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 Summary:  In this paper, an introduction is given to the theory of “stress functions,” which were first 
considered by J. C. Maxwell.  The geometrical aspect of these functions leads to remarkable relations 
between the classical theory of stress fields and the general theory of relativity.  On the other hand, in the 
Lagrangian view of mechanics, stress functions form the “reaction tensor” that is produced by the condition 
that Euclidian geometry must be unchanged by any deformation of a continuous medium.  Thus, the theory 
of stress functions joins two heterogeneous parts of mathematical physics. 
 
 

1.  Synthetic construction of the tensor of stress functions. 
 

 A simply-connected rigid body (Fig. 1) is found to be in equilibrium under the 
influence of continuously-distributed outer surface 
forces.  Along with the Cartesian coordinates x, y, z, 
we employ general coordinates x(i), for which the 
functional determinant of the coordinate 
transformation will vanish, except for some 
exceptional points at most; such points will 
generally be excluded from our considerations. 
 We next recall some known things: One 
imposes the outer surface forces dK  as linear vector 
functions of the normal vector n of the outer 
surface (*): 

dKi = Siα nα df 
(1.1) 

Siα nα  = 
3

1

iS nα
α

α =
∑   (i = 1, 2, 3), 

 
and formulates the equilibrium conditions with the 
help of the principle of virtual displacements: 

                                                
 (*) One will sum over Greek indices in the event that they appear twice in a formal group. 

 

df 

r dK  

y 

x 

z 
n df 

Figure 1. 
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( )f

dK vλ
λδ∫∫ = 

( )f
S v n dfλα

λ αδ∫∫ = 0.   (1.2) 

 
δ is a “field of virtual displacements” that is compatible with the rigidity of the body, but 
otherwise arbitrary.  Gauss’s integral theorem then gives: 
 

( )
( )

V
S v dVλα

α λδ∇∫∫∫  = 0;    (1.3) 

 
∇α is the symbol of covariant derivation.  (1.3) then decomposes into: 
 

( )V
S v dVλα

α λδ∇∫∫∫  = 0, 
( )

( )
V

S v dVλα
α λδ∇∫∫∫  = 0.  (1.4a, b) 

 
It will follow from (1.4a) in a well-known way that the stress tensor S must satisfy: 
 

∇α S iα = 0;      (1.5) 
 
i.e., the vectorial divergence of the stress tensor will vanish in the interior of the domain.  
Due to the rigidity condition, the virtual displacement field will obey Killing’s  equation: 
 

∇α (δvλ) = ∇[α (δvλ]) = 1
2 [∇α (δvλ) − ∇λ (δvα)],   (1.6) 

 
such that (1.4b) will give the symmetry of the stress tensor: 
 

S[ik] = 0  (Sik = S(ik) = 1
2 [Sik + Ski], resp.).   (1.7) 

 
(1.1), (1.5), and (1.6) can be combined into the well-known Ansatz of continuum 
mechanics: 

( ) ( )V f
S dV dK vλα λ

λα λδε δ−∫∫∫ ∫∫  = 0;    (1.8) 

in this: 
δελα = δε(λα) = 1

2 [∇λ (δvα) + ∇α (δvλ)]   (1.9) 

 
is the virtual distortion tensor.  The symmetry of the stress tensor will then follow 
immediately from that of the distortion tensor.  The divergence condition (1.5) and the 
relation (1.1) will be obtained by partially integrating the volume integral in (1.8) once 
more with the use of (1.9).  Piola [1] gave the mechanical interpretation of the Ansatz 
(1.8) in the context of Lagrangian mechanics: The Ansatz formulates the equilibrium of 
the outer surface forces under the auxiliary condition that the virtual displacement field is 
distortion-free, so the body will remain rigid.  The Lagrangian factors are included in the 
stress tensor; i.e., the reactions to this kinematic pressure condition.  In order to arrive at 
the stresses imprinted on the non-rigid (e.g., elastic) continuum from the reaction stresses 
of the rigid body, one appeals to another principle – viz., the release principle – 
according to which, under a relaxation of the kinematic conditions, the reactions will 
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become imprinted (i.e., measurable) force quantities that primarily depend upon those 
geometric quantities whose variation was previously forbidden (Hamel [2]). 
 The symmetric stress tensor S can now be converted into a skew-symmetric 
transverse stress tensor of rank four.  Formally, this can happen with the help of the e-
tensor, which is a covariant (contravariant, resp.) measure for the oriented volumes of the 
coordinate unit mesh.  This third-rank tensor is skew-symmetric in all indices: 
 

eikl = e[ikl] = 
1

3!
[eikl + ekli + elik − ekil − eilk − elki] .   (1.10) 

