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 A purely geometric overview of linear manifolds of screws, their axis positions, and 
parameter distributions shall be offered here, as was first developed by Sir Robert S. Ball 
(Theory of Screws, A Study in the Dynamics of a Rigid Body,” Dublin 1876, German 
version by Harry Gravelius, as Theoretische Mechanik starrer Systeme,” Berlin 1889; 
finally, in A treatise on the theory of screws, Cambridge, 1900).  This will be 
predominantly cloaked in mechanical garb.  One finds that any rigid body that moves 
with an arbitrary number of degrees of freedom n (≤ 6) belongs to the screws of a linear 
manifold Rn of rank n, and will not be influenced by dynames, which belong to another 
screw manifold Pν of rank ν = (6 – n) that is “reciprocal” to the first one.  We will assume 
some familiarity with the simplest operations of Hermann Grassmann’s theory of 
extensions (A1, 1844, A2, 1862).  (Cf., E. W. Hyde in the Annals of Mathematics, vol. IV, 
no. 5, 1888, and by the same author: The directional calculus, based upon the methods of 
Hermann Grassmann, Boston, 1890).  Our three-dimensional space is determined by four 
mass points ei (i = 1, 2, 3, 4) that do not lie in a plane.  Each point x in it can be 

represented by means of suitable numerical quantities xi as the multiple sum x = ∑ xi ei of 
these four points.  This summation is known as the center of mass determination in 
mechanics, where the xi are the general linear point coordinates, and in particular, when 
e1, e2, e3 are infinitely-distant points – i.e., segments of constant direction and length – 
they will be homogeneous Hessian parallel coordinates. 
 We will understand the exterior product of three mass points – e.g., e1, e2, e3 – to 
mean the planar plate or plane segment (e1 e2 e3), and not merely its surface area, and its 
position will be regarded as – e.g. – a force-couple, as is used in mechanics (rotating 
twin, the exterior product of two segments), but also its membership in a certain plane.  
Two plates will then be added like two rotating twins, except that one must establish their 
membership in the line of intersection of the planes that go through the given plates as 
part of the sum of plates.  In that sense, every plate ξ in space can be represented as the 
multiple sum: 

ξ = ξ1 ⋅⋅⋅⋅ e2 e3 e4 + ξ2 ⋅⋅⋅⋅ e3 e4 e1 + ξ3 ⋅⋅⋅⋅ e4 e1 e2 + ξ4 ⋅⋅⋅⋅ e1 e2 e3 
 
of four basic plates of the reference tetrahedron.  The numerical quantities ξi are thus the 
general linear plane coordinates; in particular, when e1, e2, and e3 are segments, they will 
be the homogeneous Hessian plane coordinates. 
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 We will understand the exterior product of two mass points – e.g., e1 and e2 – to be 
the line segment, or rod (e1 e2), which is not merely regarded as having a length and 
direction, but also membership in a certain line, like a force or also a rotational velocity 
around an axis in the mechanics of rigid systems.  (The rod e1e2 can also be regarded as 
the regressive product of two plates e1 e2 e3 and e1 e2 e4.)  In particular, if e1, as well as e2, 
is a segment then the infinitely-distant rod (e1e2) will be called a field; it will then 
correspond completely to the geometric image of the concept of a rotating twin or also a 
parallel translation quantity – i.e., an angular velocity component of a rotation around an 
infinitely-distant axis.  Rods will be added like forces or angular velocities for axial 
rotations. 
 Any rod l can be linearly derived from the six basis rods of the elementary 
tetrahedron e1 e2 e3 e4 : 

e1e2, e1e3, e1e4, e2e3, e3e4, e4e2, 
  
by suitable numerical quantities pi,k (i, k = 1, 2, 3, 4): 
 

l = ∑ pi,k ei ek . 
 

When there is a likewise-to-be-discussed quadratic relationship: 
 

p12 p34 + p13 p42 + p14 p23 = 0 
 
between the determining pieces pi,k , they will be the so-called Plückerian line 
coordinates, which, as F. Klein remarked (Nichteuklidische Geometrie, Göttingen, 1893), 
should actually be named for Grassmann, who presented his comprehensive theory in 
1844, and thus two or three years before Plücker.  If the aforementioned relationship does 
not exist then: 

∑ pi,k ei ek = L 
 

will not be representable as a rod, but only a sum of at least two skew rods l1 and l2, 
which will then be called conjugate: L = l1 + l2 .  (Cf., Moebius, Ges. Werke, Leipzig, 
1886, Bd. III; Reye, Geom. d. Lage, Leipzig, 1892, whose used the expression “reciprocal 
polars in the null system L,” instead of “conjugate rel. L,” for the skew lines on which l1 
and l2 lie.)  If is known that for a given sum L, if one of the conjugate lines – e.g., l1 – is 
arbitrary then the length and sense of l1, as well as the conjugate rod l2 will then be 
determined already. 
 We call L a screw; it can be represented in a unique, canonical way as the sum of a 
certain rod l and a field f that is perpendicular to it: 
 

L = l + f. 
 

If one gives f the form of a right angle whose one side has the length l of l then, for 
Plücker, the length p of the second side will be called the parameter of the screw.  It shall 

be positive or negative, and the corresponding screw will be called right-wound or left-
wound, according to whether the field f does or does not appear to describe a clockwise 
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rotation to an observer that looks in the direction l, resp.  The opposite convention would 
also be permissible.  If we multiply L by an arbitrary numerical factor then the axes and 
the parameter of the resulting screw would remain the same.  All screws that are 
generated in that way with the same axes and the same parameter will then define a 
screwing motion.  A screwing motion then relates to the screw as the line relates to its 
rod.  It is invertible and uniquely linked with Moebius’s concept of a null system, since 
screwing motions and null systems are determined in an identical way by the association 
of conjugate lines.  We remain at the standpoint of the Euclidian metric.  l and f then 
define the single conjugate pair of L that is polar with respect to the absolute sphere 
circle.  (If one had established another Cayleyian metric surface in a non-Euclidian 
geometry then there would also be, in general, a polar conjugate pair relative to it that 
would be suitable to a canonical representation.) 
 If one adds a parallel field to l, such that l is displaced parallel to l′, then by a 
simultaneous subtraction of this field from f one will obtain: 
 

L = l′ + f′ ; 
 
i.e., as the sum of a rod l′ that is equipollent to l and a field f′ (that is no longer 
perpendicular to it).  If the perpendicular separation of l and l′ has the length ρ then f′ will 
be rotated with respect to f through an angle α, and indeed around the direction of the 
plane ll ′, which is perpendicular to l, and one will satisfy the condition: 
 

ρ = p tan α. 

 
If w is an arbitrary point then the plane of the plate: 
 

(w L) = (e f′ ) 
 
will be called its null plane relative to L [if l′ goes through w then one will have (w l′ ) = 
0], and ρ = p tan α will express the metric relationship between the length of the 

perpendicular ww0 from w to the axis l of the screw L (i.e., the axis of the null system L), 
and the angle α around which the null plane (w0 f′ ) of the point w0 is rotated when one 
goes from that point to w (through w0 w).  The parameter is thus equal to the separation of 
those points of the screw axis whose null planes subtend an angle of 45o with that axis. 
 With the concept of a linear manifold, one can let six fixed screws Li (i = 1, …, 6) 
enter in place of the six basic rods ei ek , and derive any screw L from them, as linearly-
independent basic screws, using suitable numerical quantities λi : 
 

L = ∑ λi Li . 
 
The λi are then the general Ball screw coordinates (1). 

                                                
 (1) Ball always used numbers that were proportional to the λi above as coordinates, which made the rod 
lengths of L equal to unity.  As a result of the latter requirement, we would not like to use that convention.  
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 We understand the product l1 l2 of two rods l1 and l2 to be mean the volume of the 
parallelepiped that they define.  It shall be positive or negative according to whether a 
float (Schwimmer) that lies on one rod facing the other one seems to be directed towards 
the left or the right, respectively.  One has l1 l2 = l2 l1, since the rods are also point 
products of rank two.  The term “product” will then be justified by the fact that the 
distributive law is valid for the addition of rods, under which, l1 l2 will remain unchanged 
when one these rods (or even both of them) decomposes into summands and one defines 
the algebraic sum of the resulting sub-volumes.  One obtains the meaning of a product of 
two screws (L Λ) from the distributive law in the precisely the same way, and it will be a 
sum (4) of sub-volume numbers that is independent of the random choice of conjugate 
rods, and which Ball said was twice the virtual coefficient of the two screws.  If it is zero 
then we, with Ball, will call the screws reciprocal.  In that case, Reye said that L and Λ 
“supported” or “carried” the null system, while F. Klein (Mathematische Annalen II) 
spoke of an involutory position. 
 The number: 
 

1
2 L2 = 1

2  L ⋅⋅⋅⋅ L = 1
2 (l1 + l2) (l1 + l2) = l1 l2 = 1

2 (l + f) (l + f) = lf = 2l p 

 
is characteristic of any screw L = l + f, and shall be called the volume of the screw (H. 
Grassmann, Jr., used the word characteristic for it in “Schraubenrechnung und 
Nullsystem,” Halle, 1899).  The relationship: 
 

l1 l2 = lf = 2l p = const. 

 
that it yields is an expression of Chasles’s theorem on the invariance of the volume l1l2 of 
the parallelepiped when l1 and  l2 are arbitrary conjugate rods of L.  (Our sign convention 
implies that the screw volume and the parameter always have the same sign.)  As a 
consequence, a rod or a field can be regarded as a screw with zero volume; however, the 
parameter will become 0 in former case and ∞ in the latter, if the parameter is the number 
by which the length l of the rod axis l must be multiplied in order to obtain the surface 
area of f. 
 Conversely, if the volume of the screw is 1

2 L2 = l1l2 = 0 then no two conjugate rods 

can be skew; i.e., L will itself be a rod or a field, in particular. 
 We would also like to establish this condition equation for a screw to degenerate into 
a rod (or especially a field) when L is not real, but of the form: 
 

L = L1+ L2 1− , 

 
in which L1 and L2 mean real screws. 
 

L2 = 2 2
1 2 1 2( ) 2 1L L L L− + −   or 2

1L = 2
2L   and L1L2 = 0 
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then says that the screws L1 and L2 must be reciprocal and have the same volume.  In this 
case, L is called a complex rod, and its screw is called an imaginary Staudt line of the 
second kind. 
 It is easy to convert the line equation L2 = 0 into the relation p12 ⋅⋅⋅⋅ p34 + … = 0 
between the Plückerian line coordinates.  One needs only to consider the squares in: 
 

L = ∑ pi,k ei ek , 
such as: 
 
e1 e2 ⋅⋅⋅⋅ e1 e2 = 0  etc., (the volume of identical rods is zero) 
e1 e2 ⋅⋅⋅⋅ e1 e3 = 0   “ “ intersecting “ “ 
e1 e3 ⋅⋅⋅⋅ e4 e2 = e1e2e3e4 ,  “ “ the rods e1 e3 and e4 e2 is equal to that of 
       e1 e2 and e3 e4 .) 
 
 If we would like to write the line equation L2 = 0 in, for example, simply-chosen Ball 
screw coordinates, instead of Plückerian line coordinates, then we could choose the six 
basic screws Li (i = 1, 2, 3, − 1, − 2, − 3) to be: 
 
 L1 = (e1 e3 + e3 e4), L−1 = (e1 e2 + e4 e3), 
 L2 = (e1 e3 + e4 e2), L−2 = (e1 e3 + e2 e4), 
 L3 = (e1 e4 + e2 e3), L−3 = (e1 e4 + e3 e2), 
 
which represents a system of co-reciprocal basic screws when each Li is reciprocal to all 
of the five remaining ones, but not to itself, as exterior multiplication would yield.  If one 
chooses, in particular, e1, e2, and e3 to be mutually perpendicular unit segments and e4 to 
be a point then the Li will be in canonical form by themselves.  Now, any screw L is 
determined by six λi according to: 
 

L = ∑ λi Li   (i = ± 1, ± 2, ± 3). 
If one recalls the fact that: 
 

2
1L  = 2

2L  = 2
3L  = − 2

1L− = − 2
2L− = − 2

3L−  

 
then it will follow from L2 = 0 that: 
 

2 2 2 2 2 2
1 2 3 1 2 3( ) ( )λ λ λ λ λ λ− − −+ + − + +  = 0. 

 
 If we desire a co-reciprocal system with equal-volume basic screws then we need 
only to introduce – e.g. – the imaginary screws: 
 

L−1 1− = L4,    L−2 1− = L5,    L−3 1− = L6 , 

 
in place of L−1, L−2, L−3 .  If the deriving numbers that belong to the latter are λ4, λ5, λ6 
then L2 = 0 will mean the same thing as: 
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2
iλ∑ = 0    (i = 1, …, 6). 

 
 From the geometric meaning of Ball’s λi , when referred to a system of co-reciprocal 

basic screws of equal volume 1, L = ∑ λi Li will yield, upon multiplication by Li : 
 
 (Li Lk = 0, 21

2 iL  = 21
2 kL  = e1 e2 e3 e4 = 1, where k ≠ i, i = 1, …, 6) 

  L Li = 2
i iLλ  = 2λi , 

i.e., 
  λi = 1

2 (L Li). 

 
 The λi mean one-half the product (Ball’s virtual coefficients) of L with the 
corresponding basic screws Li, 
 
so one will have: 

L = ∑ ( 1
2 L Li) Li 

identically. 
 The meaning of Plückerian line coordinate pi,k follows from multiplying the equation 

L = ∑ pi,k ei ek with (em en), when em en means the opposite edge to (ei ek) of the basic 
tetrahedron, and thus assume that ei ek em en = e1 e2 e3 e4 = 1.  Under this assumption, one 
will get: pi,k = L ⋅⋅⋅⋅ (em en). 
 
 The pi,k are the products (or moments, Ball’s virtual coefficients) of a screw L 
(especially a rod L = l when L2 = 0) with the opposite edges (em en) to the ei ek  of the 
basic tetrahedron to which the deriving numbers pi,k . 
 

 One will then have L = ∑ [L ⋅⋅⋅⋅ (em en)] ei ek , identically.  In particular, if L = l, since 

L2 = 0, then a rod ∑ pi,k ei ek will be representable as the connecting (intersecting, resp.) 
rod of two points (plates, resp.) x and y, so one will get: 
 

l = xy = i k

i k

x x

y y∑  ⋅⋅⋅⋅ ei ek , 

 
by exterior multiplication, then in this case the pi,k will be the six determinants of the 
matrices of coordinates of these points (plates, resp.).  In the following section, we will 
prefer the λi over the pik . 
 
 

Introduction of linear manifolds of screws and their reciprocal domains. 
 

