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 Abstract. – With the goal of making a contribution to a formulation of integral type of the mechanics 
of Cosserat continua with finite deformations, we establish:  1)  A variational property of stress,  2)  A 
condition of integral type on strain. 
 
 
 I recently established a variational property of stress for finite deformations of a 
classical continuum of hyperelastic type [1], [2].  I treated a property of stationarity – i.e., 
of minimum action – of a potential energy that not only characterized the real stress but 
also permitted one to give an existence theorem and to conceive of a pure integration 
procedure in the presence of unilateral surface constraints. 
 In the case of more complex continua – viz., ones with micro-structure – it is only in 
the linearized case that it is possible to establish a variational property that is analogous 
to this and of the same magnitude [3].  On the other hand, this is not possible in the case 
of finite deformation, and the fundamental reason consists in the fact that it does not seem 
possible to express the field equation without making the deformation intervene in it, 
unlike what happens in the classical case, in which one appeals to Kirchhoff’s 
asymmetric representation of stress, as one can do.  A final difficulty is then connected 
with the extreme complexity of the constitutive equations. 
 With the goal of expanding upon the question, while considering the case of a 
hyperelastic Cosserat continuum that is subject to finite deformations, we show how, in 
reality, the stress is not characterized by the stationarity of a potential energy B, and also 
establish what the first variation of B will equal that corresponds to real stress.  More 
precisely, we established that the first variation will prove to be equal to a quantity that is 
annulled when one linearizes the problem – as with small deformations [3] – in which it 
has higher order than the first variation of B. 
 The integral property that is established for real stress cannot have the operational 
significance of the analogue that was established for the classical case, but certainly can 
be considered to be a first contribution to the formulation of the mechanics of Cosserat 
continua in integral form.  With the goal of extending that contribution, and also because 
the question is directly linked to the integral property on which the variational property 
that we established is founded (which is, however, not invertible), I would like to point 

                                                
 (*) Submitted for editing on 4 August 1975.  
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out the possibility of giving a global form to the integrability conditions for the strain 
variables. 
 
 
 1. Introduction. Let C and C′ be the reference configuration and the current one, 
resp., for a Cosserat continuum, let P and P′ be corresponding points, and let yi, xi be their 
coordinates with respect to the same oriented, tri-rectangular reference.  From the purely 
geometric and kinematic viewpoint, the transformation from C to C′ is defined by the 
knowledge of the relations: 
 
(1)    xi = xi(y1, y2 y3; t),  Rrs = Rrs(y1, y2 y3; t), 
 
where Rrs is the matrix that expresses the rotation that is associated with P.  One supposes 
that (1) satisfies all of the required analytical conditions for the one-to-one character of 
the correspondence between C and C′; e.g., continuity, etc. 
 The state of tension (i.e., stress) in C′ is defined by the knowledge of two asymmetric 
matrices Xrs , ψrs , the former of which corresponds to the usual stress in Cauchy form, 
while the latter one expresses the density of contact couples. 
 If a comma denotes the derivative with respect to yi and one supposes, as is 
legitimate, that D = Det || xr,s || > 0 then one sets: 
 

(2)     Xrs = ,rl s lK x

D
,  ψrs = ,rl s lx

D

λ
. 

 
 The stress variables Krs , λrs , whose significance is obvious, satisfy the field 
equations: 
(3)   Krs, l = Fr , λrs, l + εrms Ksl xm, l = Mr (in C), 
 
(4)   Krl nl = fr , λrl nl = mr    (on σ), 
 
where Fr, Mr denote the volume force and couple densities, resp., when referred to C, 
which consist of the inertial force in the dynamical case, while fr, mr consist of the 
corresponding surface force and couple, resp., that are defined on the boundary σ of C.  
In (3), erms denotes the Ricci indicator of three-dimensional Euclidian space, while in (4), 
nr is the interior normal to σ. 
 If we let a denote the matrix of components xr,s then the strain is characterized by the 
four matrices: 
(5)    ε = 1

2 (a(T)a − 1), v = a(T)R, v(s) = a(T)R, s . 

