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Asymmetric elasticity
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To Antonio Signorini on his ¥irthday.

Translated by D. H. Delphenich

Summary. — A general theory of elastic bodies with asymmetric stress clegistat
is developed that is valid for finite deformations. The struabfithe isothermal elastic
potential will be determined in an explicit way in the case of sliglgformable isotropic
bodies.

To my knowledge, there does not exist a complete thegarding the deformations
and the state of stress of elastic bodies with symengress characteristics, even in the
case of infinitesimal deformations. Most works thatatréne mathematical theory of
general elasticity do not even mention this questioth some rare exceptions. Going
back to 1910, a noté)(of C. SOMIGLIANA contains the general relations foe case
of small deformations.

The problem was then subsequently considered by BODASZKEWS in which he
also made an application to hydrodynamics. Neverdbelene must observe that the
results contained in these works are founded on intuitigeufades for the expression for
the work done by the internal contact force (in tinst fplace) and the linear relations
between the strains (in the second place) that deasyh acceptable to me, as a result of
the considerations that follow.

An asymmetry in the stress characteristic can pratssit in the presence of body
moments, namely, when the body force that acts orekmgent of volume is reducible to
a force and a couple, which might occur, for examplé¢he presence of magnetic force,
and it is this case that is regarded as the most ititeyese.

Nevertheless, even when one excludes the presenaagfntoments one can give
examples ) in which one requires asymmetry in the characteristithe stress for the
solution, at least in certain parts of the body. these cases, the usual theory of
symmetric stress characteristic leads fatally toutgmis with singularities (e.g.,
polydromic or infinite ones), and one should not exclud¢ éxceeding the plastic limit
is often due to just such singularities. These reaspnthemselves, might succeed in

() C. SOMIGLIANA, Sopra un'estensione della teoria dell'elasticifdend. Acc. dei Lincei, 1910,
Vol. XIX, 1%issue.

(® S. BODASZEWSKI,On the asymmetric state of stress and its applications to #uhanics of
continuous mediumé#rchiwam Mechaniki Stosowanéj,(1953), pp. 351.

() E.REISSNERNOote on the theorem of the symmetry of the stress telmwmnal of Mathematics and
Physics, Vol. XXIll, 1944, page 192.



Grioli — Asymmetric elasticity 2

attracting interest to a theory in which the stressadtteristic might be asymmetric even
in the absence of body moments. However, in thie,caise cannot excludebsolutely
the presence of surface moments. That is, one mossserily assume that the totality
of the internal contact forces that act across réitrary internal surface element of a
body are generally reducible to a force that is apied point of the element and a
couple whose moment is called therface momentIn this way, one may treat, within
the context of regularity’) (and which explains its interest), problems thathiwithe
ambit of the usual theory, admit only solutions with slagties whose existence is not
entirely plausible from the physical point of view.

Some authors’Y found it difficult to admit the presence of surface matador the
reason that they could not conceive of a way ofzegjithem, but it seems to me that, in
effect, it must be impossible (or difficult) for us tealize external surface moments,
while, at the same time, excluding the possibility thatytare present inside the body, if
one supposes that its elements are small, but not vanishtftey. all, | do not think that it
iS even easy to indicate the way in which one reglihe distribution of surface forces
that are admitted by the usual theory of elastic bodi&dligenerality.

It is therefore my intention to outline the studyaotheory with asymmetric stress
characteristic that admits not only the presence cafybmoments — which are often
inessential — as well as surface moments. This willdve under the hypothesis of finite
deformations, which | do not think is a useless complinagoen if one has the objective
of establishing a linear theory that is valid for slighdigformable bodies. In fact, one
can confirm that a treatment of the theory in that ¢haé runs parallel to that of the
symmetric case allows indeterminacies in the structdréh@ elastic potential (and
therefore in the stress-deformation relations) thatd#ficult to remove without making
the linear theory descend from that of finite deforovai as a theory of the first
approximation, and without considering a special conditioat is imposed on the
potential itself in the ambit of finite deformations.

If one thinks of the stress tensor as being decomposetinn tensors — a symmetric
one and an anti-symmetric one (the latter one beingimtihe usual theory) — then one
finds that the work done by the internal contact fooreahy infinitesimal displacement
when one starts from the current state does not depemdti@@nti-symmetric part and
depends upon the local rotation only by way of its derigat If one supposes that the
internal surface moments are null then the expredsiotihat work becomes identical to
that of the symmetric case even in the case wherstthss characteristic is asymmetric
due to the presence of body moments, which ultimategroe the asymmetry in the
stress (in this case).

The knowledge of the expression for the work done byirtternal contact force is
essentially coupled with well-known thermodynamic ddesations that establish the
stress-deformation relationship, but, with the diffeeetizat the ones that occur in the
symmetric case present the new circumstance thattésses depend upon not only the
knowledge of a thermodynamic function — tinee energy- but also on the fact that a
certain parameter also does not appear in the expnefssi work. Indeed, it presents a

() See the example at the conclusion of this article.
() VOIGT, Theoretiche Studien (ber die Elasticitatsverhéltnisse der #fgstAbhand. K. Ges.
Géttingen, 1887.
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certain formal analogy with the way things happen in tieey of incompressible elastic
body €), but although in this case the condition of incomphelityi which represents an
internal constraint, permits us to determine the pammitiat presents itself, in the
asymmetric elastic theory it is not obvious how oneesiaeines it, and, at least in the
present state of the considerations that | have daoi#, it seems, in general, to
constitute a preventative element that one introdasesne does for the structure of the
thermodynamic potential.

| have developed the arguments that follow by assumatg stonditions, but it is
obvious that the general relations are also valid ungleairdic conditions, except for the
addition of the force of inertia in the right-hand sidelle indefinite equation. Things
almost always take place for me under isothermal ibond, but the results are clearly
applicable to all of the adiabatic cases, by means of thd use of the isentropic
condition.

