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Summary: The “Cosserat continuum” is a continuum of points, each ohainécprovided with a
space direction. In this paper, the kinematics and statidé®tontinuum are investigated, and the author
wishes to emphasize the analogies between the equations for kiaknaatec static quantities.

Furthermore, it is shown that the continuum used in dislocation thisogn incompatible Cosserat
continuum.

1. Introduction

Straight beams with length, shear, and bend deformapi@vide the simplest model
of a Cosseratcontinuum: In the typical bending problem, a successiomgaf slices —
the “cross-sections” are cut out, which depend on e#lodr an a suitably elastic way
(Fig. 1a). We allow the following variations of length:

1. The displacementgx) andw(x) of the cross-sections in tkxe andy-directions,
without rotation of the slices, in which the beam asistretched by:

&X) = U (%), (1.1)

into the “bending line,” which is given = w(x), and has been rotated relative to the
normal to the cross-section through the amg(®) (Fig. 1b).

2. A rotationg(x) of the cross-section that is independent of the aigphents (Fig.
1c), such that the end result is that the cross-seltie been rotated through the angle:

y(X) =W (x) + @(x), (1.2)
around the bending line normal. If we then introduceqtremtity:
K(X) = ¢'(%), (1.3)

then we have the following system of deformations: dit@tation &), the shear(x),
and the rotatiork(x). Conversely, if these deformations are given thidh w(x), and
@#(x) are obtained by integration, up to a rigid motion:
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U069 = () +f, (0 dé,
P00 = o) +[ K(x) d& (L4)
WOJ = W) = gox —0) + | K(0) = (x = HA(9] dé,

with up = u(Xo), etc.

Which static quantity is associated with the three
deformations is dictated by the principal of virtual
displacement: The beam carries the external lergthgs-
sectional, and moment load&), q(x), and m(x), and is
stressed, perhaps the free right enda, by the forced.®,
Q@ and the momenM®; the left end is unstressed. We
assume rigid-body equilibrium and thus obtain:

[ 1169 () + a(x) GMX) + m(x) 3] dlx -
- [L9(a) + QPdn(a) + MOSp(@)] = 0.  (L5)

The rigidity conditions read:

dx) =0, X =0, kX =0, (1.6)
J o with:
: Ly =Wt i O&(X) :% [AU(X)], etc. (1.7)

/

X

We successively multiply each of them by tHeagrange
™~ multipliers;” L(x), Q(X), M(x), and add this to the integral in
z (1.5):

~J {1LM) Q) + QM) A(X) +M(X) 3] -

Fig. 1. = [I(¥) au(x) +q(x) awmXx) + m(x) d@g(X)]} dx— (1.8)
- [L®du(a) + Q®ama) + M@dg(a)] = .

Now, the beam can be regarded as non-rigid, and thelmatirangemultipliers, which
were reaction forces in the rigid body case, becan@inted force quantities. With
(1.7), a partial integration and consideration of thesstfree conditions:

| &(X) =0, MX=0 dhX =0, (1.9)
gives:
—I {[L1) +1(X)] au(x) + [Q(X) +a(x)] dm(x) +

+ M%) —Q(X) +m(x)] J(x)} dx+ T
+[L(a) - L¥ du(a) + [Q(a) - Q¥ ow(a)
M(a) - M@ p(a) = 0.



On the Statics and Kinematics of Cosserat Continua 3

This gives:
LX) +1(x) =0,
QM) +a(x) =0, (1.11)
M%) —Q(x) + m(x) =0,

along the beam axis, and:
L(a) - L@ =0,
Q@@ -Q®=0, (1.12)
M(a) - M@ =0,

at the free end. (1.12) gives the static interpretdtotheLagrangemultipliers:

L(a) = stretching force
Q(a) = shear force,
M(a) = bending moment;

