformation (T).  In order for two integral linear elements 
(dx, dy, dp, dq), (δx, δy, δp, δq) of the system (26) to be in involution; these elements 
must verify the two relations: 
 

dp δx + dq δy – dx δp – dy δq = 0, 
 

L(dx δq – dq δx) + 2K(dx δp – dp δx) + M(dx δy – dy δx)  
+ H(dp δy – dy δp) + N(dp δq – dq δp) = 0. 

 
 In order for an element (dx, dy, dp, dq) to be a singular element, it is necessary and 
sufficient that the coefficients of δx, δy, δp, δq in the two preceding equations be 
proportional.  Upon writing down these conditions, one finds that dx, dy, dp, dq must 
satisfy one of the following relations: 
 
(31)1  N dp + L dx + λ1 dy = 0, N dq + λ2 dx + H dy = 0, 
(31)2  N dp + L dx + λ2 dy = 0, N dq + λ1 dx + H dy = 0, 
 
λ1 and λ2 being the two roots of the equation: 
 
(32)    λ2 + 2K λ + HL – MN = 0. 
 
 
 One obtains the equations that define a family of singular elements of the system by 
adjoining equations (26) to one of the systems (31).  Now, upon adjoining only the first 
of equations (26) to one of the systems (31)1 or (31)2, one obtains the equations that 
define a family of characteristics of E2, which proves the stated theorem. 
 Any characteristic M1 of E2 is formed of ∞1 elements (x, y, z, p, q) that verify one of 
these systems.  Upon replacing x, y, z, p, q with their expressions in terms of a parameter 
variable in the last of equations (26), one obtains a first-order differential equation to 
determine u, and consequently any first-order characteristic of E2 belongs to ∞1 Monge 
characteristics of S (no. 3), and conversely any Monge characteristic of S contains a 
characteristic of E2 .  It also results from that study that if the characteristic equations of 
E2 admit i integrable combinations (i = 1, 2, 3) then the differential equations of the 
corresponding system of singular elements of S admit at least i integrable combinations.  
If the two families of singular elements for a system S6 coincide then any resolvent E2 of 
this system also has two families of characteristics that coincide, and conversely. 
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 The integrability condition (29) generally contains a term in rt – s2.  In order for this 
term to not exist, it is necessary that one have N = 0, a condition that expresses the idea 
that the equation du = P dp + Q dq, where one regards x, y, z as parameters, is completely 
integrable.  Let U(x, y, z, p, q) = const. be one of the forms into which one may put the 
general integral of that equation.  The function U verifies the two relations: 
 

U U
P

p u

∂ ∂+
∂ ∂

 = 0, 
U U

Q
q u

∂ ∂+
∂ ∂

 = 0, 

 
and, if one takes U(x, y, z, p, q, u) to be the variable in place of u then the second of 
equations (26) is replaced by: 
 

dU = ( )
U U U U U

p dx q dx X dx Y dy
x z y z u

 ∂ ∂ ∂ ∂ ∂ + + + + +  ∂ ∂ ∂ ∂ ∂   
, 

 
and the system takes the form: 
 
(26)  dz = p dx + q dy, du = f(x, y, z, p, q, u) dx + ϕ(x, y, z, p, q, u) dy, 
 
the variable u no longer being the same as in the system (26).  Conversely, for any 
functions f and ϕ, it is clear that the integrability condition of system (26)′ does not refer 
to the term in rt – s2. 
 In particular, when equation (29) is independent of u, one may, by a transformation 
(T), convert it into one that does not refer to rt − s2.  Any resolvent of the second kind E2 
of a system S6 that is linear in r, s, t is therefore identical to the integrability condition of 
an equation of the form (26)′, where one must have, moreover, that f and ϕ are such that 
this condition does not depend upon u. 
 Condition (29) refers to neither r nor t if s is independent of q and ϕ is independent of 
p.  The system (26) takes the form: 
 
(26)″  dz = p dx + q dy, du = f(x, y, z, p, u) dx + ϕ(x, y, z, p, u) dy. 
 
 The integrability condition is then: 
 

(33)   
f

s
p q

ϕ ∂ ∂− ∂ ∂ 
 = 

d df f
f

dx dy u u

ϕ ϕ ϕ∂ ∂− + −
∂ ∂

 . 

 
This integrability condition contains no second-order derivative if one has: 
 

f = A(x, y, z, u) + C(x, y, z, u) p, ϕ = B(x, y, z, u) + C(x, y, z, u) q. 
 

