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A purely geometric overview of linear manifolds of screw®ir axis positions, and
parameter distributions shall be offered here, as wstsdieveloped bir Robert S. Ball
(Theory of Screws, A Study in the Dynamics of a Rigid Bdayblin 1876, German
version byHarry Gravelius asTheoretische Mechanik starrer SystemBgrlin 1889;
finally, in A treatise on the theory of screw€ambridge, 1900). This will be
predominantly cloaked in mechanical garb. One finds dhgtrigid body that moves
with an arbitrary number of degrees of freedoig 6) belongs to the screws ofiaear
manifold R, of rankn, and will not be influenced by dynames, which belongnatlzer
screw manifoldP, of rank v = (6 —n) that is “reciprocal” to the first one. We willasne
some familiarity with the simplest operations Hermann Grassmann’sheory of
extensionsA,, 1844,A,, 1862). (Cf.E. W. Hyddn the Annals of Mathematics, vol. 1V,
no. 5, 1888, and by the same autfidre directional calculus, based upon the methods of
Hermann GrassmaniBoston, 1890). Our three-dimensional space is determinealiby f
mass points (i = 1, 2, 3, 4) that do not lie in a plane. Each painb it can be

represented by means of suitable numerical quantjteessthe multiple sum = Y x g of
these four points. This summation is known as th@eceof mass determination in
mechanics, where the are the general linear point coordinates, and in paaticulhen
e1, &, 63 are infinitely-distant points — i.e., segments ofstant direction and length —
they will be homogeneousessianparallel coordinates.

We will understand thexterior product of three mass points — eq,, e, e; — to
mean the plangslate or plane segmeng{ e; e3), and not merely its surface area, and its
position will be regarded as — e.g. — a force-couplesasséd in mechanics (rotating
twin, the exterior product of two segments), but atsamembership in a certain plane.
Two plates will then be added like two rotating twins, @xt¢bat one must establish their
membership in the line of intersection of the planes gloathrough the given plates as
part of the sum of plates. In that sense, everedlan space can be represented as the
multiple sum:

= baagtbBaatGEeaat+t &b eee;

of four basic plates of the reference tetrahedrome umerical quantitie are thus the
general linear plane coordinates; in particular, wiemn,, ande; are segments, they will
be the homogeneoltitessianplane coordinates.
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We will understand the exterior product of two mass\go+ e.g.g; ande, — to be
the line segment, orod (e; &), which is not merely regarded as having a length and
direction, but also membership in a certain line, likerad or also a rotational velocity
around an axis in the mechanics of rigid systems. (Ttiem can also be regarded as
theregressiveproduct of two plates; e; e; ande; e; e4.) In particular, ife;, as well a®,,
is a segment then the infinitely-distant rogjef) will be called afield; it will then
correspond completely to the geometric image of theeqnof a rotating twin or also a
parallel translation quantity — i.e., an angular velocamponent of a rotation around an
infinitely-distant axis. Rods will be added like forces angular velocities for axial
rotations.

Any rod | can be linearly derived from the six basis rods of tlEmentary
tetrahedrore; e es ey :

€162, €163, €164, €263, E3&4, €42,

by suitable numerical quantitips (i, k=1, 2, 3, 4):

| =2 pxe e.
When there is a likewise-to-be-discussed quadratic retdtip:

P12 P34 + P13 Paz + PraP3=0

between the determining piecgsx , they will be the so-calledPliickerian line
coordinates, which, &s. Klein remarked Kichteuklidische Geometri€&ottingen, 1893),
should actually be named f@rassmannwho presented his comprehensive theory in
1844, and thus two or three years befligcker If the aforementioned relationship does
not exist then:

Y. pkaa=L

will not be representable as a rod, but only a sumt déast two skew rodl andl»,
which will then be callecconjugate:L =1; + 1, . (Cf., Moebius Ges. WerkeLeipzig,
1886, Bd. lll;Reye, Geom. d. Lagkeipzig, 1892, whose used the expression “reciprocal
polars in the null systemn,” instead of “conjugate reL,” for the skew lines on which
andl, lie.) If is known that for a given suly if one of the conjugate lines — e.l3.-- is
arbitrary then the length and senselpfas well as the conjugate rédwill then be
determined already.

We callL ascrew it can be represented in a unique, canonical way asutheoa
certain rod and a fieldf that is perpendicular to it:

L=1+f.

If one givesf the form of a right angle whose one side has thgtlenof | then, for
Pltcker, the lengthp of the second side will be called gharameterof the screw. It shall

be positive or negative, and the corresponding screwbeiltalledright-woundor left-
wound according to whether the fiefddoes or does not appear to describe a clockwise
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rotation to an observer that looks in the directioresp. The opposite convention would
also be permissible. If we multiply by an arbitrary numerical factor then the axes and
the parameter of the resulting screw would remain thmeesa All screws that are
generated in that way with the same axes and the saramegtar will then define a
screwing motion A screwing motion then relates to the screw aslitie relates to its
rod. It is invertible and uniquely linked witfloebius’sconcept of aull systemsince
screwing motions and null systems are determined ideartical way by the association
of conjugate lines. We remain at the standpoint of thdidtaic metric. | andf then
define the single conjugate pair bfthat is polar with respect to the absolute sphere
circle. (If one had established anoth@ayleyian metric surface in a non-Euclidian
geometry then there would also be, in general, a polajugate pair relative to it that
would be suitable to a canonical representation.)

If one adds a parallel field th such thatl is displaced parallel td, then by a
simultaneous subtraction of this field frdrane will obtain:

L=1"+f;

i.e., as the sum of a rod that is equipollent td and a fieldf’ (that is no longer
perpendicular to it). If the perpendicular separatibinamd| “has the lengtlw thenf” will

be rotated with respect fothrough an angle, and indeed around the direction of the
planell ’; which is perpendicular g and one will satisfy the condition:

p=ptana.

If wis an arbitrary point then the plane of the plate:
(wb) =(ef)

will be called itsnull planerelative toL [if | “goes throughv then one will havew 1) =
0], and p = p tan a will express the metric relationship between the lengt the

perpendiculamw, from w to theaxis | of the screwL (i.e., theaxis of the null systenh),
and the angler around which the null planev{ f”) of the pointw is rotated when one
goes from that point tar (throughwo w). The parameter is thus equal to the separation of
those points of the screw axis whose null planetesulan angle of #5vith that axis.

With the concept of &near manifold, one can let six fixed screws(i = 1, ..., 6)
enter in place of the six basic rogls , and derive any screlvfrom them, as linearly-
independenbasic screwsusing suitable numerical quantitigs.

L:Z/]i Li.

The A are then the generBall screw coordinates)(

() Ball always used numbers that were proportional toltfadove as coordinates, which made the rod
lengths ofL equal to unity. As a result of the latter requiremasetwould not like to use that convention.



Griunwald — Sir Robert S. Ball's space of linear sstew 4

We understand thproductl; |, of two rodsl; andl, to be mean the volume of the
parallelepiped that they define. It shall be posiovenegative according to whether a
float (Schwimmerthat lies on one rod facing the other one seems thréeted towards
the left or the right, respectively. One Had, = I, |1, since the rods are also point
products of rank two. The term “product” will then be jiksti by the fact that the
distributive law is valid for the addition of rods, unddmich,l; |> will remain unchanged
when one these rods (or even both of them) decompatgesuimmands and one defines
the algebraic sum of the resulting sub-volumes. @nains the meaning of@oduct of
two screwgL A) from the distributive law in the precisely the saway, and it will be a
sum (4) of sub-volume numbers that is independent ofahdom choice of conjugate
rods, and whiclBall said was twice theirtual coefficientof the two screws. If it is zero
then we, withBall, will call the screwseciprocal In that caseReyesaid that. andA
“supported” or “carried” the null system, while. Klein (Mathematische Annalen 1)
spoke of annvolutory position.

The number:

12=2 L =21 +1) (h+1)=lhlb=2(0+H)(+H=1F=T2

is characteristic of any screlw=1 + f, and shall be called theolumeof the screw K.
Grassmann, Jr.,used the wordcharacteristic for it in “Schraubenrechnung und
Nullsystem,” Halle, 1899). The relationship:

I 12=1f = 12p = const.

that it yields is an expression Ghasles’s theoreran the invariance of the volunhg, of
the parallelepiped whdn and |, are arbitrary conjugate rods lof (Our sign convention
implies that the screw volume and the parameter awewe the same sign.) As a
consequence, a rod or a field can be regarded as awttrewero volume; however, the
parameter will become 0 in former case anth the latter, if the parameter is the number
by which the length of the rod axid must be multiplied in order to obtain the surface
area off.

Conversely, if the volume of the screwgsii2 =4l = 0 then no two conjugate rods
can be skew; i.eL, will itself be a rod or a field, in particular.

We would also like to establish this condition equaf@ma screw to degenerate into
a rod (or especially a field) whénis not real, but of the form:

L =L+ Ly /-1,

in whichL; andL, mean real screws.

L= (-1 +2LL, /-1 or L2=13 and Lil,=0
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then says that the screlWwsandL, must be reciprocal and have the same volume. In this
case,L is called acomplex rod and its screw is called amaginary Staudt line of the
second kind.

It is easy to convert théne equation £ = O into the relatiorp;2 Opss + ... = 0
between théllickerianline coordinates. One needs only to consider the sqimares

L =2 pik & &,
such as:
eelke=0 etc., (the volume of identical rods is zero)
eelke=0 “ “ intersecting “
€1 & [y & = 166364, “ “ the rodse; e; andey & is equal to that of
e & andes e; .)

If we would like to write the line equatidtf = 0 in, for example, simply-chos&all
screw coordinates, instead Bitickerianline coordinates, then we could choose the six
basic screws; (i=1, 2,3~ 1,-2,— 3) to be:

Lim=@es+ee), La=(@1e+ere),
Lo=@et+ere), Lo=(@16+ee),
Lz=(@es+ees), Lz=(e1&s+&3e),
which represents a system of co-reciprocal basic scvdven each; is reciprocal to all
of the five remaining ones, but not to itself, as egtemultiplication would yield. If one
chooses, in particulaey, e, ande; to be mutually perpendicular unit segments entib

be a point then thé; will be in canonical form by themselves. Now, any wcteis
determined by siX; according to:

L=> AL (=%1,+2 +3).
If one recalls the fact that:

I-i = L; = L; :—Lfl:—szz—Lzs
then it will follow fromL? = 0 that:
AN +AZ+AD)-(A2+ A%+ A% =0.

If we desire a co-reciprocal system with equal-volurasidscrews then we need
only to introduce — e.g. — the imaginary screws:

L_l\/—_].: L4, L_z\/—_l: L5, L_3\/—_1: Le,

in place ofL_3, L, L3 . If the deriving numbers that belong to the latterarels, As
thenL? = 0 will mean the same thing as:
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> A2=0 i=1,..,6).

From the geometric meaning B&ll's A;, when referred to a system of co-reciprocal
basic screws of equal volumellz > A L will yield, upon multiplication by :

Likk=0, i=1L =eieogses=1, wher&k#i,i=1,...,6)
LLi:/]iL\-ZZZ/]i,
i.e.,
Ai :%(L Li).

The A mean one-half the product (Ball's virtual coefficients) of L wikle t
corresponding basic screws, L

so one will have:
L=> (AL L)L
identically.
The meaning oPltckerianline coordinate; x follows from multiplying the equation
L =D pix & & with (em &), whenen & means the opposite edge & &) of the basic
tetrahedron, and thus assume &t e, e, =€ € e & = 1. Under this assumption, one
will get: pix =L Oen &).

The pk are the products (or moments, Ball's virtual coefficients) ofceevs L
(especially a rod L = | when?.= 0) with the opposite edgds &) to the geg, of the
basic tetrahedron to which the deriving numbeis p

One will then have. = [L Oen e)] e &, identically. In particular, it =1, since

L2 =0, then a roQ., pik & & will be representable as the connecting (intersectesp.)
rod of two points (plates, respcandy, so one will get:

|=Xy=2‘§ ?k (B &,

by exterior multiplication, theimn this casethe pix will be the six determinants of the
matrices of coordinates of these points (plates, redp.}xhe following section, we will
prefer thel; over thepy .

Introduction of linear manifolds of screws and their regprocal domains.

If the A (i = 1, ..., 6) are arbitrary theln = > A Li can mean any screw in space.
One can then define a linear space of sciewsf rank VI or dimension five that then
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containse® screwing motions. (The dimension number is one tkasGrassmann’s
rank number.) We assume that there exists a homogeieeas equation:

(l) Z miAi=0

between thel;. When one setd; = ). au L, this will be identical with AL L) =0,
which says thaany screwL of the linear screw domaky, — viz., theweb of screwsfL
— that is cut from the domain of all screws in spacedpyations (I) is reciprocal to a
certain screwA;, and thus also reciprocal to any screw of the screwiationP, = x; A;
(x4, and arbitrary number) that is defined Ay. Conversely, a weRy of reciprocal
screws belongs to any screwing motirthat is fulfilled by any screw. A L whose/;

satisfy the linear, homogeneous equation (I) when dheare assumed to be the
coordinates of a screi of the screwing motioR, .
If two mutually-independent, homogeneous, linear equations:

() 2. %A =0, ., which are identical wit AL=0, ,
> ayA =0, AL=0,

exist between thd; of the screV\E Ai L, whenA; andA, mean the screws:

(aZor]

then that will say the same thing as saying thgtaabitrary screwL of the linear space
of screws of rank IV — viz., theush ofrays Ry — that is cut out from the screw domain
in space by equations (ll) is reciprocal to tweeénly-independent screws andA,, and
thus also reciprocal to any screw of the rankfedr screw space — viz., thencil of
screws:

Pi=x1A+X% A

(x1 andx, are arbitrary numbers) that is determined by #éitieed two. Conversely, a bush
Ry of reciprocal screwk = 2 A Liis established by two arbitrary linearly-indepertden

SCrews:
{A=Z%h}
A=Y asl,

of a pencil of screw®, that they determine, when one demands the existhibaear,
homogeneous equations:
{ > a4 =0, }

> aA =0

between thé .
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Analogously, if three linearly-independent, linear, honmegels equations:

S a,h =0 AL=0
(1) > ayA =0, ¢, which are identical t§ A, L=0,
> ayA =0, AL=0,

exist between thg; of the screw. = Z Ai L, whereAy, A,, As are the screws:

A=Ya,lL,
Az:zazil-i’
A=Y asl,

then thewo® screws ¢? screws)L that are compatible with these three equationkfilil
up a linear, rank-1ll, screw domain — viz.slaeaf of screwdR, — whose screws will all
be, as we say briefly, reciprocal to themselves watspect to the screws of the sheat:

P =X1 A+ X A2 + X3 As

(x1, X2 X3 are arbitrary numbers). Since the relationshipveen the reciprocal sheaves
Ry and Py, is completely mutual, ead®,; will, conversely, correspond to a sheaf of
reciprocal screws, namelyreciprocal sheafR; .

