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Abstract. —With the goal of making a contribution to a formulation of integral type of the mechanics
of Cosserat continua with finite deformations, we establish: 1) A variational property of stress, 2) A
condition of integral type on strain.

| recently established a variational property of stfessfinite deformations of a
classical continuum of hyperelastic tydé, [2]. | treated a property of stationarity — i.e.,
of minimum action — of a potential energy that not arttgracterized the real stress but
also permitted one to give an existence theorem andrtcetve of a pure integration
procedure in the presence of unilateral surface constraint

In the case of more complex continua — viz., ones muitno-structure — it is only in
the linearized case that it is possible to establistriatienal property that is analogous
to this and of the same magnitu@ [ On the other hand, this is not possible in the case
of finite deformation, and the fundamental reason istsxé the fact that it does not seem
possible to express the field equation without making therhation intervene in it,
unlike what happens in the classical case, in which onealppge Kirchhoff's
asymmetric representation of stress, as one can dfmalAdifficulty is then connected
with the extreme complexity of the constitutive equradi

With the goal of expanding upon the question, whilescering the case of a
hyperelastic Cosserat continuum that is subject tcefidéformations, we show how, in
reality, the stress is not characterized by theostatity of a potential enerdgy, and also
establish what the first variation &f will equal that corresponds to real stress. More
precisely, we established that the first variation pidve to be equal to a quantity that is
annulled when one linearizes the problem — as with smitmations B] — in which it
has higher order than the first variatiorBof

The integral property that is established for real stoasinot have the operational
significance of the analogue that was established foclt#ssical case, but certainly can
be considered to be a first contribution to the formabf the mechanics of Cosserat
continua in integral form. With the goal of extendingttbontribution, and also because
the question is directly linked to the integral propentywhich the variational property
that we established is founded (which is, however, not i), | would like to point

() Submitted for editing on 4 August 1975.
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out the possibility of giving a global form to the intalility conditions for the strain
variables.

1. Introduction. Let C andC' be the reference configuration and the current one,
resp., for a Cosserat continuum, ReandP’ be corresponding points, and yetx; be their
coordinates with respect to the same oriented, ttanguilar reference. From the purely
geometric and kinematic viewpoint, the transformatiamfiC to C' is defined by the
knowledge of the relations:

(1) X = %i(Y1, Y2 Y3 1), Rs = Rs(y1, Y2 Y5 1),

whereR,s is the matrix that expresses the rotation thatge@ated witlP. One supposes
that (1) satisfies all of the required analyticahdtions for the one-to-one character of
the correspondence betweemandC'; e.g., continuity, etc.

The state of tension (i.e., stressfinis defined by the knowledge of two asymmetric
matricesX;s, s, the former of which corresponds to the usual stre€&irchy form,
while the latter one expresses the density of contagbles.

If a comma denotes the derivative with respectyt@and one supposes, as is
legitimate, thaD = Det || s || > O then one sets:

A%
2 rs = ———— | rs:ul
(2) 5 7 5

The stress variableK;s , As , whose significance is obvious, satisfy the field
equations:
©)) Kis1= Fry  Arst + &ms Ko Xm 1 = M; (in C),

(4) Kan=f, Ain=m (ono),

whereF,, M, denote the volume force and couple densities, respn wdferred toC,
which consist of the inertial force in the dynamicasesawhilef,, m, consist of the
corresponding surface force and couple, resp., that eireden the boundaryg of C.
In (3), ems denotes the Ricci indicator of three-dimensional Eumhidipace, while in (4),
N, is the interior normal ta.

If we leta denote the matrix of components then the strain is characterized by the
four matrices:
(5) e=1@"a-1), v=a"R, vV =aPR .

One observes that if one sets:

(6) Z0 = 1RMR,
then it not only results that:
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(7) Z(I) Rpr Rpsl % Rpr,I Rps, Rps,l - ZZ M Rpr y
but also that:
(8) e= 1w -1), v = v 70,

One concludes that ultimately the strain is charae@rby the knowledge of the
matricesv, Z©.

2. A particular form for the constitutive equations. — The new quantitigs can be
expressed by means of three paraméersOne sets:

1 R,
(9) BI|(QS) E s aQI F{a

Under the hypothesis of hyperelasticity, there exisfot@ntial energy densit\W
from which the stress is derived. It will depend upon timeldmental variabless, R,
Rist , which characterize the geometrical behavior of as@was$ continuum only through

the agency'j of the matrices;s, Z, and one has

rs ?

ow ow
K =—— ==
rs aVSp Rrp axrs
(10) W
ArsBrI =TI
Q.

In the sequel, it will be convenient to give a more appaitgform to the constitutive
equations (10). To that end, one observes that on #e dfy7), (9), it results that:

(11) z9 =-z0 = 3 €rgs Rog Bpi Qit -

SinceW can depend upo®@, s only by means of th&?

rs ?

from (10, 2) it follows that:

oW 0Z\” _ 19w
(12) ArsBr =-— Z(S) an = Eaz(ts) €rqt Rog By -

One knows that DetH;, | > 0. One therefore deduces from (12) that:

() One can treat this as a consequence of the principteatérial indifference. NaturallyV will
depend on other variables, in general, e.g., temperatare Nevertheless, such circumstances will not be
considered here.