In the case of small deformations, one can admihyfjp®thesis — which seems quite
tenable, to me — that the state of stress that mtemeby the effect of an arbitrary,
infinitesimal, irrotational displacement on a natustdte has internal surface moments
that are all zero, so it is possible to proveat least in the isotropic case — that the
parameter that intervenes is set equal to zero anéshé&ing thermodynamic potential is
the sum of a function of only the characteristicgleformation and one that is a function
of only the derivatives of the local rotation. Of tadgnctions (in the isotropic case), the
former has the structure of an elastic potential ie tilassical theory of small
deformations, while the latter one depends upon the knowledgestoone coefficient
and is such that the indefinite equations, when wriiterthe components of the
displacement are all of fourth order.

It does not seem superfluous to me to give, in conclusio example in which the
results, like the theory that was developed, plainly tpmira regular solution in a case in
which the solution that is obtained under the hypothesisymmetry in the stress
characteristic certainly has singularities.

|. — Statement of a theory of finite deformations.
1. Fundamental equations in Eulerian form.

Let C be the present configuratiod, its volume elemeng,, the boundary of, and
dZ, the boundary element.

Let the body force that acts on the eleméftbe reducible to the resultaktdC,
which is applied to an interior point @ and the couple momem dC, while the

surface force that acts @ is reducible to the surface for€el> that is applied to an
interior point ofd~ and a couple moment d=.

(®) A. SIGNORINI, Questioni di elasticitd non linearizzata e semilinearizz&and. di Matematica,
Roma, 1959, vol. 18, pp. 95.
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One supposes that the internal contact force is septable by means of two vectors
®,, W, , the former of which is the usual specific stressilerthe latter is defined in a
manner that is analogousdy, but in regard to the moments. In other words, oningeta
the fact that the applied vectd?, () is unitary inv, so the totality of the internal contact
forces that act across an infinitesimal elensitsurroundingP that is contained in the
plane rrthat is orthogonal t@ at P is reducible to the vectoP{ ®; do) and the couple
momentW¥, do. (By convention, in analogy to what is valid fdx, W,, this refers to
precisely all forces on the elements of the portibthe body that does not contai?, {)
that act on the other portions.)

In reference to the static case, for a portidhat is completely interior t6 and its

boundaryg; give n the direction of the interior normal i@ to the main equations are
written:

(1) | CDndU+LF dc =0,
(2) j OPDCDndU+L OPOF dz+j U3 d7+LM ¢ =0.
From this, and:
3) im>[ ®do =-F,
CaPC g
one deduces that:
1 _ _
(4) |CI[T|IDE W do = ZS:cS O -M,

where () ®s has the usual the significance. In order to obtaing#¢ must assume the
validity of the relation:

(5) CDV = z chVs ’

and the indefinite equations of CAUCHY, which naturally gtysccording to (1), (3).
Thevs are the direction cosines wivith respect to a presupposed triad of referéhce

that is tri-rectangular and right-handed.
By proceeding in a fashion that is parallel to the ongvbizh one deduced (5) from
(3) (CAUCHY tetrahedron), it follows from (4) that:

(6) W= > Wy,

with the obvious meaning fd¥s. (6) (like (5)) obviously has a general character, and
also persists in the dynamical case, as one easdgnies.

() In the sequel, it will be intended that any indiceshia summation range from one to three, unless
stated to the contrary.
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From (1), (2), taking into account (5), (6), one deduces)gaivith the CAUCHY
equations, the indefinite equations, and on the boundarggtregions for the vectokis
that are valid in the static case.

Collectively, they are, in Eulerian form:

od, _

(7) ZS: ox. F, (in0),
(8) D> ON =f, (onx),
9) Z}%is:— ZS:CSDCDS+M, (inC),
(10) > WN,=m, (onx),

where thexs are the coordinates Bfwith respect t&/.

2. Eulerian expression for the work done by interal forces.

For what follows, set:
(11) Xrs = Cr X Dg, Ws=C X WPg,

in whichc; denotes the unit vector of the axis with index

One supposes that the body is subjected to an infmigsiisplacement while
starting from the current state, for which each and yeysrint corresponds to the
displacementP = (di) and the rotation of the neighboring element with comptné):

1| odu ooy,
(12) d(*} — _|: r+2 _ +1}.
2] 0x,y 0%,

The corresponding worZ® done by the internal contact force that acts ist

- oD, B
(13) 55()——JCZS: " x OP dC LchSPdZ

d

o0,
- .[CZS: axs xa’wdc_.[zzs‘lcsxq)sxé’wdc_'l;zs“mxé’wdz.

() Naturally, if the index +i exceeds 3 then it must be diminished by 3. This will advajow.
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One arrives at (13) by taking (7), (9) into account.
If one also takes into account (8), (10) then one dedumes(13):

i ddu, a3
(14) 5[’():_ J'C{Z{ rs aXL: +Lprs axcj:|+25’a)r(xr+l,r+2_Xr+2r+1)}CC

For the elemendC, the work done by the internal force is obtaingdrultiplying dC
by the expression:

i ddu, 35
(15) d”:z{xrs S, ax‘j}Z(xrﬂ,Hz—quoo%q-

S

One immediately conforms that® only apparentlydepends upod w, but not their
derivatives. In fact, taking into account (125 inay be written:

i 65ur 00 +
rs +2
asu adu,, 0dy Mae
+ X 92 = - =
L+ ale (xr+lr+2 X+2+])( 5Xr+1 6X+2 j:| e

and therefore:

i odu, 1 dodu,, 0du 65’@
17 d() — x (R T+l _ +2 .
40 Z{ o 2N x”“l)( 0%,, 0%, ﬂ -

Therefore, if one sets:

(18) fo= D ZXSf =&
then one has:
(19) a® = Z{aﬁeﬁ Y, M—“’f},
with:
(20) Je. = 1 0du, +65uS
&7 ox, ox )

One finds as a result thdf” does not depend on tidw , but on its derivatives, and
as far as th&;s are concerned, they depend upon onlyditetation that is contained in
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the Eulerian homography of stress, when one thinksasf éecomposed into the sum of a
dilatation and an axial homography. (

On the contrary, if one thinks of tihe and theW,s as being zero, in the sense that the
Xs are assumed to be symmetric wiéris present, thed® does not depend upahaw
in any way whatsoever.