A pencil of screws (that are all screws) will he out by four linearly-independent,

linear, homogeneous equations betweenAhef a screwL = > A L, which will be
identical to the four equations:

(V) AL =AL =AL =AL =0

(Aq, ..., Ay are linearly-independent screws), which is reapidto itself) relative to the
bush of screws:
Pv=xtAr+ ... +X3A4

(x1, ..., X4 are arbitrary numbers). Conversely, a bBghthat is established by arbitrary
linearly-independent screws will determine the plesfcscrewsR; that isreciprocalto it.
Analogously, five linearly-independent equationsa@en thel; :

(V) AlL=AL=..=AL=0

will determine, on the one hand, a screwing mofpwf screwsL when they establish
the five ratios of thel;, and on the other hand, the web of screws:

Py=xt A1+ ... +X5 Ag
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(X1, ..., x5 are arbitrary numbers). Conversely, ifPg is given by five linearly-
independent screws then the reciprocal screw will berdeted by it.
Due to the reciprocity in the relationship between recialrdomain®, (n=1, ..., V)

andP, (v=V, ..., I), the cases (I) and (V), (II) and (IV) aretrgeometrically distinct,
and for that reason we will have to seek:

()  The screwing motiorir, and the reciprocal web of screWs that is connected
with it,

(1) The pencil of screwR, and the bush of screws, that is connected with it,

() The sheaf of screwRy; and the reciprocal sheaf of screls that it connected
with it,

in order to provide an insight into all possible axis posgiand parameter distributions
of the linear space of screws. For many theoremattegbtherwise suitable to what we
are doing here, we refer ©. Miller's “Die Liniengeometrie nach den Prinzipien der
Grassmannschen Ausdehnungslehre” in the Wiener Moffizish&891, 2.

The line framework of the linear space of screws.

A curved manifold of screws that degenerate to lines wilcbt out of any linear
space of screwR, (P, resp.) of rankn (v, resp.)(n,v =1L IL1II,IV,V,VI ) by theline

equation = 0, namely, théine framework(Liniengeripp@ r, in R, (o, in P,, resp.) in.
Conversely, the entire associated linear screw spatiebwidetermined by such a
frameworkr, (0, resp.) when tha screws that establish & can be chosen from the
ones that are cut out by the nonlinear equdtfon 0.

The frameworky, of the rank-VI screw domaiRy, in space is the linear manifold itself.
The frameworky of the rank-V screw domalRy is a linear complex

The frameworky of the rank-1V screw domaiRyy is a linear congruence

The framework ), of the rank-Ill screw domaiRy, is a second-degree ruled surface

The framework, of the rank-Il screw domaiR, is a skew pair of lines

One cannot speak of the framewaoylof the rank-1 screw domaiR,, in general, since the
screw itself would be lin& =r,, as a very special case.

In order to establish the validity of these assesiimne needs only to apply tlasv
of intersection of linear domaingwhich is also understandable, with no further
assumptions, in the consideration of systems of lineartieqsa to linear screws (ray-
manifolds, resp.). It reads:
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If a linear domain of rankr and one of ranlG lies in one of ranlky; and no lower
ranks(a < B, f< ¥, a+ > )) then the first two domains will have a linear domain of
rank (a + —)) in common.

(Grassmann’s A 1844, pp. 183, § 126y, 1862, pp. 13, 14, no. 25, 26.)

In fact, for a frameworky of a space of screw®,, a planar pencil of screws will go
through every point in space, and one likewise lies inpdaaye. The rays of a sheaf or a
plane will define a special screw domain, namely, ad@yain of rank Ill, since all rods
in it, and only them, can be derived from Il linearly-indegent ones of them.
However, anyRy will have a rank V + Il — VI = Il linear domain, and tua plane
pencil of rays, in common with a rank-11l sheaf oysgplanar line field, resp.) that lies
with it in a screw domain in space of rank VI and ne@do It will follow from this, as
one can also infer directly in a completely analogoag (viz., V + Il — VI = 1), that any
planar pencil of rays in the space | are associatddrajts inry (the framework oRy),
or more briefly, thaty is alinear complex.

For the framework,,, anR, will go through every point, and likewise a ray will lie
in every plane, so every screw dom&in, and thus also its framework,, will have a
IV + Ill = VI =1 linear domain — therefore, a linein common with a rank-IIl sheaf of
rays or a planar field of lines in the same spage(and no lower-rank screw domain):
i.e.,ry Is then dinear congruence.

The frameworkr;, of R, that is cut out by? = 0 is a skew pair of lines: L&, be
determined by the screws andL:

L=A1Li+A 0L
and thus an arbitrary screw [&f :

L% = A2L2+ 2 A,(LL,)+A%2=0

will determine two ratiosd; : A, , and thus two lines, which must be skew, since
otherwise it would not be true that conversely onelccoot derive screws that would
degenerateo lines fromL; or L, . This skew pair of lines will be real and separate,
intersecting, or &. Staudtimaginary line-pair of the second kind, according to wéeth
the discriminant of %

L (LL)

5 >0,=0,0r<0,
(LL) L

resp.
The frameworkr;, of anRy, is a second-degree ruled family, so the surface that is
filled up by rays of that domain will be met twice by an arbitrtimg o : The rays that
meeta will then belong to aRy as the line framework, . HoweverR; andRy have a
rank Il + V — VI = Il linear screw domain in common wieokne framework consists of
just those two lines atf; that meejn .
This ruled familyry, can degenerate into a pair of pencils with common waysn
the Hessiandeterminant:
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L (LL) (LL)
(LL) L (LLy
(LL) (Li) L

of the line equation:

LZZ(A]_ L1+A2L2+A3L3)2:0

(A1, A2, A3 are arbitrary numberd;;, Ly, L3 are linearly-independent screws) vanishes.
Cf., the aforementioned treatiseEfMduller.

If R, andP, (n andv positive whole numbers + v = VI) are two linearly-reciprocal
associated screw domains then their framewaoyrkeand p, will also be reciprocal — i.e.,
any line ofr, will cut each of thep,, and conversely.

(1

(1)

(1

If one can speak of a framework of R, in the case of reciprocal screw
domainsR, andPy, thenR = r, must represent a line, in particular. will
then be the linear complex that degenerates to themsysfttransversals of .

For reciprocal domaing, andP,, each of the two lines of the skew pBir
will cut each ray that belongs to the reciprocal congreen, so the two lines
ry will be the guiding lines of the congruenpg .  In particular, as was
already remarked; can consist of two infinitely close skew lines, whiamnc
be thought of as being determined by one of tli@nd an infinitely-close
line of the family that lies in a second-degree surthe¢ containss. This
family can be replaced with an equilateral parabolowith the vertex lineG.
av will then consist of the transversals @fthat contact the surfaceat its
point of intersection witl. In particular:

(") ry can be a pencil of rays (there are then no prop@wscin the
associated), andgy can be a pencil of rays with the center of the
pencil of g, as the carrieand the line field of the plane of the pencil
ofry .

The line frameworks); andgy to two reciprocal sheaves of ragg andPy,
are, in general, the two families of a second-degrdacgir In particular:

"y If ry is a pair of pencils of rays with a common ray thmn will
consist of a pair of just such pencils, each of whichsgeses the
center of one of the two pencilg and the plane of the other. Even
more especially:

(") ry and gy can be one and the same pencil of rayplanar
line field; in this case, there will be no proper screwshe
domain whose volume is non-zero, and one will have:

rm =Run =01 =Pu .
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Metric relation between reciprocal screws

|. The screwing motioR, and the reciprocal web of screws .

If two screwsL and/\ are represented in canonical form, so they are surasad|
(A, resp.) and a fielfl(¢ , resp.) that is perpendicular to it whose volumepigA7z resp.)
if 1 (A, resp.) means the (always positive) length of the rablparz resp.) means the

parameter of the screlw (A, resp.), then the equatia\ = 0 (which will makeL andA
reciprocalwhen it is true) will demand that one have:

LA=(+H(A+d) =g+ M+1A=0 (since ¢ = 0)
or
IAmcoglA+ A pcofl A-el sifi 4 =0,

if we denote the angle that the axemd A of both screws make b])M and denote the

shortest distance between themebyBy cancellingl A , this will give:

(p + 7 cos|IA —esin|[I4 =0
or
(p+7)=etan|lA.

In particular, it follows that:

Two screws whose axes intersect are reciprocal inein parameters are equal and
opposite or when the axes intersect perpendicularly

The point of intersection of the axes can thustia finite point € = 0) or at infinity
(|I_ = 0); when the axes coincide,+ 77will serve as the reciprocity condition. Screws

whose axes intersect perpendicularly are alwaygroeal for completely arbitrary
parameterg and sz If the axes of reciprocal screws are perpendicid each other then

they must also intersect. If this were not theedd®n one of the two parameters would
have to be infinitely large; i.e., no proper screruld be present, but only a field that
would be perpendicular to the axis in question.

We now fix one of the two reciprocal screws — day,whose axis (which contaihs
might beG, and examine the possible positions of the assy@ll as the parameter, of
any screw\ that is reciprocal ta, and thus, to any screw of the screwing moRpafL;
i.e., we study the most genevetb of screws P(if we remark that each of them will also
conversely determinenereciprocal screwing motion)!

Above all, we show thatany linel" in space can be the axis ofAain Py whose
parameterris deduced from the reciprocity condition. On ttker hand, ifr7is also
capable of taking on an arbitrary value then arnreefinear complexof axesl” of the
screwsA in Py will belong to everyr= const.: Just astan M =p can be regarded as
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the metric defining equation of the linear comples=(0) of the linel ;= g relative to
whose rod the product (cMoebius’sdefinition of a linear complex) with is zero:

etanm =p + /7= const.

(77const.) can be regarded as the metric defining equatianioear complex with the
same axi$s whosedividing constantviz., the shortest separation between complex rays
of G that subtend an angle of%4fvith that axis) is greater tham In addition to the
complexsr= 0 and the line framewor&, of the welPy , the degenerate complexes:

p+m=0, lL.e., 7m=-¢,

of linesI” that cutG are worthy of note, as well as the other ones:
@+ =00, i.e., JT=oo,

for which G is perpendicular td6. The axe$ that simultaneously belong to both of the
latter complexes — i.e., they dBtperpendicularly — belong trbitrary parameters iRy.

Since only the sunp(+ 7) of the parameters enters into the reciprocity daondi it
will follow that:

The system of axes of two reciprocal domaigsafRd R, (n + v = VI) remains
unchanged when all parameters of one of those domains are increased by some amount
and simultaneously the parameter of the other one is decreased by thansaumd.

In order to get a picture of the distribution of thegmaeterszon all linesl” in space,
which are regarded as axe$i— we consider:

a) The parameterrof the linel” that goes through an arbitrary spatial pewand

L) Therof the linel’ that lies in an arbitrary plany.

a) Let e be the length of the altitudex from w to G, so we first consider the
parameter of the rays that are perpendiculavx. Among them, one finds the rayz
that is parallel toG and onewy that is perpendicular tonvG). If we measure off the
length p = p + 77 (on both sides) on eadh. from w in the plane of the rectangular
coordinate systerw (y, z) then the endpoints with the coordinayez will trace out a
curve( that can be constructed accordingote e tan & (where = |I_ = Ii) , as is

clear in Fig. 1Y), where the coordinates:

HoY)
y:psinﬂ:eﬂ, z=pcosd = esind,
cos?

in which:

(") Translator’s note: The figures did not seem tavmlable in the version of this article that was used.
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: z v
sind = —, cos? = —,
e ey
will satisfy the equation:

zZ 7 3 2.2 _
g+ez—y2—1—0 or Z(+2D) -y =0.

If we takewx to be the third rectangular coordinate axis and arrangeyalof the
sheafw into pencils that connectla with wx then all rayd™ of each of these pencils
must possess the same parameter as thé Jsagelf, since that parameter (like any
arbitrary one) will also belong tawk), which is regarded as the aXis of P,, and any
screw with the same parameters in the pencil thusrdeted will be linearly derivable
from two screws with the same parameters whoseiatersect. The endpoints (with the
coordinatey, y, 2) of the segments of lengh=p + p that were measured off on all sides

on the axe§ of the sheatv will then trace out a surfadethat one can think of as being
constructed from a variable circle whose centew,isvhose plane goes throughx, and
which cuts the curvé€. The equation of in terms ofx, y, z is obtainable by eliminating

dandn (viz., the angle betwednandwx) from:

2 2

X = pcosy =etand cog, Y = tang, y;z =tar’n,
z
SO since:
xz Y+ Z _sin’n L, Y+Z XZ A ¥+ D
cosy =—, = , sin“n = E = :
57 ey X cos’n =7 ey € X

one will have:

XYy +Z (Y +2) =€y or Z (X +y +7) -y =0.

Ball calledF a “pectenoid” and gave an intuitive picture ofttharface in his treatise
(1900) on pp. 255.
If wis at infinity — som =const. —thep=(p + 7 = etaw will be proportional

toe

£ Let W be an arbitrary plane, so above all, the paranddterlinel ; in it that is
parallel to the orthogonal projection of the a&sonto W will be easy to imagine when
one measures off the segment p + 7= e tan | gW on each of them — say, starting

from their point of intersectiow with the lined o in W that cutG perpendicularly — such
that the endpoints of the segments thus measufedlbfrace out a line. Any lind" of
W will then have a parameter that is equal to fhethat goes through its point of
intersection witH o . Any arbitrary parameter will belong Kg itself.

If W is parallel toG then = const. for all parallel rays in it, such thaltralys of a
well-defined direction ofV can be represented by one of them that goes thrauged
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point w in the planeV; we only need to choose it arbitrarily on the orthogpnajection
of G ontoW in order to be able to repeat the considerations thet discussed i), in
which we employed the curw&for the purpose of illustration.

