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“Discover now, and the most profound level, the irdécohesion of the universe,
perceive all of the forces that are at work, revbalvery essence of things, and finally,
cease to avail oneself of words.”

(Goethe Faus)
“There is nothing in matter that can excite in us amsation, except for its motion,
its shape or position, and the size of its parts.”
(DescartesPrincipes
“The river and thelropsin the river...the place of eaahop, its relation to the other
drops, its interdependence upon the other ones, theiadlreadt its (rectilinear, curved,
circular) motion towards the top, towards the bottonhe T“ideas,” like the
comprehendingf the different aspects of motion, of different gko(or “things”), of

different currents...Such is the dialectical picture efamiverse.”

(Papers on the Hegelian dialectic)
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PREFACE

In the early days of wave mechanics, there was a viewgat endowed that theory
with a hydrodynamical aspect, and Madelung was thetdirgbint out its existence.

In that epoch, the author of this preface had endedvdee utilize that
hydrodynamical aspect in order to obtain a concretepretation of wave mechanics
that would uphold the notion of the localization of atioke in space (viz., the theory of
the double solution). Together with the work of Bohm, @iteémpt was reprised at the
Institut Henri Poincaré, notably, by Vigier and his abbirators, Hillion, Halbwachs,
Lochak,et al.

On the one hand, the notion of the “spin” of a paetielhich introduced for the
electron in 1925 by Uhlenbeck and Goudsmit, was incorporatedniat® mechanics
several years later, thanks to the theory of thenapg electron that was due to Dirac.
Dirac’s theory itself also presented a hydrodynamicpéeisto it, like the original wave
mechanics, but led naturally to hydrodynamics with aikettic character, since it had to
be in accord with relativistic concepts. Nevertheladtfiough Dirac’'s equations have
been subjected to innumerable analyses for thirty ygasss only in the last few years
that we have discovered all of the richness in itsem®blance to mechanics and
hydrodynamics that is hidden behind its formalism. Thatoshsry was due to the work
of Takabayasi, as well as Bohm and Vigier. It hagmdg led to a general theory of
particles that are imagined as being very small fluid @tgplhat move in a state of
relativistic rotation, or rather — to employ an amgldthat seems more exact — as a very
small region of space that sits in the field of a @l&e vortex. This new theory of
particles, which defines every kind of particle by a $efjuantum numbers when they are
subsequently interpreted in the standard modern formulafigeell-Mann, provides a
model of all particles that conforms to a general &éiobito bring concepts that are more
concrete back to microphysics.

The work of Halbwachs, which was the subject of his datthesis and which will
be discussed in the present book, constitutes a vergriemt contribution to the deeper
study of the mechanical and hydrodynamical concepts thay ©ver into Dirac’s
relativistic formalism. After recalling the theoryathwas proposed by Frenkel,
Mathisson, and Weyssenhoff (which is already rathef, ddut nonetheless quite
instructive to contemplate), Halbwachs subjects theystidhe motion of relativistic
spinning particles to a very detailed analysis. Definingfdhe aspects of this extremely
complex theory in a painstaking fashion, he shows hois é@xpedient to define the
“center of mass” and the “center of matter,” whichrevpreviously defined in the work
of Bohm and Vigier, in a rigorous manner, and these cem#l play a fundamental role
in the new theory of particles. Halbwachs then shtvat if one seeks to endow these
remarkable points with the structure of a small, relstitvisystem that spins in an
arbitrary Galilean reference frame then the definitioet one obtains will not have the
necessary invariant character. In order to obtain aariamt definition of those two
centers, he defines them in a fundamental referenae lbth Weyssenhoff and



iv The relativistic theory of spinning particles

Halbwachs call the “reference frame of inertia.” B@ints consequently prove to be
very neatly well-defined.

The author gives a number of applications of thesdamental definitions, and then
arrives at the introduction of two very important quaesit one of which has the
character of a quadri-vector, and the other of which thascharacter of a pseudo-
quadrivector, that he calls the “wobble” and the “gynafi respectively. The detailed
study of the role that these quantities play then léadslink with the quadri-vector of
“spin” that comes from Dirac’s formalism by means ofnfiulas in which an angla
appears that was previously introduced by Takabayasi in hismory and is an angle
whose significance (which has remained rather mystenigug¢o now), can thus be
clarified. 1 will not expound any further upon the resuftshat part of Halbwachs’s
thesis, since he always subjects all of the questiomgruoonsideration to a very
meticulous examination.

Having been given these notions as a basis, Halbwachsrirles upon a general
theory of hydrodynamical models in which he lets the wafrRakabayasi serve as his
guide, since that was where the main conclusions were dedte then develops the
hydrodynamical viewpoint in the case of the non-relstiwiSchrodinger equations, then
in the case of the Klein-Gordon equation for relatigistave functions, and finally, in
the case of the Dirac wave equations. In all of@éhesses, he attentively studies the
interpretations that have been proposed, as well as strars that one might envision.

The last chapter of this book is dedicated to spinning flwitls molecular structure.
The author first considers the mean properties ofid that is composed of particles that
are fluid droplets that possess the infinitesimal dtarstics that were studied in the
preceding chapters, and then he studies the mean fldidsthiaus defined in the case
where spin is not involved, and then in the case wihése He studies a series of related
guestions in great detail that lead to various viewpoimgarceng such a fluid.

We conclude by saying that this book by Halbwachs constitatesextremely
important document for the study of problems that undoubtkeierve to play a major
role in the neighboring development of quantum microphysics

By examining the questions that relate to the hydrodynamfhiadody in rotation in a
very concise fashion when one takes the theory ativél into account, as well as
collecting and analyzing all of the results that wereammed before by the other
researchers collectively, besides numerous improvemergorrections, and his own
personal contributions, Halbwachs has arrived at a Huettkis, in itself, quite important,
and which might also contribute, as | pointed out inhéginning of this preface, to the
consolidation of the basis for the reinterpretatidrwave mechanics with the attempts
that serve to obtain a concrete model of particlessetvarious types will correspond to
the quantum states of liquid droplets (or, in my moreeganse: wave fields) that are in
a state of relativistic rotation. From this point cdwi Halbwachs'’s thesis is a definitive
statement of its era and might be of very great benefi

Louis de Broglie




FOREWORD

Whenever it is essential, this book will remain in ttwmtext of special relativity.
Unless stated to the contrary, one will consider akblivski spacetime with a Euclidian
metric that is referred to a Galilean reference framwausively. Thus, one does not need
to distinguish covariant components from contravarams, so all tensorial indices will
be placed in the lower position. A summation willdgsumed to be performed over any
indices that are repeated twice.

Greek indicesy, v, a, p) will be used for the spacetime componenpts(1, 2, 3, 4)
with the fourth componeng =ict.

Latin indiceq, |, k, ... will denote the space components (, 2, 3).

One occasionally has to specify the time componemt gfacetime vector, to be
real. One will then denote it by:

Vo = .iV4 ,
IC

while one will reserve the notatiovy for an invariant (e.g., norm, proper mass). The
symbols 0, 1 in the upper position will denote the comp@neht vector in the proper
frameZ, or in a framex,, respectively; e.qg.:

V2, V),V VL

Derivatives with respect to coordinates will be denoted by:

Derivatives with respegiropertime will be denoted by:

d d )
— orbyadot —G,=G
dr y dr *

"
One utilizes the Kronecker symbol:

ow=1 if U=V,
ow=0 if UEV,

as well as the generalized symbols:

5:; :5/10' 5V,8_5,u,85|/a1
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55;; = Qua Ovg Oy + 0up Ovy Oha + Ouy Ova Ojp
- 5/157 dydlﬂ_ 5,uy5v,85/m_ djﬂd/a d\y-

One will also use the completely-antisymmetric Lew#@ symbols&x and &,vq5 ,
which are zero when two indices are equal, have theevald whenijk or yvapg are
obtained from an even number of transpositions of thaesee 123 or 1234, resp., and
the value — 1 when that number is odd. One employs thémaavn relations:

&ik &j =20,

— jk
&k &m = Op s
Euvop Euvor = 3! a,_or,
Euvap Eyvor = 2 5521

—_— or
Euvop Euapy = Oppy -
One will use Takabayasi’'s projection operator:

+ 7l

Nuv = a;zv C2

as well, which will permit one to form a covariantpeassion for the projection of a
vectorA, onto the proper space hyperplane that is orthogonhgtanit-length vectou,
(i.e.,u, u, = - ¢% by way of:
A;(IU) = N A, .
Obviously, one will have:

RNuy Qua = Nua Nuy Uy = 0.

Finally, if the vectorA, is itself contained in proper space (i&,,u, = 0) then one
will have 77, Av = A, .
One will denote an antisymmetric tensorpy) :

S =~ Jua s

and the antisymmetric part of an arbitrary ter§piby:
Seuv> = 5 (S —Sy).

If S, is itself antisymmetric then one will ha®g,; = S .

Recall that the contracted product of an antisymmegrisdrS,,; with a symmetric
tensorA,, = Ay, is zero§m Au = 0.

We shall call the quantities:
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*S = 38Kk S,
*Gij] = &k Ok,

the spatial dualsof a tensors; or a vectordk, respectively.

