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 1. Introduction.  – For a long time, it has been known that one can formulate the field 
equations for an elastic problem in two different ways: The first, and most common, 
procedure consists of expressing the material law of all force quantities in terms of the 
displacements; the equilibrium conditions are then the differential equations for the 
displacement field.  Dual to that, however, one can also derive the equilibrium of the 
force quantities automatically when one introduces stress functions.  They will be 
determined for the material law in such that a compatible state of deformation will arise.  
Which of the two possibilities one chooses depends upon the type of problem that one 
poses, and in particular, upon its boundary conditions.  H. Schaefer (1) has shown that 
the two groups of equations for the plate/disc system (i.e., the planar surface carrier) will 
differ essentially only by the sign of the transverse contraction number when one relates 
the three displacement components to the three stress functions of the system.  Naturally, 
the fact that this analogy exists is no accident, but is based, in the final analysis, upon the 
existence of a bilinear form in which the force quantities and the virtual deformations are 
combined into a scalar: namely, the virtual work that is done by the internal forces.  If 
one wishes to pursue such analogies then one must put the principle of virtual 
displacements at the center of all considerations; as is known, the principle of virtual 
forces can also enter in place of it in the case of small displacements and deformations.  
One will indeed also come to the dual variational problems of elastomechanics quite 
easily by starting from these two principles. – The goal of the present article is to 
construct systematically a general theory of the bending of weakly-deformed elastic 
shells in which the aforementioned analogies will emerge clearly.  The fact that such 
analogies exist for shells was pointed out, above all, by the Russian researchers.  One will 
find investigations of it in, e.g., V. S. Vlassov (2) and V. V. Novoshilov (3), in which 
further Russian literature is given.  Recently, H. Schaefer (4) has further examined the 
equations of the right circular cylinder and established the complete analogy between the 
two groups of equations.  One now seeks to not only write down the analogies for 
arbitrary shells (which is not too difficult after neglecting some things if one uses tensor 
analysis), but to systematically derive the fact that the statics and kinematics of the shell 

                                                
 (1) H. Schaefer, Abh. Braunschw. Wiss. Ges. 8 (1956), pp. 142.  
 (2) V. S. Vlassov, Allgemeine Schalentheorie und ihre Anwendung in der Technik, Berlin, 1958.  
 (3) V. V. Novoshilov, The Theory of Thin Shells, Gronigen, 1959.  
 (4) H. Schaefer, Ing.-Arch. 29 (1960), pp. 125. 
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can be regarded as a so-called Cosserat surface, and therefore a surface that consists of 
nothing but oriented elements.  With the help of that shell model, one can formulate all of 
the kinematic and static equations of the shell and their analogies so simply and fruitfully 
with the use of the principle of virtual displacements that one can recall them from one’s 
memory with no difficulty each time.  By a clever choice of field quantities, one can then 
also integrate the law of elasticity into the analogies and thus ultimately obtain the 
desired two representations of the shell problem. 
 
 
 2. Surface-theoretic tools. – We shall begin with a review of some concepts and 
formulas from the theory of surfaces, for which, we shall refer to the presentation in A E. 
Green and W. Zerna (1): 
 If we let q(1) and q(2) be Gaussian parameters on a surface, and let: 
 

r  = r  (q(1), q(2))      (2.1) 
 
be the position vector from a fixed point O to a non-singular point P on that surface then 
we can define a local dreibein by the dimension vectors: 
 

ai = ∂i r  = 
iq

∂
∂

r
  (i = 1, 2)   (2.2) 

and the unit normal vector: 

E = 1 2

1 2| |

×
×

a a
a a

       (2.3) 

 
of the surface (Fig. 1).  Along with the dimension vectors ai , one has the covariant 
permutation vectors: 

ei = E × ai   (i = 1, 2)   (2.4) 
and the curvature vectors: 

bi = − ∂i E   (i = 1, 2),    (2.5) 
 
which are also tangent to the surface.  If one now goes over to new parameters (1)q  and 

(2)q  then one will get the associated vectors ia , ie , and ib  by a covariant 

transformation: 

ia  = 
i

q

q

α

α
∂
∂

a ,  ie  = 
i

q

q

α

α
∂
∂

e ,  ib  = 
i

q

q

α

α
∂
∂

b .  (2.6) 

 
(Greek indices are summed over from 1 to 2!)  We shall call vectors whose indices 
transform in that way covariantly indexed.  By covariant projection – i.e., by scalar 
multiplication by the dimension vector – one will get: 
 

                                                
 (1) A. E. Green and W. Zerna, Theoretical Elasticity, Oxford, 1954. 
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 1. The covariant representation of the metric tensor (first fundamental tensor of the 
surface): 

ail = ai ⋅ al = ali ,     (2.7) 
with the determinant: 

a = a11 a22 – (a12)
2.     (2.8) 

 
 2. The covariant representation of the permutation tensor of the surface: 
 

eil = ei ⋅ al = − eli ,      (2.9) 
 

| eil | = a   for l ≠ i ,    (2.10) 

and 
 
 3. The covariant representation of the second fundamental tensor of the surface: 
 

bil = bi ⋅⋅⋅⋅ aj = − ∂i E ⋅⋅⋅⋅ al  = E ⋅⋅⋅⋅ ∂i ∂l al  = bli ,    (2.11) 
with the determinant: 

b = b11 b22 – (b12)
2.     (2.12) 

 
The third fundamental tensor of the surface is defined by: 
 

cil = bi ⋅⋅⋅⋅ bj = cli .     (2.13) 
 

 e1 

e2 

a1 
q(1) 

a1 

E 

q(2) a2 
a2 

 
Figure 1.  Metric and permutation tensors. 

 
 Often, it is preferable to emphasize the symmetry behavior of a second-rank tensor in 
particular.  Let uil be such a tensor; we can then characterize its symmetric part by (†): 
 

u(il ) = 1
2 (uil + uli),    (2.14) 

 
and its antisymmetric (i.e., skew-symmetric) part by: 

                                                
 (†) Translator: I have taken the liberty of changing the notation for the symmetric and antisymmetric 
parts of a second-rank tensor to something more currently conventional.  
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u[il ] = 1
2 (uil − uli).    (2.15) 

 
Their sum will give back the original tensor.  We will then have: 
 

ail = a(il ) , eil = e[il ] , bil = b(il ) , cil = c(il ) .  (2.16) 
 
In a known way, we can now further generate the contravariant dimension vectors ai (i = 
1, 2) as solutions of the equations: 
 

ai ⋅⋅⋅⋅ al = i
la  = i

lδ  = 
0 for ,

1 for .

l i

l i

≠
 =

   (2.17) 

 
Under a parameter transformation, they will go to the new contravariant dimension 
vectors ia  by the contravariant transformation: 
 

ia = 
iq

q
α

α
∂
∂

a .     (2.18) 

 
The same law of transformation is also true for the contravariant permutation vectors: 
 

ei = E × ai.     (2.19) 
 

 Contravariant projection yields: 
 
 1. The contravariant representation of the metric tensor of the surface: 
 

ail = ai ⋅⋅⋅⋅ al = a(il ),     (2.20) 
 

Det (ail) = 
1

a
.     (2.21) 

 
 2. The contravariant representation of the permutation tensor of the surface: 
 

eil = ei ⋅⋅⋅⋅ al = e[il ],     (2.22) 
 

| eil | = 
1

a
 for l  ≠ i.   (2.23) 

 
 3. The “mixed representation” of the second fundamental tensor of the surface: 
 

i
lb  = bl ⋅⋅⋅⋅ ai = aiα blα ,    (2.24) 

 
from which, one constructs the mean curvature: 
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H = 1
2 bα

α      (2.25) 

and the Gaussian curvature: 

K = Det ( )i
lb = 

b

a
.    (2.26) 

 
 The components of the tensor i

lb  always have the dimension of a reciprocal length.  

For the lines of curvature of the surface, and thus for those parameter curves that are 
everywhere tangent to the principle directions of the tensor i

lb  (and therefore define an 

orthogonal net), if R1 and R2 are the principle radii of curvature of the surface then for a 
suitable orientation of the coordinate system, one will have: 
 

1
1b = −

1

1

R
, 2

2b = −
2

1

R
;    (2.27) 

 
in that way, the Gaussian curvature is assumed to be non-negative. 
 The application of elementary vector operation will lead to the following formulas, 
which are used occasionally: 

ei × E = ai ,  ei × E = ai ,   (2.28) 
 

eik e
lm = l m m l

i k i kδ δ δ δ− , eiα elα = l
iδ ,   (2.29) 

 
2l l l

i k iK H b cδ − + = 0.    (2.30) 

 
 Now, let ∇i (…) be the symbol of the covariant differentiation with respect to the 
surface parameters q(1) and q(2).  One will then have: 
 

, .
i i i i

i l il i l l i

b

b

α
α ∇ = ∂ = − = −

∇ = ∇ = × 

E E b a

a E e a b
   (2.31) 

It follows from this that: 
∇i alm = 0, ∇i elm = 0    (2.32) 

 
(the metric and permutation tensor are therefore covariantly constant), and furthermore: 
 

eαβ ∇α bβ = 0  → eαβ ∇α bβ l = 0   (2.33) 
 
are the Codazzi equations for the second fundamental tensor of the surface, which must 
be fulfilled if a single-valued field of normal vectors for the surface is to exist. 
 Now let a spatial vector field v = v (q(1), q(2)) be given on the surface that splits into: 
 

,

, , .i i
i i

v v v v

v v v

α α
α α = + = +

= ⋅ = ⋅ = ⋅ 

v a E a E

v a v a v E
   (2.34) 
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v then combines the vector vi (v
i, resp.) and the scalar v, in the sense of tensor analysis.  

Similarly, for the covariantly-indexed spatial vector fields vl = vl (q
(1), q(2)), one has: 

 
vl = vlα aα + vi E = lvα

⋅ aα + vl E, vlm = vl ⋅⋅⋅⋅ am , m
lv ⋅ = vl ⋅⋅⋅⋅ am , vl = vl ⋅⋅⋅⋅ E. (2.35) 

 
Obviously, one can easily derive rules for multiply-indexed vector fields, such as: 
 

vlm = vl × vm = v[lm] ;    (2.36) 
 

one will then have corresponding decompositions for such fields.  From (2.31), the 
covariant differentiation of vector fields proceeds as follows: 
 
 ∇i v (= ∂i v) = (∇i vα – biα v) aα + (∇i v + ibα vα) E 

= (∇i v
α – ibα v) aα + (∇i v + biα vα) E,  (2.37) 

 
 ∇i vl = (∇i vlα – biα vl) a

α + (∇i vl + ibα vlα) E 

= (∇i lvα  – ibα vl) aα + (∇i vl + biα lvα ) E,   (2.38) 

 
with a simple generalization to multiply-indexed vector fields. 

 E 
a2 

a1 
Middle surface 

t 

 
Figure 2. Cosserat shell model. 

 
 
 3. Kinematics of the middle surface of the shell. – We imagine (Fig. 2) that the 
shell has been broken up into an (initially-finite) number of rigid blocks whose middle 
surfaces will assemble together into the undeformed middle surface of the shell when it is 
in its undeformed state.  They are attached to each other with springs in such a way that 
they can rotate and displace, and the springs are all relaxed in the initial state.  By passing 
to the limit, we will get a kinematical model for the shell as a surface that coincides with 
the middle surface of the shell geometrically, but is oriented at each of its points by way 
of the spatial position of the associated block.  Any “point” of that surface can move with 
six degrees of freedom, and is attached to its neighboring “points” by springs in the 
manner that is required by the elasticity law for the shell (which will be discussed below).  
Naturally, instead of a continuum of “oriented points,” we can also speak of a continuum 
of oriented coordinate systems whose origins lie on the middle surface of the shell.  
Briefly: With our model, we are dealing with a Cosserat surface, which is named for E. 



