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 The law of mutual action of two current segments that I presented in 1845 in Poggendorf’s 

Annalen, Bd. 64, pp. 1, et seq., as the putative correct one, in contrast to Ampére’s law, has found 

not only new support, but, one can say, a firm foundation, in the trailblazing work of Herrn 

Clausius, namely, his treatise in this journal, Bd. 82, pp. 85, et seq. In fact, the force law for current 

elements that Clausius derived from his general theory on pp. 130 of his aforementioned treatise 

agrees with my own law that was presented in loc. cit. precisely. Since, Clausius, who obviously 

missed out on my aforementioned treatise, did not mention that agreement in his works (cf., 

Poggendorff’s Annalen, Bd. 156, pp. 657, Bd. 157, pp. 489, and Verhandlungen des naturhist. 

Vereins der preuss. Rheinlande und Westfalens, Bd. 33), I will briefly discuss it here and connect 

it with some consequences that I believe to be not unimportant. 

 It is extremely easy to verify the agreement of both laws by the analysis that was treated in my 

Ausdehnungslehren (of 1844 and 1862). However, since I cannot assume that the reader is familiar 

with the laws of that analysis, I shall initially base that verification upon the laws of ordinary 

analysis, namely, upon the theorem that when a1, a2, a3 are the perpendicular coordinates of a line 

segment, and a is its length, and b1, b2, b3 are the corresponding coordinates of a second segment, 

while b is its length, the cosine of the angle between the directions of both segments [which I shall 

denote by cos (a b) in the customary way] then: 

 

cos (a b) = 1 1 2 2 3 3a b a b a b

ab

+ +
. 

 

Now, if dx , dy , dz  are the coordinates of a current element in a perpendicular coordinate 

system, and ds  is it length, while dx, dy, dz are the coordinates of a second current element, and 

ds is its length, while X, Y, Z are the coordinates of the force with which the former element acts 

upon the latter, and furthermore, x , y , z  are the coordinates of the starting point of the first 

element, while x, y, z are the coordinates of the starting point of the second one, so  x x− , ,y y−  

z z−  will be the coordinates of the segment that points from the former starting point to the latter 

one, and r is the length of that segment, so 
2 2 2( ) ( ) ( )x x y y z z  − + − + −  = 2r , and if i and i  are 

the two current intensities, moreover, while  is the angle between the two current elements, and k 

is a constant numerical factor then, according to Clausius (loc. cit., pp. 130): 
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Hence: 

(1/ )d r

dx
 = − 

3

x x

r

−
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(1/ )d r
ds

dx
 = − 3[( ) ( ) ( ) ] :x x dx y y dy z z dz r  − + − + − . 

 

Furthermore, one has: 

cos  = ( ):dxdx dy dy dz dz ds ds   + +  . 

 

When that value is substituted in (1), one will get: 

 

X = − 
3

{( )( ) [( ) ( ) ( ) ] }
k i i

x x dx dx dy dy dz dz x x dx y y dy z z dz dx
r


       − + + − − + − + − , 

 

and corresponding expressions for Y and Z. If one assumes that the z-axis is perpendicular to the 

plane in which r and ds  lies then one will have z z−  = 0 and dz  = 0, so one will also have Z = 

0. We can then call the aforementioned plane the plane of action. The formula for X will then 

become: 

 

X = − 
3

{( )( ) [( ) ( ) ] }
k i i

x x dx dx dy dy x x dx y y dy dx
r


     − + − − + − , 

 

and correspondingly for Y. Now let the product i ds   be denoted by a, as in my treatise (Pogg. 64, 

pp. 9), let the product i ds be denoted by b, and let the (perpendicular) projection of b onto the 

plane of action be denoted by b1 . Furthermore, let the angles be set to: 

 

 r a =  ,  r b1 =  ,  b1 a =  , 

 

such that one will then have: 

 =  r b1 +  b1 a =  +  . 

 

One assumes that the y-axis is in the direction b1 and that the x-axis lies in the direction c 

perpendicular to it in the plane of action, and indeed in such a way that  b1 c =  + 90o. i dx   and 

i dy   are then the coordinates of a, while i dx and id y are those of b, so: 

 

cos  = cos (b1 a) = 
1

( )i i dx dx dy dy

ab

  +
 

and 
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cos  = cos (r b1) = 
1

( ) ( )i x x dx i y y dy

r b

 − + −
 . 

 

If we substitute those values then we will get: 

 

X = − 
1 13

[( ) cos cos ]
k

x x ab i dx r b
r

   − −  , 

Y = − 
1 13

[( ) cos cos ]
k

y y ab i dy r b
r

   − −  . 

 

Now if y − y  is the projection of r onto b1, so it is equal to r cos (r b1) = r cos , and i dy   is the 

projection of a onto b1 , so it is equal to a cos (b1 a) = a cos  , then: 

 

Y = − 1

2

k a b

r
(cos  cos  – cos  cos ) = 0 . 