If the tensor is antisymmetric then the componefts;; and its dual & will be
equal, and the dual of the dualsgf will be s;; .

Similarly, one will define thepacetime dualef the quantitie$,, , s.v, g, by:

i
*fo = 5 Eauva f,uwl )
i
S = 5 Eapuv Suv
*Aapy = 1 Eapp Oy -

If the tensois,, is antisymmetric then the componentsigfi or its dual %5, will be
equal, and the dual of the dual $f,; will be — 5., . Similarly, the components of a
completely-antisymmetric tensfy,.,; will be equal to those of its dual,%, and the dual
of the dual Of[yv,]] will be f[yw]] .

In AppendixesA, B, andC, we have separately discussed the questions (which are

classical, moreover) that are not directly connectigd thie study of spinning particles or
spinning fluids. Nevertheless, we will refer to theomstantly, and an understanding of
those issues will be indispensible to one’s understgndf the entire book. All of the
references will refer to the bibliography at the endchef volume.

Before commencing with my exposé, | would like to take tdpportunity to mention
all of the correspondences that | had with Louis de Bragid André Lichnerowicz, who
consented to direct my efforts, and who gave me ineltamassistance by way of their
advice and the work that they did. | would similarly ltkeexpress my gratitude for the
numerous clarifications that | received from my mest®avid Bohm of Bristol and
Takehiko Takabayasi of Nagoya, and to all of the group sd¢arehers at the Institut
Henri Poincaré, who constituted an admirable teanotiécative labor along the lines of
the causal interpretation. | would also like to thanki@a Jausserain of Marseilles,
who allowed be to dedicate myself to my research ahd provided me with ideal
working conditions, as well as Georges Bodiou of Maesilwho guided me in certain
mathematical questions. But most of all, | am indebtedean-Pierre Vigier, who has
followed all of my efforts, step-by-step, and without whbcould not possibly imagines
how this book could have managed to continue up to the enthefg as my friends and
masters, | extend my deepest gratitude.







INTRODUCTION

8 1. Madelung’s hydrodynamical representation.By setting:
¢ = R éS/h

one will find that the Schroédinger equation in an extefiedd that is derivable from a
scalar potentiaV/(x), namely:

hog
— -—A -V
i ot 2m $-Ve.
can be split into two real equations:
2
) 9, L msp+v- AR g
ot 2m 2m R
2
© a(R) D(RZDSJ 0.
ot m

If one suppresses th&® term then the first equation will represent therii@n-
Jacobi equation, and will define the basis for t@nceptualization of the causal
interpretation of the theorylp, 28, 29 In accord with the formalism of classical
analytical dynamics, one regards the action funeti® as a potential whose gradient
represents a momentum vector:

=[S

and in order to recover the exact expression ferHamilton-Jacobi , one introduces a
“‘gquantum potential”:

h2 AR

Q=- 2m R’

which is combined with the potentilof the force. One then has:

© EeimP+(V+Q=0
AR, [ty
(C) p +DmR v) =0.

Equation (J) shows that the quantitydS / ot represents the classicahergyof a
particle of massn and velocity when it is placed in a field with the potentiak Q. If
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one takes the gradients of the two sides of the equtten one will see that this particle
executes a classical motion when one takes the extiemce— J(V + Q) into account.
In regard to the non-quantum motion, which satisfies Hlaenilton-Jacobi equation,
properly speaking, viz.:

0S, 1 >

—+ —(09°+V =0,

ot 2m( 9

one sees that the quantum effects are introduced soléhelpresence of the potential:

2
o= 1" AR
2m R
which is determined entirely by the functiét) which obeys the equation of analytic
continuity (C) in its own right.

Given this, one may propose an interpretationctviaie call “statistical” 40], for the
functionR: If one considers an ensemble of a large numbetentical particles that are
distributed with a density = R? then equation (C) will express simply the constove
of the number of particles in the course of theation [16]. This concept of ensembles —
or clouds — of particles assumes a well-definetdaindistribution, and in so doing raises
some difficulties that could not be resolved urgtently, by introducing the hypothesis
of stochastic fluctuations of a wave around a n&ate that is expressed by equations
(C) and (J) (see above).

However, it is possible to mathematically constraienodel ofrepresentative fluids
solely on the basis of these equations by intradpei matter densitg = R? (or a mass
densityu = pom) and a flow velocity = (1JS) / m at each point.

Such a fluid simultaneously provides a hydrodymairepresentation for the
Schrédinger wave function and a continuous reptasen of the mean of the ensemble
of particle in the preceding theory. The quasssieal dynamical laws that govern the
particle of the causal theory correspond to theslafvhydrodynamics here, which are
likewise quasi-classical. This model was propdseMadelung 41] in 1927, which was
the same year that de Broglie set down the foundsinf the statistical formulation.

As we have previously discussed, equation (C)ressthe conservative character of
the fluid. One remarks that by attempting to detive velocity field from a potenti&@m
one will be limited to the case of irrotational\Vilp since the curl of a gradient is zero.
Consider equation (J), when expressed in tensatioot

200R
95, 1559 s w09 g
o0 2m ' ' 2m R

Taking its gradient, replacingyS with my , and multiplying byo = R? gives:

n? 0.0 R
+pv,0;(my) =—poV + p(%%}

o(my,)
ot

0
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If one is given equation (C):
o0p
5 o) =0

then the left-hand side can be better written irfoinen:
0
at (omvy) +0;(v; pmupy),

in which we recognize the derivatide/ dtof the densityom\, along the streamlines (see
AppendixA). If one recalls tha¥ refers to the potential of the for€g = — oV that acts
on aparticle then the other term pd\V will exhibit the external force density.f One
will then finally have:

d B h? 0,0,R
o (omw) =fic + 2mpak( 2 j
One recognizes Euler's equation from classical hydrodiggnalong with an extra
external force densitfx and another quantum force density that is expressetuast&on
of the quantum potential in the causal interpretation.
This quantum force does not have the form of a scadatigmnt. It is easy to show
that it is a manifestation of the existencegoéntum stressas the fluid interior. Indeed,
one may write:

2 0.0.R) #n?
¢k = % RZ ak (%j = % (R Ok ajajR -0kR ajajR),

or, upon integrating the two terms by parts:

hZ
“~ 2m

& [0(RO,OR) - 9,(OR AR)].

In this form, one sees thg is the divergence of a symmetric tengfrthat may be
regarded as anternal stress potentiakith respect to a unit volume:

P == 0; bk,
with

hZ
6, =5 (0,R0, R~ F,9, B,

which one may also write, upon introducing the dgns= — R*

2 J0.R
6I<j=—h—R26k[J—

R

72 h?
=— — RAIlogR=—— poddilo :
o j o R adjlog o PO gvp
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2

h
6, = —mpakaj log p.

One sees that the fluid is not perfect, since thelilagonal components of the tensor
are not zero, in general. Nevertheless, upon considdrangiagonal components, one
may define an internal pressyrésee AppendiB), which does not, in general, suffice to
completely characterize the totality of the stressds:

hZ

=16 = —[(OR?-RAR]
p 3&1 6m[( ) ]
or furthermore:
hZ
=- A(lo )
p 12m'0 (log p)

This hydrodynamical representation renders a geegat service that has the support
of intuitive reasoning to one who is determineds is the case in the research that is
carried our in the context of the causal intergre@ta- to represent physical quantities by
classical variables; i.e., to interpret the “obsdtes” of quantum mechanics by means of
“hidden variables” that possess a tensorial charaotd satisfy differential equations that
reduce to deterministic laws, in principle. Welwibw find it expedient to rapidly show,
by way of example, how one uses the Madelung ftaiprove the two fundamental
theorems of the causal interpretation in the césleeoSchrodinger equation.

8§ 2. The guidance law of the causal interpretation.One knows that in the theory
that is called the “double solutionl¢, 30, 6%, the particle aspect of a micro-object is
represented by a singularity of the amplitude wiae function. This wave function:

U= fe

obeys the customary linear wave equation at eveiyt,pwith the exception of a small
region of radiusro whose order of magnitude is that of the classitalensions of a
particle (~ 10" cm.). The functiotd may be decomposed into two functidhis U, +
@. The latter:

¢ = R é’S’/h

is aregular function that, when regarded by itself, is a dohlutof the linear wave
equation at each point. It may be represented tggalar fluid of densityy = R? and
velocity:
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One assumes that the total functidrdoes not begin to differ appreciably from the
regular functiong, except in the interior of a sphere of radiugr; >rg). As far as the
real representation of the complete wave function iscemed, asingularity of the
density occurs in this sphere; i.e., an extremely strwongcentration of fluid. One
assumes that on the scalerpthe functionS, which is related t@ and its gradient, is
uniform, as well as the external field.

From a wave-like viewpoint, this hypothesis signifiest tthee singularity is much
smaller than the wavelength of the associated regudase. The variations of the
external field might not be negligible on the scalehe wavelength. This is precisely
what characterizes the “qguantum domain” and, in particthe atomic fields. Our proof
will remain valid, provided that the variations deviatenirthe scale of the singularity
only negligibly; i.e., from the dimensions of the pa#iitself.