Günther – Analogous systems of shell equations. 7 

and F. Cosserat (1), who investigated the kinematics and statics of continua that consist 
of oriented point in a monograph.  [The author (2) has treated the basic ideas of the 
Cosserat conception of things in more modern notation.]  This shell model (which is the 
logical extension of the model for the engineering theory of the bending of beams, 
moreover) is anything but new: E. and F. Cosserat drew upon the shell as an example, 
but did not, however, strive for an actual theory of shells; the representation, which is 
currently quite hard to read, is not covariant.  K. Heun (3) employed the symbolism of 
vector calculus without actually going beyond the scope of the Cosserat book, and in that 
way, the presentation became clearer.  Finally, J. L. Ericksen and C. Truesdell (4) 
developed a theory of finitely-deformed shells on the basis of the Cosserat picture, but 
with a different objective than ours.  We will see that it is this model precisely that will 
lead us to an exceptionally symmetric, and therefore intuitive, theory of shells. 
 The changes of position of an “oriented point” on the middle surface of the shell are: 
A rotation, which is so small that one can describe it by a rotation vector and a 
displacement v; let | v | be small in comparison to the shell thickness t.  The functions: 
 

ωωωω = ωωωω (q(1), q(2)) = ωα aα + ω E, v = v (q(1), q(2)) = vα aα + v E  (3.1) 
 
shall be continuous over the middle surface and continuously-differentiable sufficiently 
often.  Naturally, among them, one also finds the rigid motions: 
 

ο
ωωωω  = ωωωω0 , 

o

v = v0 + ωωωω0 × (r  – r0)    (3.2) 
 
of a finite part of the shell with constant vectors ωωωω0 = ωωωω (r0), v0 = v (r0).  We derive the 
deformations from the changes in position (3.1) as relative changes in rotation and 
displacement as follows: The absolute changes are: 
 

(dωωωω)absolute = ∂αωωωω dqα = ∇αωωωω dqα, (dv)absolute = ∂αv dqα = ∇α v dqα ;  (3.3) 
 
furthermore, one has: 

(dωωωω)absolute = (dωωωω), (dv)absolute = (dv) + ωωωω × dr .  (3.4) 
 
If we define the relative changes to be linear functions of the differential advance dqi : 
 

(dωωωω)relative = χχχχα dqα ,  (dv)relative = εεεεα dqα  (3.5) 
 
and observe that from (1.2), we will have: 
 

dr  = aα dqα      (3.6) 
 

                                                
 (1) E. and F. Cosserat, Théorie des corps déformables, Paris, 1909. 
 (2) W. Günther, Abh. Braunschw. Wiss. Ges. 10 (1958), pp. 195.  
 (3) K. Heun, “Ansätze und allgemeine Methoden der Systemmechanik,” Enz. d. Math. Wiss. IV, 
Leipzig, 1914; pp. 2, 11. 
 (4) J. L. Ericksen and C. Truesdell, Arch. Rat. Mech. and Analysis 1, 4 (1958), pp. 295.  
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on the middle surface of the shell then we will get: 
 

χχχχi = ∇i ωωωω, εεεεi = ∇i v + ai × ωωωω.   (3.7) 
 
These deformations are obviously covariantly-indexed vector fields.  We decompose 
them into: 

χχχχi = i
αχ ⋅ aα + χi E, εεεεi = εiα aα + εi E,  (3.8) 

with 

i
αχ ⋅  = χχχχi  ⋅⋅⋅⋅ ai,      χi = χχχχi  ⋅⋅⋅⋅ E,      εil = εεεεi  ⋅⋅⋅⋅ ai

 ,      εi = εεεεi  ⋅⋅⋅⋅ E.  (3.9) 

 
Twelve deformation quantities then arise from the six changes of position (3.1) that are 
derived from the components of the changes of position using (2.37) as follows: 
 

l
iχ ⋅ = ∇i ω l – l

ib ω,   χi = ∇i ω – biα ωα,   (3.10) 

 
εil = ∇i vl – bil v − eil ω, εi = ∇i v – ibα vα − eiα ωα .  (3.11) 

 
The second of equations (3.7) [equations (2.11), resp.] can be solved for the rotation ωωωω 
(its components, resp.): 

ωωωω = (∇α v − εεεεα) ⋅⋅⋅⋅ Aα,     (3.12) 

 
with the dyadically-represented matrices: 
 

A
i = − E ei + ei E,     (3.13) 

or 
ω i = eiα (∇α v + b vβ

α β  − εα),  ω = eαβ (∇α vβ − ε[αβ]).  (3.14) 

 
Hence, only the quantities εi = εεεεi ⋅⋅⋅⋅ E and the antisymmetric part of the deformation tensor 
actually enter into (3.12). 
 The geometric meaning of the deformation numbers (3.10) and (3.11) is immediate 
from the way that they come about: The l

iχ ⋅  describe the distortion of the shell, and the χi 

are the normal components of the relative rotation.  The symmetric part ε(il ) of the tensor 
εil describe the deformations of the middle surface, when regarded as a point-continuum, 
that take place in the tangent plane.  Namely, let: 
 

i
′a  = ∂i (r  + v) = ai + ∇i v    (3.15) 

 
be the dimension vectors of the deformed middle surface, so when one neglects the 
products of deformation quantities, the new metric tensor will become: 
 

ila′  = i l
′ ′⋅a a  = ail + 2 ε(il ) ,    (3.16) 
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ε(il ) = 1
2 (∇i vl + ∇l vi) – bil v ;    (3.17) 

 
however, 12 ( )il ila a′ −  is precisely the aforementioned deformation.  We note that due to 

the fact that: 

i
la aα
α′ ′  = i

lδ  = 
0 for

1 for

l i

l i

≠
 =

   (3.18) 

 
the difference between the contravariant dimension vectors will be: 
 

a′il  − ail = − 2ε (il ).    (3.19) 
 
The skew-symmetric part ε[il ] is equivalent to the scalar angle ψ : 
 

ψ = 1
2 eαβ ε[αβ] , ε[il ] = eil ψ,   (3.20) 

and from (3.11), one will have: 
ψ = 1

2 eαβ ∇α vβ − ω .    (3.21) 

 
That shows that ε[il ] corresponds to the difference between the “mean rotation” that 
originates in the deformation of the middle surface and the Cosserat rotation ω around 
the normal to the shell. 
 The interpretation of the quantities εi is: The unit normal vector E′ of the deformed 
middle surface that emerges from E by a small rotation ϑϑϑϑ, namely: 
 

E′ = E + ϑϑϑϑ × E    (3.22) 
 
does not, however, generally lie in the direction of the normal to the undeformed middle 
surface that is carried by the block at that position: 
 

E″ = E + ωωωω × E.    (3.23) 
It will then follow easily from: 

i
′ ′⋅E a = 0      (3.24) 

and (3.15) that: 
E = E – (E ⋅⋅⋅⋅ ∇α v) aα,    (3.25) 

and furthermore, with (3.7): 
E′′′′ = E″ − εα aα.    (3.26) 

That will determine ϑϑϑϑ as: 
ϑϑϑϑ = ωωωω − eα εα .     (3.27) 

 
 The deformations εi are then a measure of the extent to which normal to the 
undeformed middle surface that is carried by the deformation has rotated into the normal 
to the deformed normal surface.  One is then dealing with the transverse shear 
deformations of the shell.  Now, if the deformations χχχχi and εεεεi are given as functions of the 
surface parameters then it will not generally be possible to calculate single-valued 
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changes of position ωωωω and v from them by integrating equations (3.7).  In order for that to 
be possible, the deformations must satisfy certain compatibility conditions (naturally, in 
the Cosserat sense), moreover, which can be easily written down from (3.7) using (2.31): 
 

eαβ ∇α χχχχβ = 0,  eαβ (∇α εεεεβ + aα × χχχχβ) = 0.   (3.28) 
 
If they are fulfilled then the integration of (3.7), when extended over a surface curve C 
(with running position vector s) that goes from P0 (with position vector r0) to P (with 
position vector r), will produce the changes in position: 
 

0

0

0

0 0

( ) ( ) ,

( ) ( ) ( ) [ ( ) ] ,

P

P

P

P

dq

dq

α
α

α
α αε


= + 



= + × − − × 


∫

∫

r r

v r v r r r s

ω ω χω ω χω ω χω ω χ

ω χω χω χω χ
  (3.29) 

 
which are independent of the special choice of connecting curve; the parts that have been 
integrated out are the rigid motions (3.2).  If we omit them and observe the definition 
(3.5) of the deformations then we will have: 
 

ωωωω (r) = 
0

( )
P

relative

P

d∫ ωωωω ,  v (r) = 
0

[( )
P

relative

P

d∫ v − (r  – s) × (dωωωω)relative]; (3.30) 

 
the changes in position at P are given, up to a rigid motion, by the kinematics of the 
relative changes of position between P0 and P for that starting point. 
 We now associate each point of the surface curve C (which can be the boundary 
curve of the middle surface to the shell, in particular) with a dreibein of unit vectors: Let 
n be its unit normal vector that lies in the tangential plane, let t = ds / ds be its unit 
tangent vector, and let E be the unit vector of the surface normal, as before.  n, t, and E, 
in that sequence, shall define a right-handed system such that n will be the exterior 
normal vector when a surface element is circumnavigated in the positive sense.  We 
decompose: 

(dωωωω)relative = χχχχ ds, (dv)relative = εεεε ds   (3.31) 
along those directions: 

( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) .
relative N D G

relative

d ds ds ds

d ds ds ds

χ χ χ
γ ε β

= + + 
= + + 

n t E

v n t E

ωωωω
  (3.32) 

 
In this: χN is the change in the normal curvature, χD is the change in torsion, and χG is the 
change in geodetic curvature of the integration curve as a result of the deformation of the 
surface, γ is its change in direction in the tangential plane, ε is its rotation, and β = εα tα is 
its change in direction in the t − E-plane. 
 
 We substitute (3.32) in (3.30), perform a partial integration in the second integral and 
drop the terms that have been integrated, which again represent rigid motions. 
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 What finally remains is: 
 

0

0

( ) ( ) ,

( ) ( ) ( ) ( ) .