 If the λi (i = 1, …, 6) are arbitrary then L = ∑ λi Li can mean any screw in space.  
One can then define a linear space of screws RVI of rank VI or dimension five that then 
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contains ∞5 screwing motions.  (The dimension number is one less that Grassmann’s 
rank number.)  We assume that there exists a homogeneous, linear equation: 
 

(I)      ∑ α1i λi = 0 
 

between the λi .  When one sets A1 = ∑ α1i Li , this will be identical with (A1 L) = 0, 
which says that any screw L of the linear screw domain RV – viz., the web of screws of L 
– that is cut from the domain of all screws in space by equations (I)  is reciprocal to a 
certain screw A1, and thus also reciprocal to any screw of the screwing motion PI = x1 A1 
(x1, and arbitrary number) that is defined by A1 .  Conversely, a web RV of reciprocal 

screws belongs to any screwing motion PI that is fulfilled by any screw ∑ λi Li whose λi 
satisfy the linear, homogeneous equation (I) when the α1i are assumed to be the 
coordinates of a screw A1 of the screwing motion PI . 
 If two mutually-independent, homogeneous, linear equations: 
 

(II)   1

2

0,

0,
i i

i i

α λ
α λ

 = 
 =  

∑
∑

, which are identical with 1

2

0,

0,

A L

A L

= 
 = 

, 

 

exist between the λi of the screw ∑ λi Li , when A1 and A2 mean the screws: 
 

1 1

2 2

,

,
i i

i i

A L

A L

α
α

 = 
 =  

∑
∑

 

 
then that will say the same thing as saying that any arbitrary screw L of the linear space 
of screws of rank IV – viz., the bush of rays, RIV – that is cut out from the screw domain 
in space by equations (II) is reciprocal to two linearly-independent screws A1 and A2, and 
thus also reciprocal to any screw of the rank-II linear screw space – viz., the pencil of 
screws: 

PII = x1 A1 + x2 A2 
 
(x1 and x2 are arbitrary numbers) that is determined by the latter two.  Conversely, a bush 

RIV of reciprocal screws L = ∑ λi Li is established by two arbitrary linearly-independent 
screws: 

1 1

2 2

,i i

i i

A L

A L

α
α

 = 
 =  

∑
∑

 

 
of a pencil of screws PII that they determine, when one demands the existence of linear, 
homogeneous equations: 

1

2

0,

0
i i

i i

α λ
α λ

 = 
 =  

∑
∑

 

between theλi . 
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 Analogously, if three linearly-independent, linear, homogeneous equations: 
 

(III)   
1

2

3

0,

0,

0,

i i

i i

i i

α λ
α λ
α λ

 =
 = 
 = 

∑
∑
∑

, which are identical to 
1

2

3

0,

0,

0,

A L

A L

A L

= 
 = 
 = 

 

 

exist between the λi of the screw L = ∑ λi Li , where A1, A2, A3 are the screws: 
 

1 1

2 2

3 3

,

,

,

i i

i i

i i

A L

A L

A L

α
α
α

 =
 = 
 = 

∑
∑
∑

 

 
then the ∞3 screws (∞2 screws) L that are compatible with these three equations will fill 
up a linear, rank-III, screw domain – viz., a sheaf of screws, RIII  – whose screws will all 
be, as we say briefly, reciprocal to themselves with respect to the screws of the sheaf: 
 

PIII  = x1 A1 + x2 A2 + x3 A3 
 
(x1, x2 x3 are arbitrary numbers).  Since the relationship between the reciprocal sheaves 
RIII  and PIII  is completely mutual, each PIII  will, conversely, correspond to a sheaf of 
reciprocal screws, namely, a reciprocal sheaf RIII  . 
 A pencil of screws (that are all screws) will be cut out by four linearly-independent, 

linear, homogeneous equations between the λi of a screw L = ∑ λi Li , which will be 
identical to the four equations: 
 
(IV)    A1L = A2L = A3L = A4L = 0 
 
(A1, …, A4 are linearly-independent screws), which is reciprocal (to itself) relative to the 
bush of screws: 

PIV = x1 A1 + … + x4 A4 
 
(x1, …, x4 are arbitrary numbers).  Conversely, a bush PIV that is established by arbitrary 
linearly-independent screws will determine the pencil of screws RII that is reciprocal to it.  
Analogously, five linearly-independent equations between the λi : 
 
(V)     A1 L = A1 L = … = A1 L = 0 
 
will determine, on the one hand, a screwing motion RI of screws L when they establish 
the five ratios of the λi , and on the other hand, the web of screws: 
 

PV = x1 A1 + … + x5 A5 
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(x1, …, x5 are arbitrary numbers).  Conversely, if a PV is given by five linearly-
independent screws then the reciprocal screw will be determined by it. 
 Due to the reciprocity in the relationship between reciprocal domains Rn (n = I, …, V) 
and Pν (ν = V, …, I), the cases (I) and (V), (II) and (IV) are not geometrically distinct, 
and for that reason we will have to seek: 

 
(I) The screwing motion RI and the reciprocal web of screws PV that is connected 

with it, 
(II) The pencil of screws RII and the bush of screws PIV that is connected with it, 
(III) The sheaf of screws RIII  and the reciprocal sheaf of screws PIII  that it connected 

with it, 
 

in order to provide an insight into all possible axis positions and parameter distributions 
of the linear space of screws.  For many theorem that are otherwise suitable to what we 
are doing here, we refer to E. Müller’s “Die Liniengeometrie nach den Prinzipien der 
Grassmannschen Ausdehnungslehre” in the Wiener Monatsheften, 1891, 2. 
 
 

The line framework of the linear space of screws. 
 

 A curved manifold of screws that degenerate to lines will be cut out of any linear 
space of screws Rn (Pν, resp.) of rank n (ν, resp.) ( ), I, II, III, IV,V,VIn ν =  by the line 

equation L2 = 0, namely, the line framework (Liniengerippe) rn in Rn (ρν in Pν, resp.) in.  
Conversely, the entire associated linear screw space will be determined by such a 
framework rn (ρν, resp.) when the n screws that establish an Rn can be chosen from the 
ones that are cut out by the nonlinear equation L2 = 0. 
 
The framework rVI of the rank-VI screw domain RVI in space is the linear manifold itself. 
 
The framework rV of the rank-V screw domain RV is a linear complex. 
 
The framework rIV of the rank-IV screw domain RIV is a linear congruence. 
 
The framework rIII  of the rank-III screw domain RIII  is a second-degree ruled surface. 
 
The framework rII of the rank-II screw domain RII is a skew pair of lines. 
 
One cannot speak of the framework rI of the rank-I screw domain RI, in general, since the 
screw itself would be line RI = rI , as a very special case. 
 
 In order to establish the validity of these assertions, one needs only to apply the law 
of intersection of linear domains (which is also understandable, with no further 
assumptions, in the consideration of systems of linear equations) to linear screws (ray-
manifolds, resp.).  It reads: 
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 If a linear domain of rank α and one of rank β lies in one of rank γ, and no lower 
ranks (α < β, β < γ, α + β > γ) then the first two domains will have a linear domain of 
rank (α + β – γ) in common. 
 
 (Grassmann’s A1, 1844, pp. 183, § 126; A2, 1862, pp. 13, 14, no. 25, 26.) 
 
 In fact, for a framework rV of a space of screws RV, a planar pencil of screws will go 
through every point in space, and one likewise lies in any plane.  The rays of a sheaf or a 
plane will define a special screw domain, namely, a ray domain of rank III, since all rods 
in it, and only them, can be derived from III linearly-independent ones of them.  
However, any RV will have a rank V + III – VI = II linear domain, and thus, a plane 
pencil of rays, in common with a rank-III sheaf of rays (planar line field, resp.) that lies 
with it in a screw domain in space of rank VI and no lower.  It will follow from this, as 
one can also infer directly in a completely analogous way (viz., V + II – VI = I), that any 
planar pencil of rays in the space I are associated with rays in rV (the framework of RV), 
or more briefly, that rV is a linear complex. 
 For the framework rIV, an RIV will go through every point, and likewise a ray will lie 
in every plane, so every screw domain RIV, and thus also its framework rIV, will have a 
IV + III – VI = I linear domain – therefore, a line − in common with a rank-III sheaf of 
rays or a planar field of lines in the same space RIV (and no lower-rank screw domain): 
i.e., rIV is then a linear congruence. 
 The framework rII of RII that is cut out by L2 = 0 is a skew pair of lines: Let RII be 
determined by the screws L1 and L2 : 
 

L = λ1 L1 + λ2 L2 
and thus an arbitrary screw of RII : 
 

L2 = 2 2 2 2
1 1 1 2 1 2 2 22 ( )L L L Lλ λ λ λ+ +  = 0 

 
will determine two ratios λ1 : λ2 , and thus two lines, which must be skew, since 
otherwise it would not be true that conversely one could not derive screws that would 
degenerate to lines from L1 or L2 .  This skew pair of lines will be real and separate, 
intersecting, or a v. Staudt imaginary line-pair of the second kind, according to whether 
the discriminant of L2: 

2
1 1 2

2
2 1 2

( )

( )

L L L

L L L
 > 0, = 0, or < 0, 

resp. 
 The framework rIII  of an RIII  is a second-degree ruled family, so the surface that is 
filled up by ∞1 rays of that domain will be met twice by an arbitrary line ρI : The rays that 
meet ρI will then belong to an RV as the line framework rV .  However, RIII  and RV have a 
rank III + V – VI = II linear screw domain in common whose line framework consists of 
just those two lines of rIII  that meet ρI . 
 This ruled family rIII  can degenerate into a pair of pencils with common rays when 
the Hessian determinant: 
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2
1 1 2 1 3

2
2 1 2 2 3

2
3 1 3 2 3

( ) ( )

( ) ( )

( ) ( )

L L L L L

L L L L L

L L L L L

 

of the line equation: 
L2 = (λ1 L1 + λ2 L2 + λ3 L3)

2 = 0 
 
(λ1, λ2, λ3 are arbitrary numbers; L1, L2, L3 are linearly-independent screws) vanishes.  
Cf., the aforementioned treatise of E. Müller. 
 If Rn and Pν (n and ν positive whole numbers, n + ν = VI) are two linearly-reciprocal 
associated screw domains then their frameworks rn and ρν will also be reciprocal – i.e., 
any line of rn will cut each of the ρν, and conversely. 
 

(I) If one can speak of a framework rI of RI in the case of reciprocal screw 
domains RI and PV, then RI = rI must represent a line, in particular. ρν will 
then be the linear complex that degenerates to the system of transversals of rI . 

 
(II) For reciprocal domains RII and PIV, each of the two lines of the skew pair RII  

will cut each ray that belongs to the reciprocal congruence rIV, so the two lines 
rII will be the guiding lines of the congruence ρIV .    In particular, as was 
already remarked, rII can consist of two infinitely close skew lines, which can 
be thought of as being determined by one of them G and an infinitely-close 
line of the family that lies in a second-degree surface that contains G.  This 
family can be replaced with an equilateral paraboloid T with the vertex line G.  
ρIV will then consist of the transversals of G that contact the surface T at its 
point of intersection with G.  In particular: 

 
(II ′) rII can be a pencil of rays (there are then no proper screws in the 

associated RII), and ρIV can be a pencil of rays with the center of the 
pencil of ρII as the carrier and the line field of the plane of the pencil 
of rII . 

 
(III) The line frameworks rIII  and ρIII  to two reciprocal sheaves of rays RIII  and PIII  

are, in general, the two families of a second-degree surface.  In particular: 
 

(III ′) If rIII  is a pair of pencils of rays with a common ray then ρIII  will 
consist of a pair of just such pencils, each of which possesses the 
center of one of the two pencils rIII  and the plane of the other.  Even 
more especially: 

 
(III ″) rIII  and ρIII  can be one and the same pencil of rays or planar 

line field; in this case, there will be no proper screws in the 
domain whose volume is non-zero, and one will have: 

 
rIII  = RIII  = ρIII  = PIII  . 



Grünwald – Sir Robert S. Ball’s space of linear screws. 12 

Metric relation between reciprocal screws 
 

I.  The screwing motion RI and the reciprocal web of screws PV . 
 

 If two screws L and Λ are represented in canonical form, so they are sums of a rod l 
(λ, resp.) and a field f (ϕ , resp.) that is perpendicular to it whose volume isl p  (λπ, resp.) 

if l (λ, resp.) means the (always positive) length of the rod and p (π, resp.) means the 

parameter of the screw L (Λ, resp.), then the equation L Λ = 0 (which will make L and Λ 
reciprocal when it is true) will demand that one have: 
 

L Λ = (l + f) (λ + ϕ) = lϕ + λf + lλ = 0  (since fϕ = 0) 
or 

cos cos sinl l l l e l lλ π λ λ λ λ λ+ −p  = 0, 

 
if we denote the angle that the axes l and λ of both screws make by lλ  and denote the 

shortest distance between them by e.  By cancelling lλ , this will give: 
 

(p + π) cos lλ  − e sin lλ  = 0 

or 
(p + π) = e tan lλ . 

 In particular, it follows that: 
 
 Two screws whose axes intersect are reciprocal when their parameters are equal and 
opposite or when the axes intersect perpendicularly. 
 
 The point of intersection of the axes can thus lie at a finite point (e = 0) or at infinity 
( lλ  = 0); when the axes coincide, p + π will serve as the reciprocity condition.  Screws 

whose axes intersect perpendicularly are always reciprocal for completely arbitrary 
parameters p and π.  If the axes of reciprocal screws are perpendicular to each other then 
they must also intersect.  If this were not the case then one of the two parameters would 
have to be infinitely large; i.e., no proper screw would be present, but only a field that 
would be perpendicular to the axis in question. 
 We now fix one of the two reciprocal screws – say, L – whose axis (which contains l) 
might be G, and examine the possible positions of the axis, as well as the parameter, of 
any screw Λ that is reciprocal to L, and thus, to any screw of the screwing motion RI of L; 
i.e., we study the most general web of screws PV (if we remark that each of them will also 
conversely determine one reciprocal screwing motion)! 
 Above all, we show that any line Γ in space can be the axis of a Λ in PV whose 
parameter π is deduced from the reciprocity condition.  On the other hand, if π is also 
capable of taking on an arbitrary value then an entire linear complex of axes Γ of the 
screws Λ in PV will belong to every π = const.: Just as e tan lλ  = p can be regarded as 
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the metric defining equation of the linear complex (π = 0) of the line Γ(π = 0), relative to 
whose rod the product (cf., Moebius’s definition of a linear complex) with L is zero: 
 

e tan lλ  = p + π = const. 

 
(π const.) can be regarded as the metric defining equation of a linear complex with the 
same axis G whose dividing constant (viz., the shortest separation between complex rays 
of G that subtend an angle of 45o with that axis) is greater than π.  In addition to the 
complex π = 0 and the line framework ρV of the web PV , the degenerate complexes: 
 

p + π = 0, i.e., π = − ϕ, 

 
of lines Γ that cut G are worthy of note, as well as the other ones: 
 

ϕ + π = ∞, i.e., π = ∞, 
 
for which G is perpendicular to Γ.  The axes Γ that simultaneously belong to both of the 
latter complexes – i.e., they cut G perpendicularly – belong to arbitrary parameters in PV. 
 Since only the sum (p + π) of the parameters enters into the reciprocity condition, it 
will follow that: 
 
 The system of axes of two reciprocal domains Rn and Pν (n + ν = VI) remains 
unchanged when all parameters of one of those domains are increased by some amount 
and simultaneously the parameter of the other one is decreased by the same amount. 
 
 In order to get a picture of the distribution of the parameters π on all lines Γ in space, 
which are regarded as axes in Pν – we consider: 
 α) The parameter π of the line Γ that goes through an arbitrary spatial point w and 
 β) The π of the line Γ that lies in an arbitrary plane W. 
 
 α) Let e be the length of the altitude wx from w to G, so we first consider the 
parameter of the rays Γe that are perpendicular wx.  Among them, one finds the ray wz 
that is parallel to G and one wy that is perpendicular to (wG).  If we measure off the 
length ρ = p + π (on both sides) on each Γe from w in the plane of the rectangular 
coordinate system w (y, z) then the endpoints with the coordinates y, z will trace out a 
curve C that can be constructed according to ρ = e tan ϑ (where ϑ = lλ  = eGΓ ) , as is 

clear in Fig. 1 (†), where the coordinates: 
 

2sin
sin

cos
y e

ϑρ ϑ
ϑ

= = ,  cos sinz eρ ϑ ϑ= = , 

in which: 

                                                
 (†) Translator’s note: The figures did not seem to be available in the version of this article that was used.  
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sinϑ  = 
z

e
, cosϑ  = 

2z

ey
, 

will satisfy the equation: 
 

2 4

2 2 2

z z

e e y
+  – 1 = 0  or  z2 (y2 + z2) – e2 y2 = 0. 

 
 If we take wx to be the third rectangular coordinate axis and arrange all rays of the 
sheaf w into pencils that connect a Γe with wx then all rays Γ of each of these pencils 
must possess the same parameter as the ray Γe itself, since that parameter (like any 
arbitrary one) will also belong to (wx), which is regarded as the axis Γ0 of Pν , and any 
screw with the same parameters in the pencil thus-determined will be linearly derivable 
from two screws with the same parameters whose axes intersect.  The endpoints (with the 
coordinates x, y, z) of the segments of length ρ = p + p that were measured off on all sides 

on the axes Γ of the sheaf w will then trace out a surface F that one can think of as being 
constructed from a variable circle whose center is w, whose plane goes through wx, and 
which cuts the curve C.  The equation of F in terms of x, y, z is obtainable by eliminating 

ϑ and η (viz., the angle between Γ and wx) from: 
 

cos tan cosx eρ η ϑ η= = ,  tan
y

z
ϑ= , 

2 2
2

2
tan

y z

x
η+ = , 

so since: 
2 2 2

2 2

sin
cos , ,

cos

xz y z

ey x

ηη
η

+= =  
2 2 2 2 2 2 2

2
2 2 2 2 2

( )
sin

y z x z z y z

x e y e x
η + += ⋅ = , 

 
one will have: 

x2 y2 + z2 (y2 + z2) = e2 y2 or  z2 (x2 + y2 + z2) − e2 y2 = 0. 
 

 Ball called F a “pectenoid” and gave an intuitive picture of that surface in his treatise 
(1900) on pp. 255. 
 If w is at infinity – so lλ  = const. – then ρ = (p + π) = e tan lλ  will be proportional 

to e. 
 
 β) Let W be an arbitrary plane, so above all, the parameter of a line Γ1 in it that is 
parallel to the orthogonal projection of the axis G onto W will be easy to imagine when 
one measures off the segment ρ = p + π = e tan gW  on each of them – say, starting 

from their point of intersection w with the lines Γ0 in W that cut G perpendicularly – such 
that the endpoints of the segments thus measured off will trace out a line.  Any line Γ of 
W will then have a parameter that is equal to the Γ1 that goes through its point of 
intersection with Γ0 .  Any arbitrary parameter will belong to Γ0 itself. 
 If W is parallel to G then π = const. for all parallel rays in it, such that all rays of a 
well-defined direction of W can be represented by one of them that goes through a fixed 
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point w in the plane W; we only need to choose it arbitrarily on the orthogonal projection 
of G onto W in order to be able to repeat the considerations that were discussed in α), in 
which we employed the curve C for the purpose of illustration. 