 The system (26) then contains an equation: 
 

du = A dx + B dy + C dz 
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which refers to only x, y, z, u, and which is, consequently, of third class.  If that 
integrability condition does not refer to u, but contains at least one of the derivatives p, q, 
then one has a resolvent of the second kind and first order.  One may suppose that one 
has converted it into the form p = 0 by a transformation (T).  The coefficients A, B, C 
must satisfy the two conditions: 
 

A A
B

y u

∂ ∂+
∂ ∂

 = 
B B

A
x u

∂ ∂+
∂ ∂

, 
A A

C
z u

∂ ∂+
∂ ∂

 = 
C C

A
x u

∂ ∂+
∂ ∂

, 

 
the first of which expresses the idea that the equation du = A dx + B dy, where one 
regards z as a parameter, is completely integrable.  One sees, as we will quite soon, that 
by a change of the variable u the system (26) is converted into the form: 
 
(34)   dz = p dx + q dy, du = ϕ(x, y, z) dz, 
 
which is reducible to the canonical form (IV), because the two families of singular 
elements coincide, and admit the four integrable combination dx = 0, dy = 0, du = 0 (1). 
 One sees, in the same fashion, that if the condition (29) does not refer to any 
derivative of z then the second equation may be converted into the form: 
 

du = ϕ(x, y, u) dx. 
 

 Finally, it might happen that the integrability condition (29) is verified identically.  In 
order for this to be true, it is necessary that the functions A, B, C verify three conditions 
that express the idea that the equation: 
 

du = A dx + B dy + Cdz 
 
is completely integrable, and in this case, it suffices to replace u with a function U(x, y, z, 
u) in order to convert the system (26) into the canonical form: 
 

dz – p dx – q dy = 0, dU = 0. 
 
 We recall a particular case that was examined above (pp. 15). 
 The problems that relate to the resolvents of the second kind are generally much more 
difficult than the analogous problems that concern the resolvents of the first kind.  The 
principal questions that one poses are the following two: 

                                                
 (1) The integrals that satisfy the relation p = 0 are singular integrals (see the note on page 9), and these 
integrals depend upon only an arbitrary function z = f(y), u being given by the integration of a differential 
equation du = ϕ[y, f(y), u], f′(y) dy.  The general integral is given by the formulas: 
 

y = f(x),  z = g(x),  p = g′(x) – q f′(x), 
 
u being determined by the differential equation: 
 

du = ϕ[f(x), g(x), u] g′(x) dx. 
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 1. Being given a system S6, find the resolvents of the second kind of the system, if 
they exist. 
 
 2. Being given a Monge-Ampère equation, find the systems S6 for which it is a 
resolvent of the second kind. 
 
 The results indicated above (pp. 25-26) permit us to state a necessary condition for a 
system S6 to admit a resolvent of the second kind.  Indeed, we have seen that in this case 
the differential equations that define the singular elements of each family involve three 
distinct equations in which only five variables appear. 
 Therefore: In order for a system S6 to admit a resolvent of the second kind, it is 
necessary that one may deduce three equations that form a system of class five from the 
four differential equations that define the singular elements of each family. 
 This is a particular case of a very general problem that relates to Pfaff systems that 
does not seem to have been studied up to the present.  We will confirm later on (no. 10) 
that there are systems S6 that admit an infinitude of resolvents of the second kind. 
 In order to study the converse problem, one may limit oneself to the case of a Monge-
Ampère equation E that is linear in r, s, t. 
 In order for E to be a resolvent of the second kind of a system S6, it is necessary and 
sufficient that one may find two functions: 
 

f(x, y, z, p, q, u), ϕ(x, y, z, p, q, u), 
 
such that E is identical to the integrability condition of the equation du = f dx + ϕ dy.  
This is not always possible.  For example, if E does not refer to the second-order 
derivative r then f must be independent of q and ϕ must be linear in q, and in this case the 
integrability condition is bilinear in r and q.  On the other hand, a Monge-Ampère 
equation may a resolvent of the second kind for distinct systems S6 . 
 Therefore, the canonical system (IV) admits a resolvent that one can convert into the 
form s = 0 (pp. 26).  This equation is also a resolvent of the second kind for the system dz 
= p dx + q dy, dz′ = z dx + x q dy that is distinct from the first, since it admits the 
resolvent of the first kind xs′ − q′ = 0. 
 One has, above all, studied the systems S6 that admit a resolvent E2 that refers to only 
the second-order derivative s.  J. Clairin [14, 17, 18, 20′] has determined the systems that 
admit a resolvent of the first kind and a resolvent of the second kind of that form, with 
the same variables x and y, when one of these resolvents of a Laplace equation. 
 One has also determined [31, 33] the systems S6 that admit a resolvent of the second 
kind s = ρ pq + ap + bq + c, where a, b, c, ρ are functions of x, y, z. 
 If a system S6 admits a resolvent E2 that is reducible to the form r = 0 by a 
transformation T then this system may be converted into the canonical form (IV).  Indeed, 
the two families of singular elements must coincide, and their differential equations admit 
at least three integrable combinations (pp. 26).  Now, we have seen (no. 4) that if a 
system S6 admits a resolvent E1 then the differential equations of the singular elements 
cannot admit more than two integrable combinations.  The system: 
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dz = p dx + q dy, dz′ − λ dz = (p – λq)k (λ dx + dy), 
 
belongs to that category, where λ and k are constants that were encountered by E. Picard 
[42, 43] in the context of a question on partial differential equations. 
 