P

N D G

P

P

N D G

P

ds

ds
s

χ χ χ

ε χ χ χ β γ


= + + 




 ∂   = − − + + + −   ∂   

∫

∫

r n t E

v r t r s n t E n E

ωωωω

  (3.33) 

 
 Kinematically, this deformation means that the shear deformations β and γ do not 
appear in the calculation of the displacements from the deformations autonomously, but 
will be converted into “kinematically-equivalent supplementary distortions.”  However, 
we can calculate not only v, but also (and this is important for the boundary-value 
problems) the change ∂v/ ∂n perpendicular to the surface curve C: It is: 
 

n

∂
∂
v

= nα ∇α v  with  ni = n ⋅⋅⋅⋅ ai .   (3.34) 

 
When this is substituted in (3.7), that will give: 
 

n ⋅⋅⋅⋅ 
n

∂
∂
v

= ε(αβ) n
α nβ, t ⋅⋅⋅⋅ 

n

∂
∂
v

= εαβ n
α t β + ωωωω ⋅⋅⋅⋅ E, E ⋅⋅⋅⋅ 

n

∂
∂
v

= εα nα + ωωωω ⋅⋅⋅⋅ t,  (3.35) 

 
or when we employ the matrices: 
 

E = εαβ a
α aβ + εα aα E    (3.36) 

 
(viz., the deformation matrix), in dyadic representation, and: 
 

T = E t − t E, 

we will have: 

n

∂
∂
v

= n ⋅⋅⋅⋅ E + ωωωω ⋅⋅⋅⋅ T;     (3.37) 

naturally, ωωωω is deduced from (3.33). 
 We shall now return to the compatibility conditions (3.28) and specify its tensor 
representation: 

eαβ ( )l lbα β α βχ χ⋅∇ − = 0, eαβ (∇α χβ + bαλ 
λ

βχ ⋅ ) = 0,  (3.38) 

 
eαβ (∇α εβ l − bα l εβ − eα l χβ) = 0, eαβ ( )b eλ λ

α β α βλ αλ βε ε χ ⋅∇ + + = 0. (3.39) 

 
 In place of the distortions χχχχi , (for the sake of later developments) we would now like 
introduce other distortion quantities: 

κ κ κ κ i = κ iα aα + κ i E    (3.40) 
or 
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ρρρρi = ρiα aα + ρi E,    (3.41) 
resp., by way of: 

κ κ κ κ i = e iα χχχχα ,  χχχχi = eαi κ κ κ κ α    (3.42) 
or 

ρρρρi =    χχχχi × E + (χχχχi ⋅⋅⋅⋅ E) E, χχχχi = E × ρρρρi + (E ⋅⋅⋅⋅ ρρρρi) E,  (3.43) 
 
resp.  In terms of components, one will have: 
 

κ il = eiα l
αχ ⋅ , 

l
iχ ⋅ = eα i κ α l, κ i = eiα χα , χi = eα i κ α  (3.44) 

or 
ρil = elα

l
αχ ⋅ ,      

l
iχ ⋅ = eα l ρ iα

 ,      ρi = κi ,      χi = ρi ,   (3.45) 

 
resp.  The components of the distortions κ κ κ κ i and ρρρρi are then connected by: 
 

κ il = − eiα elβ ραβ , ρil = − eα i eβ l κ α β, κ i = eiα ρα , ρi = eα i κ α . (3.46) 
 
[Our κ κ κ κ i correspond to Schaefer’s (−κ κ κ κ i) (1).] 
 

 q(2) 

q(1) 

E 

11 1
2 22[ , , ]κ χ ρ⋅ −  

12 2
2 21[ , , ]κ χ ρ⋅  

[κ1, χ2, ρ2] 

[κ1, −χ1, − ρ1] 
 

22 1
1 12[ , , ]κ χ ρ−  

22 2
1 11[ , , ]κ χ ρ− −  

 
Figure 3. Schema of the distortions. 

 
 A schematic glimpse of the mutual relationships between the quantities χχχχi , κ κ κ κ i and ρρρρi 
is given in Fig. 3; one sees that ρil is the distortion tensor that is usually employed in the 
theory of shells. [Our ρil corresponds approximately to ωil in Green and Zerna (2) and to 
κil in W. Flügge (3).]  We shall now summarize the kinematical equations for the 
quantities εεεεi and κκκκi (ρρρρi , resp.) that will be interesting to us in what follows.  With the use 
of the κκκκi , that will be the total system of kinematical equations; that is already a part of 
our ultimate system of analogue shell equations (we shall characterize it by an asterisk): 
 

κκκκi = eiα ∇α ωωωω,   εεεεi = ∇i v + ai × ωωωω   (3.47)* 
or 

                                                
 (1) See footnote 4 on Page 1.  
 (2) See footnote 1 on page 2.  
 (3) W. Flügge, Statik und Dynamik der Schalen, 2nd ed., Berlin-Göttingen-Heidelberg, 1957.  
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κ il = eiα (∇α ω l − lbα ω), κ i = eiα (∇α ω + bαβ ω β),  (3.48)* 

εil = ∇i vl − bil v − eil ω, εi = ∇i v + ib vα
α  + eiα ω α,  (3.49)* 

 
resp., and the compatibility conditions: 
 

∇α κκκκα = 0,  eαβ ∇α κκκκβ + aα × κκκκα = 0  (3.50)* 
or 

∇α κ α l  − lbα κκκκα = 0,  ∇α κ α + bαβ κ αβ  = 0,   (3.51)* 

eαβ (∇α εβ l − bα l εβ) − εα l κα = 0, eαβ (∇α εβ +bλ
α εαλ) + εα l κ[αβ] = 0,  (3.52)* 

 
resp.  The first of equations (3.52) can be solved for the κ l : 
 

κ l = el λ eαβ (∇α εβ l − bα l εβ) .    (3.52)* 
 
These quantities are then established for a compatible state of deformation by the 
deformations ε i and can, if so desired, be eliminated completely from the compatibility 
conditions. 
 We shall give the representation of the conventional distortion tensor ρil in terms of 
changes of position: 

 ρil = elα (∇i ω α − ibα ω)    (3.54) 

 
and further convert the second of the compatibility conditions (2.39) from them: 
 

eαβ (ραβ −bλ
α εβλ − ∇α εβ) = 0.    (3.55) 

That shows that the tensor: 

ilρɶ  = ρil − ibα εlα − ∇i εl     (3.56) 

 
is symmetric for a compatible state of deformation.  The basis for that is easy to see: 
Namely, if we express the right-hand side of (3.56) in terms of changes of position using 
(3.49) and (3.14) then we will find that: 
 

ilρɶ  = − ∇i∇l v − i l l i l ib v b v b vα α α
α α α∇ − ∇ − ∇ ⋅ + εil v,   (3.57) 

 
and as a minor calculation will show, that is identical to: 
 

ilρɶ  = − ∇i∇l v ⋅⋅⋅⋅ E,     (3.58) 

 
with an obvious symmetry in the two indices.  The fact that (3.58) goes to the tensor of 
plate curvatures when the shell degenerates into a planar plate also prompts an intuitive 
interpretation for the shell.  In order to do that, we recall the representation (3.15) and 
(3.25) for the dimension vectors and the unit normal vector of the deformed shell and 
calculate the second fundamental tensor of the deformed middle surface: 
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ilb′  = − i l
′ ′∂ ⋅E a = − ∇i [E – (E ⋅⋅⋅⋅ ∇α v) aα] ⋅⋅⋅⋅ [al + ∇l v]; (3.59) 

 
if we again neglect the products of displacements then a brief calculation will yield: 
 

ilb′  = bil + ∇i ∇l v ⋅⋅⋅⋅ E = bil − ilρɶ .   (3.60) 

 
The symmetric distortion tensor is then equal to the negative change in the second 
fundamental tensor of the middle surface as a result of its deformation. 
 
 
 4. Statics of the stress quantities. – We reduce the external loads on the shell 
(volume forces, forces on the soffits of the shell) for each element of the shell to forces p 
df and moments q df on its middle surface df.  Along the boundary of the shell (we 
assume that the shell is simply bounded), we might also apply forces dK  = K  ds and 
moments dM  = M  ds to the boundary elements ds of the middle surface.  Let the 
boundary be oriented in the sense that is given by (2.3).  From the principle of virtual 
displacements, the negative virtual work that is done by internal forces and moments 
(hence, the stress quantities, here) during the deformation is equal to the virtual work that 
is done by the external forces and moments in the case of equilibrium.  Naturally, the 
virtual changes of position here are those of our kinematical shell model.  We shall now 
define virtual deformations by: 
 

δχχχχi = ∇i (δωωωω),  δεεεεi = ∇i (δv) + ai × δωωωω,  (4.1) 
 
and thus assume that the field of virtual changes of position is differentiable, and express 
the principle of the virtual displacements as: 
 

 − δA(i)  = − eαβ
∫∫ (K α ⋅⋅⋅⋅ δεεεεi + M α ⋅⋅⋅⋅ δχχχχβ) df  

= ( )df d dδ δ δ δ⋅ + ⋅ + ⋅ + ⋅∫∫ ∫p v q K v M�ω ωω ωω ωω ω ,  (4.2) 

 
which introduces the force stresses Ni and moment stresses M i into our kinematics.  If we 
substitute (4.1) into (4.2) and convert it with Stokes’s theorem then that will give: 
 

 − {( eαβ
∫∫ ∇α K β + p) ⋅⋅⋅⋅ δv + [eαβ (∇α M β + a α × K b)] ⋅⋅⋅⋅ δωωωω} df  

= {( ) ( ) }d dq d dqα α
α αδ δ− ⋅ + − ⋅∫ K K v M M� ωωωω .  (4.3) 

 
 Since the virtual changes of position δv and δωωωω can be chosen to have all of their 
components independent of each other for a Cosserat continuum, the equilibrium 
conditions that are valid inside the region will follow from that: 
 

eαβ ∇α K β = − p, eαβ (∇α M β + a α × K β) = − q,   (4.4) 
and the relations: 

dK  = K α dqα,  dM  = M α dqα,    (4.5) 
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which are valid on the boundary of the region.  If one takes a region that is bounded by 
parameter curves then one can read off the static interpretation of the stress quantities that 
we chose from (4.5): 

K i = iK α
α⋅ a + Ki E    (4.6) 

and 
M i = iM α

αa + Mi E.    (4.7) 

 
 q(2) 

q(1) 

E 

11 1
1[ , ]N K ⋅−  

22 2
1[ , ]N K ⋅−  

[N1, −Κ1] 

[N1, K2] 
 

12 2
2[ , ]N K ⋅  

11 1
2[ , ]N K ⋅  

 

 q(2) 

q(1) 

E [M1, −m2] 

[M2, +m1] 
 

[M22, +m11] 

[M21, − m12] 

[M11, m
22] 

[M12, − m21] 
 

 
Figure 4. Schema of the forces on the shell.  Figure 5. Schema of the moments on the shell. 

 

(Cf., Figs. 4 and 5).  In essence: The iiK ⋅  are the shear stresses on the membrane, the l
iK ⋅  

(l ≠ i) are the longitudinal stresses on the membrane, and the Ki are the transverse force-
stresses, while the Mii are the bending moments, the Mil (l ≠ i) are the drilling moments, 
and the Mi are the moments around the normal to the shell.  The six-fold functional static 
indeterminacy of the equilibrium problem of the shell is expressed, on the one hand, by 
the fact that statically only the six equilibrium conditions (4.4) are compatible for the 
twelve stresses (4.6) and (4.7), and on the other hand, by the fact that the decomposition 
(4.5) of the boundary forces and moments is not uniquely determined, since the 
homogeneous equations: 

K α dqα = 0, M α dqα = 0    (4.8) 
 
have three arbitrary scalar solutions.  We shall now restrict ourselves to the case in which 
the shell is free of loads that are due to surface forces and moments, and therefore to only 
an equilibrium system of forces and moments; one can always get back to the general 
case by splitting off a particular solution.  The equilibrium conditions: 
 

eαβ ∇α K β = 0,  eαβ [∇α M β + aα × K β] = 0   (4.9) 
 
then have the form of the compatibility conditions (3.28), in which the relative changes in 
rotation χχχχi correspond to the force-stress K i , and the relative changes in displacement 
correspond to the moment-stresses M i .  It will then follow that a system of stresses that 
satisfies the equilibrium conditions (4.9) can be represented in a manner that is analogous 
to (3.7) by vectorial stress functions ΩΩΩΩ and ΦΦΦΦ that correspond to the changes in position ωωωω 
and v: 

K i = ∇i ΩΩΩΩ, M i = ∇i ΦΦΦΦ + ai × ΩΩΩΩ .   (4.10) 
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[Equations (4.9) and (4.10) were derived in a different way by the author (1) in a non-
covariant form.] The second of these equations can, in turn, be solved for ΩΩΩΩ (its 
components, resp.) [cf., (3.12) to (3.14)]: 
 

ΩΩΩΩ = (∇α ΦΦΦΦ – M α) ⋅⋅⋅⋅ Aα     (4.11) 

or 

1
[ ]2

[ ],

[ ],

i ie b M

e M

α β
α α β α

αβ
α β αβ

Ω = ∇ Φ + Φ − 
Ω = ∇ Φ − 

   (4.12) 

 
resp.; the symmetric part of the moment tensor does not actually enter into (4.11). 
 Now, if an equilibrium system of stresses in a boundary-loaded shell is given then, 
corresponding to (3.29), the associated vectorial stress functions can be calculated 
uniquely by integrating (4.10) when one is given their initial values: 
 

0

0

0

0 0 0

( ) ( ) ,

( ) ( ) ( ) ( ) [ ( ) ] .

