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 The paradigm for the development of the part of the calculus of variations in which the 

unknown functions depend upon one variable was always the theory of geodetic lines on curved 

surfaces, which was founded by Gauss and built up by Darboux, in particular. Not only are the 

investigations of Jacobi and Kneser (whose influence on the theory of geodetic lines is well-

known) based upon that theory (1), but also the direct method of treating the variational problem, 

for which one has Hilbert to thank. 

 Now, as far as that part of the calculus of variations in which the unknown function depends 

upon two independent variables is concerned, one finds that a special case of it has been treated 

with great thoroughness in surface theory, namely, minimal surfaces, whose theory was developed 

in a series of classical works. In that problem, we do not think in terms of the existence questions 

that are connected with those surfaces (i.e., Plateau’s problem), but mainly in terms of theorems 

that address minimal surface “in the small,” so ones that are implied by the vanishing of the first 

variation. 

 Now, that suggests the idea of making that part of surface theory useful for the purposes of the 

calculus of variations, that is, of adapting the results that are obtained in the theory of minimal 

surfaces to more general variational problems, resp., in analogy with what was already 

implemented in the theory of geodetic lines. In fact, one can achieve that for variational problems 

of the form: 

(1)      ,
z z

f dx dy
x y


  
 

  
 = 0  

 

(in which the integral includes only the derivatives of the unknown functions). Naturally, in so 

doing, one will require a new conceptual picture, in analogy with the way that the concept of 

transversality must be introduced in order to be able to adapt the theory of geodetic lines to the 

calculus of variations. In the following investigations, it is the concepts of the adjoint variational 

 
 (1) Hilbert employed, above all, the example of the geodetic line in order to present his method. (“Über das 

Dirichletsche Prinzip,” Jahresbericht d. deutschen Math. Ver., Bd. 8, pp. 184.) 
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problem and the adjoint extremal surface that will make it possible to adapt the theorems on 

minimal surfaces to variational problems of the form above. 

 In fact, the concept of an adjoint minimal surface that Bonnet introduced plays a fundamental 

role in the aforementioned theory of minimal surfaces. Of course, that association, by which any 

minimal surface is adjoint to another minimal surface, is ordinarily presented and studied in such 

a way that in the known Weierstrass representation of minimal surfaces (which assigns an analytic 

function to each minimal surface in a well-defined way), one replaces the function of a complex 

variable that appears in it with the ith power of that function, which is a way of treating things that 

can hardly be useful for purpose of generalization (2). However, when one liberates the concept of 

an adjoint minimal surface from the Weierstrass representation, i.e., when one examines the adjoint 

surface in general Gaussian coordinates, one will easily arrive at a form that is capable of being 

generalized to variational problems of the aforementioned type. 

 When one associates an adjoint surface to any extremal surface of the variational problem (1) 

in that way, one will arrive at the jumping-off point for the following investigations: Namely, that 

adjoint surface is not an extremal surface of the variational problem (1) in the general case, but 

probably a different variational problem – viz., the adjoint variational problem – that can be 

derived from the original one in a simple way. In that way, one will obtain an association that 

associates every variational problem of the form (1) with a problem of the same form. That 

relationship is involutory, and the problem of the minimal surface is even distinguished by the fact 

that it is a self-adjoint problem (§ 1). 

 If one now examines the map of an extremal surface of (10) to its adjoint surface (§ 2) then 

one will arrive at the generalizations of the aforementioned classical theorems of the theory of 

minimal surfaces. Among the results that one obtains, we would like to emphasize the following 

ones: 

 In the theory of minimal surfaces, one has the theorem that any minimal surface can be bent 

into its adjoint. In our more general sphere of ideas, we have the theorem that one can introduce a 

non-Euclidian metric on the extremal surfaces and their adjoints that depends upon only the 

corresponding variational problem in such a way that the map in question is a bending in that 

sense. One gets the result from this that any variational problem determines a metric on its extremal 

surfaces in a well-defined way (which coincides with the usual arc-length only in the case of 

minimal surfaces). That variational integral itself will be the surface area when one bases its 

definition upon arc-length. When one introduces isothermal parameters into that metric, one will 

get a system of differential equations for the coordinates of the extremal surface of an especially 

simple type that is well-suited to the study of those surfaces. Those theorems are the 

generalizations of the known theorems in the representation of minimal surfaces by potential 

functions, and (it seems to me) those differential equations also are of great service in the further 

theory of the variational problem (1). 

 

 

 

 

 
 (2) Bonnet’s original definition of the adjoint minimal surface also employs an entirely-specialized coordinate 

system on the surface (Comptes rendus, 1853, pp. 532).  
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§ 1. 

 

Concept and main properties of the adjoint extremal surface 

and the adjoint variational problem. 

 

 1. Notations and conventions. – We shall base our investigations upon a variational problem 

of the form: 

(1)      ( , )x yf z z dx dy   = 0  

 

and consider any extremal surface z = z (x, y) of it. We set (3): 

 

zx = p ,  zy = q , 

 

to abbreviate. In order to arrive at an elegant form, we write the equation of the extremal surface 

by introducing two parameters u, v in the form: 

 

x =  (u, v) , y =  (u, v) , z =  (u, v) 

and set: 

(2)    p1 = 
u u

v v

 

 
 , p2 = 

u u

v v

 

 
 , p3 = 

u u

v v

 

 
 . 

One then has: 

 (u, v) = z ( (u, v),  (u, v))  and p = − 1

3

p

p
, q = − 2

3

p

p
, 

and when one introduces the further notation: 

 

(3)     F (p1, p2, p3) = 1 2
3

3 3

,
p p

p f
p p

 
− − 

 
 , 

 

the given variational problem will go to the following problem: 

 

(I)      1 2 3( , , )F p p p du dv   = 0 . 