 
 8.  The B2 and B3 transformations. – Let E1 and E2 be two resolvents of a system S6, 
the one, of the first kind, and the other, of the second kind.  An integral I1 of E1 
corresponds to one and only one integral M2 of S6 (no. 5), and in turn, one and only one 

integral I2 of E2 .  Conversely, an integral I2 of E2 belongs to ∞1 integrals M2 of S6 , and 

in turn, one may deduce integrals of E1 from it.  The transformation by which one passes 
from E1 to E2, or vice versa, is a B2 transformation (J. Clairin, [13]).  One sees that the 
two equations E1, E2 do not play the same role in this transformation.  If one may pass 
from an equation E1 to an equation E2 by a B2 transformation then it is clear that the same 
is true for the equations that one may deduce from it by arbitrary (T) transformations. 
 Likewise, let E2, 2E′  be two resolvents of the second kind of a system S6 .  Each 

integral of the one of the equations corresponds to ∞1 integrals M2 of S6 , and in turn, ∞1 

integrals of the second equation, and conversely.  The transformation by which one 
passes from E2 to 2E′ , or vice versa, is a B3 transformation (13); the two equations play a 

symmetric role in this transformation.  One proves, as in no. 6, that if two second-order 
equations can be deduced from each other by a B2 or B3 transformation then their 
characteristics correspond in the corresponding integrals of the two equations.  If one of 
them is integrable by the method of Darboux then the same is true for the second one [13, 
22]. 
 Let E1 be a resolvent of the first kind of the system S6, where E2, 2E′  are two 

resolvents of the second kind.  The B3 transformation by which one passes from E2 to 2E′  

may obviously be replaced by the sequence of two transformations B2, 2B′  by which one 

passes from E2 to E1 and then from E1 to 2E′ .  Since S6 generally admits two resolvents of 

the first kind, one sees that any B3 transformation may, in general, be decomposed into a 
sequence of two B2 transformations in two different fashions.  At the same time, the 
argument shows what the exceptional cases are. 
 When two B2 transformations are applied to an equation that admits only one system 
of first-order characteristics, this leads to two resolvents of the second kind of the same 
system S6, and consequently, may be replaced by a unique B3 transformation. 
 When the two B2 transformations are applied to a Monge-Ampère equation, this 
might lead to two equations E2 that are resolvents of the second kind of the two distinct 
systems S6, 6S′ .  It might happen that one cannot pass from E2 to 2E′  by a B3 

transformation; later on (no. 9), we shall discuss a case in which one passes from E2 to 

2E′  by a B1 transformation. 

 A sequence of two B3 transformations may also sometimes be replaced by a unique 
transformation of the same kind.  Let E2, 2E′ , 2E′′  be three resolvents of the second kind 

S6 .  The 3B′′  transformation by which one passes from E2 to 2E′′  may obviously be 
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obtained by the succession of B3 and 3B′   transformations by which one passes from E2 to 

2E′ , and then from 2E′  to 2E′′ .  This is no longer true if E2 and 2E′  are resolvents of S6, 

while 2E′  and 2E′′  are resolvents of a different system 6S′ .  The two equations E2 and 2E′′  
are not necessarily resolvents of the same system. 
 The importance of resolvents of the second kind in the search for integrals M2 of a 

system S6 amounts to the following property, whose proof is immediate: If one knows one 
resolvent of the second type E2 of a system S6 then one may deduce ∞1 integrals M2 of the 

system from any integral M2 of that same system by the integration of a first-order 

differential equation. 
 Indeed, let M2 be an integral that is represented by the equations: 

 

z = f(x, y), p = 
f

x

∂
∂

, q = 
f

y

∂
∂

, u = ϕ(x, y) 

 
of a system S6 that has been put into the form (26), where the integrability condition of 
the second equation does not depend upon u.  This integrability condition is a resolvent of 
the second kind E2 of S6, where f(x, y) is a particular integral.  That integral f(x, y) of E2 
corresponds to an infinitude of functions ϕ(x, y) that one obtains by the integration of a 
completely integrable total differential equation for which one already knows a particular 
integral.  If one knows only one integral of E2 then that integral belongs to ∞1 integrals 
M2 of S6 that one determines by the integration of the same total differential equation, no 

integral of which is assumed to be known. 
 Now suppose that one knows two resolvents of the second kind E2, 2E′  of S6.  One 

may deduce ∞1 integrals of S6 from an integral I2 of E2 by the integration of a differential 
equation, and in turn, ∞1 integrals of 2E′ .  One may then deduce ∞1 integrals of S6 and E2 

from each of these new integrals 2I ′  by the same process, and since these integrals 1I ′  
themselves depend upon an arbitrary constant, one will thus have ∞2 integrals of S6, and 
in turn, ∞2 integrals of E2 .  This alternating process may obviously be continued 
indefinitely, and one imagines that its application might lead, upon starting with just one 
integral of S6, to an infinitude of integrals of the same system that depend upon as many 
arbitrary constants as one desires (see no. 10).  However, it might also happen that the 
application of this method permits one to obtain only integrals that depend upon a 
definite number of arbitrary constants, no matter how far one prolongs it (no. 9). 
 All of these remarks are naturally extended to the case in which one knows more than 
two resolvents of the second kind. 
 