 
 One observes that if one sets: 
 
(6)      Z(l) = 1

2 R(T)R, l  

then it not only results that: 
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(7)    ( )l
rsZ  = 1

2 Rpr Rps,l = − 1
2  Rpr, l Rps , Rps,l = 2 ( )l

rsZ Rpr , 

but also that: 
(8)     ε = 1

2 (vv(T) – 1), v(s) = 2v Z(s). 

 
 One concludes that ultimately the strain is characterized by the knowledge of the 
matrices v, Z(s). 
 
 
 2. A particular form for the constitutive equations. – The new quantity Rrs can be 
expressed by means of three parameters Qi .  One sets: 
 

(9)      Bil(Qs) = 
1

2
pt

isp st
l

R
e R

Q

∂
∂

. 

 
 Under the hypothesis of hyperelasticity, there exists a potential energy density W 
from which the stress is derived.  It will depend upon the fundamental variables xr,s , Rrs , 
Rrs,t , which characterize the geometrical behavior of a Cosserat continuum only through 
the agency (1) of the matrices vrs, 

( )l
rsZ , and one has (2): 

 

(10)    

.

,

.

rs rp
sp rs

rs rl
l s

W W
K R

v x

W
B

Q
λ

∂ ∂ = − = − ∂ ∂


∂ = −
 ∂

 

 
 In the sequel, it will be convenient to give a more appropriate form to the constitutive 
equations (10).  To that end, one observes that on the basis of (7), (9), it results that: 
 
(11)   ( )l

rsZ  = − ( )l
srZ  = 1

2 erqs Rpq Bpl Ql,t . 

 
 Since W can depend upon Qr, s only by means of the ( )l

rsZ , from (10, 2) it follows that: 

 

(12)   λrs Brl = −
( )

( )
,

p
rt

s
rt l s

ZW

Z Q

∂∂
∂ ∂

= −
( )

1

2 s
rt

W

Z

∂
∂

erqt Rpq Bpl . 

 
 One knows that Det | Brl | > 0.  One therefore deduces from (12) that: 
 

                                                
 (1) One can treat this as a consequence of the principle of material indifference.  Naturally, W will 
depend on other variables, in general, e.g., temperature, etc.  Nevertheless, such circumstances will not be 
considered here. 
 (2) See (40) in [5], if one assumes that the coupling Krs = xr,m Yml is valid in it. 
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(13)    λrs = − 
( )

1

2 pmq rm s
pq

W
e R

Z

∂
∂

. 

 Set: 
(14)   ( )s

pqτ  = epmq Rrm λrs , λrs = 1
2  epmq Rrm 

( )s
pqτ , 

 
so from (13), one ultimately has that: 
 

(15)     ( )s
pqτ  = −

( )s
pq

W

Z

∂
∂

. 

 
 A convenient transformation of (10, 1) can be obtained from: 
 
(16)    Nsp = Krs Rrp ,  Krs = Rrp Nsp . 
 
It follows immediately that: 

(17)     Nsp = − 
sp

W

v

∂
∂

. 

 
 Equations (15), (17) constitute a particular form that is adapted to the context that 
applies to the constitutive equations of a Cosserat continuum with free rotations. 
 One easily convinces oneself that relations (15), (17) are invertible.  One can set (3): 
 
(18)   vrs = αrs(N; τ(l)), ( )l

rsZ  = ( )l
rsβ (N; τ(l)), 

 
where the αrs , 

( )l
rsβ  are functions of the variables Npq, , 

( )l
pqτ  that are deduced from the 

inversion of (15), (17). 
 Set: 
(19)   W′ = − W[α(N; τ(l)); β(N; τ(l))] − αpq Npq − ( ) ( )l l

pq pqZβ , 

 
so W′ defines a second form for the potential energy, and one easily deduces that: 
 

(20)    vrs = − 
rs

W

N

′∂
∂

,  ( )l
rsZ  = − 

( )l
pq

W

τ
′∂

∂
. 