3. Fundamental equations in Lagrangian form.

In order to obtain the Lagrangian form of the fundatakequations in the case of
finite deformations, recall (1), (2). In scalar forimey may be written:

(1) [ > X.ndo+| Rdc =0,
(2') '[UZ(XHlXHZs - X+2X+15) n dj+J;( X1 Ir:+ 2~ K2 E) d3+'[gzwrs n d =0.

Let ' denote a presupposed reference configuratior? ldie the point in it that

corresponds t@ (*° and lety; be the coordinate &f with respect tdZ-
Set:

1) D= Ha_xr >0,
oy,

SO one introduces the Lagrangian stress chardateYjs of the stress by means of the
formula ¢):

1
(22) XfS = BzYlm X’,I )g,m :
I,m
Set:
(23) F dC =Fdc f d=” =fds,
(24) M™dC =M dc, m d’ =m dz.

The well-known Lagrangian equatiort$) follow from (1'):

() As a result of the expression that was postulatelddncit. in footnote ) in the case of small
deformationsd® depends upon thés — X, and thed'w directly. As for the other casd® is not zero for
a generic rigid displacement.

(*% Putting the asterisk on the symbol of an objgds always intended to mean that it refers to the
corresponding one i@".

(Y In order to indicate the derivative of a generic functiof they, with respect to one of them, put the

of
index of itsy coordinate after a comm%:f =fs.
Ys
(*?) See A. SIGNORINITransformaziontermoelastiche finiteMemoria £; Annali di Matematica pura
ed applicata, ser. IV, Tomo XXII (1943), pp. 33-143 [page 106].
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(25) Z(Ylm X’,I),m = I:rD'

Take into account the relation's)(

(26) nsdo=do™ C,nt, xg = do™) C,rf
rt t
and set:
1
(27) Wis = Bz¢lmxr,l Xm
Im

and, as a consequence of (22), (26), (27),a&sumes the Lagrangian aspect:

(28) L%sz,m(xmxﬁz,. X X)), GAd

mls t

1
+ '[CD(XHlFrEZ_ X+2E91+ MrD) dCD'*'LDBZQm Xm G lﬁ @’ =0.

Imst

It follows that:

(29) '[UDZYIm(XﬂXwLZJ — X ?(+1,) ﬁ WD+JCD( rxrlEZ_ rXZrE ot M) a-
ml

+ '[ Dz¢lmxr.l rﬁdaﬂ = 0’
g Im
from which, taking (25) into account, one dedudes:t

(30) '[CDIZYlm(X‘*ZX‘*ll = X1 ¥a) dZD+JCDIZ:(¢m % o dD—LD M @¢”=0.

Given the arbitrariness i@ and the independence of the integrand functiorthef
domain of integration, it follows from (30) thalmost everywhere:

(31) Z(¢|mxr,|),m = Z(Xr+2>§+1| = Xe i) M

The indefinite equations of equilibrium are therefthe ones that follow from (25)
and (31) when one sets:

(32) Arm = z¢lmxr,l ,

(** C denotes the algebraic complemen,in the determinant (21).
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which may then be written in the form:

(33) 2 Amm= 2 XX = X Xaa) o + M
m Im
Along with (25), (33), one may associate the baupa@onditions:

IZY“'“XJ N’E = frD’

Z)IrmNEn: nt’

*

(34) ons .

4. Lagrangian expression for the work done by the internalantact force.

The determination of a Lagrangian expression fa work done by the internal
forces may be accomplished by starting with theeg@n_agrangian equations that we
previously established, but one may arrive at thewre simply by conveniently
transforming the Eulerian expression (19).

To that end, begin with the observation that:

dou 1
r==%"C_(du),,
GXS DIZ sl( ur),l
(35) 00w 1
Y =2%c, (0w,
0X D45 ’
(36) dCc=D dc,

and that (18), (22) imply that:

1
(37) s = BZT.er,. Xom
Im
with:

(27), (35), (36), (37) permit us to alter (19)ihe expressiont):

@) 0= 2 Y XX {ITICOW ¢ GEW 140 uCL0w) |,

rsimq

(Y The producdC” 31% obviously expresses the work that is done by the inteorhct force relative
to the elemendC'.
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which is equivalent to:

(40) 310 = Z{T.mz(aur),mx,. P X (O“az)m]
which, setting: ! r r

(41) b= D X, X,

may also be written: |

(42) o1 :Z[T,m%mlm(cm),m]

5. A convenient transformation of the expression for the irgrnal force.

In the case of finite deformations, it is not cledat sort of functions of, may be
regarded as the variatiod&q in the passage from the configuration that is attarized
by the current values of theto the one that corresponds to the varied valuesx; .

Such an inconvenience renders it impossible toemidle elegant application of
thermodynamics?) that, in the case of symmetric elasticity, pesmibe to equate &1¢
to the variation of a thermodynamic functidhe Helmholtz free energyWith it, one
may conveniently transform the expression (42) " in the manner that will be
established.

Begin with the observation that if one calls= x — Yy, the components of the

displacement” - C and interprets thél; as the variations of thg under the passage
from C to a neighboring configuration then it obviousdgults that:

(43) AUis) = AUi),s AUism) = (AU),sm

while F(X) is a function that depends on thenly by way of theq ,, then one has, at the
same time:

5(F,s):5{zh:aaf ui,hs} Z[a Za)f—gui,hs(aupg},
(44) IaF ! " ; F’“
5(F),S=[Z s .h)} { BN T p,qs(cfulh)}

It then results that:
(45) @F)s=dFys).