P

P

P

P

dq

dq

α
α

α
α α


= + 



+ × − + − − × 


∫

∫

r r K

r r r r r M r s K

Ω ΩΩ ΩΩ ΩΩ Ω

Φ = Φ ΩΦ = Φ ΩΦ = Φ ΩΦ = Φ Ω
 (4.13) 

The terms that were integrated out: 
 

o

ΩΩΩΩ = ΩΩΩΩ(r0), 
o

ΦΦΦΦ = ΦΦΦΦ(r0) + ΩΩΩΩ(r0) × (r  – r0),   (4.14) 
 
which correspond to the rigid motions (3.2), are the zero-stress functions of shell statics, 
since when they are substituted into (4.9), they will obviously create a stress-free state in 
the shell.  We can also ascertain the boundary-values of the stress functions from 
boundary loads with the help of (4.10) and (4.5), moreover: If we start at one of its points 
then we can take the boundary curve to the path of integration and get: 
 

ΩΩΩΩ    (rbdy.) = 
0

P

P

d∫ K , Φ Φ Φ Φ (rbdy.) = 
0

[ ( ) ]
P

P

d d− − ×∫ M r s K ,  (4.15) 

 
when we drop the zero-stress functions.  These boundary values are then given by the 
dyname that is calculated for the reference point P and consists of the boundary forces 
and moments that act between P0 and P. [Compare that with (3.30).]  We now once more 
decompose things along the orthogonal unit vectors n, t, E: 
 

( ) ( ) ( ) ,

( ) ( ) ( ) ;D B N

d ds L ds T ds Q ds

d ds M ds M ds M ds

= = + + 
= = + + 

K K n t E

M M n t E
  (4.16) 

 

                                                
 (1) W. Günther, Abh. Braunschw. Wiss. Ges. 8 (1956), pp. 111.  
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In this, one has, when referred to a unit of curve length on the boundary: L is the 
longitudinal force on the membrane, T is the shear force on the membrane, Q is the 
transverse force, MD is the drill moment, MB is the bending moment, and MN is the 
moment around the normal to the shell.  Just as in (3.33), one will then get: 
 

0

0

( ) ( ) ,

( ) { ( ) [( ) ( )]} ,

P

bdy

P

P

bdy B N D

P

L T Q ds

M L T Q M M ds
s


= + + 




∂ = − − × + + + − ∂ 

∫

∫

r n t E

r t r s n t E n E

ΩΩΩΩ

ΦΦΦΦ
 (4.17) 

 
up to trivial zero-stress functions. 
 Statically, that conversion means that the moment contributions MN and MD will not 
appear by themselves in the calculation of the boundary values of the stress function from 
a given equilibrium system of boundary loads, but will be converted into a statically-
equivalent supplementary force.  In the theory of plates (MN ≡ 0, ∂E / ∂s ≡ 0), that is 
Kirchoff’s supplementary force Q* = − ∂MD / ∂s.  Furthermore, we can calculate the 
normal derivative ∂ΦΦΦΦ / ∂n, say, for the boundary curve.  We will get: 
 

( ) ,

,

,

M n n
n

M n t
n

M n
n

α β
αβ

α β
αβ

α
α

∂Φ ⋅ = ∂


∂Φ ⋅ = + ⋅ ∂ 
∂Φ ⋅ = ⋅ ∂ 

n

t E

E t

ΩΩΩΩ

− Ω− Ω− Ω− Ω

   (4.18) 

or, in dyadic matrix notation: 
M = Mαβ a

α aβ + Mα aα E,    (4.19) 

n

∂Φ
∂

= n ⋅⋅⋅⋅ M + ΩΩΩΩ ⋅⋅⋅⋅ T,     (4.20) 

 
resp., in which ΩΩΩΩ is inferred from (4.17).  [Confer formulas (3.35) to (3.37) for this.] 
 Our next step consists of transforming the force-stresses K i (4.6) by way of: 
 

Ni = eiα K α ,  K i = eαi N
α ,    (4.21) 

 
or, in terms of components: 

, ,

, ,

il i l l l
i i

i i
i i

N e K K e N

N e K K e N

α α
α α

α α
α α

⋅ ⋅ = =
= = 

   (4.22) 

 
corresponding to (3.42).  With that, we have introduced the shell forces N il  (membrane 
stresses) and N i (transverse stress), which are useful in the theory of shells.  We then get 
the following static equations, which correspond to the kinematical relations (3.47) to 
(3.52), and belong with them, along with our system of analogous shell equations: 



Günther – Analogous systems of shell equations. 18 

Ni = eiα ∇α ΩΩΩΩ,  Mi = ∇i ΦΦΦΦ + a i × ΩΩΩΩ,   (4.23)* 
or 

( ),

( ),

il i l l

i i

N e b

N e b

α
α α

α β
α αβ

= ∇ Ω − Ω 
= ∇ Ω + Ω 

    (4.24)* 

 
),

),
il i l il il

i l i i

M b e

M b e
α

α α
α α

= ∇ Ω − Φ − Ω 
= ∇ Φ + Φ + Ω 

    (4.25)* 

 
∇α Nα = 0, eαβ ∇α M β + aα × Nα = 0,  (4.26)*, 

resp.  In components: 
∇α Nα l − lbα  Nα = 0,  ∇α Nα + bαβ N

αβ = 0,  (4.27)* 

 

[ ]

[ ] 0,

[ ] 0.
l l le M b M e N

e M b M e N

αβ α
α β α β α

αβ λ
α β α βλ αβ αβ

∇ − − = 
∇ + + = 

  (4.28)* 

 
 The first of equations (4.28) can be solved for the transverse forces N i : 
 

N i = elλ eαβ [∇α Mβλ − bαλ Mβ],   (4.29)* 
 
so those quantities will already be established by the moments Mi in the equilibrium case, 
and can, if so desired, be eliminated from the equilibrium conditions completely. 
 For the ultimate connection to the conventional representation of shell theory (in 
which, analogies are still known only very little), we also convert the shell moments M i 
into new moments mi [cf., (3.44)]: 
 

[ ( ) ],

[ ( ) ],

i i

i i

e

e

α
α α

α α
α

= × + ⋅
= × + ⋅ 

m M E M E E

M E m E m E
   (4.30) 

 or, in components: 

,

,

,

.

il i l i l

i i i

il i l i l

i i i

m e e M

m e M

M e e m

M e M

α β
αβ

α
α

αβ
α β

α
α

= ⋅ =
= ⋅ = 
= ⋅ = 
= ⋅ = 

m a

m E

M a

M E

   (4.31) 

 
The equilibrium conditions (4.26) are then converted into: 
 

∇α Nα l − lbα  Nα = 0,  ∇α Nα + bαβ N
αβ = 0,   (4.32) 

 

0,

[ ] 0.

l l lm N e b m

m e N b m

α α β
α αβ
α αβ β λα

α αβ λ

∇ − + = 
∇ + + = 

   (4.33) 
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which is how they are given in, e.g., Green and Zerna, but without the moments mi.  
Figs. 4 and 5 show schematically the mutual arrangement of the stress quantities that 
were defined in this section. 
 Finally, we shall give two easily-verified forms for the negative virtual work that is 
done by stress quantities: 

( )

( )

( ) ,

( ) .

i

i

A df

A df

α α
α α

α α
α α

δ δ δ

δ δ δ

− = ⋅ − ⋅ 


− = ⋅ + ⋅ 

∫∫

∫∫

N M

N m

ε κε κε κε κ

ε ρε ρε ρε ρ
  (4.34) 

 
Naturally, we can also arrive at the equilibrium conditions that correspond to these 
expressions. 
 
 
 5. Theory of embeddings: geometry, statics, kinematics. – The equations that were 
found up to now still do not encompass the entire shell problem; they must be extended 
by a material law.  However, we know such a material law only for the spatial point 
continuum – namely, Hooke’s law, in the linear elastic case.  We must then express the 
spatial deformations in terms of the middle surface and condense the spatial stresses into 
the stress quantities, which is only meaningful for thin shells.  In order to do that, we 
introduce a coordinate q(3) that is perpendicular to the middle surface of the shell and 
associate each point of the shell space with the position vector: 
 

R (q(1), q(2) ; z) = r  (q(1), q(2)) + z E (q(1), q(2)),  −
2

t ≤ z ≤ + 
2

t
.  (5.1) 

 
(We shall once more adopt the notations that were employed by Green and Zerna.)  The 
dimension vectors of this spatial coordinate system (as usual, the indices i, l, …; α, β, … 
assume the values 1 and 2) are: 

3 3

,

,
i i i i i iz z= ∂ = ∂ + ∂ = − 

= ∂ = 

g R r E a b

g R E
   (5.2) 

 
which implies that the covariant spatial metric tensor is: 
 

2
( )

3

33

2 ,

0,

1.

il i l il il il il

i i

g a zb z c g

g

g

= ⋅ = − + =
= ⋅ = 
= ⋅ = 

g g

g E

E E

  (5.3) 

 
The contravariant spatial dimension vectors gl , as the solutions to the equations: 
 

gl ⋅⋅⋅⋅ gl = l
iδ ,     (5.4) 

will become a power series in z: 
gl = al + z bl + z2 lbα  bα + …    (5.5) 

Moreover, one has: 
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 g3 = E,     (5.6) 
 
such that the contravariant spatial metric tensor will have the components: 
 

2

3

33

2 3 ,

0,

1.

il i l il il il

i i

g a z b z c

g

g

= ⋅ = + + +
= ⋅ = 
= ⋅ = 

g g

g E

E E

⋯

  (5.7) 

 If: 
g = g11 g22 – (g12)

2     (5.8) 
 
is the determinant of the spatial metric tensor then one will have: 
 

h =
g

a
 = 1 – 2Hz + Kz2 + …;    (5.9) 

 
h is the ratio of the volume: 
 

df (q(1), q(2) ; z) = (g1 dq1 × g2 dq2) ⋅⋅⋅⋅ E    (5.10) 
 
of a surface element that is parallel to the middle surface to the volume: 
 

df (q(1), q(2) ; 0) = (a1 dq1 × a2 dq2) ⋅⋅⋅⋅ E   (5.11) 
 
of the corresponding element of the middle surface. 
 We now begin with the aforementioned reduction and concentrate the spatial stresses 
τ il, τ i3 (we assume that τ 33 vanishes everywhere) to the stress quantities of the shell: The 

sectional force that acts upon an element 
l

df = iig  dqi dz (i ≠ l) is: 

 
l

dK = (τ αβ gβ + τ α3 E) 
l l

n dfα ;   (5.12) 

in this: 
l

nα = 
l

n  ⋅⋅⋅⋅ gα 

 

is the spatial (!) decomposition of the unit normal vector 
l

n  to the surface 
l

df , when 
referred to the section: 
 

