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 In their publications during 1907-1909, E and F. Cosserat [1], [2] defined a 
continuum to be a set of points and tri-rectangular trihedra with their origins at P′.  More 
precisely, consider such a three-dimensional continuum in a given configuration C, and 
associate each of its points P with a tri-rectangular triad T.  The deformation that takes 
the configuration C to another one C′ is characterized by the displacement PP′ and the 
rotation that changes T into its corresponding T′ in C′, with its origin at the point P′ that 
corresponds P. 
 The displacement u = PP′ and the rotation R that changes the orientation of T into that 
of T′  are independent a priori. 
   Suppose that there is a potential energy from which one derives the state of internal 
stress.  In the Cosserat theory, it will depend substantially upon 18 variables: Six 
characteristics of the deformation, three parameters that characterize the orientation of T′ 
with respect to T, and their nine derivatives with respect to the coordinates of P.  The 
stress variables are defined by means of the 18 partial derivatives of potential energy with 
respect to those variables, nine of which correspond to the classical stress tensor (which 
is asymmetric now), and the others to the contact couples. 
 In the Cosserat theory, one must take into account what currently goes by the name of 
the principle of material indifference, which imparts a certain type of dependency of the 
potential energy upon its dependent variables. 
 In the case of the three-dimensional Cosserat continuum, the theory had been 
developed very little until a few years ago.  In the case of small deformations, the 
renascence was due to E. L. Aero and E. Kuvshinski [3].  However, in the case of finite 
deformations, it was only in 1960 that the study of continua with contact couples that 
were characterized by asymmetric stresses was taken up again.  That reprise was initiated 
by the work of G. Grioli [4-8], Toupin [9], [11], Mindlin and Tiersten [10], which was 
followed by the work of other authors. 
 Nonetheless, one must observe that the work that was cited above was concerned with 
one particular type of Cosserat continuum, in which one supposes that the rotation that 
takes the triad T to T′ is not independent of the field of displacements u, but will properly 
coincide with the local rotation that is subordinate to that field.  By now, however, many 
studies regarding Cosserat continua, especially in the linearized case, and without the 
restrictions above, suppose that the rotation that takes T to T′ is, in fact, free. 