 Remark. – Being given a system of four equations Fi = 0 that may be solved for the x′, 
y′, z′, p′, q′, we have seen above that that the elimination of the primed variables leads to 
a resolvent of the second kind E2 if the integrability condition of the equation dz′ = p′ dx′ 
+ q′ dy′ is independent of z′.  This integrability condition is expressed by means of partial 
derivatives of x′, y′, z′, p′, q′ with respect to x, y, z, p, q, z′, derivatives that one always 
calculates by means of the classical rules that give the derivatives of implicit functions.  
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One may arrive at this integrability condition by a more elegant process ([22], chap. XII).  
From equations (1), one infers the relations: 
 

i i i i i idF dF dF dF dF dF
dx dy dx dx dp dq

dx dy dx dy dp dq

   ′ ′ ′ ′+ + + + +   ′ ′ ′ ′   
 = 0, (i = 1, 2, 3, 4), 

 
where one has set: 
 

idF

dx
 
 
 

 = i i i iF F F F
p r s

x z p q

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

,  idF

dy

 
 
 

 = i iF F
t

y q

∂ ∂+ +
∂ ∂
⋯ . 

 
These four equations, when solved for dx, dy, dp′, dq′, give expressions of the following 
form: 

N dp′ = H dx′ + K dy′,  N dq′ = L dx′ + M dy′, 
 
where H, K, L, M, N are linear functions of r, s, t, rt – s2.  In order for p′ and q′ to be 
partial derivatives of the same function with respect to x′ and y′, one must have K = L. 
 Upon carrying out the calculations, one arrives at the following condition, which was 
given by Bäcklund [2]: 
 
(35)     (12)[F3 F4] + (13)[F4 F2] + (14)[F2 F3]  
   + (34)[F1 F2] + (42)[F1 F3] + (23)[F1 F4] = 0, 
 
where one has set: 

(ik) = i k k idF dF dF dF

dx dy dx dy

      −      
      

, 

 
and where the bracket [ ] has its usual sense. 
 If the five equations (1) and (35) may be solved with respect to x′, y′, z′, p′, q′, upon 
writing that the expressions obtained satisfy the relation dz′ = p′ dx′ + q′ dy′, then one is 
led to two third-order equations in z.  If the elimination of x′, y′, z′, p′, q′ from these five 
equations is possible then z is determined by a Monge-Ampère equation, which is a 
resolvent of the second kind. 
 
 
 9.  Systems S6 that admit a continuous group. – Let S6 be a system that admits a 
continuous, one-parameter group of transformations g that are derived from an 
infinitesimal transformation ε.  Choose the variables xi in such a fashion that the symbol 
of that infinitesimal transformation is ∂f / ∂xi .  With this choice of variables the system S6 
is written: 
(36)    ω1 = dx1 + Ω1 = 0, ω2 = Ω2 = 0, 
 
Ω1 and Ω2 being two Pfaff forms in which only the five variables xi (i < 6) appear, along 
with their differentials.  In order to determine the singular elements, one must write down 
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the idea that for certain values of the dxi the equations 1ω′  = 1′Ω  = 0, 2ω′  = 2′Ω  = 0 reduce 

to just one.  The coefficients Aik of equations (8) and (9) do not depend upon x6, and as a 
result the two roots of the equation in λ / µ are also independent of x6 .  One may leave 
aside the case of a double root λ = 0, because the only singular equation of the system 
will be Ω2 = 0, and it cannot be of class five.  The system will then be reducible to the 
canonical form (IV).  If one sets aside this very special case then one sees that the system 
S6 admits at least one singular equation of the form dx6 + Ω3 = 0, where Ω3 does not 
depend upon x6 .  There is at least one of these singular equations for which Ω3 is of class 
five or four; in other words, the system S6 will be reducible to one of the canonical forms 
(III) or (IV).  If one converts Ω3 into a canonical form then the system S6 will be written: 
 

dx6 + dy5 – y2 dy1 – y4 dy2 = 0, Ω2 = 0, 
 
in which Ω2 does not contain x6 .  In order for the first equation to be a singular equation, 
one sees, as in no. 4, that Ω2 must not refer to dy5 .  It will thus suffice to make a simple 
change of notations in order to be able to write the system S6 in the form: 
 