1

n = 
1

11

g

g
= 

1

22

g

g

g
,  

2

n = −
2

22

g

g
= −

2

11

g

g

g
,  (5.13) 

 
which can be summarized in: 
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l

αn = i

ii

ge

a g

λ
λ g

 = eλi h 
ii

g

g

λ

 (i ≠ l).   (5.14) 

 
Therefore, one will have: 

l

nα = eα i h 
1

iig
     (5.15) 

and 
l

d K  = eα i (h ταβ gβ + h τα3 E) dqi dz.    (5.16) 
 
With Green and Zerna, we let: 
 

ταβ gβ = σαβ aβ , σαβ = ταλ gλ ⋅⋅⋅⋅ aβ = ταβ − z bβ
λ  ταλ   (5.17) 

 
define a (generally asymmetric) reduced stress tensor σ il ; we will then have: 
 

l

d K  = eα i (h σαβ aβ + h τα3 E) dqi dz.   (5.18) 
 
From (4.5), we will have: 

i

d s= iia  dqi      (5.19) 

 
on the sectional element of the middle surface: 
 

K i dqi = 
( )

l

z

d∫ K   (i ≠ l),    (5.20) 

so 

K i = 3

( ) ( )

i i

z z

e h dz e h dzαβ α
α β ασ τ
   

+   
   
   
∫ ∫a E .   (5.21) 

 
Upon comparing this to (4.6), (4.21), we will get: 
 

Ni = 3

( ) ( )

i i

z z

h dz h dzα
ασ τ

   
+   

   
   
∫ ∫a E ;   (5.22) 

 
in terms of components, that is: 
 

N il =
( )

il

z

h dzσ∫ ,  N i = 3

( )

i

z

h dzτ∫ .  (5.23) 

 
One similarly finds that: 
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l

d M  = z E × 
l

d K  = eiα eλβ z h σαβ aλ dqi dz  (i ≠ l).  (5.24) 
With: 

M i dqi = 
( )

l

z

d∫ M  (i ≠ l),    (5.25) 

it will then follow that: 

M i = eiα eλβ 
( )z

z h dzαβ λσ
 
 
 
 
∫ a ,   (5.26) 

or in components: 

Mil = eiα eλβ 
( )z

z h dzαβσ∫ , Mi = 0.   (5.27) 

 
If one compares this with (4.31) then one will get: 
 

mil =
( )

il

z

z h dzσ∫     (5.28) 

 
for the conventional moment tensor that is induced by the stresses.  The moments Mi 
around the normal to the shell vanish in this theory of stresses that is derived from the 
(nonsingular!) stresses in the spatial point-continuum, and naturally the same thing will 
be true for their equivalent moments mi.  The second of the equilibrium conditions (4.28) 
will then degenerate into an algebraic relation: 
 

eαβ N [αβ] = e αβ bλ
β Mαλ ,    (5.29)* 

 
and the second of the equilibrium conditions (4.33) will degenerate into the known 
equation: 

2 M [il ] = N il – N li = ibα mα l – lbα mα i.    (5.30) 

 
Furthermore, the surface components Ωi of the stress function ΩΩΩΩ now lose their 
autonomy.  From (4.12), they will then be dependent upon the stress function ΦΦΦΦ: 
 

Ωi = eiα [∇α Φ + bβ
α Φβ],    (5.31)* 

and form that, one will have: 

ΩΩΩΩ ⋅⋅⋅⋅ t = −
n

∂Φ
∂

⋅⋅⋅⋅ E,    (5.32)* 

 
which can also be inferred from (4.18). 
 Finally, with (4.31), (4.29) will go to the equation: 
 

N l = elλ eαβ ∇α Mβλ = ∇α mα l ,   (5.33)* 
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which formally agrees with the corresponding plate equation. 
 We shall now turn to the spatial deformations, which we would like to return to under 
the assumption on the deformation of the middle surface of the shell that its transverse 
shear part εi vanishes [that assumption is necessary only if one is to establish the analogy 
with equation (5.27)], with which, the lateral forces N i will become reaction forces.  It 
will then follow from εi = 0, as we can adopt with no further calculation from the 
corresponding static equations, that: 
 

eαβ κ [αβ] = eαβ bλ
β εαλ ;     (5.34)* 

 
this algebraic compatibility condition corresponds to the algebraic equilibrium condition 
(5.29).  Moreover, in analogy to (5.31), one will have: 
 

ω i = eiα [∇α v +bβ
α  v α].    (5.35)* 

 
The rotations around the tangents to the coordinate lines to the middle surface will then 
depend upon the displacement υυυυ.  Finally, in agreement with (5.32), one will have: 
 

ωωωω ⋅⋅⋅⋅ t = − 
v

n

∂
∂

⋅⋅⋅⋅ E     (5.36)* 

 
for a curve on the surface.  The static relation (5.33) corresponds to the kinematical one: 
 

κ l = elλ eαβ ∇α εβλ ,     (5.37)* 
 
and the symmetric distortion tensor ilρɶ  that was introduced in (3.56) will finally reduce 

to: 

ilρɶ = ρil – ibα εlα ;     (5.38) 

it follows from this that: 
2 ρ[il ] = ρil – ρli = ibα εlα − lbα εiα    (5.39) 

 
[which one might compare with (5.30)], and that: 
 

ilρɶ = ρ(il ) – 1
2 ( ibα εlα + lbα εiα).    (5.40) 

 
The spatial deformations γil are now defined by: 
 

γil = γ[il ] = 1
2 ( )il ilg g′ − ,     (5.41) 

 
in which ilg′  is the spatial metric tensor after the deformation.  Together with (5.3), that 

will imply: 
γil = 21 1

2 2( ) ( ) ( )il il il il il ila a z b b z c c′ ′ ′− − − + ⋅ − .   (5.42) 
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If we recall (3.16) and (3.60) then what will next arise is: 
 

γil = ε(il ) +
2 1

2 ( )il il ilz z c cρ ′+ ⋅ −ɶ .   (5.43) 

Now, we have: 

ilc′  = i lb bβ
β

′ ′  = i la b bαβ
α β

′ ′ ′  = (aαβ – 2ε[αβ])(biα − iαρɶ )(blβ − lβρɶ ), (5.44) 

 
in which (3.19) was employed.  On the basis of (5.38), one will then have, approximately: 
 

il ilc c′ −  = − ( )i l l ib bα α
α αρ ρ+     (5.45) 

so: 
γil = ε(il ) +

2 1
2 ( )il i l l iz z b bα α

α αρ ρ ρ− ⋅ +ɶ .  (5.46) 

 
The weighted mean values of γil will be: 
 

2

( )

( )

( )3
( )

1 1
( ),

12 2

12 1
( ).

2

il il il i l l i

z

il il il i l l i

z

t
dz b b

t

z dz b b
t

α α
α α

α α
α α

ε γ ε ρ ρ

ρ γ ρ ε ε


= = − ⋅ + 



= = − +



∫

∫

ɶ

ɶ

  (5.47) 

 
If one considers (5.39) and (5.40) then this result will suggest that one might set the 
antisymmetric part ε[il ] of the tensor εil equal to: 
 

2 ε[il ] = εil – εil = 
2

( )
12 i l l i

t
b bα α

α αρ ρ− ,   (5.48) 

or when written terms of κκκκi : 

eαβ ε[αβ] = 
2

12

t
e bα λβ

αβ λ κ ,   (5.49)* 

 
resp., if we assume that this assumption does contradict the law of elasticity that we still 
need to present.  (As we shall show, that is not the case.)  With the assumption (5.49), the 
rotation ω around the normal to the shell will also become dependent upon the 
displacement vector v now; a lengthy calculation will show that: 
 

ω = 
2

2

1 1
(

2 12
1

12

t
e v b v b v

t
K

αβ λ µ
α β β λ λ µ
 

⋅ ∇ − ∇ + 
 −

.  (5.50) 

 
For thin shells, it is always permissible to ignore quantities of the form t ⋅⋅⋅⋅ l

ib  as being so 

small in comparison to 1 that one needs to include them at most to the first power.  One 
will then have: 
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ω ≈
2

1
2 12

t
e v b vαβ λ

α β β λ
 

∇ − ∇ 
 

.    (5.51) 

 
 It is simpler, and also probably necessary for practical calculations, as a rule, to 
assume that the tensor εil is symmetric: 
 

εil = ε(il )  (ε[il ] = 0, resp.).    (5.52) 
That leads directly to: 

ω = 1
2  eαβ ∇α vβ ;    (5.53) 

 
ω will then be the mean rotation that exists in the deformation of the membrane.  With εi 
= 0 and (5.52), our Cosserat continuum will ultimately degenerate into an ordinary point-
continuum, in which only the self-sufficient meaning of the displacement vector v will 
still be relevant. 
 We easily find from (3.26) that the spatial shear deformations γi3 are: 
 

γi3 = εα aα ⋅⋅⋅⋅ gi .     (5.54) 
 
They therefore vanish at the same time as the εi .  Ultimately, it follows from (3.26) that 
the deformation: 

γi3 = 3 3′ ′⋅g g  − 1    (5.55) 

will vanish in our model in any case. 
 
 
 6. The complete shell equations. – The law of elasticity of an isotropic material in 
the linear-elastic domain reads: 
 

τ il = 
21

E

v−
[(1 – v) giα glβ + v gαβ gil] γαβ ,   (6.1) 

 
if we assume, as usual, that the stress state is planar, and thus ignore the fact that this 
contradicts the kinematical equation γ33 = 0.  We easily obtain the following formula for 
the reduced stress tensor σ il from (6.1), along with (5.17): 
 

h σ il = 
21

E

v−
[(1 – v) giα (h gβ ⋅⋅⋅⋅ al) + v gαβ (h gi ⋅⋅⋅⋅ al)] γαβ ,  (6.2) 

 
in which we now develop everything on the right in powers of z and once more keep 
terms of the form l

izb  only up to the first power.  We then remark that the asymmetry 

(5.48) of the tensor εil of membrane deformations will no longer be regarded in that 
approximation, such that it can be assumed to be symmetric.  After integrating over the 
shell thickness t according to (5.23) and (5.28), the following equations will represent the 
material law for the shell: 
 



Günther – Analogous systems of shell equations. 26 

  Nil = {
2 2

( )

1 3 1
(1 ) 2

12 2 2
i lv t

v a a b b H
E t

α β λ λ
αβ α λβ β λα αβε ρ ρ ρ −  − + + −  

  
 

+ 
2

[ 2 )
12

il il il ilt
v a a b b Haαβ

αβε ρ ρ ρ
 + + −  
 

,  (6.3) 

 

  mil = { ( )
3

( ) ( ) ( )2 (1 ) 2
12(1 )

i lE t
v a a b b H

v
α β λ λ

αβ α λβ β λα αβρ ε ε ε − + + − −
 

+ }( )[ 2 )il il il ilv a a b b Haαβ
αβρ ε ε ε + + −  ,  (6.4) 

with 
ε = aαβ εαβ , ρ = aαβ ραβ .    (6.5) 

 
Now, since the antisymmetric part of the longitudinal force tensor is already given by the 
shell moments from (5.30), we construct the symmetric part of (6.3): 
 

  N [il ] = { ( )
2

( )2 (1 ) 2
1 12

i lE t t
v a a b b H

v
α β λ λ

αβ α λβ β λα αβε ρ ρ ρ 
− + + − −  

 

+ 
2

[ 2 )
12

il il il ilt
v a a b b Haαβ

αβε ρ ρ ρ
 + + −  
 

.  (6.6) 

 
 If we then introduce the geometric tensors: 
 