                                                
 (*) The results in this article, which came about within the scope of activities of the mathematical 
research group of the C. N. R, were presented at the session that was held on 5 April 1968.  
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 Recently, the theory of microstructures has developed in the linear case of small 
deformations by the work of Mindlin [12]. 
 In that theory, any point of the continuum is essentially associated with a deformable 
molecule.  In effect, one is treating a generalization of the Cosserat case, which one will 
return to when one supposes that the molecule is rigid.  In other words, a Cosserat 
continuum is a microstructure with rigid molecules. 
 One should observe that in both the case of a microstructure and that of a Cosserat 
continuum, the stress (in the broad sense of the word) is defined by the gradients of the 
potential energy with respect to the variables upon which it depends, which are variables 
that depend upon the kinematical-geometrical model that the continuum defines.  
Moreover, well-known variational principles will allow one to establish the field 
equations that the stress must satisfy. 
 Nevertheless, one can observe that once one has established what the variables are 
that the potential energy depends upon, the theory will ignore, in effect, the kinematical 
model that it has moved away from: Known variational principles will determine both the 
field equations and the stress variables.  The inconvenience can certainly present itself 
that not all of the stress variables do work.  That is, it can happen that one can postulate a 
certain type of potential energy for which the dynamical equations are not the only ones 
that are compatible with it, and which can include stress terms that do no work. 
 Certainly, inconveniences of this type will not present themselves if, while 
establishing the geometrico-kinematic behavior of the continuum and the stress variables 
to which it is subject, one places the theory upon the basis of the fundamental equations 
of mechanics or (if one prefers) the differential equations of the field, except for the 
verification of the compatibility of the conclusions to which one arrives.  In that way, one 
will always be dealing with physically-meaningful variables. 
 This is the path that one follows in the only case that is considered for Cosserat 
continua: The fundamental variables that one considers are naturally the ones that will be 
established shortly and coincide with the ones that were considered by the Cosserats 
themselves and other authors, namely, the displacements and rotations by which one 
regards the kinematical aspect, and the stress characteristics and contact couples by 
which one regards the internal stresses. 
 By definition, the kinematical behavior of the continuum is characterized by two 
fields: viz., those of the displacements u = PP′ and those of the rotations R, which are a 
priori  independent of u, while the mechanical behavior is characterized by two 
asymmetric matrices, namely, the matrix of stress and that of contact couples. 
 The choice of variables upon which the thermodynamic potential depends cannot be 
postulated, but must be derived from the general equations of mechanics. 
 It is important to observe that if one would like to make a deeper study of Cosserat 
continua then it would be convenient to keep in mind that the field of displacements u is 
subordinate to a field of local rotations that one is advised to exhibit explicitly.  One can 
assume, as is certainly legitimate, that the global rotation R is the product of a certain 
number of local rotations that are due to the displacement u with a second rotation that is 
completely free. 
 If one develops the theory of Cosserat continua in that way then one will be surprised 
to find that there will generally be incompatibilities in the case of free rotations.  By that, 
we mean to say that if the system is assumed to be free of internal constraints and has 
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reversible transformations then free energy must satisfy a system of differential 
conditions – some which will translate into the principle of material indifference – that 
are generally incompatible. 
 That signifies, at least, that a Cosserat continuum with free rotations cannot generally 
constitute a system with reversible transformations. 
 The incompatibility will cease to exist in the linearized case, since it originates in the 
nonlinear terms.  Nevertheless, if one interprets the linear theory as a first approximation 
to the complete theory then one will remain perplexed about its significance. 
 A very special case of compatibility exists in the case of free rotation.  In it, the 
contact couples prove to be zero, while the stress characteristics are still asymmetric. 
 However, no incompatibility will be present in a theory in which the local rotations 
are not free, but coincide with the ones that are subordinate to the field of displacements, 
which is what happened in the work that was developed in 1960. 
 
 

1. Some observations on rotational displacements. 
 

 Some facts of a geometric character will prove useful.  In particular, it will be useful 
to exhibit a certain property of composite rotational displacements that will prove to have 
fundamental importance for the study of Cosserat continua. 
 Let T and T′ be two left-handed tri-rectangular triads that have the same origin and let 
R be the rotation that takes T to T′.  Let es , se′  be the respective unit vectors, so one will 

have se′  = Res , and it will follow immediately that the operator R will be represented by 

the matrix: 
(1)      R ≡ | Rrs |, 
 
if Rrs denotes the cosine of the angle between er and se′ . 

 It is well-known that the new quantity Rrs can be expressed by means of the 
parameters Q1, Q2, Q3 (which are called rotational parameters), and they might be the 
three Euler angles of T′ with respect to T, the three components of the rotation vector, or 
the Rodriguez parameters.  One therefore says that the operator R is a function of the 
three parameters Qi . 
 The rotation R can always be imagined to be the product of two successive rotations 
that are characterized by the values qi , ηi of the rotation parameters.  Therefore, it is like 
saying that one can always write: 
(2)      R (Q) = R (q) R (η), 
 
or, given the general invertibility of the rotation operator, one can fix any two of the 
rotations that appear in (2) and determine the third one uniquely. 
 One now considers a third triad T″ that is left-handed and tri-rectangular, has the 
same origin as T, T′, and is close to T′.  By the locution close to, we mean to say that the 
rotation (1) RδQ that takes T′ to T″ is evaluated by taking into account only the linear 

                                                
 (1) One must be careful to note that the rotation RδQ is not obtained by simply substituting δQi for Qi in 
R(Q). 
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terms in the variations δQi of the parameters Qi , or also that the displacement of T′ to T″ 
is of the infinitesimal rotational displacement type. 
 The rotation that takes T to T″ is obviously given by: 
 
(3)      R (Q + δQ) = RδQ R(Q), 
from which, it follows that 
(4)      RδQ = R (Q + δQ) R−1 (Q). 
 