 
 
 3. A variational property of real stress. – Suppose that a surface force and couple 
are given on some part σ1 of σ, while some translations and rotations are given on the 
remaining part σ2 .  On σ2 , one has xr ≡ rx , Rrs ≡ rsR , where rx , rsR  denote functions 

                                                
 (3) This does not begin to address the complex and interesting question of the possible a priori 

breakdown of uniqueness in the αrs , 
( )l

rs
β  that are deduced from the inversion (18). Furthermore, the same 

question presents itself in the case of classical continua. 
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that are defined on σ2 .  Let V be the class of possible reactions and reaction couples, 
while φr and µr are allowable constraints.  Let rsK ∗ , rsλ∗  be the matrices that express the 

real stress that corresponds to the current configuration C′, which are characterized by the 
values of xr, Rrs at the instant t, values that will be indicated by rx∗ , rsR∗ . 

 Any other stress that satisfies (3), (4) on σ1 and corresponds to the current 
configuration C′ and to the volume, inertial, and surface (on σ1) forces at the instant t is 
obtained by adding increments ∆Krs, ∆λrs to rsK ∗ , rsλ∗  that satisfy the equations: 

 
(21)    ∆Krs,l = 0, ∆λrs,l + erms ∆Ksl .m lx∗  = 0, 

 

(22)     

1

2

1

2

0 (on ),

(on ),

0 (on ),

(on ),

rl l
r

rl l
r

K n

n

σ
φ σ

σ
λ

µ σ

 =
∆ = ∆


=∆ = ∆

 

 
where ∆φr, ∆µr denote increments in the φr, µr that are allowed by the constraints. 
 From (21), it follows immediately that: 
 

(23)   { }1
, , ,2 [ ]rl l r rl l rms sl m l rqp qpC

K x e K x e R dCλ∗ ∗ ∗∆ − ∆ + ∆∫  = 0. 

 
 Taking (22) into account, one deduces from (23) that: 
 

(24) { }1
, , ,2 [ ]rl l r rqp qp l rl qp rms sl m lC

K x e R R e K x dCλ∗ ∗ ∗∆ − ∆ + ∆∫  

      + 
2

1
22[ ]r r rqp r qpx e R d

σ
φ µ σ∆ − ∆∫  = 0. 

 
 Letting R[qp] denote the anti-symmetric part of Rqp and keeping (7), (14) in mind, it 
follows from (24), after some calculations, that: 
 

(25) { }
2

( ) ( ) 1
[ ] , , 22[ ]l l

ps tp ts sm m l sl rl r l r r rqp r qpC
R Z R x K K x dC x e R d

σ
τ φ µ σ∗ ∗ ∗ ∗ ∗∆ − ∆ + ∆ + ∆ − ∆∫ ∫  = 0, 

 
where rsv∗  and ( )l

rsZ ∗  indicate the expressions for vrs and ( )l
rsZ  that are provided by (5), (7) 

when one identifies xr and Rrs in them with rx∗  and rsR∗ , respectively. 

 After some final calculations, (25) becomes: 
 

(26) { }
2

( ) ( ) 1
[ ] 22[ ] [ ]l l

ps tp ts pl pl lt lp r r rqp r qpC
R Z R v N dC x e R d

σ
τ δ φ µ σ∗ ∗ ∗ ∗∆ + − ∆ + ∆ − ∆∫ ∫ = 0. 

 
 Taking into account the fact that the real stress satisfies the constitutive equations 
(20), it ultimately follows from (26) that: 
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(27) ( )
[ ]( )

[l
ts ps lp pl pslC

tp lt

W W
R N R dC

N
τ δ

τ
∗ ∗

 ′ ′∂ ∂ ∆ + ∆ − ∂ ∂  
∫  − 

2

1
22r r rqp r qpx e R d

σ
φ µ σ ∆ − ∆ ∫ = 0. 