 

We assume that the integrands f (p, q) and F (p1, p2, p3) are sufficiently-often differentiable 

functions for all values of the arguments that come under consideration. In addition, the latter is 

homogeneous of degree one. As a result: 

 

1 2 31 2 3p p pp F p F p F+ +  = F , 

and one will have the relations: 

 
 (3) In what follows, we shall denote the derivatives of a function by adding corresponding indices.  
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(3)     
1pF  = − fp , 

2pF  = − fq , 
3pF = f – p fp – q fq , 

 

as one easily convinces oneself. Those formulas show that the derivatives 
1pF , 

2pF , 
3pF  are 

homogeneous functions of degree 0 in the p1, p2, p3, and are therefore independent of the choice 

of the parameters u, v. 

 

 

 2. Definition of the adjoint extremal surface. – The Euler-Lagrange differential equations of 

the variational problem I) read: 

 

u v

F F

u v 

   
+

   
 = 0 ,  

u v

F F

u v 

   
+

   
 = 0 , 

u v

F F

u v 

   
+

   
 = 0 . 

 

When one recalls the easily-verified relations: 

 

u

F






 = 

2 3

v v

p pF F

 
 , 

u

F






 = 

3 1

v v

p pF F

 
 , 

u

F






 = 

1 2

v v

p pF F

 
 , 

 

v

F






 = − 

2 3

u u

p pF F

 
 , 

v

F






 = − 

3 1

u u

p pF F

 
 , 

v

F






 = − 

1 2

u u

p pF F

 
 

 

and introduces three auxiliary functions: 

 

( , )u v , ( , )u v , ( , )u v  

 

(which are determined uniquely up to an additive constant), one can replace those Euler-Lagrange 

differential equations with the following first-order system of differential equations (4): 

 

u  = 
2 3

u u

p pF F

 
 , u  = 

3 1

u u

p pF F

 
 , 

u  = 
1 2

u u

p pF F

 
 , 

(II) 

v  = 
2 3

v v

p pF F

 
 , v  = 

3 1

v v

p pF F

 
, 

v  = 
1 2

v v

p pF F

 
 . 

 
 (4) That is the form of the Euler-Lagrange differential equation that one can derive from the vanishing of the first 

variation without assuming the existence of second derivatives of the extremal function. Cf., my paper “Über die 

Variation der Doppelintegrale,” Journal für die reine u. angew. Math., Bd. 149, pp. 1-18. Since I exhibited those 

differential equations for the case of minimal surfaces, I recognize that the auxiliary functions that appear in them 

coincide with the coordinates of Bonnet’s adjoint minimal surface, and that fact led me to the conceptual picture of 

the present investigations. 
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If one writes those equations in the following form: 

 

(III)  d  = 
3 2p pF d F d − ,      d  = 

1 3p pF d F d − ,      d  = 
2 1p pF d F d −  

 

then one will see immediately (keeping in mind that the expressions for 
1pF , 

2pF , 
3pF  are 

independent of choice of parameters u, v) that the surface: 

 

x = ( , )u v  , y = ( , )u v , z = ( , )u v  

 

is defined uniquely, up to a parallel translation, and in particular, it is independent of the choice of 

the parameters u, v. We call that surface the adjoint surface to the extremal surface in question 

relative to the given variational problem (5). 

 Not only is the adjoint surface itself defined by equations (III), but also a map of that surface 

onto the original extremal surface by which we let points with the same parameter values u, v 

correspond to each other. 

 Finally, for the sake of symmetry, we introduce the following notations: 

 

(2)    1p  = u u

v v

 

 
 , 2p  = u u

v v

 

 
 , 3p  = u u

v v

 

 
 . 

 

When one recalls equations (II), one will get: 

 

1p  = 
1 3 2 1

1 3 2 1

p u p u p u p u

p v p v p v p v

F F F F

F F F F

   

   

− −

− −
 = 

1 1 2 1 3

2 u u u u u u

p p p p p

v v v v v v

F F F F F
     

     
+ +  

 

 
 (5) It is not difficult to see that in the case of minimal surfaces: 

 

F = 2 2 2

1 2 3p p p+ +  , 

 

so this definition coincides with the usual convention on the adjoint minimal surface. Namely, if one introduces 

isothermal coordinates on the minimal surface: 

 
2 2 2

u u u  + +  = 
2 2 2

v v v  + + , u v + u v + u v = 0 

 

then equations (II) will go to the following ones: 

 

 
u  = − v , u  = − v , 

u  = − v , 

   
v  = u , v  = u , 

v  = u , 

 

i.e.,  and  ,  and  ,  and   are conjugate potential functions. That is just the usual definition of the adjoint 

minimal surfaces. 
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= 
1 1 2 31 2 3( )p p p pF p F p F p F+ +  = 

1pF F , 

 

and in the same way, one has the equations: 

 

(4)     2p  = 
2pF F , 3p  = 

3pF F , 

 

which lead to the proportion: 

 

(5)     1 2 3: :p p p  = 
1 2 3
: :p p pF F F . 

 

 

 3. Definition of the adjoint variational problem. – The fact that the adjoint surfaces to the 

extremal surfaces of the given variational problem that were just defined are the extremal surfaces 

of a new variational problem that is completely determined by the original variational problem 

and is independent of the choice of the extremal surface will be a great importance in what follows.  

We will characterize that variational problem – viz., the adjoint variational problem to the origin 

one – quite simply and prove the involutory character of that relationship by showing that the 

adjoint surfaces to the extremal surfaces that relate to the latter variational problem are the extremal 

surfaces to the original problem. 

