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Summary: In this paper, an introduction is given to the themfrystress functions,” which were first
considered by J. C. Maxwell. The geometrical aspech@det functions leads to remarkable relations
between the classical theory of stress fields and thergktheory of relativity. On the other hand, ie th
Lagrangian view of mechanics, stress functions fornirémction tensor” that is produced by the condition
that Euclidian geometry must be unchanged by any deformdtieantinuous medium. Thus, the theory
of stress functions joins two heterogeneous parts dienatical physics.

1. Synthetic construction of the tensor of stress functi@n

A simply-connected rigid body (Fig. 1) is found to be guigbrium under the
influence of continuously-distributed outer surface
forces. Along with the Cartesian coordinateg, z,
we employ general coordinata®d, for which the
functional determinant of the coordinate
transformation will vanish, except for some
exceptional points at most; such points will
generally be excluded from our considerations.

We next recall some known things: One
imposes the outer surface forcls as linear vector
functions of the normal vecton of the outer
surface ():

dK' = S7n, df
(1.1)
S7n, =>.8n (=123,
a=1
and formulates the equilibrium conditions with the X
help of the principle of virtual displacements: Figure 1.

() One will sum over Greek indices in the event thay appear twice in a formal group.
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J.J‘(f)dKﬂavﬂ = .U(f)smé\4 n df=0. (1.2)

ois a “field of virtual displacements” that is coméei with the rigidity of the body, but
otherwise arbitrary. Gauss'’s integral theorem then gives:

j j '[(V)DH(SM5\4) dVv = 0; (1.3)

[, is the symbol of covariant derivation. (1.3) thenadaposes into:

j j jmmasma\q dVv =0, j j jms“ 0,(dv,) dV = 0. (1.4ab)

It will follow from (1.4a) in a well-known way that thetress tenso® must satisfy:
0o S'=0; (1.5)

i.e., the vectorial divergence of the stress tensibvanish in the interior of the domain.
Due to the rigidity condition, the virtual displaceméatd will obeyKilling’s equation:

Oa (ova) = Opa (o) = 5 [Ua (0v2) = a (a)], (1.6)
such that (1.4b) will give the symmetry of the stressae
g¥=0 @ =g9=4s"+ ) resp). (17)

(1.1), (1.5), and (1.6) can be combined into the well-knowrsa#n of continuum
mechanics:

Aa _ A A
J.-U(V)S %), dV .U(f) dKoy =0 (1.8)
in this:
Oia = 55(Aa) = %[D/] (Ovg) + Oy (Ovp)] (1.9)

is the virtual distortion tensor The symmetry of the stress tensor will then follo
immediately from that of the distortion tensor. eTtlivergence condition (1.5) and the
relation (1.1) will be obtained by partially integratirigetvolume integral in (1.8) once
more with the use of (1.9)Piola [1] gave the mechanical interpretation of the Ansatz
(1.8) in the context of Lagrangian mechanics: The Aniatnulates the equilibrium of
the outer surface forces under the auxiliary conditi@t the virtual displacement field is
distortion-free, so the body will remain rigid. Thagrangian factorsare included in the
stress tensor; i.e., the reactions to this kinema#&sgure condition. In order to arrive at
the stresses imprinted on the non-rigid (e.g., elastinjinuum from the reaction stresses
of the rigid body, one appeals to another principle — \tize, release principle—
according to which, under a relaxation of the kinemataditions, the reactions will
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become imprinted (i.e., measurable) force quantities ghatarily depend upon those
geometric quantities whose variation was previously forbiddamel[2]).