 RI and PV are determined in a canonical way when one is given the axis G and 
parameter p of RI .  The latter given can be replaced with the “characteristic” of the 

screwing motion – i.e., the length l  of the rod l of any screw L of the screwing motion RI 
whose volume is 1: 12 L2 = 2l p = 1.  The characteristic and the parameter are thus 

coupled by the equation: 

l = 
1±
p

 or p = 
2

1

l
, 

 
so the characteristic of a screw with a negative parameter will be imaginary; a finite line 
(i.e., a screw of volume 0) will have: 
 
   a characteristic of ∞, corresponding to p = 0, 

 
while a field will have: 
 
   a characteristic of 0, corresponding to p = ∞ . 

 
 

II.  The pencil of screws RII and the reciprocal bush of screws PIV . 
 

 The most general screw L of an RII is derivable from linearly-independent basic 
screws L1 and L2 and arbitrary numerical quantities λ1 and λ2 by way of L = λ1 L1 + λ2 L2.  
The latter can also not have the same axis and the same parameter.  Special cases: 
 
 1*) If the axes G1 and G2 of the screws L1 and L2, resp., coincide in a line G then RII  
will consist of all screws with that axis and an arbitrary parameter, and in particular, the 
line framework rII will consist of G and the field that is perpendicular to it.  The axes Γ of 
the reciprocal domain PIV that also belong to arbitrary parameters will exhaust the 
congruence of transversals that are perpendicular to G; this congruence will also define 
the line framework ρIV of PIV .  All of the remaining skew lines that are perpendicular to 
G will belong to π = ∞ in PIV ; i.e., they will represent fields of the pencil of fields that 
are parallel to G. 
 
 2*) If the axes G1 and G2 of L1 and L2, resp., are parallel then these basic screws can 
be replaced with a certain rod l0 of a line G0 of the pencil of parallels G1 G2 and a field f0 
that contains the direction A in the plane G1 G2 that is perpendicular to G.  In fact, λ1 and 
λ2 can be chosen such that the field in L = λ1 L1 + λ2 L2 that is perpendicular to G 
vanishes in one case, and in the other case, such that rods of λ1 L1 and λ2 L2 contain equal 
and opposite segments such that a field f0 with the property above will result for L.  The 
line framework rII of RII here consists of the lines G0 of l0 and the infinitely-distant ones 
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of f0 ; the ρIV of the reciprocal bush PIV consist of the transversals of l0 that are parallel to 
f0 . 
 If one adds a multiple λ f0 of f0 to l0 then the latter can be represented as the sum of 
two fields 0fλ ′  and λ f, the former of which lies in the plane G1G2 and can be constructed 

as a right angle with one side parallel to l0 and of length 0l  and the other side of length x 

in the direction A that is perpendicular to G, while λ f0 is perpendicular to l0 and has a 
volume of 0l p, where p is the parameter of the variable screw L = l0 + λ f0 = (l0 + 0fλ ′ ) + 

λf = l + λ f, which appears to be the sum of the rod l and the field λ f that is perpendicular 
to it in canonical form.  l lies in the plane G1G2 that is parallel to l0 with a perpendicular 
separation x from the latter rod and has the same length as l0 .  If ϕ0 is the constant angle 
of f0 with respect to l0 – i.e., also with respect to the plane l0 l = G1G2 – then tan ϕ0 will be 
equal to the ratio of the volumes l0 p of the field λ f and 0l x of the field , so tan ϕ0 = p / x. 

 
 The axis G of any screw L in RII thus lies in the plane G1G2 that is parallel to those 
lines and its parameter p is proportional to the perpendicular separation x between G 

and G0 : p = x tan ϕ0 . 

 
 If one then measures off the parameters p1 and p2 of these screws as segments on G1 

and G2, resp., and lets A be the connecting line of the starting points of these lines (which 
is assumed to be perpendicular to the direction of G), and B is the endpoint of these 
segments then on any line G of the pencil of parallels G1G2  that appears in RII as an axis 
the segment from the point of intersection with A to the point of intersection with B will 
specify the associated parameter p.  In particular, the line G0 in the pencil of screws that 

is associated with p = 0 goes through the point of intersection of A and B; f0 , the field of 

the pencil, is parallel to A and the axis G will subtend an angle ϕ0 with the plane G1G2  

that is equal to the one between A and B. 
 
 The axes Γ of the reciprocal bush PIV that belong to finite parameters fill up the 
totality of all lines that are parallel to f0, and the parameter p that is associated with them 
in this screw domain is equal and opposite to the parameter p of the axis G of the pencil 

G1G2  of RII that meets Γ.  The lines Γ in the plane G1G2 that are perpendicular to G thus 
belong to arbitrary parameters.  The pencil of the fields that are parallel to l – i.e., to G – 
also belong to PIV, which is why any line that is perpendicular to G can be regarded as 
the axis Γ in PIV that is associated with π = ∞. 
 
 The screwing motions Γ(π) thus obtained, and only them, are in fact reciprocal under 
f0, as well as under any screwing motion G(p) whose axis G is met by Γ. 
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General case RII (PIV, resp.)  
 

Principal screws and parameter distribution in the domain RII . 
 

 If the axes G1 and G2 of the screws L1 and L2, resp., that determine a pencil of screws 
RII subtend a non-zero angle then two screws LI and LII  will always be contained in RII  
that: 
 1) Are reciprocal to each other and 
 2) Possess mutually-perpendicular axes that intersect according to the reciprocity 
condition ( lλ  = 90o, p + π is finite, so e = 0). 

 
 In order to arrive at these principal screws LI and LII, we can first replace L1 and L2 
with L1 and (L1 + κ L2), and make the latter screw reciprocal to L1 by a suitable choice of 

the number κ = −
2
1

1 2( )

L

L L
.  In order to not complicate the notations, we will assume that L1 

and L2 are reciprocal, and that they are of equal volume (1): 
 

L1 L2 = 0, 2
1L  = 2

2L , 

 
since that can be achieved by multiplying one of the two screws by a number. 
 Let L1 = l1 + f1 and L2 = l2 + f2 be represented in canonical form, so for any arbitrary ϕ 
the linearly-independent screws of RII , namely: 
 
 LI  = L1 cos ϕ − L2 sin ϕ = l I + fI, 
 LII = L1 sin ϕ  + L2 cos ϕ = l II + fII, 
 
(canonical form) will also be reciprocal, since LI LII = 2 2

1 2( )L L− sin ϕ cos ϕ = 0.  The rods 

I 1 2

II 1 2

cos sin ,

sin cos ,

l l l

l l l

ϕ ϕ
ϕ ϕ

= − 
= + 

 can be made perpendicular to each other by a suitable choice of 

ϕ.  If an underlined symbol denotes the segment of a rod and an overbar means the rod 
length then in order for the product I II|l l  = ( 1l  cos ϕ − 2l  sin ϕ) | ( 1l  sin ϕ  + 2l  cos 

ϕ) to be zero, one needs only to take 2 2
1 2( )L L− sin ϕ cos ϕ  + 1l 2l (cos2 ϕ – sin2 ϕ) = 0; 

i.e., tan 2ϕ = 1 2

2 2
1 2

2l l

l l− +
. 

 If we set the volume of the principal screws (which prove to be equal 2IL  = 2
IIL  = 2

1L  = 
2
2L ) to 1 then the lengths of the rods of these screws will immediately become their 

characteristics.  Each screw in RII of volume 1: 
                                                
 (1) If the parameters and volumes of L1 and L2 have opposite signs then the following development can 

be replaced with one that operates merely with real screws, in which one assumes that 2 2

1 2
L L+  = 0 and the 

corresponding hyperbolic functions are used in place of cos ϕ, sin ϕ .  Cf., the remark on page 22, 
moreover.  
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L = LI cos ω + LII sin ω (ω is an arbitrary number) 
 
possesses a rod segment l  = Il  cos ω + IIl sin ω, which is the radius of the conic section 

K that is determined by the semi-axes l I and l II and is “characteristic” of RII .  K has the 

equation: 
2 2

2 2
I II

x y

l l
+  = 1,  or (since 21

2 aL  = 2
a al p  = 1, a = I, II) 

 
(K)      pI x

2 + pII y
2 = 1, 

 
when referred to GI and GII as the x and y axes, resp. 
 
 The radii l of the characteristic conic section K are the characteristics of the screws 

in RII that are parallel to them. 
 
 We obtain the parameter p of any screw whose axis G subtends the angle ϑ with GI 

from this.  We set x = l cos ϑ, y = l sin ϑ in pI x
2 + pII y

2 = 1, and find: 

 
2l (pI cos2ϑ + pII sin2ϑ) = 1 ; 

i.e., (since 2l p = 1) 

p = pI cos2ϑ + pII sin2ϑ . 
 

 If one measures off not the characteristic, but the parameter p, of the screw in RII  

whose axis has that direction directly from the point p = GI GII  in the plane of these 
principal axes then the endpoints of the segments thus-obtained will trace out the 

parameter curve P in RII .  Since p = 2 2x y+  = pI cos2ϑ + pII sin2ϑ , cos2ϑ  =
2

2 2

x

x y+
, 

sin2ϑ =
2

2 2

y

x y+
, the equation for it relative to GI GII will be: 

 
(P)    (x2 + y2)3 – (pI x

2 + pII y
2) 2 = 0. 

 
The forms of K are indicated in Fig. 2, 3, 4 when LII (and thus l II) is real, so pII can be 

assumed to be positive, and 
 Fig. 2: LI (and thus l I) is real, so pI > 0, 

 Fig.3: LI has volume 0, LI = GI, Il  = ∞, pI = 0 (limiting case) (1), 

 Fig. 4: LI (and thus l I) is imaginary, so pI < 0 (1). 

                                                
 (1) In the limiting case, K will be a pair of parallel lines, and not a parabola: Ball-Gravelius, 1889, pp. 
272, Ball, 1900, pp. 111.  
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 The associated parameter curves P are exhibited in Fig. 2′, 3′, 4′, and in fact the 

curve segments that belong to endpoints with negative parameters are recorded with 
primes.  The construction that is apparent in the figures according to the equation: 
 

2 2 2 2
I II(cos sin ) cos sinϑ ϑ ϑ ϑ+ = +p p p  [ 2 2

I II( ) cos ( )sinϑ ϑ− = −p p p p , resp.] 

 or  

 I−p p = tan2 ϑ,  ( II −p p= tan2 ϑ, resp.) 

 
is the following: Two circles KI and KII with radii pI and pII, resp., are drawn around p = 

GI GII as their centers, and made to intersect an arbitrary radius at PI and PII, resp. (in 

case pI and pII are the same; otherwise, one takes the extension of the radius over p in one 

case).  One drops a perpendicular to the radius that is employed through the point of 
intersection M of the perpendiculars that are drawn through PI to GI and through PII to 

GII .  Its foot will describe P when the radius changes with ϑ. 

 In particular, for pI + pII = 0, K will be an equilateral hyperbola and P will be star-

like: P = P*.  (Figs. 5 and 6.) 

 As was remarked above (pp. 13), any linear screw domain will have the property of 
still being one when one changes all parameters p by an equal amount for equal axis 

positions.  This is connected with the fact that new P will emerge from P by enlarging 

all radius vectors p by the same amount: 

 

p = pI 
1 cos 2

2

ϑ+
+ pII 

1 cos 2

2

ϑ−
 = I II II I

2 2

+ −−p p p p
cos 2ϑ 

 
which will change independently of ϑ by a constant amount when pI + pII varies, 

although II I

2

−p p
= h will remain constant.  A family of curves P is represented in Fig. 7 

that belong to constant II I

2

−p p
= h, and each of which can be generated from one of them 

– e.g., from the star-like P* (pI + pII = 0) by uniformly changing the radius vectors p of p.  

From the remark that was made on pp. 13, this family of curves belongs to a well-defined 
axis surface and specifies all possible parameter distributions of the domain RII that 
belongs to this surface.  This family P corresponds to the pencil (pI + κ) x2 + (pII + κ) y2 

= 1 of characteristic conic sections (Fig. 8). 

                                                                                                                                            
 (1) Since 12 L2 = 2l p = 1, the real screws L of volume 1 will be pure imaginary and imaginary real 

when we switch the convention that we made on pp. 2 regarding the parameter sign with the opposite one, 
which is likewise permissible. 
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 The same parameter p belongs to + ϑ and – ϑ: Screws in RII whose axes possess 

symmetric directions relative to the principal axes GI and GII will have the same 
parameter. 
 Screws in RII whose axes are perpendicular to each other – which corresponds to ϑ 
and (90o + ϑ) – or have symmetric directions with respect to the angle bisectors of GI and 
GII – which corresponds to ϑ and (90o – ϑ) – will possess parameters whose sum is 
constant and equal to pI + pII . 

 P moves entirely between the limits pI and pII ; if they are equal then p will always 

have the same value.  For arbitrary ω, 1 I II

2 I II

cos sin ,

sin cos ,

L L L

L L L

ω ω
ω ω

= + 
= − + 

 will give all pairs of 

reciprocal screws in RII with equal volume, and their characteristics 

1 I II

2 I II

cos sin ,

sin cos ,

l l l

l l l

ω ω
ω ω

= + 
= − + 

 will be conjugate radii of K: 

 
 The axes of reciprocal screws in RII are parallel to conjugate diameters of K. 

 
 1l  and 2l  satisfy the equation: 

 
2 2

1 2l l+  = 2 2
I IIl l+  = const., 

 
from which (if one recalls that 2l p = 1), it will follow that: 

 

1 2

1 1+
p p

= 
I II

1 1+
p p

 = const. 

 
 The sum of the reciprocal values of the parameters of reciprocal screws of a pencil 
RII is constant. 
 
 Two screwing motions in RII that correspond to p = 0 will degenerate to lines and 

define the line framework rII of this domain; they will subtend the angle ϑ0 with GI which 
is such that: 

tan ϑ0 = I

II

− p
p

, 

 
and will be parallel to the asymptotes of K and to the tangents to P at the origin p. 
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Positions of the axes in the domain RII .  Plücker’s cylindroid.  
 

 The principal screws LI and LII of volume 1 are sums of semi-axis rods l I (l II, resp.) of 
K and a field that is perpendicular to it that is representable in right-angle form with the 

other semi-axis segments IIl  ( Il , resp.) of K as one side and the segment c that is 

perpendicular to the principal plane GI GII whose length is: 
 

c  = 
I II

1

l l
= I IIp p , 

namely: 

I I I

II II I

( ),

( ).

L l l c

L l l c

= + ⋅ 
= + ⋅ 

. 

 
The arbitrary screw in RII of volume 1: 
 
 L = LI cos ω + LII sin ω, 
  = (l I cos ω + l II sin ω) + [− Il  sin ω + IIl cos ω] c 

 
is then given – but still not, like perhaps the principal screws, in canonical form – as a 
sum of an arbitrary radius rod: 

l = l I cos ω + l II sin ω 
of K and a field: 

f = [− Il  sin ω + IIl cos ω] ⋅⋅⋅⋅ c 

 
over the radius l′ ( l ′  = − Il  sin ω + IIl cos ω) and the segment c.  The position of the axis 

G of L that might subtend the angle ϑ with GI will be determined by the rod that l goes to 
when the field f is projected orthogonally onto the plane (lc).  This summand, which is a 
field of volume: 

cosc l ll′ ′ , 
 
will displace the rod l along the Z-axis, which we draw through the principal point p = GI 
GII and c, through the segment: 
 

z = 
cosc l ll

l

′ ′
 = 

2

cosc l l ll

l

′ ′
 = p cos ll ′  

 
(since c l l ′  = 1 and  2l p = 1); 

 
l has the direction cosines cos ϑ, sin ϑ, when measured with respect to GI and GII, resp., 

l′ ” “ “ , I sinϑ−p
p

, II cosϑ−p
p

, 
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such that: 

cos ll ′  = II I−p p

p
 sin ϑ cos ϑ, 

so 

z = II I

2

−p p
sin 2ϑ = h sin 2ϑ 

will become: 

h = II I

2

−p p
. 

 
 One will obtain the axis surface of a pencil of screws RII when one displaces any ray 
G of the pencil of rays that is determined by the principal axes GI and GII  in the direction 
that is perpendicular to the “principal plane” through a distance z = h sin 2ϑ.  (ϑ = 

IGG ) 

 
 The invariance of z − and thus, the entire axis surface − is immediately obvious in the 
event that all parameters − and thus also pI and pII − are changed by equal amounts (1).  z 

= h sin 2ϑ tells us the axis surface by the following construction: 

 
 One draws two sine waves of arbitrary wave lengths and amplitude h in a plane, and 

rolls them onto a cylinder of rotation in such a way that the starting point A of the first 
wave (Fig. 9) coincides with the endpoint of the second one, by which, the double wave 
will form a fourth-order curve (one of the simplest Lissajous figures of oscillation, next to 
the ellipse).  Now, if one always connects two points of that curve that lie symmetrically 
with respect to the cylinder’s Z-axis with a line G (which cuts A perpendicular) then the 
locus of these G will be the desired axis surface. 
 