(®) See (40) ing], if one assumes that the coupliig = X, m Yo is valid in it.
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1 ow
(13) AI‘S - Eepmq erﬁ
pq
Set:
(14) TS]) =&mg RmArs,  Ars =3 €&mg Rm TSJ) :

so from (13), one ultimately has that:

ow

(15) r© = - 2
T 9z0

A convenient transformation of (10, 1) can be olgtd from:

(16) Nep = KrsRep s Krs = Rrp Ngp .
It follows immediately that:
(17) Ng = - W

ov,,

Equations (15), (17) constitute a particular faimat is adapted to the context that
applies to the constitutive equations of a Cossematinuum with free rotations.
One easily convinces oneself that relations ((15)) are invertible. One can s&f (

(18) Vis = ars(N; T(I))a Zr(é) = ,Br(sl)(N; T(I))’

where thears , B are functions of the variabled,, , 7{) that are deduced from the

inversion of (15), (17).
Set:

(19) W == Wa(N; 1%); AN: 7] = aoq Noq = BZS0,
soW defines a second form for the potential energgl, are easily deduces that:

(20) Vrs:_aTrS, s = ng).

3. A variational property of real stress. — Suppose that a surface force and couple
are given on some path of g, while some translations and rotations are giverthe
remaining partsz. Ona, one hast = X, Rs= R, whereX , R_ denote functions

() This does not begin to address the complex and integegtiestion of the possible priori
breakdown of uniqueness in thg , ,st') that are deduced from the inversion (18). Furthermbeesame
guestion presents itself in the case of classicalraget



Grioli — A formulation of integral type in the mechesiof Cosserat continua 5

that are defined om» . LetV be the class of possible reactions and reaction cquples
while ¢ andy are allowable constraints. L&, A7 be the matrices that express the

5 !
real stress that corresponds to the current configur@tiomhich are characterized by the
values ofx, Rs at the instant, values that will be indicated by’, R?.

Any other stress that satisfies (3), (4) om and corresponds to the current
configurationC' and to the volume, inertial, and surface @pforces at the instarntis
obtained by adding incremem&s, AAsto K2, A7 that satisfy the equations:

rs?

(21) AKisi =0, D +emsAKg X, =0,
= O 1
AN <— A ((22?;
22) @ 2)s
=0 (ong,),
AArl nI
= A/'lr (On 02 )’

whereAg@, Ay denote increments in thg, 4 that are allowed by the constraints.
From (21), it follows immediately that:

(23) .[c{AKrI,I XrD—%[AArIJ +ermsAKs| XE]I] erqp R;)} dc =o.
Taking (22) into account, one deduces from (28):th

(24) '[C{AKrI,I XrD_%erqp[Rqu,lAArl + quermAKd XEH] } dC
+ LZ[AqorX -1g, MR, ]1do, = 0.

Letting Riq; denote the anti-symmetric part Rf, and keeping (7), (14) in mind, it
follows from (24), after some calculations, that:

(25) [ {ReZ"A18 —RoyxuOK, +AK, X, }dC+ [ [AQR —3e 04 R,]do, =0,

where v, and Z'!" indicate the expressions fag and Z! that are provided by (5), (7)

when one identifieg; andRs in them with x” and R, respectively.
After some final calculations, (25) becomes:

(26) [ {Ruz,"Ar0) +[0, Ry IViAN, } dC+ [ [A@X ~3eqMuR,] do, = 0.

Taking into account the fact that the real stremgsfies the constitutive equations
(20), it ultimately follows from (26) that:
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ow’ ow' _ _
(27) .[C{a T(I) ATt(SI) DS + oN ANIp[apl - I%DPS] }dc - '[‘72 [Aqorxr _%erquﬂr qu} dUZ =0.
tp It

SetR, = Rs—ds, and additionally:
(28) B= [ WdC-[ [#% ~36q4R,]d0; .

One immediately recognizes that (27) can be ptedan the form:

_ ; aW’ 0 1 6W'
(29) AB _—jC{RpswArts —Rsm]aTAN,S}dC,

Im

about which, one asserts that — as opposed to émaens for classical continua — the
real stress does not render the potential enBrgtationary for the class of stresses that
are in equilibrium with the given volume, inertiahd surface forces, which can give rise
to constraint reactions that are allowed by thestamts. Nevertheless, one can observe
that in the linearized cag&will result in stationarity, properly speakingaticorresponds

to the real stress, as was observed3]n Indeed, one easily recognizes that the right-
hand side of (29) is set equal to zero in the cdsenall deformations that are consistent
with the linearization of the problem, in whichgeeding — as is necessary — the quantity
Rs — ds to be of first order, it follows that it is of Hegr order with respect to the left-
hand side.