Pil , rs = P(il ), rs = (bir – H air) als + (blr – H alr) ais = ir ls lr isb a b a
∗ ∗

+   (6.7) 
and 

Qil , rs = Q(il ), (rs) = (bil – H ail) ars + (brs – H ars) ail = il rs rs ilb a b a
∗ ∗

+   (6.8) 
 
then we will have: 
 

N(il ) = 
2 2

, ,
( )2

(1 )
1 12 12

i l il il ilE t t t
v a a P v a Q

v
α β αβ αβ

αβ αβ αβε ρ ε ρ
     − + + +    −      

, (6.9) 

 

mil = { }
3

, ,
( ) ( )2 (1 )

12(1 )
i l il il ilE t

v a a P v a Q
v

α β αβ αβ
αβ αβ αβρ ε ρ ε   − + + +   −

. (6.10) 

 

One observes that the tensor ilb
∗

 that was just introduced is the deviator of the second 
fundamental tensor in the coordinates of the lines of principle curvature: 
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11b
∗

= a11 ⋅⋅⋅⋅
2 1

1 1 1

2 R R

 
− 

 
, 22b

∗
= a22 ⋅⋅⋅⋅

1 2

1 1 1

2 R R

 
− 

 
, 12b

∗
= 21b

∗
= 0.  (6.11) 

 
 The problem of the inversion of the material law can be solved easily starting from 
(6.9), (6.10).  Namely, as one can confirm by substitution, within the scope of what we 
have neglected: 
 

ρil = 
2 2

( ) ( )
, ,3

12
(1 )

12 12i l il il il

t t
v a a m P N v a m Q N

E t
αβ αβ αβ

α β αβ αβ

     + − − −    
     

, (6.12) 

 

ε(il ) = { }( )
, ,

1
(1 ) i l il il ilv a a N P m v a N Q m

E t
αβ αβ αβ

α β αβ αβ   + − − −    ,  (6.13) 

with 
m = aαβ m

αβ,  N = aαβ N
αβ.    (6.14) 

 
 Here, we might comment upon the asymmetry of the moment tensor mil : From 
(6.10), one has: 

2 m[il ] = mil – mli = 
2

( )
12

i l l it
b N b Nα α

α α− ,   (6.16) 

 
which exhibits the analogy to the algebraic equilibrium condition (5.30), as well as to the 
kinematic equations (5.39) and (5.48).  The scalar part of the stress function ΩΩΩΩ will also 
be established by (6.16): In analogy with (5.51), one will have: 
 

Ω = 
21

2 12

t
e bαβ λ

α β β λ
 

∇ Φ − ∇ Φ 
 

;   (6.17) 

 
moreover, ΩΩΩΩ is determined completely by ΦΦΦΦ, along with (5.31).  One sees that in order to 
evaluate the symmetry behavior of the moment tensor, we must add a law of elasticity 
and a compatibility condition.  That connection gets blurred for a planar plate: For it, the 
symmetry of the moment tensor can be inferred from the symmetry of the spatial shear 
stresses alone, which can, in their own right, be generally based upon only the special 
kinematics of the spatial point-continuum.  [D. Rüdiger (1) has discussed the asymmetry 
of the moment tensor in a somewhat different context.]  The usual simplification: 
 

m[il ] = 0     (6.18) 
 
corresponds to the assumption (4.52).  It has the equation for the scalar part of Ω: 
 

Ω = 1
2 eαβ ∇α Φβ     (6.19) 

 

                                                
 (1) D. Rüdiger, Ing.-Arch. 28 (1959), pp. 281.  
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as a consequence, in analogy to (5.53). 
 We shall proceed with our treatment of the equations of elasticity and convert them 
into moments Mil and distortions κ il, although we would like to spare ourselves the 
details of the calculation.  With the geometric tensors: 
 

2 ,

,

2 ,

,

il i l l i il
rs r r r r rs

il il il
rs rs rs

il i l l i il
rsrs r r r r

il i il il
rsrs r rs rs

U b b b a

V a b b a

U b b a b

V b a a b V

δ δ

δ δ

∗ ∗ ∗

∗ ∗

∗ ∗ ∗

∗ ∗

= + − 


= − 

= + −

= − = − 

…

…

…

… …

ɶ

ɶ

   (6.20) 

 
if we symbolically introduce the matrices: 
 

D = 
1 0

0 1

 
 
 

,  
∗
B= 

1 2
1 1

1 2
2 2

b b

b b

∗ ∗

∗ ∗

 
 
  
 

   (6.21) 

 
for the mixed forms of the first fundamental tensor and the deviator of the second 
fundamental tensor, resp., then the dualities: 
 

il
rsU

…

ɶ (D, B) = il
rsU

…
(D, B),  il

rsV
…

ɶ (D, B) = il
rsV

…
(D, B),  (6.22) 

 
will exist, and the law of elasticity will now read: 
 

( )

2 2
( )

( )2

3 2

( ) ( )2

(1 ) ,
1 12 12

(1 ) ;
12(1 ) 12

il i l il il il

il i l il il il

E t t t
N v a a U v a V

v

E t t
M v a a U v a V

v

α β αβ αβ
αβ αβ αβ

αβ αβ αβ
α β αβ αβ

ε κ ε κ

κ ε κ ε

    
= − + + +     −      


   = − − + + +   −    

… …

… …

ɶ

 (6.23)* 

 

( ) ( )

2 2
( ) [ ]

3

[ ]
( )

12
(1 ) ,

12 12

1
(1 ) ,

il i l il il il

il i l il il il

t t
v a a M U N v a M V N

E t

v a a N U M v a N V M
E t

α β αβ αβ
αβ αβ αβ

αβ αβ αβ
α β αβ αβ

κ

ε

    
= − + + − +     

    

 = + + − +  


… …

… …

ɶ ɶ

 (6.24)* 

 
with: 

κ = aαβ καβ ,  M = aαβ Mαβ .   (6.25) 
 
These get combined with the equilibrium conditions: 
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( )

0,

0,

0,

lN e e M

e e M b N

e N e b M

α αλ βµ
α β µλ

αλ βµ αβ
α β µλ αβ

αβ αβ λ
αβ α βλ

∇ − ∇ =
∇ ∇ + = 
+ = 

   (6.26)* 

 
whose solutions can be derived from a stress function ΦΦΦΦ: 
 

1
2

2
1
2

[ ( )] ,

1
( ) ( ) .

12 2

il i l i l

il i l l i il l i i l

N e e b e e b

t
M b b b

α β λ α λβ
α β α β λ α λ β

α α
α

= ∇ ∇ Φ + ∇ Φ − ∇ Φ



= ∇ Φ + ∇ Φ − Φ + ⋅ ∇ − ∇ ∇ Φ 


  (6.27)* 

 
The underlined term will drop away when the moment tensor is assumed to be 
symmetric.  Similarly, the deformations, which satisfy the compatibility conditions: 
 

[ ]

0,

0,

0,

le e b

e e b

e e b

αβ αλ βµ
α α β µλ

αλ βµ αβ
α β µλ αβ
αβ αβ λ

αβ α β βλ

κ ε
ε κ

κ ε

∇ − ∇ =
∇ ∇ + = 
+ ∇ = 

   (6.28)* 

 
can be derived from a displacement vector v: 
 

1
2

2
1
2

[ ( )] ,

1
( ) ( ) .

12 2

il i l i l

il i l l i il l i i l

e e v b v e e b v

t
v v b v b b v

α β λ α λβ
α β α β λ α λ β

α α
α

κ

ε

= ∇ ∇ + ∇ − ∇



= ∇ + ∇ − + ⋅ ∇ − ∇ ∇ 


  (6.27)* 

 
The underlined term will drop away when the tensor εil is assumed to be symmetric. 
 The entire longitudinal force tensor is also determined completely by the symmetric 
part of εil and the moment tensor.  One calculates it from: 
 

N il = 
2 2

( )2
(1 )

1 12 12
i l il il ilE t t t

v a a W v a V
v

α β αβ αβ
αβ αβ αβε κ ε κ

    
− + + +    −     

… …
,  (6.30) 

 
with 

ilW αβ…
= 1

2 ( )il i l l i
s r s rU b bαβ δ δ+ −

…
.   (6.31) 

 
A formal analogy can also be exhibited for the distortions κ il ; however, that is not 
required, since the law of elasticity will produce the full tensor directly here. 
 The elastic energy can also be given very easily now.  The deformation energy is: 
 

 Π [ε(il ), κ(rs)]  = ( ) ( )2

1
[(1 ) ]

2 1

E t
v a a va a df

v
αλ βµ αβ λµ

αβ λµε ε− +
−∫∫  
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  + 
3

( ) ( )
2

1
{[(1 ) ]

2 12(1 )

E t
v a a v a a

v
αβ λµ

αλ βµ αβ λµ κ κ− +
−∫∫  

+ ( )
( )2[(1 ) ] }v U vV dfαβ αβ λµ

λµ λµ αβε κ− +
… …

,   (6.32)* 

 
and the stress energy is: 
 

 [ , ]rs
ilM NΠ  = ( ) ( )3

1 12
[(1 ) ]

2
v a a va a M M df

E t
αλ βµ αβ λµ

αβ λµ+ −∫∫  

  + ( ) ( )1 1
{[(1 ) ]

2
v a a v a a N N

E t
αβ λµ

αλ βµ αβ λµ+ −∫∫  

+ ( )
( )2[(1 ) ] }v U vV M N dfαβ αβ λµ

λµ λµ αβ+ −
… …

ɶ ɶ .   (6.33)* 

 
 In conclusion, we would like to discuss the question of boundary conditions.  The 
virtual change of the deformation energy is equal to the negative virtual work done by the 
stress quantities, such that we will get from (4.2) that: 
 
 δ Π [v, ωωωω]  = δ Π [εil (v, ωωωω), κ rs (ωωωω)] = − δA(i) 

= { [ ( ) ] ( )}e dfαβ
β α α β αδ δ δ⋅ ∇ + × + ⋅∇∫∫ K v a Mω ωω ωω ωω ω .     (6.34) 

 
 If the equilibrium conditions are fulfilled for the stress quantities then only one 
boundary expression will remain: 
 

δ Π [v, ωωωω] = δ Π [v, ωωωω]bdy = ( )e n dsαβ
β β αδ δ⋅ + ⋅∫ K v M� ωωωω ,  (6.35) 

 

δ Π [v, ωωωω] = ( )t t dsα α
α αδ δ⋅ + ⋅∫ K v M� ωωωω .    (6.36) 

Now, one has: 

t i = 
idq

ds
,     (6.37) 

and since: 
M i ⋅ E = 0, εεεεi ⋅⋅⋅⋅ E = 0, 

 
(6.36) can be converted into: 
 

δ Π [v] = [ ( )] dsδ δ⋅ + ⋅∫ K v M v� ωωωω = [ ( )( ( ) ] dsα
αδ δ⋅ − ⋅ ∇ ⋅∫ K v e M v E� ,  (6.38) 

 
with the help of (3.12) and (4.16).  Moreover, one has: 
 

eα = nα t – tα n.    (6.39) 
That implies: 

δ Π [v] = [ ] ( ) ( )
( ) ( )D BM M ds

s n

δ δ∂ ∂ + ⋅ − ⋅ ∂ ∂ 
∫

v v
K E E� ,  (6.40) 
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and finally, after a partial integration: 
 

δ Π [v] = 
( )

( ) ( )D BM M ds
s n

δδ ∂ ∂  − ⋅ − ⋅  ∂ ∂  
∫

v
K E v E� ,  (6.41)* 

 
with the supplementary force in the integrand that has been known since (4.17).  In 
addition, we have again introduced the stress quantities; they are: 
 