The symmetric stress tens@ can now be converted into a skew-symmetric
transverse stress tensof rank four. Formally, this can happen with the helphefe-
tensor which is a covariant (contravariant, resp.) meaguréhe oriented volumes of the
coordinate unit mesh. This third-rank tensor is skew-symriatall indices:

k= i) = 1

[eikl + ey ik — il _ gk _ elki] (1.10)
If we denote the determinant of the componentef the metric byg then we will have:

e = sgn (I ot ew = sgn l) Oy/g . (1.11)

Jo

The covariant derivative o is — understandably — zero, since the unit volume, wsth
proper covariant measure, must have the same gakrgwhere.

ndf/ /\/:jK
\

(dk

Figure 2
In order to construct the transversal stress tehsatuitively, we introduce oriented

surface elements f and dK , in place of the vectons [Hf anddK (Fig. 2), which are
perpendicular tan (dK, resp.) and whose sense of traversal and volunssune the
direction and magnitude of these vectors, respagtivd f and dK are skew-symmetric
tensors of rank 2:

df* =df¥ = 14 n, df,

(1.12a)

dKim = dK[Im] = €nne dK”;

the inverses of (1.12a) read:

(1.12b)

resp. In a completely analogous way, we finallysalde the field of virtual
displacements by a skew-symmetric tendor
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o =16 aug
2 ]
(1.13)
M =egdf .
The linear connection betweerK and d f mediates the transverse stress tefisor

dKim = Togim df % ; (1.14)

i.e., T rotates and distortd f in such a way thatl K comes about. Thus, we get:

jj' T, OV df” = 0 (1.15)

as the expression of equilibrium in the outer surfaceefr An application of Gauss'’s
integral theorem will take (1.15) to:

J1], 04 (Tap s 0V7) € dV = 0. (1.16)

ov is the field of a rigid displacement, so it can pétsnto a rigid translation and a
rotation:

oM = o+ 1! g (1.17)

with constant quantitie$5\_0/ and 0 w; Is the body-fixed vector from theanslation

point to the outer surface point that is being consideredth ¥at, (1.16) decomposes
into the condition for force equilibrium:

I, DT BE v =0

or

UisTigm =0 (1.18)

and the condition for moment equilibrium:

.U (V)DM( aﬂ]parp)a-aéae/mﬂdv

or

O (T ™) =0. (1.19a)

[s

Now, one has:
O forA#s,
Osr' =97 = (1.20)
1 forA=s.

Thus, (1.19a) will be equivalent to:
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T = O- (1.19b)

By definition, T is skew-symmetric in the first and last index pairs:
Tik, im = Trikg,pimys (1.21)

but, above and beyond that, it will satisfy a “cycdgmmetry” (1.19b) and a “Bianchi
identity” (1.18) — in other worddg, has the structure of a curvature tensor. Just ag# do
for a curvature tensor (cf., e.g., Levi-Civi@)| theeven symmetry

Tik,im = Tik,Im (1.22)

will follow from the skew symmetry (1.21) and the cyctgmmetry (1.19b). A simple
count will yield thatT has only six algebraically-independent components as i oésu
its numerous symmetries, which is just as man$g @y

The stress state of a three-dimensional continuum tas be interpreted
geometrically as the “curvature state” of a non-Euahdistress space” whose curvature
tensor isT. A result of this kind was to be expected, moreovérst of all (from the
viewpoint of the theory of general relativity), the sgdensor is part of the energy-
impulse tensor, and will thus give rise to a spatial durea and secondly, stresses can
also be easily related to the curvature ratios offling stress surfacéor a planar stress
state; cf., Section 2 for this.

We then give the connection betwegrand T, which can be deduced from (1.1),
(1.12), and (1.14):

S*= 1P e Tapiu Tik, im = €ka Amg 5. (1.23)

One recognizes that the symmetrySodorresponds to the cyclic symmetryTofand the
divergence condition fo$ corresponds to the Bianchi identity fér Our next objective
will be to find a general representation for To that end, we regard the equilibrium
conditions (1.18) and (1.19a) as the integrability conditimnstwo systems of partial
differential equations. In fact, (1.18) is the necesaad sufficient condition fof to be
the “rotation” of a tensoxX:

T, im = Ui (K 1m — X mt) = O (K, 1m — X5, mi), (1.24)

in which we have expressly accentuated the skew symmetnyand|. It follows,
correspondingly, from (1.19a) that:

Tk, am I = 0iYim — OYim - (1.25)

If one combines (1.24) and (1.25) and considers (1.21) thewitgget:

() In n dimensions, the curvature tensor will hawe (n> — 1) / 12 algebraically-independent
components and the symmetric stress tengor+ 1) / 2.
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Xk, im — Xk, mi — Xi, km + Xi, mk = = Ui Fkm + Uk Fim (1.26)
with
Frm = Yin = (X am — Xk ma).-

One now adds the equations that arise from (1.26) by sngtéh{i, resp.) withm to
(1.26). This will lead to:

X ik = Xm ki = = Ui Fmy + Ok Fpimp + Om Fikg (1.27)

such that the desired representatioi o¥ill be found to be:

Tik,lm =0 Dm|:(|<|) +0 D|F(|m) 00, F(km) -0,0 mF( i - (1.28)

This representation of the stress fifldby a symmetricstress function tensoF is
necessary and sufficient for equilibrium to prevailha stress field.

We defer the further examination of (1.28) to the nexti®e and next concern
ourselves with the construction of the symmetric stteasolS from the stress function
tensorF: With a simple change in the index notations, it viollow from (1.23) and
(1.28) that:

and we note that we can expr&sis terms ofF, as well as in terms of a skew-symmetric
stress function tensady (Finzi [4]). As one can see from its definition (1.20) has the
same algebraic symmetries Bsand therefore just as many independent components as
F — namely, six. However, the representatiorSoh terms ofU is valid for an arbitrary
dimensionn, evenn = 2, whenU has only one component (which is just the Airy stress
function). In the representation (1.29)Sin terms off, we can liberate ourselves of the
e-tensor. Namely, since one has:

é” %= (g g7 -g" d) g" + @ 9" ~9"g") " + @ 9™ -9 d) ¢”  (1.30)

it will emerge from (1.29) that:
Sk =Ty —20k T (1.31)
with
Ty = 9% Tai ks, T=g"%Tu. (1.32)

S thus corresponds to tHeinsteintensor, which is the energy-impulse tensor of the
general theory of relativity, whose vectorial divergeneanishes identically. The
symmetry ofTy, and thus that 0%, will follow from the cyclic symmetry of. S will
then be expressed in termsFoin the following way:

Sk =4, Fio -0,0°F

wp TOO F+ g (00 R -4, ), (1.33)
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with F = g% Fap. Do = g% 0, Upis thesecond Beltrami operatpwhich is the covariant
analogue of the Laplacian operator.
In many cases, it is more convenient to introduceesstiunction tensab, in place
of F, by way of:
Dy = Fy — 20 F. (1.34)
One will then have:

S =0,P, ~0,0® ., ~ 0,00, + g OTD . (1.35)

This representation is valid for all dimensions, while88) will fail forn =1 andn = 2.

2. Null stress functions and compatibility conditions.
Geometric and mechanical interpretation of the stress furnions.

The stress functions that are associated with angaquilibrium system of stresses
can be found by integrating the system of differergguations (1.28). This integration
problem was solved b$chaefer[5] by a method thaEinsteinhad developed for the
treatment of weak gravitational fields. The six equatoingie homogeneous system of
differential equations that belongs to (1.28):

0 0 0

DiDm F(kl)+DkDI F(im)_D'DI F(km)_DkD

0
mFp =0 (2.1)
are indeed algebraic, but not completely independentach ether, since they are
coupled with each other by the three equations of thecBiadentity. Under suitable
regularity assumptions, three of them will be a cqnsace of the remaining three.
However, this connection cannot be formulated in a ¢cavamannerBach[6]). From
the existence of this connection, we can, however, thawonclusion that the general
solution of (2.1) will contain three arbitrary funct®nWe would like to determine this
solution, and at the same time, prove that therébeamo other solutions of (2.1). If, for
the moment, we write (2.1) as:

0
Ui Viam= 0, (2.2)
with
0 0 0 0
Viam= U Fo—0 Fam =0, Fm, (2.3)

then (2.2) will be the integrability condition for:
0 0
U, Fon—0, Fem =0k agmy , (2.4)

where wis a yet-to-be-determined skew-symmetric tensor. & switchesk andl in
(2.4) and subtracts the result from (2.4) then one indl that:
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Dk{lg(lm)ﬂqlm]} -0{ OF(km)+a{kr} =0, (2.5)

and that will, once more, be necessary and suffiéerane to have:

