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 Summary. – A general theory of elastic bodies with asymmetric stress characteristic 
is developed that is valid for finite deformations.  The structure of the isothermal elastic 
potential will be determined in an explicit way in the case of slightly deformable isotropic 
bodies. 
 
 To my knowledge, there does not exist a complete theory regarding the deformations 
and the state of stress of elastic bodies with symmetric stress characteristics, even in the 
case of infinitesimal deformations.  Most works that treat the mathematical theory of 
general elasticity do not even mention this question, with some rare exceptions.  Going 
back to 1910, a note (1) of C. SOMIGLIANA contains the general relations for the case 
of small deformations. 
 The problem was then subsequently considered by BODASZEWSKI (2), in which he 
also made an application to hydrodynamics.  Nevertheless, one must observe that the 
results contained in these works are founded on intuitive postulates for the expression for 
the work done by the internal contact force (in the first place) and the linear relations 
between the strains (in the second place) that do not seem acceptable to me, as a result of 
the considerations that follow. 
 An asymmetry in the stress characteristic can present itself in the presence of body 
moments, namely, when the body force that acts on any element of volume is reducible to 
a force and a couple, which might occur, for example, in the presence of magnetic force, 
and it is this case that is regarded as the most interesting one. 
 Nevertheless, even when one excludes the presence of body moments one can give 
examples (3) in which one requires asymmetry in the characteristic of the stress for the 
solution, at least in certain parts of the body.  In these cases, the usual theory of 
symmetric stress characteristic leads fatally to solutions with singularities (e.g., 
polydromic or infinite ones), and one should not exclude that exceeding the plastic limit 
is often due to just such singularities.  These reasons, by themselves, might succeed in 

                                                
 (1) C. SOMIGLIANA, Sopra un’estensione della teoria dell’elasticità, Rend. Acc. dei Lincei, 1910, 
Vol. XIX, 1st issue.  
 (2) S. BODASZEWSKI, On the asymmetric state of stress and its applications to the mechanics of 
continuous mediums, Archiwam Mechaniki Stosowanej, 5 (1953), pp. 351. 
 (3) E. REISSNER, Note on the theorem of the symmetry of the stress tensor, Journal of Mathematics and 
Physics, Vol. XXIII, 1944, page 192. 



Grioli – Asymmetric elasticity                                              2 

attracting interest to a theory in which the stress characteristic might be asymmetric even 
in the absence of body moments.  However, in this case, one cannot exclude absolutely 
the presence of surface moments.  That is, one must necessarily assume that the totality 
of the internal contact forces that act across an arbitrary internal surface element of a 
body are generally reducible to a force that is applied at a point of the element and a 
couple whose moment is called the surface moment.  In this way, one may treat, within 
the context of regularity (4) (and which explains its interest), problems that, within the 
ambit of the usual theory, admit only solutions with singularities whose existence is not 
entirely plausible from the physical point of view. 
 Some authors (5) found it difficult to admit the presence of surface moments for the 
reason that they could not conceive of a way of realizing them, but it seems to me that, in 
effect, it must be impossible (or difficult) for us to realize external surface moments, 
while, at the same time, excluding the possibility that they are present inside the body, if 
one supposes that its elements are small, but not vanishing.  After all, I do not think that it 
is even easy to indicate the way in which one realizes the distribution of surface forces 
that are admitted by the usual theory of elastic bodies in full generality. 
 It is therefore my intention to outline the study of a theory with asymmetric stress 
characteristic that admits not only the presence of body moments – which are often 
inessential – as well as surface moments.  This will be done under the hypothesis of finite 
deformations, which I do not think is a useless complication, even if one has the objective 
of establishing a linear theory that is valid for slightly deformable bodies.  In fact, one 
can confirm that a treatment of the theory in that case that runs parallel to that of the 
symmetric case allows indeterminacies in the structure of the elastic potential (and 
therefore in the stress-deformation relations) that are difficult to remove without making 
the linear theory descend from that of finite deformations as a theory of the first 
approximation, and without considering a special condition that is imposed on the 
potential itself in the ambit of finite deformations. 
 
 If one thinks of the stress tensor as being decomposed into two tensors – a symmetric 
one and an anti-symmetric one (the latter one being null in the usual theory) – then one 
finds that the work done by the internal contact force for any infinitesimal displacement 
when one starts from the current state does not depend upon the anti-symmetric part and 
depends upon the local rotation only by way of its derivatives.  If one supposes that the 
internal surface moments are null then the expression for that work becomes identical to 
that of the symmetric case even in the case where the stress characteristic is asymmetric 
due to the presence of body moments, which ultimately determine the asymmetry in the 
stress (in this case). 
 The knowledge of the expression for the work done by the internal contact force is 
essentially coupled with well-known thermodynamic considerations that establish the 
stress-deformation relationship, but, with the difference that the ones that occur in the 
symmetric case present the new circumstance that the stresses depend upon not only the 
knowledge of a thermodynamic function – the free energy – but also on the fact that a 
certain parameter also does not appear in the expression for work.  Indeed, it presents a 

                                                
 (4) See the example at the conclusion of this article.  
 (5) VOIGT, Theoretiche Studien über die Elasticitätsverhältnisse der Krystalle, Abhand. K. Ges. 
Göttingen, 1887. 
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certain formal analogy with the way things happen in the theory of incompressible elastic 
body (6), but although in this case the condition of incompressibility, which represents an 
internal constraint, permits us to determine the parameter that presents itself, in the 
asymmetric elastic theory it is not obvious how one determines it, and, at least in the 
present state of the considerations that I have carried out, it seems, in general, to 
constitute a preventative element that one introduces as one does for the structure of the 
thermodynamic potential. 
 
 I have developed the arguments that follow by assuming static conditions, but it is 
obvious that the general relations are also valid under dynamic conditions, except for the 
addition of the force of inertia in the right-hand side of the indefinite equation.  Things 
almost always take place for me under isothermal conditions, but the results are clearly 
applicable to all of the adiabatic cases, by means of only the use of the isentropic 
condition. 
 In the case of small deformations, one can admit the hypothesis – which seems quite 
tenable, to me – that the state of stress that is created by the effect of an arbitrary, 
infinitesimal, irrotational displacement on a natural state has internal surface moments 
that are all zero, so it is possible to prove − at least in the isotropic case – that the 
parameter that intervenes is set equal to zero and the resulting thermodynamic potential is 
the sum of a function of only the characteristics of deformation and one that is a function 
of only the derivatives of the local rotation.  Of these functions (in the isotropic case), the 
former has the structure of an elastic potential in the classical theory of small 
deformations, while the latter one depends upon the knowledge of just one coefficient 
and is such that the indefinite equations, when written in the components of the 
displacement are all of fourth order. 
 It does not seem superfluous to me to give, in conclusion, an example in which the 
results, like the theory that was developed, plainly point to a regular solution in a case in 
which the solution that is obtained under the hypothesis of symmetry in the stress 
characteristic certainly has singularities. 
 
 

I. – Statement of a theory of finite deformations. 
 

1.  Fundamental equations in Eulerian form. 
 

 Let C be the present configuration, dC, its volume element, Σ, the boundary of C, and 

dΣ, the boundary element. 
 Let the body force that acts on the element dC be reducible to the resultant F dC, 

which is applied to an interior point of dC and the couple moment M  dC, while the 

surface force that acts on dΣ is reducible to the surface force f dΣ that is applied to an 
interior point of dΣ and a couple moment m dΣ. 

                                                
 (6) A. SIGNORINI, Questioni di elasticità non linearizzata e semilinearizzata, Rend. di Matematica, 
Roma, 1959, vol. 18, pp. 95.  
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 One supposes that the internal contact force is representable by means of two vectors 
Φv, Ψv , the former of which is the usual specific stress, while the latter is defined in a 
manner that is analogous to Φv , but in regard to the moments.  In other words, one retains 
the fact that the applied vector (P, v) is unitary in v, so the totality of the internal contact 
forces that act across an infinitesimal element dσ surrounding P that is contained in the 
plane π that is orthogonal to v at P is reducible to the vector (P, Φτ dσ) and the couple 
moment Ψv dσ. (By convention, in analogy to what is valid for Φv, Ψv, this refers to 
precisely all forces on the elements of the portion of the body that does not contain (P, v) 
that act on the other portions.) 
 