 
 Set rsR′  = Rrs – δrs , and additionally: 

 

(28)    B = 
2

1
22[ ]r r rsp r spC

W dC x e R d
σ

φ µ σ′ − −∫ ∫ . 

 
 One immediately recognizes that (27) can be presented in the form: 
 

(29)    ∆B = − ( )
[ ]( )

l
ps ts sm lslC

pt lm

W W
R R N dC

N
τ

τ
 ′ ′∂ ∂ ′ ′∆ − ∆ ∂ ∂  

∫ , 

 
about which, one asserts that – as opposed to what happens for classical continua – the 
real stress does not render the potential energy B stationary for the class of stresses that 
are in equilibrium with the given volume, inertial, and surface forces, which can give rise 
to constraint reactions that are allowed by the constraints.  Nevertheless, one can observe 
that in the linearized case B will result in stationarity, properly speaking, that corresponds 
to the real stress, as was observed in [3].  Indeed, one easily recognizes that the right-
hand side of (29) is set equal to zero in the case of small deformations that are consistent 
with the linearization of the problem, in which, regarding – as is necessary – the quantity 
Rrs – δrs to be of first order, it follows that it is of higher order with respect to the left-
hand side. 
 
 
 4. A possible integral formulation of the compatibility conditions for the strain 
matrices. – Suppose that the strain matrices ϕrs,

( )l
lpγ are given, consider a rotation matrix 

ρrs , and set: 
(30)    ϕrs = ξmr ρms ,  ( )l

tpγ  = ( )1
2

l
mt mpρ η , 

 
where the matrices ξmr , 

( )l
mpη  are uniquely determined and the ( )l

tpγ  are assumed to be 

skew-symmetric (emi-simmetrica) in the lower indices.  In addition, one sets: 
 
(31)    spN ′  = rs rpK ρ′ ,  ( )s

pqτ ′  = epmq ρrm rsλ′ , 

 
where rsK ′ , rsλ′  represent an arbitrary solution of the differential system: 

 
(32)   ,rl lK ′ = 0, ,rl l rms sl mle Kλ ξ′ ′+  = 0  (in C), 

(33)   rl lK n′ = 0, rl lnλ′  = 0   (on σ). 

 
 One considers a system of integral equations: 
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(34)   
( ) ( )

[ ]

0,

[ ] 0.

sp spC

l l
ps tp ts pt lt lpC

N dC

N dC

ϕ

ρ γ τ ρ ϕ

 ′ =


′ ′− =

∫

∫
 

 
 One has the theorem: 
 
 A necessary and sufficient condition for the matrices ϕrs,

( )l
lpγ , the second of which is 

skew-symmetric, to represent a strain in a Cosserat continuum is that it satisfy (34) for 
any choice of spN ′ , ( )l

stτ ′  that are constructed on the basis for (31) with any possible 

solution of the system of equations (32), (33).  In that case, the transformation from 
which the strain is derived descends precisely from the rotation ρrs [and a suitable 
displacement vector]. 
 
 The condition is necessary: Suppose that: 
 
(35)    ξmr = ξm, r ,  ( )l

mpη  = ρmp, l . 

 
It follows from (32), (33) that: 

(36)    
,

, ,

0,

[ ] 0.

rl l rC

rl l rms sl m lC

K dC

e K dC

ξ

λ ξ

 ′ =


′ ′+ =

∫

∫
 

 
 One deduces (34, 1) from (36, 1) immediately. 
 When one takes (30), (31) into account, (36, 2) becomes: 
 

(37)   , [ ][ 2 ]rmp rl mp l pt lp ltC
e N dCλ ρ ρ ϕ′ ′+∫  = 0, 

 
which, again, on the basis of (30), (31), transforms into (34, 2). 
 
 The condition is sufficient (4): Assuming (30), (31), one suppose that (34) is satisfied 
by the ϕrs, 

( )l
rsγ  for any choice of lpN ′ , ( )l

stτ  that are constructed from solutions of (32).  