 Suppose that (2) is valid, the displacement from T to T″ is subordinate to (not 
independent) variations δQi , δqi , δηi of the of the parameters Qi , qi , ηi , and along with 
(3), one has the equalities: 
 
(5)    R (q + δq) = Rδq R (q),  R (η + δη) = Rδη R (η), 
as well as: 
(6)      R (Q + δQ) = R (q + δq) R (η + δη), 
 
which gives one a link between the variations of the rotational parameters. 
 If one keeps in mind that the inverse of the product of two rotations is equal to the 
product of the inverse rotations, in the opposite order, then it will follow from (4), (5), (6) 
that: 
(7)    RδQ = R (q + δq) R (η + δη) R−1 (η) R−1 (q) 

= Rδq R (q) Rδη R(η) R−1 (η) R−1 (q) = Rδq R (q) Rδη R
−1 (q). 

 
 Since Rδq , Rδη represent infinitesimal rotations, there will exist two vectors δω, δω″ 
for which it will result that: 
(8)     Rδq = 1 + δω′ ×, Rδη = 1 + δω″ ×, 
 
in which the vectors δω′, δω″ depend upon δqi , δηi , respectively. 
 If one takes only the first-order terms into account then it will follow from (7), (8) 
that: 
(9)    RδQ = (1 + δω′ ×) R (q) (1 + δω″ ×) R−1 (q) 

= 1 + δω′ × + R (q) δω″ × R−1 (q). 
 
 Furthermore, if one keeps in mind the known property of the rotation operators then 
one will observe that even though it is not essential, it will follow that (9) simplifies to: 
 
(10)    Rδq = 1 + δω′ × + (R (q) δω″) × . 
 
 Obviously, the vectors δω′, δω″ depend upon δqi , δηi linearly.  By definition, one 
can then assert that if one sets: 
(11)     Rδq = 1 + δω ×, 
 
as is certainly legitimate, then there will exist an operator B (q) that depends upon only 
the parameters qi , and another one C (q, η) for which one has, however, that when one is 
given qi and ηi , it will result that: 
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(12)    δωr = Brl (q) δql + Crl (q, η) δηl . 
 
 It is worth observing that, together with (11), the linear dependency of δωr on δql, δηl 
will be predictable, but it will certainly not be predictable that the matrix | Brl | is 
independent of the ηi , which is a fact that will prove important in what follows. 
 The lack of formal symmetry in (12) with respect to the parameters ql , ηl should not 
be surprising.  Obviously, it is due to the non-commutability of the factors in the product 
of matrices. 
 
 

2. On the local rotations of Cosserat continua. 
 

 What was said in the preceding section is applicable to the case of deformations of a 
Cosserat continuum that passes from a reference configuration C to the present one C′ in 
regard to the rotations that change the orientation of the triad T that is associated with the 
generic element P of C to that of the corresponding triad T′ that is associated with the 
element P′ that corresponds to P in C′. 
 Naturally, one lets R denote that global (and free) rotation and Qi denotes the 
parameters upon which it depends. 
 The vectorial field u = PP′ is subordinate to a local rotation, that is assumed to be 
characterized by the parameters ηi : That rotation will therefore be R (η). 
 The rotations R (Q), R (η) will define a third rotation R (q) uniquely, that is 
characterized by the parameters qi and the three aforementioned rotations that were given 
already.  One can, in fact, state that any chosen global rotation R (Q) can be realized by 
associating it with an opportune choice of parameters qi , in such a way that one will 
realize a rotation that will give R (Q) when it is multiplied by the one that is subordinate 
to the displacement u. 
 By definition, one can believe that the geometrico-kinematic behavior of a Cosserat 
continuum is characterized completely by knowing the vectorial field u and the free 
parameters qi , rather than the parameters Qi . 
 The passage from a current configuration C′ to a neighboring of C′ + δC′ is 
consequently characterized by a field of displacements δu and a triad of variations δqi of 
the parameters qi . 
 Let ys, xs denote the coordinates of P, P′, respectively, with respect to the same left-
handed, tri-rectangular, reference triad.  It is known that the local rotation that is 
subordinate to the vector δu is characterized by the vector whose components are: 
 