R and Py are determined in a canonical way when one is giverakieG and
parameterp of R . The latter given can be replaced with the “charatic” of the

screwing motion — i.e., the length of the rod of any screw. of the screwing motioR
whose volume is 11L* = [2p = 1. The characteristic and the parameter are thus
coupled by the equation:

1
==+ |= or p:I_—z,

so the characteristic of a screw with a negative paexmell be imaginary; a finite line
(i.e., a screw of volume 0) will have:

a characteristic @b, corresponding tp =0,

while a field will have:

a characteristic of 0, correspondingte o .

II. The pencil of screws,Rand the reciprocal bush of screR®g .

The most general screlv of an R, is derivable fromlinearly-independentbasic
screwsl; andL, and arbitrary numerical quantitids andA; by way ofL = A; Ly + A5 L.
The latter can alspnot have the same axis and the same parameter. Speeal ca

1) If the axesG; andG; of the screwd.; andL, resp., coincide in a lin€ thenR;
will consist of all screws with that axis and an agvyrparameter, and in particular, the
line frameworkr; will consist ofG and the field that is perpendicular to it. The axed
the reciprocal domaiP,y that also belong to arbitrary parameters will exhabst t
congruence of transversals that are perpendicul&; this congruence will also define
the line frameworkoy of P,y . All of the remaining skew lines that are perpendict
G will belong to77= o in Py ; i.e., they will represent fields of the pencilfegids that
are parallel tds.

2') If the axesG; andG; of L; andL,, resp., are parallel then these basic screws can
be replaced with a certain rdgof a lineGy of the pencil of parallel&; G, and a fieldfy
that contains the directiof in the planeG; G, that is perpendicular 1@. In fact,A; and
A2 can be chosen such that the fieldLin= Ay L; + A> L that is perpendicular t&
vanishes in one case, and in the other case, such thatf tbds, andA, L, contain equal
and opposite segments such that a fighdith the property above will result far. The
line frameworkr; of R, here consists of the lin€% of o and the infinitely-distant ones
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of fo; the pv of the reciprocal busRy consist of the transversalslgthat are parallel to
fo.

If one adds a multipld f, of fo to lp then the latter can be represented as the sum of
two fields A f; andA f, the former of which lies in the pla@®G, and can be constructed

as a right angle with one side parallel¢@nd of lengthl, and the other side of length

in the directionA that is perpendicular t&, while A f, is perpendicular tdéy and has a
volume opr, wherep is the parameter of the variable sclew o + A fo = (lo + Af;) +
Af =1 + A f, which appears to be the sum of the radd the field1 f that is perpendicular
to it in canonical form.| lies in the plan&;G, that is parallel tdy with a perpendicular
separatiorx from the latter rod and has the same lengtly adf ¢ is the constant angle
of fo with respect tdp — i.e., also with respect to the pldake= G:G, — then tang, will be
equal to the ratio of the volumkg of the fieldA f and I x of the field , so tag =p / x.

The axis G of any screw L in, Ehus lies in the plane {&; that is parallel to those
lines and its parametey is proportional to the perpendicular separation x between G

and G :p =xtangp .

If one then measures off the parametarand p, of these screws as segments an G
and G, resp.and lets A be the connecting line of the starting points of these \unéesh(
is assumed to be perpendicular to the direction of G), and B is the ehdpdhese
segments then on any line G of the pencil of paralles@at appears in Ras an axis
the segment from the point of intersection with A to the point okadion with B will
specify the associated paramegerin particular, the line Gin the pencil of screws that

is associated witlh = 0goes through the point of intersection of A andoB;the field of

the pencil, is parallel to A and the axis G will subtend an aggleith the plane @&,
that is equal to the one between A and B.

The axed” of the reciprocal bush & that belong to finite parameters fill up the
totality of all lines that are parallel tgfand the parameter p that is associated with them

in this screw domain is equal and opposite to the paranpedérthe axis Gof the pencil
G:1G; of R, that meet$™. The lined” in the plane GG, that are perpendicular to G thus
belong to arbitrary parameters. The pencil of the fields that are patalle- i.e., to G —
also belong to R, which is why any line that is perpendicular to G can be regarded as
the axisl” in Py that is associated withr= c.

The screwing motionE(7) thus obtained, and only them, are in fact reciprocalunde
fo, as well as under any screwing mot®{p) whose axi<s is met byl".
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General caseR; (P, resp.)
Principal screws and parameter distribution in the domajn R

If the axess; andG; of the screws.; andL,, resp., that determine a pencil of screws
R subtend a non-zero angle then two screwandL; will always be contained iR
that:

1) Are reciprocal to each other and

2) Possess mutually-perpendicular axes that interseordacg to the reciprocity
condition (14 = 9@, p + 77is finite, soe = 0).

In order to arrive at thegmincipal screws LandL,;, we can first replack; andL,
with L; and {; + « L), and make the latter screw reciprocalidy a suitable choice of

2
the numbewx = - L . In order to not complicate the notations, we widuase that;
2
andL, arereciprocal and that they aref equal volumég"):

L1L2:0, Lf:L;,

since that can be achieved by multiplying one of the twewsby a number.
LetL; =1, +f; andL, =1, +f, be represented in canonical form, so for any arbitgary
the linearly-independent screwsRif , namely:

Ly =L;cos¢g—-Losing =1, +f,
Ly =L, sin¢ + L, COS¢:||| +f,

(canonical form) will also be reciprocal, sirlgel; = (L —L3) sin ¢ cosg = 0. The rods
[, =1, cosp -, sing ,
[, =1, sing +l, cosp ,
@. If an underlined symbol denotes the segment of aanoldan overbar means the rod

} can be made perpendicular to each other by a suithbieecof

length then in order for the produtt|l, = (1, cosg- 1, sing) | (I, sing +1, cos
#) to be zero, one needs only to také — L2) sin ¢ cosg + |, |,(cos ¢ — sirf @) = 0;
_ 21,
e, tan = ——2_.

@ _|12+|22

If we set the volume of the principal screws (whicbverto be equal? = L = L =

L>) to 1 then the lengths of the rods of these screwlsimihediately become their
characteristics. Each screwRn of volume 1:

() If the parameters and volumeslafandL, have opposite signs then the following development can
be replaced with one that operates merely vati screws, in which one assumes tlh%\'& LZ2 = 0 and the

corresponding hyperbolic functions are used in place ofggosin ¢. Cf., the remark on page 22,
moreover.
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L =L cosw+L, sinw (wis an arbitrary number)

possesses a rod segmént |, cosw+ |, sin & which is the radius of the conic section

R that is determined by the semi-axeandl, and is “characteristic’ oR, . K has the
equation:

—+2L =1, or  (sincetl2=17%p, =1,a=11)

(R) pxC +puy =1,
when referred t&, andG, as thex andy axes, resp

The radii | of the characteristic conic sectighare the characteristics of the screws
in R, that are parallel to them.

We obtain the parametgrof any screw whose ax{s subtends the angl& with G
from this. We sex=1 cosd, y=1 sin&inp, 3¢ +py ¥ = 1, and find:

12(p; cogd +py sifd) =1;
i.e., (sincel ?p = 1)
p =p, cosId +py sirtS.

If one measures off not the characteristic, butphmmetemp, of the screw iR,

whose axis has that direction directly from the p@nt G, G, in the plane of these

principal axes then the endpoints of the segments thaseld will trace out the
2

parameter curvé in Ry . Sincep = /x> + y* =p; cosI + py sifd, cogs =X2XTy2,
2

sinzz?:%, the equation for it relative 1@, G, will be:
Xty

(B) 0 +Y)° = (i X+ pu y) 2= 0.

The forms off are indicated in Fig. 2, 3, 4 whép (and thud,) is real, sap; can be
assumed to be positive, and

Fig. 2: L, (and thugd)) is real, sq, > 0,

Fig.3: L has volume O, =G, |, =, p; = 0 (limiting case)?),

Fig. 41 L, (and thus)) is imaginary, s@; <0 ¢).

(™) In the limiting casef will be a pair of parallel lines, and not a parab&all-Gravelius 1889, pp.
272,Ball, 1900, pp. 111.
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The associated parameter cur@@sare exhibited in Fig.'23, 4, and in fact the

curve segments that belong to endpoints with negativemeseas are recorded with
primes. The construction that is apparent in the figgaceording to the equation:

p(cos + sifd J=p, codd+yp, sihd [(p—p,)cOS I = f, —p)sirtF, resp.]
or

— p-p=tarf 3, (p, —p=tarf 3, resp.)

is the following: Two circlexk; and K, with radii p, andp,, resp., are drawn arouipd=
G| Gy as their centers, and made to intersect an arbitaaliys atl3, and‘3;, resp. (in
casep, andp, are the same; otherwise, one takes the extensithe o&dius ovep in one

case). One drops a perpendicular to the radius treanpdoyed through the point of
intersectionM of the perpendiculars that are drawn throfjito G, and through}3; to

Gy . Its foot will describéd when the radius changes with

In particular, forp, + py = 0, K will be an equilateral hyperbola afgl will be star-
like: 8 =", (Figs. 5 and 6.)

As was remarked above (pp. 13), any linear screw domairnawk the property of
still being one when one changes all paramegeby an equal amount for equal axis

positions. This is connected with the fact that Aigwvill emerge from3 by enlarging
all radius vectorg by the same amount:

1+cos:29+p 1-cos? _p+p _ P —H
2 Il 2 2

cos 29

which will change independently of by a constant amount whgn + p; varies,

aIthough%: b will remain constant. A family of curvéB is represented in Fig. 7

that belong to constarft”;—p'z b, and each of which can be generated from one of them

— e.g., from the star-lik8" (p, + piy = 0) by uniformly changing the radius vectersf p.

From the remark that was made on pp.thi, family of curves belongs to a well-defined
axis surfaceand specifies all possible parameter distributioos the domainR; that
belongs to this surface. This family corresponds to the pengi (+ k) X° + (pi + &) Y

= 1 of characteristic conic sections (Fig. 8).

A Since%L2 = |?p = 1, the real screws of volume 1 will be pure imaginary and imaginary real

when we switch the convention that we made on pp. Zdiegathe parameter sign with the opposite one,
which is likewise permissible.
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The same parameterbelongs to +7 and — Screws inR, whose axes possess

symmetric directions relative to the principal ax8s and G, will have the same
parameter.

Screws inR; whose axes are perpendicular to each other — which pona@s to$
and (90 + 9 — or have symmetric directions with respect to thglebisectors of; and
Gy — which corresponds té& and (96 — §) — will possess parameters whose sum is
constant and equal {9 + py; .

T moves entirely between the limiis andyp, ; if they are equal thep will always
L =L, cosw+L, sinw,
L, =-L,sinw+L, cosw,
reciprocal screws in R, with equal volume, and their characteristics
1, =1, cosw+1, sinw,
1, =-1,sinw+|, cosw,

have the same value. For arbitragy } will give all pairs of

} will be conjugate radii of:

The axes of reciprocal screws in &e parallel to conjugate diameters &f
1, and 1, satisfy the equation:
1,2 +1,2 =12 +I,> = const.,
from which (if one recalls that®p = 1), it will follow that:

1 1_1 1
—+-=—= =+ =const.

T PR U

The sum of the reciprocal values of the parameténeciprocal screws of a pencil
R is constant.

Two screwing motions iR, that correspond tp = O will degenerate to lines and

define the line framework of this domain; they will subtend the angiewith G, which
IS such that:
tan = —ﬂ ,
1]

and will be parallel to the asymptotesfand to the tangents 0 at the originp.



Griunwald — Sir Robert S. Ball's space of linear sstew 21

Positions of the axes in the domaiR, . Plicker’s cylindroid.

The principal screwk, andL; of volume 1 are sums of semi-axis rodd, resp.) of
K and a field that is perpendicular to it that is repmedae in right-angle form with the

other semi-axis segmentls, (l,, resp.) offR as one side and the segmenthat is
perpendicular to the principal platg G, whose length is:

_ 1
C :T: IRUE
L
namely:
I—| :|| +(|_| @),
Lu :||| +(|_| @). .

The arbitrary screw iR, of volume 1:

L=L, cosw+L, sinw
=(icosw+lsing +[-1, sinw+],cosqd] c

is then given — but still not, like perhaps the princigakws, in canonical form — as a
sum of an arbitrary radius rod:

| =1l cosw+ | sinw
of 8 and a field:

f=[-1, sinw+]|,cosd [T

over the radiu$ (I' =-1, sinw+1,cosa) and the segmest The position of the axis

G of L that might subtend the angfwith G, will be determined by the rod thiagoes to
when the fieldf is projected orthogonally onto the plam@.( This summand, which is a
field of volume:

Elcoql’,

will displace the rod along thez-axis, which we draw through the principal pgint G,
Gy andc, through the segment:

tlcodll’ ¢TI

I I’
z= = cogn”’ =p cogIl'

I | 2

I

T

(sincec| " =1 and1?p = 1);
| has the direction cosines cdssin 4, when measured with respectGpandGy, resp.,
Iy ” “ “ _pl Slnﬂ _pll C0&9

Cop p
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such that:
cogll’ = % sin g cos?,
SO
= %sin 29 =10 sin 29
will become:

One will obtain the axis surface of a pencil of screwsMRen one displaces any ray
G of the pencil of rays that is determined by the principal axes&G, in the direction
that is perpendicular to the “principal plane” through a distance % sin 29. (¢ =

66)

The invariance of — and thus, the entire axis surfaces immediately obvious in the
event that all parametersand thus alsg, andp, — are changed by equal amourlis

= h sin 29 tells us the axis surface by the following construction:

One draws two sine waves of arbitrary wave lengths and amplituda plane, and

rolls them onto a cylinder of rotation in such a way that the starting poiit the first

wave (Fig. 9)coincides with the endpoint of the second one, by which, the double wave
will form a fourth-order curve (one of the simplest Lissajous figafaesscillation, next to

the ellipse). Now, if one always connects two points of that ¢thatdie symmetrically

with respect to the cylinder’'s Z-axis with a line G (which Auserpendicular) then the
locus of these G will be the desired axis surface.

This axis surface is known by the name ogfindroid, and was investigated by
Pltcker, Ball, et al. (Ball applied the name of “cylindroid” to the pencil of screRs
itself.)