 In order to see that clearly, we would first like to take x, y to be independent variables and 

assume that the equation of the surface that is adjoint to the extremal surface z = z (y, y) : 

 

x  = ( , )x y ,      y  = ( , )x y ,      z  = ( , )x y  

 

can be converted into the form: 

z  = ( , )z x y  . 

 

In other words, we consider a piece of the extremal surface for which the determinant: 

 

3p  = 
x x

y y

 

 
 = 

3pF F  = f (f – p fp – q fq) 

 

is non-zero. When we then introduce: 

p  = 
z

x




, q  = 

z

y




, 

 

to abbreviate, and recall equations (2) , (3), and (4), we will then have: 

 

p  = − 1

3

p

p
 = − 1

3

p

p

F

F
 = 

p

p q

f

f p f q f− −
, 
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(6) 

q  = − 2

3

p

p
 = − 2

3

p

p

F

F
 = 

q

p q

f

f p f q f− −
. 

 

Those equations exhibit the fact [which one can also infer from equations (5)] that the direction of 

the surface normal ( , )p q  at a point of the adjoint surface depends upon only the direction of the 

normal (p, q) at the corresponding point of the extremal surface. It is not difficult to verify the 

formula: 

( , )

( , )

p q

p q




 = 2

3
( )

( )
pp qq pq

p q

f
f f f

f p f q f
−

− −
 . 

 

If that expression is non-zero (which we would like to assume from now on) then we can solve 

equations (6), which we can combine into the one equation: 

 

(6)      p dp q dq+  = 
p q

df

f p f q f− −
 

 

for p and q. We can get a transparent solution formula that lets the symmetry in the two variable-

pairs p, q and p , q  emerge clearly in the following way: We imagine that p, q are expressed in 

terms of p , q  and define the function ( , )f p q  by the following equation: 

 

(7)      ( , )f p q  = 
1

p qf p f q f− −
. 

 

In complete analogy with (6), we will then have: 

 

(6)     p = 
p

p q

f

f p f q f− −
, q = 

q

p q

f

f p f q f− −
. 

 

In fact, when one recalls (6), one can bring the defining equation (7) into the form: 

 

(8)     f df f df+  = ( ) ( )p dp q dq p dp q dq+ + + , 

 

and due to (6) and (7), one will have: 

 

p dp q dq+  = f df  = ( )p qf f dp f dq+ , 

i.e.: 

 

(9)      p = 
pf f , q = 

qf f  . 
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If one introduces those expressions for p, q into the right-hand side of equation (8) then that will 

give: 

(7)      f = 
1

p qf p f q f− −
 . 

 

One will get the stated equation (6)  by substituting that expression for f in equations (9). 

 We can summarize our formulas as follows: 

 

 If one subjects the quantities p, q to the conditions: 

 

(10)   f  0 ,      f – p fp – q fq  0,      fpp fqq −
2

pqf   0  

 

and introduces the quantities p , q  by means of the equations: 

 

(6)    p  = 
p

p q

f

f p f q f− −
,  q  = 

q

p q

f

f p f q f− −
, 

 

but introduces the function ( , )f p q  by the equation: 

 

(7)     ( , )f p q  = 
1

p qf p f q f− −
, 

or  

 

(8)     f (p, q) ( , )f p q  = 1 p p q q+ +  

 

(which is equivalent to that) then one will have: 

 

(6)    p = 
p

p q

f

f p f q f− −
,  q = 

q

p q

f

f p f q f− −
, 

and furthermore: 

(7)      f = 
1

p qf p f q f− −
 

and 

(9)      
pf  = 

p

f
 , 

qf  = 
q

f
 , 

 

(9)      fp = 
p

f
, fq = 

q

f
. 
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 Therefore, that connection exists between the derivatives z / x = p, z / y = q of an extremal 

surface of the variational problem: 

 

(1)      ( , )x yf z z dx dy   = 0  

 

and the derivatives xz  = p , 
yz  = q  of its adjoint surface z  = ( , )z x y . We will show that this 

function is an extremal function of the variational problem: 

 

(1)      ( , )x yf z z dx dy   = 0 , 

 

which we would like to refer to as the adjoint variational problem to (1). 

 

 

 4. Continuation. – One can geometrically characterize the connection between the integrands 

f (p, q) and ( , )f p q  of the original and adjoint variational problem in an elegant way. To that end, 

we consider the second-order surface: 
2Z  = 2 2 1X Y+ +  

 

in a space whose rectangular coordinates are denoted by X, Y, Z , and imagine that the integrand 

of the original variational problem is realized by the surface: 

 

(11) Z = f (X, Y) . 

 

One infers immediately from the elementary formulas of analytic geometry that the pole of the 

tangent plane that is drawn at the point X, Y, Z of the latter surface relative to the second-order 

surface above possesses the following coordinates: 

 

X  = X

X Y

f

f X f Y f− −
, Y  = Y

X Y

f

f X f Y f− −
, Z  = 

1

X Yf X f Y f− −
. 

 

Upon eliminating X, Y from those equations, we get: 

 

(12) Z  = ( , )f X Y , 

 

in which ( , )f X Y  is just the integrand of the adjoint variational problem. That is, the surfaces 

(11) and (12) that are defined by the integrands of the two variational problems (viz., the original 

and adjoint ones) are polar-reciprocal surfaces relative to the second-order surface considered. 

 One sees the involutory character of adjointness from this immediately [which already follows 

from the complete symmetry of formulas (6), (7), (6) , (7) , moreover]; i.e., when one defines the 
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adjoint variational problem to the variational problem (1) , one will get back to the original one 

(1)(6). 

