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Analogous systems of shell equations
By W. Glnther

Translated by D. H. Delphenich

1. Introduction. — For a long time, it has been known that one candtate the field
equations for an elastic problem in two different wayse Tinst, and most common,
procedure consists of expressing the material law dbade quantities in terms of the
displacements; the equilibrium conditions are thee differential equations for the
displacement field. Dual to that, however, one ciao derive the equilibrium of the
force quantities automatically when one introducessstrieinctions. They will be
determined for the material law in such that a compasitaiee of deformation will arise.
Which of the two possibilities one chooses depends uponye of problem that one
poses, and in particular, upon its boundary conditidis Schaefer(}) has shown that
the two groups of equations for the plate/disc systaam (he planar surface carrier) will
differ essentially only by the sign of the transversetaction number when one relates
the three displacement components to the threesdtrastions of the system. Naturally,
the fact that this analogy exists is no accidentjbased, in the final analysis, upon the
existence of a bilinear form in which the force quardia@ed the virtual deformations are
combined into a scalar: namely, the virtual work thalase by the internal forces. |If
one wishes to pursue such analogies then one must put theplprioé virtual
displacements at the center of all considerationgs &mown, the principle of virtual
forces can also enter in place of it in the case d@lstisplacements and deformations.
One will indeed also come to the dual variational problemslastomechanics quite
easily by starting from these two principles. — Thelgufathe present article is to
construct systematically a general theory of the imgnaf weakly-deformed elastic
shells in which the aforementioned analogies will gyetlearly. The fact that such
analogies exist for shells was pointed out, abovéalthe Russian researchers. One will
find investigations of it in, e.gV. S. Vlassov (%) andV. V. Novoshilov (%), in which
further Russian literature is given. RecenHy, Schaefer(*) has further examined the
equations of the right circular cylinder and establishectimplete analogy between the
two groups of equations. One now seeks to not only writendine analogies for
arbitrary shells (which is not too difficult after negling some things if one uses tensor
analysis), but to systematically derive the fact thatstatics and kinematics of the shell

) H. Schaefer Abh. Braunschw. Wiss. Ge8(1956), pp. 142.

) V. S. VlassoyAllgemeine Schalentheorie und ihre Anwendung in der TedBeikn, 1958.
() V. V. Novoshiloy, The Theory of Thin Shell&ronigen, 1959.

) H. Schaefer Ing.-Arch.29(1960), pp. 125.
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can be regarded as a so-cal@oksseratsurface, and therefore a surface that consists of
nothing but oriented elements. With the help of thall sedel, one can formulate all of
the kinematic and static equations of the shell and émailogies so simply and fruitfully
with the use of the principle of virtual displacemetiat tone can recall them from one’s
memory with no difficulty each time. By a clevédroice of field quantities, one can then
also integrate the law of elasticity into the ansésgand thus ultimately obtain the
desired two representations of the shell problem.

2. Surface-theoretic tools— We shall begin with a review of some concepts and
formulas from the theory of surfaces, for which, walkrefer to the presentation AnE.
GreenandW. Zerna (Y):

If we letqY andg® be Gaussan parameters on a surface, and let:

r=r @ %) (2.1)

be the position vector from a fixed poidtto a non-singular poir®® on that surface then
we can define a local dreibein by tihienension vectors

a=or=2" i=12) 2.2)
aq
and the unit normal vector:
= &%3 (2.3)
la, xa, |

of the surface (Fig. 1). Along with the dimensieectorsa; , one has theovariant
permutation vectors:

e=Exg i=1,2 (2.4)
and thecurvature vectors:

bi=-0 E (i=1,2), (2.5)

which are also tangent to the surface. If one goas over to new parametegg and
g® then one will get the associated vectcas, €, and b, by a covariant
transformation:

a:aaé’%, g =¢ b, =b, %9

q q L7 og

a

(2.6)

(Greek indices are summed over from 1 to 2!) Wallstall vectors whose indices
transform in that waycovariantly indexed. By covariant projection— i.e., by scalar
multiplication by the dimension vector — one widtg

() A. E. GreenandW. Zerna, TheoreticalElasticity, Oxford, 1954.
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1. The covariant representation of thetric tensoi(first fundamental tensaof the
surface):

a=ala=a, (2.7)
with the determinant:
a=apdy— (6112)2. (28)
2. The covariant representation of germutation tensoof the surface:
a=ela=-a, (2.9)

lei|=Ja forl#i, (2.10)
and

3. The covariant representation of #seond fundamental tensof the surface:
bi=biy=-0ECy =EDioa =h, (2.11)
with the determinant:
b= b11 b22 — (b12)2. (2.12)
Thethird fundamental tensaof the surface is defined by:

ci=b Ebj =G . (2.13)

€

a (2)
o q

Figure 1. Metric and permutation tensors.

Often, it is preferable to emphasize the symmetryaeh of a second-rank tensor in
particular. Lety; be such a tensor; we can then characterize its syiorpatt by ():

Ugly = 5 (Ui + ), (2.14)

and its antisymmetric (i.eskew-symmetr)goart by:

(") Translator: | have taken the liberty of changing th&atian for the symmetric and antisymmetric
parts of a second-rank tensor to something more cuyrr@miventional.
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upii] = 5 (Ui — uy). (2.15)
Their sum will give back the original tensor. We whien have:
ai = agy , & =i, bi = by , Cii = Cgi) - (2.16)

In a known way, we can now further generatedtetravariant dimension vectog (i =
1, 2) as solutions of the equations:

. . . 0 for I#i
‘Oh=a =9 = ' 2.17
ath=a =9 { 1 for I=i. @17

Under a parameter transformation, they will go to ti@sv contravariant dimension
vectorsa by thecontravariant transformation:

aza (2.18)
aq

The same law of transformation is also true forabwetravariant permutation vectors:
€ =Exa. (2.19)
Contravariant projection yields:
1. The contravariant representation of the metrisde of the surface:

a'=a m=a", (2.20)

Det @) = (2.21)

Q|

2. The contravariant representation of the permuté¢iosor of the surface:

d =d mH=d", (2.22)
e |=—— for | #i. (2.23)
3. The “mixed representation” of the second fundameeateior of the surface:

b =b (K =d"by,, (2.24)

from which, one constructs timeean curvature:
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H=1b7 (2.25)

N

and theGaussian curvature:

K:Da@W:E. (2.26)

The components of the tenshr always have the dimension of a reciprocal length.
For thelines of curvatureof the surface, and thus for those parameter curvesatbat
everywhere tangent to the principle directions oftdnsorl’ (and therefore define an

orthogonal net), iR; andR; are the principle radii of curvature of the surfacentifor a
suitable orientation of the coordinate system, onehaNe:

b=-=, bB=-—; (2.27)

in that way, th&aussan curvature is assumed to be non-negative.
The application of elementary vector operation Veidd to the following formulas,
which are used occasionally:

exE=a, dxE=4d, (2.28)
ex€"=9 " -a"d, 8.87= g, (2.29)
KJd -2HhQ +¢ =0. (2.30)

Now, let[J; (...) be the symbol of the covariant differentiatiamith respect to the
surface parametegs” andg®. One will then have:

OE=0E=-b =-ka, } (2.31)
Uia =hE Oe=axb.

It follows from this that:
Di Am = 0, Di em = 0 (2.32)

(the metric and permutation tensor are therefovar@antly constant), and furthermore:
e 0,bp=0 S €¥04bz =0 (2.33)

are theCodazzi equations for the second fundamental tensor o$tinface, which must
be fulfilled if a single-valued field of normal viees for the surface is to exist.
Now let a spatial vector field=v (™, ) be given on the surface that splits into:

v=v,a’+vE=Va,+ VE } (2.34)

v,=v@, V=v@, v=VlE.
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v then combines the vecter (V, resp.) and the scalar in the sense of tensor analysis.
Similarly, for the covariantly-indexed spatial vectaidisv, = v, (%, ), one has:

Vi=viga’+ViE=v%a,+ Vv E, Vimn=Vi (Bm, VvO=vi®", i=v[E  (2.35)
Obviously, one can easily derive rules for multiply-indexector fields, such as:
Vim = Vi X Vi = V{in] ; (2.36)

one will then have corresponding decompositions for dieltls. From (2.31), the
covariant differentiation of vector fields proceedsd®ws:

Oiv(=0iv) = (0 Va—bigv) @+ i v+ b vy E
= (G V' =bv) ag + (i v+ big V) E, (2.37)

Oivi = (i vig—bigv) @’ + (i vi + b vig) E
=@ v —=bv) ag+ (i vi +bia V') E, (2.38)

with a simple generalization to multiply-indexed vedtelds.