(37)  dz – p dx – q dy = 0,  X dx + Y dy + P dp + Q dq = 0, 
 
in which X, Y, P, Q do not depend upon z.  The corresponding resolvent of the first kind 
will no longer depend upon z; it thus admits the infinitesimal transformation ∂f / ∂xi . 
 Conversely, any equation that has a system of first-order characteristics and admits an 
infinitesimal transformation (T) is a resolvent of the first kind for a system S6 that admits 
an infinitesimal transformation.  Indeed, if one supposes that E1 does not contain z then 
the equations of the generators of the surface in r, s, t (no. 5): 
 

X + P r + Q s = 0, Y + P s + Q t = 0 
 
no longer depend upon z, and the Pfaff system that admits E1 as its resolvent of the first 
kind does not change when one changes z into z + C.  Therefore, when a system S6 admits 
an infinitesimal transformation, a resolvent of the first kind of that system admits an 
infinitesimal contact transformation (T), and conversely. 
 From any infinitesimal transformation of S6, one may likewise deduce a resolvent of 
the second kind of that system.  Suppose that the second of equations (37) is put into the 
canonical form dz′ = p′ dx′ + q′ dy′, where x′, y′, p′, q′ are functions of x, y, p, q, u, so the 
first equation takes the form: 
 

dz = X′ dx′ + Y′ dy′ + P′ dp′ + Q′ dq′, 
 
in which X′, Y′, P′, Q′ do not depend upon z, and the integrability condition for the latter 
equation is a resolvent of the second kind 2E′  in z′ of the system.  The conclusion is not 

true if the second of equations (37) is of class three or one.  In the latter case, the system 
is of the form (V), and admits an infinite group of transformations.  In the other case, the 
resolvent of the first kind will admit an intermediate integral that depends upon an 
arbitrary function.  By setting aside this exceptional case, one may thus say that any 
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infinitesimal transformation (ε) of a system S6 corresponds to a resolvent of the second 
kind E2 of that system. 
 We say, to abbreviate, that E2 is deduced from the infinitesimal transformation ε.  
One does not therefore obtain all of the resolvents of the second kind; indeed, we will 
study (no. 10) the systems S6 that have resolvents of the second kind, but admit no 
continuous group.  The resolvents E2 that are deduced from a transformation ε may be 
characterized by the following property: The integrals M2 that correspond to a particular 

integral of E2 are deduced from each other by the transformations of a one-parameter 
group g. 
 A Monge-Ampère equation E1 that admits a transformation ε is a resolvent of the first 
kind for two systems S6 that admits two resolvents of the second kind E2, 2E′ , 

respectively, that are deduced from the transformation ε.  The integrals of these two 
equations correspond to each other in a one-to-one fashion, since each of them 
corresponds to ∞1 integrals of S6 that are deduced from each other by transformations of 
the group g that is deduced from ε.  One passes from E2 to 2E′  by a B1 transformation.  

Indeed, suppose that E1 does not refer to z; the formulas for the B2 transformation 
between E1 and E2 refer to only x, y, z, p, q, x′, y′, z′, p′, q′, and likewise the formulas for 
the 2B′  transformation between E1 and 2E′  refers to only x, y, z, p, q, x″, y″, z″, p″, q″.  
The elimination of x, y, z, p, q will thus lead to four relations between the coordinates of 

the two elements (x′, y′, …, q′).  For example, the equation s = 2λ(x, y) pq  is a 

resolvent of the first kind for each of the systems: 
 

    dz = p dx + q dy, dp = u dx + 2λ pq dy, 

    dz = p dx + q dy, dq = 2λ pq dx + u dy, 

 
each of which admits a resolvent of the second kind that is deduced from the infinitesimal 
transformation ∂f / ∂z.  These two resolvents are obtained by taking the unknowns to be 

p  or q , and are two Laplace equations that are deduced from each other by a 

Laplace transformation [27, 28]. 
 If the system S6 admits a continuous group Gn with n parameters then any resolvent of 
the first kind E1 also admits a continuous group nG′  with n parameters, and conversely.  

Each infinitesimal transformation of Gn corresponds to a resolvent of the second kind, 
and S6 admits an infinitude of resolvents E2 that might not all be different, moreover.  Let 
M2 be an integral of S6; the knowledge of the group Gn permits one to deduce an 

infinitude of other integrals from that integral that depend upon m (m ≤ n) arbitrary 
constants, the set of which we denote by EG .  Let ε and ε′ be two infinitesimal 

transformations of Gn that give rise to two one-parameter groups g, g′.  We likewise let 
Eg, g