 Our formulas will become more elegant when we once more introduce general parameters u, 

v as independent variables in place of the x, y that we have used up to now, which comes down to 

the same thing (with the notations in 1.) as taking the function F (p1, p2, p3) = 1 2
3

3 3

,
p p

p f
p p

 
− − 

 
 

to be the integrand of the variational problem, instead of f (p, q). In a corresponding way, we set 

the integrand of the adjoint problem equal to: 

(3)     
1 2 3( , , )F p p p  = 1 2

3

3 3

,
p p

p f
p p

 
− − 

 
 . 

The relations (6.), (7), and (6) , (7)  then take on the following simple form [when one recalls (3)]: 

 

(13)   1p  = 
1pF F ,  2p  = 

2pF F ,  3p  = 
3pF F , 

 

(13)    p1 = 
1pF F ,  p2 = 

2pF F ,  p3 = 
3pF F , 

 

which one can naturally also establish independently of the foregoing as follows: Since 
1pF , 

2pF , 

3pF  are, in fact, homogeneous functions or degree 0, one can express the quantities p1 / p3 and p2 

/ p3 in terms of 1 3/p p  and 2 3/p p  by means of the equations in the first row (the proportion 1p : 

2p  : 3p  = 
1pF  : 

2pF  : 
3pF , resp.). Thus, say, the third equation, will imply F  as a homogeneous 

function of degree one in 1p : 2p  : 3p  . (7) If one gives equations (13), which one can also write in 

the form: 

1 1 2 2 3 3p dp p dp p dp+ +  = F dF , 

 

the components p1, p2, p3, resp., then that will give: 

 

1 1 2 2 3 3p p p p p p+ +  = F F , 

and from that: 

 

F dF F dF+  = 1 1 2 2 3 3 1 1 2 2 3 3( ) ( )p dp p dp p dp p dp p dp p dp+ + + + + . 

 

 
 (6) The inequalities (10) are also constructed symmetrically, because one easily verifies the relation: 

2 2( )( )pp qq pq pp qq pqf f f f f f− −  = 
4

1

f f

 
 
 

, 

such that [when one recalls (7)] those inequalities are equivalent to the statement that f (p, q) and ( , )f p q  are finite 

and non-zero. 

 (7) One should confer another simple calculation of 
1 2 3( , , )F p p p  in 6. 
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As a result, one will have: 

F dF  = 1 1 2 2 3 3p dp p dp p dp+ +  , 

 

and that is the basic content of equations (13) . 

 If we then denote the sub-determinants of the matrix: 

 

u u u

v v v

  

  

 
 
 

 , or u u u

v v v

  

  

 
 
 

 , resp., 

 

that is defined by the original extremal surface (its adjoint surface, resp.) by p1, p2, p3 ( 1p , 2p , 

3 ,p  resp.), as in 2., then from (5), we will have the proportion 1p  : 2p  : 3p  = 
1pF : 

2pF  : 
3pF . If 

we then introduce the function 
1 2 3( , , )F p p p  in the way that was just given then, from (13) , we 

will have the analogous proportion: 

 

(5)      p1 : p2 : p3 = 
1pF : 

2pF  : 
3pF . 

 

 Naturally, one assumes in this that one restricts oneself to a region on the original extremal 

surface such that the determination of F  from equations (13) is possible, i.e., that one can express 

p1 / p3 and p2 / p3 in terms of 1 3/p p  and 2 3/p p  by using the proportion that arises from it. The 

conditions for that to be possible were given in (10) [the remark (6), resp.]. 

 

 

 5. The adjoint surface as the extremal surface of the adjoint variational problem. – In 

order to exhibit the connection between adjoint surface and adjoint variational problems, we return 

to the defining equations for those surfaces, which we establish in the forms: 

 

(III) d  = 
3 2p pF d F d − , d  = 

1 3p pF d F d − , d  = 
2 1p pF d F d − , 

 

and calculate the analogously-constructed expressions: 

 

3 2p pF d F d − , 
1 3p pF d F d − , 

2 1p pF d F d − . 

 

When one recalls (III) and (13) , a simple calculation will give the equations: 

 

 
3 2p pF d F d −  = 

1 3 2 13 2

1
[ ( ) ( )]p p p pp F d F d p F d F d

F
   − − −  
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= 
1 2 3 11 2 3 1 2 3

1
[ ( ) ( )]p p p pp F p F p F d F p d p d p d

F
   − + + + + +  = − d , 

 

and in the same way: 

 

(III)    
1 3p pF d F d −  = − d , 

2 1p pF d F d −  = − d . 

 

 When written out in detail, those equations will read as follows: 

 

− u = 

2 3

u u

p pF F

 
 , − u = 

2 1

u u

p pF F

 
 , − u = 

1 2

u u

p pF F

 
 , 

(II) 

− v = 

2 3

v v

p pF F

 
 , − v = 

2 1

v v

p pF F

 
 , − v = 

1 2

v v

p pF F

 
 . 

 

However, upon eliminating , ,  from those equations, that will imply the equations: 

 

2 3 2 3

v v u u

p p p pF F F Fu v

    
−

 
 = 

2 1 2 1

v v u u

p p p pF F F Fu v

    
−

 
 

 

  = 

1 2 1 2

v v u u

p p p pF F F Fu v

    
−

 
 = 0 , 

 

which coincide with the Euler-Lagrange differential equations for the adjoint variational problems: 

 

( I )      1 2 3( , , )F p p p du dv   = 0 . 

 

Therefore, the adjoint surfaces are, in fact, solutions to the adjoint variational problem. 

 However, equations (II)  show that the adjoint surface to the extremal surface x = ( , )u v , y = 

( , )u v , z = ( , )u v  relative to the variational problem that was just described is the surface whose 

equations are: 

x = −  (u, v) ,  y = −  (u, v) ,  z = −  (u, v) , 

 

i.e., the mirror image of the original extremal surface relative to the coordinate origin. 