0
Fom+ &y = Ui Vm (2.6)

If one finally switched with min (2.6) and adds (subtracts, resp.) then one will get the
general solution of (2.1):

0
Fum = %(D| Vi + Un V|) = D(| Vim) - (2.7)

0
F is the symmetric gradient tensor, amds the rotation of an arbitrary vector fieldhat

0
contains three arbitrary functions in its own righ. is called thenull stress function
tensor since it will make no contribution to the stresddfievhen it is substituted into
(1.28). It can be used, for example, to make thre@detix components ¢ equal to
zero with no change in the associated stress statkn@rrotation of the coordinate
system!), and one will thus come to the AnsatzeMaxwell [7] or Morera [8], or also
perhaps to subject the tender(1.34) to a divergence condition, and thus facilitate th
integration problem that mentioned to begin wilclfaeferloc. cit)).

A glimpse at (2.7) and (1.9) shows that each of thenkatieally possible distortion
fields is a field of null stress functions, and conegrgWeber[9]). Equations (2.1) are,
as a consequence, nothing but the well-knoampatibility conditionghat are necessary
and sufficient conditions for the equations (1.9) torttegrable, if they are regarded as
differential equations for the displacement vect@ne can also recognize the fact that
the conditions (2.1) are necessary geometrically. é\anif we think of the metric tensor
gk of Euclidian space as being changed infinitesimally: into

Oi =0k + 2Fg & (2.9)

(& is an infinitesimal constant whose higher powers Gandglected) and we calculate
the curvature tensor that belongsgp then we will find that it will be equal td (1.28),

up to the factor. TheFj then emerge as th&tress potentialg’) of a spatial warp,
which is how we have already interpreted the stregs. stawill indeed be zero when the
Fik change the metric, but not the Euclidian charactespate (and conversely). That
will certainly be the case when the change in the metsmes about as a result of an
infinitesimal distortion of the continuum.

From the standpoint of system mechanics, this isebloselated to another
interpretation for the stress functions: We write dompatibility conditions fobe using
(1.33) in the symmetric form:

Az(dﬁ‘ik) - DiDa (55ak) - DkDa (&‘m) + 0Ok (58) + Qik [DaD'B (5557,8) - Az(a_f)] =0. (2.10)

() They correspond to thgravitational potentialof the theory of relativity.
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(The left-hand side of (2.10) is, moreover, a self-adjdifferential expression!). We
can then also formulate the Ansatz (1.8) of continumechanics in the following way.
(For the sake of simplicity, we have ignored the pstaface forces, which are of no
interest here, and we have also made all of the boumitagrals that will appear in what
follows vanish by a suitable assumption about the statestortion.):

J..U(V){Saﬂdgﬂﬂ a Faﬂ[Az(&aﬂ) _]} dv =0. (2.11)

F% is a symmetridagrangian tensgrand when (2.10) is multiplied by it, that will be
added to (1.8) as an auxiliary condition; (1.9) is theolvesl. One will obtain (1.33)
immediately by two partial integrations when one obsethat theds are now arbitrary.
The Lagrangian tensdt is then the tensor of the stress functions, and appede the
system of reactions to the Euclidian condition (2.1&)ehand thus to the fact that it is
forbidden for the continuum to be the result of annitéisimal distortion of Euclidian
space. One can go still further, and also add the Biadehtity that is valid for the
compatibility conditions as an auxiliary condition {@.10); the associated Lagrangian

0
tensor then proves to be the tensoof null stress functions. That shall not be pursued
any further here. We shall also refrain from givingaaalogous derivation of the skew-
symmetric tensorU of stress functions (1.29) with the help of the compatibi
conditions (2.1), since that would yield no new insights.