 

Furthermore, if x − x  is the projection of r onto c, so it is equal to: 

 

r cos (r c) = r cos (r b1 + b1 c) = r cos (90o + ) = − r sin  , 

 

and i dx   is the projection of a into c, so it is equal to: 

 

a cos (a c) = a cos (a b1 + b1 c) = a cos (90o – g) = a sin  , 

so 

X = − 1

2

k a b

r
(sin  cos  + cos  sin ) = 1

2

k a b

r
sin ( + ) , 

then: 

(2)      X = 1

2

k a b

r
 sin  . 

 

Since Y and Z are zero, that expression represents the total force. It is identical to the expression 

that I published in Pogg. 64, pp. 9, formula (4), except that k, whose value depends upon which 

units one assumes, was set equal to unity in that paper. 

 However, formula (2) takes on an entirely new meaning with the basic law that Clausius 

proved. It no longer represents a hypothesis that can be posed with perhaps equal justification 

along with other hypotheses but proves to be one that is necessary in the Clausius representation. 

In order to show that and then connect it with other consequences, I would like to illustrate the 

process in the Clausius representation. Clausius proved that the basic law that the founder of a 

unified theory of electrodynamics – viz., Herr W. Weber – had exhibited agrees with experiment 

only under the assumption that in every galvanic current, the positive and negative electricity move 

in opposite directions with equal velocity. Namely, he showed that when the opposing electrical 
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currents in a galvanic current move with unequal velocities (e.g., the negative one is at rest), based 

upon Weber’s law, the action of the constant current must be distributed over the electricity at 

rest, which contradicts the experiments. I point out that one can carry out that proof in a highly 

elementary way by means of a linear current that consists of two concentric circular arcs and two 

straight line segments, namely, when the common center of both circular arcs lies at the point at 

which the electricity is at rest, and the two segments are lengthened to go through that point. In 

that case, a mere glance at Weber’s formula: 

 
2 2

2 2 2 2

1 2
1

ee dr d r
r

r c dt c dt

   
− +  

   

 

 

that the positive current (if one ignores the static effect, which always cancels the effect of the 

negative current) exerts an attraction on the positive electricity at rest that goes through the center 

of the current and is proportional to the square of the velocity 
dr

dt

 
 
 

, while the negative electricity 

will be repelled just as strongly in such a way that the action will have the opposite sense to the 

negative current, but in in such a way that those actions will be proportional to the square of the 

velocity with which the negative electricity flows. The total effect is then zero only when both 

velocities are equally large, but in any other case, the electricity at rest must be distributed, which 

contradicts the experiments. Clausius proved the corresponding statement for Riemann’s basic 

law. Both were then consistent with experiments only when one could assume that positive and 

negative electricity flowed with equal velocity (in opposite directions) in any galvanic current. 

However, that assumption is not admissible, since, e.g., in electrolytes, the electrical currents move 

with the ions, and they will generally possess unequal velocities. 

 Now, Clausius started from the assumption, which also lies at the foundations of Weber’s and 

Riemann’s law, that the force with which a moving electrical particle e  acts upon another e 

depends upon only the mutual distance between the two particles, along with the directions and 

magnitudes of their velocities and accelerations. When he simply coupled the results of verified 

observations and the principle of the conservation of energy, he arrived at his fundamental formula 

(66), in which, however, an unknown function of r appeared. Nonetheless, that unknown function 

will drop out automatically when one determines the force with which a current element ds  acts 

upon another one ds, and one will then arrive at equation (1) and its equivalent one (2), which must 

then be regarded as being established completely, as long as one does not wish to go higher than 

perhaps the second time differential of the moving electrical currents. 

 It should be remarked in regard to the foregoing that formulas (1) and (2) also remain true 

when the two opposite electrical currents in the opposite directions, but one must then understand 

the intensity of the current to mean the sum of the positive and negative electricity that flows in 

the opposite direction that flows through a cross-section of the conductor per unit time. 

 I shall connect that with an entirely elementary derivation of the action of a constant closed 

current on a current element that leads to the same results, and which I believe is unknown up to 

now. 
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 When one replaces a with its value i ds   in (2), upon integration, one will immediately find 

the force v that a current-carrying segment BC with the intensity i  exerts upon a current element 

whose starting point lies at A and whose projection onto the plane ABC is equal to b1. Namely, 

when AD = h is the height of the triangle ABC, and can be called the pieces of the triangle (die 

Stücke des Dreiecks) in the more traditional way, one will have: 

 

v = 1k i b

h


(cos  + cos ) . 

 

In particular, if b1 points in the same direction as BC then v will have the same direction as AD, 

and when b1 is rotated through an arbitrary angle on the plane of action, the direction of v will 

rotate through the same angle, while the value of v will remain the same. If a is the third angle of 

the triangle and m is the centerline, which bisects that angle and reaches to the opposite side, then 

it is known that: 

cos cos

h

 +
 = 

2sin / 2

m


, 

and the formula above will become: 

(3)      v = 12 sin / 2k i b

m


. 