′E  denote the two sets of integrals that are deduced from M2 by means of the 

transformations of g and g′, respectively.  If the set EG depends upon m parameters then it 

is composed of ∞m−1 sets Eg and ∞m−1 sets g
′E  .  Having said this, let E2, 2E′  be resolvents 
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of the second kind that provide transformations ε, ε′.  From an integral I2 of E2, one may, 
by the integration of a differential equation, deduce a set Eg of integrals of S6 that belong 

to a set EG of ∞m integrals of S6 .  Each integral of Eg corresponds to an integral 2I ′  of the 

second resolvent 2E′ , from which, one may further deduce a new set g
′E  of integrals of S6 

by the integration of a differential equation.  However, since all of these sets g′E  have a 

common integral M2 with EG they must be a subset of EG .  The same thing is obviously 

true for the integrals of S6 and of E2 that one might obtain by pursuing the application of 
the same process.  Consequently, if two resolvents of the second kind E2, 2E′  provide two 

infinitesimal transformations of a group G of S6 then the repeated application of the B3 
transformation between these two equations, upon starting with an integral of one of 
them, cannot furnish other integrals of these two equations than the ones that one may 
deduce from the knowledge of the group G, which depends upon m – 1 arbitrary 
constants.  This result is clear a priori, since the resolvents E2, 2E′  are themselves 

deduced from the group G. 
 
 Examples. 
 
 1. A Laplace equation s = ap + bq + cz is a resolvent of the first kind for a system S6 

(no. 6) that admits the transformation 
f f f

z p q
z p q

∂ ∂ ∂+ +
∂ ∂ ∂

.  The resolvent of the second 

kind E2 provided by this transformation is obtained by setting z = eZ and then taking ∂f / 
∂x to be the unknown, which leads to a transformation that was known to Moutard (41).  
Likewise, if z1 is a particular integral of the Laplace equation then that equation does not 
change when one changes z into z + az1 ; the resolvent E2 of S6 that is deduced from this 

one-parameter group is obtained by taking the unknown to be 
1

z

x z

 ∂
 ∂  

, and the B2 

transformation is identical to the transformation of Lucien Lévy [38]. 
 
 2. A system S6 of the form dz + Ω1 = 0, dz′ + Ω2 = 0, where Ω1 and Ω2 are two Pfaff 
forms in four variables x1, x2, x3, x4 , admits two permutable infinitesimal transformations, 
each of which leads to a resolvent of the second kind.  The integrals of 2E′  that 

correspond to an integral of E2 are obtained by adding an arbitrary constant to one of 
them, and conversely.  The group G has two parameters, and the integrals of E2 and 2E′  

correspond to each other by sets that depend upon one parameter.  If, in particular, the 
system S6 has the form (7): 
 

dz = p dx + q dy, dz′ = f(p, q) dx + ϕ(p, q) dy 
 
then the resolvent E2 has the form H r + 2 K s + L t = 0, where H, K, L depend upon only 
p, q, and may be converted into a Laplace equation. 
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 10.  Examples. – It was the research of Bianchi [7] on surfaces of constant negative 
curvature that led A,-V. Bäcklund to pose the general problem that was studied here.  
Bianchi had proved that from any surface Σ of constant negative curvature – 1 / a2, one 
may deduce an infinitude of other surfaces Σ′ that enjoy the same property.  The points M 
and M′ of Σ and a transformed Σ′ correspond to each other in such a fashion as to satisfy 
the following conditions: The distance MM′ is constant and equal to a, while the tangent 
planes at M and M′ contain the line MM′ and are orthogonal.  It is clear that these 
conditions translate into four relations between the coordinates of an element (x, y, z, p, 
q) of Σ and the coordinates of the corresponding element (x′, y′, z′, p′, q′) of Σ′.  Upon 
replacing the orthogonality condition for the tangent planes with the condition of making 
a constant angle, Bäcklund was led to a more general problem that gave a new method of 
transforming surfaces of constant total curvature. 
 G. Darboux further generalized the problem by replacing the Bäcklund conditions 
with the following ones: The system that is composed of two points M, M′, and the 
tangent planes to the surfaces Σ, Σ′ at the points M and M′, respectively, has an invariable 
form.  Abstracting from parallel surfaces, one further finds that the surfaces Σ, Σ′ must be 
parallel to minimal surfaces or to surfaces of constant total curvature.  Finally, J. Clairin 
[13] extended this result to non-Euclidian space. 
 The study of Bianchi and Bäcklund transformations led to a system of two 
simultaneous equations of a very simple form, and which possesses remarkable 
properties.  The search for surfaces of total curvature – 1 [22] depends upon the 
integration of the second-order partial differential equation: 
 

(38)     
2

x y

θ∂
∂ ∂

 = sin θ cos θ. 