We turn once more to the non-Euclidian interpretatibthe stress field. Euclidian
space will become a non-Euclidian space whose Eingteisor (1.33) isS under the
infinitesimal transformation (2.9). The projectiontbé forcedK onto the normal vector
of the associated outer surface elenu#ntill be:

dK? ny =S ng np df. (2.12)

According to Herglotz 10], the quantityS™ n, ng is the Gaussian curvature of the
geodetic surface that is perpendicular to the normdbwexdt the point of application of
the force in stress space. In general, one has*d®: The normal stress at the poihts

. n-1 .
equal to the sum of the Gaussian curvatures of tﬁoséej geodetic surfaces that are

perpendicular to the normal vectorRain stress space at the locati®n This remarkable
theorem is the generalization of a theorem thatuse for plane stress states: If one
imagines the boundary curve of a plane continuum as lpgmjgcted perpendicular to
that plane onto the (infinitesimal) Airy stress suefdben at any point of the boundary
curve, the normal stress will be equal to the normalature of the projected point at the
corresponding point. It is worthwhile to consider theecafn = 2 somewhat closer,
since special aspects of that situation exist. Asdsw, the Einstein tensor is identically
zero in two dimensions, and is thus unneeded for a repatisenbf the stress tensor.
The second fundamental tensdr of the infinitesimal Airy stress surface, which
characterizes the curvature properties of the surfattedsuilding block of the curvature
tensors, will enter in place of it. If the strassface is given by:
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X = oY, X)) (2.13)
(P is the Airy stress function) then one will have tagigher-order quantities:

hik = Di DjCD x (2.14)
and
Sk=—hyx+ Oik h, (2.15)

with h = g% h,s. The normal stress will then become:
Sypn’r’=-hn?nf+h, (2.16)

The normal vecton arises from the tangent vectioto the boundary curve by a rotation
through 96:
n?=e"t, (2.17)

¢ = &M is the analogue of the two-dimensioraknsor that is defined by (1.10), (1.11).
If one introduces this into (2.16) and observes that:

e et =g g¥—g¥ g¥ (2.18)

then it will follow that:
Sypn® P =h et ¢* (2.19)

for the normal stress, which is known to be the rarcarvature of the surface curve that
goes through.

We will treat some other extensions of the behawont 2 in Section 3.

We conclude with a new derivation of the “Plicker analogyhich is a duality
principle that is often used in dynamics.

Let a surface elemedt be given, along with the stress state that prevaits iThus,
the forcedK and the momentM of that force will also be given there, where the
moment will be given by:

dMi = @gpr? dKP =17 dKiy ; (2.20)

r is the position vector from the moment referencetpgoidf. One now imaginesto be
displaced parallel to a boundary pointdff. (That will be a single-valued operation in
Euclidian space.) In that way, space will be endowgd the non-Euclidian metric of
stress space according to (2.9); the curvature tensobevil. Now, r will be parallel-
displaced along the boundary curvedbin the sense of this new metric; its change after
one traversal will be');

Arj = Ta'g’ i r/‘ dfaﬁ (221)

Since the length of a vector does not change under gladédplacement; + Ar must
emerge fronmr by a rotation; let its rotation tensor heu

() This “traversal formula” is frequently used as therdgbn of the curvature tensor.



Ginther — Stress functions and compatibility conditionsntinuum mechanics. 11

Ari = A, r”. (2.22)
If we recall (1.14) and (2.20) then we can deduce from (2.22) th
dK|m = A , dMi =Ar; . (2.23)

The position vector will suffer a rotation in stregsace under the “orbital shift?)(that
was written down above, and the “angular velocity'tted rotation will be measured by
the skew-symmetric force tensor, while the velocityhe change will itself be measured
by the moment vector.