 
If we denote the determinant of the components gik of the metric by g then we will have: 
 

eikl = sgn (ikl) ⋅⋅⋅⋅ 1

g
,  eikl = sgn (ikl) ⋅⋅⋅⋅ g .   (1.11) 

 
The covariant derivative of e is − understandably – zero, since the unit volume, with its 
proper covariant measure, must have the same value everywhere. 

 

Figure 2 

n df 

dK 

df  

dK  

 
 In order to construct the transversal stress tensor T intuitively, we introduce oriented 
surface elements d f and d K , in place of the vectors n ⋅⋅⋅⋅ df and dK  (Fig. 2), which are 
perpendicular to n (dK , resp.) and whose sense of traversal and volume measure the 
direction and magnitude of these vectors, respectively.  d f and d K  are skew-symmetric 
tensors of rank 2: 
  dfik  = df[ik] = 1

2 eikα nα df, 

 (1.12a) 
  dKlm = dK[lm] = emnα dKα ; 
the inverses of (1.12a) read: 
  ni df = eiαβ dfαβ, 

(1.12b) 
  dKi = 1

2 eiαβ dKαβ , 

 
resp.  In a completely analogous way, we finally describe the field of virtual 
displacements by a skew-symmetric tensor δ v : 
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 δvik = 1
2 eikα δvα , 

(1.13) 
 δvi = eiαβ δ f αβ . 
 
The linear connection between d K  and d f mediates the transverse stress tensor T: 
 

dKlm = Tαβ, lm df αβ ;    (1.14) 
 
i.e., T rotates and distorts d f  in such a way that d K  comes about.  Thus, we get: 
 

,( )f
T v dfρα αβ

αβ ραδ∫∫ = 0   (1.15) 

 
as the expression of equilibrium in the outer surface forces.  An application of Gauss’s 
integral theorem will take (1.15) to: 
 

,( )
( )

V
T v e dVρσ λαβ

λ αβ ρσδ∇∫∫∫  = 0.    (1.16) 

 
δ v  is the field of a rigid displacement, so it can be split into a rigid translation and a 
rotation: 

δv[ik] = [ ] [ ]

0 0

ik i kv rδ δω+      (1.17) 

 
with constant quantities 

0
δ v  and 

0
δ ωωωω ; r  is the body-fixed vector from the translation 

point to the outer surface point that is being considered.  With that, (1.16) decomposes 
into the condition for force equilibrium: 
 

[ ]( ) 0V
T v e dVρσ λαβ

λ αβ ρσ δ∇ ⋅∫∫∫  = 0 

or 

[ ] 0s ik lmT∇ =      (1.18) 

 
and the condition for moment equilibrium: 
 

[ ]( ) 0
( )

V
T r e dVρ σ λαβ

λ αβ ρσ δ ω∇∫∫∫  

or 

[ ]( ) 0.s ik mT rλ
λ∇ =      (1.19a) 

Now, one has: 

∇s r
λ = s

λδ = 
0 for ,

1 for .

s

s

λ
λ

≠
 =

    (1.20) 

 
Thus, (1.19a) will be equivalent to: 
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[ ] 0.ikl mT =       (1.19b) 

 
By definition, T is skew-symmetric in the first and last index pairs: 
 

Tik, lm = T[ik],[ lm],     (1.21) 
 
but, above and beyond that, it will satisfy a “cyclic symmetry” (1.19b) and a “Bianchi 
identity” (1.18) – in other words, T has the structure of a curvature tensor.  Just as it does 
for a curvature tensor (cf., e.g., Levi-Cività [3]), the even symmetry: 
 