MD = M ⋅⋅⋅⋅ n = Mαβ t
α nβ, MB = M ⋅⋅⋅⋅ t = M(αβ) t

α tβ,  (6.42) 
 
and furthermore, from (4.5), (4.16), and (4.21): 
 

K  = K α tα = Nα nα = (Nαβ aβ + Nα E) nα .   (6.43) 
 
 We can develop the boundary formula for the virtual change of the stress energy 
(6.33) from (4.34) in an entirely analogous way.  If the stress quantities define an 
equilibrium system then the result will be: 
 

δ Π [Mil (ΦΦΦΦ), Nrs (ΦΦΦΦ)] = − 
( )

( ) ( ) ds
s n

δδ ε ∂ ∂  − ⋅ − ⋅  ∂ ∂  
∫ E E� κ γκ γκ γκ γ ΦΦΦΦΦΦΦΦ , (6.44)* 

with 
κκκκ = κκκκ    α nα = (κ αβ aβ + κ α E) nα ,   (6.45) 

 
and from (3.31), (3.32), (3.5), we will have: 
 

γ = εεεε ⋅⋅⋅⋅ n = εαβ t
α nβ,  ε = εεεε ⋅⋅⋅⋅ t = ε(αβ) t

α t β.  (6.46) 
 
 
 7. The shell equations in the coordinates of the lines of curvature.  Cylindrical 
and spherical shell.  Membrane stress state. – If it is even possible, we choose the 
parameter curves in the middle surface to be the lines of curvature; in particular, we 
would do that when the boundary of the shell is a line of curvature or consists of them 
piecewise.  Since we are dealing with an orthogonal net, we can simplify our notation 
somewhat; we set: 

a11 = α1 , a22 = α2 , 
and that will make: 
 

a11 = 
1

1

α
,  a22 = 

2

1

α
,  a = α1 α2 .  (7.1) 

 
The three-index symbols that are required for covariant differentiation are: 
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1 1 1
11 1 1 12 2 1 22 1 2

1 1 1

2 2 2
11 2 1 12 1 2 22 2 2

2 2 2

1 1 1 1 1 1
, , ,

2 2 2

1 1 1 1 1 1
, , .

2 2 2

α α α
α α α

α α α
α α α

Γ = ∂ Γ = ∂ Γ = − ∂ 


Γ = − ∂ Γ = ∂ Γ = ∂


 (7.2) 

 
In what follows, the geometric tensors (6.20) and (6.31) will be further composed, in 
which the signs will be chosen according to (2.27): 
 

11 11 11
11 12 21

11 2
22

1 1 2

12 12
12 22

12 12
12 21

1 2 1 2

22 1
11

2 1 2

22 22 22
12 21 22

11 11 11
11 12 21

11 2
22

1 1 2

0,

1 1
;

0,

1 1 1 1 1
, 2 ;

2

1 1
,

0;

0;

1 1

U U U

U
R R

U U

U U
R R R R

U
R R

U U U

V V V

V
R R

α
α

α
α

α
α

= = =

 
= − 

 

= =

   
= − = − −   

   

 
= − − 

 

= = =
= = =

= −

… … …

…

… …

… …

…

… … …

… … …

…

12

22 1
11

2 1 2

22 22 22
12 21 22

12 12
12 21

1

,

0,

1 1
,

0.

, ;

,

(corresponding expressions for the remaining quantities)

1 1 2
,

2 2

rs

il il il il
rs rs rs rs

rs ili l
il rs

r s

V

V
R R

V V V

U U V V

U U

W W
R R

α
α

α α
α α

 
 
 

=

 
= − − 

 

= = =
= − = −

=

= = −

…

…

… … …

… … … …

… …

… …

ɶ ɶ

ɶ

1 2

21 21
11 21

1 2 2

1
,

1 1 2 1
, ;

2 2

otherwise :

.il il
rs rs

R

W W
R R R

W U


































 

−  
  

  = − = 
 


= 

… …

… …

 (7.3) 

 
It will then follow that: 
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2
11 221

11 22 1 22
1 2 2 1 2

2
(12) 12 21

(12) 1 2 (12)2 2
1 2 1 2 1 2

2
22 2

22 11 1 22
1 2 1 1 2

1 1 1
,

1 12

1 1 1 1 1
(1 ) ( ) (1 ) ,

1 12 2 1

1 1 1 1

1 12 2

E t t
N v

v R R

E t t E t
N v v

v R R v

E t t
N v

v R R

αε ε α α κ
α α α

ε α α κ κ ε
α α α α

αε ε α α κ
α α α

  
= + + −  −   

  
= − + − − ≈ −  − −  

 
= + − − −  

11 ;










  
  
  

(7.4)* 

 
3

11 222
11 1 2 222

1 1 2 1 2

3 3
12 21

12 1 2 21 1 22 2

3
22 111

22 1 2 112
2 1 2 1 2

1 1 1
,

12(1 )

(1 ) , (1 ) ,
12(1 ) 12(1 )

1 1 1
.

12(1 )

E t
M v

v R R

E t E t
M v M v

v v

E t
M v

v R R

αα α κ κ ε
α α α

α α κ α α κ

αα α κ κ ε
α α α

  
= − + − −   −    


= − − = − − − − 
  
= − + − −  −    

  (7.5)* 

 
with the following inversion: 
 

2
11 221

11 22 1 23
1 2 2 1 2

12 21
12 213 3

1 2 1 2

2
22 112

22 11 1 23
1 2 1 1 2

12 1 1 1
,

12

12 1 12 1
(1 ) , (1 ) ,

12 1 1 1
;

12

t
M v M N

E t R R

v M v M
E t E t

t
M v M N

E t R R

ακ α α
α α α

κ κ
α α α α

ακ α α
α α α

  
= − − − −  
  

= − + = − + 

   = − − + −  
   

   (7.6)* 

 

11 222
11 1 2 22

1 1 2 1 2

(12) (12)
(12) 1 2 12 21 1 2

1 2 1 2

22 111
22 1 2 11

2 1 2 1 2

1 1 1 1
,

1 1 1 1 1
(1 ) ( ) (1 ) ,

1 1 1 1
.

N v N M
E t R R

v N M M v N
E t R R E t

N v N M
E t R R

αε α α
α α α

ε α α α α
α α

αε α α
α α α

  
= − + −   

   


   = + + − − ≈ +   
   

   = − − −      

  (7.7)* 

 
Furthermore, one has: 
 

2
12 12 21

(12) 1 22
1 2 1 1 2

2
21 21 12

(12) 1 22
1 2 2 1 2

1 1 1 2 1
(1 ) ,

1 12 2

1 1 1 1 2
(1 ) .

1 12 2

E t t
N v

v R R R

E t t
N v

v R R R

ε α α κ κ
α α

ε α α κ κ
α α

    = − + ⋅ − −    −     


     = − + + −    −      

  (7.8) 
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 Since we can neglect the antisymmetric part κ[il ] of κil in this context, we can write 
(7.8) somewhat more intuitively as: 
 

2
12 12

(12) 1 22
1 2 1 2

2
21 21

(12) 1 22
1 2 1 2

1 1 1 1
(1 ) ,

1 12 2

1 1 1 1
(1 ) .

1 12 2

E t t
N v

v R R

E t t
N v

v R R

ε α α κ
α α

ε α α κ
α α

  
= − − ⋅ −   −    


   = − + −   −    

  (7.9) 

 
 One can split the equilibrium condition (6.26) in the best way using (4.27), (4.28), 
since the formulas would become too opaque otherwise: 
 

11 21 1 11 1 12 21
1 2 11 12

1 22 2 11 2 21 1
22 12 22

1

12 22 2 22 2 21 11
1 2 22 12

2 11 1 22 1 12 2
11 12 11

2

2 ( 2 )

1
0,

2 ( 2 )

1
0;

N N N N N

N N N N
R

N N N N N

N N N N
R

∂ + ∂ + Γ + Γ +

+ Γ + Γ + Γ + =



∂ + ∂ + Γ + Γ + 


+ Γ + Γ + Γ + = 


  (7.10) 

 

1 1 2 1 2
1 22 2 12 11 11 22 12 12 21 12 22

1 2

2 2 1 2 1
2 11 1 21 22 22 11 21 12 12 12 11

1 2

1
( ),

1
( );

N M M M M M M

N M M M M M M

α α

α α

= ∂ − ∂ + Γ + Γ − Γ − Γ 


= ∂ − ∂ + Γ + Γ − Γ − Γ


  (7.11) 

 

∂1 N
1 + ∂2 N

2 + 1 2 1 1 2 2 11 22
11 12 12 22

1 2

1 1
( ) ( )N N N N

R R
Γ + Γ + Γ + Γ − −  = 0. (7.12) 

 
Finally, from (6.29), one has: 
 

11 2 2
2 2 22 2 2 22 2 2 2

1 2 2 2

12 1 2
1 2 12 1 1 12 2 1 2 2 1 2 2

1 2 2 2 2

21 2 1
1 2 12 2 2 12 1 2 1

1 2 2 1

1 1 1
,

1 1 1 1 1
( ) ,

2

1 1 1 1
(

2

v v v v v
R R

v v v v v v v
R R R

v v v v v
R R

κ
α α

κ
α α

κ
α α

    
= ∂ ∂ + Γ − ∂ − Γ ∂ − ∂    

    

    
= − ∂ ∂ + Γ − ∂ − Γ ∂ − ⋅ ∂ − ∂ − ∂    

    

 
= − ∂ ∂ + Γ − ∂ − Γ ∂ − ⋅ ∂ 

 
1 2 1 2

2

22 1 2
1 1 11 1 1 11 2 1 1

1 2 1 1

1
) ,

1 1 1
;

v v
R

v v v v v
R R

κ
α α










   − ∂ − ∂   
   

    
= ∂ ∂ + Γ − ∂ − Γ ∂ − ∂    
     

(7.13) 
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1 1 1
11 1 1 11 1 11 1

1

1 21
(12) 1 2 2 1 12 1 12 22

1 2 2
22 2 2 22 1 22 2

1

,

( ) ,

.

v v v v
R

v v v v

v v v v
R

αε

ε
αε

= ∂ − Γ − Γ + 
= ∂ + ∂ − Γ − Γ 

= ∂ − Γ − Γ +


   (7.14) 

 
 If one now substitutes the deformations, when expressed in terms of the 
displacements (7.13), (7.14), in the equations (7.4) [(7.9), resp.] for the material law then 
the stress quantities N il and M il , and from (7.11), the lateral forces, as well, will be 
known as functions of the displacement field of the middle surface.  The equilibrium 
conditions (7.10) and (7.12) will then yield three differential equations for the 
components v1, v2 of the displacement vector field v.  One proceeds analogously in order 
to derive the differential equation of the dual problem for the components Φ1, Φ2, and Φ 
of the stress function vector ΦΦΦΦ.  That shall not be pursued further here, since it does not 
lead to either any special difficulties or any new insights. 
 Our equations will become especially simple for the right circular cylinder (radius R), 
upon which we introduce the coordinates q(1) = s1 in the direction of the generators, q(2) = 
s2 (= Rϕ) in the circumferential direction, and q(3) = z in the direction of the exterior 
normal, such that: 

α1 = α2 = 1, R1 → ∞, R2 = R .  (7.15) 
 
All of the three-index symbols vanish, and it is no longer necessary to distinguish 
between the covariant and contravariant indices; for the sake of simplicity, we shall now 
write all indices as superscripts.  With c2 = t2 / 12 R2, we will get: 
 

( )

( )

2
11 11 22 222

21
12 (12) 1222

21
12 (12) 2122

2
22 22 11 112

( ),
1

(1 ) ,
1

(1 ) ,
1

( );
1

E t
N v c R

v
E t

N v c R
v

E t
N v c R

v
E t

N v c R
v

ε ε κ

ε κ

ε κ

ε ε κ

= + − −

= − +
−

= − −
−

= + +

− 

  (7.16) 
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3

11 11 22 222

3

12 122

3

12 212

3

22 22 11 112

1
( ),

12(1 )

(1 ) ,
12(1 )

(1 ) ,
12(1 )

1
( );

12(1 )

E t
M v

v R

E t
M v

v

E t
M v

v

E t
M v

v R

κ κ ε

κ

κ

κ κ ε


= − + + − 


= − − − 


= − −
−

= − + − − 

   (7.17) 

 
N1 = ∂1 M22 − ∂1 M22 ,  N2 = ∂2 M11 − ∂1 M21 ;  (7.18) 

 

11 2 2 2 2

12 1 2 1 2 2 1

21 1 2 1 2

22 1 1

11 1 1

12 1 2 2 1

22 2 2

1
,

1 1
( ),

2
1

,

,

,

1
( ),

2
1

.

v v
R

v v v
R

v v
R

v

v

v v

v v
R

κ

κ

κ

κ
ε

ε

ε

= ∂ ∂ − ∂ 

= −∂ ∂ − ⋅ ∂ − ∂


= −∂ ∂ − ∂

= ∂ ∂

=∂

= ∂ + ∂


=∂ +


  (7.19) 

1 11 2 21

1 12 2 22 2

1 1 2 2 22

0,

1
0,

1
0.