 In reference to the static case, for a portion c that is completely interior to C and its 

boundary σ, give n the direction of the interior normal to σ, to the main equations are 
written: 

(1)     n c
d d

σ
σΦ +∫ ∫ F C  = 0, 

 

(2)   n nc c
OP d OP d d d

σ σ
σ σ∧ Φ + ∧ + Ψ +∫ ∫ ∫ ∫F MC C  = 0. 

 
 From this, and: 

(3)     
1

lim n
c P

d
c σ

σ
→

Φ∫  = − F, 

one deduces that: 

(4)     
1

lim n
c P

d
c σ

σ
→

Ψ∫  = s s
s

∧ Φ∑c − M , 

 
where (7) Φs has the usual the significance.  In order to obtain (4), one must assume the 
validity of the relation: 
(5)      Φv = s s

s

vΦ∑ , 

 
and the indefinite equations of CAUCHY, which naturally persist, according to (1), (3). 
 The vs are the direction cosines of v with respect to a presupposed triad of reference T 

that is tri-rectangular and right-handed. 
 By proceeding in a fashion that is parallel to the one by which one deduced (5) from 
(3) (CAUCHY tetrahedron), it follows from (4) that: 
 
(6)      Ψv = s s

s

vΨ∑ , 

 
with the obvious meaning for Ψs .  (6) (like (5)) obviously has a general character, and 
also persists in the dynamical case, as one easily recognizes. 
  
                                                
 (7) In the sequel, it will be intended that any indices in the summation range from one to three, unless 
stated to the contrary. 
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 From (1), (2), taking into account (5), (6), one deduces, along with the CAUCHY 
equations, the indefinite equations, and on the boundary, the equations for the vectors Ψs 
that are valid in the static case. 
 Collectively, they are, in Eulerian form: 
 

(7)     s

s sx

∂Φ
∂∑  = F,      (in C), 

 
(8)     s s

s

NΦ∑ = f,      (on Σ), 

 

(9)     s

s sx

∂Ψ
∂∑ = − s s

s

∧ Φ∑c + M ,    (in C), 

 
(10)    s s

s

NΨ∑ = m,      (on Σ), 

 
where the xs are the coordinates of P with respect to T. 

 
 
 2.  Eulerian expression for the work done by internal forces. 
 
 For what follows, set: 
(11)    Xrs = cr × Φs ,  Ψrs = cr × Ψs , 
 
in which cr denotes the unit vector of the axis with index r. 
 One supposes that the body is subjected to an infinitesimal displacement while 
starting from the current state, for which each and every point corresponds to the 
displacement δP ≡ (δur) and the rotation of the neighboring element with components (8): 
 

(12)    δ′ωωωωr = 2 1

1 2

1

2
r r

r r

u u

x x

δ δ+ +

+ +

 ∂ ∂− ∂ ∂ 
. 

 
 The corresponding work δL(i) done by the internal contact force that acts in C is: 

 

(13)   δL(i) = − s

s s

P d P d
x

δ δ
Σ

∂Φ × − × Σ
∂∑∫ ∫ f

C

C  

 

− s
s s

s s ss

d d d
x

δ δ δ
Σ Σ

∂Φ ′ ′ ′× − × Φ × − × Σ
∂∑ ∑ ∑∫ ∫ ∫c m

C

C Cω ω ωω ω ωω ω ωω ω ω . 

 

                                                
 (8) Naturally, if the index r + i exceeds 3 then it must be diminished by 3.  This will always follow. 
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 One arrives at (13) by taking (7), (9) into account. 
 If one also takes into account (8), (10) then one deduces from (13): 
 

(14)  δL(i) = − 1, 2 2, 1
,

( )r r
rs rs r r r r r

r s rs s

u
X X X d

x x

δ δ ω δ ω + + + +

  ′∂ ∂ ′+ Ψ + −  ∂ ∂   
∑ ∑∫C C . 

 
 For the element dC, the work done by the internal force is obtained by multiplying dC 

by the expression: 
 

(15)  δl(i) = 1, 2 2, 1
,

( )r r
rs rs r r r r r

r s rs s

u
X X X

x x

δ δ ω δ ω+ + + +

 ′∂ ∂ ′+ Ψ + − ∂ ∂ 
∑ ∑ . 

 
 One immediately conforms that δl(i) only apparently depends upon δ′ωr, but not their 
derivatives.  In fact, taking into account (12), (15) may be written: 
 

(16)   δl(i) = 1
1, 2

, 2

r r
rr r r

r s r r

u u
X X

x x

δ δ +
+ +

+

 ∂ ∂+ ∂ ∂
∑  

 

+ 2 2 1
1, 1 1, 2 2, 1

,1 1 2

1
( )

2
r r r r

r r r r r r rs
r sr r r s

u u u
X X X

x x x x

δ δ δ δ ω+ + +
+ + + + + +

+ + +

  ′∂ ∂ ∂ ∂+ − − + Ψ ∂ ∂ ∂ ∂ 
∑ , 

 
and therefore: 

(17) δl(i) = 1 2
1, 2 2, 1

, ,2 1

1
( )

2
r r r r

rr r r r r rs
r s r sr r r s

u u u
X X X

x x x x

δ δ δ δ ω+ +
+ + + +

+ +

   ′∂ ∂ ∂ ∂+ − − + Ψ  ∂ ∂ ∂ ∂  
∑ ∑ . 

 
 Therefore, if one sets: 

(18)     ξrs = 
2

rs srX X+
= ξsr  

then one has: 

(19)     δl(i) = 
,

r
rs rs rs

r s s

e
x

δ ωξ δ
 ′∂′ + Ψ ∂ 

∑ , 

with: 

(20)     δ′ers = 
1

2
sr

s r

uu

x x

δδ ∂∂ + ∂ ∂ 
. 

 
 One finds as a result that δl(i) does not depend on the δ′ωr , but on its derivatives, and 
as far as the Xrs are concerned, they depend upon only the dilatation that is contained in 
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the Eulerian homography of stress, when one thinks of it as decomposed into the sum of a 
dilatation and an axial homography (9). 
 On the contrary, if one thinks of the m and the Ψrs as being zero, in the sense that the 
Xrs are assumed to be symmetric when M  is present, then δl(i) does not depend upon δ′ωr 
in any way whatsoever. 
 
 
 3.  Fundamental equations in Lagrangian form. 
 
 In order to obtain the Lagrangian form of the fundamental equations in the case of 
finite deformations, recall (1), (2).  In scalar form, they may be written: 
 

(1′)     rs s rc
s

X n d F d
σ

σ +∑∫ ∫ C  = 0, 

 

(2′)  1 2, 2 1, 1 2 2 1( ) ( )r r s r r s s r r r r rs sc
s s

x X x X n d x F x F d n d
σ σ

σ σ+ + + + + + + +− + − + Ψ∑ ∑∫ ∫ ∫C  = 0. 

 
 Let C* denote a presupposed reference configuration, let P* be the point in it that 

corresponds to P (10) and let yr be the coordinate of P* with respect to T. 

 Set: 

(21)     D = r

s

x

y

∂
∂

 > 0, 

 
so one introduces the Lagrangian stress characteristic Yrs of the stress by means of the 
formula (11): 

(22)    Xrs = , ,
,

1
lm r l s m

l m

Y x x
D
∑ . 

 Set: 
(23)    F* dC* = F dC,  f* dΣ* = f dΣ, 

(24)    M * dC* = M  dC, m* dΣ* = m dΣ. 