The cylindroid is a conoid whose generaBcuts the nodal lin€ (viz., the dividing
axis, which is a double line of this surface) at right asgde it will alsomeet the line U
at infinity that is perpendicular to.Z(So it is a double line in the dual sense when the
cylindroid is regarded as the locus of its tangential glabat not its points.) Two
generators of the surface will intersect at each pofrd that lies symmetrically with
respect to the angle-bisecting planes of:

G Z and Gy Z

() Therefore, the case that was touched upon on pp. 17 1rema.well as the limiting case of pp. 19,
rem. 1, does not need to be treated again for the detgiom of the axis surface, since one can think ef th
axis surface in these cases as being first determined we has made all screw volumes that enter into
consideration positive by increasing all parameters dpnatant amount.
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At the limiting pointsz = £ h of Z — viz., thepinch pointsof the surface — these two
generators will coincide in a line, namely, #rgernaledge ompinch edgen the angle-
bisecting plane considered, and far ||> h they will no longer be realG, G, andZ,

which intersect at thprincipal point pof the cylindroid, will be symmetry axes for the
surface; if we make them into coordinates axeg, (2) then since:

tand=Y, sin29= 2tans_ _ 22xy2’
X 1+tarfd X +y

the equation of the cylindroid surface, namely:

2hxy
- X2+ yz )
will become:
z y -0
X X+ Yy

in determinant form.

One can make the imaginary lines Staudt'sfirst kind), which meet in an arbitrary
point |z | > h of Z, more intuitive by means of two real cylindroidged that are at a
height off? / z over the principal plan&, G, . If one draws these edges through the

point z of a parallel toZ then they will define a harmonic quadruple of rayith their
angle bisectors, which will represent the imaginarg-pair inStaudt’sway of thinking:
The cylindroid and the auxiliary surface:

hiz 'y _0
2x X+ V|

which will be traced out by the parallels abovd] thhave the equations:

z &'l

h & +n? ’
or

b E-nt|

7 52 +,72 !

resp., with respect to the systef, z that is the previous one after it has been rotated
aroundZ by 45, from which, it will emerge that both surfaces affine with respect to
each other, withz-plane as the affine plane, when tp@rdinate of one surface goes to
that of the other one by multiplying by—_l It follows from this that under these affine

transformations of the one surface into the ottiner real line-pairs in the plame= const.
will become imaginary, and conversely, so the dgt&taudtrepresentation is applicable.
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We can obtain the aforementioned auxiliary surfaceiéameously with the cylindroid
when (Fig. 9), analogously to the sine-double wave thatenwgdoyed in the construction
of the cylindroid, roll the associated cosecant lineaqial amplitude onto the cylinder
and the connect its diametrically-opposite points Vuités.

In particular:

The tangents;t t; to the cylindroid go from the infinitely-distant point of Z to the
absolute sphere-circle.

The intersection curve of the cylindroid The projection cone of the cylindroid
with an arbitrary plan&V is a lineS= §* onto an arbitrary planev projects that

of order three and class four, and genus O§urf?;:e onto an arbitrary planein a lines

= g~ of order four and class three, and
genus O,
that is collinearly generatable by any linand its type is, e.g., that of
of the types: the cardioid of Fig. 12 or théteiner
V=X (x+ 1), hypocycloid ¢) in Fig. 13,

(Fig. 10 and 11)

and isreal collinear to the first or second one, according to whethe

the double point W2 possesses reathe double tangents (i.e., the tracewd)
tangents, and correspondingfy only one contact the curve at real points, and
of the three inflection points (which lie orcorrespondingly 4 only one of the three

a line) will be real,or the (real) double vertices (whose tangents converge to a
point W2 will have imaginary tangentspoint) is realor the (real) double tangent is
and therefore all three inflection points asolated (i.e., it contacts the curve at
the curve will be real. imaginary points), and therefore all three

vertices will be real.

Case 1 or 2 will apply to the cylindroid according to whethe

W cuts theZ-axis at point W2 that lies w is found in space between or outside of
between or outside of the pinch poiats the pinch planes z +§, as would emerge

+h, as the behavior of the double-poiftom the behavior of the contact points of

tangents would suggest. the double tangents, namely, the trace of
If W cutsZ at a pinch point then thewU (projected onto the parallels to the

double-point tangents will coincide, andylindroid edges that are parallel woand

the double point will become a cusp at thisund at an equal height).

pinch point, sd&5 must be real collinear to a If wlies in a pinch plane then the contact

curve of class 3: points with the double tangents will

() Cf., Cremona“Sur I'hypocycloide a trois rebroussements,” in Cselleurnab4 (1865).
(®) Cf., Cayleyin the Encylop. Brit., 9 ed., “Curve,” andSalmon “Higher plane curves,” pp. 141
(Dublin, 1852).
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S=s*° coalesce into one, which will then represent
an inflection point, sos must be real
collinear to a curve of order 3:

3,3

s=§
with a cusp and an inflection point; e.g., theil parabola/? = (Fig. 14)

Remark. If wis infinitely-distant then the double tangentsspf will be projected

onto the plane at infinity, and their contact point8 e projected to rays that lead to the
circle points of the principal plane:

The parallel projection of the cylindroid onto any plane that is parallelh® t
principal plane GG, is a Steiner hypocycloid.

The conic sectior of the cylindroid and the second-degree congvs) that is
circumscribed by that surface.

The intersectio® of the cylindroid with  The second-degree cone that projects
a tangential plan&V to that surface — i.e.,from a pointw of the cylindroid has a
with plane that contains an edgeof the parabola $ for its trace in any plane that is
cylindroid — has an infinitely-distant poinfarallel to the principal plane (which
in W, through which, the aforementionedontacts the two cylindroid edg€% and
infinitely-distant cylindroid edgesZ;, Z, G, that fall in this plane), has the projection
will emanate, so it will be an ellipse in the/ of the pointw onto that image plane for
cylinder of rotation through the nodal lindts focal point, and whose axis is parallel to
Z. (G, and thusW, as well, will meet athe cylindroid edgeK that will be cut by
cylindroid edgeK at a point ofZ.) the edgeG that goes througtv. (The cone

ws) = & (M), when projected from the

point (KU), has the tangential plang\))
along the edge in question and projects the
line t;t; that was introduced on pp. 23.)

The cylindroid can be constructed as the locus

of altitudes from an arbitrary point of on¢he perpendicular transversals @ in
of the? ellipsesS’ on the nodal lin&. arbitrary tangential planes to one of the

() The coneWs’) belongs tdReye’'scones otategory d:
(Ws) = Ay,
since the focal axisw/, which is the line of intersection eit; andwt,, is perpendicular to the tangential

plane WU). Cf.,Reye, Geometrie der Lageplage 220 (Leipzig, 1886). Any such cone will be enveloped
by planes that cut the tangential planes to it that apeepdicular to the focal axis in a normal pair.



Griunwald — Sir Robert S. Ball's space of linear sstew 26

cones:
W =Ry .

Thus, a cylindroid of givespan2h can be generated in the following way:
(Fig. 15) (Fig. 16)

One chooses an ellips§ on an arbitrary One gives oneself @one &4 when one

cylinder of rotation whose edge directionp,°,roj-ectS a parabolg from a pointw of the

are perpendicular to the two contact planggitde that is erected from its focal point
to 82, E; andEz, which are Separated byZ F onto its p|ane, and dine Z that is

E; and E, might contacts’ at pointsB; parallel to the focal axis(Fw), whose
andB,, resp. Le® bean arbitrary edge of points of intersectionA; and A, are
the cylinderthat meetsE; at A; andE; at separated fron®y at a distance off2from

Ao, resp., so the locus of the altitudes ok ch gther. The perpendicular transversals
the points of$ to Z will be a cylindroid of Z which contact &s trace out a

with the pinch edgessB; andA;B, and a o
cylindroid with a span of; A; = 29, whose

span of B.
pinch edges are the tangentsitoat A; and
A that are perpendicular ¥

Theconstruction of the cylindroids the locus aghortest transversak® the rays of a
planepenciland a fixedine Z then follows from this, since these pencils play & ol
the discussion above of

the planew that converges to any point othe rays through the point that link the
& that is diametrically opposite to the poiratter with the points of the vertex tangent
of intersection of* with Z. to the parabold’.

Theparameter curvés
p=—-hcos

that belongs tg, + py = 0, from which one can obtain every parameter civef the
family:
P ~H

LT =} = const.
> b

that belongs to a certain cylindroid as its axis surfaceniform variation of the radius

vectors, is therojection of the line of intersection Bf the cylindroid with the sphei¢
from the principal poinp on it and the radiuls onto the principal plane, as the equation:

ZZ"‘IJZ:[)Z
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teaches us, when we recall the fact thath sin 29. As Plickerremarked, it follows
from this that anyd of that family is the projection of an intersectidrof the cylindroid

with a torus that is made orthogonally to the principine, and the latter will be
enveloped by all spheres of radlusvhose centers lie on the circle in the principal elan

around the principal poimqg with a radius of:

PRy
5

(Cf., theLewisconstruction of the cylindroid that was mentionedlayl.)

The distanc&h cos 29 between the intersection points of any cylinder edge G with K

—i.e., and also with P- is equal to the dividing parameter | of the equilateral tangential
paraboloid to the cylindroid along the edge G.

Namely, ife is the distance from an arbitrary pomton the vertex tangei@ to the
paraboloid to the central poi@Z, as measured oG, andw is the angle between the

tangential plane to the cylindroidwatwith the central plan&Z then:
dz _ dz

d(e9) T =2y cos 9.

k=ecotw =e

P’, as the intersection of the cylindroid wikh of order six, will have the simple
equations irpolar coordinates, J,

t=b; Y= 275,

when we lety denote the angle between the radius vecter) that leads fronp to one
of its points and the principal plane, and therefalso withG, if one recalls that = § sin

.
Two intersecting (o) cylindroid edges:

G(g) and G(g = 900: 9
belong to the parameters:
p _hrhy ;p" -hcos 2,

p=P P ;p" +hcos P,

whose sum is:
(1) p +p' =p +py =const.,
while their product is:
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v [P TRy 2_ 2 — P tpy 2_ PR ’
(2) pp—(—z j h2 cos 29 ( > j ( 5 j+z2

=P +22,

which differs from the product of the principal parametarshe square of the distance
from the axis to the principal poipt One of the two parameters will be zero#or - p,

pu, and as was already remarked on pp. 20, this will bedrug= % with:
tandy = / B :
pll

We can now also determine the principal a@&andG; of anR, even better than
before, as well as the principal parametgrandyp,;, when this pencil of screws is given

by two screwd.; andL, with the axesG; and G,, resp., and the parametgrsandpo,
resp. (Fig. 17).

Let:
¢ be the shortest distance betw&randG,
2a (#0) be the angle “ “ “
@ “ “ between the angle-bisecto®& andG; and the desired
direction ofG,,
Z1 be the shortest distance betw&randG,,
22 “ “ “ “ : GZ “ “l

so the relationsf = ¢ ¥ a):

_pbth B H

= - cos2¢—a),
P > > 0-a)

_Pith B h

= - cos2¢+a),
P, > > p+a)

that were derived already on pp. 19 and:
z :%sin 20-a),

z, :%sin 20+a),

which were derived on pp. 21, along with-z =¢, allow one to express the five daia
P, tan %, L, 2.
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e:Zz—ZF(IJu—m)COSZﬁ sin2r , }
pz_plz(p||—p|)8in2¢COSZ ,

(1) tan@:u,
¢
p2+p1:(p|| +p|)_(p|| —p|)COS@ sinz y
—_ = PPy
PR sin2p cos 2’

PP
tan2p tan2r’
=(p, +p;) +ecot,

Py =h =+ €2+(p2 _pl)ZCSCZ}' ,

tan2p  _ P, =P,
\/1+tarF@ \/e2+(32—p1)2

(2) pr = $[(p2+p1) +e cot 20—/ e* +(p, —p,)* cSC A1),
(2") pu =1 [(p2 + p1) +e cot 20+ | ¢*+(p, —p,)° csSC 2],

pytp =(p, tp)t

since sing-=

z =1\ e +(p,—p)icscr sin2fp-a ),

z,=1\/ & +(p,-p)®cscr sin2fp+a ),
sin2@-a)=sin? cosa- cos® sim2 , sin 2 = P, =P,
sin2@+a)=-sing cos2+ cos® sim2 , e’ +(p, —py)

4

v ¢’ +(]J2 _pl)z |

(p, —p,)cosr —c Sin 2

vV e’ + (pz _pl)z

(p, —p,)cOS2r +c Sin 2

V e’ + (pz _pl)z

COS 2 =

z =1+ (p,—-p)’cscr

z,=1,/ & +(p,—p)’cscr

)
2

29
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3) z1 = L[(p2 —p1) cot 2o —e],
(37 2, = 1[(p2—p1) cot 2o +¢] .

G, and Gy, which are themselves parallel to the plane of thectlons G;, G,
intersect perpendicularly at the popof the shortest transversals@fandG, that has a
distance ofy (z, resp.) fromG; (G, resp.). One will get the directions of the principal
axesG, andG,; from those of the angle-bisectors@f andG; by rotating them through
@, where:

tan 2p = LY
4

For example, fop; = p> = po, G andG; will be the symmetry axes @; and Gy,
and:

P :po+£COt0',
2

P =po- —tana
1l 0 2 .

If G1 and G, are perpendicular to each other tl@nand G, will go through the
midpoint of their shortest distance:

S
4 2 % 2)

If G; andG; intersect then the spai &f the axis cylindroid will be equal t§%.
[

It will be zero — i.e., one will have the pen@iG,, instead of the cylindroid — in the
event that one has = p», in addition;R, will be called “circular” in this case.

If Z is the perpendicular to the penGiG, then the tangential planes througto the
absolute sphere-circle will also belong to the degate form of the cylindroid that they
represent when they cut any plane that is paralléhG; in a lineg that can be regarded

as an axis of that one of two screws of the circta that belongs to aarbitrary
2

parametep = %:'—2 (pp. 15), and whose volume 44 and the square of the length of its

axis rod| ?is zero, and which represents the imaginary, arguine-pairr; (v. Staudt’s
second kind) that belongs & . The concept of “axis” of such a circular scrswno
longer unique, since every can be regarded as an axis. (Cf., pp. 3 RnHlein in
volume 47 of this Zeitschrift, pp. 253.)
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System of axes and the parameter distribution of the recimcal domainPyy .