 We then arrive at the following result: 

 

 

 



Haar – On adjoint variational problems and adjoint extremal surfaces. 13 
 

 For any variational problem: 

 

(I)      1 2 3( , , )F p p p du dv   = 0 , 

 

the adjoint surface to any extremal surface of that problem is an extremal surface to the adjoint 

variational problem: 

 

( I )      1 2 3( , , )F p p p du dv   = 0 . 

 

If one defines the adjoint surface to that surface relative to the variational problem then one will 

get the mirror image of the original extremal surface relative to the coordinate origin. Obviously, 

that surface is likewise an extremal surface of the original variational problem. 

 

 

§ 2. 

 

On the map from an extremal surface to its adjoint surface. 

 

 6. Invariance of the variational integral. – As was remarked before in 2., the equations: 

 

(III) d  = 
3 2p pF d F d − , d  = 

1 3p pF d F d − , d  = 
2 1p pF d F d − , 

 

which serve as the definition of adjoint surfaces, simultaneously imply a map between those 

surfaces that makes points of both surfaces that belong to the same parameter values correspond 

to each other. We shall address that map in what follows. 

 In 2., we inferred the following relations from the definition of the adjoint surface above: 

 

(4)  1p  = F (p1, p2, p3)
1pF ,  2p  = F (p1, p2, p3)

2pF , 3p  = F (p1, p2, p3)
3pF . 

 

On the other hand, based upon the definition of the adjoint variational problem, we have the 

equations: 

 

(13) 1p  = 
11 2 3( , , ) pF p p p F , 2p  = 

21 2 3( , , ) pF p p p F , 3p  = 
31 2 3( , , ) pF p p p F . 

 

As a result, we have: 

 

(14)    F (p1, p2, p3) = 
1 2 3( , , )F p p p , 

 

or: 
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1 2 3( , , )
G

F p p p du dv  = 
1 2 3( , , )

G

F p p p du dv  

 

(for any region G), i.e., the integral of the original variational problem, when extended over a 

piece of an extremal surface for it, is equal to the integral of the adjoint variational problem, when 

extended over the correspond piece of the adjoint surface. 

 

 Equation (14) gives a convenient means for representing the adjoint variational problem. 

Namely, one gets the integrand 
1 2 3( , , )F p p p  when one expresses p1, p2, p3 in terms of 1p , 2p , 

3p  and substitutes those expressions for the arguments in the function F (p1, p2, p3) . 

 

 

 7. Corresponding directions. – The defining equation (III) for the adjoint surface immediately 

implies the relation: 

d d d d d d     + +  = 0 , 

 

i.e., any line element on an extremal surface corresponds to a line element that is perpendicular 

to it. 

 

 

 8. Invariance of a non-Euclidian arc-length. – In order to arrive at an essentially-deeper 

property of the map in question, we recall the known fact that any minimal surface can be bent 

into its adjoint surface. Naturally, we would not expect that in general variational problems. 

However, we can probably give a non-Euclidian metric on the extremal surface (the adjoint 

surface, resp.) that depends upon only the corresponding variational problem and is such that our 

map becomes a bending in the sense of that metric. 

 In order to arrive at that metric, we proceed as follows: We let a, b, c initially denote arbitrary 

quantities to be determined later, and consider the matrix: 

 

1 2 3p p p

a d bd c d

a F b F c F

   
 
 

 . 

 

Upon applying the known Laplace identity, while recalling (III), we will get: 

 

1 2 3 1 2 3

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2( )( ) ( )p p p p p pa d b d c d a F b F c F a F d b F d c F d     + + + + − + +  

 

= 
2 3 3 1 1 2

2 2 2

p p p p p p

b d c d c d a d a d b d

b F c F c F a F a F b F

     
+ +  

 

 = 
2 2 2 2 2 2 2 2 2b c d c a d a b d  + + . 
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We make the quadratic term on the left-hand side vanish by choosing 
1

2

pa F , 
2

2

pb F , 
3

2

pc F  to be 

equal to p1, p2, p3, resp., i.e., by choosing: 

 

2a  = 

1

1

p

p

F
, 2b  = 

2

2

p

p

F
, 2c  = 

3

3

p

p

F
. 

Since we will have: 

1 2 3

2 2 2 2 2 2

p p pa F b F c F+ +  = 
1 2 31 2 3p p pp F p F p F+ +  = F 

 

for that choice of a, b, c, the Laplace identity above will yield: 

 

1 2 3

2 2 231 2

p p p

pp p
F d d d

F F F
  

 
+ + 

 
 

 = 31 2

1 2 3

2 2 21 2 3

1 2 3

pp p

p p p

FF Fp p p
d d d

F F F p p p
  

 
+ + 

 
 . 

 

However, the relations (13), (13) , in conjunction with equation (14), imply the connection: 

 

(13)  

1

1

p

p

F
 = 12

1

pF
F

p
,  

2

2

p

p

F
 = 22

2

pF
F

p
, 

3

3

p

p

F
 = 32

3

pF
F

p
. 

 

We can then put the quadratic form on the right-hand side into the following form: 

 

1 2 3

1 2 3 1 2 3

2 2 21 2 3 31 2

1 2 3

p p p

p p p p p p

F F Fp p p pp p
F d d d

F F F p p p F F F
  

 
+ + 

 
 

 . 

 

However, with that, we get the relation: 

 

 1 2 3

1 2 3

2 2 231 2

1 2 3

p p p

p p p

F F F F pp p
d d d

p p p F F F
  

 
+ + 

 
 

  

= 1 2 3

1 2 3

2 2 231 2

1 2 3

p p p

p p p

F F F F pp p
d d d

p p p F F F
  

 
+ + 

 
 

 , 

 

and that implies the desired conclusion. 