 This axis surface is known by the name of cylindroid, and was investigated by 
Plücker, Ball, et al.  (Ball applied the name of “cylindroid” to the pencil of screws RII  
itself.) 
 The cylindroid is a conoid whose generator G cuts the nodal line Z (viz., the dividing 
axis, which is a double line of this surface) at right angles, so it will also meet the line U 
at infinity that is perpendicular to Z.  (So it is a double line in the dual sense when the 
cylindroid is regarded as the locus of its tangential planes, but not its points.)  Two 
generators of the surface will intersect at each point of Z that lies symmetrically with 
respect to the angle-bisecting planes of: 
 

GI Z and GII Z. 
 

                                                
 (1) Therefore, the case that was touched upon on pp. 17, rem. 1, as well as the limiting case of pp. 19, 
rem. 1, does not need to be treated again for the determination of the axis surface, since one can think of the 
axis surface in these cases as being first determined when one has made all screw volumes that enter into 
consideration positive by increasing all parameters by a constant amount. 
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At the limiting points z = ± h of Z – viz., the pinch points of the surface – these two 

generators will coincide in a line, namely, the external edge or pinch edge in the angle-
bisecting plane considered, and for | z | > h they will no longer be real.  GI GII and Z, 

which intersect at the principal point p of the cylindroid, will be symmetry axes for the 
surface; if we make them into coordinates axes (x, y, z) then since: 
 

tan ϑ = 
y

x
, sin 2ϑ = 

2

2 tan

1 tan

ϑ
ϑ+

 = 2 2

2xy

x y+
, 

 
the equation of the cylindroid surface, namely: 
 

z = 2 2

2 xy

x y+
h

, 

will become: 

2 22

z y

x x y+h
= 0 

in determinant form. 
 One can make the imaginary lines (v. Staudt’s first kind), which meet in an arbitrary 
point | z | > h of Z, more intuitive by means of two real cylindroid edges that are at a 

height of h2 / z over the principal plane GI GII .  If one draws these edges through the 

point z of a parallel to Z then they will define a harmonic quadruple of rays with their 
angle bisectors, which will represent the imaginary line-pair in Staudt’s way of thinking: 
The cylindroid and the auxiliary surface: 
 

2 2

/

2

z y

x x y+
h

 = 0, 

 
which will be traced out by the parallels above, will have the equations: 
 

2 2

2 2

z ξ η
ξ η

−
+h

 = 0, 

or 
2 2

2 2z

ξ η
ξ η

−
+

h
 = 0, 

 
resp., with respect to the system ξ, η, z that is the previous one after it has been rotated 
around Z by 45o, from which, it will emerge that both surfaces are affine with respect to 
each other, with ξz-plane as the affine plane, when the η-ordinate of one surface goes to 

that of the other one by multiplying by 1− .  It follows from this that under these affine 

transformations of the one surface into the other, the real line-pairs in the plane z = const. 
will become imaginary, and conversely, so the stated Staudt representation is applicable.  
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We can obtain the aforementioned auxiliary surface simultaneously with the cylindroid 
when (Fig. 9), analogously to the sine-double wave that was employed in the construction 
of the cylindroid, roll the associated cosecant line of equal amplitude onto the cylinder 
and the connect its diametrically-opposite points with lines. 
 In particular: 
 
 The tangents t1, t2 to the cylindroid go from the infinitely-distant point of Z to the 
absolute sphere-circle. 
 
    The intersection curve of the cylindroid 
with an arbitrary plane W is a line S = 3,4

0S  

of order three and class four, and genus 0, 
 
 
that is collinearly generatable by any line 
of the types: 

y2 = x2 (x ± 1), 
(Fig. 10 and 11) 

 

    The projection cone of the cylindroid 
onto an arbitrary plane w projects that 
surface onto an arbitrary plane m in a line s 
= 4,3

0s  of order four and class three, and 

genus 0, 
and its type is, e.g., that of 
the cardioid of Fig. 12 or the Steiner 
hypocycloid (1) in Fig. 13, 
 

 
and is real collinear to the first or second one, according to whether 
 
the double point (WZ) possesses real 
tangents, and correspondingly (2) only one 
of the three inflection points (which lie on 
a line) will be real, or the (real) double 
point (WZ) will have imaginary tangents, 
and therefore all three inflection points of 
the curve will be real. 

the double tangents (i.e., the trace of wU) 
contact the curve at real points, and 
correspondingly (2) only one of the three 
vertices (whose tangents converge to a 
point) is real, or the (real) double tangent is 
isolated (i.e., it contacts the curve at 
imaginary points), and therefore all three 
vertices will be real. 

 
Case 1 or 2 will apply to the cylindroid according to whether 

 
W cuts the Z-axis at point (WZ) that lies 
between or outside of the pinch points z = 
±h, as the behavior of the double-point 

tangents would suggest. 
    If W cuts Z at a pinch point then the 
double-point tangents will coincide, and 
the double point will become a cusp at this 
pinch point, so S must be real collinear to a 
curve of class 3: 

w is found in space between or outside of 
the pinch planes z = ± h, as would emerge 

from the behavior of the contact points of 
the double tangents, namely, the trace of 
wU (projected onto the parallels to the 
cylindroid edges that are parallel to w and 
found at an equal height). 
    If w lies in a pinch plane then the contact 
points with the double tangents will 

                                                
 (1) Cf., Cremona, “Sur l’hypocycloïde à trois rebroussements,” in Crelles Journal 64 (1865).  
 (2) Cf., Cayley in the Encylop. Brit., 9th ed., “Curve,” and Salmon, “Higher plane curves,” pp. 141 
(Dublin, 1852).  
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S = 3,3
0S  

 

coalesce into one, which will then represent 
an inflection point, so s must be real 
collinear to a curve of order 3: 
 

s = 3,3
0s  

 
with a cusp and an inflection point; e.g., the Neil parabola y2 = x3 (Fig. 14) 
 
 Remark.  If w is infinitely-distant then the double tangents of 4,3

0s  will be projected 

onto the plane at infinity, and their contact points will be projected to rays that lead to the 
circle points of the principal plane: 
 
 The parallel projection of the cylindroid onto any plane that is parallel to the 
principal plane GI GII is a Steiner hypocycloid. 
 
 

The conic section S2 of the cylindroid and the second-degree cone (ws2) that is 
circumscribed by that surface. 

 
    The intersection S2 of the cylindroid with 
a tangential plane W to that surface – i.e., 
with  plane that contains an edge G of the 
cylindroid – has an infinitely-distant point 
in W, through which, the aforementioned 
infinitely-distant cylindroid edges Z1, Z2 
will emanate, so it will be an ellipse in the 
cylinder of rotation through the nodal line 
Z. (G, and thus W, as well, will meet a 
cylindroid edge K at a point of Z.) 

    The second-degree cone that projects 
from a point w of the cylindroid has a 
parabola s2 for its trace in any plane that is 
parallel to the principal plane (which 
contacts the two cylindroid edges G1 and 
G2 that fall in this plane), has the projection 
w′ of the point w onto that image plane for 
its focal point, and whose axis is parallel to 
the cylindroid edge K that will be cut by 
the edge G that goes through w.  (The cone 
(ws2) = Kd (1), when projected from the 

point (KU), has the tangential plane (wU) 
along the edge in question and projects the 
line t1t2 that was introduced on pp. 23.) 

 
The cylindroid can be constructed as the locus 

 
of altitudes from an arbitrary point of one 
of the ∞2 ellipses S2 on the nodal line Z. 

the perpendicular transversals to Z in 
arbitrary tangential planes to one of the ∞2  

                                                
 (1) The cone (ws2) belongs to Reye’s cones of category d: 
 

(ws2) = Kd , 
 
since the focal axis ww′, which is the line of intersection of wt1 and wt1, is perpendicular to the tangential  
plane (wU).  Cf., Reye, Geometrie der Lage I, page 220 (Leipzig, 1886).  Any such cone will be enveloped 
by planes that cut the tangential planes to it that are perpendicular to the focal axis in a normal pair. 
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cones: 
ws2 = Kd . 

 
Thus, a cylindroid of given span 2h can be generated in the following way: 

 
(Fig. 15) 

 
One chooses an ellipse S2 on an arbitrary 
cylinder of rotation whose edge directions 
are perpendicular to the two contact planes 
to S2, E1 and E2, which are separated by 2h. 

    E1 and E2 might contact S2 at points B1 
and B2, resp.  Let Z be an arbitrary edge of 
the cylinder that meets E1 at A1 and E2 at 
A2, resp., so the locus of the altitudes from 
the points of S2 to Z will be a cylindroid 
with the pinch edges A1B1 and A2B2 and a 
span of 2h. 

(Fig. 16) 
 

One gives oneself a cone Kd when one 

projects a parabola s2 from a point w of the 
altitude that is erected from its focal point 
F onto its plane, and a line Z that is 
parallel to the focal axis (Fw), whose 
points of intersection A1 and A2 are 
separated from Kd at a distance of 2h from 

each other.  The perpendicular transversals 
of Z, which contact Kd, trace out a 

cylindroid with a span of A1 A2 = 2h, whose 

pinch edges are the tangents to Kd at A1 and 

A2 that are perpendicular to Z. 
 

 The construction of the cylindroid as the locus of shortest transversals to the rays of a 
plane pencil and a fixed line Z then follows from this, since these pencils play a role in 
the discussion above of 
 
the plane W that converges to any point of 
S2 that is diametrically opposite to the point 
of intersection of S2 with Z. 

the rays through the point w that link the 
latter with the points of the vertex tangent 
to the parabola s2. 

________ 
 

 The parameter curve P*: 

p = − h cos 2ϑ 

 
that belongs to pI + pII = 0, from which one can obtain every parameter curve P of the 

family: 

II I

2

−p p
 = h = const. 

 
that belongs to a certain cylindroid as its axis surface by uniform variation of the radius 
vectors, is the projection of the line of intersection P* of the cylindroid with the sphere K 
from the principal point p on it and the radius h onto the principal plane, as the equation: 

 
z2 + p2 = h2 
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teaches us, when we recall the fact that z = h sin 2ϑ .  As Plücker remarked, it follows 

from this that any P of that family is the projection of an intersection P of the cylindroid 

with a torus that is made orthogonally to the principal plane, and the latter will be 
enveloped by all spheres of radius h whose centers lie on the circle in the principal plane 

around the principal point p with a radius of: 
 

I II

2

+p p
. 

 
(Cf., the Lewis construction of the cylindroid that was mentioned by Ball.) 
 
 The distance 2h cos 2ϑ between the intersection points of any cylinder edge G with K 

– i.e., and also with P* − is equal to the dividing parameter l of the equilateral tangential 
paraboloid to the cylindroid along the edge G. 
 
 Namely, if e is the distance from an arbitrary point w on the vertex tangent G to the 
paraboloid to the central point GZ, as measured on G, and w is the angle between the 

tangential plane to the cylindroid at w with the central plane GZ then: 
 

k = e cot w = e 
( )

dz

d eϑ
 = 

dz

dϑ
 = 2h cos 2ϑ . 

 
 P*, as the intersection of the cylindroid with K of order six, will have the simple 
equations in polar coordinates r, ϑ, ψ: 

 
r = h;  ψ = 2ϑ, 

 
 when we let ψ denote the angle between the radius vector r (= h) that leads from p to one 

of its points and the principal plane, and therefore also with G, if one recalls that z = h sin 

ψ. 
 Two intersecting (on Z) cylindroid edges: 
 

G(ϑ) and G(ϑ′ = 90
o
 = ϑ) 

belong to the parameters: 

I II

I II

cos 2 ,
2

cos 2 ,
2

ϑ

ϑ

+ = −  
 + ′ =
  

p p
p h

p p
p +h

 

whose sum is: 
(1)     p + p′ = pI + pII = const., 

while their product is: 
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(2)   p p′ = 
2

I II

2

+ 
 
 

p p − h2 cos2 2ϑ = 
2 2

I II I II

2 2

+ −   −   
   

p p p p
+ z2 

= pI pII + z2, 

 
which differs from the product of the principal parameters by the square of the distance 
from the axis to the principal point p.  One of the two parameters will be zero for z2 = − pI 

pII, and as was already remarked on pp. 20, this will be true for ϑ = ϑ0 with: 

 

tan ϑ0 = I

II

− p
p

. 

 
_________ 

 
 We can now also determine the principal axes GI and GII  of an RII even better than 
before, as well as the principal parameters pI and pII, when this pencil of screws is given 

by two screws L1 and L2 with the axes G1 and G2, resp., and the parameters p1 and p2, 

resp. (Fig. 17). 
 Let: 
  e  be the shortest distance between G1 and G2  

 2α (≠ 0) be the angle  “ “ “ 
 ϕ “ “ between the angle-bisectors G1 and G2 and the desired  
  direction of GI, 
 z1 be the shortest distance between G1 and GI , 
 z2 “ “ “ “ “ G2 “ “, 
 
so the relations (ϑ = ϕ ∓ α): 
 

I II I II
1

I II I II
2

cos 2( ),
2 2

cos 2( ),
2 2

ϕ α

ϕ α

+ − = − −  
 + − = − +
  

p p p p
p

p p p p
p

 

 
that were derived already on pp. 19 and: 
 

I II
1

I II
2

sin 2( ),
2

sin 2( ),
2

z

z

ϕ α

ϕ α

− = −  
 − = +
  

p p

p p
 

 
which were derived on pp. 21, along with z2 – z1 = e, allow one to express the five data pI, 

pII, tan 2ϕ, z1, z2 : 
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2 1 II I

2 1 II I

( ) cos 2 sin 2 ,

( )sin 2 cos2 ,

z z ϕ α
ϕ α

= − = − 
− = − 

e p p

p p p p
 

 

(1)     tan 2ϕ = 2 1−p p

e
, 

 

2 1 II I II I

2 1
II I

( ) ( )cos 2 sin 2 ,

,
sin 2 cos2

ϕ α

ϕ α

+ = + − − 


− − = 


p p p p p p

p p
p p

 

 

2 1
II I 2 1

2 1

2 2
II I 2 1

( ) ,
tan 2 tan 2

( ) cot 2 ,

( ) csc2 ,

ϕ α
α

α

 − + = + + 

 = + + 

 − = + −

p p
p p p p

p p e

p p e p p

 

 

2 1

2 2 2
2 1

tan 2
since     sin 2

1 tan 2 ( )

ϕϕ
ϕ

 −
 = =
 + + − 

p p

e p p
 

 

(2′) pI = 1
2 [(p2 + p1) + e cot 2α – 2 2

2 1( )+ −e p p csc 2α], 

 

(2″) pII = 1
2 [(p2 + p1) + e cot 2α + 2 2

2 1( )+ −e p p csc 2α], 

 
2 21

1 2 12

2 21
2 2 12

( ) csc2 sin 2( ),

( ) csc2 sin 2( ),

z

z

α ϕ α

α ϕ α

= + − − 


= + − + 

e p p

e p p
 

 
sin 2( ) sin 2 cos 2 cos2 sin 2 ,

sin 2( ) sin 2 cos 2 cos2 sin 2 ,

ϕ α ϕ α ϕ α
ϕ α ϕ α ϕ α

− = − 
+ = + 

 sin 2ϕ = 2 1

2 2
2 1( )

−
+ −
p p

e p p
, 

 

cos 2ϕ = 
2 2

2 1( )+ −
e

e p p
, 

 

2 2 2 11
1 2 12 2 2

2 1

2 2 2 11
2 2 12 2 2

2 1

( ) cos2 sin 2
( ) csc2 ,

( )

( ) cos2 sin 2
( ) csc2 ,

( )

z

z

α αα

α αα

− − = + − + − 
− + = + −
+ − 

p p c
e p p

e p p

p p c
e p p

e p p
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(3′)     z1 = 1
2 [(p2 – p1) cot 2α – e], 

(3″)     z2 = 1
2 [(p2 – p1) cot 2α + e] . 

 
 GI and GII, which are themselves parallel to the plane of the directions G1, G2, 
intersect perpendicularly at the point p of the shortest transversals of G1and G2 that has a 
distance of z1 (z2, resp.) from G1 (G2, resp.).  One will get the directions of the principal 
axes GI and GII from those of the angle-bisectors of G1 and G2 by rotating them through 
ϕ, where: 

tan 2ϕ = 2 1−p p

e
. 

 
 For example, for p1 = p2 = p0 , GI and GII will be the symmetry axes of G1 and G2, 

and: 

 pI = p0 + 
2

e
cot α, 

 pII = p0 − 
2

e
tan α . 

 
 If G1 and G2 are perpendicular to each other then GI and GII will go through the 
midpoint of their shortest distance: 
 

1 2,
2 2

z z
 = − = + 
 

e e
. 

 

 If G1 and G2 intersect then the span 2h of the axis cylindroid will be equal to 2 1

sin 2α
−p p

.  