(1.11) defines the equilibrium conditions for these sigiantities. For the sake of what
follows, it is now convenient to abstract from thetjgalar nature of the model that we
just discussed. For that, we replace each cros®seuthich we collectively think of as
constantly arrayed along the beam axis, with a logal coordinate system. In this way,
the beam axis, which — more generally than before — @sobe a space curve and
therefore can represent spatially curved beams, becdmesatrier of a one-parameter
family of coordinate systems (“triedres mobiles,”"Hoand F. Cossera}, or, otherwise
speaking, a continuous sequence of “oriented points.” het drientation of the
coordinate system (points, resp.) in the initial stetedetermined by constant functions
of the curve parameters. The continuum of coordingtems (oriented points, resp.) is
deformed by displacing the initial points and rotating thesakewhich these alterations
are also constant functions of the curve parametefbe “deformations,” suitably
defined, will then be associated with static quantitié$ whe help of the principal of
virtual displacement, and the behavior of the deformation a free interval boundary
provides their meaning as static quantities. The diftedeequations that they satisfy are
the necessary conditions that they are in equilibriuman element. Therefore, for this
“‘one-dimensional (or better yet: one-parame@¥seracontinuum” the static quantities
are already determined from the kinematics by meanshef principal of virtual
displacement.

The extension of this way of thinking to two and thr@geehsional regions is simple
and leads to the notion of th€dsseratsurface” which consists ofo? points, and the
“Cosseratspace’ which consists ofo® points. Compared to the possible motions of a
rigid body, which generally has six functional degreesfreédom, a continuum of
unoriented points, which is a special case of@bsseratcontinuum, has at most three
degrees of freedom, which are all given by the displanefredd.

In their seminal monograph [1E. andF. Cosserathave systematically treated the
mechanics of continuous systems that consist of edemioints, generally in a
representation that is very hard to read nowadays. widnk of the Cosseratscannot,
however, be regarded as isolated: Just as in the qudstvétmp a mechanical model of
the ether, similarly, in the discussion of the ctagbn of anisotropic elastic bodies one
is almost unavoidably compelled to consider such mechanidéss was precisely the
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theme that was of greatest interest to many researolieche nineteenth century. Here,
we mention only the work dfelvin [2], Poisson[3], and, particularly that o¥oigt [4],
whose ideas came very close to thos&.adndF. Cosserat. After that, these questions
were either regarded as meaningless or as better soh@&thdrymethods, and it seemed
as if the Cosserat program had only a historical sigméeand seemed almost forgotten,
if one overlooks a few French researchers, su@udsia[5] (*).

The objective of this article is to give a modern reprgation of th€€osseratideas,
while restricting to linear deformations, and to develamplete system of kinematical
and static equations in this framework. The motivafarthis work was the fact that a
kinematical model was used in the “continuum theoryisibdations” that corresponded
to an incompatibleCosseratcontinuum §). As the introductory example above shows,
there is also a problem in classical rigidity in whitie Cosseratapproach might be
useful. The author will elsewhere present a theorshefls in which one will be led in
this manner to very self-evident equations, and there@entinsight into connections,
which have been very complicated to understand by thel asgaments up till now.
Finally, there are interesting links between the problemh differential geometry,
especially norRiemannianas well as nonholonomic, spaces and dislocatiomryhéat
were first observed bigondo([8], andBilby, BulloughandSmith[9].

2. Kinematics of COSSERAT continua

We use generalized coordinatg® (i = 1, 2, 3); the orientation of a given point,
which is given by the position vector:

v=t(q") (2.1)

in the initial state, is generally chosen in such § What the local coordinate system is
given by the unit vectors:
ot
g = o =, (2.2)
oq

We agree thagi1, gz, g3, in that order, shall define an orthogonal systemthé sense of
the chosen determination of metric this coordinate sysie “parallel,” since the

covariant derivatives of the unit vectors indeed vanish#gler a dilatation the origin of
the local coordinate system is displaced by:
w =1(q"”), (2.3)

and the system itself is rotated about its origin by:

(l) Note added in proof: In a remarkable stuBlyicksenand Truesdellhave developed a theory of
finitely deformed beams and shells on the basis o€Ctieseratideas:J.L. Ericksen & C. TruesdelExact
Theory of Stress and Strain in Rods and Shells; Arctiofd Mechanics and Analysis, Vol. 1 (1958) 4.