(13)     sδω′′ = 1

2 espt (δut)/ p 

 
in which espt is the Ricci indicator, and the stroke denotes the derivative with respect to 
xp. 
 Since the second term on the right-hand side of (12) represents the global rotation 
vector in the case of δqi = 0, one will deduce that it must coincide with the right-hand 
side of (13).  Therefore, one has, by definition, the expression: 
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(14)     δωr = Brl (q) δql + 1
2 espt (δut)/ p 

 
for the vector that characterizes the global rotation for the passage from C′ to C′ + δC′. 
 Do not be surprised that one sees no trace of the parameters ηi in (13) and in the last 
term in (14), while they do enter into last term of (12).  In reality, the identification of the 
right-hand side of (13) with the last term in (12) serves to distinguish the δηi as functions 
of the qi, ηi, δur , and those δηi are not arbitrary when one has assigned the vectorial field 
δu. 
 
 

3. Lagrangian form of the work done by internal forces. 
 

 Let | Xrs | denote the Eulerian matrix of (Cauchy) forces, and let | ψrs | denote that of 
the contact couples, always with reference to the tri-rectangular triad to which one refers 
the continuum.  Along with those matrices, consider the Piola-Kirchhoff matrix | Yrs | and 
the matrix | λrs |.  The link between those matrices is expressed by the equalities: 
 

(15)   Xrs = 
1

D
Ylm xr, l xs, m ,  ψrs =

1

D
λrl xs, l , 

 
in which D is the Jacobian determinant: 
 

(16)     D = ,r sx′  > 0. 

 
 In (15), (16), and in what follows, the comma will denote the derivation with respect 
to ys . 
 The fundamental equations of the statics of Cosserat continua, in Eulerian form, are 
presented in the form of (2): 

(17)    /

/

,

,
rs s r

rs s rpt pt r

X F

e X Mψ
=

 = +
  (in C′ ), 

 

(18)    
,

,
rs s r

rs s r

X n f

n mψ
=

 =
   (in σ′ ), 

 
in which Fr, Mr denote the body forces and moments per unit volume of the current state, 
σ′ is the contour of C, fr , mr are the surface forces and moments per unit area of the 
current state, and n is the interior normal to σ′. 
 The Eulerian expression for the work done by internal contact forces that correspond 
to an arbitrary displacement from C′ to C′ + δC′ follows from (17), (18).  It is: 
 

                                                
 (2) See, e.g., [4].  It is not at all essential in what follows to consider the equations for dynamics, instead 
of those of statics. 
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(19)    δ l(i) = Xrs (δur)/ s + ψrs (δωr)/ s + erlm Xlm δωr 
 
per unit volume in the current state. 
 In (19), δωr represents the vector that characterizes the global rotation and can be 
considered to be expressed by (14). 
 If one separates the symmetric part X(rs) of Xrs from the antisymmetric part X[rs] and 
keeps (14) in mind then the expression (19) for δ l(i) can be put into the form: 
 
(20) δ l(i) = X(rs) (δur)/ s + ψrs{[ Brl (q) δql] /s + 1

2 ertm (δum)/ ts} + erlm X[lm] Brt (q) δqt , 

 
in which one confirms the independence of δ l(i) from antisymmetric part of stress when 
the rotations of the elements are not free (δqt ≡ 0). 
 It will be useful to observe that if one lets Ars denote the algebraic complement of xr, s 
in the determinant (16) then one will have: 
 

(21)     f/ i = f, l ilA

D
 

for any function f of xi . 
 (21) permits one to express the derivatives with respect to xs that appear in (20) in 
terms of derivatives with respect to yt .  In particular, with some development, one will 
find that: 

 (22)   /( )r sδω′′ = 1
2 ertm (δum)/ ts = slA

D
[δµrl + Brlmp δum, p], 

 
in which one means that: 

(23)     µrl =
1

2D
 erlm Atp um, pl ,  

 

(24)    Brlmp = ,
22

v lu

D
σ [erlv Atp Atσ − ertm Atσ Avp]. 