E v
a7
/ ’
/
/
/
/
/
/
pay /. o a
~__Middle surfacg
{ 4| %

——

Figure 2.Cosseratshell model.

3. Kinematics of the middle surface of the shelk- We imagine (Fig. 2) that the
shell has been broken up into an (initially-finite) numbérigid blocks whose middle
surfaces will assemble together into the undeformed msldface of the shell when it is
in its undeformed state. They are attached to edwdr @tith springs in such a way that
they can rotate and displace, and the springs arelated in the initial state. By passing
to the limit, we will get a kinematical model for thkell as a surface that coincides with
the middle surface of the shell geometrically, butrisrded at each of its points by way
of the spatial position of the associated block. Anyirffjoof that surface can move with
six degrees of freedom, and is attached to its neighbdpomts” by springs in the
manner that is required by the elasticity law for tiellgwhich will be discussed below).
Naturally, instead of a continuum of “oriented pointsg gan also speak of a continuum
of oriented coordinate systems whose origins lie onniiddle surface of the shell.
Briefly: With our model, we are dealing withGosserat surface which is named foE.
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andF. Cosserat(*), who investigated the kinematics and statics of ooatithat consist
of oriented point in a monograph. [The auth®rHKas treated the basic ideas of the
Cosseratconception of things in more modern notation.] Thislghedel (which is the
logical extension of the model for the engineeringotiieof the bending of beams,
moreover) is anything but new. andF. Cosseratdrew upon the shell as an example,
but did not, however, strive for an actual theory ddlish the representation, which is
currently quite hard to read, is not covariatt. Heun (°) employed the symbolism of
vector calculus without actually going beyond the scopgb@Cosseratbook, and in that
way, the presentation became clearer. Finallyl.. Ericksen and C. Truesdell ()
developed a theory of finitely-deformed shells on thasbakthe Cosseratpicture, but
with a different objective than ours. We will seattht is this model precisely that will
lead us to an exceptionally symmetric, and thereforaiveyutheory of shells.

The changes of position of an “oriented point” on thedbe surface of the shell are:
A rotation, which is so small that one can describdoyita rotation vector and a
displacement; let |v | be small in comparison to the shell thickrtes§he functions:

w= w(@™, d?) = of ay + wE, v=v(q®, q®) =v,a? +VE (3.1)

shall be continuous over the middle surface and continualifiéyentiable sufficiently
often. Naturally, among them, one also finds the mgations:

W=, V=Vo+ap x (I —rp) (3.2
of a finite part of the shell with constant vectaes= w(ro), Vo =V (rg). We derive the

deformations from the changes in position (3.1)relative changes in rotation and
displacement as follows: Tlabsolutechanges are:

(dﬁ)absolute: aaqua = Daqua, (dV)absqute: OV dqa =UgVv dqa; (33)

furthermore, one has:
(dﬁ)absolute: (dﬁ), (dV)absqute: (dV) + wx dr. (34)

If we define the relative changes to be linear functifitbe differential advanceq :
(dWrelative = Xa dqa ) @V)relative = Ex dqa (3.5)
and observe that from (1.2), we will have:

dr = a,dq” (3.6)

() E.andF. Cosserat Théorie des corps déformabldaris, 1909.
() W. Ginther, Abh. Braunschw. Wiss. Ge®0 (1958), pp. 195.
() K. Heun, “Ansétze und allgemeine Methoden der Systemmechanik,” &nMath. Wiss. IV,

Leipzig, 1914; pp. 2, 11.
(" J. L. Ericksen andC. Truesdell, Arch. Rat. Mech. and Analysis 4 (1958), pp. 295.
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on the middle surface of the shell then we will get:
X=-Ua g=lUiv+axw (3.7)

These deformations are obviously covariantly-indexed vefittds. We decompose
them into:

X=Xw@a+XE  &=&.a"+§E, (3.8)
with _
Xi=x M, x=xL[E &a=-gh, &=&lE (3.9)

Twelve deformation quantities then arise from the sianges of position (3.1) that are
derived from the components of the changes of positiong2i37) as follows:

X=0i o' -bl w X =0 w-big o, (3.10)
g=Uvi-bv-e u §=0iv-b'vs—esdf . (3.11)

The second of equations (3.7) [equations (2.11), resp.] caohmd dor the rotatiorw
(its components, resp.):
w= gV — &) 7, (3.12)

with the dyadically-represented matrices:

A =-Ed+€E, (3.13)
or
w'=€7(0av + by, - &), w=e" (JuVp— &Gap)- (3.14)

Hence, only the quantitiess= & [E and the antisymmetric part of the deformation tensor
actually enter into (3.12).
The geometric meaning of the deformation numbers (3.1d)Y&41) is immediate

from the way that they come about: Tj describe thelistortion of the shell, and thg
are the normal components of the relative rotatiohe Jymmetric parg;y of the tensor
& describe the deformations of the middle surface, whgarded as a point-continuum,
that take place in the tangent plane. Namely, let:

a{zai(r+v):a;+Div (3.15)

be the dimension vectors of the deformed middle surfe@ewhen one neglects the
products of deformation quantities, the new metric temslbbecome:

& =alg =ai+2&), (3.16)
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gy = 2(Oivi + Oivi) —by v; (3.17)

however, 1 (a; —g ) is precisely the aforementioned deformation. We tiadé due to
the fact that:

. . 0 for | #i
a%a =9 = 3.18
a”'{lforlzi (3-18)
the difference between the contravariant dimensioroveetill be:
al —al =—2¢M, (3.19)
The skew-symmetric pag; is equivalent to the scalar angle
Y= %eaﬁ &ap » & =en ¢, (3.20)
and from (3.11), one will have:
w=1ePUavs- w. (3.21)

That shows thatgi; corresponds to the difference between the “meartiontathat
originates in the deformation of the middle surface aedCibsseratrotation w around
the normal to the shell.

The interpretation of the quantitiesis: The unit normal vectde' of the deformed
middle surface that emerges frdrby a small rotatio®, namely:

E'=E+9 xE (3.22)

does not, however, generally lie in the direction ef tormal to the undeformed middle
surface that is carried by the block at that position:

E"=E + wxE. (3.23)
It will then follow easily from:

E'@&=0 (3.24)
and (3.15) that:

E=E-(E,v)a“, (3.25)
and furthermore, with (3.7):

E'=E"-¢ga". (3.26)
That will determined as:

S=w-€"¢,. (3.27)

The deformationss are then a measure of the extent to which normalhéo t
undeformed middle surface that is carried by the defoomditas rotated into the normal
to the deformed normal surface. One is then dealing with transverse shear
deformations of the shell. Now, if the deformatignandg are given as functions of the
surface parameters then it will not generally be passibl calculate single-valued
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changes of positiowandv from them by integrating equations (3.7). In order for tiat
be possible, the deformations must satisfy certampatibility conditiongnaturally, in
the Cosseratsense), moreover, which can be easily written doam {3.7) using (2.31):

e 0, xp= 0, e (0, gp+agx xp) = 0. (3.28)
If they are fulfilled then the integration of (3.7), @hextended over a surface cue

(with running position vectos) that goes fronP, (with position vector) to P (with
position vector), will produce the changes in position:

a(r) = aff o)+ [ x, dof’
i (3.29)

v(r) =V (o) +ak ) g, —€ ) xx,]ddf,

which are independent of the special choice of connectingerthe parts that have been
integrated out are the rigid motions (3.2). If we othém and observe the definition
(3.5) of the deformations then we will have:

@(r) = [ (0 e V(1) = [V e = (F =) X (d@retad;  (3.30)

R

the changes in position & are given, up to a rigid motion, by the kinematics haf t
relative changes of position betwed@nandP for that starting point.

We now associate each point of the surface c@vJgvhich can be the boundary
curve of the middle surface to the shell, in particwéth a dreibein of unit vectors: Let
n be its unit normal vector that lies in the tangenpiane, lett = ds / ds be its unit
tangent vector, and I& be the unit vector of the surface normal, as beforg, andE,
in that sequence, shall define a right-handed system sati twill be the exterior
normal vector when a surface element is circumnavigatettha positive sense. We
decompose:

(dWretative :de (AV)relative = £ds (3.31)
along those directions:

(40 e = X A9N + (X B+ (X s OBE, } (3.3
(V) grage = (Y9N + (£ dgt + (5 dFE.