The most general bush of screRg, as the reciprocal screw domain to a pencil of
screwsR), belongs to a cylindroid as its axis surface. In ordeafscrewA in P,y with
axisI and parameterrto be reciprocal to three screwsRin whose axe$§ that lie in the
cylindroid surface are met by, ' must intersect one of these three aégsand the
parameterrmust be equal and opposite to that of the other twee |dtker two axe&
must therefore be symmetric on the cylindroicRpfrelative to its principal axeS, and
Gy, since they belong to one and the same parameter 77 The axed$ in Py that go

through an arbitrary poinv or lie in an arbitrary plang can be generated as tké
transversals over any pair of cylindroid edges that arenggnt with respect to the
principal axes. AlI' in P,y that belong to a certain parametex const. will fill up the
linear congruence that has the cylindroid ed@gess its guiding lines and whose
parameter i = — 7z For 7= 0, one will get the line frameworky of Py . Two

particular examples of these congruences are thensystecylindroid tangents alor@,
or Gy ; instead of the cylindroid, the equilateral tangential palcadh to it can therefore
be used, which haG, andG,, as its vertex lines ankl= 2 for its dividing parameter.

One of these congruences can alsoghein the case where the line-paif of R,
converges to a pair of infinitely-close skew lines lof tylindroid alongG, or Gy (the
limiting case on pp. 19).

Since any must intersect a cylindroid ed@eperpendicularly, the complex bfwill
be defined to be the locus of the perpendicular trarsigens the edges of the cylindroid
that belongs té&, .

The complex cone through an arbitrary The complex curves in an arbitrary plane
point w wil be defined by theW be enveloped by the perpendicular
perpendiculars fromw to the cylindroid transversals of the cylindroid edges that lie
edges. in W.

In particular, forp, = py = p, the pencil of principal planes withas its center will
enter in place of the cylindroid surface in the casa ‘@ircular” domain, and

the complex conesv will be orthogonal the complex curves iV will be parabolas
cones over the circles in the principal planehose vertex tangent is the trace of the
with pw as the diameter, ifw is the principal plane inW and whose focal point
orthogonal projection of the poin onto is the orthogonal projection of the principal
the principal plane. point p ontoW.

Otherwise, in the general caset p

the feet of the perpendiculars that athe planesGlI that connect any cylindroid
dropped fromw on the_cylindroid edgesedgeG with its perpendicular transversals
onto any plane that is parallel to thghat lie in W will envelopa conefy that
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principal plane will project to points of acircumscribes the cylindroid(*), if the
circle that has the orthogonal projectiah direction cone of the developable that is
of w onto that plane and the piercing poireinveloped by these planes represents a
of the latter withZ for its diametrically- conic section in the plane at infinity, whose
opposite points. The foot-curve itself isommon developables with the cylindroids
then the intersection of the cylindroid witlare already:

the cylinder of rotation that has and the 1) The doubly-counted penti| and

line throughw that is parallel to it as its 2) The planar pencil through the
diametrically-opposite edges. This line dhfinitely-distant cylindroid edges, t,.
intersection can thus be only one of thEhus, the only developable that remains
ellipses & on the cylindroid {), since whose trace inW will be the desired
otherwise the cylindroid, which is a thirdeomplex curve will be only the conéy

order surfac_e, and the cylinder of rotatiofhat circumscribes the cylindroid, which
would have in common: has focal axes that are normalbandU,

1) The doubly-counteditself, and, and whose vertew can be constructed as

2) The infinitely-distant edgésandtz.  the point of intersection of the tangential

A cone of the complex of the axe®f plane to the cylindroid that is parallel ¥
P will go through every pointv, whose with thw cylindroid edge that is symmetric
basis the ellips&S’ of the cylindroid that with respect taG andGy in that tangential
projects onto the principal plane as ﬂ]ﬁane.
circle with diametepw, if p refers to the In any plane W, a parabola s will be
principal point of the cylindroid, and/ is enveloped by the ax&sof Py, whose axis
the orthogonal projection of the poimt will be parallel to the orthogonal projection
onto the principal plane. of Z ontoW.

The plane ofS connects the point of s will be projected fromw through a
intersection of the parallels ta that go conegq that will be cut, not justv, butany
through w and the cylindroid with the lane that is parallel to jtin a parabola

cylindroid edge that is symmetric wit .
respect ta3, andG; to the cylindroid edge hat will be enveloped by axésof Piy .

that meets these parallels.
The samellipse § belongs tall points
w that lie on a parallel td.

The complex of axels of a pencil of screwB)y is quadratic.

If wis at infinity then the complex cone If W is parallel toZ then the parabola of
through that point will decompose into théhe complex will decompose into the pencil
pencil of fields in that direction, which willof parallels to Z, which shall not be
not be considered, and the pencil @bnsidered, since it belongs o= », and a
normals from the directionw to the pencil whose center is the point of
cylindroid edge that is perpendiculanto  intersection of the cylindroid edge that is

perpendicular t&V with W.

() Cf., pp. 25.
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In particular, if

w is on the cylindroid, and indeed on thé/ is the tangential plane to the cylindroid,
edge G(p), then the complex cone willand indeed the one through the edig),

decompose into: then the parabola will decompose into:
1) The pencil of normals 6 throughw 1) The pencil of normals 6 and
and 2) The pencil’ (/7= - p) whose center

2) The pencil of transversals. is the trace point inW of the cylindroid

edge that lies symmetric B(p) relative to
to G andG” .

In particular, if

w is a point of the nodal ling then we will W is a plane throughU - ie., it is
draw a planéW that is perpendicular td perpendicular t& — then we will determine
through it: its point of intersectiomv with Z:

Now, there are two axés andl" in Py throughw in W, namely, that ones that lie in
W and go throughv and are perpendicular to the cylindroid edGesandG” of R, and
possess parameters(77, resp.) that are equal and opposite to the other ones.

The complex conev of axesl now The complex curve IinW that is
degenerates into the two pencils of rafs enveloped by the axds degenerates here
andZr”, which belong to the parameters into the two pencils of parallels andl™",
(7, resp.). which belong to the parameters (77,

If wis one of the two pinch points resp.).
If Wis one of the two pinch-planes

of the cylindroid ofR, then both pencils will coalesce into one whose Egndinitely-
distant center, resp.) are perpendicular to the pinchsadggiestion.

One can obtain all of the axE=f P,y that cutZ (are perpendicular tg, resp.) when
one reflects the cylindroid iR, relative to its principal plang, G, and

constructs the pencil that connects tlseibjects every edge of the mirror-

edges of the mirror-cylindroid thus<cylindroid thus-obtained to a parallel

obtained withZ. displacement in a direction that is
perpendicular t&.

Any I' thus-obtained iy will have the parameterr = — p, which is equal and
opposite to the of the cylindroid edg& in R thatl™ is obtained from by reflection.

P\v is representable in a canonical way in terms of theilalision axisZ that belongs
to an arbitrary parameter and the principal screws, winesle the axek, = G,, 'y = Gy,
and the parameterg = -y, 78, = —py . The principal axeE, andl', are the only axes

in Py that cutZ perpendicularly abne point and are perpendicular to each other. 1t is
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only in the case of equal principal parameters p; = po (and thus, a “circular” bush of
screwsPyy ) that a pencil that is perpendicularZ@and goes through the poimbf Z will
enter in place of the principal screw$. (Any line of the plane of the latter, as well as
any line in the pencp will belong toP as an axi§ that is endowed with the parameter
76 = — po . Due to the reciprocity conditiorr— 75 = e cotg E the remaining rays of

the axis compleX can be assigned to “circular” linear congruences withconst. of”
that relate to th& of Py, which is parallel to the plar€Z; i.e., onto ones whose rays can
all be obtained from rays of tha by rotation around Zas thefamily of equilateral
hyperbolic paraboloidswith its vertex atp that contains the vertex line, and whose
distribution parameter is= 77— 75. The guiding rays of any such linear congruence will
be appropriately called “circular” lines (“imaginary” wn Staudt’s second kind)

Transition to the canonical representation

The transition to the canonical representation Bf,ahat is given by four screws
with the axes’; (i = 1, 2, 3, 4) and well-defined parameters. Correspondifg aind 2)
on pp. 15, we first deal with two special cases.

1) If the fourl; cut a certain linés perpendicularly the®,, will consist of screws
with arbitrary parameters whose axXxesut theG perpendicularly. R, will belong toG
and an arbitrary parameter. The following cases walb dlelong heref 1, 'y, 5 cut
someG perpendicularly 4 is replaced with a field that is parallel & andl3, 4 are
replaced with fields that are parallel to the shottestsversals df; andl, , resp.

2') If thel; are parallel to a plar then its fieldfy will belong toR; . A pencil of
fields will belong toP,, whose directioh can be determined by two fields, each of which
will be found by adding three screws of the four giveeaspnvhen one demands that their
rod sum should be zero. The screws of finite paraseatelP,y whose axes are
perpendicular to kand parallel tcE) and whose parameters are arbitrary will fill up the
principal planein R, (which is parallel td); i.e., the plane in whicthe perpendicular
transversaldo the latter (viz., the parallels tpare screw axeG of R;. One of theG is
in Ry and endowed with the parameter 0, so it will be represieniaterms of its rodb .
lo andfo will represen®R,, and therefor®,y, in a canonical way.

In the general case, one first provides the fldldhat is present iy when one
forms a multiple sum of the four given screws in sactvay that the sum of its rod
segments is zero. All analogously derivable screwsswhods are perpendicular tb
will have the same axes, namely, the dividing @xisThe shortest transversal oveand
thel™ will determine the cylindroid d®y; its principal axes will also be thoseRy .

) Cf., pp. 30.
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We can now also represent amgb of screws |Pthat is given byive screws Al = 1,
..., B) in canonical form namely, by being given the reciprocal screwing mo&pn
Two quadruples from the five screws will determine a fidldt belongs to th@, in
guestion. The axis & will have same direction as these two fields andl balidentical
with the cylindroid edge with that direction in tHat that is reciprocal to one of thiy
above. The parametgrof R can be determined from amyby means of the reciprocal

relation.

The parameterrof any axid™ of P,y that must cut a cylindroid edg&%) of R, in a
point w that is at a distance effrom Z perpendicularly is equal and opposite to that of
the two screws iR, whose axes encountéry in addition. However, since the latter must
not be real, that would suggest the determinatiorrfodm the reciprocal relation of the
[ (» With respect to any scre@qo’ + 5 of theR; that has the parameter:

p=p St 9+py cod 9= ;p" + B _Zp“ cos 29,

which is parallel to the projection 6fonto the principal plane of the cylindroid+ p =

ecotE.

The sheaf of screw®;; and the reciprocal sheafPy; .

An Ry, is established by three screlus Lo, L3 with axesG;, Gy, Gs and parameters
p1, P2, p3 that do not belong to a pencil. We first considersiecial case:

1) Gy, Gy, G3 are paralleandlie in a planeE; the axess of Ry, are then (cf., pp. 15,
2') all rays of this pencil of parallels, and indeed ev@ris endowed with an arbitrary
parameter. In addition, the pencil of fields that aeeallel to the perpendicular
transversald” of G in E belongs toR;. All of thesel' belong toP,, as axes that are
endowed with an arbitrary parameter, as well as theilperfeelds that are parallel tG.

2') Gi, Gy, G; are parallel, buwithout lying in a plane. If one measures off the
parameter segments on theG; (i = 1, 2, 3) from their intersection points with an
arbitrary planeA, and letsB be the connecting plane of the endpoints of the segmen
thus-defined then any screw will belongR@ whose axis is parallel 1G; and will have a
parametep that, when measured off @ will reach from the point of intersection with
A to the one witlB (pp. 16). In particular, all of thieansversaldo the intersecting edge
AB that are parallel t&, whoseplane might be calle&, will define the line framework
rim of Ry when united with the followingpencil of fields 1 If we take A to be
perpendicular to th&; then if x means the normal distance to an arbitrary éxisf I
thenG will be associated with the parameper x tan IﬂB If we give the rod, of the

R, of screwsL = |y + fp with that axis that falls o the length 1 then we can represent
the fieldfy that is perpendicular g in the form of a right angle whose volumepisind
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whose sides might then have the lengtlsdp / x. Let the former side be perpendicular
to &, and let the latter be parallel to the eddgz The rectangular fieltithat connects the

former right-angle side withy will produce dfield f =f + f, when it is added to dg that
belongs to R, since it is equdl — |; = (Io — I;) + fo, if 1, means the rod in the plade

that belongs ta; (Ry, resp.) that one obtains by projectipgnto &. The fieldf in Ry,
that is perpendicular t& will subtend an angle witls that is equal tq AB, since its

tangent is equal to the ratio of the lengths of thhtrangle sides df andf that are not
common; i.e., it will satisfy / x =tan| AB.

The field of &€ also belongs taoy (R, resp.),so each of them do, as wedind is

derivable fromf — i.e.,every field of the pencil whose axi$ids inf and subtends the
constant angIdE AB = arc tarp / x with G (from the associated side).

Thereciprocal sheaf R is filled up with all screws whose axes are paratidl and
possess a parameter that is equal and opposite to ttiet s€rews oR;;, whose axes
they intersect, such that the associated parametdos the screws oRy will be
proportional to the separation between fpeaxis” and¢& (which is parallel td), and

indeed to the equal and opposite proportionality factdan{ AB that appears iR .

Here, the line framework,, of Py, will consist of the rods in the pladethat are parallel
to| and the pencil of fields that are paralle@o

3) TheG; (i = 1, 2, 3) have a common shortest transvefsal There then exists a
field f in the sheaf of screwR,, that is parallel td o, since one can determine a multiple
sum of the three screwvis such that the sums of the rod segments are zeroheFudre,
there is a screw iR whose axisGy cutslo perpendicularly at a poimt and whose
parameter i€ompletely arbitrary;namely, if a screvL is linearly derivable from the;
then its axis will always cut perpendicularly, sinc€y is the common division axis of
all the cylindroids that belong t#,; if one chooses the deriving numbers of the sdrew
such thaits rod segment is perpendicularftthen an arbitrary multiple dfcan be added
to L in the screws of this sheRf — i.e., the parameter that belongs to the &gi®f the
screwL will be arbitrary.