 
 The well-known Lagrangian equations (12) follow from (1′): 

                                                
 (9) As a result of the expression that was postulated in loc. cit. in footnote (1) in the case of small 
deformations, δl(i ) depends upon the Xrs − Xsr and the δ′ωr directly.  As for the other case, δl(i ) is not zero for 
a generic rigid displacement. 
 (10) Putting the asterisk on the symbol of an object C is always intended to mean that it refers to the 
corresponding one in C*. 
 (11) In order to indicate the derivative of a generic function f of the yr with respect to one of them, put the 

index of its y coordinate after a comma: 
s

f

y

∂

∂
= f,s . 

 (12) See A. SIGNORINI, Transformazioni termoelastiche finite, Memoria 1a; Annali di Matematica pura 
ed applicata, ser. IV, Tomo XXII (1943), pp. 33-143 [page 106]. 
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(25)    , ,
,

( )lm r l m
m l

Y x∑ = rF ∗ . 

 
Take into account the relations (13): 
 
(26)   ns dσ = 

,
rt t r s

r t

d C nσ ∗ ∗ ×∑ c c = st t
t

d C nσ ∗ ∗∑  

and set: 

(27)    Ψrs = , ,

1
lm r l s m

lm

x x
D

ϕ∑ , 

 
and, as a consequence of (22), (26), (27), (2′) assumes the Lagrangian aspect: 
 

(28)  , 1 2, 2 1,

1
( )s m r r l r r l lm st t

mls t

x x x x x Y C n d
Dσ

σ
∗

∗ ∗
+ + + +−∑ ∑∫  

 

+ 1 2 2 1 ,

1
( )r r r r r lm r m st tc

lmst

x F x F M d x C n d
Dσ

ϕ σ
∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
+ + + +− + + ∑∫ ∫C  = 0. 

 
 It follows that: 
 

(29)  1 2, 2 1, 1 2 2 1( ) ( )lm r r l r r l m r r r r rc
ml

Y x x x x n d x F x F M d
σ

σ
∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
+ + + + + + + +− + − +∑∫ ∫ C  

 

+ .lm r l m
lm

x n d
σ

ϕ σ
∗

∗ ∗∑∫  = 0, 

 
from which, taking (25) into account, one deduces that: 
 

(30)  2 1, 1 2, , ,( ) ( )lm r r l r r l lm r l m rc c c
lm lm

Y x x x x d x d M dϕ
∗ ∗ ∗

∗ ∗ ∗ ∗
+ + + +− + −∑ ∑∫ ∫ ∫C C C = 0. 

 
 Given the arbitrariness in C* and the independence of the integrand functions of the 
domain of integration, it follows from (30) that almost everywhere: 
 
(31)  , ,( )lm r l m

lm

xϕ∑ = 2 1, 1 2,( )r r l r r l lm r
lm

x x x x Y M∗
+ + + +− +∑ . 

 
 The indefinite equations of equilibrium are therefore the ones that follow from (25) 
and (31) when one sets: 
 
(32)     λrm = ,lm r l

lm

xϕ∑ , 

                                                
 (13) Crt denotes the algebraic complement of xr,t in the determinant (21).  
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which may then be written in the form: 
 
(33)   ,rm m

m

λ∑ = 1 2, 1 2,( )r r l r r l lm r
lm

x x x x Y M∗
+ + + +− +∑ . 

 
 Along with (25), (33), one may associate the boundary conditions: 
 

(34)    
, ,

.

lm r l m r
lm

rm m r
m

Y x N f

N mλ

∗ ∗

∗ ∗

 =

 =


∑

∑
 on Σ*. 

 
 
 4.  Lagrangian expression for the work done by the internal contact force. 
 
 The determination of a Lagrangian expression for the work done by the internal 
forces may be accomplished by starting with the general Lagrangian equations that we 
previously established, but one may arrive at them more simply by conveniently 
transforming the Eulerian expression (19). 
 To that end, begin with the observation that: 
 

(35)    
,

,

1
( ) ,

1
( ) ,

r
sl r l

ls

r
sl r l

ls

u
C u

x D

C
x D

δ δ

δ ω δ ω

∂ = ∂
 ′∂ ′=
 ∂

∑

∑
 

 
(36)     dC = D dC*, 
 
and that (18), (22) imply that: 
 

(37)    ξrs = , ,

1
lm r l s m

lm

T x x
D
∑ , 

with: 

(38)    Tlm = Tml = 
2

lm mlY Y+
. 

 
 (27), (35), (36), (37) permit us to alter (19) into the expression (14): 
 

(39)  δ*l(i) = , , , , ,

1 1
[ ( ) ( ) ] ( )

2r l s m lm sq r q rq s q lm sq r q
rslmq

x x T C u C u C
D

δ δ ϕ δ ω ′+ + 
 

∑ , 

 
                                                
 (14) The product dC* δ*l(i ) obviously expresses the work that is done by the internal contact force relative 

to the element dC*.  
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which is equivalent to: 
 

(40)  δ*l(i) = , , , ,( ) ( )lm r m r l lm r l r m
lm r r

T u x xδ ϕ δ ω ′+ 
 

∑ ∑ ∑ , 

which, setting: 
(41)     brs = , ,i r i s

i

x x∑ , 

may also be written: 

(42)    δ*l(i) = ,( )
2

lm
lm lm r m

lm

b
T

δ λ δ ω ′+ 
 

∑ . 

 
 
 5. A convenient transformation of the expression for the internal force. 
 
 In the case of finite deformations, it is not clear what sort of functions of yr may be 
regarded as the variations δ′ωt in the passage from the configuration that is characterized 
by the current values of the xr to the one that corresponds to the varied values xr + δxr . 
 Such an inconvenience renders it impossible to make the elegant application of 
thermodynamics (15) that, in the case of symmetric elasticity, permits one to equate – δ*l(i) 
to the variation of a thermodynamic function: the Helmholtz free energy.  With it, one 
may conveniently transform the expression (42) for δl(i) in the manner that will be 
established. 
 Begin with the observation that if one calls ui = xi – yi the components of the 
displacement C* → C and interprets the δui as the variations of the ui under the passage 

from C to a neighboring configuration then it obviously results that: 

 
(43)    δ(ui,s) = δ(ui),s  δ(ui,sm) = (δui),sm , 
 
while F(x) is a function that depends on the yr only by way of the xi,h, then one has, at the 
same time: 
 

(44) 

2

, , , , , ,
, , , ,

2

, , , , , ,
, , , ,

( ) ( ) ( ) ,

( ) ( ) ( ) ( ) .

s i hs i h s i hs p q
ih ih pqi h i h i h i h

s i h i h s p qs i h
ih ih pqi h i h i h p q

F F F
F u u u u

x x x x

F F F
F u u u u

x x x x

δ δ δ δ

δ δ δ δ

    ∂ ∂ ∂= = +    ∂ ∂ ∂ ∂       


  ∂ ∂ ∂ = = +   ∂ ∂ ∂ ∂      

∑ ∑ ∑

∑ ∑ ∑

 

 
It then results that: 
(45)     (δF),s = δ(F,s). 
 

                                                
 (15) E. and F. COSSERAT, Sur la théorie de l’élasticité, Premier mémoire; page 59, et seq.  
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 On the basis of (35.1), one recognizes that the expression (12) for the δ′ωr may be put 
into the Lagrangian form: 
 

(46)   δ′ωr = 2 , 1, 1 , 2,

1
[( ) ( ) ]

2 r m r m r m r m
m

u C u C
D

δ δ+ + + +−∑ . 

 
From (43), (44), (45), (46), it follows that: 
 

(47)  (δ′ωr),s = 1, 2,
2, 1, ,

, ,

1
( ) ( )

2
r m r m

r m r m p sq
pqm p q p q

C C
u u u

x D x D
δ δ+ +

+ +

    ∂ ∂ −     ∂ ∂     
∑  

    − 1, 2,
2, 1, ,

, ,

( )r m r m
r sm r sm p q

p q p q

C C
u u u

x D x D
δ+ +

+ +

    ∂ ∂ −     ∂ ∂       
 

    + 2, 1, 1, 2,

1
( )

2 r sm r m r sm r m
m

u C u C
D

δ + + + +
 − 
 

∑ . 