In this: yn is the change in the normal curvatyye,is the change in torsion, apd is the

change in geodetic curvature of the integration cur\e r@sult of the deformation of the

surface,yis its change in direction in the tangential plamis, its rotation, ang = £,t7 is

its change in direction in the- E-plane.

We substitute (3.32) in (3.30), perform a partial integraimn the second integral and
drop the terms that have been integrated, which agaiasent rigid motions.
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What finally remains is:
P
() = [ On +xdt +xE)ds
R

’ (3.33)
v(r)=j{et - s)[(m X3+ XE) - (f —;E)}}ds

Kinematically, this deformation means that the shedordnationsf and yy do not
appear in the calculation of the displacements frond#fermations autonomously, but
will be converted into “kinematically-equivalent supplenaeptdistortions.” However,
we can calculate not only, but also (and this is important for the boundary-value
problems) the changk/ on perpendicular to the surface cu@elt is:

P n? g v with n=nlx. (3.34)
n

When this is substituted in (3.7), that will give:

nDa—Vzg(a@n”n”, tDa—staﬁn”tﬂ+wI:E, EDa—stan"+wEt, (3.35)
on on on
or when we employ the matrices:
¢=gpa’d+ega’E (3.36)

(viz., the deformation matrix), in dyadic represewtatiand:

T=Et-tE,
we will have:
ov
—=n ¥ + w¥; (3.37)
on

naturally, wis deduced from (3.33).
We shall now return to the compatibility conditior&s28) and specify its tensor
representation:

e” (0, Xp= B x,) =0, € (Taxs+bar x5) =0, (3.38)
e (agp—bar g5—€a1 9 =0, €% (0, €p +h; Ept em)(;;[) =0. (3.39)

In place of the distortiong , (for the sake of later developments) we would née li
introduce other distortion quantities: _
k'=k""a,+k'E (3.40)
or
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A=pq.a"+0E, (3.41)
resp., by way of: _ _
kK'=e"“"Xa, X=6eik® (3.42)
or
p=xxE+(HIE)E, Xi=Exp+(EQDo)E, (3.43)

resp. Interms of components, one will have:

K" :em)(olr[a Xil[: €ai Kal, K' :eia)(a, Xi = €qi K (3.44)
or

A =@aXss X =€ pia, A=K, X=8, (3.45)

resp. The components of the distortiaﬁsand,a are then connected by:

a

K'=-€"d pus, p=-esienk’ Kk'=€ps, p=esik?. (3.46)
[Our k' correspond t&chaefets (—«') (%).]

(2)
g (K ~x1 1]

/ [, =X, o]

/[K221 _)(12' ~Pyl

; (1)
[ X 21// !
N20 22
[Klz’ XZZD p21]

Figure 3. Schema of the distortions.

A schematigylimpse of the mutual relationships between thentjties x; , k' andg
is given in Fig. 3; one sees thatis the distortion tensor that is usually employethe
theory of shells. [Oup; corresponds approximately ta in Green andZerna (%) and to
ki in W. Fligge (}.] We shall now summarize the kinematical equatidor the
quantitiesg andx (a , resp.) that will be interesting to us in whatdals. With the use
of the x , that will be the total system of kinematical atjons; that is already a part of
our ultimate system of analogue shell equationsqed! characterize it by an asterisk):

k=€, s=0Oiv+axw (3.47§
or

') See footnote 4 on Page 1.

()
() See footnote 1 on page 2.
() W. Fliigge Statik und Dynamik der Schale?” ed., Berlin-Géttingen-Heidelberg, 1957.



Gunther — Analogous systems of shell equations. 13

k" =7 (04 ' -h), @), k' =€ (0y w+ bas wh), (3.48
a=Uv-biv-eaq §=0iv+biv, +e,w", (3.49)

resp., and the compatibility conditions:

Do K =0, eP O, Kkp+asxK'=0 (3.50)
or

Oa k™ - b k=0, Oak+bag k¥ =0, (3.51)
e"ﬂ (Dgé‘m — by Sﬁ) — &gl K= 0, e"ﬂ (Dagﬂ'*'b; Sa/]) + &4 K[aﬂ =0, (3.52}

resp. The first of equations (3.52) can be solved fokthe
KI = e” e"ﬁ (Dgé‘m - bm Sﬁ) . (3.525

These quantities are then established for a compatiiae of deformation by the
deformationss; and can, if so desired, be eliminated completely froencompatibility
conditions.

We shall give the representation of the conventidisibrtion tensoyg; in terms of
changes of position:

o =aq ([0 w’-b" o (3.54)
and further convert the second of the compatibility caomst(2.39) from them:

e (0up =0 gm — Uagp) = 0. (3.55)
That shows that the tensor:

P =m -0 a.-Uiq (3.56)

is symmetric for a compatible state of deformation.e Dasis for that is easy to see:
Namely, if we express the right-hand side of (3.56mms of changes of position using
(3.49) and (3.14) then we will find that:

:Z)u :—DiD|V—b|”D|VH—l‘f'Di\{,—EL WD\”’&I v, (3.57)
and as a minor calculation will show, that is ideditio:

,Z)" =- [0 v [E, (358)
with an obvious symmetry in the two indices. The faeat {{3.58) goes to the tensor of
plate curvatures when the shell degenerates into a piateralso prompts an intuitive
interpretation for the shell. In order to do that, reeall the representation (3.15) and

(3.25) for the dimension vectors and the unit normaloreat the deformed shell and
calculate the second fundamental tensor of the detbmigdle surface:



Gunther — Analogous systems of shell equations. 14

b =-0E@&=-0;[E—E D,v)a% Oa + 0 v]; (3.59)
if we again neglect the products of displacements th@re&calculation will yield:
by =y +0i 0 vIE=b -p,. (3.60)

The symmetric distortion tensor is then equal to tbgative change in the second
fundamental tensor of the middle surface as a rekitf deformation.

4. Statics of the stress quantities— We reduce the external loads on the shell
(volume forces, forces on the soffits of the shigt)each element of the shell to forges
df and momentg df on its middle surfacelf. Along the boundary of the shell (we
assume that the shell is simply bounded), we might agdy forcesdK = K ds and
momentsdM = M ds to the boundary elementts of the middle surface. Let the
boundary be oriented in the sense that is given by (Z&8)m the principle of virtual
displacements, the negative virtual work that is donentsrnal forces and moments
(hence, the stress quantities, here) during the defamistequal to the virtual work that
is done by the external forces and moments in the @hequilibrium. Naturally, the
virtual changes of position here are those of our kinealatlell model. We shall now
definevirtual deformationsy:

ox =i (o, og =L (ov) +a x dw (4.1)

and thus assume that the field of virtual changes ofiposs differentiable, and express
the principle of the virtual displacements as:
-0 :—jje”ﬂ (K, g + M, My df
=”(p@v+q@w)df+cj5dK@v+d/l [Pw, (4.2)
which introduces théorce stressebl; andmoment stressed; into our kinematics. If we
substitute (4.1) into (4.2) and convert it witokess theorem then that will give:
~ [ DaKp+p) DB + [€% (DaM s+ ag x Ko)] 0 df
= P{(dK -K ,dof) B +( 1 M, dd) [Ba) . (4.3)
Since the virtual changes of positiom and dw can be chosen tbave all of their

components independent of each other foCa@sserat continuum, the equilibrium
conditions that are valid inside the region willdev from that:

e?0,Kz=-p, e”? (O, Mp+asxKp=-aq, (4.4)
and the relations:
dK =K, ddf, dM =M, dq, (4.5)
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which are valid on the boundary of the region. If telees a region that is bounded by
parameter curves then one can read off the static iatatjpn of the stress quantities that
we chose from (4.5):

Ki=Ka,+K E (4.6)
and
M; =M, a"+ M E. (4.7)
q” [N, Ko q” [Ms, +m]
[Mzz, +m*]
/ [N, K] / [Mzz, - m*]

7 1) P (1)
[N —Klﬂ(—//— ! —7  [Mun?] 9
[N*, -K7] [Maz, = ]
Figure 4. Schema of the forces on the shell. Figuchema of the moments on the shell.