Tik, lm = Tik, lm       (1.22) 
 
will follow from the skew symmetry (1.21) and the cyclic symmetry (1.19b).  A simple 
count will yield that T has only six algebraically-independent components as a result of 
its numerous symmetries, which is just as many as S (*). 
 The stress state of a three-dimensional continuum can thus be interpreted 
geometrically as the “curvature state” of a non-Euclidian “stress space” whose curvature 
tensor is T.  A result of this kind was to be expected, moreover.  First of all (from the 
viewpoint of the theory of general relativity), the stress tensor is part of the energy-
impulse tensor, and will thus give rise to a spatial curvature, and secondly, stresses can 
also be easily related to the curvature ratios of the Airy stress surface for a planar stress 
state; cf., Section 2 for this. 
 We then give the connection between S and T, which can be deduced from (1.1), 
(1.12), and (1.14): 
 

Sik = 1
4 eiβ ekσµ Tαβ, λµ ,  Tik, lm = eikα elmβ S

αβ.   (1.23) 

 
One recognizes that the symmetry of S corresponds to the cyclic symmetry of T and the 
divergence condition for S corresponds to the Bianchi identity for T.  Our next objective 
will be to find a general representation for T.  To that end, we regard the equilibrium 
conditions (1.18) and (1.19a) as the integrability conditions for two systems of partial 
differential equations.  In fact, (1.18) is the necessary and sufficient condition for T to be 
the “rotation” of a tensor X: 
 

Tik, lm = ∇i (Xk, lm – Xk, ml) − ∇k (Xi, lm – Xi, ml),   (1.24) 
 
in which we have expressly accentuated the skew symmetry in m and l.  It follows, 
correspondingly, from (1.19a) that: 
 

Tik, λm rλ = ∇iYkm – ∇kYim .    (1.25) 
 
If one combines (1.24) and (1.25) and considers (1.21) then one will get: 
 
                                                
 (*) In n dimensions, the curvature tensor will have n2 (n2 – 1) / 12 algebraically-independent 
components and the symmetric stress tensor n (n + 1) / 2. 
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Xk, im – Xk, mi – Xi, km + Xi, mk = − ∇i Fkm + ∇k Fim  (1.26) 
with 

Fkm = Ykm – rλ (Xk, λm – Xk, mλ). 
 

One now adds the equations that arise from (1.26) by switching k (i, resp.) with m to 
(1.26).  This will lead to: 
 

Xm, ik – Xm, ki = − ∇i F(km) + ∇k F[im] + ∇m F[ik] ,  (1.27) 
 
such that the desired representation of T will be found to be: 
 

, ( ) ( ) ( ) ( ).ik lm i m kl k l im i l km k m ilT F F F F= ∇ ∇ + ∇ ∇ − ∇ ∇ − ∇ ∇   (1.28) 

 
This representation of the stress field T by a symmetric stress function tensor F is 
necessary and sufficient for equilibrium to prevail in the stress field. 
 We defer the further examination of (1.28) to the next section and next concern 
ourselves with the construction of the symmetric stress tensor S from the stress function 
tensor F: With a simple change in the index notations, it will follow from (1.23) and 
(1.28) that: 
 
Sik = eiαλ ekβµ Tαλ, βµ = eiαλ ekβµ ∇α∇β F(λµ) = ∇α∇β (e

iαλ ekβµ F(λµ)) = ∇α∇β  U
iα, kβ.    (1.29) 

 
and we note that we can express S in terms of F, as well as in terms of a skew-symmetric 
stress function tensor U (Finzi [4]).  As one can see from its definition (1.29), U has the 
same algebraic symmetries as T, and therefore just as many independent components as 
F − namely, six.  However, the representation of S in terms of U is valid for an arbitrary 
dimension n, even n = 2, when U has only one component (which is just the Airy stress 
function).  In the representation (1.29) of S in terms of F, we can liberate ourselves of the 
e-tensor.  Namely, since one has: 
 

eiαλ ekβµ = (gik gαβ – gαk giβ) gλµ + (giβ gαµ – gαβ giµ) gλk + (giµ gαk – gαµ gik) gλβ, (1.30) 
 
it will emerge from (1.29) that: 

S(ik) = T(ik) – 1
2 gik T      (1.31) 

with 
T(ik) = gαβ Tαi, kβ , T = gλµ Tλµ .    (1.32) 

 
S thus corresponds to the Einstein tensor, which is the energy-impulse tensor of the 
general theory of relativity, whose vectorial divergence vanishes identically.  The 
symmetry of Tik, and thus that of S, will follow from the cyclic symmetry of T.  S will 
then be expressed in terms of F in the following way: 
 