We have proved the Hamilton-Jacobi guiding relation:

mv =[S

that relates the velocity of the singularity to the flow velocity = OS / m of a regular
fluid, but under these conditions we will also showt thas classicalrelation is valid at
the quantumlevel.

One characterizes the singularity by the fact th#tennterior of a sphere of radius
the densityp = f ? increases very rapidly with 1r/ such tha®p / dr is much larger than
p, and one must consider the ratid (0o / dr) to be zero. One supposes from the outset
that on the scale of the displacement of the singularity of density in ¢berse of time
with velocityv is effected without any deformation of the distribut@p inside of the
singularity. The values g are displaced in the course of time with a velodiit thas
the same magnitude and direction for all of the poifte@singularity.

Having said this, the entire proof rests upon the followirgptiyesis, which is called
“phase matching”: In the domain of the singularity thatiedined between the radi
andr; there exists a closed surfateupon which the density of the flumlis the same at
every point, and where the pha&ef the complete wave is and remains constantly equal
to the (uniform) phas& of the regular wavep, along with its first derivatives. This
hypothesis does not have any hydrodynamical
significance. It refers explicitly to the wave-like
nature of the functions andyp, for which it represents
a sort of resonance condition. It does not resalinfr
the particular form of the singular function.

Now, consider the surfageand its image' when
it is transported as a whole for a tidiesuch that each
point M passes td1' with the same velocity as that
of the singularity. One represents the normal to the
surfaceX atM by the vecton, which is, consequently,
collinear withJp. One also represents a wave surface
p of the regular wave, to which the flow velocly of the fluid corresponds, which is
uniform on the scale of and collinear withJS.
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If the displacement d1 isv & then the density of the fluid 8 at the instant + &
will be:

w':m+%—fd+6kpvkd.

However, like the surfacg, it will be displaced as a whole with the same valtie:

P = pPw,
or
0p
P X+ —a&=0,
OWET
SO
0p
kO Vk = ———,
O
and the scalar produdtp v can be written:
0p
——=v cosg, n),
P . n)
so, the norm o¥ will be:
V COS h,v):—m.
oplon

Applying the continuity equation to the Madelungidi gives:

a—'0+DIZ(,0\/):O, with v:D—S.
ot m

The hypothesis of phase matching permits us tatiigehe gradient]S of the phase
of the regular wave with the uniform velocW¥yof a regular fluid. One then has:

m%—f+ OpV + pAS =0,
or furthermore:

ma—p+ ma—chosh, V) + pAS = 0.
ot on

Dividing this bydp/ on gives:
- mvcosg, v).
Therefore:
mv cosf, v) = mVcosf, V).

The values and direction @f andV are uniform on all of the surface On the
contrary,n will vary and may point in any direction in spac€&hat is why the condition
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above might not insure that the directioandV are consistent at each point; that would
entail the equality of the two velocities, as wellence, the singularities will be carried
along and guided by the current of the regular fluid. TEhikeguidance lawof quantum
mechanics.

8 3. Bohm and Vigier’s statistical theorem. It is likewise by using the concept of
the Madelung fluid that Bohm and Vigie31-33 proved that the distributioR = R? of
an ensemble of a large number of particles that haesdaine wave function does not
represent a particular case that corresponds to a kpkaiae of initial conditions, but,
on the contrary, represents the limiting distributimwards which such a cloud of
particles necessarily converges for any given initiariistion. We rapidly summarize
this fundamental proof: The basic hypothesis is thatMhdelung fluid represents the
mean statef a real fluid that is subjected to disordered fluctuatianftuid that always
obeys the conservation law, but whose velocity idonger the gradient of a Hamilton-
Jacobi function. The fluctuations of the fluid reflea fluctuations of the wave function
that are due to either the continual variation ofltimé&ing conditions (thermal agitation
of the molecules from the mechanism of interferefmeexample) or to the influence of
sub-quantum phenomena that are incoherent at the quéetein

One assumes that this chaotic fluid involves a greatbeu of particles that are
distributed with a mean densiB(x, t) and obey the guidance law. Since the latter is a
consequence of the continuity equation alone, whi@nisquation that is again true for
chaotic fluids, it will be correct to think that therpeles displace with the velocity of
the fluid and accompany it in its fluctuations. One suppdsat the fluctuations are such
that an element of fluid that is situated in an eleantdnvolume that is defined by the
region in which the densityy of the mean fluid is non-zero will have a non-zero
probability of going to any other element of the saméreg

In order to describe these fluid displacements (whiak dilate or contract), one uses
a conformal representation of the spac& imf a space of that is constrained to be filled
with amean densityhat is uniform and constant. The volume elenibn{dx dx dxs)
corresponds to the elemedf (dé, dé dé&) by means of the Jacobiah of the
transformation:

0x
(J-1) dx=J [G_ﬂj dé .

The quantity of matter that is containeddinfor a (mean) Madelung fluid is:
ox.
dQ = m(x, t) dx = py(x, t) J [—Jj dg .
0¢,
In the space of, this quantity must be proportional to the voludge

3l ] =c
ﬂ)! a_gk - y
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or furthermore:

This is only one condition for the determination of éhfanctionséi(x, t), &(x, t),
&(x, t). One thus has considerable indeterminacy. One maykéhaarthe unbounded
space ok corresponds to bounded valueséofEqual volumes of the space $tontain
equal quantities of matter and correspond to volumesefpace ok that are much
larger and whose density is sparser. Incidentallyesaguation (1) depends upon time,
the fabric [es maille$ of the space of will deforms into the space afin the course of
time.

As far as the particles are concerned, if their demsithe space of is P(x, t) then
that density will transform into the spaceddds:

P(x ) _ P(x1)

J(afkj Po(x.1)
ox;

F(& 1) =

One sees that if the denskyof the particles is proportional to the dengityof the
Madelung fluid then the functioR(¢, t) will be uniform and constant in the spaceéof
Consider a volume elemedf that is centered ofiat timet. At apreviousinstantt’, the
fluid in ¢ was contained in another (equal) element thatcogasered on another point
1. One may evaluate the probability that this ott@nt & was contained in an element
dé that was centered &t

dn =K( é,t,t)dé.

Since & was certainly one of the points in the domaiof & (which represents the
domain ofx wherep, is non-zero), the integral of this probability o\l of the domain
A will be equal to 1:

jAK(f,f',t,t')df' =1
for a givené, t, andt'.
Since the particles follow the fluid in its fluettions, one will have:

(J-2) F(& 1) = L K¢ tt)FE )ds.

At each instant, there exists a pofi(t) in the aggregate of this particle distribution
where the densitff is a maximum and equal t(t) and another poinf(t) where it is a
minimum and equal tan(t). The density at the poidi(t) at the instant is well-defined
and related to equation (2) by way of:

M(t) = '[AK[EM (), R, t)déE .
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If one replaces the functidf(&, t') under the integral sign with its maximum value
M(t') at the instant’ then one will obviously obtain a value that is greatantthat of the
integral above:

J K& O, € LTME) dE 2 M().

However, one may removd(t') from under the integral sign and the integral that
remains, namely:

| Kl& 0. € tt1de

will be equal to 1. One will then have:

M() = m(t).

When an interval of time'(< t) elapses, the maximum density will diminish and th
minimum density will increas. Therefore, the flmall tend towards a state in which the
two values are equal, and where the valu&(df t) will then be uniformly equal to its
common limit in the entire domain. From that pantvard, the situation where:

m(t) =m(t') =M(t) = M(t)

will be found to be the case, and will persist fimeely. This implies that upon
returning to ordinary space the particle denBfty; t) will be constant and proportional to
the densityoy(X, t) of the mean Madelung fluid at each point.

The preceding proofs rest upon very general thmsr@amely, the conservation law
and the laws of statistics for Markov processeswus] they may be easily extended to
other wave equations and to other types of micijeet® for which one can construct
corresponding hydrodynamical interpretations. &checase, they permit us to account
for a model- which is, in principle, deterministic — for the s#mvable statistical
distributions by taking the “hidden variables” te the physical magnitudes, which are
completely foreign to the statistical interpretatiof quantum mechanics. One sees the
importance with which this perspective is endowdd study of the hydrodynamical
interpretations for the various wave equations #éinatemployed by quantum mechanics.

8 4. A hydrodynamical model for the vacuum. One knows, moreover, that an
essential characteristic of the causal interpi@tas that the linear formalism of ordinary
guantum mechanics is considered to begproximationin it that is valid for a certain
scale of reality, while the exact wave equatiosnanlinear. The nonlinear terms relate
appreciably to just the immediate neighborhoodefdenter of the singularity (where the
distancerg is considered to be much larger), but do not nyoithié results that are given
by the linear formalism at the atomic level. Hoeevhe hypothesis of their existence is
essential to the theory at the quantum level. As have seen, they are what is
subordinate to the hypothesis of phase matchingvdmt a regular wave and a
singularity, and consequently they will be respblesifor the guidance law for the
particles along the waves. They are what prevhat dingularities from extending
indefinitely by making them vanish at a distancel amsure that the expansion of the
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wave amplitude diminishes. Finally, the perspective tha theory hopes to define is a
satisfactory interpretation of the nuclear forces tha linked to ideas at the nuclear
scale; they are the nonlinear terms that deviate cenadity.