 
 The Lagrangian expression δ *l(i) for the work done by internal forces per unit volume 
of the reference state is coupled to δ l(i) by the relation: 
 

(25)     δ *l(i) = δ l(i) dC

dC∗  = Dδ l(i).  

 
 If one takes (15), (21), (22), (25) into account, along with the permutability of the 
operator δ with derivation with respect to ys , then one can deduce from (20) that: 
 
(26)  δ *l(i) = [Y(pl) xm, l + Brlmp λrl] δ (um, p) + λrl [δµrl + Bri δ (qi, l)] 

+ [λrl Brit qt, l + erpt Y[lm] xp, l xt, m Bri] δqi , 
 

in which Brit denotes the derivative of Bri (q) with respect to qt . 
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 It is necessary to observe that µrl verifies the equality: 
 
(27)     Arl µrl = 0, 
from which, it follows that: 
(28)     δArl µrl + Arl δµrl = 0, 
which can be written: 

(29)     ,
mp

rl rl rp m l

A
A

D
δµ µ δµ 

− 
 

 = 0. 

 
 

4. Constitutive equations. 
 

 Let U denote the internal energy, θ, the absolute temperature, E, the entropy, and let: 
 
(30)     F = U – Eθ 

 
be the free energy of the continuum, all referred to the unit volume in the reference state. 
 From now on, suppose that the continuum is free of internal constraints and has 
reversible transformations.  It will then follow that for any infinitesimal transformation 
from C′ to C′ + δC′, the work that is done by internal forces, with the opposite sign, is 
equal to the corresponding variation of the free energy, augmented by E dθ.  If one takes 
equation (29) into account then that can be translated into the equation: 
 

(31)   δ* l(i) = − δF – E δT – τ Arl ,
mp

rl rp m l

A
u

D
δµ µ δ 

− 
 

, 

 
in which τ is a parameter, and that equation is considered to be valid for any choice of the 
variations δum, p , δµrl , δqi , δqi, l . 
 If one compares (26) with (31) then one will see that the free energy must depend 
upon the variables um, p , µrl , qi , qi, l , θ, and that the constitutive equation, in its initial 
form, will take on the appearance of: 
 

(32)   Y(pl) xm, l + Brlmp λrl – 
D

τ
Aml Arp µrl = − 

,m px

∂
∂
F

, 

 

(33)   λrl Brit qt, l + erpt xp, l xl, p Bri Y[lm] = − 
iq

∂
∂
F

, 

 

(34)    

,

,

.

rl rl
rl

rt ri
i l

A

B
q

λ τ
µ

λ

∂ + = − ∂
 ∂ = −
 ∂

F

F
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 On the basis of (34.1), one has the relation: 
 

(35)  Brlmp λrl −
D

τ
Aml Arp µrl = − Brlmp 

rlµ
∂
∂
F − τ Arl Brlmp −

D

τ
Aml Arp µrl  . 

 
 If one keeps (23), (24) in mind then one will deduce that: 
 

(36) Arl Brlmp + 
1

D
Aml Arp µrl  

 = −
22

rlA

D
uv, σl [ertm Atσ Avp − ertv Atp Amσ] + 

22
ml rpA A

D
 ertv Atσ ur, σl 

 = − 
22

rtme

D
 uv, σl ertv Arl Atp Amσ  + 2

1

2D
 uv, lσ ertv Atp Amσ  Arl 

 = 0, 
 
if one takes into account that the first term in the last expression is zero, from the 
antisymmetry of the Ricci indicator. 
 It follows from (32), (35), (36) that the dependency of Y(pl) on the parameter τ is only 
apparent.  In reality, one has: 

(37)    Y(pt) = 
,

mt
rlmp

rl m p

A
B

D xµ
 ∂ ∂− ∂ ∂  

F F
.  