2 ( ) ( ) ( ) 2( ),ik ik i i k ikS F F F g F Fα α β
αβ αβ= ∆ − ∇ ∇ + ∇ ∇ + ∇ ∇ − ∆  (1.33) 
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with F = gαβ Fαβ .  ∆2 = gαβ ∇α ∇β is the second Beltrami operator, which is the covariant 
analogue of the Laplacian operator. 
 In many cases, it is more convenient to introduce a stress function tensor ΦΦΦΦ, in place 
of F, by way of: 

Φ(ik) = F(ik) – 1
2 gik F.     (1.34) 

One will then have: 
 

2 ( ) ( ) ( ) ( ).ik ik i k k i ikS gα α α β
α α αβ= ∆ Φ − ∇ ∇ Φ − ∇ ∇ Φ + ∇ ∇ Φ   (1.35) 

 
This representation is valid for all dimensions, while (1.33) will fail for n = 1 and n = 2. 
 
 

2.  Null stress functions and compatibility conditions. 
Geometric and mechanical interpretation of the stress functions. 

 
 The stress functions that are associated with a given equilibrium system of stresses 
can be found by integrating the system of differential equations (1.28).  This integration 
problem was solved by Schaefer [5] by a method that Einstein had developed for the 
treatment of weak gravitational fields.  The six equations of the homogeneous system of 
differential equations that belongs to (1.28): 
 

0 0 0 0

( ) ( ) ( ) ( )i m kl k l im i l km k m ilF F F F∇ ∇ + ∇ ∇ − ∇ ∇ − ∇ ∇  = 0   (2.1) 

 
are indeed algebraic, but not completely independent of each other, since they are 
coupled with each other by the three equations of the Bianchi identity.  Under suitable 
regularity assumptions, three of them will be a consequence of the remaining three.  
However, this connection cannot be formulated in a covariant manner (Bach [6]).  From 
the existence of this connection, we can, however, draw the conclusion that the general 
solution of (2.1) will contain three arbitrary functions.  We would like to determine this 
solution, and at the same time, prove that there can be no other solutions of (2.1).  If, for 
the moment, we write (2.1) as: 

0

][ k lmi γ∇ = 0,      (2.2) 

with 
0

klmγ = 
0 0 0

( ) ( ) ( )kl lm kmm k lF F F∇ − ∇ − ∇ ,    (2.3) 

 
then (2.2) will be the integrability condition for: 
 

0 0

( ) ( )kl kmm lF F∇ − ∇  = ∇k ω[ml] ,     (2.4) 

 
where ω is a yet-to-be-determined skew-symmetric tensor.  If one switches k and l in 
(2.4) and subtracts the result from (2.4) then one will find that: 
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0 0

( ) [ ] [ ]( ){ } { }lmk lm l kmkmF Fω ω∇ + − ∇ +  = 0,   (2.5) 

 
and that will, once more, be necessary and sufficient for one to have: 
 

0

( ) [ ]lm lmF ω+  = ∇l vm .     (2.6) 

 
If one finally switches l with m in (2.6) and adds (subtracts, resp.) then one will get the 
general solution of (2.1): 

0

( )lmF  = 1
2 (∇l vm + ∇m vl) = ∇(l vm) .    (2.7) 

0

F  is the symmetric gradient tensor, and ωωωω is the rotation of an arbitrary vector field v that 

contains three arbitrary functions in its own right.  
0

F  is called the null stress function 
tensor, since it will make no contribution to the stress field when it is substituted into 
(1.28).  It can be used, for example, to make three of the six components of F equal to 
zero with no change in the associated stress state (and no rotation of the coordinate 
system!), and one will thus come to the Ansätzen of Maxwell [7] or Morera [8], or also 
perhaps to subject the tensor F (1.34) to a divergence condition, and thus facilitate the 
integration problem that mentioned to begin with (Schaefer, loc. cit.). 
 A glimpse at (2.7) and (1.9) shows that each of the kinematically possible distortion 
fields is a field of null stress functions, and conversely (Weber [9]).  Equations (2.1) are, 
as a consequence, nothing but the well-known compatibility conditions that are necessary 
and sufficient conditions for the equations (1.9) to be integrable, if they are regarded as 
differential equations for the displacement vector.  One can also recognize the fact that 
the conditions (2.1) are necessary geometrically.  Namely, if we think of the metric tensor 
gik of Euclidian space as being changed infinitesimally into: 
 

ikg  = gik + 2 F(ik) δt      (2.9) 