Now, it is very difficult to progress in the study tifese nonlinear terms, partly
because of the extremely arduous calculations that ¢baracthe treatment of nonlinear
equations, but also because of the lack of a directing hggistithat would guide our
research in a medium with an infinite variety of pbksiforms. It might be that the
hydrodynamical scenario provides such a hypothesis anodudes a fruitful path to
follow. Indeed, it is well-known that the study oftbropagation of waves in material
fluids in classical hydrodynamics uses linear equatitias are valid only for regular
waves of small amplitudes in a first approximation. Hesveone knows full well that it
is only an approximation, and that the complete nonlirgaations that are provided by
the properties of fluids in the presence of importanstaints are frequently used for the
study of the propagation of “shock waves,” which are wave®xy large amplitudes or
ones that involve singularities.

Reasoning by analogy, one might hope to represent nibar liwaves of quantum
mechanics as waves of small amplitude that propagate theoggren fluid, and after
that they will be guided by nonlinear equations that reptebenpropagation of shock
waves through the same fluid, and thus arrive at therrdetation of the types of
nonlinear terms that one must add to the quantum equation.

The hypotheses of that research introduce the hydrodgabrformalism into
guantum mechanics on a plane that differs completetym f the method of
“hydrodynamical representations” that was describexv@ab Here, the fluid is assumed
to possess an objective reality and embody the eakphtisical properties of a “material
medium” that are the true basis for wave-like phenmme This new concept is
introduced, instead of the usual concept of “field,” orilgirty that of “vacuum,” in
order that its properties might be specified by expredsiam in hydrodynamical form.
The present work, which has the fundamental hydrodyn&raess of certain more
general types of fluid for its object of study, mightveeas one such enterprise, and,
more especially, might deduce the consequences of acagptedal principles that show
that the wave functions of particles that are giveim selative to the fluid possess an
internal angular momentum densityOne does not reach the following stage simply in
order to study the propagation of vibratory motions in suglidland to compare the
equations of propagation thus obtained with the wave eqsatioqquantum mechanics.

8 5. Spinning fluids and spinning particles. It is remarkable that the various
authors who originated the theory of fluids that posses internal angular momentum
density (i.e., “spinning fluids”) — a theory in which & well-advised to avoid confusing
that concept with the vorticity of classical fluifi46, 697 — have introduced this new
density from axiomatic viewpoint. They introduced it eifHike WeyssenhoffZ], in the
form of an antisymmetric, second-order tensor of fimaé angular momentum density,”
or, like Costa de Beauregar@g], in the form of a vector that is dual to a completely
antisymmetric, third-order tensor that represents an“si@nsity,” or, like Pham Mau
Quan B9, in the form of an electromagnetic field quantityhiah implies that we are
assuming that the medium is polarized and endowed witbleantromagnetic moment
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density. However, it does not appear that any of theveaboithors arrive at a clear
explanation for the internal angular momentum &matic momentproperly speaking;
i.e., one that relates to timeotion of the matter. That seems to be a failure to Bee t
consequences of a fact that was pointed out by CostBederegard 48]: If one
considers a small volundy of fluid then itsproper kinetic moment will be the integral
of the moment of the quantity of motion with respiect pointP that is contained in the
volume dv. It will obviously be of fifth order with respect to thieear dimensions odv
(as a moment of inertia). If one divides by the vaduimorder to obtain a mean density
then one will get a quantity that will further be ofcead order, and which will,
consequently, vanish alv tends to zero. It appears from this that it is impossiol
define an internal angular momentum density. In thividas Costa de Beauregard
concluded, and rather inconsistently, the necessity Ohidg such a density by an
axiomatic method without referring to the rotational motor either of the two
considerations of invariance and antisymmetry. Howat/és,also possible to draw an
entirely different conclusion, namely, that passingh® limit is not legitimate, and that
any fluid that is continuous at one scale might belvedato a much smaller scale where
it has a discontinuous structure. From this, one mighsider a spinning fluid to be
comprised of a finite number of tiny particles, eaclwbich is in rotation about itself,
and thus possesses a finite proper kinetic moment. QOmedeos a volume that is
non-vanishing, but large enough to contain a great numberroéles, and one then
defines the internal angular momentum density by dividingstime of the proper kinetic
moments of the particles by the voluke Under these conditions, the paradox of Costa
de Beauregard, which, from a distance, proves the coctivaglcharacter of the concept
of a spinning fluid, appears to simply support the well-kmalialectical principle of the
reciprocal relationship between the concepts of comyirauid discontinuity.

It is this viewpoint that will be adopted in the presesmtrk, where one essentially
proposes to illuminate a theory of spinning fluids thatiar@gined to be composed of
discontinuous collections of tiny structures in rotatadout themselves and are clearly
understood to be coupled by interactions. It is this congefftuid tops,” which was
developed recently in terms of spinors by Bohm, Tiomaad Schiller 70 in non-
relativistic form, and then by Bohm, Vigier, Lochak, angsalf [17] in relativistic form,
that led, in this form, to a fluid expression for onjyute matter;” i.e., matter that is
devoid of any interaction. In this work, we will avoidet use of the “top,” which
imprecisely evokes the image o$alid spinning particle.

Having constituted spinning fluids from such particles, veethen led to commence
by studying the problems that are posed by the relativistiory of spinning particles.
We shall encounter it again, but in a form that is isgdo the dialectic of continuity of
discontinuity. Indeed, the classical works on relatigi spinning particles (which are
mostly old works, and which we shall recall in our ficklapter) amount, in reality, to
endowing the particle which is considered to be a point with a tensor that is
christened the “angular momentum,” but which is nadtesl to the rotational motion of
the particle for the excellent reason that a point chantually rotate about itself, since
its mathematical expression does not contain thessacg parameters for describing
such a rotation. In order for such a body to be callethting,” in a strict sense, it must
be decomposed into distinct parts that are capable afingtabout each other. The
particle would spin in a precise, rigorous sense, thusamioting the strict continuity of
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the spinning fluid. In other words — at least as far apgromtations are concerned — the
purely discontinuous conception has less physical meanargttte purely continuous
one. One is in the presence of two opposing, but asdahee time complementary,
concepts, so it is impossible to conceive of one withite other. That is why the
classical dynamics of relativistic spinning particlest theas studied by Frenkel]]
Mathisson §], and Weyssenhoff2] represents only a special case of the various
dynamical possibilities.

It is for this reason that in Chapter Il we shall sty develop the general
relativistic theory of spinning particles that is due telker [12], Prycel3], Bohm and
Vigier [14], which describes thglobal motion of a classical physical fluid that is in a
state of rotation, which is a theory for which we kbaldy several applications in detail
in Chapter Ill. We can then proceed with the study afbglynamics, properly speaking,
in our last two chapters. In Chapter IV, we will préstie general axiomatic theory of
spinning fluids, which is a theory that was establishedilsameously and independently
by Vigier, Lochak, and myselRp], and we will apply the hydrodynamical representation
to various wave equations of quantum mechanics. Finalighapter V, we will restrict
and adapt the preceding theory to the case of fluidsatfeacomposed of relativistic
spinning particles that are coupled by interactions, andiehow several applications
of the formalism that was thus established. Althoaghye said, at the start of this book
we will seek to address the dynamics of spinning partinlescase that is more general
than the one that is described by the classical Frafkgsenhoff theory, in the last
chapter we will take the form of the fluid to be basedhim specific particles that were
studied in that classical theory. It is hardly claimedttwe are proposing a complete
theory of fluids that are endowed with an internaltiota Furthermore, we promise to
return in a later book to some cases that we have digleged to set aside in order to
abbreviate a treatise that is already lengthy.

8 6. The structure of the vacuum in quantum mechanicsDespite the references
that we will make to quantum wave functions at the en@lmapter V in the name of
examples, it is important that treatise should be pdetaly independent of quantum
theory, and that it might be regarded as a contributoseveral chapters of dynamics
and classical relativistic hydrodynamics. It this extitit seems to blaze a path for the
edification of a whole new series of topics in dynarand hydrodynamics. However,
we do not disguise the fact that we especially hope thatght be used fruitfully for
research into quantum mechanics. Furthermore, wetshadinate this introduction with
a rapid sketch of presently open issues in the catbe @husal interpretation.

The essential point of departure seems to be curremtyded by Bohm and Vigier’'s
drop theory. The latter aides to Hillion and Lochakdrinto consideration the possible
existence of a limited number of excitation statestle drop, each of which
characterizes, and in a global fashion, the existerfca certain periodicity in the
evolution of all the parameters that define the intemmations of the drop. The
classification of the stable states of the drop rejdives customary classification of
elementary particles[l] with a surprising degree of harmony between them. Nétura
the result should not be interpreted, as was beligvielyy years ago, as showing that an
elementary particle might be represented by a Bohm-Vdy@p in a given excited state.
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In the case of the causal interpretation, one canddgardrops as representing various
types ofsub-quantunstructures. One then supposes that the drops aretiay iy order
for a large number of them to exist in a region of spau the order of I6° cm. These
drops happen to be in a very violent, chaotic stateaama@oupled by given interactions
SO as to constitute a material medium of the sampe &g the “Dirac ether,” in which
waves with singularities at the quantum level propagatd, &y which the causal
interpretation describes the elementary particleemRhis perspective, the various types
of drops can be regarded as the elementary sub-quanturitiears of a material
medium that is continuous at the quantum level and wilistand constitutes the entire
universe, in which it serves to support wave-like phenomand the fact that it might
appear to be the different stable states of the saape(drich are, in principle, capable
of transforming from one into the other) can be cotetavith the old-fashioned idea of
the unity of matter, which seems to have severely ceegrin recent years by the
proliferation of elementary quantum particles.