In (42), set: 

(48)   µrs = 2, 1, 1, 2,

1
[ ]

2 r sm r m r sm r m
m

u C u C
D + + + +−∑ , 

 

(49)  

2, 1,
1, 2,

, ,

2, 1,
1, 2, ,

, ,

1
,

2

1
,

2

p m p m
rs p qm p qm pq

pqm r s r s

p s p s
rs p qm r m p qm

pqm p q p q

C C
M u u

x D x D

C C
N u

x D x D

λ

λ λ

+ +
+ +

+ +
+ +

     ∂ ∂= −     ∂ ∂      


    ∂ ∂ = −     ∂ ∂     

∑

∑

 

 
and due to (47), one gets: 
 

(50)   δ*l(i) = ,( ) ( )
2

rs
rs rs rs r s rs rs

rs

b
T M M u

δ δ λ δµ + + + 
 

∑ , 

 
which may also be written [see (41)]: 
 

(51)   δ*l(i) = , ,] ( )rs r l rs rs r s rs rs
rs l

T x M M uδ λ δµ + + + 
 

∑ ∑ . 

 
 (51) constitutes the previously-announced expression for the work done by the 
internal contact force. 
 
 6.  Introduction of the thermodynamic potential. 
 
 Suppose the system has reversible transformations, and introduce the function of free 
thermodynamic energy: 
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(52)     T = U – eTE 

 
(U is internal energy, T is absolute temperature, E is the entropy, e is the mechanical 

equivalent to the heat), so well-known thermodynamic considerations (16) imply the 
equality: 
(53)    δ*l(i) + eE δT = − δT 
 
for any infinitesimal transformation of the system that starts in the current state. 
 (51), (53) plainly show that T must be thought of as depending on the current state 

only by means of the xr,s, µrs, and T. 
 In the case of symmetry in the stress characteristic, the relations that express it in 
terms of the derivatives of T with respect to the deformation characteristic follow 

immediately from (53). 
 In the asymmetric case, however, (53) does not lead to analogous formulas.  In fact, 
one must then take into account the fact that the µrs, and consequently the δ(up,q) and the 
δµrs, are not only independent of them, but, as one easily confirms on the basis of (48), 
the fact that it results identically that: 
 
(54)     rs rs

rs

C µ∑ = 0, 

as well as: 

(55)    ,
,

( )rs
p q rs rs rs

rs rs p q

C
u C

x
δ µ δµ

 ∂ + ∂  
∑ ∑ = 0. 

 
 It then follows that (53) must remain valid for not just arbitrary variations δ(up,q), 
δµrs, but for all of them that verify (55), and only those. 
 In the absence of internal constraints, one then deduces from (53), (55) that: 
 

(56)   ,
,

pq
ls r l rs rs pq

l pq r s

C
T x M N

x
τ µ

∂
+ + +

∂∑ ∑ = − 
,r sx

∂
∂
T

, 

 

(57)    λrs + τ Crs = − 
rsµ

∂
∂
T

, 

 

(58)     e E = − 
T

∂
∂
T

, 

 
where τ is a parameter, for which one may not exclude, a priori, its dependency on the 
current state; i.e., on the xr,s and µrs . 

                                                
 (16) Loc. cit., in note (15).  
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 It is almost superfluous to warn that in (56), (57), (58), the derivation of T with 

respect to the xr,s , µrs , T must be thought of as independent of those variables.  From 
(56), it follows immediately that: 
  

(59)   Trs = − 
,

1 pq
lr ls ls pq

l pql s ls

C
C M N

D x x
τ µ

 ∂∂ + + + ∂ ∂  
∑ ∑

T
. 

 
 The knowledge of T and the parameter τ – i.e., generally, the two functions of the xrs, 

µrs, T – will determine, on the basis of (56), (57), (58), the expressions for the Trs, λrs, and 
E.  In the isothermal case, it is sufficient to equate the number of unknowns in the system 
of indefinite equations (25), (33) to the number of equations, taking into account the 
relations (38).  Analogously to the adiabatic case, as one can demonstrate with 
considerations that are analogous to the ones that are made in the symmetric case, it is 
then obvious that the expressions that are obtained maintain their validity in the 
dynamical case. 
 
 
 7.  Equations of condition for the free energy. 
 
 One may finally affirm that the thermodynamic function T and the parameter τ must 

satisfy equations that express the symmetry of Trs .  On the basis of (59), they are: 
 

(60)   
, ,

pq
lr ls ls pq

l pql s l s

C
C M N

x x
τ µ

  ∂∂ + + +  ∂ ∂   
∑ ∑

T
 

− 
, ,

pq
ls lr lr pq

pql r l s

C
C M N

x x
τ µ

 ∂∂ + + + ∂ ∂  
∑

T
= 0. 

 
 One might believe that (60) serve to determine the parameter τ, but, in reality, things 
are not so, since (60) only apparently contains the parameter τ. 
 In fact, set: 

(61)    

, ,

( ),

( ),

,

rs lr ls ls lr
l

rs lr ls ls lr
l

pq pq
rs lr ls

l l s l s

C M C M

C N C N

C C
C C

x x

α

β

γ




= −

 = −

  ∂ ∂
 = −  ∂ ∂  

∑

∑

∑

 

 
and with a little patience, one finds that: 
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(62)  

1, , , 1
, , 1

1, , , 2 , 2 ,

1, , , 1
, , 1

1
,

2

1
,

2

1
,

2

tm tm
s s p qm l s ls q p t

lmpqt l s l s

s s l q s l s ts t qm q
lq mt

tm tm
s s p qm l s ls q p t

lmpqt l s l s

C C
u C C

D x x

Du x C u
D

C C
u C C

D x x

ν ν
ν

ν

ν ν
ν

α λ

β λ

γ λ

+ +
+

+ + +

+ +
+

  ∂ ∂= − × ×  ∂ ∂   


 = −  
 

 ∂ ∂= − − × × ∂ ∂  

∑

∑ ∑

∑

c c c

c c c








 

 
and it is easy to see that if one identifies λrs with – Crs then one has: 
 
(63)    βs+1, s = 0,   (for λrs = – Crs) 
 
(64)    αs+1, s + γs+1, s = 0,  (for λrs = – Crs), 
 
which exhibits the fact that the functions in (60) are completely exhausted when one 
considers s = 1, 2, 3, and r = s + 1. 
 One concludes that (60) are satisfied identically if – taking (49) into account – one 
identifies the λrs with – τ Crs in them, and furthermore, that the coefficients of τ in (60), 
taking into account (49), are identically zero. 
 From the above, one sees that equations (60) are equivalent to the system: 
 

(65)   αs+1,s + βs+1,s + , 1
, , 1

l s ls
l l s l s

C C
x x+

+

 ∂ ∂− ∂ ∂  
∑

T T
 = 0, 

 
from the consideration of (62.1, 2), if one identifies the λrs with − ∂T / ∂µrs . 

 The system (65), taking (62) into account, presents itself (at this point) with 
coefficients that depend upon the second derivatives of the components of the 
displacement, so this shows that T depends upon them only by means of µrs .  We would 

like to say that (65) must be (in appearance) valid identically with respect to the second 
derivatives of the ur .  It is not, however, superfluous to prove, as one does immediately, 
that in the system (65) the coefficients depend upon those second derivatives only by 
means of the µrs, and that (65) therefore constitutes a system of three partial differential 
equations that influence the structure of T. 