 

However, in order to be able to employ that formula directly, it is necessary to also represent the 

direction of the force v in it, as well. To that end, I must recall some concepts in geometric analysis 

that I presented in my Ausdehnungslehren of 1844 and 1862, namely, the concepts of segments, 

surface spaces, the addition of segments and surface spaces, and the inner product of the surface 

space with a segment. Namely, I say that two bounded straight lines are equal to each other as 

segments only when the have the same lengths and directions, and two planar regions are equal as 

surface spaces only when the planes are parallel, and the planar regions have equal areas that point 

in the same direction. Two segments are added when one attaches them continuously so the 

segment from the starting point of the first one to the endpoint of the last one will be sum of the 

two segments. Two surface spaces are added when one attaches them continuously as 

parallelograms, i.e., one attaches them in such a way that the base side of the second one coincides 

with the top side (i.e., the side that is opposite to base side) of the first one, so the parallelogram 

whose base side is the base side of the first one and whose top side is the top side of the second 

parallelogram will be the sum of the two surface spaces.  Finally, I understand the inner product 

of a surface space F whose area is unity with a segment b, which I write as [F | b], to mean a 

segment g that is just as long as the projection b1 of b onto F, is perpendicular to b1 in the plane F 

(so also to b), and which is continuously attached to b1 and bent to the side in which the perimeter 

of F runs. If one replaces F with  F, where  expresses the area, then one will have [ F | b] =  

g. 

 If we apply that to the case above and agree that F denotes the same thing as the surface space 

of the triangle ABC then it will be clear that from the above that the direction of the force will be 
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the opposite of [F | b], and therefore when the direction of the force is, at the same time, expressed 

by – [F | b] and substituted for b1 in (3), that will give: 

 

(4)      v = − 
2 sin / 2

[ | ]
k i

F b
m


 . 

 

The galvanic current now flows through an arbitrary spatial polygon, one of whose sides is BC, 

while A remains the starting point of the current element b. For the triangle that is connected to 

ABC, let  be replaced with 1, let m be replaced with m1, and let F be replaced with F1, etc. The 

force V with which the entire polygon acts upon the current element b  will then be: 

 

(5)   V = − 2 [ | ]k i Q b  ,  where  Q = 1
1

1

sin / 2sin / 2
F F

m m


+ +  

That equation includes the following important theorem: 

 

 If an arbitrary closed current in space is given then there is a well-defined plane at every point 

A that one can assume goes through A, and which can be called the plane of action of the current 

relative to the point A. It has the property that every current element (b) that starts from A will, 

first of all, experience no effect when it is perpendicular to that plane, and secondly, experience 

the same effect when it is skew to that plane that its (perpendicular) projection (b1) onto that plane 

would suffer. Thirdly, the force that it experiences lies in that plane and is perpendicular to the 

projection (b1) of the current element, and therefore also to the current element itself. Fourthly, 

when g is the force that the current element (b) (which starts from A) experiences in any position 

and the projection (b1) of the current element onto the plane of action is rotated through an angle 

in that plane, the force g will also be rotated through the same angle without changing its value. 

 

 That plane of action is easiest to construct when the current is a polygonal current in space. 

That is because it is parallel to Q, and Q can be found directly from formula (5) by adding the 

surface spaces. 

 What is much more convenient than the path that was pursued here is the method that involves 

introducing geometric analysis right from the outset. However, one must then introduce the 

concept of the outer product of two segments. Namely, I understand the outer product [a  b] of 

two segments a and b to be the surface space of the parallelogram that has a for its base and b for 

the side that is attached to it. Formula (1) will then immediately imply (although I shall not prove 

this here) the formula: 

(2*)      P = 
3

[ | ]
k

r a b
r

  , 

 

where r , a , b  represent segments whose lengths we denoted by r, a, b, resp., above, and P is the 

force in magnitude and direction. 

 If we set a  = i ds   here, where ds , at the same time, represents the direction of the current 

element ds , and take ds  to be the element of an arbitrary closed current then we will get: 
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(5*)    V = [ | ]k i Q b  , where  Q = 
3

[ ]r ds

r


  

 

when we extend the integration over the entire closed current. 

 Here, as everywhere, there is not the slightest difficulty in converting the formulas of geometric 

analysis into the (as a rule, very complicated) formulas of ordinary analysis. To that end, one must 

assume only three segments along the three mutually-perpendicular coordinate axes whose 

directions are those of the positive axes and whose lengths are unity; let them be e1, e2, e3 . If a1, 

a2, a3 are the coordinates of a segment a then one must only replace a with a1 e1 + a2 e2 + a3 e3 . If 

one applies this process to each segment and then performs the additions and multiplications 

according to the usual rules of algebra, except that one does not switch the factors in a product 

without further analysis and combines them then no other segments will remain the formula 

besides e1, e2, e3, whose multiplication, whether outer or inner, is performed according to the 

definition the product. In our formula (5*), we will then ultimately get V is the form V = V1 e1 + V2 

e2 + V3 e3, in which V1, V2, V3 are the desired algebraic expressions. 

 

 Stettin, 10 January 1877. 

 

___________ 

 