Naturally, scientific prudence obliges us to consideridle@s that were enunciated
here as being only quite vague and entirely hypothetical,f a®to Their principal
interest is in that they provide a skeleton for redeantd re-direct us towards a fairly
neatly well-defined direction. Its essential points eertainly appealing to stipulate, that
one must, perhaps, modify the precise mathematicatedkat gave birth to the theory,
which could cause new problems and difficulties to app&mvertheless, we think that
is not forbidden for us to place a few provisional land@malong this path.

The first stage of this theory should necessarilyssbrof considering each of the
stable states of the Bohm-Vigier drop separately, and/isigitheir dynamics, first in the
absence and then in the presence of external foredsthan constituting a relativistic
fluid from each of these types of particle by introdgcion the one hand, an appropriate
interaction, and on the other hand, a chaotic motiah éndows each particle with a
speed that is close to that of light, in order to realan approximate isotropy that
conforms to the recent ideas of Dirac.

The second stage will be to impose waves on this thad consist obrganized
motions of weak amplitude that are superimposed @eotic motions of large
amplitudes, in the manner by which resonance waves appeargsimmolecules in
chaotic motion in the kinetic theory of gases. Thisl wdmpel us to direct our
calculations, and in particular, to choose the intestedsses that we introduce in a
fashion that will recover the equations of quantum meckaas the equations of
propagation.

The third stage consists of developing a theory of thedum,” which is regarded as
being composed of a mixture of different particles tha studies separately and with
specified interaction of each type, and introducing nderactions between the particles
of different types that are capable of being made to afdps®areen the various waves
like the coupling terms that are customarily employed by tguamechanics in order to
treat (Quantum) particles in interaction. At this stagsgeems that one might judge the
value of the theory by essentially its capacity tmptetely re-interpret the collection of
results that come from all of the linear formalishfist quantization.

The fourth stage consists of attacking the nonlinear olomae., considering waves
with singularities in the previously-constituted fluid anausing nonlinear terms to
appear in the singular region, which will thus be determited large extent, by the
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hydrodynamical properties of the fluid like the ones thedur for shock waves in the
dynamics of material fluids. One will probably encountensiderable computational
difficulties at this stage, but it might be that tla@g compensated for by the access that it
gives to an interpretation of the nuclear forces andsires.

Finally, the last stage will be to try to comprehend to effect the transition from
one of the stable excitation states of the drop toh@nphow such a transition might be
interpreted in terms of waves, and how it might accéamthe mutual transformations of
elementary quantum particles.

One sees that we are concerned with a long-windextpeisie that would obviously
necessitate the help of a good number of researchetbe present book, we would like
to give only a preliminary sketch of a mathematical that might, we hope, be of some
utility along that line of research.



CHAPTER ONE

THE CLASSICAL THEORY
OF RELATIVISTIC SPINNING PARTICLES

8 1. The Frenkel Lagrangian. The first formulation of the relativistic dynamio$
spinning particles was given by the Soviet physicist Frieake theory of the electron
that was endowed with spin in an electromagnetic figld Frenkel considered a particle
that possessed a magnetic moment and an electric moemenproposed the two simple
hypotheses:

1) The magnetic momemh and the electric momermf of non-relativistic physics
are, in reality, the various components of a singlativistic physical quantity: the
electromagnetic momepd,s, which is a second-order antisymmetric tensor. If \aeg
ourselves in an arbitrary reference frame thenvill be, as one says, aaxial vector,
which can be taken to be the spatial dual of the tethsdris formed from the spatial
components of/yp:

My = Lb3, My = LAy, mg = Lh2,

or, by using the third-order, completely antisymmetric lsyin
Mk = 3 &k M -

One then considers the polar veagaio be formed from the other three components
of the same tensqryg:

IOk = fha -
Finally, conforming to the hypothesis of Uhlenbeck and Goudsmeé supposes that

the moment is purely magnetig € 0)in the proper system of the electrovhich may be
written in the covariant fashion:

as one may easily verify. If one considers an ayjtreference frame in which the
velocity of the electron 18 then one will get a unit-speed velocity with components:

u = avi and u, = aic, with  a= (1 =),
and relation (1) can be written:

(1.2) Miovi + tgaaic=0  or 4V +icus = 0.
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Now, one hagss =igj, and on the other haneh = 1/2 gy 14 , which will give t4m =
Emk M when it is contracted withmg.
If one takes these expressions into account thetorel2) will change into:

- &MV —cg =0,
so that
&ik Vi Mg = CqG ,

which may be written in vectorial notation:
cg=vxm,

and will obviously imply that:
g Om = 0.

Thus, in an arbitrary reference frame, the electric emdnof the particle is the vector
product of the velocity with its magnetic moment.

2) The existence of an electromagnetic moment isestiad with the existence of an
internal angular momentum for the particle — i.e.hviti rotation about itself, a rotation
whose variation in the course of time is involved witinaiypics. One supposes that this
moment is expressed by an antisymmetric teBgpthat is related to the electromagnetic
moment by the classical relation:

e
=—S3.
Hap mc B
One will then gefrenkel’s auxiliary conditiorfor the internal angular momentum:
(1.3) SupUs = 0.

Like o5, the internal angular momentum can be decomposed ireéergmnce frame into
two spatial vectors:

C
S =1 &k §; :&m“
e
. C
tk = 1Suk :%Qk,

and one will have:
ct=vxs and t[k=0.

If one puts the particle into an electromagnetic ftalt is represented in relativistic

form by the Maxwell tensoF .z then it will be subjected to a torque whose relativistic
expression is obviously obtained by generalizing the clalsskpressioy =m x H to:

Vo= Mar Fpr — Upr Faa .



Chapter | — The classical theory of relativistic spinmagicles 17

With this, the relativistic generalization of the claasformula for the dynamics of the
kinetic moment will be given by:

Sis = Har Fpr— g Faa

(The dot indicates the derivative of the particle hwitespect to proper time, or
furthermore, the derivative along the world line tlsatlescribed by the particle.) This
can be interpreted in any reference frame as the twe-thimensional relations:

i(ﬂ:mj =mxH+qXxE,

dt\ e

d(mec

—| — =gxH-mxE.
dt(eqj g

In principle, these two reciprocal equations will permg to determine the entire
evolution of the vectorsn andq when we know the distribution of the fiel&sandH
and the initial conditions.

However, one sees that these equations do not itmplgandition thatg =v x m. It
can be assumed to be satisfied at the initial instarttthat does not continue to be the
case for the rest of the motion, in general. It tedhiat if one wants to adopt Frenkel's
hypotheses then a simple relativistic generalizatiotheflaws of dynamics for kinetic
moments will not suffice. The relativistic internailgallar momentum appears to express
a reality that is more complex than that of the laxeégtor of classical dynamics.

Frenkel attacked the problem by means of a variationatipte that was more
general than the dynamical relation. Using the daksxpressions for the energy of the
electron and the two auxiliary conditions:

Ug Ug =—C and SypUz=0,

he formed the Lagrangian:

e le x

The two coefficientd anda, are Lagrange multipliers whose significance remsain
to be seen. Incidentally, one can recover thesidak expression for the energy of
charged particle and a dipole in an electromagnigid that is represented by the
Maxwell tensoifF s or the spacetime potentigl, (So one hast 3= 0, @p— 05 P.a).

Finally, the termT represents the kinetic energy of proper rotativhpse form
remains to be seen. In addition, the two multigl anda, of the system depend upon
two groups of configuration variables: the coortisx, of the particle, along with their
proper time derivatives:

X, = 8a,
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and a group of angular variables that Frenkel representeah lntisymmetric tensor
Qrqg, along with its derivatives:

Wap = Q[aﬂ] )

which generalized the classical notion of angular vefoci

The equation of the relativistic representation ofdhentation of a body with respect
to the four coordinate axes of a Galilean referenaadrposes a series of problems that
have been the object of numerous recent pag@5(Q, 52. However, for the moment,
and from Frenkel's purely formal standpoint, one does ae¢ o use the variabl€} g
themselves (which define an anholonomic coordinate systeuh)only their variations
Xqg - This tensor differentiates to the tensor of relstiwiangular momentum:

d)a/; = Whp Oor.

As for the latter, one constructs everything naturaély considering, in a given
reference frame, the classical axial veatoof “angular momentum,” which one regards
as the dual of the spatial tensar(a; = &x Wk), and on the other hand, the acceleragion
of the particle, which corresponds to the temporal corapts ofays (wa =i K).