 Namely, we imagine a non-Euclidian metric has been introduced onto the original extremal 

surface such that the differential of arc-length will be: 

 

2ds  = 1 2 3

1 2 3

2 2 231 2

1 2 3

p p p

p p p

F F F F pp p
d d d

p p p F F F
  

 
+ + 

 
 
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and in the same way, define the differential of arc-length on the adjoint surface to be: 

 

2ds  = 1 2 3

1 2 3

2 2 231 2

1 2 3

p p p

p p p

F F F F pp p
d d d

p p p F F F
  

 
+ + 

 
 

 . 

 

Those two definitions are completely symmetric, since the metric on the extremal surface is 

constructed from the equation of that surface and the original variational problem in the same way 

that the metric on the adjoint surface is constructed from that surface (the adjoint variational 

problem, resp.). We have then arrived at the following theorem: 

 

 Based upon that non-Euclidian metric, the map of the extremal surface to the adjoint surface 

is a bending. 

 

 

 9. The variational integral as a non-Euclidian surface area. – The two differential forms 
2ds  and 2ds  are simultaneously real (imaginary, resp.). That is because, with the help of the 

equation: 

1 2 3 1 2 3

1 2 3 1 2 3

p p p p p pF F F F F F F F

p p p p p p
 = 

4

1

F
 > 0 , 

 

which can be easily verified on the basis of the relations (13), (13) , and (14), it will follow that the 

two roots that appear in 2ds  ( 2ds , resp.) are simultaneously real (imaginary, resp.). In the latter 

case, we would like to take the definition of arc-length above, multiplied by i, to be our metric in 

order to get real arc-lengths in any case. We correspondingly set: 

 

1 = 1 2 3

1

1

1 2 3

p p p

p

F F F F p

p p p F
 , 2 = 1 2 3

2

2

1 2 3

p p p

p

F F F F p

p p p F
 , 3 = 1 2 3

3

3

1 2 3

p p p

p

F F F F p

p p p F
 , 

(15) 

1  = 1 2 3

1

1

1 2 3

p p p

p

F F F F p

p p p F
 , 

2  = 1 2 3

2

2

1 2 3

p p p

p

F F F F p

p p p F
 , 

3  = 1 2 3

3

3

1 2 3

p p p

p

F F F F p

p p p F
 , 

 

in which the positive (negative, resp.) sign is taken everywhere. We take the signs that give real 

values to 1, 2, 3, 1  
2  

3  The quantities 1, 2, 3 are then determined uniquely, up to sign. 

(We will add more to that later.) Furthermore, since (13) implies that: 

 

1 1   = 
2 2   = 

3 3   = 2

4

1
F

F
 , 
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we would like to determine the signs of 
1  

2  
3  in such a way that: 

 

(16)    
1 1   = 

2 2   = 
3 3   = 1 . 

 

 Upon borrowing from the theory of surfaces if one now writes: 

 

(17)   E  = 2 2 2

1 2 3u u u     + + , G  = 2 2 2

1 2 3v v v     + + , 

F   = 1 2 3u v u v u v        + + , 

and correspondingly: 

 

(17)    E   = 2 2 2

1 2 3u u u     + + , G   = 2 2 2

1 2 3v v v     + + , 

F   = 
1 2 3u v u v u v        + +  

 

for the adjoint surface, then one can consider the integral: 

 

2E G F du dv  − , 2E G F du dv  − ,  resp., 

 

when based upon the metric that was given above, to ne the non-Euclidian surface area of the 

extremal surface (the adjoint surface, resp.). One gets a remarkable expression for the integrand. 

In fact, when one applies the Laplace identity to the matrix: 

 

1 2 3

1 2 3

u u u

v v v

     

     

 
 
 
 

 , 

that will give: 
2| |E G F  −  = 2 2 2

1 2 3 2 3 1 3 1 2| |p p p     + +  = 2F , 

 

and one will get the following result: 

 

2E G F du dv  −  = F du dv , 

 

i.e., the given variational integral, when extended over a piece of the extremal surface, is equal to 

the non-Euclidian surface area of that surface patch, when it is based upon the metric that was 

given above. 

 We now point out that one can write the quantities 1, 2, 3 in the following forms: 

 

1 = 1 1

2 3 2 3

:
p p

p p p p
 ,  2 = 2 2

3 1 3 1

:
p p

p p p p
 ,  3 = 3 3

1 2 1 2

:
p p

p p p p
 , 
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with corresponding expressions for the quantities 
1  

2  
3 , which points to the symmetric 

character of those formulas. 

 

 

 10. Isothermal parameters. – A glimpse at formulas (15) will show that the quantities 1, 2, 

3 are homogeneous functions of degree zero in the p1, p2, p3 . Since the ratios of the functional 

determinants p1, p2, p3 will remain unchanged with the introduction of new variables for the u, v, 

this has the consequence that 1, 2, 3 will mean functions on the given extremal surface that are 

independent of the parameters u, v. 

 We would now like to introduce new parameters ,  : 

 

 =  (u, v) ,   =  (u, v) , 

 

in such a way that the two relations: 

 
2 2 2

1 2 3       + +  = 2 2 2

1 2 3       + +  , 

1 2 3             + +  = 0 

 

will be true. That is always possible, because a classical theorem from the theory of differential 

forms says that when  (u, v) and  (u, v) mean solutions to the systems of differential equations: 

 

u = 
2

u vF E

E G F

  

  

−

−
, v = 

2

u vG F

E G F

  

  

−

−
, 

the quadratic differential form: 

 
2 2 2

1 2 3d d d     + +  = 
2 22E du F du dv G dv  + +  

will go to: 
2 2( , )( )d d    + , 

 

in which  (, ) means a function of ,  . If we introduce such ,  as new parameters then will 

have: 

E  = G , F   = 0 . 