 
(δt is an infinitesimal constant whose higher powers can be neglected) and we calculate 
the curvature tensor that belongs to ikg  then we will find that it will be equal to T (1.28), 

up to the factor δt.  The Fik then emerge as the stress potentials (*) of a spatial warp, 
which is how we have already interpreted the stress state.  T will indeed be zero when the 
Fik change the metric, but not the Euclidian character, of space (and conversely).  That 
will certainly be the case when the change in the metric comes about as a result of an 
infinitesimal distortion of the continuum. 
 From the standpoint of system mechanics, this is closely related to another 
interpretation for the stress functions: We write the compatibility conditions for δε using 
(1.33) in the symmetric form: 
 

∆2(δεik) − ∇i∇α (δεαk) − ∇k∇α (δεαi) + ∇i∇k (δε) + gik [∇α ∇β (δεαβ) − ∆2(δε)] = 0. (2.10) 
 

                                                
 (*) They correspond to the gravitational potentials of the theory of relativity.  
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(The left-hand side of (2.10) is, moreover, a self-adjoint differential expression!).  We 
can then also formulate the Ansatz (1.8) of continuum mechanics in the following way. 
(For the sake of simplicity, we have ignored the outer surface forces, which are of no 
interest here, and we have also made all of the boundary integrals that will appear in what 
follows vanish by a suitable assumption about the state of distortion.): 
 

{ }2( )
[ ( ) ]

V
S F dVαβ αβ

αβ αβδε δε− ∆ −∫∫∫ ⋯  = 0.   (2.11) 

 
Fαβ is a symmetric Lagrangian tensor, and when (2.10) is multiplied by it, that will be 
added to (1.8) as an auxiliary condition; (1.9) is then resolved.  One will obtain (1.33) 
immediately by two partial integrations when one observes that the δε are now arbitrary.  
The Lagrangian tensor F is then the tensor of the stress functions, and appears to be the 
system of reactions to the Euclidian condition (2.10) here, and thus to the fact that it is 
forbidden for the continuum to be the result of an infinitesimal distortion of Euclidian 
space.  One can go still further, and also add the Bianchi identity that is valid for the 
compatibility conditions as an auxiliary condition to (2.10); the associated Lagrangian 

tensor then proves to be the tensor 
0

F  of null stress functions.  That shall not be pursued 
any further here.  We shall also refrain from giving an analogous derivation of the skew-
symmetric tensor U of stress functions (1.29) with the help of the compatibility 
conditions (2.1), since that would yield no new insights. 
 We turn once more to the non-Euclidian interpretation of the stress field.  Euclidian 
space will become a non-Euclidian space whose Einstein tensor (1.33) is S under the 
infinitesimal transformation (2.9).  The projection of the force dK  onto the normal vector 
of the associated outer surface element df will be: 
 

dKα nα = Sαβ nα nβ df .     (2.12) 
 
 According to Herglotz [10], the quantity Sαβ nα nβ  is the Gaussian curvature of the 
geodetic surface that is perpendicular to the normal vector at the point of application of 
the force in stress space.  In general, one has for n ≥ 3: The normal stress at the point P is 

equal to the sum of the Gaussian curvatures of those 
1

2

n− 
 
 

 geodetic surfaces that are 

perpendicular to the normal vector at P in stress space at the location P.  This remarkable 
theorem is the generalization of a theorem that is true for plane stress states: If one 
imagines the boundary curve of a plane continuum as being projected perpendicular to 
that plane onto the (infinitesimal) Airy stress surface then at any point of the boundary 
curve, the normal stress will be equal to the normal curvature of the projected point at the 
corresponding point.  It is worthwhile to consider the case of n = 2 somewhat closer, 
since special aspects of that situation exist.  As is known, the Einstein tensor is identically 
zero in two dimensions, and is thus unneeded for a representation of the stress tensor.  
The second fundamental tensor h of the infinitesimal Airy stress surface, which 
characterizes the curvature properties of the surface as the building block of the curvature 
tensors, will enter in place of it.  If the stress surface is given by: 
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x(3) = Φ(x(1), x(2)) ⋅⋅⋅⋅ δt      (2.13) 
 