 

 One sees immediately that if θ = f(x, y) is a particular integral then θ = ,
y

f mx
m

 
 
 

 is 

also an integral for any constant m; this is the Lie transformation.  The study of the 
Bianchi transformation leads to the study of the system: 
 

(39)    
sin( ),

sin( ),

x x

x x

θ ϕ θ ϕ

θ ϕ θ ϕ

∂ ∂ + = − ∂ ∂
∂ ∂ − = +
 ∂ ∂

 

 
 
which, along with the relations x′ = x, y′ = y, forms a Bäcklund system.  The elimination 
of ϕ from the two equations (39) leads to equation (38), and, by reason of symmetry, the 
elimination of θ likewise leads to the equation: 
 

(40)    
2

x y

ϕ∂
∂ ∂

 = sin θ cos θ ; 



Goursat – The Bäcklund problem.                                          37 

the two equations (38) and (40) are two resolvents of the second kind of the system (39).  
The knowledge of a particular integral θ(x, y) of the resolvent (38) permits one to obtain 
an infinitude of integrals of equation (40) that depend upon an arbitrary constant by the 
integration of the completely integrable system (39), which comes down to a Ricatti 
equation.  Upon operating likewise on the integral ϕ(x, y) of (40) thus obtained, one may 
deduce new integrals that depend upon another arbitrary constant, and so on.  For the 
study of this sequence of operations and the integrations that it demands, I will refer the 
reader to Chapter XIII of the Leçons sur la théorie générale des surfaces of G. Darboux 
(tome 3, book VII). 
 The Bäcklund transformation leads to the more general system: 
 

(41)    
sin( ),

1
sin( ),

m
x x

x x m

θ ϕ θ ϕ

θ ϕ θ ϕ

∂ ∂ + = − ∂ ∂
∂ ∂ − = +
 ∂ ∂

 

 
where m is an arbitrary constant.  The elimination of ϕ further leads to equation (38) and 
that of θ, to equation (40), in such a way that these two equations are, moreover, two 
resolvents of the second kind for the more general system (41).  However, this system 
may itself be converted into the simple form (39) by taking the new variables to be x′ = 
mx, y′ = (1 / m) y, in such a way that the Bäcklund transformation for the surfaces of 
constant curvature is a combination of the two transformations of Lie and Bianchi. 
 Let θ(x, y) be a particular integral of the resolvent (38), and let ϕ = ϕ1(x, y, m, C) be 
the general integral of the system (41) that depends upon the parameter m and the 
constant of integration C.  If one replaces ϕ with ϕ1 and m with a new constant m1 then 
the system: 

(42)    

1
1 1

1
1

1

sin( ),

1
sin( )

m
x x

x x m

ϕθ θ ϕ

ϕθ θ ϕ

∂∂ + = − ∂ ∂
 ∂∂ − = +

∂ ∂

 

 
is again completely integrable, and it results from a beautiful theorem of Bianchi on 
permutability [9] that this system can be integrated by algebraic operations and 
differentiations if one has obtained the general integral of the first system for any m.  In 
this case, one may thus deduce from the integral θ(x, y) of (38), an infinitude of other 
integrals that depend upon as many arbitrary constants as one desires, without any new 
integration. 
 An important theorem of Weingarten [21] on the deformation of surfaces may also be 
attached to the Bäcklund problem.  Let S be a surface that admits the linear element: 
 
(43)    ds2 = du2 + 2 dv dψ, 
 
where ψ(u, v) is a given function of u, v.  The rectangular coordinates of a point m of that 
surface are functions of the variable u, v that verify the classical equations: 
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(44)  
2

x
S

u

∂ 
 ∂ 

= 1, 
x x

S
u v

∂ ∂
∂ ∂

= 
u

ψ∂
∂

, 
2

x
S

v

∂ 
 ∂ 

= 2
v

ψ∂
∂

. 

 
One makes the point m of S correspond to the point M with the coordinates: 
 

(45)   X = 
x

v

∂
∂

, Y = 
y

v

∂
∂

, Z = 
z

v

∂
∂

, 

 
and one easily deduces from the relations (44) that one therefore has: 
 

(46)    
x y z

dX dY dZ
u u u

∂ ∂ ∂+ +
∂ ∂ ∂

 = 0. 

 
 When the point m describes a surface S that admits the linear element (43), the point 

M describes a surface Σ whose normal has the direction cosines 
x

u

∂
∂

, 
y

u

∂
∂

, 
z

u

∂
∂

.  Let P, Q 

be the angular coefficients of the plane tangent to that surface; one has: 
 

(47)    
P
x

u

∂
∂

= 
Q
y

u

∂
∂

= 
1
z

u

−
∂
∂

, 

 
and some simple combinations show that the common value of the ratios is equal to: 
 

PX QY Z

u

ψ
+ −
∂
∂

= 2 21 P Q+ + . 

 
One thus has the following four relations: 
 

(48)  

2 2 2

2 2 2 2

, 2 ,

1
,

1 1

z
Z X Y Z

v v
z PX QY Z

u uP Q P Q

ψ

ψ

∂ ∂ = + + = ∂ ∂
∂ − ∂ + −
 = =

∂ ∂ + + + +

 

 

between X, Y, Z, P, Q, u, v, 
z

u

∂
∂

, 
z

v

∂
∂

.  This is a Bäcklund system in which z does not 

appear; the Pfaff system thus admits an infinitesimal transformation that corresponds to a 

resolvent of the second kind (no. 9).  In order to obtain it, it suffices to deduce u, v, 
z

u

∂
∂

, 
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z

v

∂
∂

 from the preceding formulas by means of X, Y, Z, P, Q, and to write the integrability 

condition for the equation: 

dz = 
z z

du dv
u v

∂ ∂+
∂ ∂

. 