Introduce an arbitrary double system of functions χpq that are differentiable and zero on 
the boundary of C and set: 
(38)    rsK ′  = esti χrt,i ,  spN ′  = esti ρrp χrt,i . 

 
 One easily recognizes that the rsK ′  that are defined in (38) satisfy (32).  (34, 1) then 

becomes: 

(39)    ,sti rs rt iC
e dCξ χ∫ = 0, 

 
                                                
 (4) Observe that the hypothesis that (33) is satisfied never enters into the proof of sufficiency.  It is 
enough to suppose that the χpq are zero on the boundary of C, but arbitrary everywhere else. 
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and from the arbitrariness of χpq this implies that: 
 
(40)     esti ξrs, i = 0. 
 
 (40) shows the existence of three functions ξr that satisfy (35, 1).  As a consequence, 
it then results that: 
(41)     ϕrs = ξm, r ρms . 
 
 Taking (40) into account, one recognizes that the functions that were defined by (38, 
1), as well as: 
(42)    rsλ′  = erpm eσqs ξm,σ χpq , 

 
satisfy (32, 2) for arbitraryχpq .  It then follows that: 
 
(43)    ( )l

ptτ  = epst ρrs  ervm eσql ξm,σ χvq , 

 
and on the basis of (30), (38), (41), and (43), (34, 2) becomes: 
 

(44)  { }( )1
[ ] , ,2

l
s t rpm ql r s t m pq pm lqi m l pq iC

e e e e dCϕ σ ϕ ε τ τε σρ ρ ρ η ξ χ ρ ξ χ+∫  = 0. 

 
 (44) simplifies to: 

(45)    { }( )1
, [ ],2[ ]l

ql m r rpm pm i pqC
e e e dCσ σ ε τ τεξ η ρ χ−∫  = 0, 

 
which, upon taking into account the equivalence: 
 
(46)     ρ[pm] = 1

2 erpm erτε ρτε , 

 
and the arbitrariness of the χpq, gives: 
 
(47)    erpm eσqi erτε ξm,σ ( ( )i

τεη  − ρτε, i) = 0. 

 Set: 
(48)   crpqi = erpm eσqi ξm,σ ,  gri = erτε(

( )i
τεη  − ρτε, i), 

 
so (47) assumes the form: 
(49)     crpqi gri = 0. 
 
This constitutes a new homogeneous, linear system of equations in the new unknowns gri. 
 One can prove that the determinant of the coefficients is non-zero, in general: i.e., Det 
| crpqi | ≠ 0.  It then follows that: 
(50)     ( )i

τεη  = ρτε, i + ( )iLτε , 
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where the ( )iLτε  constitute an arbitrary system for any i that is symmetric with respect to 

the lower indices.  From (30, 2), one obtains: 
 
(51)     ( )l

tpγ  = ( )1
,2 ( )i

mt mp i mpLρ ρ + , 

 
and the condition of skew-symmetry for the ( )l

tpγ  implies that: 

 
(52)     ( ) ( )i i

mt mp mp mtL Lρ ρ+  = 0. 

 
 The system of six equations (52) – for any value of i – in the six unknowns ( )i

rsL  

admits the zero solution as its unique solution if one is given that the determinant of the 
coefficients is non-zero (5).  Upon taking (41) and (51) into account and setting ( )i

rsL  ≡ 0, 

one thus concludes that the matrices ϕrs , 
( )l
tpγ  define an effective strain.  It is provided by 

the deformation that is characterized by the displacement ξr and the rotation ρrs .  Q.E.D. 
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 (5) Under the correspondence of the element P of C, one assumes that the reference triad has its third 
axis parallel to the rotational axis that is defined by the matrix ρrs : Let θ be the angle of rotation, so one 
has: 

ρ11 = ρ22 = cos θ,  ρ33 = 1,  ρ21 = − ρ12 = sin θ, ρi3 = ρ3i = 0 (i = 1, 2). 
 
One easily recognizes the validity of what we asserted in such a situation. 