The difficulty that was pointed out above stems fitbenfact that when one is given a
tensorays that is obtained in this fashion and its time evoluttwen the quantities:

anﬁ: a)a/;dr

will not be total differentials, in general. Thusisitimpossible to determine a system of
holonomic, relativistic, angular variables by this methbat would characterize the
orientation of a particle relative to a given Galileaference frame.

By generalizing a non-relativistic formula, one mhagrt determine the variation of
the internal angular momentusis as a function of the infinitesimal rotation:

d)a/; = Whp Oor.

Consider the rotational velocity vectarof classical mechanics and the infinitesimal
rotation vector:

W =w &

A magnetic dipole of magnetic momemt that is placed in the magnetic figitl is
subjected to a torqua x H, and in the course of rotatia®WV will an amount of work
AN(m x H). On the other hand, it possesses a magnetic enengyH-that will undergo
a variationd—m [H) = - dn [H.

One will then haveWW(m x H) = — (-dm [H), or:

(W xm) [H =dn [H.

The relation betwee@m and AWV is independent of the field so this equation can be
verified for any suchd. One thus has:
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aon =AW xm.

The relativistic generalization of this formula is imdiate. The variation of the
electromagnetic moment,z that results from an infinitesimal rotatiod .z can be
written:

OUap= KXoy lipy = Xy Uay,
and one will similarly have:

Bop= Ry Spy — Xy Say -

It still remains for us to examine the kinetic energypodper rotationT . Frenkel
proposed axiomatically, by analogy with classical dyieanthat the variatiodT should
be equal to:

7 Sup Otyp.

This is a very debatable point. Indeed, siigevaries like an infinitesimal rotation,
one cannot see whyT does not contain any terms #,,. In fact, the chosen
expression fodT is not an exact total differential, and it is impbésito write down the
expression for the Lagrangian completely.

8 2. The Frenkel equations.At the very most, we may describe the Euler-Lageang
equations. By varying with respect d and a,, one will obviously obtain the two
auxiliary equations:

UsUuzs=—¢" and Sypus=0.

Varying with respect ta, andu, gives:

oL e 1 e

— =Zuod,p +=——S 0, F,,
o, ¢ ° 1P 2mec P
oL e

— ==¢,+Mu, + :

o, C¢A T8, 9,

One will thus have the equation:

e 1l e _dfe
Euaa/1¢a +Emsaﬂaa Faﬂ_ E(E@ +MUA + an%j

e d
= Euaa/1¢a +E(MUA + a, SM) )

in which the derivative with respect to proper timexpressed by the operatprd, (see
AppendixA).
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One may combine the first term of the left-hand sidté ¥he first term of the right-
hand side, from which the rotation ¢, — 0, ¢, appears, which is equal E,, and one
will get:

% (Mu, +as Sip) = Su,, F.s +%%:Saﬂaﬂ Fs
or
(1.4) = MU+ a0 S) = + %%:Saﬂaa Fos-
TheLorentz forceappears in this:
fy= (—SUH Fap-

For a particle without spin, for which the lastnte of the two sides of equation are
zero, one can recover the classical formula:

d
— uy) =f,,
dr(mo ) =)

which shows that the Lagrange multiplMrrepresents a proper mass. We write:
M=my+ 4,

because, as we will see, spin causes a supplemendss to appear.
One obtains a final group of Euler-Lagrange equmstiby considering the variations
X gpanddw,s . The variationgX2,s produce a variation:

le
2m,c
(1 e
= EE:Fw+ayuﬂ (X235 Sia = &io Sy)
= EE:Fy)+ayuﬂ Sip R gp— [EE:FAa+aﬂuajmaﬁ'

oc

F,+au, 5%,

From (3), the term im, Sizis zero. As for the term ay Uy Sip X245, by reason of the
antisymmetry o 4z, it may be written:

1
+ ay Uy S/w &aﬁ or - E (ag Uy S/w -ay Ug S/m) &aﬁ-

For the same reason, the other two terms:
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1l e
Em(Fw\ Sip—FipSia) Xgp
may be written:

e 1 e
—m: Fao Sip R gp= —Em:(lz/m Sip=FipSia) Rgp.

One will then finally have:

oL 1l e 1
== % (F1uSip-FisSia) —= a1 (Fia Sis— Fis Sia).
30 > C( 2a 18— Fag Sia) > ) (Fao Sis— Fas Sia)

ap

Finally, it remains that:

oL aT” 1
— === Sa,B .
0w, 0w, 2
One therefore has the equation:
: e
(1.5) S,= —@(F/m Sig=FasSia) —au (Faa Sis— Fap Sia).

In order to elucidate the significanceanaf one contracts this equation wiih, which
will make the terms i1,z disappear:

. _ e 2
S,,ﬂuﬁ— E} F/w Ug Sie—C¢aySie.
However, from (3), one has:
SaﬂUﬁ:_Saﬁ uﬂ = Sﬂa Uﬂ,
and upon introducing the Lorentz force:

e
fi=—=Fusu
c BYB

one will obtain:

1
S/‘H _[J/‘_ (12 +— :0.
( ? m, ;j

This equation will be true for ar§ s if we set:

Cay=-u, L f,.
m,

If the particle does not have spin then one will haeeréfation:
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myu, = f, so that a;=0.

One sees that the presence of spin involves a reductidheoacceleration when
compared to the case of the particle with spin. Theessiznmyc®a, then represents the
excess Lorentz force in the derivative of the momnnemnt

myu, .
Concerning the expression:
oy =— U, +— ST
myc
one remarks that:
au,=0.

Therefore, the vecta; is in proper space.
Transform the first group of equations by accountingHerexpression fai:

1l e
M+ +au+3$+8 9 _f/‘+EES 59, s -

However, one has:
f, = myCPay + myu,,
SO:

oy & le
MU+, +8,3,+ 3 3 :%CZa/""EmSaﬂaa Fos

Upon contracting this with, , it will then result that:

. -~ _1le 1l e .

— f1c* + au g, = Emsaﬂ uoa, Fa/] = Emsaﬂ Fa/]’

which one will easily transform into:
- fc? -——( s Fos) = sﬂ s Y
or
le 1. e

1.6 —fc? = =——(S,,F,)-= — F,+ - ;
(1.6) 4 Z%C(a/]a/]) zgﬂ(mcaﬂ 3y @Hj

by reason of the antisymmetryaf d7r S5
One can show that the second term is zero. leraeoddo this, we recall equation (5):
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_ e e
Sa/] - Sm[m: F/1,8+ 3 L}?j_ §/{m |/1:a+ q Hj’
in which we have the two zero terms:

Sipas i —Sigagu,.
Upon introducing the tensor:

. c
Fis =Fas+ %(aa Ug—ag Up),
which, likeF,z, is antisymmetric, it will then follow that:
S, =—(SuF,~S, %)
ap m,c Aa ' AB B ral>

which is the condensed form of equation (5).
However, the second term of (6) will then takettoan form:

2
1 e , e __1f e ,
- EE:(SM FAﬂ - aﬂ EH)HC Eﬂ - E[@j (S FAﬂ + 3. Eﬂ) Eﬂ’

by virtue of the antisymmetry df ;.
Given this, we will then have:

2
e
-|—| S,F;F,=0,
[n_bcj Aa "AB T afB

by virtue of the antisymmetry & .
Ultimately, one will then have:

le d
1> =—-=——(S,,E,),
,U 2 rTbC dT( af aﬂ)
and sinceu supplements the mass as a result of spin, whieh gloes to zero witB,z,
one may set:
’UCZ-_ELS F, =—1psF
2rTbC aB ' ap 2 MaB apB
which represents, as it usually does, the energydypole in an electromagnetic field.
We have then given a form to the Frenkel equattong/hich we shall frequently
refer in what follows. If one considers equatidintpo be a generalization of the classical
theorem of momentum then the quantity (+ ) uy — Sy a, will represent the
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generalized momentui@, of the particle. One sees that it is composed of temms:
When one takes into account the supplementary mass shagrovided by the
electromagnetic energy of the dipole, the first amea classical momentum that is
collinear with the unit-speed velocity vector. The secone, which we write as:

—Sipag=-Py,

represents a supplementary momentum that we caltahsverse momentubecause it
is orthogonal to the velocity:

P,] U, =0.

It thus happens that in the proper space of the pattelparticle possesses a residual
momentum in the system of axes, relative to whichsitat rest. The transverse
momentum is, in turn, composed of two terms that appbanwne specifies:

A purely mechanical term:

1

- ?Sm['b

and a second term that is connected with the electoetia field:

1
—S5 f.
rTbCZ Ao o
One then has:
Pi=-5Su 4t —5 S, [, Gi=(rh)u-P
A 2 g FT])CZ a & A A A

Equation (4) then becomes:

L 1l e
G,=fi+ Em:saﬂaa R

Similarly, one sees the term:
—a) (Ug Sip—Us Sia)

appear in equation (5), which takes the farmPsz — Uz P,, or againG, uz — Gg Ug,

which is an expression in which the part @f that is collinear with the current
disappears. One then has:

. e
Sa/] =GgUg— Ggug + E:(SM Fa —Sa Faa).

In particular, in the absence of an electromagrgtid these equations will become:

Gi=myu, —P,, P,=-=5S,, U,
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G, =0, S,z = Ga Uz — G Ua.