(Cf., Figs. 4 and 5). In essence: TKg¢ are the shear stresses on the membraneK the

(I #1) are the longitudinal stresses on the membrane,hetd &re the transverse force-
stresses, while thil; are the bending moments, thilg (I # i) are the drilling moments,
and theM; are the moments around the normal to the shell. sikafold functional static
indeterminacy of the equilibrium problem of the shell ipressed, on the one hand, by
the fact that statically only the six equilibrium cdmhs (4.4) are compatible for the
twelve stresses (4.6) and (4.7), and on the other harttielfact that the decomposition
(4.5) of the boundary forces and moments is not uniquelyrrdeted, since the
homogeneous equations:
Kedf =0, Mg,dg =0 (4.8)

have three arbitrary scalar solutions. We shall restrict ourselves to the case in which
the shell is free of loads that are due to surfaceefoand moments, and therefore to only
an equilibrium systenof forces and moments; one can always get back tgeheral
case by splitting off a particular solution. The eduilim conditions:

e”?0,Kz=0, e [O,Mp+a,xKg=0 (4.9)

then have the form of the compatibility condition22@, in which the relative changes in
rotation )i correspond to the force-streks , and the relative changes in displacement
correspond to the moment-stresbgs. It will then follow that a system of stressesttha
satisfies the equilibrium conditions (4.9) can be regme=d] in a manner that is analogous
to (3.7) by vectorial stress functiof@sand® that correspond to the changes in positon
andv:

Ki=0 Q, Mi=Oid+axQ. (4.10)
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[Equations (4.9) and (4.10) were derived in a different wayhbyauthor ) in a non-
covariant form.] The second of these equations carturn, be solved forQ (its
components, resp.) [cf., (3.12) to (3.14)]:

Q=0,P-M,) (4.11)
or
Q =e[0,0+ 1 &, - M,], } (4.12)

— 108 -
Q=1e"[0,®,-M_4]

resp.; the symmetric part of the moment tensor doesctually enter into (4.11).

Now, if an equilibrium system of stresses in armary-loaded shell is given then,
corresponding to (3.29), the associated vectotidss functions can be calculated
uniquely by integrating (4.10) when one is giveaitinitial values:

Q(r)=Q(,) + .F[)K L4q7,

R

: (4.13)
D) = Do) +QE )Xt F )+ M ,4( s )K ]do.
PO
The terms that were integrated out:
Q=Q(ry), D=d(ro) +Q(ro) X (r —ro), (4.14)

which correspond to the rigid motions (3.2), arezéro-stress functionsf shell statics,
since when they are substituted into (4.9), thdloliviously create a stress-free state in
the shell. We can also ascertain the boundaryegalf the stress functions from
boundary loads with the help of (4.10) and (4.%)reover: If we start at one of its points
then we can take the boundary curve to the paithit@gration and get:

Q (foay) = [dK, @ (roay) = [[dM ~(r =) x K], (4.15)

R R

when we drop the zero-stress functions. These daynvalues are then given by the
dyname that is calculated for the reference pBimind consists of the boundary forces
and moments that act betwdepnandP. [Compare that with (3.30).] We now once more
decompose things along the orthogonal unit vectptsk:

dK =K ds=(Ldgn +(Tdp +( QJ&, } (4.16)

dM =M ds=(M, dn +( M dx +( M dE;

() W. Ginther, Abh. Braunschw. Wiss. Ge8(1956), pp. 111.
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In this, one has, when referred to a unit of curve lergt the boundaryt is the
longitudinal force on the membrang,is the shear force on the membra@ejs the
transverse forceMp is the drill momentMg is the bending moment, ardy is the
moment around the normal to the shell. Just as in (88)will then get:

Q(ryq,) = .T (Ln +Tt +QE) ds
K (4.17)

@) = [{M § = -8) (L0 +Tt +CE) +S(Mp - ME)]} ds

up to trivial zero-stress functions.

Statically, that conversion means that the momentributionsMy andMp will not
appear by themselves in the calculation of the bounddues of the stress function from
a given equilibrium system of boundary loads, but willdo@verted into a statically-
equivalentsupplementary force In the theory of platedVy = 0, 0E / 0s = 0), that is
Kirchoff's supplementary force Q= — dMp / ds. Furthermore, we can calculate the
normal derivatived® / on, say, for the boundary curve. We will get:

: %E =M g N1,
n

tB%EzMaﬂn”tﬂ+Q[E, (4.18)
n

EB‘EzMan"—Q[ﬂ,
on

or, in dyadic matrix notation:

M =Mypa’ e +Mya”E, (4.19)
‘z;:]’: n N +Q [T, (4.20)

resp., in whichQ is inferred from (4.17). [Confer formulas (3.35) to (3.3#)this.]
Our next step consists of transforming the force-st®s6; (4.6) by way of:

N'=dKg, Ki=e4i N7, (4.21)

or, in terms of components:
il — Ada ! (-
Nl_é' KaD KD_%’i I\F’ (422)
N'=e’K,, K=¢N,

corresponding to (3.42). With that, we have introduced li# forcesN I (membrane
stresses) and ' (transverse stress), which are useful in the thebshells. We then get
the following static equations, which correspond to the rkatecal relations (3.47) to
(3.52), and belong with them, along with our system ologyoaus shell equations:



Gunther — Analogous systems of shell equations.

N' = iaDaQ, Mi=Od+a;xQ,
or

N' =e"(0,Q - Q),
N' =d?(0,Q+ b, Q7),

Mn :Dm' Q| _q (D_ﬁ Q),
Ivli :DI¢+ba¢a+eaQH)i

0.N“=0, e®0,Mp+a,xN7 =0,
resp. In components:
OaN"' = b N7=0, Oa N7+ b NP =0,

e”[0,M, —h, Mg - g N =0,
eaﬂ[Da M/; + tﬁ Mm] + %/J Naﬂ] =0.

The first of equations (4.28) can be solved fertfiansverse forcds' :

N' =€’ e [0, M* - b, M4,

(4.23)

(4.24)

(4.25)

(4.26),

(4.27)

(4.28)

(4.29)

so those quantities will already be establishethbymoment#/; in the equilibrium case,

and can, if so desired, be eliminated from theldaiuim conditions completely.

For the ultimate connection to the conventiongresentation of shell theory (in
which, analogies are still known only very littleye also convert the shell momeMs

into new momentsn; [cf., (3.44)]:

m' =€’[M, xE +(M , B E],
M. =e,[Exm“ +(E [th“)E], }
or, in components:
m' =m'[@ = e" & M,
m=m'[E=¢é" M,
M, =M, @ =g, g n¥,
M =M, [E =¢e, M".

The equilibrium conditions (4.26) are then conweiitéo:
OaN"' = b N7=0, Oa N7+ b N = 0,

0,m" =N +¢ p, fi=0,
0, + g N+ tf "] =0,

(4.30)

(4.31)

(4.32)

(4.33)

18
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which is how they are given in, e.gsreen and Zerna, but without the momentsy.
Figs. 4 and 5 showchematicallythe mutual arrangement of the stress quantities that
were defined in this section.

Finally, we shall give two easily-verified forms fre negative virtual work that is
done by stress quantities:

~0AY = [[ (N e, -M , [Bk”) df,

, (4.34)
~0AY = [[ (N (B, +m* (3,) df.

Naturally, we can also arrive at the equilibrium coinds that correspond to these
expressions.

5. Theory of embeddings: geometry, statics, kinematics. The equations that were
found up to now still do not encompass the entire grelblem; they must be extended
by a material law. However, we know such a matdawal only for the spatial point
continuum — namely-Hooke's law, in the linear elastic case. We must then esgthe
spatial deformations in terms of the middle surface amdlense the spatial stresses into
the stress quantities, which is only meaningful for giells. In order to do that, we
introduce a coordinatg® that is perpendicular to the middle surface of thel sirel
associate each point of the shell space with theiposiector:

R @, d?;2 =r @, d?) +zE @, ¢*), - (5.1)

(We shall once more adopt the notations that werdogmep byGreen andZerna.) The
dimension vectors of this spatial coordinate systenugaal, the indices |, ...; a, G, ...
assume the values 1 and 2) are:

=0 R=0r+z0E =a - zb,
gl I | I ai | (52)
0,=0,R=E,
which implies that the covariant spatial metric tensp
g =60 =3 —ZZP + ZiIC: g)
0i; =G [E=0, (5.3)
05, —EL[E=1.
The contravariant spatial dimension vectgrsas the solutions to the equations:
dm=4, (5.4)
will become a power series m
g =d +zb +7b b7+ ... (5.5)

Moreover, one has:
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such that the contravariant spatial metric tensdrhawe the components:

g' =g =d +2zb+32%c+...,
gi3:gi EE:O,

¥ =EE=1.