(®) For this, one might confé¢réner [6] andSeegef7].



On the Statics and Kinematics of Cosserat Continua 5

¢ = ("), (2.4)

(Since the rotation is assumed to be small, it is psiitésto represent it by a vectbi)
We describe the deformation state by the deformatiotokeec

E=0mw +gi %@, (2.5)
k=09, (2.6)

whose meaning can be clarified by the introductory exaniplere, one has:

q(1) =X, q(2) =y, q(s) =z
1 0 0
g1=|0], g2=|1], g3=|0],
0 0 1
u(x) 0
= 0 |, @=[dXx ],
w(X) 0
such that one then has:
u'(x) 0 -@(X)
&= 0 ., &=|0], &= 0 |
w'(X) +@(X) 0 0
0 0 0
K, =@ (X)]|, k,=0], Ky =|0].
0 0 0

We can summarize these vectors by the matrices:

_gllzu'(x) £,=0 &;=-¢(x)
e=&§,=0 &,=0 £,=0
[E3=W(X)+P(X) €,;=0 &£5;=0
and:
X1=0 X =0 xu=0
E=| X =@'(X) X2=0 Xp=0]
Xl3:0 X23:O X33:O

As usual, &1 = U(X) is the stretching in the-direction. Under the action of the
displacement fieldv(x), the system of orthogonal coordinakes x;, y = Xo, Z = X3, goes
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to a non-orthogonal systexg*, X*, xs*, whosex;*—axis is tangent to the deformeg
curve (Fig. 2), by means of the rotati@(x) in an orthogonal systexn X,, X,. It is:

.\ 7 , n

O (x*, X;) =5 - (W' + @) =3 "
~ Tl 7l

O (xs*, X,) =5 " w'-¢) =5 &

X

such that thegq are obviously the natura
generalizations of the distortion quantities of t
point continuum. The meaning of th
deformation quantities<x is immediate: they
describe relative rotations of the local coordine
system within the system.

The transition to the spacelike continuu f{ ’! X3
proceeds in such a way that one now carries _ X3 3
the previous operations on the individual Fig. 2

coordinate surfaces. A new, not generally holonpmmordinate system arises in a
spacelike continuum as a result of the displacerfielst w and the rotation fielg; the
deformations can then be interpreted as they wetigei model case.

The 18 deformations and «, are derived from the 6 dilatationsandg, according

to (2.5) and (2.6). Conversely, if one integraiesse equations for given deformation
then one obtains:

B(0) =@ (v0) +[ &, ", 2.7)

10(0) =10 (vg) +@(v0) X (b —vo) +[ [£,(S) + (s —0v) XK, (s)] ds;  (2.8)

in which s is the position vector of the integration pathd dne summation convention

for tensor calculus has been usdd (The terms that were integrated out represegi ri
motions, which the deformation state certainly cdraiter. In order for the dilatation to
be a unigue function of position the integralsarv§ and (2.8) must be total differentials,
and from the conditions:
0.k,,=5(0K, —0,k,) =0, (2.9)

(o=

Oy +9; % Kip =0, (2.10)

one is led to equations that can also be obtaimedediately from (2.5) and (2.6)
through the elimination ab andg. These are the sufficient conditions for thetdtians

to be uniquely determined by the deformations, apigid motions. We would like to

(®) Greek indices are summed from 1 to 3.
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put them into another form that will simplify our dissis. For that purpose, we
introduce the “permutation tensoe*':

+i when { k | )is an even permutation of (13}

Jo

=g (@ xg) = —% when { k | )is an odd permutation of (132, (2.11)