Now, Ry is determined just as well as before by lthe the screws with the axS,
and arbitrary parameter, and the screws with the Gxand the parameter (Fig. 18).
The associated reciprocal sh&af is determined in a completely analogous way by the
shortestlly of Gy and G; that are assigned an arbitrary parameter and an aybitrar
transversall; of Gy and G; that is perpendicular t&y, which must be assigned the
parameters = — p1, Since it is a screw axis B . In precisely the same way that the

single fieldf that is perpendicular tby belongs toR,, one finds only the fields that
goes througls, perpendicular td o in Py, .

Since any screw that is reciprocalRa will belong toRy, and conversely, every
transversal of o andl; (Go and G4, resp.) that is endowed with the paramete(rz,

resp.) p1 + 75 = 0) and is perpendicular g (Go, resp.) will define an axis iRy (Py,
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resp.). Let (e1, resp.) be the length of the shortest transverddls andG; (Mo andl 1,
resp.), so there will be an equilatengberbolic paraboloid]3; with the vertex line<s,

andlo (which intersect perpendicularly at its ver@x which includesG; andrl;, and
has the equatiory = k1 z in the coordinate system that Hasas thex-axis, Gy as the-
axis, and the line throughthat is perpendicular 10, Gy as thez-axis.

ki=e cot| GG =e cot| I,

as the dividing parameter @f; . The family of liness (I, resp.) of the parabolo#§ is

filled up with the axes that belong Ry (Pui, resp.) whose parameter has the constant
valuepi (74, resp.) ¥). Since no confusion is possible, from now on,Get(Ts, resp.)

denote any line of the familg (I, resp.) or3; that subtends a 4angle with the central
plane, and thus has the shortest distaneg o%; = x from Gy (o resp.).

Any perpendicular transversal &% (Go, resp.)is an axis G(I', resp.)in Ry (Pu,
resp.) that is endowed with a well-defined parameper(7z resp.) —except for the

perpendicular transversals that fall in the principal plangl 6 which are associated
with the parameteso, in addition to the G (o, resp.)that are thought of as linked with
arbitrary parameters, and for that reason they merely representete:f{ig, resp.).

Any equilateral hyperbolic paraboloigf (ky = x2) (« arbitrary) with G and 'y as

vertex lines represents the family of lines that belongsot¢l'e; resp.), namely, the
system of axes in;R(Py, resp.) that belong to a constant parametdrz resp.)(p + 77=

0). p (77 resp.) differs in absolute value fram (7z, resp.) by exactly as much as the
dividing parameteik of the paraboloidp differs fromxi, which is that of the paraboloid

P .

The Z-axis of our coordinate system will belong Ra (Py, resp.) as a screw axis
when we endow it with the parameter:

po=tk+tm (7o = F K1 + 111, rESP.).
This follows from the reciprocal relation that re&atel 1(7z) [Gi(p1), resp.]:

* (po + /1) = K tan 48 [F (710 + ¢ 1) = ki tan 45, resp.]
(po + 710 = 0) b1+ 1= 0, resp.),

() OnlyG, andr, are capable of being assigned arbitrary parameters.
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in which the upper or lower sign is true — and both simatiasly — according to whether
the sign of the parameter is chosen as on pp. 2 opphesite one. The axis family Ry,
(Pui, resp.) with the parametes (770, resp.) will then be:

1) The pencip of planesGog =yz(lof = xz resp.), because it is derivable from the
Z andGo (Z andly, resp.) that belong ta (770, resp.).

2) The pencil of rays in the plamg f = xz (Go¢ = yz resp.) that are parallel @
because they are derivable frémndZ(po) [¢ andZ(71), resp.].

One ray Gpo) [I(770), resp.] from the pencil 1) armhe linefrom the familyG(p1)
[[(771), resp.] of the paraboloi; lies inany planeE throughlo (¢ throughGo, resp.).
The latter line, in particular, can & (1, resp.) itself wheik (&, resp.) is inclined with
respect to the principal plane by°45Any line in E (&, resp.) that is parallel tboth of

them is then an axi& in Ry (I in Py, resp.), since it is linearly derivable from the two
representative screwing motions. In particular, we sa&othroughG; (¢ throughl 4,

resp.), so it will be 45from the principal plane. Any lin@ (I, resp.) in that plane that is
perpendicular td o (G, resp.) and might have the shortest distance wbm Gy (I,
resp.) — such that is the dividing parameter of the parabol@d[throughG (I', resp.)

with the vertex line€sy andlg] — is then representable by a screwing motioR,in(Py,
resp.) that is endowed with a parametdrz resp.) § + /7= 0) that can be determined

from the reciprocal relation fa&(p) [ (73, resp.] with respect t&(7s) [Z(po), resp.]:

po=tK+p (76 = F K+ 1T resp.)
[while previously:
po=tmk+p (= F k1 + 78, resp.)]

and will then actually behave according to the stated eguati
Fh-p)=Kk-k [+ (77— 78) = K — Kq, resp.].

The line frameworky, of Ry (an of Py, resp.) consists of the family of paraboloids
T (Xy = k2) that belong td5 (Mo, resp.) and whosg p = 0 are correspondingly = ¥ 75
= *po; for po= 75 = 0, in particularyy; (ou, resp.) will be the pair of pencils that was
mentioned in (1), (2).

A pencil of axes iR (Py, resp.) that are perpendicularte(Go, resp.) goes through
any pointu(e, 0, 0) ofl o [M(0, ¢, 0) of Gy, resp.]. If one measures off along that axis, not
the associated paramete(sz resp.) itself, bup =—-po +p (- 76 + p, resp.), and indeed
starting fromy (m, resp.), then for fixegr (m, resp.) the endpoints of the segments thus-
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defined- viz., p = etaq GZ (e tanlz, resp.) ) — will trace out the curve in Fig. 1
[in which = | GZ (|T'Z, resp.)] whose equation ready’ + Z) —€’y* = 0 [Z (X + 2)

— ¢ X2 =0, resp.], so when the poiatvaries o, (m varies onGg, resp.), one will get

the fourth-order coné® +y? (Z —=2) = 0 [* +X* (Z — V) = 0, resp.], which the above
will project fromp.

4 Let the axes3;, G,, Gs of the three screws that determines a donRainbe
parallel to a planar fielgh, without howevepossessinghe same shortest transversal (
On the two linear pencils of screws that, e.g., contiectirst of these screws with any of
the other ones, we can determined a certain real seiawlace of the one that belongs

to G, (Gs resp.) — that belongs to the same paramgtasG;, such that we can likewise
assume (in order to minimize the notations) that #es@&,, G,, Gs that are parallel t@
belong to the same parametar. (If two of these three axes — s&¢,andG,, soGs will
be parallel to the plan®,G; — intersect then in addition to the perGilG,, the pencil of
parallels that likewise belongs g and connect&; with the ray in the pencil that is
parallel to it will also belong t&;, . This case*will then present no peculiarities, insofa
as also in the most general case that belongg twiltalso yield a pair of pencils of that
sort with constant parameters, which was given helefoom the outset.)

A peculiarity will arise when th&,, G,, G; that determine aRy; and belong t; lie
in a plane. It entire line field will then be the lscof the axes iRy that are endowed
with p; and, at the same time, the locus of the axes irettiprocalP;, that are provided

with the parameters = — p; . In addition to the field = ¢ of the axis plane, the totality
of all circular imaginary lines of. Staudt'ssecond kind will belong to the line
frameworkry; of Ry (an of Py, resp.), and the latter lines will be representablhén
formL =Ly + V=1L, whereL; andL, mean screws with the same volume whose equal-
length axis rods that belong tm (7z, resp.) lie in the axis plane and intersect
perpendicularly. The name “line” faritself is justified by the validity of the equatia.

=0 (L = L, LiL, = 0). ThusL can be ascribed to any arbitrary parameter, arccan
regard anyStaudtianimaginary circular line (of the first kind) of tHeeld & = ¢ as the

axis of such ah. (Cf., pp. 30).

In the general case)4the paraboloids;, G,, Gs is not equilateral, since otherwise
one would be dealing with casé).3 Theentire family G, G,, G; of them represents the
family of axes inRy that belong top;. The other family of paraboloids, which is

endowed with the parameter = — p;, belongs to the reciprocal domaity, . The

() The reciprocal relation @(p) with respect t@(7s) [ (73 with respect t&(po), resp.] says, in fact:
7% +p=etan|GZ (po+ 7T=ctan|rZ, resp.).

(® N. Zanichevskireated this case 4*) analytically in his treatiseie‘ISchraubenlehre und ihre
Anwendung auf die Mechanik,” pp. 63-67. (In Russian, Od4$89).
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direction fieldf of the latter family belongs tBy, just asg belongs taP; . The same
argument teaches us that the axes ofddllscrews inRy (Py, resp.) that possess an
arbitrary constant parameter (77 resp.) will trace out families of non-equililateral

paraboloids whose direction planeddf, resp.), and indeed both of them will be on the
same paraboloid in case one has 7= 0. We would like to examine the positions of

these paraboloids.
Let Go(p1) be the vertex line, and let be the dividing parameter of the famiBy,

Gy, G3, which equals the shortest separation of the venes Ibf this paraboloid from the
lines of the same family that subtend an angle Jf wih the former, which is the
separatior§ E; (Fig. 19), measured along the vertex lihgez) of the other family, from
the vertexS, = Go INp to the lineG(p1) whose connecting line withy(7z) in inclined by

45° with respect to the central plar®q(o). The family of paraboloids = — 77= const.

with their axesG in Ry (I" in Py, resp.) has the direction field (f, resp.), so its vertex
lines Go(p) [Fo(79, resp.] will be parallel to those of the famyly = — 7z = const., and

thus toGo(py) [[o(72), resp.]. Therefore, the screw that belongs tcatheGo(p) [Io(7),
resp.] must be linearly derivable from the scr@(p;) and the fieldf [[o(7z) and ¢,
resp.], and one will obtaiG(p) from Go(pa) [[o(7) from [g(78), resp.] by parallel
displacement along th&axis of the paraboloidh() through an amourtthat satisfies the
equationp —p; = ztana (a = @z |G_0f the angle between the direction plahe
andf). (pp. 15, 9.

In order to understand the now-known vertex |i@e&) [[o( 73, resp.] of the family
= — ;= const., as well as its dividing parameteand thus, the paraboloid in question,
we consider the fact that any liGp) in that family that is parallel t&o(p) and has a
distancee from the vertex linégsq(p), as measured alorig(7), will belong toR, as the
axis of a screw in it that must be linearly derivalotenf the screw&(p;) andf, and must
therefore be linked t&(p1) by a plane that has a trace in the fiettat is perpendicular
to G(p), such that this trackl of the planeG(p1) OG(p) in the planeloZ = Zf must

subtend an angle af with Z. [G(p,) lies in the angle-bisecting plane [of Gy andlp Z

and is perpendicular to the altitubgl to Gy in the former plane and to the likkin the
latter plane, so one has:
|HI, =|(LE)T, =90 -0,

from which, it will follow thatlﬂ =al]

G(p) can then — and for arbitrapy— be any transversal éf that is parallel t&(p1).
The altitude that is dropped from the point of intersecEoof G(p) andH ontoZ is a
vertex linel o(p) of the paraboloid that belongsfdz= - p, resp.), and its lengtBSis
the dividing parametar of that paraboloid. It is (in absolute value):
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¢e—e1=ztana=p —p;;

i.e., the dividing parameter and screw parameter vary éoenparaboloid to another by
the same amount.

The family of paraboloids = — /7= const.of axes in R (P, resp) all have parallel

vertex lines and the same paraboloid axis Z. A fixed lir(el Hresp) that subtends an
angle ofa with Z, as do the direction planes f apdof the paraboloid, connects those
points of all vertex line§ o (Go, resp) whose tangential planes to the paraboloid in
question are inclined b#5° with respect to Z.

One of these families of paraboloids degenerates to a pair of paraihgly, the one
for whiche = 0 and one correspondingly has:

p=p1—e1="%o, T=—9pPo=7b,

they will degenerate to the pencil with its centeMat HZ = H’ Z in the plan&ZzGy = Z¢
(Zro = Zf, resp.) and the pencil of rays in the plathe = Zf (ZG, = Z¢, resp.) that are
parallel toZ.

One of the families of paraboloids — viz., the ond tmaresponds tp = - 7= 0 —

defines the line framewon, in Ry (o in Py, resp.). In particular, if the pair of pencils
that we just mentioned is the line framework then wielvei dealing with a special case
of llI"), pp. 11.

The! paraboloidsp = - 77= const.,or — what amounts to the same thing — all of the
«? axes G in R (T in Py, resp), envelop a second-degree cafie that has M for its

vertex, the planes@and Zf for its tangential planes, and focal axes d arttat are
perpendicular to these planes.

(Fig. 20) In any arbitrary plang that is parallel tap, there will bewo! raysG that are
axes ofRy . Of them,G will go through every poinP of the line of intersectiohof &
with (Zf), namely, the one that belongs to the parabdli¢p = — 7= const.) whose
vertex linelo(7) is the altitude that is dropped frdPto Z. (The other vertex lin&q(p)

of that paraboloid goes through the ver&x I'p Z and will lie in the plan&g that is
perpendicular t&. — moreovert itself will represent an axis iRy, since it is a ray of the
pencil of parallels that belong @ .) If we were to cuk with the lineH in g(7) that
runs throughM in the planezf at an angle ofr with respect taZ then the piece = SE
will be the dividing parameter of the parabolgd The tangential planiéy(7) G to 3 at

P will thus subtend an angle with the central planéhat paraboloid whose goniometric
tangent will be equal ta / ¢, if the pieceSP is denoted bw. The lineG that goes
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through P will thus subtend an angle @ with its orthogonal projectiol” onto the
central plane whose tangent is:

X .
tan w= —sin q,
4

so a will also be the angle betwe&twith I"o(7).
The lined that goes througM perpendicular to4g), which we have referred to as
the focal axis oRyg, might meet® at the point-. The anglew that PF subtends with its

orthogonal projectiofl onto the ling has the tangent:

tana):E;
Pl

now, if IF = x cosa, as the rectangular triangWéFI for F would imply, sincdM =PS=
xand| FIM = g, then:

PI=SM=¢ cota,

as would follow from the rectangular triang®Efor S for whichSE=¢ and| SME =
a. As a result, we will have:

XCOSa _ X _.
=—sina=tanyg =
ecota e

tanw =

so G will be perpendicular to FP.SinceF andt lie fixed in the plane® of the pencil of
parallelsg, we can recognize that the rags(which are axes ifRy) that lie in& will
envelop garabolawith the focal poinF and the vertex tangent However, sinc& can

also be parallel displaced, such tRanoves alongl andt moves parallel t&f, all G will
envelop the cone&y, which will project the parabola above oritband haved for its

focal axis.
All tangents taRy that are parallel t@ represent axeG in Ry, only the lines that lie

in Z¢ and go througi [which contactfy at a point of the edg8o(po)] will exhaust the
axesG in Ry, not merelythe pencil of pointd/ of axesG in Ry, that belongs t@o .