0 =011 02— (012)°

is the determinant of the spatial metric tenson thee will have:

h=|9 21_MHz+KPR+ ..
a

h is the ratio of the volume:
df @@, d?;2) = (@ dq' x g. df) [E

of a surface element that is parallel to the middidace to the volume:
df (), g ; 0) = u dq x & def) [E

of the corresponding element of the middle surface.

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

20

We now begin with the aforementioned reduction emacentrate the spatial stresses

', 73 (we assume that® vanishes everywhere) to the stress quantitieseohell: The

| .
sectional force that acts upon an elemafnt./ g, dd dz(i #1) is:

| | |
dK = (r%gp+ 1™ E) n, df;
in this:

| |
n,=n Dy

(5.12)

| |
is the spatial (!) decomposition of the unit normattor n to the surfacedf , when

referred to the section:

1 1 1 2 2 2
g _J9g :o_ g __Jagg

g11 J,, - /gzz h \/9711 !

which can be summarized in:

(5.13)
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= e ed o (i #1).

Therefore, one will have:

I
Ne = €yi h i

dK =ey (h 7% gs+h ®E) dd dz

and

With Green andZerna, we let:
1 gp= 0" ag, oP=1" g = 1P -z bf
define a (generally asymmetri@duced stress tensar' ; we will then have:

dK =eu (h 0P ag+h ®E) dd dz

From (4.5), we will have:
ds= 3 dd

on the sectional element of the middle surface:

Kidd:jdk (20,
(2)

Ki:e,{j ha® dzjaﬂ+ g[] e d}E.

(2) (2

SO

Upon comparing this to (4.6), (4.21), we will get:
N' = U ho' dz}aa +[j hr'® d%E;
(2) (2
in terms of components, that is:
N":J.ha" dz, N'= J.hr”’dz.
2 2

One similarly finds that:

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

21
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dM =zE x dK =asepzho¥a'dd dz ) (5.24)
With:
M; dd = J.dl\l/l (i#1), (5.25)
it will then follow that: X
M, :aaeﬂ{j zho dz}a” , (5.26)
or in components: ;
Mi =&q € j zho” dz, M, =0. (5.27)

(2

If one compares this with (4.31) then one will get:

m' = j zho" dz (5.28)
(2)

for the conventional moment tensor that is inducedhey dtresses. The momeits
around the normal to the shell vanish in this theoryt@sses that is derived from the
(nonsingular!) stresses in the spatial point-continuurd, raturally the same thing will
be true for their equivalent momemts The second of the equilibrium conditions (4.28)
will then degenerate into an algebraic relation:

esN =¥ piMu (5.29)

and the second of the equilibrium conditions (4.33) wéhenerate into the known
equation: _ _ _ _
2M T =N" - N"= b m*' - b, m™". (5.30)

Furthermore, the surface componem®$ of the stress functio® now lose their
autonomy. From (4.12), they will then be dependent upoastthss functiomd:

Q' =€ [0, D + b by, (5.31)
and form that, one will have:
on=-22 [E, (5.32)
on

which can also be inferred from (4.18).
Finally, with (4.31), (4.29) will go to the equation:

N'=' e 0, Mg =0, m", (5.33)
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which formally agrees with the corresponding plate eqnatio

We shall now turn to the spatial deformations, wiwehwould like to return to under
the assumption on the deformation of the middle suréddde shell that its transverse
shear part vanishes [that assumption is necessary only if ore éstablish the analogy
with equation (5.27)], with which, the lateral fordgs will become reaction forces. It
will then follow from & = 0, as we can adopt with no further calculation frtma
corresponding static equations, that:

ek =P b ean ; (5.34)

this algebraic compatibility condition corresponds todlgebraic equilibrium condition
(5.29). Moreover, in analogy to (5.31), one will have:

w =€ [0,v+bf v, (5.35)

The rotations around the tangents to the coordinate imése middle surface will then
depend upon the displacement Finally, in agreement with (5.32), one will have:

—aVI:E

wl=-—
on

(5.36)

for a curve on the surface. The static relation (5c88)esponds to the kinematical one:
kK'=d"eP U, em, (5.37)

and the symmetric distortion tens@y that was introduced in (3.56) will finally reduce
to:

A= m— b 8a; (5.38)
it follows from this that:

2= —pi =b" fa- B &4 (5.39)

[which one might compare with (5.30)], and that:

o= pin— 3 (0 &a+ b7 &0). (5.40)
The spatial deformationg are now defined by:

= =309 —q), (5.41)

in which g, is the spatial metric tensor after the deformatidogether with (5.3), that
will imply:

vi=3i(@-a)-ZAB-p)+ 23(,t—,9. (5.42)
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If we recall (3.16) and (3.60) then what will next arse i

vi=&n+zp+Z3(¢ - ). (5.43)
Now, we have:
¢ =b’ 4, = a”l, 4§, = @’ -2d")(0a~ B, )b~ D,).  (5.44)

in which (3.19) was employed. On the basis of (5.38) valh¢hen have, approximately:

Q-G =—0a,+8"n,) (5.45)
SO.
vi=&n+zp - Z2G(8a.+PA.) - (5.46)

The weighted mean values gfwill be:

.1 t?
& :E('[)yil dZ:€¢|)—E%(VRa+Wﬁa), (5 47)

. 12 1
P :t_sj‘zyi' dz:p@l)‘5(ﬁ§a+|ﬁ¢a)-
&)

If one considers (5.39) and (5.40) then this rewuilt suggest that one might set the
antisymmetric parg; of the tensok; equal to:

2
2n=&-& = ;_—Z(Q”,Q,, -¥0,), (5.48)

or when written terms of :
2

6% 0 = i_zeaﬂ o k¥, (5.49

resp., if we assume that this assumption doesaxintrthe law of elasticity that we still
need to present. (As we shall show, that is rettse.) With the assumption (5.49), the
rotation w around the normal to the shell will also becomgedelent upon the
displacement vector now; a lengthy calculation will show that:

— 1 af _ﬁ
w= 1_£K E%e D{vﬂ 12@}(@ v if y} (5.50)
12

For thin shells, it is always permissible to igngreantities of the form ' as being so

small in comparison to 1 that one needs to incibhéen at most to the first power. One
will then have:
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2
w=1e"0, [vﬂ —;—2 0, vj . (5.51)

It is simpler, and also probably necessary for pracwalculations, as a rule, to
assume that the tensgris symmetric:

& = &il (gi; = 0, resp.). (5.52)
That leads directly to:
w=21eP0,vg; (5.53)

wwill then be thanean rotatiorthat exists in the deformation of the membrane. \&ith
=0 and (5.52), ou€osseratcontinuum will ultimately degenerate into an ordinarynpo
continuum, in which only the self-sufficient meaning oé tisplacement vector will
still be relevant.

We easily find from (3.26) that the spatial shear defaomaiys are:

ya=&a . (5.54)

They therefore vanish at the same time asgtheUltimately, it follows from (3.26) that
the deformation:

Ws=g;l0; -1 (5.55)
will vanish in our model in any case.

6. The complete shell equations- The law of elasticity of an isotropic material in
the linear-elastic domain reads:

i__ E
1-v?

[(1-v) g7d”+v d”d] yas, (6.1)

if we assume, as usual, that the stress state iarpland thus ignore the fact that this
contradicts the kinematical equatipga = 0. We easily obtain the following formula for
the reduced stress tensot from (6.1), along with (5.17):

E

ho'=
1-v?