0 when at least two indices are equal;

in which the “contravariant unit vectorg® define an orthonormal system and are defined
by:

0 fork#i
k P = =
0" 6= {1 fork =i, (2.12)
andg is the determinant of the metric tensor:
g = Det@ik) = Deti - gu). (2.13)

We thus obtain the following “matching conditions(i.e., “compatibility

conditions”):
@
I =dM5,k,=0, (2.14)

(2)
I =dM[0,€,+ g1 xK,] = 0; (2.15)

® @
the “incompatibilities” J “andJ “ must vanish. It is obvious that these 18 equataes

not independent of each other since their solutieti®e 18 deformations — must involve
6 arbitrary functions (the dilatations and thed). In fact, there exist 6 differential
identities between them, namely the “divergenceagqos:”

aa(\/ﬁ Jm"j =0, (2.16)

®

aa(\/?;J(zz’j +g, X (\/BJ ”j =0, (2.17)

such that only 18 — 6 = 12 independent matchinglitions remain, as one must have.
Both systems (2.14) and (2.15) may be combined. th&e solve (2.15) for théﬂ

(in which, for the sake of generality, we would calbke to consider incompatible
deformations); after a long intermediate computatiee obtain:
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/?#: ”ﬁa[(aafﬁ . gy) ga_i[(aazﬁ : gU) gll] =
@)

(2)
- [(J 9/1) go _Lz[(J 7 90) 9/1]-

One substitutes this into (2.14), and thus obtains:

%0, [ (0al, g,,) ga—i[(aazﬂ gg) o4 = (2.19)
(2)
=30, [(376) 00 -[(37 5 8]

Before we analyze this system, it is convenientdavert to pure tensor notation,
since the computations are already extensive, bad tuse that opportunity to also

represent the most important of the previous kirteakequations in pure tensor form.
We set:

w=w,g? with w;=t *g,

$=0"ga with  ¢7= @ « ga,

E=&a g7 With &,=¢€ *g, (2.20)
K=K"ga with .7 =k, g

o @ [6h) @

J=1"g, with 1*=J"

2 (2 (2) (2)

J=1g, with 1=73"

(one can show in any case that the tensor quaritities defined are of rank 1 or 2, resp.),
and we further replace the ordinary derivativeslie covariant derivatives.

One then has, sin@&, =gi - (@ X g4), that the equations:
& = 0w —eaq ¢” (2.5a)
K'=0; ¢ (2.5b)

become the definition of the deformation quantjtié® matching conditions then look
like:

D[i K|],m: 0, (2.9&)
Oii &m + €mpi 411.7= 0, (2.10a)
or:
W Kl _ kA (-
| "=e""0 k, =0, (2.14a)
(2)
| M= M0 g+ kP - k=0, (2.15a)

resp., with the following differential identities:

W,

O, 19=0, (2.16a)
@, W,

Oo | %% g1 =0, (2.17a)
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between them. Solving (2.15a) for the deformatigrisgives:

k! = €% [ 3 O €50 -4 3, 0 0] — [ 101 1 J, i ”D] (2.18a)
and then, after substituting in (2.15a), one has:

[¢ & 16 ] 0, p

—[I K gkal Da +igda Da| AD] _| K (2.19a)

For the resulting incompatibility tensbf, we now have: on the basis of (2.16a), it is
divergence-free, i.e., one has:

ol =0, (2.21)

and on the basis of (2.17a), it is symmetric, i.e.:

M=, (2.22)

The same must also be true for the left-hand sidé2df9a), and it can be easily
established that the divergence-free character folldysimmediate computation,
whereas the symmetry follows from the following argatmeWe separate the
deformation tensog;,, into its symmetric part:

Ep = € =3 (8 + E) (2.23)
and its anti-symmetric part:
& = i =5(Em — &) (2.24)

In three dimensions, one can always replace an anthsyrnc tensor with a vector
by the following prescription:

££/1 = e/j/]g' 50, f:%ell/‘a ££/1 . (225)
One then has:
E =€, + €0 £ (2.26)
When this is substituted into (2.19a), this gives:
d” ¥ 0,05, =1", (2.27)

if one ignores the terms that includ2 The left-hand side is symmetric in the lower
index pairs &, £) and , 4), and therefore also in the corresponding upper pairshwhic
then implies symmetry in the index pag ).
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In conclusion, we would like to consider the kinengltjgarts in the special case of
an ordinary continuum of points. It is noteworthy thasiich continua the rotatignis

already determined by the displacement field“triedre cachée in [1]), namely, through
the “mean rotation:”
# =% rotro (2.28)
or:
d =L’ 0, wp. (2.29)

From (2.5a), the deformation tensois therefore symmetric:

&=30iw+0iw) =¢; (2.30)

s

conversely, by (2.5a), it also follows fromn=¢, thatg is the mean rotation (2.28) of the

displacement field. The symmetry of the deformat@msore is therefore characteristic
of an ordinary continuum of points, and its compatibiktyletermined by the equations:

| ="M, 04, = 0. (2.31)
If they are satisfied then, from (2.8), and taking intcoanit the relation:
K,=rotg,®, (2.32)

which is easily derived (2.18a) in this case, one can cantpatdisplacement from the
deformationg; in the following way:

t(x) = (to) + [ L(rot )] x (x —to) +

+ 18,59 +(s-9) x10t &, % 9] o (2.33)
S

3. Statics of COSSERAT continua

In order to find those static quantities that are assmtwmith the deformations in a
spacelike continuum of oriented points, we go back to pghecipal of virtual
displacement. Let a volume elemei\t be loaded with an external foréedV and an

external moment dV, a bounding surface elemaetitwith the external force df and the
external momeng df. The assumption that the forces are independeheahbments is

characteristic of the statics Gbsseraicontinua,Kroner [6] andRieder[10] have given a
physical interpretation for this in the context oesies in ferromagnetic crystals.

This system of external forces and moments is in ibguim on a rigid body that is
bounded by when one has:
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—m [teco +m+ap] dV—[[ [q+dv+pedp]df=0. (3.1)
F)

We introduce the rigidity conditions:

&, = 0sAv) +gax & =0, (3.2)
K,=0dB) =0, (3.3)

in the integral (3.1) by means bdigrangemultipliers®“dV andZ“dV and obtain:
[[] (67, +T7&, —t+dv-—m+ ] dv-
V)
=[] q+d0+peap1di=o0, (3.4)

)

in which it is now permissible for the displacementdielw and &, which are

compatible with the geometrical requirements, to be-ngid. If one introduces the
virtual dilatations into this by way of (3.2) and (3.3) tlieauss’sintegral theorem, with

dv =/gdq" df def, gives:

| Hocoer g

+[[ {187 ng—dl + &o + [T7na—p] + O } df = 0. (3.5)
F)
In this, the quantities:

1
[Dro + 0,(gT ) +g,xT+p |[DF ; dV +
o [@ 9T +g p} ¢}

Ng=n *Ja (36)

are the covariant components of the external norreefov for the bounding surface.
From the vanishing of the surface integrals, it followat:th

Gana:q, TNy =p, (3.7)

and this gives the mechanical interpretation forlthgrangemultipliers &’ and¥’: for
example, let the bounding surface element be a pieaeaordinate surfacg® = const.;
the associated normal vector then becomes:

1) — gl _ gl (3 8)
no= 191@1_ ]gll’ :

1
P Ao 9

and thus:
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The partial forceg™ of the surface traction is coupled with the “stresster” &* by the

relation:
&= qWyg™. (3.10)

In the same way, the remaini®’ may be interpreted as “force stresses” and®has

“‘moment stresses.” In the interior of the bodyfollows from the vanishing of the
volume integral in (3.5) that they satisfy the equilibr conditions:

9,(/a6%)+ (Jg© =0, (3.11)

0,(Jg%%) +gax(Jg&”)+ (Jgm)=0. (3.12)

These are 6 equilibrium conditions for the 18 stre€seand<¥, so the static problem is

12-fold functionally undetermined.
We shall treat only the case of vanishing bulk forcesid bulk moments, from

which the general case can be recovered by adding a farsolution. One thus has:

0,Jg6%)=0, 9,(JgT)+gsx (Jg&7)=0  (3.13)(3.14)
in the domain of definition, and, unchanged from (3.7):
G Nng=q, Tng=y, (3.7)

on the bounding surface of the region. The equilibraomditions (3.13) and (3.14) for

the stresse&* andT* now have the same form as the divergence conditba§) and

® 2)
(2.17) for the incompatibilities “ andl “of the deformation field. When we combine
this with (2.14) and (2.15) we can therefore representtitesses in such a way that these
equilibrium conditions are satisfied identically:

Sk=dMp, 3 Tk = ¥ [g, Gy +gax T4 (3.15)(3.16)

with the help of 18 arbitrary “stress function§), and &,, which correspond to the
incompatible deformationE# and Eﬂ. On the other hand, the static problem is 12-fold

functionally undetermined, so its general solution (3.1%) @116) has 6 functions too
many. However, one remarks that, corresponding t®) @d (2.6), there are stress

functions Eﬂ and & ., that produce the “null” stress state:

5, =0u®, &, =0,W+g,x® (3.17)(3.18)
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with arbitrary vector fieldg and 20; they correspond to the position changesnd v,
whereas the “null stress function@"ﬂ and Q_iﬂ correspond to compatible deformation

fields. From the well-known analogy in the theoryosflinary point continuaWeber
[11]), these are also valid i€osseratcontinua. Thus, there is the possibility of

constructing null stress functio@ andc_jﬂ for a suitable choice of 6 functior®@and2y
by setting 6 of the 18 stress functigsand®, to zero ?), or, what is more practical, by
subjecting the stress function field to the “divergenacalt¢®ns:”

9,(Jgs") =0, 9,(Jg®")+g.x (Jg§") =0.  (3.19)(3.20)

Naturally, the functiongpand2y, which are sources of the null stress functions, a
only determined up to “rigid motions:”

®=q (3.21)
and: )
0 =2, +¢0>< (‘C —‘Co) (3.22)

with constant vectord, and2U,!
We now use boundary surface conditions (3.7) andapcie the totals:

&=[[ adf,  Mo=[[ [p+cxaqldf (3.23)
(f) (f)

of the bounding surface loads, which act on a bmgndurfacef that is encircled by a
curveC. From (3.7) and (3.15), (3.16), one has:

q=e™Fung, p=€"[0,Gu+ g1 % T Na. (3.24)(3.25)
If one substitutes this in (3.23) and applies$hekesntegral theorem then one obtains:

&=[ 3.d¢, Mo=| [6, +1xFu] de. (3.26)(3.27)

In these expressions, the stress functions apmegdge forces” and “edge moments”
that are exerted on the surface boundary; a pietteedoundary is therefore subjected to
the force:

XK =F,d, (3.28)
and the moment:

M =&, dd" (3.29)

(%) This is not generally possible in an arbitrary way.



On the Statics and Kinematics of Cosserat Continua 14

In a complete theory (i.e., one that is extended byntatter law), these formulas can
serve to formulate the boundary value problem for thesstfunctions. In the rest, the
totals are “null” when one substitutes the null striesstions § and & in (3.26) and
(3.27); one can regard this as a check on the calculdahiahgve did up till now.