 To that end, in the first place, observe that (62.1) may be written: 
 

(66)  αs+1, s = 
1

2 lmqD
∑ [ul+1, qm (Cl+1, m xl, s+2 − Cl m xl+1, s+2) 

+ ul+1, qm (Cl+2, m xl, s+2 − Cl m xl+2, s+2)] λpq 
 

and that (65), taking (62.2), (66) into account, becomes: 



Grioli – Asymmetric elasticity                                              15 

(67)  , 1 , , 2 , 2 ,
, , 1

1
[ ]

2l s ls l q s lm t s t qm
l q mtl s l s lq

C C Du C x u
x x D µ+ + +

+

 ∂ ∂ ∂ − − − ∂ ∂ ∂  
∑ ∑ ∑

T T T
 = 0. 

 
Taking into account the equalities: 
 

(68)    1, 1 , 2 1, 2 , 1 2,

2, 1 , 2 2, 2 , 1 1,

,

,
s s s s s

s s s s s

C C C C x D

C C C C x D
ν ν ν ν ν

ν ν ν ν ν

+ + + + + + +

+ + + + + + +

− = −
 − =

 

 
it is easy to confirm the result: 
 

(69)  , 2 , 1
, , 1

l s l s ls
l l s l s

C C C
x x+ +

+

 ∂ ∂− ∂ ∂  
∑

T T
 = 2, 1,

2, 1,
s s

s s s

D x x
x xν ν

ν ν
+ +

+ +

 ∂ ∂− ∂ ∂  
∑

T T
 

 
and in addition, taking (48) into account, the fact that one has: 
 

(70)   , 2 , , 2 , 2 ,s l q s tm t s t qm
lqs mt lq

C Du C x uν µ+ + +
∂ −  ∂ 

∑ ∑
T

= 

 

= , ,( )m l qm lm qm
lqm lq

D C u C uν ν µ
∂−
∂∑
T

 = 2
1, 2,

2, 1,

2 q q
q q q

D ν ν
ν ν

µ µ
µ µ+ +

+ +

 ∂ ∂− ∂ ∂  
∑

T T
. 

 
 Since the determinant of Crs is certainly non-zero, (67) is equivalent to the system that 
can be deduced by multiplying them generically by Cν,s+2, summing over s, and making 
the ν vary from 1 to 3.  Having done this, the system (67), taking (67), (70) into account, 
finally changes into the system: 
 

(71)  2, 2, 2, 2,
2, 2, 2, 1,

q q q q
q q q q q

x x x
x xν ν ν ν

ν ν ν ν

µ
µ µ+ + + +

+ + + +

 ∂ ∂ ∂ ∂ − + − ∂ ∂ ∂ ∂  
∑

T T T T
 = 0 

 
whose coefficients depend upon only the xr,s and µr,s , and that certainly constitutes the 
most convenient form for the system (60). 
 Naturally, if the system in question is an elastic body then the work done by the 
internal force for an arbitrary isothermal non-rigid displacement when one starts with the 
configuration C* of spontaneous equilibrium is negative.  Supposing that T is zero in C*, it 

follows from (53) in that case that: 
 
(72)     T > 0 

 
in any configuration that is distinct from C* and not obtainable from it by means of a rigid 

displacement. 
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 One sees that (71) are certainly satisfied when T depends upon the xr,s only by means 

of the brs [see (41)] and the µrs only by means of the νrs, where: 
 
(73)     νrs = ir is

i

µ µ∑ . 

 
 

II. – Linearized theory of isothermal asymmetric elasticity. 
 

 1.  Solutions that depend upon one parameter – linearized theory. 
 

 One replaces the vectors F*, etc., with the vectors hF*, hM *, hf*, hm*, where h is a 
parameter that is independent of the coordinates.  The xr, Ylm, etc., are thought of as 
functions of h. 
 Suppose that they are differentiable with respect to h at least once in the 
neighborhood of zero, and for the generic function η of h, set: 
 

(74)    
0

lim
n

nh

d

dh

η
→

 
 
 

 = h(n),  (n = 0, 1, …, n ), n  ≥ 1. 

 
 If one supposes that C* is the configuration of the system that corresponds to h = 0 

then one must set: 
(75)     (0)

ru  ≡ 0, 

while one can have: 
(76)    (0)

rsY  ≠ 0, (0)
rsλ  ≠ 0. 

 In addition, let: 

(77)    
0

lim
n

nh
l

d

dh y

η
→

 ∂
 ∂ 

 = 
( )n

ly

η∂
∂

 

 
for any function of h and y that appears in the sequel. 
 In particular, one has: 
(78)    (xr,l)

(0) = δrl ,  (xr,l)
(1) = (1)

,r lu , 

 
where δrl  is the KRONECKER symbol, while εrs, the deformation characteristic (17), will 
be defined by: 

(79)    (0)
rsε  = 0, (1)

rsε  = ( )(1) (1)
, ,

1

2 r s s ru u+ , 

 
                                                
 (17) For simplicity, let this denote the expression for εrs that is derived from (1)

rsε , despite the fact that for 

r ≠ s, this notation applies to all of the quantities 2εrs .  
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(80)    (0)
rsµ  = 0, (1)

rsµ  = (1)
,r sω , 

where: 

(81)    (1)
rω  = ( )(1) (1)

2, 1 1, 2

1

2 r r r ru u+ + + +−  

 
represents the components of the local rotation inherent to the passage by means of the 
displacement with components (1)

ru  of the configuration C* to a neighboring 

configuration. 
 Taking (74), (57), (77), (78) into account, substitute rhF∗ , etc., in (25), (33), (34), in 

place of Fr, etc. (this will always be assumed in what follows), which gives, for h → 0: 
 

(82)    

(0)
,

(0) (0) (0)
1, 2 2, 1 ,

0,

,

rm m
m

r r r r rm m

Y

Y Y λ+ + + +

 =



− =

∑
 

 

(83)    

(0)

(0)

0,

0,

rm m
m

rm m
m

Y N

Nλ

∗

∗

 =

 =


∑

∑
 

 
which possibly constrain the pre-existing state of stress in the presupposed configuration 
of spontaneous equilibrium. 
 One conforms immediately that in a theory in which one necessarily considers the λmn 
to be zero, the possible pre-existing stress state cannot be symmetric. 
 
 One now evaluates the limits as h → 0 of the first derivative with respect to h of the 
two sides of equations (25), (33), (34).  Taking into (78) account, one finds that: 
 

(84)  

(1) (0) (1)
, , ,

(1) (1) (1) (1) (0) (0)
, 1, 2 2, 1 1, , 2 2,

(0) (0) (0)
2, 1, , 1

[ ] (in )

[ ( )

( )] (in ),

rm m r lm r l m
m lm

rm m r r r r r l l r r l
m l

r l r l l r r

Y F Y u

Y Y u Y Y

u Y Y M

λ

∗ ∗

+ + + + + + +

∗ ∗
+ + +

 = −

 = − + −

 + − +

∑ ∑

∑ ∑

C

C

 

 

(85)   

(1) (0) (1)
,

(1) .

rm m r lm r l m
m lm

rm m r
m

Y N f Y u N

N mλ

∗ ∗ ∗

∗ ∗

 = −

 =


∑ ∑

∑
  (on Σ*). 

 
 On the basis of (38), one must set: 
 

(86)    ( )i
rsT  = ( ) ( )1

( )
2

i i
rs srY Y+ . 
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 As a consequence, (82.1), (83.1) become: 
 

(87)  

(0) (0) (0)
, 2, , 1 2, , 1 ,

(0) (0) (0)
, 2, , 1 2, , 1 2

1
[ ] 0, (in )

2

1
[ ] 0, (on )

2

rm m r s r r s r s
m s

rm m m r s r r s r r
m s

T

T N N

λ λ

λ λ

∗
+ + + +

∗ ∗ ∗
+ + + + +

 + − =

 + − = Σ


∑ ∑

∑ ∑

C

 

 
while (84.1), (85.1) become: 
 

(88 ) 

(1) (1) (1)
, 2, , 1 1, , 2 ,

(1) (0) (1) (0) (0)
, , , 2, 1 1, 2

(1) (1) (1)
2, , 1 1 1, , 2 ,

(1) (0)
, ,

1
[ ]

2

1 1
[ ( )] ( ),

2 2

1
[ ]

2

1
[

2

rm m r s r r s r s
m s

r l lm m l rl lr m r r r r r
lm

rm m r s r r r s r r s
m s

r l lm m l

T

u T u Y Y F M M

T N N N

u T u

λ λ

λ λ

+ + + +

∗ ∗ ∗
+ + + +

∗ ∗ ∗
+ + + + +

+ −

= − − − + + −

+ −

= − −

∑ ∑

∑

∑ ∑

(1) (0) (0)
2 1 1 2

1
( )] ( ).