[(1-v) g7 (h g’ TH) +v g (hd TH)] g, (6.2)

in which we now develop everything on the right in powerz ahd once more keep
terms of the formzly only up to the first power. We then remark that tegnametry

(5.48) of the tensog of membrane deformations will no longer be regardechat t
approximation, such that it can be assumed to be synemefter integrating over the
shell thickness according to (5.23) and (5.28), the following equationsnepresent the
material law for the shell:
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i 1_V2 ia t2 3 1
N'= T {(1_V)a a’ |:‘g(a/]) +1_2(_2 tﬁpm +_2 lj;pm -2 Hpaﬂﬂ
B 2
+v d'£+i_2[d' 5 p,,+Bp-2 H&p)}}, (6.3)
'| Et3 2 —
2 He
T 120- Vz){( -v)ad“d’| o, +( B &) + B = (aﬂ))]
v[d pt+[d B, + Be-2 H&s)]}, (6.4)
with
c=a%ep, p=a®pp. (6.5)

Now, since the antisymmetric part of the longit@diforce tensor is already given by the
shell moments from (5.30), we construct the syminetrt of (6.3):

i t2
NI = 1V {(1 v)a dﬂ{é’mﬂ) +1_2(t£'04ﬂ+ l?;pm -2 Hpaﬂ)}
{a T [al b7 0y + b =2 Hép)}} (6.6)

If we then introduce the geometric tensors:

il rs _ (i), 1s _ puir i Als L alr & s _ nir s 4 pir .
plhe=pis @ —Hd)ads+ " -Hd)a =b"d +b" & (6.7)
and

Q= = —Hd)a®+ G —H &) d = tD)" a5+ Ers 4 6.8)
then we will have:
2

i tz a j t N,
N® = = {(1 v){ “dPE o + 12F”ﬂpaﬂ}+\{é£+T2Q' ﬂpaﬂ}}, (6.9)

il _ Et3 ia 4B § ,ap aﬂ
= —12(1_V2){(1—v)[a d’p,;+ P 5([,[,)] \{ Ao+ O 5([,[,)]} (6.10)
u.
One observes that the tendot that was just introduced is the deviator of theosd
fundamental tensor in the coordinates of the lofgsrinciple curvature:
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O O O O

b= a“[-?:[i——lj, b?= aZZEll—[i——lj, b= b= 0. (6.11)
2\R, R 2\R R

The problem of the inversion of the material law carsbled easily starting from

(6.9), (6.10). Namely, as one can confirm by substitutiathin the scope of what we
have neglected:

_ 12 ﬂ_ﬁ ap) | _ ﬁ B)
Jol £ 0 {(1+v){qaarﬂn‘( 5 P N } { a n=r12 Qs N }} (6.12)
&iny = %{(HV)[%% N@? — Iﬁ),aﬂ rﬁﬂ]_ \E e N- iQ,aﬂ M}} ) (6-13)

with
m = agz Mm%, N = as N7, (6.14)

Here, we might comment upon the asymmetry of tlement tensom' : From
(6.10), one has:

2m =m' - :i—zz(b;N”" -3 Ny, (6.16)

which exhibits the analogy to the algebraic equilitm condition (5.30), as well as to the
kinematic equations (5.39) and (5.48). The sqgadait of the stress functiad2 will also
be established by (6.16): In analogy with (5.5hg will have:

1 t?
Q==€&%0 |0, -—b' 0, |; 6.17
2 a( B 12% A j ( )

moreoverQ is determined completely &, along with (5.31). One sees that in order to
evaluate the symmetry behavior of the moment tengermust add a law of elasticity
and a compatibility condition. That connectionggelurred for a planar plate: For it, the
symmetry of the moment tensor can be inferred ftbensymmetry of the spatial shear
stresses alone, which can, in their own right, éeegally based upon only the special
kinematics of the spatial point-continuunD. [Riidiger (*) has discussed the asymmetry
of the moment tensor in a somewhat different cdrjtékhe usual simplification:

m' =0 (6.18)
corresponds to the assumption (4.52). It hasdbaten for the scalar part O

Q=1e"0, g (6.19)

() D. Rudiger, Ing.-Arch.28 (1959), pp. 281.
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as a consequence, in analogy to (5.53).
We shall proceed with our treatment of the equationsladticity and convert them

into momentsM; and distortionsk", although we would like to spare ourselves the
details of the calculation. With the geometric tesso

) .0 O 0.
U.I.IArs :dblr+a: blr_2le %’
O

_d'l _%1
= 3

(6.20)
U_i' =b' & +b. & -2d b,
\7"15 :bir a's - d bS == \?rs’
if we symbolically introduce the matrices:
10 5 [b! b2
:(O J’ B= Dl Dl (6.21)
bl b

for the mixed forms of the first fundamental tensor &ne deviator of the second
fundamental tensor, resp., then the dualities:

U'.®, %8)=U",(®,9) V' (D, 8)=V" (D, D), (6.22)

will exist, and the law of elasticity will now read:

2 2
N® = E\t/z {(1 v)(d”éﬂf(am iZU' K”ﬂj+{%\£+%2\fkaﬂk”ﬂj},
_ (6.23)
' ___ EC (1_\/)(a a,k*+(%¢ ) §K+t2 VP e :
il 12(1_\/2) a 1p il... “(ap) i (aB) |
, _
i L0 09 { 5w, )]
. (6.24)
Eay = [(1 V)(3, 3, NP+ 4% M, )= p Ne V7 M),
with:
K=ag K, M =a% M. (6.25)

These get combined with the equilibrium conditions:
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0,N" -&” 0, M, =0,
0,0, M, + b, N¥ =0, (6.26)
eaﬂ N(aﬂ) + élﬂ [j IVL“ :0’

whose solutions can be derived from a stress funddion
N' =& & [0,0,0+0,(Ho,)] -1 & & 11,0,

M, =300 +00)-h o+ E @ - )n,e (6.27)

The underlined term will drop away when the moment tensoassumed to be
symmetric. Similarly, the deformations, which satigfg compatibility conditions:

0,47 -0, =0,
e 0,06, + k” =0, (6.28)
e, K+ &’ Y06, =0,
can be derived from a displacement veetor
k' =" [0,0, v+ 0, (4 y)]-1 & & 11, v

2 6.27
& :%(Di\{'*'q\()_p V+]t__2%(|5’q —ilm )Dav ( j

The underlined term will drop away when the tengas assumed to be symmetric.
The entire longitudinal force tensor is also deterchicempletely by the symmetric
part ofg and the moment tensor. One calculates it from:

Et

N il —
1-v?

{(1—v)(a‘” d’e +i_2W'|‘”ﬂ K”ﬂj+ \{ ae +tT2 Vs K”ﬂﬂ, (6.30)

with
W.”Aa/]: U.i.IAa/J +%(blsétr _bs d’r) ' (631)

A formal analogy can also be exhibited for the atisons " ; however, that is not
required, since the law of elasticity will produte full tensor directly here.
The elastic energy can also be given very easiy. nThe deformation energy is:

o _ L Et .
M [aw, &%) = 2 [[ = 5l0-v) @ a + ve’ d']e £, df

29
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E —E t3 - (aB) ,(Au)
+ 2lez(l_vz){[(l V) a8, + va, 3] Kk

+ 2[A=V)U T, + VT 160 4} df, (6.32)

¥
and the stress energy is:

1
E

MM, , N°] :%ﬂ ti[(lw)a“aﬁﬂ—vat'ﬂ 41 M, M, df

11 o L
+o ISV 8,8, - va, g1 N7 N

+ 2[A+V)U%, =%, 1 M, N3 df. (6.33)

Y

In conclusion, we would like to discuss the quastof boundary conditions. The
virtual change of the deformation energy is eqadht negative virtual work done by the
stress quantities, such that we will get from (4h2):

SN v,d =dMN[& v, @, k(] =~ A"
:J'[eﬂﬂ{Kﬂ[DDa(d\/) +aa><5a} +Mﬂ|:[|]a(5a)} df . (6.34)

If the equilibrium conditions are fulfilled for ¢hstress quantities then only one
boundary expression will remain:

SN[V, d = 0N [V, by = g[;e”ﬂ (K , v +M , [Bw) 1, de, (6.35)
on v, a = gﬁ(Kat”mﬁHMat” [Dew) ds. (6.36)
Now, one has:
i _ ddq
th=—1 6.37
s (6.37)

and since:
M;[E=0, &g[E=0,

(6.36) can be converted into:
on [v] = <'|S[K [&v +M [dw(v )] ds= <'|5[K [Bv —(e” IM)(O,(ov) [E] ds, (6.38)
with the help of (3.12) and (4.16). Moreover, tas:
e”=nt -tn. (6.39)
That implies:

oM [v] = (JS{[K +(ME)] g%—(MBE)g%}ds, (6.40)
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and finally, after a partial integration:

on [v] = cﬁ{[K —%(MDE)}@V —(MBE)ﬁ?%}ds, (6.41)*

with the supplementary force in the integrand that beesn known since (4.17). In
addition, we have again introduced the stress quantitieg;are:
Mp =M [h =Mgst Mg =M [k = M(gp t* ", (6.42)
and furthermore, from (4.5), (4.16), and (4.21):
K=Kst"=N"n,= N*?az+N“E) n, . (6.43)
We can develop the boundary formula for the virtual charigthe stress energy

(6.33) from (4.34) in an entirely analogous way. If theesstrquantities define an
equilibrium system then the result will be:

511 My (@), N° (@)] = - qS{[K—a%(yE)} B0~ (cE) é’%}ds, (6.44]

with
K=K“ng=(k%az+k“E)ngy, (6.45)

and from (3.31), (3.32), (3.5), we will have:

y=¢€lh =gt =€ = gap t“t~ (6.46)

7. The shell equations in the coordinates of the lines otirvature. Cylindrical
and spherical shell. Membrane stress state- If it is even possible, we choose the
parameter curves in the middle surface to be the linesuvature; in particular, we
would do that when the boundary of the shell is a lineus¥ature or consists of them
piecewise. Since we are dealing with an orthogonglwe can simplify our notation
somewhat; we set:

ai1=a1, =002,
and that will make:
1 1
all=—, a¥=—, azm . (7.1)
al aZ

The three-index symbols that are required for canadifferentiation are:
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11 11 11
r,==——oaa, Tni,==——0g, ,=—2—70
11 20'1 ™~ 1 12 20,1 gl 22 20'1 g 2 (7 2)
11 11 11 '
rflz___azal’ rizz__ap'z r222:__a a,
2 2 202

In what follows, the geometric tensors (6.20) and (6.31) bel further composed, Iin
which the signs will be chosen according to (2.27):

11 11 — 1
U..All_U..AIZ_U..AZI_O’

Vz;:_ﬂ[i__lj,
T n(RR

Vi =V5=V5,=0.
Uil :_Uil \7i| :_VI

.rs ... 1s?

Un.rf :MU}IJS’

al‘ aS

(corresponding expressions for the remaining qtias}i (7.3)

whsb o wae-y 21

2R, 2lR R
wi=3 22w

2\R R 2R

otherwise:

Wi =U..

It will then follow that:
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2
N = Et2 1 {gﬂ+vﬂ£22+t—a1az[i——1]/(22},
1-vvaa a 12 R,

33

12

2 *

N@2) = Et2 1-v) 1 5(12)+t 0’10’2—1 ___1 (Klz K21) (1 V) 1 Eun: (7.4)
1-v a,a, 12 2R R - a,a

Et 1 a, t? 11 1) .4

2 EptV—~&——a0,—| =~ |[K|;

1-v- a,a, a, 12 2R R

1¥2

NZZ -

3
Ml:L:_ Et 2 a1a2|:Kll+V&K22— 1 [i__ljgzz:|a
12(1-v°) a, aa,\R R
Et? Ef 7.5)
MlZ :_W_Vz)(l_v)alaz’(lz, M 21—~ (1 V)O’ az'( , ( )

3
M22=——Et : ala{/(zﬂvﬁ/(“— 1 [i——ljgn}.
12(1-v°) a, aa, R R

with the following inversion:

12 1 a. t? 1 1
K= _ﬁﬁ{,\ﬂll_vj Mzz‘ﬁaﬁ{———j NZZ},

2

12 1 7.6)
K== Z2 )My, KT S ) My, (7.6)
1¥2

12 1 t2 1 1
K== Et3ﬁ|:M22 P M11+1 aﬂz[ __J Nll};
1

Ellzéala{N“ az N2+t [é F:QLJ MZZ},
1

1 1 1 1 1 \
£z = E(:|.+ v)ala{ N@2 +_{E _Ej (M, - Mm)} = Et(1+ V)a,la,zN(lz) , (7.7)

522=ia1a2 NZoydgeo Lt 1 M, |.
Et a, aa, R R

Furthermore, one has:

N2 = 2(1 v)—— ‘9(12)+t—alaZBl L[ 2oLl
1- a,a, 12 2l R R R
(7.8)
21 _ t? 11 1, 1 2) ,
N iyt =00, —| —K "+ ——— K|
1- aaz{” 12 Z{Rz (Fi F%] }}
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Since we can neglect the antisymmetric pdftof ' in this context, we can write
(7.8) somewhat more intuitively as:

i 2
Nz EL gyt _gl(_l_lu
1-v aa,| 12 2R R

1| t2 1(1_1)
£y ¥ 502 :
a,a,| 2R R

One can split the equilibrium condition (6.26) in thestoway using (4.27), (4.28),
since the formulas would become too opaque otherwise:

(7.9)

NZl_

- V)

O,N™+0,N*+ 2 {N"+T (N 2N?)
+5,NZ+T N+ 2N 2 LNz,
R (7.10)
0N +0,N?+2I 2N+ 2(N*+2N")

+MZN"+T LN+ 5N 12+é N *=0;

aq (61M22_62M12+r111M 11+r22M 12_r11B/I ZTFZM )z
Ltz (7.11)

N* =

NZ: (62M11_61M21+r222lv| 22+r11M 21 1M r M 21
1¥'2
1 2 1 1 2_ 1 11 1 2.
LN + 0, N2+ (ML + T2 )N+ (FL+T2)N>-= N —EN = 0. (7.12)

Finally, from (6.29), one has:

1 1
K= o {6262v+ r;z[avz—azvj—rgza V-0 { H
1¥2 2

1 1 1 1 1
=- 0,0,v+I -0v|-T20 E—a -0 0, — ,
K ., { LV l{sz vj 1,0 V- R (0,0 V) - { R ;}

(7.13)

P {alazv+rf2[alv2—azvj—rllzalv ng_(a NEOV,) - a(é ﬂ
2

a,a,

K*# = afla {6161v+ Fi{% vl—alvj -r20 v-0 (?é vlﬂ;
12
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a.
- _r1 _r1 1
&, = a1V1 r 1V1 r 11V1+E v

‘9(12) = % (6 Vot 0 2V1) - r112vl_ r 212V2 (7-14)

a,

— 1., _r2
Ep= 62\/2_ r 22V1 r 2Vt \J

If one now substitutes the deformations, when expdesise terms of the
displacements (7.13), (7.14), in the equations (7.4) [(7.9p.]réor the material law then
the stress quantitied " andM " , and from (7.11), the lateral forces, as well, i
known as functions of the displacement field of theldie surface. The equilibrium
conditions (7.10) and (7.12) will then yield three diffef@ntequations for the
componentss, v, of the displacement vector field One proceeds analogously in order
to derive the differential equation of the dual problemthe component®;, ®,, and®
of the stress function vectdr. That shall not be pursued further here, since it does
lead to either any special difficulties or any new ingh

Our equations will become especially simple for thatrgrcular cylinder (radiuR),
upon which we introduce the coordinatés = s; in the direction of the generatog$? =
S (= R¢) in the circumferential direction, amﬂ3) = z in the direction of the exterior
normal, such that:

a=a>=1, R; - o, R =R. (715)

All of the three-index symbols vanish, and it is noglen necessary to distinguish

between the covariant and contravariant indicestiersake of simplicity, we shall now
write all indices as superscripts. With=1t*/ 12R?, we will get:

Et
N11_ (511+V£22_C2RK22)1

C1-V2
Et
N, = 1V (1_V)(£(12)+% ¢ RKlZ) ,
Et (7.16)
N, = 1—v2 (1_V)(£(12)_% ¢ RK21) 1
-V
__Et :
N22 - 2 (‘922+V£11+ C2 RK11)1

1-v
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Et® 1
Mllz_m(’(n"'v’(zz"'ﬁgzz)’
Et®
M, =—(1-V)k,,,
12 12(1—V2 )( K1
Et®
M,==—(1-V)k.,.,
12 12(1—V2 )( VKo
B Et’ 1.
22__W_V2)(K22+VK11_E511)1
N1 =01 M2z — 01 My2, N2 =02 M11 — 01 Moy ;
1

Kn:azazv—ﬁazvz,

1
K = _alazv_ED';‘-(a 1V, 0,V),

1
Ky =—6162v—E61v2,
Ky =0,0,
gll :alvl’

1
& 25(61V2+6 2V1)a

_ 1
Eyy _62V2+EV'

61N11+62N21: 0,
1
a1N12+62N22+E N2: O'

61N1+62N2—1 N,,=0.