 
 (37) coincides formally with what one finds in the case of Cosserat continua with 
rotations that are not free, but coincide with the ones that are subordinate to the field of 
displacements. 
 
 

5. General incompatibility of Cosserat continua with free rotations. 
 

 If one formally sets: 
(38)     F = F′ – τ Arl µrl 
then it will follow from (34) that: 
 

(39)    λrl = −
rlµ
′∂

∂
F

,  λrl Bri = −
,i lq

′∂
∂
F

. 

 
 (39) implies the compatibility equations: 
 

(40)     
rlµ
′∂

∂
F

Bri −
,i lq

′∂
∂
F

= 0. 

 Set: 
(41)    ξrs = µrs , zrs = µrs + Bri qi, s .  
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 Given the general invertibility of the matrix | Bri |, one can replace the variables µrs , 
qi, s with the variables ξrs , zrs on the basis of (41) and think of the functions F, F′ as being 

functions of ξrs , zrs , instead of µrs , qi, s , in addition to xr, s , qi , θ.  As a consequence of 
the system of equations (40), one will have: 
 

(42)     
rlξ
′∂

∂
F

= 0. 

 
 (42) shows clearly, when one takes (41) into account, that the functions F, F′  depend 

upon µrs , qi, l only by way of the zrs : 
 
(43)    F′  =  F (xr, s , zrs , qi , θ) . 

 
* 

*   * 
 
 The condition that is expressed by (43) is not the only condition that F′  must satisfy.  

In fact, (37) imposes the symmetry condition upon its right-hand side that: 
 

(44)    
,

mt
spt rlmp

rl m p

A
e B

D xµ
 ∂ ∂− ∂ ∂  

F F
= 0. 

 
 If one replaces the system of equations (44) with the entirely-equivalent ones: 
 

(45)    
,

vs mt
spt rlmp

rl m p

A A
e B

D xµ
 ∂ ∂− ∂ ∂  

F F
= 0 

 
then after some calculation, one will see that they can be presented in the form: 
 

(46)    ,
,

spt p l pl
t l tl

e x
x

µ
µ

 ∂ ∂+ ∂ ∂  

F F
= 0. 

 
 In reality, the symmetry conditions (44) and their equivalent ones (46) express (as one 
can prove) the principle of material indifference, or if one prefers, the condition that the 
free energy does not vary under any rigid, isothermal displacement, but is deduced as a 
simple consequence of (37). 
 With some calculation, one will find that the expression τ Arl mrl satisfies (46).  That 
signifies that one can substitute F′ for F in (46) and write it in the form: 
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(47)    ,
,

spt p l pl
t l tl

e x
x

µ
µ

 ′ ′∂ ∂+ ∂ ∂  

F F
= 0. 

 
 (46), (47) are formally identical to the equations that are conditions on the free energy 
in the case of non-free rotations (3).  The most general solution of (47) is an arbitrary 
function of the quantity (4): 
(48)    brs = xi, r xi, s ,  lrs = xi, r µis , 
 
along with qi , qi, r , θ, it is understood. 
 If one takes (41.2), (43) into account then one will see that F′ can only be a function 

of brs , qi , θ and the quantity: 
(49)     Lrs = xi, r zis . 
 