(*®) E. and F. COSSERATBuUr la théorie de I'élasticitéPremier mémoire; page 5, seq
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On the basis of (35.1), one recognizes that the expne@) for thed’wwy may be put
into the Lagrangian form:

1
(46) 5,m = EZ[(duHZ) m Cr+l,m _(5ur+l) m Cr+ 2m] !

From (43), (44), (45), (46), it follows that:

7 — 1 0 Cr+1,m _ L C:r+2,m
(47) (5w),5_§§n{|:5(ur+2m)ax—( D j 5(ur+l,m)ax [ D j:l up,Sq

p.q p.q

C C
- l:ur+2,smi( r+lvmj_urﬂ,smi[ — j:l 5(un0)}
axpyq D axp'q D

1
+ 5|:E ; (ur+2,smcr+l,m — U, 1,smCF+ 2”):| )

In (42), set:
1
(48) :ufS = EZ[UHZ,smCHl,m_ ur+1,smCr+ 2,n] '
1| d (Cp d (Cus
M,==S Uy | 22m |y O | e
rs 2% p+1,qmaxrs( D j mz,qma)(rs( D pq
(49) - ’ '

1 o (C 9 (C
N - A p+2,s —A ptl,s u
rs 2 ;ﬂ_ p+l,gqm axpyq ( D j r+2,max ( D j:l pgm

and due to (47), one gets:

(50) g1 = Z[Trs Tt (M + MO, +Arﬁu4 ,

rs

which may also be written [see (41)]:

(51) dl(i) = Z{zTrsxr,l + Mrs + Mrs](y(ur,s)}*-Arsdurs'

rs

(51) constitutes the previously-announced expoessor the work done by the
internal contact force.

6. Introduction of the thermodynamic potential

Suppose the system has reversible transformatmasintroduce the function érfee
thermodynamic energy:
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(52) T=U—-eTE

(U is internal energyT is absolute temperaturg, is the entropyge is the mechanical
equivalent to the heat), so well-known thermodynaouasiderations'f) imply the
equality:

(53) o1V +eEJT =- T

for any infinitesimal transformation of the systdmattstarts in the current state.

(51), (53) plainly show thaf must be thought of as depending on the current state
only by means of thg s, 44, andT.

In the case of symmetry in the stress characterist& relations that express it in
terms of the derivatives of with respect to the deformation characteristic ofwll
immediately from (53).

In the asymmetric case, however, (53) does not leadaiogous formulas. In fact,
one must then take into account the fact thagtheand consequently th&u, ) and the

Jlrs, are not only independent of them, but, as one easilfirots on the basis of (48),
the fact that it results identically that:

(54) z Crs:urs =0,
as well as:

aCrs —
(55) z zax 5(up,q)lurs+cr35 rs | 0.

p.q

It then follows that (53) must remain valid fortrjast arbitrary variationgXupg),
ks, but for all of them that verify (55), and onlyote.
In the absence of internal constraints, one tleeludes from (53), (55) that:

oC o7
(56) TS + Mrs+ s+T pq’u == )
2T N e ™
07
(57) As+T7Cs=— —,
a/'ll'S
(58) e E=- a—T,
oT

wherer is a parameter, for which one may not exclueyiori, its dependency on the
current state; i.e., on thes ands .

(*®) Loc. cit, in note P).
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It is almost superfluous to warn that in (56), (57), (58§ tlerivation of7 with

respect to the: s, t4s , T must be thought of as independent of those variablesm Fr
(56), it follows immediately that:

(59) TFS == zclr + Mls + le + Tz

0>ﬁs

The knowledge of and the parametar— i.e., generally, the two functions of the

s, T— will determine, on the basis of (56), (57), (88 expressions for tfgs, A, and

E. Inthe isothermal case, it is sufficient to e@gufie number of unknowns in the system
of indefinite equations (25), (33) to the numberegjuations, taking into account the
relations (38). Analogously to the adiabatic caas, one can demonstrate with
considerations that are analogous to the onesatkamade in the symmetric case, it is
then obvious that the expressions that are obtamethtain their validity in the
dynamical case.

7. Equations of condition for the free energy.

One may finally affirm that the thermodynamic ftioo 7 and the parametar must
satisfy equations that express the symmetilyof On the basis of (59), they are:

60 +M_+ N+
©9 Z{q‘[ ox, N Tzaxs }
07 _
Cy l:axu +M, +N, +r% o :I}_

One might believe that (60) serve to determinepdm@meterr, but, in reality, things
are not so, since (6@nly apparentlycontains the parameter
In fact, set:

ars = z(clr Mls - QS er )’
(61) ﬁrs = Z(Clr le - Qs Nr)’

aC oC
- C Pq _ Pq ,
yrs 2( Ir 6)(,3 QS a)qu

and with a little patience, one finds that:
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as+1s 1 Z upqm ClslaCtm_ClsaCtm Av gvxcpxct
2D Impqt ’ a)(1 S ax,sﬂ

1
(62) ﬁsﬂ,s Z|:DU| q,82 XI 3 22 Ctsut qnz| Av <]
2D 45

ac, ac,
Verrs =~ s m— C A XC,XC,
. If%'/ l: e aXI S a)q s+1} 8; &

and it is easy to see that if one identifigswith — C,s then one has:
(63) ﬁ5+1,5 = 0, (fOI’/]rS = —Crs)
(64) Osi1,s + Jr1,s= 0, (forAs = —=Cys),

which exhibits the fact that the functions in (60) are pletely exhausted when one
considers=1, 2, 3, anad =s+ 1.