2rl lr m r r r r r
lm

Y Y N f M N M N∗ ∗ ∗ ∗ ∗
+ + + +












 − + + −


∑

 

 
 (88), together with (84.2) and (85.2), represent the fundamental differential system 
for the linearized theory.  If C* represents a configuration of natural equilibrium – so (0)

rsY  

= (0)
rsλ  = 0 – then (88), (84.2), (85.3) become: 

 

(89)  

(1) (1) (1)
, 2, , 1 1, , 2 , 2, 1 1, 2

(1) (1) (1)
2, , 1 1 1, , 2 , 2 1 1 2

1 1
[ ] ( ),

2 2

1 1
[ ] ( ),

2 2

rm m r s r r s r s r r r r r
m s

rm m r s r r r s r r s r r r r r
m s

T F M M

T N N N f M N M N

λ λ

λ λ

∗ ∗ ∗
+ + + + + + + +

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
+ + + + + + + + +

 + − = + −

 + − = + −


∑ ∑

∑ ∑
(in C*) 

 

(90)   

(1) (1) (1)
, 1, 2 2, 1

(1)
,

,

,

rm m r r r r r
m

rm m m r
m

Y Y M

N m

λ

λ

∗
+ + + +

∗ ∗

 = − +

 =


∑

∑
    (on Σ*) 

 
and one can associate: 
(91)    (1) (1)

rs srY Y+  = (1)2 rsT . 

 
 (89), (90) can obviously be obtained as an approximation directly from (7), (8), (9), 
(10) when one identifies the Xrs with the Yrs, the ψrs with the λrs, and the xr with the yr . 
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 2.  Isothermal elastic potential for the small transformations of isotropic bodies. 
 
 In the sequel, we suppose that C* is the configuration of natural equilibrium.  Under 

the hypothesis of small deformations, there is no reason to not consider a law of HOOKE 
type to be valid, and to not regard the (1)

rsT , (1)
rsλ  as homogeneous polynomials of first 

degree in the (1)
,r su  and the (1)

rsµ .  To that end, one adjoins, moreover, the first derivatives 

of the general relations (57), (59) with respect to the parameter h, when one lets h tend to 
zero and regards the τ and T as depending upon h by means of the xr,s, µrs, and T.  Indeed, 

the search for the relations that are valid in the case of small deformations by deduction 
from the case of finite deformations, rather than by the path pointed out, is certainly more 
useful, at least, in the problems that are considered, given that this will lead to a complete 
characterization of the relations between forces and deformations, and of the structure of 
the free energy, which is otherwise difficult to obtain. 
 
 On the basis of (57), one has, in the first place: 
 

(92)    (0)
rsλ  = − τ(0) δrs − 

(0)

rsµ
 ∂
 ∂ 

T
, 

 
from which, one sees that – if C* is, as assumed, the natural state – one must have: 

 

(93)   τ(0) + 
(0)

rsµ
 ∂
 ∂ 

T
= 0, 

(0)

rsµ
 ∂
 ∂ 

T
 = 0, for r ≠ s. 

 
From (59), it follows that: 

(94)     (0)
rsT  = − 

(0)

,r sx

 ∂
  ∂ 

T
, 

which implies: 

(95)     

(0)

,r sx

 ∂
  ∂ 

T
= 0. 

 
From (59), when it is derived with respect to h and one lets h tend to zero, it will result 
that: 

(96) (1)
rsT  = − 

(0) (0)(0)
2 2

(0) (1) (1) (1)
,

, , , ,

pq
pq p q pq

pq pqr s r s p q r s pq

C
u

x x x x
τ µ µ

µ

     ∂ ∂ ∂ − +         ∂ ∂ ∂ ∂ ∂       
∑ ∑

T T
, 

 

(97) (1)
rsλ = − 

(0) (0)
2 2

(0) (1) (1) (0) (1) (1)
,

,
rs rs p q pq

pq p q rs rs pq

C C u
x

τ τ µ
µ µ µ

    ∂ ∂ − − +      ∂ ∂ ∂ ∂     
∑

T T
, 
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and it is easy to confirm that: 
 

(98)  

(0)

(1) (1) (2) (1) (1)
1, 1 2, 2 , 1 2, , 2 1,

(0)

(1) (1) (1) (1)
, 1 2, , 2 1,

,

,

( ) ,

.

rs rs

rs rs r r r r r s r r r s r r

pq
pq rr rr r s r r r s r r

pq r s

C

C u u u u

C

x

δ
δ δ δ

µ δ µ δ µ δ µ

+ + + + + + + +

+ + + +



 =


= + − −


 ∂ = − − −   ∂ 
∑

 

 
For r ≠ s, it follows from (96), (97), on the basis of (98) that: 
 
(99)  (1)

rsT  =  
(0) (0)

2 2
(0) (1) (1) (1) (1)

, 1 2, , 2 1, ,
, , ,

( )r s r r r s r r p q pq
pq r s p q r s pq

x
u

x x x
τ δ µ δ µ µ

µ+ + + +

    ∂ ∂ + − +      ∂ ∂ ∂ ∂     
∑

T
 (r ≠ s), 

(100)  (1)
rsλ = 

(0) (0)
2 2

(0) (1) (1) (1) (1)
, 1 2, , 2 1, ,

,

( )r s r r r s r r p q pq
pq p q rs rs pq

u u u
x

τ δ δ µ
µ µ µ+ + + +

    ∂ ∂ + − +      ∂ ∂ ∂ ∂     
∑

T T
 (r ≠ s). 

 
 From (71), when one differentiates it with respect to h and lets h tend to zero, and on 
the basis of (93), one deduces that: 
 

(101)  

(0) (0)
2 2

(1)
,

2, 1 , 1, 2 ,
l m

lm l m l m

u
x x x xν ν ν ν+ + + +

    ∂ ∂ −       ∂ ∂ ∂ ∂      
∑

T T
 

 

+ 

(0) (0)
2 2

(1) (0) (1) (1)
2, 1 1, 2

2, 1 1, 2

( )lm
lm lmx x ν ν ν ν

ν ν ν ν

µ τ µ µ
µ µ + + + +

+ + + +

    ∂ ∂  − + −       ∂ ∂ ∂ ∂       

T T
 = 0. 

 
 Suppose – as is always plausible – that for any irrotational infinitesimal displacement 
that acts on C* (for which, the (1)

rsµ  have zero resultant) the (1)
rsψ , and therefore the (1)

rsλ , 

can all be equal to zero. 
 It follows from this that whenever one has: 
 
(102)     (1) (1)

, 1 1,r r r ru u+ +−  = 0, 

 
and consequently the (1)

rsµ  are zero, the (1)
rsλ  must all become equal to zero.  From (100), 

for s = r + 1, one deduces that in order for this to have occurred, as for the other ones, one 
must have: 
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(103)   τ(0) − 

(0) (0)
2 2

1, , 1 , 1 , 1r r r r r r r rx xµ µ+ + + +

   ∂ ∂−      ∂ ∂ ∂ ∂   

T T
 = 0, 

 
while from (101), one deduces that: 
 

(104)   τ(0) + 

(0) (0)
2 2

, 1 , 1 1, , 1r r r r r r r rx xµ µ+ + + +

   ∂ ∂−      ∂ ∂ ∂ ∂   

T T
 = 0. 

 
From (103), (104), it follows that: 
 

(105)   

(0)
2

, 1 , 1r r r rx µ+ +

 ∂
  ∂ ∂ 

T
= 0,  τ(0) − 

(0)
2

1, , 1r r r rx µ+ +

 ∂
  ∂ ∂ 

T
= 0. 