 

 We refer to such parameters as isothermal parameters with our non-Euclidian metric on the 

given extremal surface and refer to the curves  = const. ( = const., resp.) as isothermal curves. 

 The differential equations of our variational problem assume an especially simple form in 

isothermal parameters (in that sense) that greatly simplifies the study of those surfaces. In that 

way, we are dealing with an analogue of the theorem by Weierstrass that the equations of a minimal 

surface are potential functions in isothermal parameters (in the ordinary sense). 

 If we set: 
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X = 1 ( )i   + , Y = 2 ( )i   + , Z = 3 ( )i   + , 

 

to abbreviate, then we can combine the equations E  = G , F   = 0, which are characteristic of 

the choice of parameters , , into the one equation: 

 

(18)     2 2 2X Y Z+ +  = 0 . 

 

Furthermore, since we also have, at the same time, E   = G  , F   = 0, due to the invariance of our 

arc-length, when we introduce the corresponding abbreviations: 

 

X  = 1 ( )i   + ,  Y  = 2 ( )i   + ,  Z  = 3 ( )i   + , 

 

we will have, in the same way: 

 

(18)     2 2 2X Y Z+ +  = 0 . 

 

Finally, the equation in no. 7: 

d d d d d d     + +  = 0 , 

 

in conjunction with the relations 
1 1   = 

2 2   = 
3 3   = 1, will imply the equation: 

 

(20)     X X Y Y Z Z+ +  = 0 . 

 

However, it follows from equations (18), (19), (20) with no difficulty that the quantities X, Y, Z 

are proportional to the quantities X , Y , Z , i.e., when t means the proportionality factor, one will 

have: 

X  = t X ,  Y = t Y ,  Z = t Z . 

 

In order to determine the factor t, we add equations (II) to that, which we will write in the following 

form: 

1

X


 = 1t X  = 

3 3

2 2

p p

Y Z
F F

 
− , 

2

Y


 = 2t Y  = 

1 2

2 1

p p

Z X
F F

 
− , 

 

3

Z


 = 3t Z  = 

2 1

1 2

p p

X Y
F F

 
− . 

 

That homogeneous system of equations in X, Y, Z implies the vanishing of the determinant: 
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3 2

2 1

2 1

1

2 3

2

1 3

3

1 2

p p

p p

p p

F F
t

F F
t

F F
t


 


 


 

− −

− −

− −

 

 

= − 
1 2 3

3 2 2 231 2
1 2 3

2 3 3 1 1 2

p p pt F F F t
 

  
     

 
− + +  

 

 . 

 

 However, the two coefficients in the equation for t that was just obtained (8): 

 

( )
1 2 3

2 2 2 2

1 2 3 1 2 3p p pt F F F     + + +  = 0 

 

are equal to each other, since one finds with no effort that: 

 

1 2 3

2 2 2

1 2 3p p pF F F  + +  = 1 2 3

1 2 31 2 3

1 2 3

( )
p p p

p p p

F F F F
p F p F p F

p p p
 + +  = 1 2 3 . 

One then has: 
2t  + 1 = 0 , i.e., t =  i , 

and 

X  =  i X , Y  =  i Y , Z  =  i Z . 

The equations: 

i  +  =  i 1 ( + i ) ,  i  +  =  i 2 ( + i ) , 

 

i  +  =  i 3 ( + i ) , 

 

which are equivalent to (16), then show that with a suitable choice of sign for 1, 2, 3 (since one 

is free to do that), one can arrange that the upper sign is valid in those equations. Since 1, 2, 3 

are real, one will then have: 

(IV)    
1 2 3

1 2 3

, , ,

, , .

     

     

        

        

= = =

= − = − = −
 

 

One will then arrive at the following analogue of the aforementioned theorem by Weierstrass: 

 

 

 (8) Obviously, t must be non-zero, since the assumption that t = 0 leads to   = const.,   = const.,   = const. 
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 If ,  are isothermal parameters that are based upon the non-Euclidian metric then the 

differential equations of our variational problem will assume the simple form (IV), in which 1, 

2, 3 are the expressions that are given in (15). 

 

 

 11. Converse of the foregoing theorem. – If we understand 1, 2, 3 to mean the expressions 

that were given in (15), so that F (p1, p2, p3) means a homogeneous function of degree one, but p1, 

p2, p3 mean the sub-determinants of the matrix: 

 

  

  

  

  

 
 
 

 , 

 

and if those function , ,  are solutions of the system of differential equations: 

 

(IV)    
1 2 3

1 2 3

, , ,

, , ,

     

     

        

        

= = =

= − = − = −
 

for which: 

(21)    

2 2 2 2 2 2

1 2 3 1 2 3

1 2 3

,

0

     

     

           

        

+ + = + +

+ + =
 

 

then x =  (, ), y =  (, ), z =  (, ) will be an extremal surface of the variational problem 

1 2 3( , , )F p p p d d    = 0. 

 

 In fact, if one sets: 

 

P1 = 1
2 3

p

F
  , P2 = 2

3 1

p

F
  , P3 = 3

1 2

p

F
  , 

 

for the moment, then one will see immediately that the following equations are true: 

 

1 1 2 2 3 3P P P       + + = 0 , 

 

1 1 2 2 3 3P P P       + + = 0 , 

 
2 2 2

1 2 3( )P P P + +  = 1 . 