The system of axeS of the tangents t&y that are parallel t@ is thus of order two
and class one, so the two tange@tto the parabola of intersection 8§ with & = wg
will go through every poimtv in space, and the tangents to the conic sectibif,) that

are parallel tagp and do not lie in4¢) will lie in any plane.
This happens in precisely the same way that anylaxisPy, (that is parallel td)
will contact the same cong that also possesses the focal axikat is perpendicular to

f, and that, conversely, all tangents to that coneateparallel td will be axes inPy, ,
except fotthe lines in the plangf that do not go throughi.
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If an arbitrary axiss in Ry, (I in Py, resp.) meets the pla@é (Zg, resp.) at a poirfe
(T, resp.) that has a distancezdfom the plane that is drawn throulyhperpendicular to
Z then one will determine its paramete(7z resp.) by recalling that one must have (in

terms of absolute values):

(cf.,p—p1r=e¢—e1), p—po=e (- 0)=ztana.

The general casé&; (Py, resp.).

The general cad®; (Py, resp.) of a sheaf of screws whose axes possesssaiblao
directions in space will occur when the scre®i$p1), Ga(p2), Gs(ps) that determindry,
have axes that areot parallel to a plane. As in the special cage we can once more
assume, with no loss of generality, that= p3 = p1, such that all lines in the family of

hyperboloidsG;, G,, Gz that belong to the parametarwill represent screw axes Ry,

while the other family of these hyperboloifis will be filled up by the axe$§ in the
reciprocal shea®,, that are endowed with the parameter — p; .

The axes of akle® screws inRy (Pui, resp.) that possess an arbitrary parametez
resp.) will belong to one familg(p) (I'(p), resp.) of a hyperboloiB(p), and indeed the
same hyperboloid, when one has /7= 0. Thus, for a certain parameter — and this will
actually happen, as we will show — the one fan@ly) will degenerate into a pair of

pencils (centeM, planeu and centeN, planev) with a common raN = v, where the
family (7 (p + 77= 0) will be the pair of pencils with the same plape#, but with the
centerdN, M switched.

The family of lines in one of these hyperbolojds — 7= 0 will serve as the line
framework r;; of Ry, while the other will serve as the line framewaqal of the
reciprocalPy, . [The case Ill(pp. 11) is the one that yields a pair of pendls, Nv
(Mg, My, resp.) instead of a hyperboloid for= — 77= 0, precisely.]

How do thew® hyperboloidsF(p) (p = — rrarbitrary, constant) lie, and what kind of
ray system exhaust the ax@gl, resp.) in the shed, (Pu, resp.)?This ray system is
identical with the congruence(&) [K(I"), resp] (of order three and class two) that E.
Waelsch (inter alia) examine@Uber eine Strahlencongruenz beim Hyperboloide,”
Wiener Ber., Bd. 95, pp. 781-802, “Uber das Normalsystem uCdigralfl. alg. FI.,”
Halle, 1888),which is defined by the shortest transversals to two generators eame
family ' (7z) [G(p4), resp] of a hyperboloid E into which any hyperboloié(p) with its

family of linesl"(7) [G(p), resp.] can enter in place Bf, with its family.
In fact, one such shortest transvefGdl, resp.) can possess an arbitrary paranpeter

(77 resp.) as the axis of a scréw(/\, resp.) inRy (Pu, resp.), if it should merely be
reciprocal to the two screws &%, (R, resp.) that have axég ) [G(p1), resp] that

intersect them perpendicularly. Now, if one is providath such a parameter (77
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resp.) that makes it reciprocal to a third screwRin (P, resp.) that is linearly-
independent to the previous two then it will representrave that is reciprocal to the
entire sheaf of screw®, (R, resp.), and will thus belong &y (P, resp.). The same
congruence&(G) [K(I), resp.] will belong to all of the* hyperboloids=(p), in the same

way that is true forF; . The symmetry axe&, =T, G, = Iy, Gy = My of the
hyperboloidF; are symmetry axes of the congruek¢6) [K(IM), resp.], and thus, one of
theoo! hyperboloids=(p). K(G) andK () — viz., the “right” and “left” congruences, resp.
— will go into each other, just like the families of ame of the hyperboloids(p), when

one performs a reflection in one of the symmetry @&eG, G G, G G, . TheG; =
i (=1, 10, 1) will present themselves to us when weoyide them with suitable
parameters; (77, resp.) ( = I, Il, lll) — viz., the principal parameters of thbree

“principal screws’L; in Ry (A\; in Py, resp.) that give the canonical representation of that
sheaf of screws. The (77, resp.) are derivable from the semi-a&esf the hyperboloid

F1, but also just as well from any of the other hyperboloidsF(p), which is why we
2 2
shall drop the index 1 fromy from now on. X—2+L2+i2 = 1 (which is a square of
a &

semi-axes — e.ga;, is negativeay, is imaginary, andy J-1is real) is the equation of
the hyperboloid~(p), when referred to the axis systébn. In order to determing;,
which are the parameters that belong to the samemsyry axes, we employ the
reciprocity conditiorp + /7= ¢ tan | GI' of the Gi(p;) relative to any screw iR, whose
axisI™ cuts one of the other two symmetry axes of theehyploid, such that taEir IS

deduced from the semi-axis ratios of two of @hevhile ¢ is equal to the third; :

o =p-lud V1
| a, | fromwhich, it will result that: : = o p o )
a ==Ww=p)P =)
-1 -1
P :p—M, A4 %\/7 ar ==(p—pu)p—n),
a ==(p=p)P-p)P—p ) a12 =—(p—p, )p—9)-
S L J-1 which is why it can follow thai * '
m—PT T
a1||

The hyperboloid &) thus has the equation:

X + y + z +
(p_pu)(p_pm) (p_nu )(p—n) (p_P)(p_ﬂ)

or
Fi) =@ —m) X+ @ —pn) Y+ @ —pu)Z + @ —p) (p—pu) (p —pu) = 0.
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For values ob that are found between the extremes of the princigedrpeters;, this
equation will represent a one-sheeted hyperboloid, and whgn p is chosen to be

outside of those limits will it be an imaginary midposoirface of order two that is traced
out by imaginary lines ofon Staudt's second kind.The hyperboloid that the line
frameworkry; of Ry (o of Py, resp.) carries, viz.:

—F(0) =pi X +pu Y+ pu Z + pi pu pu =0,

is real when one of thg has a different sign from the other two.

One of the hyperboloids(p) — and two conjugate-imaginary ones, in addition to this
real one — will degenerate to the pair of plapgsv: Let p, be the value that lies
algebraically betweerp, and py, so g, v will be represented by(py) = 0 or

E:i f——;”__;' . The pointdM, N (x =0,z=0,y = \/_(pu ~pu ) —R) ) are the
i~ Pu

centers of those penciMy, Nv (Ny, My, resp.) that represent the one real degenerate
family of hyperboloids, and should be calleaksic pencils. Their planes — viz., theasic
planesy andv —are the common cyclic planes of all hyperboloi¢is) F The basic pencil

determines the congruenigG) [K(I"), resp.] as the system of shortest transversas ov
any ray of either of them that:

can be constructed from the rdygs G,, G; can be constructed from the two ragsg
(Cq, [, I3, resp.) of the congruendgG) G, (1, ', resp.) of the congruend§(G)
[K(T), resp.] that go through an arbitrarfK(I"), resp.] that lie in an arbitrary plake
point w as the common edges of thas the common tangents to the two
orthogonal cone that has the orthogonadrabolas that have:

edges: 1) The trace o in W for their vertex

1) wM and altitude fromw to v (1 tangents and the orthogonal projections of
resp.). M (N, resp.) ontdV for their focal points.

2) wN and the altitude fromv to u (v, 2) The trace oft in W for their vertex
resp.). tangents and the orthogonal projections of
The edge of both cones that intersects tNgM, resp.) ontdV for their focal points.
principal axis MN = v = G, The common tangents to the parabola that
perpendicularly will be omitted. cut G, perpendicularly, as well as the

infinitely-distant one, will be omitted.

If we arrange that:
F(p) =p°—Acp® +Ap —As =0,
in which:
A=p o+,
A=pPy thR FRR FX Y HZ,
As=ppiy FRX R Y g Z,
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then it will follow for the parametens, p», ps of the three screws iRy whose axe$;,

Gg, Gs, resp., go through the arbitrary powtx, y, z), which will then, as we would like
to say, belong tev, that:

1) pr+pa+p3=pi+pu+pu
is constant for all point& in space, and:
2) p2ps+papr+pip2 = pu pu +pu P+ ppn + 0C+Y +2).

Thus, the sum of the products of any two of the parasétet belong tev differs from
the one that belongs to the analogous product sum of theigad parameters at the
principal pointp by the square of the amoupiy, so it will be constant for all spheres
aroundp.

3) pip2pz=pi pu P +pi X + P y2 + b Z.

All points w in space can this be arranged intd curves¢ of order four, along
which, the three parameteps p., ps individually remain constant. The ¢ are the
intersections of the spherasound the principal poimt with the conesthat go througip
whose cyclic planes apg V.

The three valueg;, p», p3 of p that belong tow correspond to three hyperboloids

F(p1), F(p2), F(ps3), which amount to the that gothrough w The lines througlwv from
the other family of each of these three hyperboloidstlz@eaxed 4, I',, '3 in Py, that

belong tow. The tangential plan&s;I;, etc., to the three hyperboloids that belongvto
intersect in the tangengto the¢ atw.

The threeaxes G, G, Gs that belong to  Two of the hyperboloids(p) contact an

an arbitrarypoin_t win Ry and the three arbitrary plane W since two edge&i,G,
axesly, 'z, T3 in Py that go througw (1, “resp ) of ther, (Py, resp.) that are
define polar verticesfor which the edgescgntained in Ry (Py, resp.) whose
of both vertices that are not perpendiculeg,"ndroid edges are parallel towill then
to each other belong to equal and opposjig in W (). Each of the twdG must be

() One also recognizes this fact from the equatiorF{p) in plane coordinates, v, w, 1, which is
quadratic inp:
(b —pu) (0 —pu) U+ (0 —pu) (b —p) V' + ( —p) (b —pu) W+ 1=0
or
p? (U2 + VP + W) —p [(pu + pu) U+ (o + 1) Vo + (o1 + pu) W]
+ [pu pun U2+ pu pi Vo +py py W+ 1] =0,

which implies the twd-(p) that contact any given plane.
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parameters; otherwise, not all of the thremrmal to one of the twb, and possess the

screws inRy that belong tow could be equal and opposite parameterRp to the

reciprocal to three similar ones iRu. otherl in Py; otherwise, the two screws

These six axes lie in a cone of order tw@at are represented B¢, G, could not be

and cut the common altitude planes of bofBciprocal to the ones that belongitg I'».

polar vertices in the lin€ at the pointw. Thus, sinceG; G, andl; I, are normal
angles, they will intersect one or the other
of the lines inW that belong to the surface
F(p), which contacts Wat equal angles.

All F(p) have the four altitudes of the basic pencil, in addit@the four circle points
of the two basic planeg, v, as common focal axes; i.e., B{lp) contact the four pairs of

conjugate-complex tangential planes of the absolute sele, which can be drawn
through the perpendiculars toand v that are erected M andN, resp.

One obtains the coordinatasv, w, 1 of these tangential planes, in fact, when one
sets the coefficients qf, p, 1 in the equation (cf., pp. 46, rem. 1) of the syskp),

when written in plane coordinates, equal to zero.

2 1
u?= ,
u+ V2 + W =0, oy =)0 — 1)
1
(pu +pu Ju? + ( *+h )V + (® *+n )W =0, ie., V= — o ,
oAUt RRVE RR W =L 7R )
) (pu ~Pu )(ﬂu -k )

These equations teach us that the common tanbgmtiaes to allF(p) can be

obtained from one of them by reflecting through slgenxmetry planes; i.e., from one that
cuts out the pieces:

+\/(p|n -h )(ﬂ —h ) +\/(p| —P )(pn ~ R ), +\/(pll ~Pu )(ﬂn R ),

from the axess,, G, Gy, and thus contains the real line (viz., foeal axi9 that is
drawn through the centdi(0, +\/(pI -p,)(®, — 1, ), 0) and it perpendicular to a basic

plane.
The theorem above can also be expressed as:

All hyperboloids Frm) project orthogonally onto one of the basic planesv in a
(doubly-counted) confocal system of conic sectioitis the centers M, N of the basic
pencil as common focal points.

This also follows without the aid of plane cooat®m from a construction of the
surfaced=(p) that are concyclic with respect o v, and when one recalls that affp) is

symmetric to the symmetry plane of the two pairbadic pencils and is traced out by the
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axes of the sheaf of screws, which can be constraddébe shortest transversals over a
ray of one of the pencils of a basic pair, this wiipiy:
Let K1 and R, be two circles around the principal popi(i.e., the midpoint oMN)

that have equal, batrbitrary, radius and lie in the plangsandv, resp. Furthermore, let
P, be a variable point — e.g., & — so the two transversals &$ that go throughP,

perpendicular t&’;M (let one of them b&,P,, with the pointP, on K,, while the other is
P1P;) will trace out a family of the same kind as onehaf two hyperboloid&(p) that go
through&; andR,. In fact, the perpendicular P, that is drawn througR- in v, for

example, goes throud¥ thereforeP1P, is a shortest transversal over some iRy4 in
the pencilMy and P;N in the pencilNv, so it will be a general one of the two
hyperboloids=(p) that go througlR; and ..

P1P, then projects orthogonally ongoin the altitude that goes through to P1M in
M, so it will always contact the conic sectiongrthat will haveM andN for its focal
points whenrP; varies onf; . This conic section is thus the orthogonal projectibthe

hyperboloidF(p) that is traced out biy1P,, which cutsz andv in K; and R, resp. (Yet
a second surface of the system that goes through e Geclesk; and |, will project
onto it, since one can also take on R, instead of the poirf. .)