It will be zero – i.e., one will have the pencil G1G2, instead of the cylindroid – in the 
event that one has p1 = p2 , in addition; RII will be called “circular” in this case. 

 
 If Z is the perpendicular to the pencil G1G2 then the tangential planes through Z to the 
absolute sphere-circle will also belong to the degenerate form of the cylindroid that they 
represent when they cut any plane that is parallel to G1G2 in a line g that can be regarded 
as an axis of that one of two screws of the circular RII that belongs to an arbitrary 

parameter p = 
2

1
2 2

L

l
(pp. 15), and whose volume is 21

2 L  and the square of the length of its 

axis rod 2l is zero, and which represents the imaginary, circular, line-pair rII (v. Staudt’s 
second kind) that belongs to RII .  The concept of “axis” of such a circular screw is no 
longer unique, since every g can be regarded as an axis.  (Cf., pp. 3 and F. Klein in 
volume 47 of this Zeitschrift, pp. 253.) 
 
 
 
 



Grünwald – Sir Robert S. Ball’s space of linear screws. 31 

System of axes and the parameter distribution of the reciprocal domain PIV . 
 
 The most general bush of screws PIV, as the reciprocal screw domain to a pencil of 
screws RII, belongs to a cylindroid as its axis surface.  In order for a screw A in PIV with 
axis Γ and parameter π to be reciprocal to three screws in RII whose axes G that lie in the 
cylindroid surface are met by Γ, Γ must intersect one of these three axes G, and the 
parameter π must be equal and opposite to that of the other two.  The latter two axes G 
must therefore be symmetric on the cylindroid of RII relative to its principal axes GI and 
GII, since they belong to one and the same parameter p = − π.  The axes Γ in PIV that go 

through an arbitrary point w or lie in an arbitrary plane W can be generated as the ∞1 
transversals over any pair of cylindroid edges that are symmetric with respect to the 
principal axes.  All Γ in PIV that belong to a certain parameter π = const. will fill up the 
linear congruence that has the cylindroid edges G as its guiding lines and whose 
parameter is p = − π.  For π = 0, one will get the line framework ρIV of PIV .  Two 

particular examples of these congruences are the systems of cylindroid tangents along GI 
or GII ; instead of the cylindroid, the equilateral tangential paraboloid to it can therefore 
be used, which has GI and GII as its vertex lines and k = 2h for its dividing parameter.  

One of these congruences can also be ρIV in the case where the line-pair rII of RII  
converges to a pair of infinitely-close skew lines of the cylindroid along GI or GII (the 
limiting case on pp. 19). 
 Since any Γ must intersect a cylindroid edge G perpendicularly, the complex of Γ will 
be defined to be the locus of the perpendicular transversals of the edges of the cylindroid 
that belongs to RII . 
 
    The complex cone through an arbitrary 
point w will be defined by the 
perpendiculars from w to the cylindroid 
edges. 

    The complex curves in an arbitrary plane 
W be enveloped by the perpendicular 
transversals of the cylindroid edges that lie 
in W. 

 
 In particular, for pI = pII = p, the pencil of principal planes with p as its center will 

enter in place of the cylindroid surface in the case of a “circular” domain, and 
 
the complex cones w will be orthogonal 
cones over the circles in the principal plane 
with pw′ as the diameter, if w′ is the 
orthogonal projection of the point w onto 
the principal plane. 

the complex curves in W will be parabolas 
whose vertex tangent is the trace of the 
principal plane in W and whose focal point 
is the orthogonal projection of the principal 
point p onto W.  

 
Otherwise, in the general case pI ≠ pII  

 
the feet of the perpendiculars that are 
dropped from w on the cylindroid edges 
onto any plane that is parallel to the 

the planes GΓ that connect any cylindroid 
edge G with its perpendicular transversals 
that lie in W will envelop a cone Kd that 
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principal plane will project to points of a 
circle that has the orthogonal projection w′ 
of w onto that plane and the piercing point 
of the latter with Z for its diametrically-
opposite points.  The foot-curve itself is 
then the intersection of the cylindroid with 
the cylinder of rotation that has Z and the 
line through w that is parallel to it as its 
diametrically-opposite edges.  This line of 
intersection can thus be only one of the 
ellipses S2 on the cylindroid (1), since 
otherwise the cylindroid, which is a third-
order surface, and the cylinder of rotation 
would have in common: 
    1)  The doubly-counted Z itself, and, 
    2)  The infinitely-distant edges t1 and t2. 
    A cone of the complex of the axes Γ of 
PIV will go through every point w, whose 
basis the ellipse S2 of the cylindroid that 
projects onto the principal plane as the 
circle with diameter pw′, if p refers to the 
principal point of the cylindroid, and w′ is 
the orthogonal projection of the point w 
onto the principal plane. 
    The plane of S2 connects the point of 
intersection of the parallels to z that go 
through w and the cylindroid with the 
cylindroid edge that is symmetric with 
respect to GI and GII to the cylindroid edge 
that meets these parallels. 
    The same ellipse S2 belongs to all points 
w that lie on a parallel to Z. 

circumscribes the cylindroid (1), if the 
direction cone of the developable that is 
enveloped by these planes represents a 
conic section in the plane at infinity, whose 
common developables with the cylindroids 
are already: 
    1)   The doubly-counted pencil U, and 
    2) The planar pencil through the 
infinitely-distant cylindroid edges t1, t2. 
Thus, the only developable that remains 
whose trace in W will be the desired 
complex curve will be only the cone Kd 

that circumscribes the cylindroid, which 
has focal axes that are normal to W and U, 
and whose vertex w can be constructed as 
the point of intersection of the tangential 
plane to the cylindroid that is parallel to W 
with thw cylindroid edge that is symmetric 
with respect to GI and GII in that tangential 
plane. 
    In any plane W, a parabola s will be 
enveloped by the axes Γ of PIV, whose axis 
will be parallel to the orthogonal projection 
of Z onto W. 
    s will be projected from w through a 
cone Kd that will be cut, not just W, but any 

plane that is parallel to it, in a parabola 
that will be enveloped by axes Γ of PIV . 

 
 The complex of axes Γ of a pencil of screws PIV is quadratic. 
 
    If w is at infinity then the complex cone 
through that point will decompose into the 
pencil of fields in that direction, which will 
not be considered, and the pencil of 
normals from the direction w to the 
cylindroid edge that is perpendicular to w. 

    If W is parallel to Z then the parabola of 
the complex will decompose into the pencil 
of parallels to Z, which shall not be 
considered, since it belongs to π = ∞, and a 
pencil whose center is the point of 
intersection of the cylindroid edge that is 
perpendicular to W with W. 

 
 

                                                
 (1) Cf., pp. 25.  
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In particular, if 
 

w is on the cylindroid, and indeed on the 
edge G(p), then the complex cone will 

decompose into: 
    1)  The pencil of normals to G through w 
and 
    2)  The pencil of transversals.  

W is the tangential plane to the cylindroid, 
and indeed the one through the edge G(p), 

then the parabola will decompose into: 
    1)  The pencil of normals to G and 
    2)  The pencil Γ (π = − p) whose center 

is the trace point in W of the cylindroid 
edge that lies symmetric to G(p) relative to 

to GI and GII . 
 

In particular, if 
 

w is a point of the nodal line Z then we will 
draw a plane W that is perpendicular to Z 
through it: 

W is a plane through U – i.e., it is 
perpendicular to Z – then we will determine 
its point of intersection w with Z: 

 
 Now, there are two axes Γ′ and Γ″ in PIV through w in W, namely, that ones that lie in 
W and go through w and are perpendicular to the cylindroid edges G′ and G″ of RII and 
possess parameters π′ (π″, resp.) that are equal and opposite to the other ones. 
 
    The complex cone w of axes Γ now 
degenerates into the two pencils of rays ZΓ′ 
and ZΓ″, which belong to the parameters π′ 
(π″, resp.). 
    If w is one of the two pinch points  

    The complex curve in W that is 
enveloped by the axes Γ degenerates here 
into the two pencils of parallels Γ′ and Γ″, 
which belong to the parameters π′ (π″, 
resp.). 
If W is one of the two pinch-planes 

 
of the cylindroid of RII then both pencils will coalesce into one whose planes (infinitely-
distant center, resp.) are perpendicular to the pinch-edges in question. 
 One can obtain all of the axes Γ of PIV that cut Z (are perpendicular to Z, resp.) when 
one reflects the cylindroid in RII relative to its principal plane GI GII, and 
 
constructs the pencil that connects the 
edges of the mirror-cylindroid thus-
obtained with Z. 

subjects every edge of the mirror-
cylindroid thus-obtained to a parallel 
displacement in a direction that is 
perpendicular to Z. 

 
 Any Γ thus-obtained in PIV will have the parameter π = − p, which is equal and 

opposite to the p of the cylindroid edge G in RII that Γ is obtained from by reflection. 

 PIV is representable in a canonical way in terms of the distribution axis Z that belongs 
to an arbitrary parameter and the principal screws, which have the axes ΓI = GI, ΓII = GII, 
and the parameters π1 = − pI , π1I = − pII .  The principal axes ΓI and ΓII  are the only axes 

in PIV that cut Z perpendicularly at one point and are perpendicular to each other.  It is 
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only in the case of equal principal parameters pI = pII = p0 (and thus, a “circular” bush of 

screws PIV ) that a pencil that is perpendicular to Z and goes through the point p of Z will 
enter in place of the principal screws (1).  Any line of the plane of the latter, as well as 
any line in the pencil p will belong to PIV as an axis Γ that is endowed with the parameter 
π0 = − p0 .  Due to the reciprocity condition π − π0 = e cot g ZΓ , the remaining rays of 

the axis complex Γ can be assigned to “circular” linear congruences with π = const. of Γ 
that relate to the G of PII, which is parallel to the plane ΓZ; i.e., onto ones whose rays can 
all be obtained from rays of that Z by rotation around Z as the family of equilateral 
hyperbolic paraboloids with its vertex at p that contains the vertex line, and whose 
distribution parameter is k = π − π0 .  The guiding rays of any such linear congruence will 
be appropriately called “circular” lines (“imaginary” in v. Staudt’s second kind) 
 

 
Transition to the canonical representation 

 
 The transition to the canonical representation of a PIV that is given by four screws Λ 
with the axes Γi (i = 1, 2, 3, 4) and well-defined parameters.  Corresponding to 1*) and 2*) 
on pp. 15, we first deal with two special cases. 
 
 1*) If the four Γi cut a certain line G perpendicularly then PIV will consist of screws 
with arbitrary parameters whose axes Γ cut the G perpendicularly.  RII will belong to G 
and an arbitrary parameter.  The following cases will also belong here: Γ1, Γ2, Γ3 cut 
some G perpendicularly, Γ4 is replaced with a field that is parallel to G, and Γ3, Γ4 are 
replaced with fields that are parallel to the shortest transversals of Γ1 and Γ2 , resp. 
  
 2*)  If the Γi are parallel to a plane E then its field f0 will belong to RII .  A pencil of 
fields will belong to PIV whose direction l can be determined by two fields, each of which 
will be found by adding three screws of the four given ones, when one demands that their 
rod sum should be zero.  The screws of finite parameters in PIV whose axes are 
perpendicular to l (and parallel to E) and whose parameters are arbitrary will fill up the 
principal plane in RII (which is parallel to l); i.e., the plane in which the perpendicular 
transversals to the latter (viz., the parallels to l) are screw axes G of RII .  One of the G is 
in RII  and endowed with the parameter 0, so it will be representable in terms of its rod l0 .  
l0 and f0 will represent RII, and therefore PIV, in a canonical way. 
 

_______ 
 

 In the general case, one first provides the field U that is present in PIV when one 
forms a multiple sum of the four given screws in such a way that the sum of its rod 
segments is zero.  All analogously derivable screws whose rods are perpendicular to U 
will have the same axes, namely, the dividing axis Z.  The shortest transversal over Z and 
the Γ will determine the cylindroid of RII; its principal axes will also be those of PIV . 

                                                
 (1) Cf., pp. 30.  
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 We can now also represent any web of screws PV that is given by five screws Ai (i = 1, 
…, 5) in canonical form, namely, by being given the reciprocal screwing motion RI .  
Two quadruples from the five screws will determine a field that belongs to the PIV in 
question.  The axis of RI will have same direction as these two fields and will be identical 
with the cylindroid edge with that direction in that RII that is reciprocal to one of the PIV 
above.  The parameter p of RI can be determined from any Λ by means of the reciprocal 

relation. 
 The parameter π of any axis Γ of PIV that must cut a cylindroid edge G(ϑ) of RII in a 
point w that is at a distance of e from Z perpendicularly is equal and opposite to that of 
the two screws in RII whose axes encounter Γ, in addition.  However, since the latter must 
not be real, that would suggest the determination of π from the reciprocal relation of the 
Γ(π) with respect to any screw G(90

o
 + ϑ) of the RII that has the parameter: 

 

p = pI sin2 ϑ + pII cos2 ϑ = I II I II

2 2

+ −+p p p p
 cos 2ϑ, 

 
which is parallel to the projection of Γ onto the principal plane of the cylindroid: π + p = 

e cot ZΓ . 

 
The sheaf of screws RIII  and the reciprocal sheaf PIII  . 

 
 An RIII  is established by three screws L1, L2, L3 with axes G1, G2, G3 and parameters 
p1, p2, p3 that do not belong to a pencil.  We first consider the special case: 

 
 1*) G1, G2, G3 are parallel and lie in a plane E; the axes G of RIII  are then (cf., pp. 15, 
2*) all rays of this pencil of parallels, and indeed every G is endowed with an arbitrary 
parameter.  In addition, the pencil of fields that are parallel to the perpendicular 
transversals Γ of G in E belongs to RIII .  All of these Γ belong to PIII  as axes that are 
endowed with an arbitrary parameter, as well as the pencil of fields that are parallel to G. 
 
 2*) G1, G2, G3 are parallel, but without lying in a plane.  If one measures off the 
parameter segments pi on the Gi (i = 1, 2, 3) from their intersection points with an 

arbitrary plane A, and lets B be the connecting plane of the endpoints of the segments 
thus-defined then any screw will belong to RIII  whose axis is parallel to Gi and will have a 
parameter p that, when measured off on G, will reach from the point of intersection with 

A to the one with B (pp. 16).  In particular, all of the transversals to the intersecting edge 
AB that are parallel to G, whose plane might be called E, will define the line framework 

rIII  of RIII  when united with the following pencil of fields l: If we take A to be 
perpendicular to the Gi then if x means the normal distance to an arbitrary axis G of Γ 
then G will be associated with the parameter p = x tan AB .  If we give the rod l0 of the 

RII of screws L = l0 + f0 with that axis that falls on G the length 1 then we can represent 
the field f0 that is perpendicular to l0 in the form of a right angle whose volume is p and 
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whose sides might then have the lengths x and p / x.  Let the former side be perpendicular 

to E, and let the latter be parallel to the edge AB.  The rectangular field f that connects the 

former right-angle side with l0 will produce a field f = f + f0 when it is added to an f0 that 
belongs to RIII , since it is equal L − 0l ′  = (l0 − 0l ′ ) + f0, if 0l ′  means the rod in the plane E 

that belongs to rIII  (RIII , resp.) that one obtains by projecting l0 onto E.  The field f in RIII  

that is perpendicular to E will subtend an angle with G that is equal to AB , since its 

tangent is equal to the ratio of the lengths of the right-angle sides of f0 and f that are not 
common; i.e., it will satisfy p / x = tan AB . 

 The field of E also belongs to rIII  (RIII , resp.), so each of them do, as well, and is 

derivable from f – i.e., every field of the pencil whose axis l lies in f and subtends the 
constant angle AB  = arc tan p / x with G (from the associated side). 

 The reciprocal sheaf PIII  is filled up with all screws whose axes are parallel to l and 
possess a parameter that is equal and opposite to that of the screws of RIII , whose axes 
they intersect, such that the associated parameters π for the screws of RIII  will be 
proportional to the separation between the PIII -axis Γ and E (which is parallel to l), and 

indeed to the equal and opposite proportionality factor of tan AB  that appears in RIII  .  

Here, the line framework ρIII  of PIII  will consist of the rods in the plane E that are parallel 

to l and the pencil of fields that are parallel to G. 
 
 3*) The Gi (i = 1, 2, 3) have a common shortest transversal Γ0 .  There then exists a 
field f in the sheaf of screws RIII  that is parallel to Γ0 , since one can determine a multiple 
sum of the three screws Li such that the sums of the rod segments are zero.  Furthermore, 
there is a screw in RIII  whose axis G0 cuts Γ0 perpendicularly at a point p and whose 
parameter is completely arbitrary; namely, if a screw L is linearly derivable from the Li 
then its axis will always cut Γ perpendicularly, since Γ0 is the common division axis of 
all the cylindroids that belong to RIII ; if one chooses the deriving numbers of the screw L 
such that its rod segment is perpendicular to f then an arbitrary multiple of f can be added 
to L in the screws of this sheaf RIII  − i.e., the parameter that belongs to the axis G0 of the 
screw L will be arbitrary. 
 Now, RIII  is determined just as well as before by the Li , the screws with the axis G0 
and arbitrary parameter, and the screws with the axis G1 and the parameter p1 (Fig. 18).  