One concludes that (60) are satisfied identically ifkinta(49) into account — one
identifies thed,s with — 7 Cs in them, and furthermore, thtte coefficients of in (60),
taking into account (49gre identically zero.

From the above, one sees that equations (60) are Emiit@the system:

65 o . . . 0,
( ) als"'&ls"'z‘,l: 'Slax, q >q3+1:|

from the consideration of (62.1, 2), if one identifies AR with — 07/ 04 .

The system (65), taking (62) into account, presents it@lfthis point) with
coefficients that depend upon the second derivatives of cimponents of the

displacement, so this shows tiatlepends upon them only by meangzf. We would

like to say that (65) must be (in appearance) valid idalyiwith respect to the second
derivatives of they, . It is not, however, superfluous to prove, as oresdmmediately,
that in the system (65) the coefficients depend uposetlsecond derivatives only by
means of thess, and that (65) therefore constitutes a system of thaegal differential

equations that influence the structure/of
To that end, in the first place, observe that (62.3) beawritten:

(66) Osi1,s = Ez [U+1, gm (Cisr,m X, s+2 = Cim Xi+1,5+2)
Imq

+ U1, gqm (Cis2,m X, s+2 = Cim Xi+2,5+2)] Apg

and that (65), taking (62.2), (66) into accountdrees:
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(67) Z{CIS+16)(IS_QS@)§S+1 ZDZ[ Ugsia™ ZC:ImeLZL’ILquan}:

Taking into account the equalities:

(68)

C

Cv+1,s+1Cv s2 Cv+15+ zq s1- X ZSD
v+2,s+le,s+2_Cv+25+2q $1= )§+15D

it is easy to confirm the result:

o7 o7
69 - D o
( ) ZCI S+2 l:cl s+1 6)(, . Cls a)q 5+1:| g l:a)ﬂﬁzvs )ﬂ/+2,s axﬁls a0 Nn s:l

and in addition, taking (48) into account, the féett one has:

07 _
(70) ZCV s+2|:Dqus+2 thmxtsrz tqm:|a -
lgs lulq
0T 0T
=D (Cvmu m CIm rr) 2D2 Mo = M
qum " A ; aﬂv+2,q lvq all'lwrlq =4

Since the determinant @f; is certainly non-zero, (67) is equivalent to tietem that
can be deduced by multiplying them generically(yy,, summing oves, and making
the v vary from 1 to 3. Having done this, the syste)(Baking (67), (70) into account,
finally changes into the system:

0T 0T 0T 0T
(71) o Xe2q " me Ne2a T %o v =0
z a)ﬂ/+2,q * a>$+2,q 4 a:u|/+2q 2 a:uwr 1q .

whose coefficients depend upon only the and 4 s, and that certainly constitutes the
most convenient form for the system (60).

Naturally, if the system in question is an elastady then the work done by the
internal force for an arbitrary isothermal non-diglisplacement when one starts with the

configurationC™ of spontaneous equilibrium is negative. Suppot#iag7 is zero inC , it
follows from (53) in that case that:

(72) T>0

in any configuration that is distinct froéh and not obtainable from it by means of a rigid
displacement.
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One sees that (71) are certainly satisfied wheepends upon the s only by means
of thebys [see (41)] and thgrs only by means of the,s, where:

(73) Us = Z/JII’HS .

ll. — Linearized theory of isothermal asymmetric easticity.

1. Solutions that depend upon one parameter — linearizetieory.

One replaces the vectdFs, etc., with the vectoreF, hM”, hf’, hm’, whereh is a
parameter that is independent of the coordinates. xIhé,, etc., are thought of as
functions ofh.

Suppose that they ardifferentiable with respect toh at least oncein the
neighborhood of zero, and for the generic functjaof h, set:

Sl
v
H

(74) Ihlm)[%j =h®, (h=0,1,..7),

If one supposes that is the configuration of the system that corresponds £00
then one must set:

(75) u® =0,
while one can have:
(76) Y® #0, A9 2 0.
In addition, let:
(77) lim d_”[a_/yj = a”—(n)
h-odh{ oy oy,

for any function oh andy that appears in the sequel.
In particular, one has:

(78) &N =a, )@ = u?,

whered; is the KRONECKER symbol, whilgs, the deformation characteristit’)( will
be defined by:

1
79 £9 =0, D == (y® +y®),
( ) rs rs 2( rs S,f)

@ despite the fact that for

rs

(") For simplicity, let this denote the expressiondorthat is derived frome
r # s, this notation applies to all of the quantities 2
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(80) ,U(O) = 0’ ,u(l) = Cd(l),
where:

1
(81) Cdr(l) = E (ur(%r)z,r 1 q'(}r)]_; + 2)

represents the components of the local rotation imhdcethe passage by means of the
displacement with componentsi® of the configuration C' to a neighboring
configuration.

Taking (74), (57), (77), (78) into account, substitbfe’, etc., in (25), (33), (34), in
place off, etc. (this will always be assumed in what followshich gives, foh - O:

>y =0,

(82) mo
Yr(w?l),r+2 - Yg; 1= rgwoz,n '
D YONS =0,

which possibly constrain the pre-existing state of stieshe presupposed configuration
of spontaneous equilibrium.

One conforms immediately that in a theory in whick arcessarily considers thgn
to be zero, the possible pre-existing stress sttaot be symmetric

One now evaluates the limits as- 0 of the first derivative with respect koof the
two sides of equations (25), (33), (34). Taking into (78) accoustfinds that:

DO = EY IO, (in C")
m Im
(84) DA =Y YLD T O - X))
m |
+UD, (Y9 - YOI+ M (in C9),

SYON = F-3 YO N,
SAOND=nf.

m

(85) (onX).