 
 Other consequences may be deduced from (101) and the condition that was posed for 
the (1)

rsλ .  However, one ceases to consider (105) as being satisfied in order to deduce that 

in the isotropic case – which is all that shall be considered in the sequel – one may 
assume that the parameter τ is null and the T is the sum of two functions, one of which, 

T1, is a function of only the xr,s and the other of which, T2, is a function of only the µrs .  

At the moment, (105.1) permits us to assert that the expression for Tr,r+1 that is deduced 
from (99) for s = r + 1 is missing the term µr,r+1 . 
 Nevertheless, a linear, homogeneous expression in (1)

rsT : 

 
(106)    (1)

rsT  = (1) (1)
, ,[ ]rspq p q rspq p q

pq

m u n µ+∑ , 

 
corresponds to the isotropic case when and only when the tensors mpqrs, npqrs are 
isotropic; i.e., when, with reference to a Cartesian frame, it results that (18): 
 

(107)  
,

,
rspq rs pq rp sp rq sp

rspq rs pq rp sp rq sp

m

n

αδ δ βδ δ γδ δ
α δ δ β δ δ γ δ δ

= + +
 ′ ′ ′= + +

 

 
where a, b, etc., are arbitrary coefficients. 
 It follows that: 
 
(108)  (1)

rsT  = (1) (1) (1) (1)
, , , ,rs p p r s s r rs p p rs sr

p p

u u uα δ β γ α δ µ β µ γ µ′ ′ ′+ + + + +∑ ∑ , 

 
which, by the symmetry of (1)

rsT , implies that: 

 
                                                
 (18) See, e.g., B. FINZI, Calcolo tensoriale e applicazioni, Zanichelli, page 100.  
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(109)    β = γ,  β′ = γ′. 
 
One thus has: 
(110)   (1)

rsT  = (1) (1)2 ( )rs pp rs rs sr
p

α δ ε β ε β µ µ′+ + +∑ , 

 
and in order for the expression for (1)

, 1r rT +  be missing the term (1)
, 1r rµ + , one must not have 

that: 
(111)     β′ = 0. 
 
 The expression for (1)

rsT  is therefore that of the symmetric case. 

 Analogous considerations indicate that a linear, homogeneous expression in the (1)
rsλ  

in the isotropic case is of the type: 
 
(112)   (1)

rsλ  = (1) (1) (1)
, , ( )rs pp r s s r rs sr

p

A B u C u B Cδ ε µ µ′ ′+ + − +∑ , 

 
which, since it must be zero for any irrotational displacement, implies: 
 
(113)    A′ = 0,  B′ + C′ = 0, 
 
while (100), when written for s = r + 1, shows that on the basis of (105.1) the expression 
for (1)

, 1r rλ +  may not contain the term (1)
, 1r ru + .  In (112), therefore, one must have: 

 
(114)     B′ = C′ = 0. 
 
 It is obvious that on the basis of (110), (111), (112), (113), (114), the expressions for 

(1)
rsT  depend upon only(1)

rsε , while those of (1)
rsλ  depend upon only the (1)

rsµ .  Nevertheless, 

if one takes the second derivative of T with respect to h and lets h tend to zero then, 

taking into account that T depends upon h only by means of the xr,s and µr,s , one sees that 

the coefficients of the quadratic form T(2) that one obtains coincide with the second 

derivatives of T with respect to xr,s , µr,s , and that in all of the preceding considerations 

and formulas it is legitimate, in the limits as h tends to zero, to replace the second 
derivatives of T with respect to xr,s , µr,s with the analogous second derivatives of the 

quadratic form that expresses T(2).  In summation, one concludes from the preceding 

argument that − at least in the isotropic case of small deformations − one may regard τ = 
0 and T = T(2), with T(2) = W1 + W2 and W1 being quadratic forms in just (1)

rsε , while W2 is 

a quadratic form in just (1)
rsµ . 

 It follows from (97), (112), (113), (114), in particular, that: 
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(115)    W2 = 
1

( )
2 pq qp pq

pq

B Cµ µ µ+∑ . 

 
If one differentiates (71) twice with respect to h and then lets h tend to zero, taking (93) 
into account, one finds, among other things, that: 
 

(116)   

(1) (1)

(1) (1)
2, 1,

1, 2,
q q

q q q
ν ν

ν ν

µ µ
µ µ+ +

+ +

    ∂ ∂ −      ∂ ∂     
∑

T T
 = 0, 

which translates into: 

(117)   
2 (2) 2 (2)

(1) (1) (1)
2, 1,

1, 2,
q q lm

qlm q lm q lm
ν ν

ν ν

µ µ µ
µ µ µ µ+ +

+ +

  ∂ ∂−   ∂ ∂ ∂ ∂   
∑

T T
 = 0, 

 
and on the basis of (115), that becomes: 
 

(118)    ( )(1) (1) (1) (1)
2, , 1 1, , 2q q q q

q

C ν ν ν νµ µ µ µ+ + + +−∑ = 0, 

which implies that: 
(119)      C = 0. 
 
 In the case of elastic bodies, (72), (115), (119) imply that W1 and W2 are individually 
positive-definite. 
 In particular, one must have: 
(120)      B > 0. 
 
 
 3.  Recapitulation of the general equations that are valid for small isothermal 
transformations.  Some observations. 
 
 At this point, it does not seem pointless to me to recapitulate the fundamental 
equations that are valid in the statics of isothermal small deformations of a natural state 
for isotropic bodies with asymmetric stress characteristic.  Suppressing the notation of 
superscript (1) and asterisk, for simplicity, which are superfluous by now, they are: 
 
(121)    Yrs + Ysr = 2Trs , 
 
(122)    Yr+1,r+2 − Yr+2,r+1 = ,rm m

m

λ∑  − Mr ,  (in C) 

 
(123)    rm m

m

Nλ∑ = mr ,    (on Σ) 
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(124) 
, 2, , 1 1, , 2 2, 1 1, 2

, 2, , 1 1 1, , 2 2 2 1 1 2

1 1
( ) ( ) (in ),

2 2

1 1
( ) ( ) (on ).

2 2

rm m r s r r s r r r r r r
m s s

rm m m r s r r r s r r r r r r r
m s

T F M M

T N N N f M N M N

λ λ

λ λ

+ + + + + + + +

+ + + + + + + + + +

 + − = + −

 + − = + − Σ


∑ ∑ ∑

∑ ∑

C

 

 
 After introducing the LAMÉ constants γ, ν, we may associate these equations with 
the relations: 
(125)   W(ε, µ) = W1(ε) + W2(µ), 
 

(126)   W1(ε) = 
2

2
1, 1 , 1

1
[( 2 ) 4 ( )]

2 rr rr r r r r
r r

γ ν ε ν ε ε ε+ + +
 + − − 
 
∑ ∑ , 

 

(127)   W2(µ) = 2

2 rs
rs

B µ∑ ,  B > 0, 

 

(128)   εrs = 
1

2
(ur, s + ur, s),  µrs =

1

2
(ur+2, r+1 − ur+1, r+2), s , 

 

(129)   Trs = −
(2 )rs rs

W

δ ε
∂

− ∂
,  λrs = − 

rs

W

µ
∂
∂

, 

 
(130)   δl(i) = [ ]rs rs rs rs

rs

T δε λ δµ+∑ . 