The associated reciprocal sheaf PIII  is determined in a completely analogous way by the 
shortest Γ0 of G0 and G1 that are assigned an arbitrary parameter and an arbitrary 
transversal Γ1 of G0 and G1 that is perpendicular to G0, which must be assigned the 
parameter π1 = − p1, since it is a screw axis in PIII  .  In precisely the same way that the 

single field f that is perpendicular to Γ0 belongs to RIII , one finds only the field ϕ that 
goes through G0 perpendicular to Γ0 in PIII  . 
 Since any screw that is reciprocal to PIII  will belong to RIII , and conversely, every 
transversal of Γ0 and Γ1 (G0 and G1, resp.) that is endowed with the parameter p1 (π1, 

resp.) (p1 + π1 = 0) and is perpendicular to Γ0 (G0, resp.) will define an axis in RIII  (PIII , 
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resp.).  Let e1 (e1, resp.) be the length of the shortest transversals of G0 and G1 (Γ0 and Γ1, 

resp.), so there will be an equilateral hyperbolic paraboloid P1 with the vertex lines G0 

and Γ0 (which intersect perpendicularly at its vertex p), which includes G1 and Γ1, and 
has the equation xy = κ1 z in the coordinate system that has Γ0 as the x-axis, G0 as the –
axis, and the line through p that is perpendicular to Γ0 G0 as the z-axis. 
 

κ1 = e1 cot 0 1G G  = e1 cot 0 1Γ Γ  

 
as the dividing parameter of P1 .  The family of lines G (Γ, resp.) of the paraboloid P1 is 

filled up with the axes that belong to RIII  (PIII , resp.) whose parameter has the constant 
value p1 (π1, resp.) (1).  Since no confusion is possible, from now on, let G1 (Γ1, resp.) 

denote any line of the family G (Γ, resp.) on P1 that subtends a 45o angle with the central 

plane, and thus has the shortest distance of e1 = e1 = κ from G0 (Γ0 resp.). 

 
 Any perpendicular transversal of Γ0 (G0, resp.) is an axis G (Γ, resp.) in RIII  (PIII , 
resp.) that is endowed with a well-defined parameter p (π, resp.) – except for the 

perpendicular transversals that fall in the principal plane G0Γ0, which are associated 
with the parameter ∞, in addition to the G0 (Γ0, resp.) that are thought of as linked with 
arbitrary parameters, and for that reason they merely represent the field f (ϕ, resp.). 
 
 Any equilateral hyperbolic paraboloid P (κy = xz) (κ arbitrary) with G0 and Γ0 as 

vertex lines represents the family of lines that belongs to G0 (Γ0, resp.), namely, the 
system of axes in RIII  (PIII , resp.) that belong to a constant parameter p (π, resp.) (p + π = 

0).  p (π, resp.) differs in absolute value from p1 (π1, resp.) by exactly as much as the 

dividing parameter κ of the paraboloid P differs from κ1, which is that of the paraboloid 

P1 . 

 
 The Z-axis of our coordinate system will belong to RIII  (PIII , resp.) as a screw axis 
when we endow it with the parameter: 
 

p0 = ± κ1 + p1  (π 0 = ∓ κ1 + π 1, resp.). 

 
This follows from the reciprocal relation that relates to Γ1(π1) [G1(p1), resp.]: 

 
± (p0 + π 1) = κ1 tan 45o [ ∓ (π 0 + ϕ 1) = κ1 tan 45o, resp.] 

(p0 + π 0 = 0)    (p1 + π 1 = 0, resp.), 

 

                                                
 (1) Only G0 and Γ0 are capable of being assigned arbitrary parameters.  
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in which the upper or lower sign is true – and both simultaneously – according to whether 
the sign of the parameter is chosen as on pp. 2 or the opposite one.  The axis family in RIII  
(PIII , resp.) with the parameter p0 (π 0, resp.) will then be: 

 
 1) The pencil p of planes G0ϕ = yz (Γ0 f = xz, resp.), because it is derivable from the 
Z and G0 (Z and Γ0, resp.) that belong to p0 (π 0, resp.). 

 
 2) The pencil of rays in the plane Γ0 f = xz (G0ϕ = yz, resp.) that are parallel to Z, 
because they are derivable from f and Z(p0) [ϕ and Z(π 0), resp.]. 

 
 One ray G(p0) [Γ(π 0), resp.] from the pencil 1) and one line from the family G(p1) 

[Γ(π 1), resp.] of the paraboloid P1 lies in any plane E through Γ0 (E through G0, resp.).  

The latter line, in particular, can be G1 (Γ1, resp.) itself when E (E, resp.) is inclined with 

respect to the principal plane by 45o.  Any line in E (E, resp.) that is parallel to both of 

them is then an axis G in RIII  (Γ in PIII , resp.), since it is linearly derivable from the two 
representative screwing motions.  In particular, we choose E through G1 (E through Γ1, 

resp.), so it will be 45o from the principal plane.  Any line G (Γ, resp.) in that plane that is 
perpendicular to Γ0 (G0, resp.) and might have the shortest distance of κ from G0 (Γ0, 
resp.) – such that κ is the dividing parameter of the paraboloid P [through G (Γ, resp.) 

with the vertex lines G0 and Γ0] – is then representable by a screwing motion in RIII  (PIII , 
resp.) that is endowed with a parameter p (π, resp.) (p + π = 0) that can be determined 

from the reciprocal relation for G(p) [Γ(π), resp.] with respect to Z(π0) [Z(p0), resp.]: 

 
p0 = ± κ + p  (π0 = ∓ κ + π, resp.) 

[while previously: 
p0 = ± κ1 + p1  (π0 = ∓ κ1 + π1, resp.)] 

 
and will then actually behave according to the stated equation: 
 

∓ (p − p1) = κ − κ1  [± (π − π1) = κ − κ1, resp.]. 

 
 The line framework rIII  of RIII  (ρIII  of PIII , resp.) consists of the family of paraboloids 
P (xy = κz) that belong to G0 (Γ0, resp.) and whose κ, p = 0 are correspondingly κ = ∓ π0 

= ± p0 ; for p0= π0 = 0, in particular, rIII  (ρIII , resp.) will be the pair of pencils that was 

mentioned in (1), (2). 
 A pencil of axes in RII (PIII , resp.) that are perpendicular to Γ0 (G0, resp.) goes through 
any point µ(e, 0, 0) of Γ0 [m(0, e, 0) of G0, resp.].  If one measures off along that axis, not 

the associated parameter p (π, resp.) itself, but ρ = − p0 + p (− π0 + p, resp.), and indeed 

starting from µ (m, resp.), then for fixed µ (m, resp.) the endpoints of the segments thus-
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defined − viz., ρ = e tan GZ  (e tan ZΓ , resp.) (1) − will trace out the curve C in Fig. 1 

[in which ϑ = GZ  ( ZΓ , resp.)] whose equation reads z2 (y2 + z2) – e2 y2 = 0 [z2 (x2 + z2) 

– e2 x2 = 0, resp.], so when the point µ varies on Γ0 (m varies on G0, resp.), one will get 

the fourth-order cone z4 + y2 (z2 – z2) = 0 [z4 + x2 (z2 – y2) = 0, resp.], which the C above 

will project from p. 
 
 4*) Let the axes G1, G2, G3 of the three screws that determines a domain RIII  be 
parallel to a planar field ϕ, without however possessing the same shortest transversal (2).  
On the two linear pencils of screws that, e.g., connect the first of these screws with any of 
the other ones, we can determined a certain real screw – in place of the one that belongs 
to G2 (G3 resp.) – that belongs to the same parameter p1 as G1, such that we can likewise 

assume (in order to minimize the notations) that the axes G1, G2, G3 that are parallel to ϕ 
belong to the same parameter p1 .  (If two of these three axes – say, G1 and G2, so G3 will 

be parallel to the plane G1G2 – intersect then in addition to the pencil G1G2, the pencil of 
parallels that likewise belongs to p1 and connects G3 with the ray in the pencil that is 

parallel to it will also belong to RIII  .  This case will then present no peculiarities, insofar 
as also in the most general case that belongs to 4*) will also yield a pair of pencils of that 
sort with constant parameters, which was given here only from the outset.) 
 A peculiarity will arise when the G1, G2, G3 that determine an RIII  and belong to p1 lie 

in a plane.  It entire line field will then be the locus of the axes in RIII  that are endowed 
with p1 and, at the same time, the locus of the axes in the reciprocal PIII  that are provided 

with the parameter π1 = − p1 .  In addition to the field f = ϕ of the axis plane, the totality 

of all circular imaginary lines of v. Staudt’s second kind will belong to the line 
framework rIII  of RIII  (ρIII  of PIII , resp.), and the latter lines will be representable in the 

form L = L1 + 1− L2, where L1 and L2 mean screws with the same volume whose equal-
length axis rods that belong to p1 (π1, resp.) lie in the axis plane and intersect 

perpendicularly.  The name “line” for L itself is justified by the validity of the equation L2 
= 0 ( 2

1L  = 2
2L , L1L2 = 0).  Thus, L can be ascribed to any arbitrary parameter, and one can 

regard any Staudtian imaginary circular line (of the first kind) of the field E = ϕ as the 

axis of such an L.  (Cf., pp. 30). 
 In the general case 4*), the paraboloid G1, G2, G3 is not equilateral, since otherwise 
one would be dealing with case 3*).  The entire family G1, G2, G3 of them represents the 
family of axes in RIII  that belong to p1.  The other family of paraboloids, which is 

endowed with the parameter π1 = − p1, belongs to the reciprocal domain PIII  .  The 

                                                
 (1) The reciprocal relation of G(p) with respect to Z(π0) [Γ(π) with respect to Z(p0), resp.] says, in fact: 
 

π0 + p = e tan GZ   (p0 + π = e tan ZΓ , resp.). 

 
 (2) N. Zanichevski treated this case 4*) analytically in his treatise: “Die Schraubenlehre und ihre 
Anwendung auf die Mechanik,” pp. 63-67. (In Russian, Odessa, 1889). 
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direction field f of the latter family belongs to RIII , just as ϕ belongs to PIII  .  The same 
argument teaches us that the axes of all ∞1 screws in RIII  (PIII , resp.) that possess an 
arbitrary constant parameter p (π, resp.) will trace out families of non-equililateral 

paraboloids whose direction plane is ϕ (f, resp.), and indeed both of them will be on the 
same paraboloid in case one has p + π = 0.  We would like to examine the positions of 

these paraboloids. 
 Let G0(p1) be the vertex line, and let e1 be the dividing parameter of the family G1, 

G2, G3, which equals the shortest separation of the vertex lines of this paraboloid from the 
lines of the same family that subtend an angle of 45o with the former, which is the 
separation S1E1 (Fig. 19), measured along the vertex lines Γ0(π1) of the other family, from 
the vertex S1 = G0 Γ0 to the line G(p1) whose connecting line with Γ0(π1) in inclined by 

45o with respect to the central plane (G0 Γ0).  The family of paraboloids p = − π = const. 

with their axes G in RIII  (Γ in PIII , resp.) has the direction field ϕ (f, resp.), so its vertex 
lines G0(p) [Γ0(π), resp.] will be parallel to those of the family p1 = − π1 = const., and 

thus to G0(p1) [Γ0(π1), resp.].  Therefore, the screw that belongs to the axis G0(p) [Γ0(π), 

resp.] must be linearly derivable from the screw G0(p1) and the field f [Γ0(π1) and ϕ, 

resp.], and one will obtain G0(p) from G0(p1) [Γ0(π) from Γ0(π1), resp.] by parallel 

displacement along the Z-axis of the paraboloid (p1) through an amount z that satisfies the 

equation p – p1 = z tan α (α = 0 0G Γ = 0G f , the angle between the direction plane ϕ 

and f).  (pp. 15, 2*). 
 In order to understand the now-known vertex lines G0(p) [Γ0(π), resp.] of the family p 

= − π = const., as well as its dividing parameter e, and thus, the paraboloid in question, 

we consider the fact that any line G(p) in that family that is parallel to G0(p) and has a 

distance e from the vertex line G0(p), as measured along Γ0(π), will belong to RIII  as the 

axis of a screw in it that must be linearly derivable from the screws G(p1) and f, and must 

therefore be linked to G(p1) by a plane that has a trace in the field f that is perpendicular 

to G(p), such that this trace H of the plane G(p1) ⋅⋅⋅⋅ G(p) in the plane Γ0Z = Zf must 

subtend an angle of α with Z.  [G(p1) lies in the angle-bisecting plane of Γ0 G0 and Γ0 Z 

and is perpendicular to the altitude E1L to G0 in the former plane and to the line H in the 
latter plane, so one has: 

0HΓ  = 1 0( )LE ⋅Γ  = 90o – α, 

 
from which, it will follow that HZ = α.] 

 G(p) can then – and for arbitrary p – be any transversal of H that is parallel to G(p1).  

The altitude that is dropped from the point of intersection E of G(p) and H onto Z is a 

vertex line Γ0(p) of the paraboloid that belongs to p (π = − p, resp.), and its length ES is 

the dividing parameter e of that paraboloid.  It is (in absolute value): 
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e – e1 = z tan α = p – p1 ; 

 
i.e., the dividing parameter and screw parameter vary from one paraboloid to another by 
the same amount. 
 
 The family of paraboloids p = − π = const. of axes in RIII  (PIII , resp.) all have parallel 

vertex lines and the same paraboloid axis Z.  A fixed line H (H′, resp.) that subtends an 
angle of α with Z, as do the direction planes f and ϕ of the paraboloid, connects those 
points of all vertex lines Γ0 (G0, resp.) whose tangential planes to the paraboloid in 
question are inclined by 45o with respect to Z. 
 
 One of these families of paraboloids degenerates to a pair of pencils, namely, the one 
for which e = 0 and one correspondingly has: 

 
p = p1 – e1 = p0 , π = − p0 = π0 ; 

 
they will degenerate to the pencil with its center at M = HZ = H′ Z in the plane ZG0 = Zϕ 
(ZΓ0 = Zf, resp.) and the pencil of rays in the plane ZΓ0 = Zf (ZG0 = Zϕ, resp.) that are 
parallel to Z. 
 One of the families of paraboloids – viz., the one that corresponds to p = − π = 0 – 

defines the line framework rIII  in RIII  (ρIII  in PIII , resp.).  In particular, if the pair of pencils 
that we just mentioned is the line framework then we will be dealing with a special case 
of III ′), pp. 11. 
 
 The ∞1 paraboloids p = − π = const., or – what amounts to the same thing – all of the 

∞2 axes G in RIII  (Γ in PIII , resp.), envelop a second-degree cone Kd  that has M for its 

vertex, the planes Zϕ and Zf for its tangential planes, and focal axes d and δ that are 
perpendicular to these planes. 
 
 (Fig. 20)  In any arbitrary plane E that is parallel to ϕ, there will be ∞1 rays G that are 

axes of RIII  .  Of them, G will go through every point P of the line of intersection t of E 

with (Zf), namely, the one that belongs to the paraboloid P (p = − π = const.) whose 

vertex line Γ0(π) is the altitude that is dropped from P to Z.  (The other vertex line G0(p) 

of that paraboloid goes through the vertex S = Γ0 Z and will lie in the plane Zϕ that is 
perpendicular to Z. – moreover, t itself will represent an axis in RIII , since it is a ray of the 
pencil of parallels that belong to p0 .)  If we were to cut E with the line H in Γ0(π) that 

runs through M in the plane Zf at an angle of α with respect to Z then the piece e = SE 

will be the dividing parameter of the paraboloid P.  The tangential plane Γ0(π) G to P at 

P will thus subtend an angle with the central plane of that paraboloid whose goniometric 
tangent will be equal to x / e, if the piece SP is denoted by x.  The line G that goes 
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through P will thus subtend an angle of ω with its orthogonal projection G′ onto the 
central plane whose tangent is: 

tan ω = 
x

e
sin α, 

 
so α will also be the angle between G′ with Γ0(π). 
 The line d that goes through M perpendicular to (Zϕ), which we have referred to as 
the focal axis of Kd, might meet E at the point F.  The angle ω′ that PF subtends with its 

orthogonal projection PI onto the line t has the tangent: 
 

tan ω′ = 
IF

PI
; 

 
now, if IF = x cos α, as the rectangular triangle MFI for F would imply, since IM = PS = 
x and FIM  = α, then: 

PI = SM = e cot α, 

 
as would follow from the rectangular triangle SME for S, for which SE = e and SME = 

α.  As a result, we will have: 
 

tan ω′ = 
cos

cot

x α
αe

= 
x

e
sin α = tan ω, ω′ = ω, 

 
so G will be perpendicular to FP.  Since F and t lie fixed in the plane E of the pencil of 

parallels ϕ, we can recognize that the rays G (which are axes in RIII ) that lie in E will 

envelop a parabola with the focal point F and the vertex tangent t.  However, since E can 

also be parallel displaced, such that F moves along d and t moves parallel to Zf, all G will 
envelop the cone Kd, which will project the parabola above onto M and have d for its 

focal axis. 
 All tangents to Kd that are parallel to ϕ represent axes G in RIII , only the lines that lie 

in Zϕ and go through M [which contact Kd at a point of the edge G0(p0)] will exhaust the 

axes G in RIII , not merely the pencil of points M of axes G in RIII  that belongs to p0 .  