On the basis of (38), one must set:

(86) 10 =200+ v0)
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As a consequence, (82.1), (83.1) become:

zTrﬁl?)m+ Z[Affé,s,rwtl_Ar(f)z,snil,s:O1 (InCD)
(87)
2 TN+ 22[/!&8;,3&1 AveeniNu] =0, (OnZ)

while (84.1), (85.1) become:

ZTrErll)m = Z[A S)Z,s,nl Ar(i)l,s r+2] s
=Y UOTO - 1 YO - YO+ Fel ( R VI
Im
(88)

1
1) N\E @ @
zTrm Nm+EZ[Ar+23r+l r+1 Ar+lsr r+J s

m

=S -2 - YO N, + e 2V Ny = M ).

(88), together with (84.2) and (85.2), represéet fundamental differential system
for the linearized theory. [ represents a configuration mdtural equilibrium— soY”

= A® =0 -then (88), (84.2), (85.3) become:

zTrr('n?m - z[/‘g)z,s,nl Ar(i)l,s r+2] s~ F +— ( M, r2r+ 1 M rD+ T+ 2’
(89) { " s (inC)
(ORI 1 A 1) - @ — fD 0
zTrm Nm+§z[ r+2,s,r+1 r+1 r+1sr r+J s ™ +— ( IVlr+ ZI\E 1 M+ 1|\F+ 2’
Z Ar(nl'l) m = Yr(+1} r+2 YrErl)2r+ 1 MD’

Z)'(l) N = (onZ)

(90)
and one can associate:
(91) YO+ YW = oT®D

(89), (90) can obviously be obtained as an appraton directly from (7), (8), (9),
(10) when one identifies thgs with theY;s, the ¢s with the A5, and the with they; .
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2. Isothermal elastic potential for the small transfornations of isotropic bodies.

In the sequel, we suppose tifatis the configuration of natural equilibrium. Under
the hypothesis of small deformations, there is no regsoot consider a law of HOOKE
type to be valid, and to not regard tig’, A® as homogeneous polynomials of first

degree in thau® and they®. To that end, one adjoins, moreover, the first d¢ives

r,s rs

of the general relations (57), (59) with respect to tharpaterh, when one leth tend to
zero and regards theand7 as depending updnby means of th& s, 14s, andT. Indeed,
the search for the relations that are valid in thgecof small deformations by deduction
from the case of finite deformations, rather thanhgypath pointed out, is certainly more
useful, at least, in the problems that are considgigdn that this will lead to a complete

characterization of the relations between forcesdmfdrmations, and of the structure of
thefree energywhich is otherwise difficult to obtain.

On the basis of (57), one has, in the first place:

(0)
(92) 2O = {0 5 - ["’—Tj |
o

rs

from which, one sees that -(f is, as assumed, tinatural state- one must have:

(0) (0)
(93) 19+ [G_Tj =0, [G_Tj =0, forr #s.
a/'ll‘s a/'lrs
From (59), it follows that:
(0)
(94) TO = | 9L
® )
which implies:
(0)
(©5) (a_fj -0
0%,

From (59), when it is derived with respecthit@nd one leté tend to zero, it will result

that:
(0) (0)
0% 0%, ) "1 0% 0u,,)

(0)
(96) TP=-7 ‘O)Z(—Zipq Hsa =2,
pq S
0) (0)
0o qOhis ) " \ OO y) ™

pq

(97) A®=-rOc¥-r9cO-y

pq
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and it is easy to confirm that:

CY =0,
(98) Cr(;) =0, (uﬁ)lml q(3)2r+2)_5rs+ 114(?2 —é:s+ 2‘11(1})1’
(0)
oC
Z( a qu luél(; = _drﬂr(rl) 5rs+1ﬂr(wlt)2r _5r$+ ZIur(PJr, '
pa \ 0% s
Forr # s, it follows from (96), (97), on the basis of (98at:
(99) TS =
©) o \©
T(O) . (1) . (i) u(l) + @ r#s),
( r.s 1lur 2r rs r JJ) Z 6xr 6X p.q axrvsa’upq lupq ( )
(100) A9=

(0) 1) @
r ( rs+1ur+2; rs+2ur+1;) Z

(0) (0)
1y 4 @
7 (r 9.
(6xp qaurj b {Gursau pJ "q}

From (71), when one differentiates it with respedt and letsh tend to zero, and on
the basis of (93), one deduces that:

X, 241 0% %115 20 % o

(0) (0)
0*T 0T
e

(101) >

aXv+2,v+lall'llm ax/+1y+ za:ulm

Suppose — as is always plausible — that for aoyational infinitesimal displacement
that acts or¢ (for which, the 4® have zero resultant) the , and therefore thel®

rs ! rs ?
can all be equal to zero.
It follows from this that whenever one has:

(102) u(lr)+l ur(}r)lr :0’
and consequently the® are zero, thed® must all become equal to zero. From (100),

fors=r + 1, one deduces that in order for this to havelioed, as for the other ones, one
must have:
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5 (0) 5 )
(103) T(O) - (G—Tj —{G—Tj = 0,
aXr+1,r alur r+l ax 4 +16H r+1
while from (101), one deduces that:
5 (0) 5 )
(104) 29 4 (G—Tj _{G—Tj =0.
0X 1Ol 1 0% .y, Ol o1
From (103), (104), it follows that:
2 ©) ) (0)
(105) (a_ifj Lo, o {a_ifj “o.
0X 1Ol 1 0X 1y O 11

Other consequences may be deduced from (101) and the eonbét was posed for
the A, However, one ceases to consider (105) as beingieatisforder to deduce that
in the isotropic case — which is all that shall be atergid in the sequel — one may
assume that the parameteis null and the7 is the sum of two functions, one of which,

71, is a function of only the, s and the other of whichi, is a function of only thess .