 
 (122) show that in a theory in which one admits the possibility of non-zero surface 
moments λrs the stress characteristic can generally be asymmetric (19), even in the 
absence of body moments and external surfaces (Mr = mr = 0).  What can be removed 
from the solutions in the classical theory of singularities is not always possible from the 
physical point of view, as we will show by an example. 
 In a theory in which one necessarily supposes that the λrs are zero (B = 0), along with 
the mr, the equations (122), (124) become: 
 
(131)    Yr+1, r+2 – Yr+2, r+1 = − Mr , 
 

(132)   
, 2, 1 1, 2

, 2, 1 1 1, 2 2

1
( ),

2

1
( ),

2

rm m r r r r r
m

rm m m r r r r r r r
m

T F M M

T N f M N M N

+ + + +

+ + + + + +

 = + −

 = + −


∑

∑
 

 

                                                
 (19) In (122), one also notices the difference between the results that were already cited of 
BODASZEWSKI and SOMIGLIANA and the fact that the quantity Yrs – Ysr depends linearly upon the 
local rotations. 



Grioli – Asymmetric elasticity                                              25 

while (123) does not have to be dragged into consideration.  (130) becomes, moreover: 
 
(133)     δl(i) = rs rs

rs

T δε∑ . 

 
 From the identity of δl(i) with – δW for any isothermal infinitesimal transformation, it 
follows that: 
(134)     δW = − rs rs

rs

T δε∑ . 

 
 The expressions (133), (134) are formally identical to the ones that one has under the 
hypothesis of symmetry in the loads and the structure of W does not change under the 
passage from the symmetric case to the asymmetric one if one does not assume the 
existence of surface contact moments (20). 
 (132) show that the same property of the medium (21) that is valid for the Yrs in the 
symmetric case is true for the Trs , when one conveniently modifies the definitions of the 
astatic, hyperstatic, etc., coordinates by taking Mr, mr into account. 
 
 
 4.  An important example. 
 
 We consider a prism with a square section of side a that is stressed on the lateral 
surface, but devoid of body forces. 
 The reference frame F has its origin at the midpoint of an edge, the y3 axis is parallel 

to that edge, and the y1 and y2 axes are parallel to the edges of the square section. 
 One supposes that the vector f that characterizes the external surface stress does not 
depend upon y3 and is orthogonal to the y3 axis and one looks for solutions for which one 
has: 
(135)    u3 ≡ 0  u1 and u2 are independent of y2 . 
 
 Let fis denote the i th component of f on the face ys = 0, and let ( )a

isf  denote the 

components on the edge ys = a (s = 1, 2). 
 On the basis of (125), (126), (127), (128), equations (124.1) reduce to two and, more 
precisely, to the equations: 
 

(136)  ν ∆2 ur + (ν + γ) 
2 2

, 2 , 2
1 14s rs s rs r

s s

B
u u u

= =

 + ∆ − ∆ 
 

∑ ∑  = 0  (r = 1, 2), 

 
while the boundary equations (123), (124.2) that are associated with them are: 
 

                                                
 (20) (131), (132) are equivalent to (3), (3′) of SOMIGLIANA (loc. cit., in note (1)).  On the other hand, 
(134) does not differ noticeably, since δW also depends upon the δωr .  
 (21) G. GRIOLI, Relazione quantitative per lo stato tensionale di un qualunque sistema continuo e per la 
deformazione di un corpo elastico in equilibrio, Annali di Matematica pura ed applicata, Series IV, v. 
XXXIII, 1952.  
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(137)  (u2, 1 – u1, 2), 1 = 0,   for y1 = 0, a, 
 
(138)  (u2, 1 – u1, 2), 2 = 0,   for y2 = 0, a, 
 

(139)  (γ + 2ν) u2, 1 + γ u2, 2 = 11 1
( )

11 1

, for 0,

, for ,a

f y

f y a

− =
 =

 

 

(140)  (γ + 2ν) u2, 2 + γ u1, 1 = 22 2
( )

22 2

, for 0,

, for ,a

f y

f y a

− =
 =

 

 

(141)  ν(u2, 1 + u1, 2) − 
4

B ∆2 (u2, 1 – u1, 2) = 21 1
( )

21 1

, for 0,

, for ,a

f y

f y a

− =
 =

 

 

(142)  ν(u2, 1 + u1, 2) + 
4

B ∆2 (u2, 1 – u1, 2) = 12 2
( )

12 2

, for 0,

, for .a

f y

f y a

− =
 =

 

 
 One supposes that: 
(143)    f11 = 0,  f12 = 0. 
 
 Therefore, one is dealing with a shear stress on the face y1 = 0 that is normal to the 
face y2 = 0. 
 By a simple verification, one sees that the pair: 
 

(144)  
2 2 2 2

1 1 2 2

2

( )2 2
,

2

0,

sh ky sh k a y
u b y y B

sh ka

u

γ ν γ ν
ν ν

  + −+ + = − −      
 =

 

 
where b is a non-zero constant and: 

(145)     k = 
4

B

ν
 

 
verifies the indefinite equations (136) and, taking (143), (145) into account, the boundary 
conditions (137), (138), (139.1), (142.1), as well. 
 In addition, on the face y1 = 0, and on the basis of (141.1), (145), it results that: 
 

(146)   f21 = 2(γ + 2ν) 2 2
2

( )chky chk a yB
y

shkaν
 − −+ 
 

, 

and one has: 

(147)   
2

210
lim
y

f
=

 = 2(γ + 2ν) 
1B ch ka

sh kaν
−

. 
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 In other words, on the face y1 = 0, one has a shear stress that tends to a non-zero limit 
when y2 → 0, while on the edge y2 = 0 one has a purely normal stress.  Therefore: 
 

(148)  2

1

21 20

12 10

1
lim (0, ) 2( 2 ) 0,

lim ( ,0) 0.

y

y

B ch ka
Y y

sh ka

Y y

γ ν
ν→

→

 −= + ≠

 =


 

 
Thus, it generally results that: 
 

(149)  Y21 – Y12 = − 3 ,s s
s

λ∑ = 1,2222

B
u  = − 2b(γ + 2ν) 2 2( )ch ky ch k a yB

sh kaν
− −

. 

 
 Therefore, in a problem for which the givens are such that the shear force that is 
applied to the face y1 = 0, y2 = 0 has different limits when it tends to the edge, the 
introduction of the λrs leads to a regular solution and, in particular, to a monodromic load, 
as one easily recognizes on the basis of (144). 
 On the other hand, the classical theory, which requires the λrs to be zero, implies 
singularities on the edge. 
 Mind you, such singularities are due, not to the existence of the angular point, but to 
the fact that the givens on the shear load present the peculiarity above. 
 In fact, it is easy to see that if one lets B tend to zero then the boundary problem tends 
to that of the well-known symmetric case, while (144) [see (145)] tends to the solution: 
 

(150)    u1 = 2 2
1 2

2
b y y

γ
ν
+ − 

 
, u2 = 0. 

 
 It is regular, along with all of its derivatives, but it corresponds to the applied shear 
load that tends to the same limit when one goes to the edge of the prism y1 = y2 = 0. 
 In fact, one has, as one easily sees, and taking (150) into account: 
 
(151)    21 120

lim( )
B

Y Y
→

−  = 0, 

 
(152)    210

lim
B

f
→

 = 2b(γ + 2ν) y2 , 

 
(153)    

2 0
lim
y →

 210
lim
B

f
→

= 0. 

 
 Meanwhile, in the symmetric case (B = 0), a applied shear load on the face y1 = 0, y2 
= 0 that has different limits when one tends to the common edge generally implies 
polydromy in the loads and divergences in their derivatives. 
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 As we did above (22), for example, suppose that we are given a shear load that is zero 
for y2 = 0 and a non-zero constant for y1 = 0. 
 From the considerations above, one deduces that it might be convenient to have a 
theory in which one supposes that the λrs are non-zero in order to avoid polydromy in the 
solution, which is certain implausible from the physical viewpoint.  Moreover, one may 
also object that one does not know the way of realizing surface moments that will 
rigorously imply (as we have observed) that one must regard the external load on the 
varied surface elements as reducible to a force f dσ (and generally, it is not easy to 
indicate the manner of realizing its surface distribution either), without a couple (m = 0), 
but without excluding, a priori, the possibility that λrs is non-zero, relative to the internal 
stress state. 
 
  
 
 

                                                
 (22) Loc. cit., in note (3).  