 The system of axes G of the tangents to Kd that are parallel to ϕ  is thus of order two 

and class one, so the two tangents G to the parabola of intersection of Kd with E = wϕ 

will go through every point w in space, and the tangents to the conic section (W ⋅⋅⋅⋅ Kd) that 

are parallel to ϕ and do not lie in (Zϕ) will lie in any plane. 
 This happens in precisely the same way that any axis Γ in PIII  (that is parallel to f) 
will contact the same cone Kd that also possesses the focal axis δ that is perpendicular to 

f, and that, conversely, all tangents to that cone that are parallel to f will be axes in PIII , 
except for the lines in the plane Zf that do not go through M. 
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 If an arbitrary axis G in RIII  (Γ in PIII , resp.) meets the plane Zf (Zϕ, resp.) at a point P 
(Π, resp.) that has a distance of z from the plane that is drawn through M perpendicular to 
Z then one will determine its parameter p (π, resp.) by recalling that one must have (in 

terms of absolute values): 
 

(cf., p – p1 = e – e1),  p – p0 = e (− 0) = z tan α. 

 
  

The general case RIII  (PIII , resp.). 
 
 The general case RIII  (PIII , resp.) of a sheaf of screws whose axes possess all possible 
directions in space will occur when the screws G1(p1), G2(p2), G3(p3) that determine RIII  

have axes that are not parallel to a plane.  As in the special case 4*), we can once more 
assume, with no loss of generality, that p2 = p3 = p1, such that all lines in the family of 

hyperboloids G1, G2, G3 that belong to the parameter p1 will represent screw axes in RIII , 

while the other family of these hyperboloids Fi will be filled up by the axes Γ in the 
reciprocal sheaf PIII  that are endowed with the parameter π1 = − p1 . 

 The axes of all ∞1 screws in RIII  (PIII , resp.) that possess an arbitrary parameter p (π, 

resp.) will belong to one family G(p) (Γ(p), resp.) of a hyperboloid F(p), and indeed the 

same hyperboloid, when one has p + π = 0.  Thus, for a certain parameter – and this will 

actually happen, as we will show – the one family G(p) will degenerate into a pair of 

pencils (center M, plane µ and center N, plane ν) with a common ray MN = µν, where the 
family Γ(π) (p + π = 0) will be the pair of pencils with the same planes µ, ν, but with the 

centers N, M switched. 
 The family of lines in one of these hyperboloids p = − π = 0 will serve as the line 

framework rIII  of RIII , while the other will serve as the line framework ρIII  of the 
reciprocal PIII  .  [The case III′ (pp. 11) is the one that yields a pair of pencils Mµ, Nν 
(Mµ, Mν, resp.) instead of a hyperboloid for p = − π = 0, precisely.] 

 How do the ∞1 hyperboloids F(p) (p = − π arbitrary, constant) lie, and what kind of 

ray system exhaust the  axes G (Γ, resp.) in the sheaf RIII  (PIII , resp.)?  This ray system is 
identical with the congruence K(G) [K(Γ), resp.] (of order three and class two) that E. 
Waelsch (inter alia) examined (“Über eine Strahlencongruenz beim Hyperboloide,” 
Wiener Ber., Bd. 95, pp. 781-802, “Über das Normalsystem u. die Centralfl. alg. Fl.,” 
Halle, 1888), which is defined by the shortest transversals to two generators of the same 
family Γ(π1) [G(p1), resp.] of a hyperboloid F1, into which any hyperboloid F(p) with its 

family of lines Γ(π) [G(p), resp.] can enter in place of F1, with its family. 

 In fact, one such shortest transversal G (Γ, resp.) can possess an arbitrary parameter p 

(π, resp.) as the axis of a screw L (Λ, resp.) in RIII  (PIII , resp.), if it should merely be 
reciprocal to the two screws of PIII  (RIII , resp.) that have axes Γ(π1) [G(p1), resp.] that 

intersect them perpendicularly.  Now, if one is provided with such a parameter p (π, 
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resp.) that makes it reciprocal to a third screw in RIII  (PIII , resp.) that is linearly-
independent to the previous two then it will represent a screw that is reciprocal to the 
entire sheaf of screws PIII  (RIII , resp.), and will thus belong to RIII  (PIII , resp.).  The same 
congruence K(G) [K(Γ), resp.] will belong to all of the ∞1 hyperboloids F(p), in the same 

way that is true for F1 .  The symmetry axes GI = ΓI, GII = ΓII, GIII  = ΓIII  of the 
hyperboloid F1 are symmetry axes of the congruence K(G) [K(Γ), resp.], and thus, one of 
the ∞1 hyperboloids F(p).  K(G) and K(Γ) – viz., the “right” and “left” congruences, resp. 

– will go into each other, just like the families of any one of the hyperboloids F(p), when 

one performs a reflection in one of the symmetry planes GII GIII , GIII  GI, GI GII .  The Gi = 
Γi (i = I, II, III) will present themselves to us when we provide them with suitable 
parameters pi (πi, resp.) (i = I, II, III) – viz., the principal parameters of the three 

“principal screws” Li in RIII  (Λi in PIII , resp.) that give the canonical representation of that 
sheaf of screws.  The pi (πi, resp.) are derivable from the semi-axes ai of the hyperboloid 

F1, but also just as well from any of the other ∞1 hyperboloids F(p), which is why we 

shall drop the index 1 from p1 from now on.  
2 2 2

2 2 2
I II III

x y z

a a a
+ +  = 1 (which is a square of 

semi-axes – e.g., 2IIIa is negative, aIII  is imaginary, and aIII  1−  is real) is the equation of 

the hyperboloid F(p), when referred to the axis system Gi .  In order to determine pi, 

which are the parameters that belong to the same symmetry axes, we employ the 
reciprocity condition p + π = e tan GΓ  of the Gi(pi) relative to any screw in PIII  whose 

axis Γ cuts one of the other two symmetry axes of the hyperboloid, such that tan iG Γ  is 

deduced from the semi-axis ratios of two of the ai, while e is equal to the third ai : 

 

III II
I

I

III I
II

II

I II
III

III

1
,

1
,

1
,

a a

a

a a

a

a a

a

−= − 

− = − 

−
= −


p p

p p

p p

  I II III

I II III

from which, it will result that :

1

( )( )( ),

which is why it can follow that :

a a a −
= − − − −p p p p p p

2
I II III
2
II III I
2
III III I

( )( ),

( )( ),

( )( ).

a

a

a

 = − − −
 = − − −
 = − − −

p p p p

p p p p

p p p p

 

 
The hyperboloid F(p) thus has the equation: 

 
2 2 2

II III III I I II( )( ) ( )( ) ( )( )

x y z+ +
− − − − − −p p p p p p p p p p p p

+ 1 = 0, 

or 
F(p) = (p – pI) x

2 + (p – pII) y
2 + (p – pIII ) z

2 + (p – pI) (p – pII) (p – pIII ) = 0. 
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For values of p that are found between the extremes of the principal parameters pi, this 

equation will represent a one-sheeted hyperboloid, and only when p is chosen to be 

outside of those limits will it be an imaginary midpoint surface of order two that is traced 
out by imaginary lines of von Staudt’s second kind.  The hyperboloid that the line 
framework rIII  of RIII  (ρIII  of PIII , resp.) carries, viz.: 
 

− F(0) = pI x
2 + pII y

2 + pIII  z
2 + pI pII pIII  = 0, 

 
is real when one of the pi has a different sign from the other two. 

 One of the hyperboloids F(p) – and two conjugate-imaginary ones, in addition to this 

real one – will degenerate to the pair of planes µ, ν : Let pII be the value that lies 

algebraically between pI and pIII , so  µ, ν  will be represented by F(pII) = 0 or 

II I

II III

z

x

−= ± −
−
p p

p p
.  The points M, N (x = 0, z = 0, y = ± II III II I( )( )− − −p p p p  ) are the 

centers of those pencils Mµ, Nν (Nµ, Mν, resp.) that represent the one real degenerate 
family of hyperboloids, and should be called basic pencils.  Their planes – viz., the basic 
planes µ and ν – are the common cyclic planes of all hyperboloids F(p).  The basic pencil 

determines the congruence K(G) [K(Γ), resp.] as the system of shortest transversals over 
any ray of either of them that: 
 
can be constructed from the rays G1, G2, G3 
(Γ1, Γ2, Γ3, resp.) of the congruence K(G) 
[K(Γ), resp.] that go through an arbitrary 
point w as the common edges of the 
orthogonal cone that has the orthogonal 
edges: 
    1)  wM and altitude from w to v (µ, 
resp.). 
    2)  wN and the altitude from w to µ (ν, 
resp.). 
The edge of both cones that intersects the 
principal axis MN = µν = GII  
perpendicularly will be omitted. 
 

can be constructed from the two rays G1, 
G2 (Γ1, Γ2, resp.) of the congruence K(G) 
[K(Γ), resp.] that lie in an arbitrary plane W 
as the common tangents to the two 
parabolas that have: 
    1)   The trace of ν in W for their vertex 
tangents and the orthogonal projections of 
M (N, resp.) onto W for their focal points. 
    2)  The trace of µ in W for their vertex 
tangents and the orthogonal projections of 
N (M, resp.) onto W for their focal points. 
The common tangents to the parabola that 
cut GII perpendicularly, as well as the 
infinitely-distant one, will be omitted. 

 
 If we arrange that: 

F(p) = p3 – A1 p
2 + A2 p – A3 = 0, 

in which: 

1 I II III
2 2 2

2 II III III I I II
2 2 2

3 I II III I II III

,

,

,

A

A x y z

A x y z

= + + 
= + + + + + 
= + + + 

p p p

p p p p p p

p p p p p p
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then it will follow for the parameters p1, p2, p3 of the three screws in RIII  whose axes G1, 

G2, G3, resp., go through the arbitrary point w(x, y, z), which will then, as we would like 
to say, belong to w, that: 
 
 1) p1 + p2 + p3 = pI + pII + pIII   

 
is constant for all points w in space, and: 
 
 2) p2 p3 + p3 p1 + p1 p2 = pII pIII  + pIII  pI + pI pII  + (x2 + y2 + z2). 

 
Thus, the sum of the products of any two of the parameters that belong to w differs from 
the one that belongs to the analogous product sum of the principal parameters at the 
principal point p by the square of the amount pw, so it will be constant for all spheres 
around p. 
 
 3) p1 p2 p3 = pI pII  pIII  + pI x

2 + pII y
2 + pIII  z

2 . 

 
 All points w in space can this be arranged into ∞2 curves C of order four, along 

which, the three parameters p1, p2, p3 individually remain constant.  The C are the 

intersections of the spheres around the principal point p with the cones that go through p 
whose cyclic planes are µ, ν. 
 The three values p1, p2, p3 of p that belong to w correspond to three hyperboloids 

F(p1), F(p2), F(p3), which amount to the C that go through w.   The lines through w from 

the other family of each of these three hyperboloids are the axes Γ1, Γ2, Γ3 in PIII  that 
belong to w.  The tangential planes G1Γ1, etc., to the three hyperboloids that belong to w 
intersect in the tangents C to the C at w. 

 
    The three axes G1, G2, G3 that belong to 
an arbitrary point w in RIII  and the three 
axes Γ1, Γ2, Γ3 in PIII that go through w 
define polar vertices, for which the edges 
of both vertices that are not perpendicular 
to each other belong to equal and opposite 

    Two of the hyperboloids F(p) contact an 

arbitrary plane W, since two edges G1,G2 
(Γ1, Γ2, resp.) of the RII (PII, resp.) that are 
contained in RIII  (PIII , resp.) whose 
cylindroid edges are parallel to w will then 
lie in W (1).  Each of the two G must be 

                                                
 (1) One also recognizes this fact from the equation for F(p) in plane coordinates u, v, w, 1, which is 

quadratic in p: 

(p – pII) (p – pIII) u
2 + (p – pIII) (p – pI) v

2 + (p – pI) (p – pII) w
2 + 1 = 0 

 or 
p2 (u2 + v2 + w2) – p [(pII + pIII) u

2 + (pIII + pI) v
2 + (pI + pII) w

2] 

+ [pII pIII u
2 + pIII pI v

2 + pI pII w
2 + 1] = 0, 

 
which implies the two F(p) that contact any given plane. 
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parameters; otherwise, not all of the three 
screws in RIII  that belong to w could be 
reciprocal to three similar ones in PIII .  
These six axes lie in a cone of order two 
and cut the common altitude planes of both 
polar vertices in the line C at the point w. 

normal to one of the two Γ, and possess the 
equal and opposite parameter in RIII  to the 
other Γ in PIII ; otherwise, the two screws 
that are represented by G1, G2 could not be 
reciprocal to the ones that belong to Γ1, Γ2 .  
Thus, since G1 G2 and Γ1 Γ2  are normal 
angles, they will intersect one or the other 
of the lines in W that belong to the surface 
F(p), which contacts W, at equal angles. 

 
 All F(p) have the four altitudes of the basic pencil, in addition to the four circle points 

of the two basic planes µ, ν, as common focal axes; i.e., all F(p) contact the four pairs of 

conjugate-complex tangential planes of the absolute sphere-circle, which can be drawn 
through the perpendiculars to µ and ν that are erected in M and N, resp. 
 One obtains the coordinates u, v, w, 1 of these tangential planes, in fact, when one 
sets the coefficients of p2, p, 1 in the equation (cf., pp. 46, rem. 1) of the system F(p), 

when written in plane coordinates, equal to zero. 

2 2 2

2 2 2
II III III I I II

2 2 2
II III III I I II

0 ,

( ) ( ) ( ) 0 ,

1,

u v w

u v w

u v w

+ + =
+ + + + + = 
+ + = − 

p p p p p p

p p p p p p

 i.e., 

2

III I I II

2

I II II III

2

II III III I

1
,

( )( )

1
,

( )( )

1
.

( )( )

u

v

w

=
− −

=
− −

=
− −

p p p p

p p p p

p p p p

 

 
 These equations teach us that the common tangential planes to all F(p) can be 

obtained from one of them by reflecting through the symmetry planes; i.e., from one that 
cuts out the pieces: 
 

+ III I I II( )( )− −p p p p , + I II II III( )( )− −p p p p , + II III III I( )( )− −p p p p , 

 
from the axes GI, GII, GIII , and thus contains the real line (viz., the focal axis) that is 

drawn through the center M(0, + I II II III( )( )− −p p p p , 0) and it perpendicular to a basic 

plane. 
 The theorem above can also be expressed as: 
 
 All hyperboloids F(π) project orthogonally onto one of the basic planes µ, ν in a 
(doubly-counted) confocal system of conic sections with the centers M, N of the basic 
pencil as common focal points. 
 
 This also follows without the aid of plane coordinate from a construction of the 
surfaces F(p) that are concyclic with respect to µ, ν, and when one recalls that any F(p) is 

symmetric to the symmetry plane of the two pairs of basic pencils and is traced out by the 



Grünwald – Sir Robert S. Ball’s space of linear screws. 48 

axes of the sheaf of screws, which can be constructed as the shortest transversals over a 
ray of one of the pencils of a basic pair, this will imply: 
 Let K1 and K2 be two circles around the principal point p (i.e., the midpoint of MN) 

that have equal, but arbitrary, radius and lie in the planes µ and ν, resp.  Furthermore, let 
P1 be a variable point – e.g., on K1 – so the two transversals of K2 that go through P1 

perpendicular to P1M (let one of them be P1P2, with the point P2 on K2, while the other is 

P1 2P′ ) will trace out a family of the same kind as one of the two hyperboloids F(p) that go 

through K1 and K2.  In fact, the perpendicular to P1P2 that is drawn through P2 in v, for 

example, goes through N; therefore, P1P2 is a shortest transversal over some rays P1M in 
the pencil Mµ and P1N in the pencil Nν, so it will be a general one of the two 
hyperboloids F(p) that go through K1 and K2. 

 P1P2 then projects orthogonally onto µ in the altitude that goes through P1 to P1M in 
µ, so it will always contact the conic section in µ that will have M and N for its focal 
points when P1 varies on K1 .  This conic section is thus the orthogonal projection of the 

hyperboloid F(p) that is traced out by P1P2 , which cuts µ and ν in K1 and K2, resp.  (Yet 

a second surface of the system that goes through the same circles K1 and K2 will project 

onto it, since one can also take 2P′  on K2, instead of the point P2 .) 