8 3. Mathisson’s theory: formulation. — The Polish mathematician Mathisson
chanced upon the problem of the spinning electron in the eairkis work, and that
formed the object of a series of publications between 18801837 §], in which he
developed a point of view that would eventually prove toehgreat fecundity in the
recent developments of general relativigy 3, 34] and the causal interpretation of
guantum mechanic§[11, 30]. The presence of matter in an external field, bywéry
nature, will lead to a supplementary field that obeysstirae equations as the field, but
possesses singularities along a certain worldlin@hen it is superposed with a regular
field. The nonlinear character of these field equatiovisich will be those of general
relativity) involves restrictive conditions on the sitagusolution and the regular solution
if they are to be superposable. These conditions, wiigte to the world-lind., will
appear in the form of the laws of motion for the matearticle.

A more interesting approach is to employ, as MathigsBdna method of successive
approximations that, in the first approximation, will redacemall body of matter to a
material point of Newtonian mechanics, but which will praguas a second
approximation, another type of singularity that is endowaith an internal angular
momentum and a non-classical dynamic in which we witlover the laws that were
given by Frenkel.

We shall develop this theory by omitting the externalvigméional field, which
greatly complicated the calculations in Mathisson’s paprd, which we will have no
interest in considering.

In the absence of matter, we will therefore havea@uum universe that is given a
Euclidian “background metric,” which we will refer to Galin axes, so the metric tensor
will simply be 9., then. The presence of a droplet of matter that lsdtaeough a certain
very slender world-tube will lead to the addition ofupglementary metric tensgy, in
all of the universe that will bexternal to the tuheand which we will assume to be very
small in comparison t@,,, so we will ignore the powers that are greater thhae One
will have that the total metric tensgy, = d. + Jv Obeys Einstein’s equationg4 at
each point of the vacuum:

R/IV_%g/IVR:_ZXT/IV

(Tw Is the electromagnetic energy-momentum tensor).e @il also have that this
equation leads, in the first approximation, to the lir®arations:

(1.7) Oy, == 2X Tw wWith ¢ = Yw—3w v;

by way of the auxiliary condition:
(1.8) Oy, =0.

The symbolsd and[], as well as the operations of raising and lowering dices,
will be expressed in the context of the Euclidian badkgdometric. One will remain in
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Galilean axes as a reference system and preserverthalism of special relativity. One
will consider the tensoy,, directly, which one calls thgravitational potential The
problem will then be to find solutions of the system (8) that involve singularities that
be likely to completely characterize the materialpdgty more or less.

In order to do that, one considers a world-linghat is inside the tube that is
described by the drop, and one establishes a correspondeweerbéhe poinA on L
and the poinD in the universe by means of the retarded potential.

Consider the light cone with its vertex@t Its “past” nappe will necessarily contain
L and a well-defined poimh that one makes correspond to the p@nt On the whole,
that goes back to the fact that at each momentsahotion, the poinA, which travels
along the world-lind_, emits an electromagnetic signal into space, anddbmisects that
instant to another well-defined instant at each pointpats. If we choose a poiRt
alongL to be the initial instant then every @@ = s will define a proper timer that
might therefore affect any poif@ of the universe whose light-cone contafs The
determination of proper time along the linewill, at the same time, define a scalar field
7(O) at each poinO. Likewise, the quantitf(7) [or f,(7)] that is attached to evefywill
permit us to define a fiel{fO) [ f, (O), resp.] at each point of the universe. One may
therefore attach a well-defined vectog (O) to each pointO that is the unit-speed
velocity vectoru, (7) at the pointA onL that is associated witD.

Likewise, one agrees to associate a velgttor each poinO that is simply a generator
OA of a light-cone, and therefore an isotropic vector:

(1.9) l,1,=0.

(1.10) r=-

By projecting onto the proper axes at the péiraind taking (9) into account, it is easy to
see that is simply the spatial distance between the pdinendA in the proper system
of A. One proceeds to introduce functionsrof r?, ... that then represent various
classical types of singularities Atwhen one refers to the proper system.

o O
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It is useful and informative to calculate the gradiehtthe field that we just
defined. The basis for that is a formula from thewal of variations. Consider the
vectorl, that joins a given poin®(x,) with the corresponding poi(a,). The points
along the lineDA will have X, = x,, + a' |, for their coordinates, whemis a parameter.

One therefore has:
dx# —

da

I/[ ]
which is independent af.
Form the integral:

1= [Lax, = ["1),da .

Consider a poin©’that is very close t® then and a poind’ that corresponds to it
by the construction of the light-cone. The ved@' is obtained from the vect@A by
the introduction of a variatiodX, at each point 0DA —including the extremities and
one will have:

d=2["1,d,da =2 [|#5xﬂ}:—2j0’*%5xﬂ dar .

The latter integral will be zero becauges independent of. On the other hand, one has
l, 1, = 0 along OA, as well as alongO'A’, which are both isotropic vectors by
construction. Thud,andd will both be zero. It will then result that:

(1,6, 7 =00r (4o = (u Kya.

The pointA moves along the linke, so one can write:

(ly Xy)a=l,u,dr=-crdr.
On the other hand:
(Iy KX)o =1, dx, .

A displacementlx, of the pointO corresponds to a variati@r of the scalar, and
one will then have:

ﬂ - aﬂr - —I_'”’
dxﬂ cr

which is the gradient that we seek for the scaddd . Similarly, for every quantity that
is attached to the poiAt and defines a fielf{7) at the poin©O, one will have:

A )
(1.11) 0,f(=-f= with fzﬂ.
cr dr

For example, fou,, we will have:
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|
ou =-u-=-.1.
nv U"cr

One easily obtains the gradient of the figlJdy remarking that under the preceding
variation, the variatiowl, will be simply:

so one will get:

lLu
(1.12) al,=-0, ——*=.|.
cr
Finally, for the scalar:
r=-— Illu#
C )

one will have that:
Oul = dyly+1,0,u),
which will make:

(1.13) a,r :E{uﬂ +Ii(lvu'v —cz)}.
Ccr

c

8 4. Mathisson’s theory: monopole case. Having said that, it will result from our
hypothesis that any potential:

l/’(x,u) = M

r
that is defined by an arbitrary functié) will obey the Laplace equation:
Oy =0

at any point that is not situated an One easily proves this by expressih@, ¢ by
means of formulas (11) and (13), while taking (9) and (10) actmunt. However, that
will result directly from the fact that, by definitip ¢ is a retarded potential, which will
then propagate like an electromagnetic wave. Any fond(t) that is attached to the
point A will permit us to form a solution of the Laplace egmatthat possesses a first-
order line singularity along.

In particular, we can utilize such solutions to solestein’s equations in the
absence of an electromagnetic field:

Oy, =0.

However, it happens that the solutions must also gatisfauxiliary conditions:
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oy, =0

(when we revert to the notation of special relativityOone might remark that the
approximating equatioay/,, = 0 is linear. However, the nonlinear charactekls@lves

a trace, in the form of the condition tliaty,, = 0.

In the context of the ideas that were discussed aliowefitting that this condition,
which restricts the generality of the world-lihe should follow from the equations of
motion. It is also fitting to recall that this condit will occur in reality unless we
impose a restriction on the fielg,, in order to determine a particular system of
coordinates at each point in which the approximate equatitinsecome linear.

We consider a symmetric tensoy, (7) atA and form the potential:

(1)

m
W (%) =%-

We calculate the divergeneg=09, ¢ .
Upon employing the relations that we just establishedilifollow that:

| (n |
z,=- E_ﬂ[%.{- nl;" Iiu)j_r_lzmw [i__ﬂj

rr C c - r c r

We have brought the ratig/r to prominence, which will remain finite in the limis a
we approach., and because of that fact, we have ordered the termpewers of 1 f.
Upon multiplying certain factors byl u, / cr = 1, we will obtain:

=

L
r-rc

(m, yu+ Tp).

N

If one wants to have, = O for all values of 17 andl,/r then one must have:
(1.14) My Uy Uy + 62 my, = 0,
(1.15) m,u-m,y =0
separately. When equation (14) is projected oméoproper system (vizy; = 0), that
will yield simply:
mi =0 and mgs=0.

The tensomy, will include only purely time-like components inet proper system. It is
obligatory that it should then take the form:

m, =9uy, (O is a scalar).
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When equation (15) is contracted with, that will give:

so one will get:
Mu,u, +9Mu,y +NMy,y =0.

Upon contracting withu,, it will result that:
(1.16) Mu,, +9Mu, = 0.

Finally, upon contracting this with,, one will get:

M =0, o) 9M = constant

Equation (16) will then reduce to:

smuﬂ:o, SO u =0.

This is a condition that depends strongly upon lthe L, and which imposes the
constraint that the poi#t must describe aniform, rectilinear motion.