N N

N N N
R

N N N
R


∂ + ∂ =

∂ + ∂ + = 

∂ + ∂ − = 

    (7.20) 

 

2
1 1 2 2 1 1 2 2 1 1 1 2 2 1

2
1 2 1 2 2 1 1 2 1 1 2 2

2 2
1 1 1 2 2 1 1 1 1 2

1 1 1
0,

2 2 2

1 1 3 1
0,

2 2 2

1 3

2 2

v v v v
v v c R v

R

v v v
v v c R v

R

v v v
c R v c R

R

− +  −      ∂ ∂ + ∂ ∂ + ∂ ∂ + − ∂ ∂ ∂ − ∂ ∂ + ∂ =      
      

+ − −     ∂ ∂ + ∂ ∂ + ∂ ∂ + − ∂ ∂ ∂ + ∂ =     
     

 −  − − ∂ ∂ ∂ − ∂ ∂ + ∂ + − ∂ ∂ ∂  
  

2 2

2 2
2 22 4 2

1

2 1 1
0,

v
R

c R v
R R R









  + ∂   


   + ∆∆ + ∂ ∂ + + =      

    (7.21) 
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with the matrix of differential operators. 
 These equations are also found in Vlassov (1).  Since other deformations and stress 
quantities are used there, this agreement in the results might be regarded as a welcome 
check on the calculations.  If one now works out the dual problem for the stress functions 
Φ1, Φ2, and Φ then one will come to the following final equations (they are the 
compatibility conditions, when written in terms of the stress functions): 
 

2
1 1 2 2 1 1 2 2 1 1 1 2 2 1

2
1 2 1 2 2 1 1 2 2 1 1 2 2 2

2 2
1 1 1 2 2 1 1

1 1 1
0,

2 2 2

1 1 3 1
2 0,

2 2 2

1

2

v v v v
c R

R

v v v
c R

R

v v
c R c R

R

− −  +      ∂ ∂ + ∂ ∂ Φ + ∂ ∂ Φ + ∂ ∂ ∂ + ∂ ∂ − ∂ Φ =      
      

− +  +      ∂ ∂ Φ + ∂ ∂ + ∂ ∂ Φ + − ∂ ∂ ∂ + ∂ ∂ + ∂ Φ =      
      

 +  ∂ ∂ ∂ + ∂ ∂ − ∂ Φ + −  
  

2 1 1 2 2 2 2

2 2
2 22 4 2

3 1
2

2

2 1 1
0,

v

R

c R
R R R









 +   ∂ ∂ ∂ + ∂ ∂ + ∂ Φ     

  + ∆ ∆ − ∂ ∂ + + Φ =   

   

    (7.22) 

 
with a likewise symmetric matrix of differential operators.  The Ansätze: 
 

1 2 1 2

1 2 1 2

1 2 1 2

/ / / /
1 1 1 1

/ / / /
2 2 2 2

/ / / /

, ,

, ,

,

s R ims R s R ims R

s R ims R s R ims R

s R ims R s R ims R

v A e e B e e

v A e e B e e

v Ae e Be e

λ λ

λ λ

λ λ

= Φ =
= Φ = 
= Φ = 

  (7.23) 

 
for the solution of the differential equations (7.21) [(7.22), resp.] lead to the 
characteristic equation: 
 

 λ8 – 2 (2 m2 – v) λ6 + 
2

2 2 4
2

1
6 ( 1) 1

v
m m

c
λ − + − + 

 
 

− 2m2 [2m4 + (4 – v) m2 + 2] λ2 + m4 (m2 – 1) = 0,  (7.24) 
 
in both cases.  Physically, that means: Displacements and stress functions show the same 
decay towards the boundary, which is certainly plausible, but the differential equations 
(7.21), (7.22) are not to be considered with no further assumptions.  (7.24) differs from 
the characteristic equations that W. Flügge (2) and C. B. Biezeno and R. Grammel (3) 
[K. Girkmann  (4)] have found.  [If one simplifies the entire problem by going over to the 
law of elasticity of planar surface carriers then, as H. Schaefer (5) showed, one will get 
differential equations that differ from each other only by the sign of v, such that the 

                                                
 (1) See footnote 2 on page 1. 
 (2) See footnote 3 on page 12.  
 (3) C. B. Biezeno and R. Grammel, Technische Dynamik, Bd. 1, 2nd ed., Berlin-Göttingen-Heidelberg, 
1953. 
 (4) K. Girkmann , Flächentragwerke, 5th ed., Vienna, 1959.  
 (5) See footnote 4 on page 1.  
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analogy will emerge more strongly; v enters into the characteristic equation itself, which 
coincides again, only by the combination (1 – v2).] 
 One also gets extreme simplifications for the spherical shell.  If its radius is R then the 
second fundamental tensor will be: 

bil = − 1

R
ail ,     (7.25) 

 
and thus covariantly constant in any case.  As a result, from (6.27), the moment tensor 
will be symmetric, and therefore the distortion tensor, as well.  The symmetry of the 
longitudinal force tensor will then follow further from the algebraic equilibrium 
condition.  Briefly: All field quantities on the shell will be described by symmetric 
tensors, so: 
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( )( )
( )

l lN e e Mα αλ µ
α λµ∇ +  = 0,  ( )

( )

1l le e M a N
R

αλ µ α
α β λµ αβ∇ ∇ − = 0;  (7.28) 

 
(Equilibrium): 
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1l le e
R

α αλ µ
α λµκ ε ∇ + 
 

 = 0, ( )
( )

1l le e a
R

αλ µ α
α β λµ αβε κ∇ ∇ − = 0;  (7.28) 

 
(Compatibility): 
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 If the sphere degenerates to a planar surface carrier as R → ∞ then equations (7.26), 
(7.31) will reduce to the known analogue system for the plate/disc; Φ(q(1), q(2)) will 
become the Airy  stress function [H. Schaefer (1)]. 
 It is obvious that the equations of the membrane stresses of the shell must be included 
in our Ansätze.  M. Lagally  (2) has given an interesting treatment to the question of 
membrane stress state; the author (3) gave a non-covariant derivation starting from the 
general equations of the shell.  A covariant presentation should be given here: In the 
moment-free state of the shell, the longitudinal force N l will vanish from (4.29), such 
that, from (4.24), one will have: 

bαβ Ωβ = − ∇α Ω.    (7.32) 
 
We shall now assume that the Gaussian curvature K of the shell does not vanish.  We can 
then define the symmetric tensor: 

Bil = eiλ elµ 
1

K
bλµ ,    (7.33) 

 
whose matrix is the reciprocal of the matrix of the tensor bil : 
 

 Biα blα = eiλ eαµ ⋅⋅⋅⋅ 1

K
bλµ blα = (aiα aλµ − aiµ aλα) ⋅⋅⋅⋅ 1

K
bλµ blα =

1
(2 )i i

l lH b c
K

−  

=
1 i

lK
K

δ = i
lδ ,     (7.34) 

 
from (2.30).  We contract (7.32) with Bα l and observe (5.34); we will then get: 
 

Ωl = − eαλ elµ ⋅⋅⋅⋅ 1

K
bλµ ∇α Ω.    (7.35) 

 
However, as a result of the algebraic equilibrium condition (4.38), the longitudinal tensor 
will be symmetric: 

eαβ N [αβ] = 0     (7.36) 
 
in the moment-free state, and it will follow from this, using (4.24), that: 
 

∇β  Ωβ − 2 H Ω = 0.     (7.37) 
 
If one then employs the Codazzi equations (2.33) then that will yield the second-order 
differential equation for Ω (q(1), q(2)): 
 

eαλ eβµ ⋅⋅⋅⋅ bλµ ∇α 
1

K β
 ∇ Ω 
 

+ 2 H Ω = 0.   (7.38) 

                                                
 (1) See footnote 1 on page 1.  
 (2) M. Lagally , Z. angew. Math. Mech. 4 (1924), pp. 377.  
 (3) See footnote 1 on page 16.  
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Lagally referred to it as the characteristic differential equation for the problem.  We 
shall show that the equilibrium condition: 
 

bαβ N
αβ = 0     (7.39) 

 
is an identity; namely, it will follows from it, in succession, that: 
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  (7.40) 

 
and the last equation will be the desired identity. 
 Naturally, based upon our analogy, everything that we said before about the stress 
state of the membrane can be adapted word-for-word to the case of “pure bending,” in 
which the middle surface is free of distortions, which is a case that was preferable to 
consider in the early days of shell theory, since the possibility of a differential-geometric 
representation had still not reached the point that one could treat the general case in a 
reasonably transparent form. 
 It still remains for us to discuss the question of whether the stress state of the 
membrane, which is indeed statically-determined, is also kinematically possible for a 
given material law.  It is known that this is, however, indeed not the case for the spherical 
shell of constant wall thickness whose deformations are coupled with the stress quantities 
by (4.27).  Since the moments Mil vanish, the κ il, and from (3.51), the κ i as well, must be 
zero, which has: 

ωl = 0,  ω = 0     (7.41) 
 
as a consequence, from (3.48).  Since εi = 0, the second of equations (3.49) will then 
give: 

vi = R ∇i v,     (7.42) 
 
such that the tensor of membrane deformations will be: 
 

εil = 2

1
i l ilR v a v

R
 ∇ ∇ + 
 

,    (7.43) 

 
which is then symmetric, as it must be.  The state of deformation is then determined by 
the normal displacement v alone.  If one now expresses the longitudinal force tensor N il  
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in terms of εil according to (7.26) then one can get two differential equations for v from 
the still-remaining equilibrium conditions: 
 

∇α Nα l  = 0.     (7.44) 
 
We shall skip the laborious calculation and just write down the result: 
 

2

2
l v v

R
 ∇ ∆ + 
 

= 0,    (7.45) 

from which, it will follow that: 

∆v +
2

2
v

R
 = const.,    (7.46) 

 
and that is the desired differential equation, while the characteristic differential equation 
of the sphere will read: 

∆Ω +
2

2

R
Ω  = 0.    (7.47) 
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