 
 In addition to the axes G in RIII (Γ in PIII, resp.) that are assigned to hyperboloids F(p) that belong to a 

certain parameter, all lines g (γ, resp.) (Staudt’s first kind, cf., pp. 30, rem.) that belong to an indeterminate 
parameter should also be regarded as axes in the sheaf of screws that emerge from the circular rays that are 
present in each of two basic pencils Mµ, Nν in RIII (Mν, Nµ in PIII, resp.) by parallel displacement along the 
altitude to the pencil. 
 
 The F(p) can intersect in only one of the concyclic, spherical, conic sections (pp. 47), 

so the focal surface of the congruence K(G) [K(Γ), resp.] that is enveloped by the F(p), 

namely, the sixth-order surface (that comes from F(p) = 0, ∂F / ∂p = 0) (1): 

 
3 2 2 2 3
1 3 1 2 1 2 3 3 24 18 27 4A A A A A A A A A− − + +  = 0 

 

(with the absolute sphere-circle as its cuspidal curve) will also be contacted by each F(p) 

along a C.  Thus contact curve C is simultaneously the complement of the intersection 

(Schnittrest) of the focal surface with another hyperboloid F(p′).  At each point w of an 

arbitrary C of that kind, the focal surface will degenerate into the aforementioned polar 

vertices when two of the three axes G (Γ, resp.) that belong to w coalesce into two 
                                                
 (1) Order six and class four, as one infers from setting the discriminant of the equation (pp. 46, rem. 1) 
that is quadratic in p equal to zero. 
 E. W. Hyde has investigated this surface in the Annals of Mathematics, ser. II, vol. 2, no. 4 (Mass., 1901), 
and produced some intuitive Figures of it.  (Esp., Fig. 2 in the treatise: “On a surface of sixth order which is 
touched by the axes of all screws reciprocal to three given screws.”) 
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infinitely-close lines G0 (Γ0, resp.) of a certain plane [viz., the focal plane of G0 (Γ0, 
resp.)].  In addition to these lines G0 (Γ0, resp.) of the hyperboloid F(p) through w, yet 

another line G′ (Γ′, resp.) will go through that point that is an axis in RIII  (PIII , resp.) with 
the parameter p′ (π′, resp.), for which one must have p′ + π′ = 0, since G′ and Γ′ are 

attached to the hyperboloid F(p′) that belongs to w, along with the two infinitely-close 

F(p).  The G0 (Γ0, resp.) of F(p) that belong to the parameter p (π, resp.) (with p + π = 0) 

must be perpendicular to the plane Γ0 Γ′ (G0 G′, resp.) and possess focal planes that are 
perpendicular to G′ (Γ′, resp.), since otherwise both of the two screws G0(p) [Γ0(π), 

resp.], as well as G′(p′) [Γ′(π′), resp.], that are infinitely close to w in the focal plane 

could not be reciprocal to the analogous ones Γ0(π) [G0(p), resp.] and the Γ′(π′) [G′(p′), 
resp.]. 
 Therefore, each of the concyclic, spherical, conic sections C of the focal surface an 

“orthogonal point curve” of the hyperboloid F(p) that contacts the focal surface along C 

and likewise a “limit point curve” of the other hyperboloid F(p′), which (contacts the 

focal surface along another C′) and has C for the complement of its intersection with the 

focal surface.  We understand Kummer’s term “limit point” of a ray G (Γ, resp.) of a 
congruence to mean, as would be useful, one of the two points between which the 
shortest transversals over G′ (Γ′, resp.) and the infinitely-close rays of the congruence 
K(G) [K(Γ), resp.] [i.e., the perpendicular transversals Γ of G′ (G of Γ′, resp.) that trace 
out the axis cylindroid of the PII  in PIII  (RII in RIII , resp.) whose principal plane is 
perpendicular to G′ (Γ′, resp.)] are real, in which the aforementioned shortest transversals 
[at the pinch edges; e.g., Γ0 (G0, resp.) in the aforementioned cylindroid] themselves draw 
together, and outside of which these shortest (cylindroid edges) will be imaginary.  [On 
the relationship between the radii of the “orthogonal point curve” of a Monge sphere that 
implies an arbitrary hyperboloid F(p) and the other sphere that cuts out the “limit point 

curve” in F(p), etc., cf., the cited treatise of E. Waelsch.] 

 The “focal surface” and the “limit surface” of K(G) [K(Γ), resp.] are identical.  Any 
ray G′ (Γ′, resp.) of this congruence whose limit points are met by Γ0 (G0, resp.) and the 
other pinch edge of the cylindroid above will contact the focal surface in addition at two 
points – viz., its focal points – at which it is met by the reciprocal domain that belongs to 
the equal and opposite parameter and the axes that intersect it perpendicularly (viz., 
edges of the aforementioned cylindroid).  Each of the latter, together with G′ (Γ′, resp.), 
will then play the same role that was played above by the pinch edges Γ0 and G0 (G0 and 
Γ0, resp.) that went through the point w, namely, they, along with G′ (Γ′, resp.), will 
determine the tangential plane to the focal surface at the focal point in question.  The 
focal planes of every focal point on G′ (Γ′, resp.) are perpendicular to the second 
cylindroid edge, which goes through the focal point, in addition to the above.  The former 
two limit points, through which the “limit point sphere” that belongs to the rays in 
question of the hyperboloid F(p) meet, and the “focal points” (or “orthogonal points” 

relative to F(p)) on the concentric Monge sphere are symmetric with respect to the point 

m – viz., the “midpoint” (principal point of the cylindroid above) – at which the principal 
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point p of RIII  (PIII , resp.) projects orthogonally onto the ray of the congruence.  The 
“midpoint surface” that is traced out by these points m of the rays of the congruence 
shall, as soon as it is given, shall be the first point at which we can recognize the 
relationship between the direction of a screw axis in RIII  (PIII , resp.) and its parameter p 

(π, resp.).  The axes Γ in PIII  belong to screws in that domain whose parameter is equal 
and opposite to that (p) of the parallel axis in RIII , such that examination that relates to RIII  

will suffice: 
 From the intersection laws for linear domains, for every screw L in RIII  there is a 
reciprocal to the latter in RII.  We give the principal screws Li (i = I, II, III) in RIII  the 
volume 1, such that their rod lengths il  will be the “characteristics” of the principal 

screws.  From the development on pp. 18, etc., on the characteristic conic section K of an 

RIII , it follows that the midpoint surface of order two with the semi-axes l i = 
1

i

±
p

 (pi 

principal parameter) that fall on the axes Gi of the Li will be a characteristic surface of 
order two (K) for RIII : 

pI x
2 + pII y

2 + pIII  z
2 = 1, 

 
in which every radius l of (K) (which might have the direction cosines c1, c2, c3) will be 

the characteristic of the screw L in RIII  whose axis is parallel to it, such that p = 1 / 2l  

will prove to be the parameter of the latter.  The pencil of screws RII that is reciprocal to L 
and contained in RIII  has the plane pI c1 x + pII c2 y + pIII  c3 z = 0, which is conjugate to 

l relative to (K), for its direction plane.  Incidentally, it follows from this or the theorem 

that: 
 
 The sum of the squares of three conjugate radii of a surface (K) is constant 

 
that 
 
 The sum of the reciprocal values of the parameters of three co-reciprocal screws in 
RIII  is constant: 

1 2 3

1 1 1+ +
p p p

 = 
I II III

1 1 1+ +
p p p

, 

 
since the associated screws have the parallel conjugate three radii of (K) for their 

characteristics.  This is connected with H. Everett’s proof of the theorem: 
 
 The sum of the reciprocal values of the parameters (p1, …, p6) of six co-reciprocal 

screws in space (RVI) is zero. 
 
 Three of the six screws determine an RIII , while the remaining ones will determine its 
reciprocal domain PIII  .  Thus, in addition to the equation above, one will have 
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4 5 6

1 1 1+ +
p p p

 = 
I II III

1 1 1

π π π
+ + , in which the πi = − pi are the principal parameters of the 

PIII  .  The equations that were written down will imply the stated theorem: 
 

4 6

1 1+ +⋯
p p

= 0. 

 
 From this theorem, and the one that is derived for co-reciprocal screws in an RII (PII, 

resp.) (pp. 20), namely, 
1 2

1 1+
p p

= const., it can be proved that: 

 
 For four co-reciprocal screws in an RIV (PIV, resp.), the sum of the reciprocal values 
of their parameters is constant. 
 
 To that end, PII (RII, resp.) needs only to be chosen to be the reciprocal pencil to RIV 
(PIV, resp.).  Analogous statements will be true for the parameters of five co-reciprocal 
screws in a web of screws. – The sum of the parameters that belong to all triples of 
normal axes in RIII  is constant; i.e., one has: 
 

p1 + p2 + p3 = pI + pII + pIII  , 

 
when p1, p2, p3 stand for three screws in RIII  whose axes are mutually perpendicular, as 

would follow from the fact that the sum of the parameters of two screws is constant in 
each RII when its axes are normal to each other. – 
 Instead of representing the parameters of the screws in all axis direction by (K), one 

can measure from a point p parallel to the axes of every screw in RIII  whose parameter is 
p = 1 / 2l  and employ the “parameter surface” (P) that is arrived at as the locus of 

endpoints thus-obtained in order to visualize the parameter distribution.  (Cf., pp. 19)  On 
the ray through p that has the direction cosines c1, c2, c3 (so 2 2 2

1 2 3c c c+ +  = 1), the 

parameter: 
p = 2 2 2

I 1 II 2 III 3c c c+ +p p p  

 

(x = λ c1, y = λ c2, z = λ c3 ;  λ2( 2
I 1cp  + …) = 1;  x2 =

2
1

2
I 1

c

c +⋯p
, etc.; 

2l  = x2 + y2 + z2 = 
2

I 1

1

c +⋯p
= 

1

p
), 

 
such that the equation of (P), in which x, y, z should mean the coordinates of the points 

on that surface from now on, so one sets p = 2 2 2x y z+ + , 2
1c  = 

2

2 2 2

x

x y z+ +
, etc., will 

read: 



Grünwald – Sir Robert S. Ball’s space of linear screws. 52 

(x2 + y2 + z2)3 – (pI x
2 + pII y

2 + pIII  z
2)2 = 0. 

 
Since p can be regarded as the length of the projection of a segment (pI c1, pII c2, pIII  c3) 

onto the segment (c1, c2, c3), that will yield the following construction of the parameter 
surface (P): 

 
 Let Ki (i = I, II, III) be the spheres that are described around p with radii pi , and let 

an arbitrary radius of each Ki meet it at the point Pi (when the pi have the same signs; if 

one of these three principal parameters has a sign that is different from the other two 
then the extension of the radius beyond p should cut the Ki in question); if the three 

planes in M that are drawn through Pi perpendicular to the principal axes Gi in RIII  

intersect (OM has the projections pI c1, pII c2, pIII  c3 onto the principal axes) then the 

orthogonal projection of M onto the radius employed will be a point of (P) and will trace 

out this surface when the radius varies through all p. 
 
 All of the radius vectors that belong to a certain axis congruence K(G) [K(Γ), resp.] 
and are obtained by varying all radius vectors that are based at p by a constant amount 
will be obtained from a parameter surface (P) that is so constructed (cf., pp. 13).  The 

family of (P) thus-obtained will represent the parameter distribution that is possible for a 

given axis congruence as the pencil: 
 

(pI + λ) x2 + (pII + λ) y2 +(pIII  + λ) z2 = 1 (λ arbitrary) 

 
of the associated (K) that also contain the sphere that leads to the absolute sphere-circle. 

 The axis congruences K(G) in RIII  and K(Γ) in PIII  are symmetric relative to the 
principal point p and the principal planes GIGII, etc., so the same thing will also be true 
for Kummer’s middle surface; we thus need only to consider RIII  .  Any screw L in RIII  
(with volume 1), since it is linearly derivable from the three principal screws, will be 
representable as the sum of a radius rod l (with direction cosines c1, c2, c3) of the 
characteristic surface of order two (K) (pI x

2 + … = 1) and a field of the plane E (pI c1 x + 

… = 0, which is conjugate to l relative to (K) (cf., pp. 2)  In order to go from this form of 

representation to the canonical one, we need only to displace the rod l that goes through p 
in the direction in E that is perpendicular to l through an amount pm.  m will then trace 

out the desired middle surface when l assumes all possible radii in (K).  The direction 

cosines of pm, which are proportional to the determinants of the matrix (the projections 
of the altitudes to E and l) 

I 1 II 2 III 3

1 2 3

c c c

c c c

p p p
 

will be: 
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2 3 II III

2 2 2
2 3 II III

( )

( )

c c

c c

−
− +⋯
p p

p p
, …, … 

 
and the length ρ of the displacement amount must be ρ = p tan α, according to (pp. ?), 

when p = 2 2 2
I 1 II 2 III 3c c c+ +p p p  means the parameter of the screw L and α is the angle 

between l and the altitude to E.  If one recalls that: 

 

    cos α = 
2 2 2

I 1 II 2 III 3

2 2 2 2 2 2
I 1 II 2 III 3

c c c

c c c

+ +
+ +

p p p

p p p
 = 

2 2 2 2 2 2
I 1 II 2 III 3c c c+ +

p

p p p
 

and 

    sin α = 2 2 2
2 3 II III2 2

I 1

1
( )c c

c
− +

+
⋯

⋯

p p
p

 

then one will have: 

ρ = 2 2 2
2 3 II III( )c c − +⋯p p , 

 
and we will get: 
 

x = c2 c3 (pII – pIII ), y = c3 c1 (pIII  – pI), z = c1 c2 (pI – pII), 

 
as the projections of the displacement amount ρ = pm, from which one eliminates c1, c2, 
c3 with the help of 2 2 2

1 2 3c c c+ +  = 1: 

2 2 2 2
2 3 II III
2 2 2 2
3 1 III I
2 2 2 2
1 2 I II

( ) ,

( ) ,

( ) ,

c c x

c c y

c c z

− =
− = 
− = 

p p

p p

p p

 

2 2
1 II III2

2 2
2 III I2

2 2
3 I II2

1
( ) ,

1
( ) ,

1
( ) ,

c
x

c
y

c
z

= − 

= − 



= − 


p p

p p

p p

 

 

λ II III
2

( )

x

− +  
⋯

p p
 = 1, λ = 

2 2 2

2 2 2
I III( )

x y z

y z− +⋯p p
, 

 
2 2 2 2
1 2 3 II III[( ) ]c c c − +⋯p p  = 2 2 2 2 2 2

1 2 3c x c y c z+ + , 

 
2

2 2 2x y z

λ
(pII – pIII )

2 (pIII  – pI)
2 (pI – pII)

2 [(pII – pIII )
2 + …]  = λ [(pII – pIII )

2 + …], 

 

λ = 
II III III I I II( )( )( )

xyz±
− − −p p p p p p

. 
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This yields the Steiner surface of order four: 
 

xyz (pII – pIII )(pIII  – pI)(pI – pII) 

∓  [(pII – pIII )
2 y2 z2 + (pIII  – pI)

2 z2 x2 + (pI – pII)
2 x2 y2] = 0. 

 
as the middle surface of the congruences K(G) and K(Γ). 
 (Cf., Kummer, Schröter, Cayley in Crelles Journal, Bd. 64, 1864, etc.) (1)  An affine 
picture of this surface is obtainable as a model from L. Brill’s Darmstadt publication 
(series 9, no. 3). 
 In particular, if pI = pII then the F(p) will be hyperboloids of rotation, and the cyclic 

plane µ, ν, as the well as the middle surface of the axis congruences K(G), K(Γ) in RIII  
and PIII , resp., will lie in the principal plane GI GII , and the centers M, N will lie at its 
principal point p.  The focal surface will be a surface of rotation (2), as will the 
characteristic surface of order two (K) and the parameter surface (P).  K(G) will be 

traced out by rays that can be obtained from the edges of the cylindroid that is determined 
by the screws GI(pI) and GIII (pIII ) by rotation around GIII  . 

 In particular, for pI = pII = pIII , all axes in RIII  will go through the principal point p and 

have the same parameter p = pI .  There will be no real screws with other parameters.  

The line framework rIII  is one of the systems of generators (Staudt’s line of the second 
kind) of the sphere x2 + y2 + z2 + 2

1p  = 0 with an imaginary radius whose square is (− 2
1p ); 

any circular line g of v. Staudt’s first kind that belongs to an arbitrary parameter, and 
which lies in a tangential plane to the cone x2 + y2 + z2 = 0 can (cf., pp. 30) be regarded as 
the “axis” of such a line.  The other system of generators of that sphere defines the line 
framework ρIII  of the reciprocal PIII  .  In addition to the circular axes g of ρIII , in turn, the 
rays of the sheaf p will belong to PIII  as axes, but endowed with the parameter π = − p = − 

pI . 

 
____________ 

 
 
  

 
 
  
 
 
 
 
 
 
                                                
 (1) Closely-related to Ernesto Pascal Repertorio di Matematiche superiori: II. Geometria, Milano, 
1900, pp. 474, etc. “La superficie romana di Steiner.” 
 (2) C., Fig. 3 in the cited treatise of E. W. Hyde (pp. 48, rem. 1). 
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