 
The Monge-Ampère equation to which one is led is precisely the second-order equation 
into which Weingarten converted the determination of the surfaces that admit the linear 
element (43). 
 The system (48) admits another infinitesimal transformation.  Indeed, if one sets X = 
ρ cos ω, Y = ρ sin ω then these equations become: 
 

Z = 
z

v

∂
∂

, ρ2 + Z2 = 2 
v

ψ∂
∂

; 

 
22 2

2

1
1

z Z Z

u ρ ρ ω
  ∂ ∂ ∂    + +     ∂ ∂ ∂      

 = 1, 

 
2 2

2

1
1

Z Z

u

ψ
ρ ρ ω

 ∂ ∂ ∂ + +   ∂ ∂ ∂  
 = ρ 

Z

ρ
∂
∂

− Z, 

 
and do not refer to ω.  The corresponding resolvent of the second kind is identical with 
the classical equation that z must satisfy when considered as a function of the two 
parameters u, v. 
 The search for surfaces that are mappable to a surface of second degree that is tangent 
to the circle at infinity is thus converted into the determination of the surfaces of constant 
curvature [23]. 
 
 
 11.  Diverse generalizations. – The statement of the Bäcklund problem may be 
generalized in various ways.  Indeed, one may augment the dimensions or the order of the 
contact elements of the two multiplicities that one makes correspond element-by-element, 
or the number of relations between these two elements.  Cerf [12] has studied in detail the 
case where one establishes four relations between two elements of arbitrary order of two 
two-dimensional multiplicities, and showed that if certain conditions are satisfied then the 
solution of this new problem comes down to the integration of just one partial differential 
equation.  Bäcklund himself has studied the correspondences between two multiplicities 
of first-order elements in spaces of dimension more than three, where the number of 
relations is augmented [6].  No matter what the manner by which one generalizes the 
problem, one always comes down to the search for integral multiplicities of a Pfaff 
system with a known number of dimensions.  It results from the foregoing that the 
integration of such a system is, is in certain cases and in several ways, converted into the 
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integration of just one partial differential equation, but one is still quite far from a general 
solution to the problem. 
 I shall point out only the various circumstances that one may expect in a particularly 
simple case [35].  The integration of the second-order equation: 
 
(49)    r = f(x, y, z, p, q, s, t) 
 
may be replaced with a slightly more general problem, viz., the search for the two-
dimensional integrals of the system S3 of three Pfaff equations in seven variables x, y, z, 
p, q, s, t: 
(50)  dz = p dx + q dy, dp = f dx + s dy, dq = s dx + t dy, 
 
which is not, moreover, the most general of this type.  Equation (49) is obviously a 
resolvent of this system, but it might admit others.  This is what happens, in particular, if 
one might find two equations of S2 that form a system S2 of class 6.  The various 
resolvents of S2 will also be resolvents of S3 .  The same is true, in particular, if equation 
(49) does not refer to z.  The last two equations (50) then form a system with six variables 
x, y, z, p, q, s, t.  Since any second-order equation that admits an infinitesimal contact 
transformation may be converted into an equation that does not refer to z, one concludes 
from this that the integration of a second-order equation that admits an infinitesimal 
contact transformation may be converted into the integration of a second-order equation 
that possesses at least one system of first-order characteristics (11, 35). 
 The system S3 may admit resolvents of another kind.  Let X, Y, Z, P, Q, U, V be a new 
system of variables such that the equations S3 are, with these variables: 
 

(51)  

1 1 1 1

,

,

,

dZ P dX Q dY

dU AdX B dY C dP E dQ

dV A dX B dY C dP E dQ

= +
 = + + +
 = + + +

 

 
in which A, B, C, E, A1, B1, C1, E1 are functions of the new variables.  If one takes X and 
Y to be the independent variables, and if one supposes that Z is replaced by a function 
F(X, Y), and P, Q, by the partial derivatives of F then the integrability conditions of the 
last two equations furnish two linear equations in R, S, T, RT – S2.  It results from the 
special properties of the system (50) that these two conditions must reduce to just one 
that generally contains U and V.  If it contains neither U nor V then it forms a resolvent of 
the system, such that to any integral of that equation there correspond ∞2 integrals of S3 . 
 The system (50) may be prolonged by introducing the derivatives of z up to an 
arbitrary order, and the properties of the system (50) may also be extended to these new 
systems.  These considerations are attached to the general results that were due to Clairin 
[14, 17] on the second-order equations that admit a group of transformations and some 
other transformations that were pointed by Gau [25]. 
 

___________ 
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