(a 9.+ V9.9 j (%’alazjvz{—

¢
(ﬂalazj (a g, +1V Yo aj

—erEY Y009 +;62Jv—0,
{—CZRO (a 9,-1Y5 9 j %al} vl+(— ¢ R%"a 9 2+%62j"2

+{CZRZ(M+§0202 +ij+—1} v=0,
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(7.17)

(7.18)

(7.19)

(7.20)

(7.21)
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with the matrix of differential operators.

These equations are also foundviassov (*). Since other deformations and stress
guantities are used there, this agreement in the renigts be regarded as a welcome
check on the calculations. If one now works outdhal problem for the stress functions
®;, ®,, and ® then one will come to the following final equationsefthare the
compatibility conditions, when written in terms of thteess functions):

(alaﬁl;z"azazjq:ﬁ(l‘_z"apzjqnZ{CZRa(a@ LSV agj Jcp 0,

(1_7"0102)¢1+(0202+“7"ap )cp {-c R Z(—a@ 4209 ) 1 }p 0,

emfnto alod-em ()bl

2 1 1
+|:CZR2(AA_¥0202+E)+E:|¢ :0,

(7.22)

with a likewise symmetric matrix of differential opgors. The Ansatze:

w= AR R @ = B &F R ©
= A EREHR = B &7 R ¢ (7.23)
v=AYREH T @ = B&Y R

for the solution of the differential equations @).2[(7.22), resp.] lead to the
characteristic equation:

—2 (2nf —v) A% + F;’Z +6m? (nf — 1)+ 1}14

—2mf [2m* + (4 —v) mP + 2] A2+ m* (P = 1) = 0, (7.24)

in both cases. Physically, that means: Displacésremd stress functions show the same
decay towards the boundary, which is certainly glala, but the differential equations
(7.21), (7.22) are not to be considered with nahter assumptions. (7.24) differs from
the characteristic equations that Fliigge (°) andC. B. BiezenoandR. Grammel (°)

[K. Girkmann (%] have found. [If one simplifies the entire prefsl by going over to the
law of elasticity of planar surface carriers thesH. Schaefer(®) showed, one will get
differential equations that differ from each otlwly by the sign ofv, such that the

() See footnote 2 on page 1.

(®) See footnote 3 on page 12.

() C. B. BiezenoandR. Grammel, Technische DynamilBd. 1, 2° ed., Berlin-Géttingen-Heidelberg,
1953.

() K. Girkmann, Flachentragwerkes" ed., Vienna, 1959.

() See footnote 4 on page 1.
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analogy will emerge more strongly;enters into the characteristic equation itself, which
coincides again, only by the combination ()]
One also gets extreme simplifications for the spghéshell. If its radius IR then the
second fundamental tensor will be:
1

bi :——R aj , (7.25)

and thus covariantly constant in any case. As a rdsoih (6.27), the moment tensor
will be symmetric, and therefore the distortion tens® well. The symmetry of the
longitudinal force tensor will then follow further fro the algebraic equilibrium
condition. Briefly: All field quantities on the sheNill be described by symmetric
tensors, so:

N' =N = ELa-y & 8 + vh @],

£ (7.26)
M; = IVl(n) = _W—Vz)[(l_\/) Q, dztva @ﬂ]K(aﬂ);
K" =k" ——E[(l+v) d’a’ —-va d]
- - Et3 Maﬂ)’
. (7.27)
& =& :a[(l'*'v) q, 3z~ V@ @ﬂ] N7,
0, (N +e" e M, ) =0, 0,0, My, ‘% 3, N'=0; (7.28)
(Equilibrium):
(al) ad \u 1 — al Ay 1 (al) — N
O, |« +e™e Rém | =0, e”e'0,0, &, —= &K T=0; (7.28)
(Compatibility):
[ ja 1r; [ [
N = d épDaDﬂCD—E[ HE-1(d'd+'4'4)|0,0,,
. (7.30)
IVl(n) :%(Dicbl +E\ CD| )+Eq ;
K0 =d e 0,0, - & -3 '+ A D)0,
(7.31)

1
£ =2BV LY+ oq v
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If the sphere degenerates to a planar surface cagier- o then equations (7.26),
(7.31) will reduce to the known analogue system for theefulesc; P(q(1), q(2)) will
become the\iry stress functionH. Schaefer(})].

It is obvious that the equations of the membrane stre$she shell must be included
in our Ansatze. M. Lagally (%) has given an interesting treatment to the question of
membrane stress state; the autiprgave a non-covariant derivation starting from the
general equations of the shell. A covariant presemtathould be given here: In the
moment-free state of the shell, the longitudinakté " will vanish from (4.29), such
that, from (4.24), one will have:

bos QF = -1, Q. (7.32)

We shall now assume that tBawussan curvatureK of the shell does not vanish. We can
then define the symmetric tensor:

B =d e L1, (7.33)
K
whose matrix is the reciprocal of the matrix of teesorb; :
i _ A au L PRV VR T . | _1 P
Bb,=€"¢€ DEbA,,ha— @%a*“-a* a9 BIZbA”DH_E(ZHq -q)
:iKaf:a“,', (7.34)
K
from (2.30). We contract (7.32) wisf'' and observe (5.34); we will then get:
Q' =-eg" gt D%bj,, 0,Q. (7.35)

However, as a result of the algebraic equilibrium ctamali(4.38), the longitudinal tensor
will be symmetric:
e NI =0 (7.36)
in the moment-free state, and it will follow fromghusing (4.24), that:
0 QP-2HQ =0. (7.37)

If one then employs th€odazzi equations (2.33) then that will yield the second-order
differential equation fof (g, g®):

e e by, O, (% 0, Qj+ 2HQ =0. (7.38)

') See footnote 1 on page 1.

()
() M. Lagally, Z. angew. Math. Meclt (1924), pp. 377.
() See footnote 1 on page 16.



Gunther — Analogous systems of shell equations. 40

Lagally referred to it as theharacteristic differential equatiofor the problem. We
shall show that the equilibrium condition:

bas N =0 (7.39)

is an identity; namely, it will follows from it, isuccession, that:
b,; €' (0,Q° - Q) =0,
b, €'0,Q7-é" ¢ )Q= b, &€0,0°=0

b,; €0, (% ¢ & p,Dij =0,
(7.40)
e”0, [% (2Hh, - gﬂ)DﬂQ} =0,

e”0, (% K a”ﬂDﬂQj = ¢'0,0,Q=0,

and the last equation will be the desired identity.

Naturally, based upon our analogy, everything that we samédeabout the stress
state of the membrane can be adapted word-for-word toase of “pure bending,” in
which the middle surface is free of distortions, whisha case that was preferable to
consider in the early days of shell theory, since thsipiisy of a differential-geometric
representation had still not reached the point thatoondd treat the general case in a
reasonably transparent form.

It still remains for us to discuss the question of Wweetthe stress state of the
membrane, which is indeed statically-determined, is kisematically possible for a
given material law. It is known that this is, howevadeed not the case for the spherical
shell of constant wall thickness whose deformatioescaupled with the stress quantities
by (4.27). Since the momerit vanish, thex", and from (3.51), the' as well, must be
zero, which has:

=0, w=0 (7.41)

as a consequence, from (3.48). Siace 0, the second of equations (3.49) will then
give:
vi=ROv, (7.42)

such that the tensor of membrane deformations will be:

& = R(DiDI v+% a vj (7.43)

which is then symmetric, as it must be. The stéitéeformation is then determined by
the normal displacementalone. If one now expresses the longitudinaléaemsom
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in terms ofg according to (7.26) then one can get two differengala¢ions forv from
the still-remaining equilibrium conditions:

0aN"" =0. (7.44)

We shall skip the laborious calculation and just wdibgvn the result:

0O, (Av+§vj: 0, (7.45)
from which, it will follow that:
Av +§v = const., (7.46)

and that is the desired differential equation, e/liile characteristic differential equation
of the sphere will read:
2

AQ +?Q =0. (7.47)
(Received on 4 May 1960)
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