(Φ is the Airy stress function) then one will have, up to higher-order quantities: 
 

hik = ∇i ∇jΦ ⋅⋅⋅⋅ δt      (2.14) 
and 

Sik = − hik + gik h,     (2.15) 
 
with h = gαβ hαβ .  The normal stress will then become: 
 

Sαβ n
α nβ = − hαβ n

α nβ + h.    (2.16) 
 
The normal vector n arises from the tangent vector t to the boundary curve by a rotation 
through 90o: 

nα = eαλ tλ     (2.17) 
 
eik = e[ik] is the analogue of the two-dimensional e-tensor that is defined by (1.10), (1.11).  
If one introduces this into (2.16) and observes that: 
 

eαλ eβµ = gαβ gλµ – gαλ gβµ    (2.18) 
 
then it will follow that: 

Sαβ n
α nβ = hαβ t

α tβ     (2.19) 
 
for the normal stress, which is known to be the normal curvature of the surface curve that 
goes through t. 
 We will treat some other extensions of the behavior for n = 2 in Section 3. 
 We conclude with a new derivation of the “Plücker analogy,” which is a duality 
principle that is often used in dynamics. 
 Let a surface element df be given, along with the stress state that prevails in it.   Thus, 
the force dK  and the moment dM  of that force will also be given there, where the 
moment will be given by: 

dMi = eiαβ r
α dKβ = rα dKiα ;    (2.20) 

 
r  is the position vector from the moment reference point to df.  One now imagines r  to be 
displaced parallel to a boundary point of df . (That will be a single-valued operation in 
Euclidian space.)  In that way, space will be endowed with the non-Euclidian metric of 
stress space according to (2.9); the curvature tensor will be T.  Now, r  will be parallel-
displaced along the boundary curve of df in the sense of this new metric; its change after 
one traversal will be (1): 

∆r i = Tαβ, iλ r
λ dfαβ.     (2.21) 

 
Since the length of a vector does not change under parallel displacement, r  + ∆r  must 
emerge from r  by a rotation; let its rotation tensor be ∆ωωωω: 

                                                
 (1) This “traversal formula” is frequently used as the definition of the curvature tensor.  
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∆r i = ∆ωiρ r
ρ.      (2.22) 

 
If we recall (1.14) and (2.20) then we can deduce from (2.22) that: 
 

dKlm = ∆ωlm ,  dMi = ∆r i .    (2.23) 
 
The position vector will suffer a rotation in stress space under the “orbital shift” (2) that 
was written down above, and the “angular velocity” of the rotation will be measured by 
the skew-symmetric force tensor, while the velocity of the change will itself be measured 
by the moment vector. 
 
 

3.  Integration of the outer surface forces and their moments. 
Special spatial stress functions. 

 
 The stress field is source-free, so it will be a (tensorial) vortex field.  It is therefore 
easy to arrive at a representation of the forces that act upon a finite piece of the outer 
surface and their moments as line integrals (i.e., circulations) that are taken over the 
boundary curve of the outer surface piece.  The case is similar to the one that pertains to a 
planar stress state: There, the resultants of the forces that act along a segment AB and 
their resultant moment are “point-pair functions” that depend only upon the positions of 
the points A and B, but not on the course of the curve segment, except for complications 
that can appear for multiply-connected domains.  According to the program, we then 
consider a simply-connected surface patch O1 that is bounded by a closed, oriented 
surface curve C; the orientation of the surface curve will then emerge as it did in Sect. 3.  
Corresponding to (2.2), (2.3), we assume that: 
 

Tik, lm = 2 ∇[iγk] lm       (3.1) 
with 

γklm = ∇m F(kl) − ∇m F(kl) − ∇m F(kl) ;    (3.2) 
 
γ is, moreover, the change in the Christoffel three-index symbol (up to sign) that comes 
from the change (2.9) in the metric.  We now introduce the fixed unit vectors i, j , k of a 
Cartesian coordinate system for which the covariant derivative of its metric will vanish in 
any coordinate system.  The projections of the force vector onto these unit vectors: 
 

dKx = dKλ iλ , etc.,     (3.3) 
 
will bee the orthogonal components of the force vector in the (x, y, z) system. 