 That gives rise to an incompatibility: In fact, the possible dependency of F′  upon Lrs 

implies that F′  will depend upon xi, r , as well as the quantities xi, r ilB′  qls , which, 

however, cannot be expressed as functions of the brs , as is required, given that the Bil do 
not depend upon the xσ, ν , due to the fact that, on the basis of what was proved in no. 1, 
they do not depend upon the characteristic parameters of the local rotation that is 
subordinate to the field of displacements u. 
 Moreover, the incompatibility will obviously come about in a different way if one 
takes (41.2) into account and writes (47) in the form: 
 

(50)    , ,
,

( )spt p l pl pi i l
t l tl

e x z B q
x z

 ′ ′∂ ∂+ − ∂ ∂  

F F
 = 0, 

which will reduce to the form: 

(51)     ,spt pi i l
tl

e B q
z

′∂
∂
F

 = 0, 

 
since F′  depends upon the xi, r , zir only by way of brs , Lrs , while the Bpl do not depend 

upon the xi, r . 
 (51) implies the independence of F′ from the ztl , etc., due to the arbitrariness of the 

quantity ,pi i lB q . 

* 
*   * 

 
 From that, one deduces that Cosserat systems with free rotations are generally 
incompatible systems.  An exception is the case (which is very special indeed) in which 

                                                
 (3) See, e.g., [4].  
 (4) See [14].  
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F′  does not depend upon the zrs .  As a consequence of that, it does not depend upon the 

variables µrs , qrs , and one will have: 
 
(52)    F = F′ (brs, qi, θ) – τ Ars µrs , 

 
which will imply the constitutive equations: 
 

(53)    

( )

, , [ ]

2 , 0,

.

pl rl
pt

rpt p l t m ri lm
pt

Y
b

e x x B Y
b

λ′∂ = = ∂
 ′∂ = −
 ∂

F

F
 

 
 One sees immediately that in the particular case in question, there are no contact 
couples, but the stress can still be asymmetric. 
 More precisely, it is enough to consider equations (17) and (18) in order to see that 
the stress will be not symmetric in the static case when and only when body moments are 
present, just as in the case of non-free rotations.  However, unlike what happens in this 
case, the global local rotations do not coincide with the ones that are subordinate to the 
displacements u, due to the presence of the parameters qi . 
 On the contrary, in the dynamical case, one can have asymmetry in the stress, even in 
the absence of body moments, as long as one takes into account the moment of the 
quantity of motion of the individual system elements (5). 
 

* 
*   * 

 
 It is worth pointing out that if one has constructed a theory of Cosserat continua that 
supposes that the rotations are exclusively the ones that are subordinate to the field of 
displacements u then the incompatibility will cease. 
 In fact, in that case, if one must consider the lqδ  in (14) to be zero then the 

expression (20) will lack corresponding terms, and similarly for (26).  In addition, (33), 
(34.2) will cease to exist, while (34.1), (37) will remain valid. 
 The unique differential system for compatibility is the system (46), which expresses 
the principle of material indifference, and (38) will be valid with F′ as a function of the 

variables brs , µrs , θ. 
 Obviously, that recalls the case that has been studied already since 1960. 
 

* 
*   * 

 
 It is worth pointing out that if one linearizes the general theory of Cosserat continua 
with free rotations then (46) will lack terms that depend on the µpl explicitly.  
                                                
 (5) See [7]. 
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Incompatibility will cease to exist as a consequence.  In fact, in that case, (46) will 
express the idea that F depends upon xr, s only by way of linearized brs : 

 
(54)     brs = 1 + ur, s + us, r , 
while µrs , Brs reduce to: 
(55)    µrs = erpt ut, ps ,  Brs = δrs , 
 
in which δrs is the Kronecker symbol. 
 On the basis of (40), (43), it will follow that F′ depends upon the linearized brs and zrs 

= µrs + qr, s without there being incompatibility any longer. 
 Correspondingly, one has: 

(56)    
( ) [ ]

,

2 , ,
2

.

ptl
pl pl

pl i

pl
pt p t pt

e
Y Y

b q

q z
λ

µ

′ ′ ∂ ∂= − = − ∂ ∂
 ′ ′ ′∂ ∂ ∂ = − = − = −
 ∂ ∂ ∂

F F

F F F
 

 
 One then recovers the known formulas of the linear theory with free rotations (6). 
 
 Manuscript received on 17 June 1968. 
 Written draft on 14 November 1968. 
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