3. Integration of the outer surface forces and their momes.
Special spatial stress functions.

The stress field is source-free, so it will be a @ead vortex field. It is therefore
easy to arrive at a representation of the forcesdbiupon a finite piece of the outer
surface and their moments as line integrals (ceculationg that are taken over the
boundary curve of the outer surface piece. The cagailarsto the one that pertains to a
planar stress state: There, the resultants ofdhees$ that act along a segmé® and
their resultant moment are “point-pair functions”ttdapend only upon the positions of
the pointsA andB, but not on the course of the curve segment, excepmofoplications
that can appear for multiply-connected domains. Accortinthe program, we then
consider a simply-connected surface paf@hthat is bounded by a closed, oriented
surface curveC; the orientation of the surface curve will then emeagét did in Sect. 3.
Corresponding to (2.2), (2.3), we assume that:

Tik,im = 2 Ui Mg m (3.1)
with
Yaam = Um F(ay = Om Flay = Om F(ay ; (3.2)
yis, moreover, the change in the Christoffel threexsymbol (up to sign) that comes
from the change (2.9) in the metric. We now introdineefixed unit vectors, |, k of a

Cartesian coordinate system for which the covarianvatgre of its metric will vanish in
any coordinate system. The projections of the forceovento these unit vectors:

dK, =dK*i,, etc., (3.3)

will bee the orthogonal components of the force veictdhe &, y, z) system.

() Cartan 11].
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Figure 3.

One will then have that:

(3.4)
= Ota (43 o€ 1) df”

is an “outer surface total differential,” and therefaaecording to Stokes'’s theorem, the
x-component of the force sum that is taken @@gmamely:

Ky = j jqux,
will be converted into the line integral:

Ky = %Cﬁc Voo €71, AX, (3.5)

and correspondingly for the componekisandK, . If one substitutes (3.2) into (3.5)
then that will give:

K, = 0, F7idxX . (3.6)

The moment of the forces that act upOn relative to the origin of the Cartesian
coordinate system will be calculated using (2.18)e shall skip the intermediate
computations and give just the ultimate line intgédor thex-component of the resultant
moment:

M, = <j'>cr” Viad "X (3.7)
or also
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M, = [~Fiup) +2r" 0, F i “1dX". (3.8)

One recognizes a clear analogy between (3.6) and (3.8) aridrthelas of the plane
stress state:

Ke=[0,2@"i]%, K,=[0,0&" ], M=[-0+r'0,0]}, (3.9)

from which, one can calculate the resultants offéinees that act along the segméa
and their resultant moment® (is once more the Airy stress function.) Otherwizee
easily calculates that the integrands of (3.6) and (3ilBp&vtotal differentials when one

0
replaced with the tensoi of null stress functions, such that line integral walnish, as
it must. Conversely, the vanishingkof Ky, andK; for any arbitrary closed outer surface

0
curve will be necessary for one to have F.

To conclude our investigations, we will examine two ngpecial cases of the spatial
stress states that were previously examinedVyxwell and later in a monograph of
Klein-Wieghardt[12]. They are spatial stress states that depend upon lmnlgttess
function®, for which one will, in fact, have:

(a) Fik = gic P, ) Fic= 3 0i® G 00 . (3.10)

The geometric meaning of these Anséatze in reference@pig2asy to recognize:
For the Ansatz (3.H), the metric in stress space will be:

G =0k (1 + 20 0] = u (XY, x?, X¥) D . (3.11)

The stress space can thus be mappadformally to Euclidian space, so it will be
“conformal Euclidian.”
The Ansatz (3.116), by contrast, will yield:

d5? = g dX® A + (dd V3t ) (3.12)
for the arc-length element in stress space, so gpas® will be a hypersurface:
XV = o, x?, x¥) @/st (3.13)

in four-dimensional Euclidian space, and thus of “clags’o Therefore, the two cases in
(3.10) will be the natural generalizations of the placase: In fact, any Airy stress
surfacex® = d(xY, X3 is:

a) Conformally mappable to the Euclidian plane (and thudozenal Euclidian).

b) Potentially contained in three-dimensional Euclidigmace (and thus of class
one).
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Summary

The equilibrium state of a continuous, spatial forc#eay can be geometrized by the
introduction of a stress function tensor, and in thaly, it will admit an intuitive
interpretation. This will yield insightful relationshipgth the trains of thought in the
theory of relativity and special problems that are paseiifferential geometry.
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