                                                
 (2) Cartan [11]. 
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j 

Figure 3. 
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C 

n df 

dK 

df  

 
 One will then have that: 
 

dKx = 1
2 eλρσ iλ dKρσ = 1

2 eλρσ iλ dTαβ, ρσ dfαβ = eλρσ iλ ∇[α γβ] ρσ dfαβ 

(3.4) 
= ∇[α (γβ] ρσ e

λρσ iλ) dfαβ 
 

is an “outer surface total differential,” and therefore, according to Stokes’s theorem, the 
x-component of the force sum that is taken over O1, namely: 
 

Kx = 
1

xO
dK∫∫ , 

will be converted into the line integral: 
 

 Kx = 1
2 C

e i dxλρσ α
αρσ λγ∫� ,    (3.5) 

 
and correspondingly for the components Ky and Kz .  If one substitutes (3.2) into (3.5) 
then that will give: 

( ) .x C
K F e i dxλρσ α

ρ σα λ= ∇∫�     (3.6) 

 
The moment of the forces that act upon O1 relative to the origin of the Cartesian 
coordinate system will be calculated using (2.18). We shall skip the intermediate 
computations and give just the ultimate line integral for the x-component of the resultant 
moment: 

Mx = 
C

r i dxλ β α
λαργ∫�      (3.7) 

or also 
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( ) [ ( ] )[ 2 ] .x C
M F r F i dxλ α β

αβ λ α β= − + ∇∫�    (3.8) 

 
One recognizes a clear analogy between (3.6) and (3.8) and the formulas of the plane 
stress state: 
 

 Kx = [ ] B
Ae iαλ

α λ∇ Φ ⋅ , Ky = [ ] B
Ae jαλ

α λ∇ Φ ⋅ , M = [ ] B
Ar λ

λ−Φ + ∇ Φ ,  (3.9) 

 
from which, one can calculate the resultants of the forces that act along the segment AB 
and their resultant moment.  (Φ is once more the Airy stress function.)  Otherwise, one 
easily calculates that the integrands of (3.6) and (3.8) will be total differentials when one 

replaces F with the tensor 
0

F  of null stress functions, such that line integral will vanish, as 
it must.  Conversely, the vanishing of Kx, Ky, and Kz for any arbitrary closed outer surface 

curve will be necessary for one to have F = 
0

F . 
 To conclude our investigations, we will examine two more special cases of the spatial 
stress states that were previously examined by Maxwell, and later in a monograph of 
Klein-Wieghardt [12].  They are spatial stress states that depend upon only the stress 
function Φ, for which one will, in fact, have: 
 

(a)   Fik = gik ⋅⋅⋅⋅ Φ,  (b)  Fik = 1
2 ∇iΦ ⋅⋅⋅⋅ 1

2 ∇jΦ .  (3.10) 

 
The geometric meaning of these Ansätze in reference to (2.9) is easy to recognize: 
 For the Ansatz (3.10a), the metric in stress space will be: 
 

ikg  = gik ⋅⋅⋅⋅ [1 + 2Φ ⋅⋅⋅⋅ δt] = u (x(1), x(2), x(3)) ⋅⋅⋅⋅ gik .   (3.11) 

 
The stress space can thus be mapped conformally to Euclidian space, so it will be 
“conformal Euclidian.” 
 The Ansatz (3.10b), by contrast, will yield: 
 

2ds  = gαβ dxα dxβ + (dΦ ⋅⋅⋅⋅ tδ )2    (3.12) 
 
for the arc-length element in stress space, so stress space will be a hypersurface: 
 

x(1) = Φ(x(1), x(2), x(3)) ⋅⋅⋅⋅ tδ      (3.13) 
 
in four-dimensional Euclidian space, and thus of “class one.”  Therefore, the two cases in 
(3.10) will be the natural generalizations of the planar case: In fact, any Airy stress 
surface x(3) = Φ(x(1), x(2) is: 
 a) Conformally mappable to the Euclidian plane (and thus conformal Euclidian). 
 b) Potentially contained in three-dimensional Euclidian space (and thus of class 
one). 
 



Günther – Stress functions and compatibility conditions in continuum mechanics.  14 

Summary 
 

 The equilibrium state of a continuous, spatial force system can be geometrized by the 
introduction of a stress function tensor, and in that way, it will admit an intuitive 
interpretation.  This will yield insightful relationships with the trains of thought in the 
theory of relativity and special problems that are posed in differential geometry. 
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