We return to the equilibrium conditions (3.13), (3.14), vehbisst group obviously
represents force equilibrium for a volume element,v@hdse second group describes the
moment equilibrium. We introduce the “force stressdehisy way of:

G =S%gs  SF=G%gp, (3.30)
and the corresponding “moment stress tensor” by way of
TI=T%g",  TI=F%egs. (3.31)
The tensor representation of the equilibrium cond#tigef. (2.16a), (2.17a)) then takes
the form: _
0, S =0, OJT%5 +e,3 SP=0 (3.13a)(3.14a)
from which the second group can also be converted hetéorm:
¥ 0,1 +S* -5 =0. (3.14b)
From this, it emerges that in the absence of themelalement the force stress tensor is
symmetric when and only when the moment stress terssativergence-free, and
therefore, in particular, when this tensor vanisheacéein the case of ordinary point
continua, in which the symmetry of the stress ter@ois known as the Boltzmann
axiom” (Hamel[12]).
The further treatment of the equilibrium conditions qgaeds in a manner that is

completely analogous to what was done with the kinealapart: From (3.16) and
(3.17), we can eliminate the stress functions and oltamesponding to (2.18):

§u=e™[(0a®s* 9 ~3(0e®s° 00)as] ~[(T7+ 8) 0o-3(57 009 (3.32)
and corresponding to (2.18a):

Fu'=e"[ 3 0, Gp -3 8,0, Gy - [T,-14,7%] . (3.32a)
Furthermore, corresponding to (2.14a), (2.15a), we have:
S =eMF, T =¥ Gy +d Fo. “ - F X (3.15a)(3.16a)

and by combining (3.15a) and (3.32a) we then have, correspoondi2d 9a):
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&7 [ & 44 7 ] 7,7, G =
=[S+ & g,T, +1 g1 ] =sv. (3.33)

Also, it further suffices here to choose the symmepart of the stress function
C C
tensorG,,, and S¥=S" is a symmetric tensor. Thus, we can also write:

C
&7 ¥ 0,05 Gy, =S", (3.33a)

C C
which corresponds to formula (2.27). For the ordinary paontinuum, one ha&8“=S"
since the moment stresses vanishes, and we obtaentileaf representation:

& = dA 7, G

Au?

(3.34)

of the stress functions in terms of a symmetric te@;fzp In this case, one can express
the total surface tractions in the following way by ukthe stress function tens@fﬂ:

g=¢ ¢0,G5 g, 0¥, (3.35)
C
Mo=¢ [G,+r(hGS,~aGy,)] ¢ A (3.36)
C
with:
rf=reg” (3.37)

With (3.35) and (3.36), we have rediscovered the represamtédr the total surface
loads, that had already been given by the author (inm@ewbat different notation) in
[13], and with whose helBchaefef14] has investigated the stress functions of a singular
total.

4. Relationship with didocation theory

In the Introduction, it was already claimed that tieeknatical model for dislocation
theory is an incompatibl€osseratcontinuum. Without having discussed the kinematical
aspects of dislocation theory in detail (cf., [6], ihigh a thorough analysis is given), we
shall only consider the formal relations that lead frbva equations of th€osserat
continuum to those of dislocation theory.

We begin with a decomposition of the deformation teastinat is due t&roner [6]
in which it will be assumed that it vanishes at infinitffigiently strongly or satisfies
suitable boundary conditions in the finite case.

There is then a unique decomposition:

& =0iw +ea, 070", (4.1)
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in which ¢ is split into the gradient of a vector fietal and the curl of a tensor field
Likewise, we decompoge

b' =0 ¢ + ez 0Pd, (4.2)
Together with (4.1), this yields:
& =0+ 0 (8a 0CY) + @m a5 070P 0, (4.3)
We set:
em07¢ = u; (4.4)

sinceu is the curl of the vector field its divergence vanishes identically:
0%, = 0. (4.5)

Furthermore, we decompod¥' into its symmetric and anti-symmetric parts:

0 =d” + d = d + g by (4.6)
in which:
=L g d. .00
Finally, we set:
Oh=p (4.8)

and obtain, in summary:
a=0i(W+u) + @mc) +am ag00d” —a [ Oyu+ 0%, (4.9)

in which one must take (4.5) into account.
The second term in (4.9) is, as we discussed previously, syrmnm i andl, and

represents the incompatible pgrt in the Cosseratsense, of the deformation tensgr
namely, if we set:

W+ U =W (4.10)
and:
e’ Up Ug + 0% = ¢°, (4.11)

then the deformation tensartakes on the form:

a=0w-ed"+g,,. (4.12)
Furthermore, we define, as before, @esseraicurvature tensok by way of:
k'=0i ¢, (4.13)

and recognize that we have rediscovereddbsseratdeformations in the form of (4.12)

and (4.13), but generally supplemented by the incompatible paffrom (2.14a) and
(2.15a), one thus has the equations:
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e Ok, =0, (4.14)

g Uar&u +ék K -kk=

" (4.15)
i.e., in theCosseratsense, the curvatures are always compatible, since, from (4.11), a
unique rotation vecta exists. We shall come back to this.

The basic formula for dislocation theory now reads:

xe=uy, (4.16)

in which v is the “dislocation density” tensor. One can clarifyintuitive meaning by

looking at Fig. 3, which shows a “step dislocation,” &ig. 4, which shows a “screw
dislocation.” In Fig. 3, a lattice plane has beewites] into a regular lattice in which the
(strictly removed) dislocation line ends. If a sugfag = const. envelops this line once
then it intersects the glide plane that is spanned dyBhrgers vector” (glide direction)
and the dislocation line; one can think of there beinpgnap in the displacement field
there. The — in this case, singular — tensor comporigmheasures the magnitude of the
jump. In Fig. 4, the screw axis was defined as the distmt line; here, the glide and
dislocation directions agree with each other, and -thékewise singular — tensor
component?; again measures the magnitude of the jump. In the continbeony of
dislocations, one goes over to continuous distributafrdislocations; the tensarthen
measures the magnitude and type of dislocation line thatsects a given surface
element.

From (4.16), one has:

e 0, Eun = v, (4.16a)
and thus, from (4.15):
(2)
X =VE + 8 k- K, (4.17)
whereas, from (4.12):
V= e 08 - o + ki (4.18)

hence:
(2) *
| =¥ O,em). (4.19)
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Versetzungslinie

Fig. 3.

The incompatibility tensé?ﬁthus has a simple relationship with not only the dislooat
density tensor, but also the incompatible part of thergefion tensor. If this part is null
then from (4.17), we obtain:

Vk,| = K|‘k —ék/(,],/‘, (4.20)

a relation that was first derived Blye[15] (here, we are treating the case of the “stress-
free structure curvature,” cf. [6]). If we proceed furtherin sec. 2, in which we use the
tensork from (4.15), and substitute in (4.14) then we find a smatrémncy, in which
one must observe that, from (4.16a), the trate of the dislocation density tensor
vanishes:

* )
& 0,05 4y =1 = 0V (4.21)
in Kroner's notation:

Inke =0 x [, (4.22)

and the right-hand side vanishes, from (4.16a).



On the Statics and Kinematics of Cosserat Continua 19

Fig. 4.

We shall return to the question of whether the rotatem@ incompatible. That is a
matter of definition: as we showed, this is always fruthe Cosseratsense (when one
ignores singularities that are not everywhere densle)wever, if one calls a tensor field
&incompatible whetnk &+ 0, so one has:

& dH 0,05 8,#0

then the rotation will be incompatible, as one recogriimas the following argument:
We decompose the deformation tensor (4.12) into its synmad anti-symmetric
parts, for which the following expressions are valid:

& =3 [Oiw +u) + 0w +u)] + :s(n), (4.23)
3 [Oi(wi - w) — 0w — w)] —ea 07, (4.24)

and now if& is an incompatible rotation field then we would have:
& dH 0,0, & = -0, (bp). (4.25)

Only the scalar fieldo contributes to the incompatibility (in the latter ssnef the
rotation field.
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