 

 The vectorial meaning of those equations consists of saying that the vector of unit magnitude 

( P1,  P2,  P3), where  = 1 or  = i, is perpendicular to the vectors 1 2 3( , , )         
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and 1 2 3( , , )        , which have equal length and are mutually perpendicular, from 

(21). However, it follows from this that the vector product of the unit vector above with each of 

the latter vectors will coincide with the other of the latter vectors, up to sign, i.e.: 

 

 1    = 3 2 2 3( )P P      − , 1    = 3 2 2 3( )P P     − , 

 2    = 1 3 3 1( )P P      − , 2    = 1 3 3 1( )P P     − , 

 3    = 2 1 1 2( )P P      − , 3    = 2 1 1 2( )P P     − , 

 

in which either the upper sign is chosen everywhere or the lower one. However, if one observes 

the relations: 

1 2 3P    = 
1pF , 2 3 1P    = 

2pF , 3 1 2P    = 
3pF , 

 

which are easy to verify on the basis of (15), then when the last equations are multiplied by 
1  

( 2 , 3 , resp.), in conjunction with basic system of differential equations, that will give: 

 

    = 
3 2

( )p pF F    − , 
  = 

3 2
( )p pF F    − , 

    = 
1 3

( )p pF F    − ,   = 
1 3

( )p pF F    − , 

    = 
2 1

( )p pF F    − , 
  = 

2 1
( )p pF F    − . 

 

However, (from the results of 1.) those equations say that the functions , ,  do in fact represent 

an extremal surface of the variational problem in question. Moreover, from the reality of the 

functions that appear, it will follow that  = 1. Therefore,  ,  ,   are the coordinates of the 

adjoint surface or the mirror image of that surface, relative to the coordinate origin. 

 

 

 12. Analogue of a theorem by Darboux. – It is known that Darboux proved the beautiful 

theorem that if two surfaces can be bent into each other in such a way that the corresponding line 

elements are mutually perpendicular then those surfaces will be adjoint minimal surfaces. In our 

sphere of ideas, that theorem possesses the following analogue: 

 

 Let F (p1, p2, p3) and 
1 2 3( , , )F p p p  be the integrands in adjoint variational problems. We 

introduce non-Euclidian metrics on the given surfaces: 

 

x =  (u, v) , y =  (u, v) , z =  (u, v) , 

and 

x =  (u, v) , y =  (u, v) , z =  (u, v) , 
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resp., by defining the arc-lengths using the quadratic differential forms: 

 
2ds  = 2 2 2

1 2 3d d d     + +  

and 
2ds  = 2 2 2

1 2 3d d d     + + , 

 

resp., in which 1, 2, 3 ( 1 , 
2 , 

3 , resp.) are the expressions that were given in (15) (
1 1   = 

2 2   = 
3 3   = 1). If the given map between two surfaces is a bending, based upon those metrics, 

and if the corresponding line elements on both surfaces are always orthogonal to each other, 

moreover, then the given surfaces will be extremal surfaces for the corresponding variational 

problems, and one of the surfaces will be either the adjoint surface to the other one or its mirror 

image relative to the coordinate origin. 

 

 In fact, if we introduce isothermal parameters ,  for the first of the given surfaces (as in 9.) 

relative to the established metric, such that: 

 
2 2 2 2 2 2

1 2 3 1 2 3E G                 = + + = + + = , 

 

1 2 3 0F               = + + = , 

 

then, as a result of our assumptions, we will also have, at the same time: 

 
2 2 2 2 2 2

1 2 3 1 2 3E G                 = + + = + + = , 

 

1 2 3 0F               = + + = . 

If we, in turn, set: 

 

1 ( )i   + = X , 2 ( )i   + = Y , 3 ( )i   + = Z , 

 

1 ( )i   + = X  , 2 ( )i   + = Y , 3 ( )i   + = Z  , 

 

to abbreviate, then the equations above will read simply: 

 
2 2 2X Y Z+ +  = 0 , 2 2 2X Y Z+ +  = 0 . 

 

In addition, as a result of the assumed orthogonality of the corresponding line element: 

 

X X Y Y Z Z+ +  = 0 . 
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It follows from this, in turn (as in 9.), that: 

 

(22)    X  = t X , Y  = t Y , Z  = t Z , 

 

in which the proportionality factor t is yet-to-be-determined. It next follows from the last relations 

upon squaring them and adding that: 

 

E G +  = 2| | ( )t E G +  . 

Therefore: 

| t | = 1 , t = cos  + i sin  , 

 

in which  is real. When one recalls the reality of 1 , 2 , 3 , equations (22) will then imply the 

relations: 

  
  = 1 ( cos  –  sin ) , 

    = 2 ( cos  –  sin ) , 

  
  = 3 ( cos  –  sin ) . 

 

If one contracts those equations with  ,  ,  , resp., then due to the orthogonality of the 

corresponding line elements, the left-hand sides will give zero, so: 

 

0 = cos sinE F  −  = cosE 
, 

 

i.e., one has cos  = 0, so t =  i , and we will arrive from (22) at the following system of equations: 

 

  =  1  ,   =  2  ,  =  3   , 

  = 1  ,   = 2  ,  = 3   . 

 

Furthermore, since E = G  and F   = 0, the theorem that was proved in 11. says that the surface 

that is represented by the functions  (, ),  (, ),  (, ) will be an extremal surface of the 

variational problem: 

1 2 3( , , )F p p p d d    = 0 , 

 

and the surface that is represented  ,  ,   will be either its adjoint surface or the mirror image 

of the latter relative to the origin. 

 In the foregoing, we adapted the theorems from the theory of minimal surfaces to our basic 

variational problem, in which only the first derivatives of the extremal surfaces appear. In fact, our 

theorems did not require the existence of the second derivatives of the extremal function, as was 

emphasized in the remark (4). However, it would also be interesting to adapt those properties of 

minimal surfaces in which the second derivatives do appear. For example, we might investigate 
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how the generalization of the known theorem of Bonnet that says that the adjoint map takes lines 

of curvature on a minimal surface to the asymptotic curves on the adjoint surface would read in 

our sphere of ideas. 
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