In addition to the axeS in Ry (I in Py, resp.) that are assigned to hyperboliflg that belong to a

certain parameter, all lings(); resp.) Staudt’s first kingcf., pp. 30, rem.) that belong to an indeterminate
parameter should also be regarded as axes in the sheefw$ shat emerge from the circular rays that are
present in each of two basic pendilg, Nvin Ry, (Mv, Nuin Py, resp.) by parallel displacement along the
altitude to the pencil.

TheF(p) can intersect in only one of the concyclic, sphérimanic sections (pp. 47),
so thefocal surface of the congruencd@ [K(I"), resp] that is enveloped by the(ih,
namely, the sixth-order surface (that comes ff{p) = 0,0F /dp = 0) {):

ARA- K K-18AA A+ 27K+ 44=0

(with the absolute sphere-circle as its cuspidal cumi#also be contacted bgach Kp)
along a¢. Thus contact curveé is simultaneously the complement of the intersactio
(Schnittresy of the focal surface with another hyperbol&igp’). At each point wof an
arbitrary ¢ of that kind,the focal surface will degenerateto the aforementionegolar
verticeswhen two of the three axd&s (I', resp.) that belong tw coalesce into two

() Order six and clag®ur, as one infers from setting the discriminant of the goudpp. 46, rem. 1)
that is quadratic ip equal to zero.

E. W. Hydéhas investigated this surface in the Annals of Mathesater. 11, vol. 2, no. 4 (Mass., 1901),
and produced some intuitive Figures of it. (Esp., Eim the treatise: “On a surface of sixth order which is
touched by the axes of all screws reciprocal to threengserews.”)
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infinitely-close linesGoy (Mo, resp.) of a certain plane [viz., the focal planeGaf(Io,
resp.)]. In addition to these lin€% ("o, resp.) of the hyperboloiB(p) throughw, yet

another lineG' (I'", resp.) will go through that point that is an axigin (P, resp.) with
the parametep’ (7, resp.), for which one must hayé + 77 = 0, sinceG' andl'" are

attached to the hyperbolol(p’) that belongs tav, along with the two infinitely-close
F(p). TheGq (Mo, resp.) of=(p) that belong to the parametefsz resp.) (withp + 7= 0)

must be perpendicular to the plangl’ (Go G', resp.) and possess focal planes that are
perpendicular toG' (I'", resp.), since otherwise both of the two scré&w&) [[o(72,

resp.], as well a&'(p') [['(7?), resp.], that are infinitely close t@ in the focal plane
could not be reciprocal to the analogous dngg) [Go(p), resp.] and th&'(77) [G'(p'),
resp.].

Therefore, each of the concyclic, spherical, cagctions® of the focal surface an
“orthogonal point curve” of the hyperbolol(p) that contacts the focal surface alafg
and likewise a “limit point curve” of the other hyperbidid=(p'), which (contacts the
focal surface along anothéf) and ha<t for the complement of its intersection with the

focal surface. We understadimmer’'sterm “limit point” of a rayG (I', resp.) of a
congruence to mean, as would be useful, one of the powats betweenwhich the
shortest transversals ov& (', resp.) and the infinitely-close rays of the congruence
K(G) [K(I"), resp.] [i.e., the perpendicular transverdalsf G' (G of ', resp.) that trace
out the axis cylindroid of thé, in Py, (Ry in Ry, resp.) whose principal plane is
perpendicular t&' (I'', resp.)] areeal, in which the aforementioned shortest transversals
[at the pinch edges; e.d.¢ (Go, resp.) in the aforementioned cylindroid] themselves draw
together, anautsideof which these shortest (cylindroid edges) will be imagy. [On

the relationship between the radii of the “orthogqwht curve” of aMongesphere that
implies an arbitrary hyperboloB(p) and the other sphere that cuts out the “limit point

curve” inF(p), etc., cf., the cited treatise Bf Waelscl

The “focal surface” and the “limit surface” &(G) [K(I'), resp.] are identical. Any
rayG' (I'', resp.) of this congruence whose limit pointsraetby Iy (G, resp.) and the
other pinch edge of the cylindroid abowél contactthe focal surface in addition ato
points— viz., its focal points — at which it is met by tieeiprocal domain that belongs to
the equal and opposite parametand the axes thahtersect it perpendicularlyviz.,
edges of the aforementioned cylindroid). Each of therlatbgether wittG' (I'", resp.),
will then play the same role that was played abovehbypinch edgeB, andGy (G and
o, resp.) that went through the powvt namely, they, along witks' (I'', resp.), will
determine the tangential plane to the focal surfaddetfocal point in question. The
focal planes of every focal point 0@ (I'', resp.) are perpendicular to the second
cylindroid edge, which goes through the focal point, in addiiothe above. The former
two limit points, through which the “limit point spherehat belongs to the rays in
guestion of the hyperboloifi(p) meet, and the “focal points” (or “orthogonal points”

relative toF(p)) on the concentriMongesphere are symmetric with respect to the point
m — viz., the “midpoint” (principal point of the cylindroid ake) — at which the principal
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point p of Ry (Pu, resp.) projects orthogonally onto the ray of thegraence. The
“midpoint surface” that is traced out by these pomt®f the rays of the congruence
shall, as soon as it is given, shall be the first paintwhich we can recognize the
relationship between the direction of a screw ami&; (Pu, resp.) andts parametep

(77 resp.). The axels in Py, belong to screws in that domain whose parameter id equa
and opposite to thap) of the parallel axis iRy, such that examination that relate$fp

will suffice:
From the intersection laws for linear domains, forrgwerewlL in Ry there is a
reciprocal to the latter iR,. We give the principal screws (i = I, II, Ill) in Ry the

volume 1, such that their rod Iengtﬂ]—s will be the “characteristics” of the principal
screws. From the development on pp. 18, etc., on dmacteristic conic sectiaf of an

Ry, it follows that the midpoint surface of order two lwthe semi-axeg = i\/pE (i

principal parameter) that fall on the ax@sof theL; will be acharacteristic surfacef
order two R) for Ry;:

p X +p Y +pn 2 =1,

in which every radius | of g) (which might have the direction cosings c;, cs) will be

the characteristic of the scrdwin Ry whose axis is parallel to it, such that 1 /12
will prove to be the parameter of the latter. The pericscrewsR; that is reciprocal th
and contained iRy, has the plang, ¢1 X + py ¢ y + pu ¢z 2= 0, which is conjugate to
| relative to R), for its direction plane. Incidentally, it follsMrom this or the theorem
that:

The sum of the squares of three conjugate radii afrface(R) is constant

that

The sum of the reciprocal values of the parametéihree co-reciprocal screws in
Ry is constant:
1 1 1 1 1 1

_——t— = — 4 — 4+ —

P P2 P P P W

since the associated screws have the parallel gatguthree radii of §) for their
characteristics. This is connected wHthEverett'sproof of the theorem:

The sum of the reciprocal values of the paramefeis..., ps) of six co-reciprocal
screws in spacéRy) is zero.

Three of the six screws determineRn while the remaining ones will determine its
reciprocal domainP,; . Thus, in addition to the equation above, ondl Wwave
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i+i +_1 = i+—1 +—1, in which therz = — p; are the principal parameters of the

Pa Ps P 74 TR TG
Py . The equations that were written down will implg gtated theorem:

i+...+_1: 0.

Pa Pe

From this theorem, and the one that is derived forecgprocal screws in aR; (Py,

resp.) (pp. 20), namely,l+—1= const., it can be proved that:
1 P2

For four co-reciprocal screws in annR(Py, resp), the sum of the reciprocal values
of their parameters is constant.

To that endP; (R, resp.) needs only to be chosen to be the reciprocail perR,,
(Pw, resp). Analogous statements will be true for the paramedérfive co-reciprocal
screws in a web of screws. — The sum of the param¢het belong to all triples of
normal axes iR, is constant; i.e., one has:

prtp2+p3=p+pu +pu,

whenpi, p2, p3 stand for three screws R;, whose axes are mutually perpendiculas

would follow from the fact that the sum of the partene of two screws is constant in
eachR, when its axes are normal to each other. —

Instead of representing the parameters of the screat axis direction by£), one
can measure from a poiptparallel to the axes of every screwRn whose parameter is
p =1 /12 and employ the “parameter surfac&3)(that is arrived at as the locus of
endpoints thus-obtained in order to visualize the parardetigibution. (Cf., pp. 19) On
the ray throughp that has the direction cosines c;, c3 (so ¢ +c +c = 1), the
parameter:

p=pc+p, G +p, S

(x=dcLy=Acz=Ac; Apd +..)=1; X

|_2:x2+y2+22:—21 :E)
R

such thathe equation of3), in whichx, y, z should mean the coordinates of the points
2

on that surface from now on, so one gets\/X* +y*+ 7, ¢’ = etc., will

X+ Y+ 7
read:
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OC+Y +2)° — (i X+ pu Y +pu 2)*=0.

Sincep can be regarded as the length of the projection of aesggpn i, pu C2, P Cs)
onto the segment{, ¢, C3), that will yield the following construction of the pamater
surface f3):

Let&; (i =1, ll, ) be the spheres that are described around p with gadiand let
an arbitrary radius of eacl®; meet it at the poirf3; (when thep; have the same signs; if
one of these three principal parameters has a sign that is differenttirerother two
then the extension of the radius beyond p should cuRthe question); if the three
planes in M that are drawn throudl; perpendicular to the principal axes; @& Ry
intersect (OM has the projectioms ¢, by C2, pii Gz onto the principal axes) then the
orthogonal projection of M onto the radius employed will be a poi(fpfand will trace
out this surface when the radius varies through all p.

All of the radius vectors that belong to a certairs aangruenc&(G) [K(IN), resp.]
and are obtained by varying all radius vectors that ased afp by a constant amount
will be obtained from a parameter surfag#) ¢hat is so constructed (cf., pp. 13). The
family of (3) thus-obtained will represent the parameter distributianis possible for a
given axis congruence as the pencil:

(P + )+ pu + AV +pun +A)Z=1 () arbitrary)

of the associatedr] that also contain the sphere that leads to thdwbssphere-circle.

The axis congruencds(G) in Ry and K(I') in Py are symmetric relative to the
principal pointp and the principal plangs,Gy, etc., so the same thing will also be true
for Kummer'smiddle surface; we thus need only to considgr. Any screwL in Ry,
(with volume 1), since it is linearly derivable from ttie@ee principal screws, will be
representable as the sum of a radius Ird@ith direction cosinex;, ¢, c3) of the
characteristic surface of order tw®)((p; X* + ... = 1) and a field of the plar@ (p, c; x +

... =0, which is conjugate torelative to R) (cf., pp. 2) In order to go from this form of

representation to the canonical one, we need only ttadesphe rod that goes througp
in the direction in& that is perpendicular tothrough an amourgm m will then trace

out the desired middle surface whieassumes all possible radii i®)( The direction

cosines ofppm which are proportional to the determinants of therimnéthe projections
of the altitudes ta& andl)

‘plqpl.c‘z p...g‘
¢ G G

will be:
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Cz%(pn _pm) ,
\/02205(13" ~Pu )2+"'

and the lengthp of the displacement amount must pe p tan a, according to (pp. ?),
whenp = p, ¢’ +p, ¢ +p, G means the parameter of the screvand a is the angle

betweer and the altitude te.

If one recalls that:

PGP G Py &

p

cosa = -
JP R Gl @ P Gl ¢
and
. 1
sina = —\/szc\f(pn _]J|||)2+"'
i+
then one will have:
P= \/szc\f(pn _p|||)2+"' )
and we will get:
X=C2C3(pu—pm), Yy=csCi(pm —p1), z=C1 C (p1 —pu),

as the projections of the displacement amguatpm, from which one eliminates, ¢y,
cs with the help ofc? + ¢ + ¢ = 1:

1
S N A
nPu) =X
1
C’jcf(pm _F'|)2 = yZ’ st(pm ) ,
ccSp, —p,)’ =2 o 2
G :?(Fﬁ _pu) 1

[(pl. “Pu) ,}:1, = Xy7z
x° ( _plll)

2y222+

Cf(\QZQ??[(pH _]J|||)2+"'] = Clzxz+ <‘22y2+ %222,

2

Z)I—Z(Pn —pn)? Gur —p)% (e —pu)? [on —pu)® + .1 =A[(pu —pu)* + .1,
Xy’ 7

_ +Xyz
(pu ~Pu )(ﬂu -k )(ﬁ’ —h ) .
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This yields theSteinersurface of order four:

XyZ (pu —pum) (P —p1)(pr —pu)
F [ou —pu)’ Y Z + (pu —p)° Z5¢ + (o1 —pu)’ X ¥ = 0.

as the middle surface of the congrueri€@s) andK(I").

(Cf., Kummer, Schréter, Caylap Crelles Journal, Bd. 64, 1864, etd)) (An affine
picture of this surface is obtainable as a model ftonBril's Darmstadt publication
(series 9, no. 3).

In particular, ifp; = p; then theF(p) will be hyperboloids of rotation, and the cyclic
planey, v, as the well as the middle surface of the axis congas(G), K(I") in Ry
and Py, resp., will lie in the principal plang, G, , and the centers], N will lie at its
principal pointp. The focal surface will be a surface of rotatidh @s will the
characteristic surface of order twg&)(and the parameter surfacg)( K(G) will be

traced out by rays that can be obtained from the edghe aylindroid that is determined
by the screw§s () andGy, (p1) by rotation around; .

In particular, fom, = py =pu, all axes iRy, will go through the principal poirg and
have the same parameter p, . There will be no real screws with other parameters
The line frameworky; is one of the systems of generatd@sa(dt’sline of the second
kind) of the sphere® + y* + Z + p?> = 0 with an imaginary radius whose square-is?};

any circular lineg of v. Staudt’sfirst kind that belongs to an arbitrary parameted a
which lies in a tangential plane to the cofie y? + Z2 = 0 can (cf., pp. 30) be regarded as
the “axis” of such a line. The other system of gemesadf that sphere defines the line
frameworkoy, of the reciprocalPy, . In addition to the circular axgsof gy , in turn, the
rays of the sheaf will belong toPy, as axes, but endowed with the paramater-p = —

P

() Closely-related tcErnesto PascaRepertorio di Matematiche superiori: Il. Geometrillilano,
1900, pp. 474, etc. “La superficie romana di Steiner.”
() C., Fig. 3in the cited treatise Bf W. Hydepp. 48, rem. 1).
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