At the moment, (105.1) permits us to assert thatexpression forJ:; that is deduced
from (99) fors=r + 1is missing the terny .1 .
Nevertheless, a linear, homogeneous expressigfin

(106) TS = Y Img+ neuQl,
pqg

corresponds to the isotropic case when and onlynwie tensorStygs, Npgrs are
isotropic; i.e., when, with reference to a Cartediame, it results that:

{rnrqu:a rs pq+ﬁ5p58p+y5fgsp

107
(107) W AOS FBE I YOS

wherea, b, etc., are arbitrary coefficients.
It follows that:

(108) Te = 0.2 Upy BUe Y UG+ a0 Gt Pl st Vi

which, by the symmetry of

rs !

implies that:

(*®) See, e.g., B. FINZCalcolo tensoriale e applicazigrizanichelli, page 100.



Grioli — Asymmetric elasticity 22

(109) B=V B=V.

One thus has:

(110) TY =ad,) e +2Be0+ B (U 1),
p

and in order for the expression f&f,, be missinghe termy®,,, one must not have

rr+l?
that:
(111) £’'=0.

The expression fof  is therefore that of the symmetric case.

Analogous considerations indicate that a lineamégeneous expression in tAg’
in the isotropic case is of the type:

(112) AS = AS D e + B U+ CU—( B+ Quy),
p

which, since it must be zero for any irrotationsipdacement, implies:
(113) A =0, B +C =0,

while (100), when written fos =r + 1, shows that on the basis of (105Hg expression
for AY,, may not contain the term,,. In (112), therefore, one must have:

(114) B =C =0.

It is obvious that on the basis of (110), (111124), (113), (114), the expressions for
T depend upon onkf?, while those ofA’ depend upon only the'. Nevertheless,

rs ?

if one takes the second derivative Divith respect tch and letsh tend to zero then,

taking into account thaf depends upoh only by means of thg s and/; s , one sees that

the coefficients of the quadratic for@® that one obtains coincide with the second
derivatives of7 with respect tok s , ths, and that in all of the preceding considerations
and formulas it is legitimate, in the limits &stends to zero, to replace the second
derivatives of7 with respect tax s , ts with the analogous second derivatives of the
quadratic form that express€€). In summation, one concludes from the preceding
argument that at least in the isotropic case of small defornrio one may regard =
0 and7 = 7%, with 7 = W, + W, andW; being quadratic forms in just® , while W, is
a quadratic form in just®.

rs

It follows from (97), (112), (113), (114), in p&dlar, that:
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1
(115) W, = EZ(Bypq +Clyp) U g
pq

If one differentiates (71) twice with respectit@nd then leté tend to zero, taking (93)
into account, one finds, among other things, that:

B @ 1)
07 07
116 » {—j uslzz,q—{a j ué?l,q} -0,

q a/'l|/+l,q v+2,9

which translates into:

( a2T® 32T @
() 2 {6 S |Hea =g, g Hta [Him =0,
gim :uv+1,q Him :uv+2,q Him

and on the basis of (115), that becomes:

(118) Cz (ﬂé?z,qﬂz(ql,gﬂ_ ﬂé?l,q/’lély)wt 2) = O’
q

which implies that:

(119) C=0.

In the case of elastic bodies, (72), (115), (lidfly thatW; andW, are individually
positive-definite.

In particular, one must have:
(120) B>0.

3. Recapitulation of the general equations that are valid fosmall isothermal
transformations. Some observations.

At this point, it does not seem pointless to merdoapitulate the fundamental
equations that are valid in the statics of isottsremall deformations of a natural state
for isotropic bodies with asymmetric stress chaastic. Suppressing the notation of

superscript (1) and asterisk, for simplicity, whane superfluous by now, they are:

(121) Yis + Yor = 2l

(122) Yretr+2 = Yraope1 = z/]rm,m -Mr, (inC)

(123) > AuN,=m, (onZ)
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1 1 .
ZTrm,m +EZ(/1r+2,s,r+1_/1r+ls,r+ 2) = I:r +_22(M r+ 2+ 1 Mr+ T+ ) (In C)!
(124) m s s
1 1
ZTrm,mNm+EZ(/1 +2,s, HlNr+l_/]r+15,r+ 2Nr+ ?) = fr +§( Mr+ 2N+ 1 M+ 1N+ ) (onZ).

After introducing the LAME constantg v, we may associate these equations with
the relations:

(125) W, 1) = Wa(&) +Wa(L),
1 2
(126) Wi(e) = E[(V+2V)[Z ‘grrj ~WY (68 =& D]
B 2
(127) Wit = = 34 B >0,
1 1
(128) &s = E (Ur,s + Ur,s), Hrs ZE (Ur+2,r+1 = Urs1,r42), s
ow ow
129 T =, == —,
(429 T (2-4.)0s, " ou,
(130) av= [T, +A.9u].

(122) show that in a theory in which one admits plossibility of non-zero surface
momentsA;s the stress characteristic can generally be asyrioméf), even in the
absence of body moments and external surfades-(m = 0). What can be removed
from the solutions in the classical theory of siagities is not always possible from the
physical point of view, as we will show by an exdenp

In a theory in which one necessarily supposesthiaat,s are zeroB = 0), along with
them, the equations (122), (124) become:

(131) Y1, r+2 — Yre2, 41 = — My,

1
zTrm,m = I:r +§(M r+2r+1 Mr+lr+ 2)’
(132) "

1
zTrm,mNm = fr +§(M r+2,r+1Nr+1_ Mr+lr+ 2N+ 2)’

(*° In (122), one also notices the difference between rémults that were already cited of
BODASZEWSKI and SOMIGLIANA and the fact that the quantity — Y, depends linearly upon the
local rotations.
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while (123) does not have to be dragged into consideratiB0) becomes, moreover:

(133) av=7%"T.c,.