4. A possible integral formulation of the compatibility conditions for the strain
matrices. — Suppose that the strain matriges y,‘p') are given, consider a rotation matrix
P, and set:

(30) Prs = S Pns tpl) = %pmtnlg:;’

where the matricegn , 77{) are uniquely determined and th¢ are assumed to be

mp

skew-symmetricédmi-smmetrica) in the lower indices. In addition, one sets:

(31) Nép = Kr'sprp ! T'p(qS) = €y pfm/]r’s J
where K/, A, represent an arbitrary solution of the differdraizstem:
(32) Kr’I,I = O’ Arll,l +ermsK;I<(n1 = 0 (InC)’
(33) Kin=0,  An =0 (ona).

One considers a system of integral equations:
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[_NLg,dc =0,

(34)
,[C[ppsyt(g)rt’s(l) _p[pt]¢ItNl’p] dC =0.

One has the theorem:

A necessary and sufficient condition for the matrices @, )\, the second of which is

skew-symmetric, to represent a strain in a Cosserat continuum is that it satisfy (34) for
any choice of N, 7" that are constructed on the basis for (31) with any possible

solution of the system of equations (32), (33). In that case, the transformation from
which the strain is derived descends precisely from the rotation o< [and a suitable
displacement vector].

The condition is necessary: Suppose that:
(35) S = Emr /7,2; = Lp, 1 -

It follows from (32), (33) that:
[_Ki,&dc=0,

(36)
[ 14, +enKLg, ] dC =0,

One deduces (34, 1) from (36, 1) immediately.
When one takes (30), (31) into account, (36, 2) becomes:

(37) [ Orps +20 Ny 1dC =0,

which, again, on the basis of (30), (31), trans®mto (34, 2).

The condition is sufficient: Assuming (30), (31), one suppose that (34) tisfed
by the ¢, yiv for any choice ofN; ,7$ that are constructed from solutions of (32).

Introduce an arbitrary double system of functigpsthat are differentiable and zero on
the boundary o€ and set:

(38) Kle = & Xrti Ni, = €si Grp Xiti -

One easily recognizes that tihe, that are defined in (38) satisfy (32). (34, 19rth
becomes:

(39) | euéexa,dC=0,

() Observe that the hypothesis that (33) is satisfie@menters into the proof of sufficiency. It is
enough to suppose that tlyg are zero on the boundary©f but arbitrary everywhere else.
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and from the arbitrariness g this implies that:
(40) € &rsi = 0.

(40) shows the existence of three functignthat satisfy (35, 1). As a consequence,
it then results that:

(41) @rs = &mr Prs -
Taking (40) into account, one recognizes that the fonstihat were defined by (38,
1), as well as:
(42) /]r’s = €& pm€oys gm,a)(pq )
satisfy (32, 2) for arbitrapgq . It then follows that:
(43) Tgt) = €t Ors Evm Exl sz,a)(vq ’
and on the basis of (30), (38), (41), and (43), (34, 2) besom
(44) .[C{%ewterpmeaql pr¢p£sprt,72)gma)(pq + p[pm]quglepq,i} dC = 0

(44) simplifies to:
(45) .[c{eaql gm,a[% egrrerpm,]gr) - 'O[pm],i])(pq} dC =0,

which, upon taking into account the equivalence:
(46) LPpm = %erpm € 1e Pre

and the arbitrariness of thgq, gives:

(47) €pm € € e émo (’75;) - Pri) = 0.
Set:
(48) Crpgi = €rpm €aqji €m, Oi = errz(’?fi) — Prsi),

so (47) assumes the form:
(49) Crpgi Ori = 0.

This constitutes a new homogeneous, linear systequations in the new unknowgs.
One can prove that the determinant of the coefiisi is non-zero, in general: i.e., Det
| Crpgi | 2 0. It then follows that:

(50) M = Pesi + LY,
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where thel!) constitute an arbitrary system for ainthat is symmetric with respect to
the lower indices. From (30, 2), one obtains:

(51) o = % Pra(Prpi + L)

and the condition of skew-symmetry for tﬂ%’ implies that:
(52) Pl + 0 L0 = 0.

The system of six equations (52) — for any valué efin the six unknownd!)

T

admits the zero solution as its unique solution if angiven that the determinant of the
coefficients is non-zerd’, Upon taking (41) and (51) into account and settifig= 0,

one thus concludes that the matriggs, )i define an effective strain. It is provided by
the deformation that is characterized by the displac¢é and the rotatioms. Q.E.D.
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() Under the correspondence of the elenfeif C, one assumes that the reference triad has its third

axis parallel to the rotational axis that is defined sy tatrixg. : Let 8 be the angle of rotation, so one
has:

P11 = P2 = COSH, M3=1, 1=~ Pr2=Sing, P3=ps=0 i=12).

One easily recognizes the validity of what we asddrtesuch a situation.