From the identity oB1") with — W for any isothermal infinitesimal transformation, it
follows that:

(134) dN: - Z-I_I’S&‘I’S *

The expressions (133), (134) are formally identical éoathes that one has under the
hypothesis of symmetry in the loads ahé structure of W does not change under the
passage from the symmetric case to the asymmeigcifoone does not assume the
existence of surface contact moméffis

(132) show that the same property of the meditfintiat is valid for theY;s in the
symmetric case is true for tAg , when one conveniently modifies the definitions of the
astatic, hyperstatic, etc., coordinates by takihgm into account.

4. An important example.

We consider a prism with a square section of sidbat is stressed on the lateral
surface, but devoid of body forces.

The reference framé& has its origin at the midpoint of an edge, yhaxis is parallel
to that edge, and the andy, axes are parallel to the edges of the square section.

One supposes that the vectdhat characterizes the external surface stress dies n
depend upoms and is orthogonal to thg axis and one looks for solutions for which one
has:

(135) uz=0 u; andu, are independent o5 .

Let fs denote thé™ component off on the faceys = 0, and let f¥ denote the

components on the edge=a (s=1, 2).
On the basis of (125), (126), (127), (128), equations (124.1) rédwe® and, more
precisely, to the equations:

2 2
(136) VA U+ (V+)) Zusyrs+§A{z uer—Azui =0 t=1,2),
s1

s=1

while the boundary equations (123), (124.2) that are assowidtethem are:

(*% (131), (132) are equivalent to (3),)(8f SOMIGLIANA (loc. cit, in note (1)). On the other hand,
(134) does not differ noticeably, sind&/ also depends upon tlde; .

(*) G. GRIOLI,Relazione quantitative per lo stato tensionale di un qualunque sisteniaucoa per la
deformazione di un corpo elastico in equilibridnnali di Matematica pura ed applicata, Series IV, v.
XXXIII, 1952.
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(137) (Jz, 1— U, 2) 1=0, foryl =0,3,

(138) (Jz, 1— U, 2) >=0, foryz =0,3,
—f fory,=0

139 +20) Up 1 + = W e

(139) Vr2) et yie. {fl‘f‘), fory, = a,

—-f fory,=0
140 +20) U 2+ Yy 1= 22! ‘7
(140) v ) Uz, 2+ yUn, 1 {fz(za)’ fory,=a,
B -f,,, fory =0,

(141) WUz, 1+ Ug, 2) = — Dz (Uz,1— Uy, 2) = { (ezl)1 yl—
4 f,7, fory =a,
-f, fory,=0,

B
(142) WUz, 1+ U, 2) + — Do (Uz1—-U1, ) =4 ) =
4 f12 , for y,=a

One supposes that:
(143) fi1 =0, f12=0.

Therefore, one is dealing with a shear stress omfattey; = 0 that is normal to the
facey, = 0.
By a simple verification, one sees that the pair:

_ y+2v y+2v shky + shk a )
u=>b - -B :
! {[yf v yﬁ} v° shka

(144)
u, =0,

whereb is a non-zero constant and:

(145) k=5

verifies the indefinite equations (136) and, takihg3), (145) into account, the boundary
conditions (137), (138), (139.1), (142.1), as well.
In addition, on the facg = 0, and on the basis of (141.1), (145), it resstiiat:

(146) fy= 20+ 20) |y, +, DK chk & y) |
v shka
and one has:
. B 1-chka
147 limf, =2(v+2V) ,— )
(147) im o v+ 2v)  shka
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In other words, on the fage = 0, one has a shear stress that tends to a notirnéro
wheny, — 0, while on the edgg = 0 one has a purely normal stress. Therefore:

lim Y, (0, y,) = 2(/+ ), | B LNk,
(148) ¥2-0 v shka
lim ¥,,( %, 0)=0.
Thus, it generally results that:
B B chky, — chK & y)
149 Yor=Yi2== > A .= — =-2b(y+ 2v) ,|— :
( ) 21 12 ZS: 3s,s 2 u1,222 (J/ ) y shka

Therefore, in a problem for which the givens are sinat the shear force that is
applied to the facg: = 0, y» = 0 has different limits when it tends to the edge, th
introduction of thel,s leads to a regular solution and, in particular, tncmodromidoad,
as one easily recognizes on the basis of (144).

On the other hand, the classical theory, which requiheA;s to be zero, implies
singularities on the edge.

Mind you, such singularities are due, not to the existemftke angular point, but to
the fact that the givens on the shear load presemethdiarity above.

In fact, it is easy to see that if one IBtgend to zero then the boundary problem tends
to that of the well-known symmetric case, while (144E[§145)] tends to the solution:

(150) ulzb(yf—yszjyz, Uy = 0.

It is regular, along with all of its derivativelsut it corresponds to the applied shear
load that tends to the same limit when one godise@dge of the prism =y, = 0.
In fact, one has, as one easily sees, and takb@) {nto account:

(151) Lirﬂ)(Ym_ Y, =0,
(152) lim f,, = 26(y+2)) y2,
(153) Iylzran0 IE!rR) f,,=0.

Meanwhile, in the symmetric cas® € 0), a applied shear load on the fg¢ce 0,y,
= 0 that has different limits when one tends to tleenmon edge generally implies
polydromy in the loads and divergences in theinagives.
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As we did above®(), for example, suppose that we are given a sheatttaads zero
for y, = 0 and a non-zero constant far= 0.

From the considerations above, one deduces that itt hgyltonvenient to have a
theory in which one supposes that theare non-zero in order to avoid polydromy in the
solution, which is certain implausible from the phykmawpoint. Moreover, one may
also object that one does not know the way of realiangace moments that will
rigorously imply (as we have observed) that one must regard ttegnek load on the
varied surface elements as reducible to a férder (and generally, it is not easy to
indicate the manner of realizing its surface distribuadher), without a coupler{= 0),
but without excluding, a priorithe possibility thatd,s is non-zero, relative to the internal
stress state.

(*® Loc. cit, in note §).