In order to interpret this result physically, wedar to the method that was employed
in the ordinary dualistic theory that consideredtarao be a foreign body that evolved in
space-time and created a gravitational field. @kethen have that the gravitational
potential atO can be computed by means of the retarded potesiiag the integral:

T (t—-r/c
q)/IV:£ Mdv
21T r

The integral is taken over all of space, amslthe time at which one considers the point
O. The fact that we usg,, (t — r / c) signifies that the integral is taken over a three
dimensional multiplicity that is defined precisddy the “past” nappe of the light-cone
whose vertex is @. In the absence of an electromagnetic fi€jg,will be zero at every
point, except inside the world-tube that is swegt loy the matter. With Lubansk]]

we may make the following hypotheses:

1. One deals with the case of “pure matter,” inclwithe expression for the energy-
momentum tensor inside of the tube will be:

Tuw=pMmu,u,.
2. One ignores accelerations.

One can then replace the velocity at each mateoiak P, which is considered to be
on the light-cone&, with the velocity that it possesses as it traa®ithe hyperplane of
proper spac&’ that relates to the poirdt that is the intersection & and the world-line
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L. One can then take the integral over the volivgef the droplet relative to the proper
system of the poir.

These hypotheses permit us to consider the tégor p my u, u, at the instant —
ro/c that characterizes the poiat Upon developing 1r/in a series, we will get:

1_ 1 1
FT/JV—,OrrbU,uUVr_*',On'bUyUVaA F Yat ...,
0

0

in whichy, are the coordinates of the point in questmti respective to the origin when
it is defined to be the point ANow, finally, upon considering the drop to beeansemble
of discrete points of mass, , we will have:

K1

K 1
D= —=> —0,|=1]>
a Zﬂro rrbu#LL_*_Zﬂ A(rjo nayu u+

If we suppose that the poiAtthat describek is thecenter of gravity of the droghen we
will have:

> my, =0,
so in particular, the time-like component®f, will be:

Py =- Zﬁl czz m, + (terms of order greater than lyi)
T,

0

in the proper system @&. Obviously, one can identify this result with thee that we
obtained just now:

Mu 2
Yuv = MY : giventhat  (us=- Mrc :
r

which will permit us to compare the constdhiwith the equally-constant quantiy/ 277

2. mo.

In conclusion, one can, as a first approximatidantify a material drop that moves
in the absence of an electromagnetic field witlomtplike singularity of the gravitational
field that is localized to the center of gravitytbe drop and animated with a uniform,
rectilinear motion. That singularity will be ofetiorm:

Mu,u,
w/ll/: rﬂ )

in which the constari¥l will be the total mass of the drop, to a very gapgroximation.
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8 5. Mathisson’s theory: dipole case. We shall now pass on to a higher degree of
approximation. We will obtain another solution of ttagplace equation by superposing a

solution of the type:
m
a VA
%)

with a solution of the preceding type, whemg,, is a tensor that is attached to the pdint
and is symmetric i and v. Obviously, the field that is defined in that way oedirof
space-time will obey the equation:

m m
Daﬂ[%“j: 0,00 2| =0,

and for:

Y= 49, [ T

r oor )
one will similarly have:
Oy, =0.

It will remain for us to see what restrictions whlve the auxiliaryd, ¢, = 0 as a

consequence.
We calculatez, = 0,4, , While applying the Mathisson relations. That will give:

m,uva - 1 Na
aa[ r j_ Crz{ ,uvaa n}zva[%-*_ ( Lb ('2)}}

SO:

1 L), 1),
= _——-m - N o _+
crl{ e er m‘”"[ K er

| |
- m,, [ua+i(| U, — 8)}—@%90—‘;

Cr
1 Ill a N Ill
+ mﬂm?{—(dm +42 j(l U, - C)- [ +Cr I uﬂﬂ
1 L, |
- m,uva C2r2|:u = (l U/‘ (’2):| L(lﬂuﬂ_ Cz)

L,
+ 223{u - (| UA—C)Hﬁ)MLﬂL”LW[WLL—”r(L%—é)}}-

cr
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Similarly, one has:

m)__ 1 b
a#[ r j_ a{mpvlﬂ-kmﬂv{qz-kcr(!rz% 6)}}

As before, we order the subsequent powers af after having divided eadh by,
in such a fashion as to obtain a vectpr= 1,/ r that remains finite whengoes to zero.
When all calculations have been donwill be composed of terms in®, r?, r™%. If one
sees that the conditian = O is satisfied for any givenandA, then the coefficients of
the three terms must be annulled separately.

For the coefficient of the term in®, one has:

m
Ay=——LZ[-2U,Up+ X (A Ug+ A Uy) +¢ (Qua— 3y Aa)] = 0.

C2

For the term in 2, one has:

m,., Aﬂ Uﬂ 1 . .
By=- % _7[3(up/]a + ua/];z) + da—ﬂa _6/];1/]0 )] _E(A/I e +/]” LJ‘)

m va 2 . m v
+ ‘é [5#0 =314, +EM“U" +A,0, } + C—‘;Aa(uﬂua + czdm) =0.

For the term im2, one has:

_ m va h}zva . n)zva . .-
C\,—#AMHHS < AupA A, + o /1#/10[3(/1ﬂuﬂ)2+c/1ﬂ%]

m v n}zv .
- TﬂA,u_?A,uAaua_ 0.

The elaboration of these three conditions is ratbenplicated when compared to the
case of the monopole singularity. Luban&fiJecomposed the components of the tensor

Muve @long the proper axes. One can always write:
Muva = *Myva + Sav Uy + Sgu Uy + Oy Ug + Ng Uy Uy + Wy, Uy Ug + T U, Uy Ug
The tensors that are introduced are all orthogna) :

*m,uva u = *m,uva u, =* Mg Ua = 0,
Sy Ug = Sgu Uy =0,
Qv Uy = Quv Uy =0,

Ny Uy = Wy Ug =0,
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Naturally, *m,., and are symmetric ig andv.

Upon contracting several times by the unit-speed velooie will see that this
decomposition is always possible and that it is uniqua.th® other hand, applying the
Mathisson relations will permit us to prove an importaentity that will simplify the
decomposition: For any tensorAthat includesi, as a factor, one will have:

fu, Y _ ) (_fl, a1 [P
60( - J—rz{r{ - u, - f er C[ua+cr(lﬂuﬂ cz)}fu,,}

1
r?

- f f
rf—-——ul +fc+—(lu,-c?)],
i L, ter Lo, o))
or finally:

(1.17) a#(f“aj:i.

r r

Therefore, in the expression for the “dipole” maine

one can apply this relation to the terms:

f
() afmnznny) o)

which will give:
4 1d

1d
w u + , ——(fu :
r rdr("u" W Y. rdr( 2
respectively.
These terms are of the same form as the monogofe i, / r, and can be

incorporated into it with no loss of generalityn&®then asserts that:
(1.18) Myuva = *Muvg + Sa Uy + S Uy + Ng UM U,
Having said that, the first condition — viA, = 0 — can be written as:
Myuva [~ 20, Ug + 3¢ (A Ug + Ag Uy) + € (ua— 3uAa)] = 0.

However, when one contracts this witfy, one will see that the quantity in brackets is
zero identically. The terms in equation (18) tbantain that factor will not be taken into
account, anan,,, can be replaced withm,,, + Sy, Uy .

On the other hand, these latter two tensors ar®gonal tou, andu, . Thus, one
will likewise suppress the terms that include thesetors from the bracket. It will then
result that:
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* My + Sa,u uy) (a;za— 3/]/1 Ag) = 0.

If one projects this equation onto the proper axes, wdleod the 4-components ofrf,,»
andS,, are zero, then it will decompose into two equationsyiged thatv is an index of
space or of time:

(1.19) *Mik (A — i A
(1.19) ic Si (dk — 3 A

01
0.

One can easily break these equations down with respebe tantisymmetric parts of
*Mue andSy,. Indeed, one will then deduce that:

(1.19) 2 (*my + *my) (dk — 34 A) =0,
(1.19%) 2(Si + Sk) (A — 34 A =0.

If one remarks that in proper space the vedior i / r, wherer represents the length of
the space vectdy, has unit norm (i.eqg« A A« = 1) then one will see thak (A« — 34 A)
=0.

The first symmetric factor in the left-hand sidegath of equations '(1and (2) then
containsdk, and the solutions will be of the form:

1(*my +*mg) = m &,
2(Si + Sw) =c* Sk,

in which *my is a spatial vector an8 is a scalar. Finally, upon taking all of the 4-
components (which are zero) into account, one wiltlgeeigeneral covariant solution:

7 (" My + *Mgyy) =M, (3 Ouw + Uy Ug) = c*m, Nya s with  *myu, =0,
and
%(S,Ua-i_ Say) = S(C2 5/167 +u, Ua) = CZS/Zua.

One may expresS,, completely then. One has:
Sua= CZS/Zua + Sy -
As for *mu.e, which is symmetric i and v, one will easily deduce the following
expression:

— 2 2 2
*Myva =C My Nua +C My Nug = C My N

Now, considering the contribution that they make todikergencez,, and as a result
of the conditiore, = 0, the tensorrh,,, and the symmetric part &, will satisfy:

0 (*mﬂVﬂ+§ﬂﬂ) U+ %ﬂ) yj

r
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The first three terms that one gets are:
* *m + S *
Cz%aa(@jﬂzmg( ﬂf%j_cz%ag( M},

One can simplify the notation by setting:

rV:CZ (*m/-f-leJ
r

and one will have thal",= 0, from a general theorem.

Thus, the three terms under consideration canrideewd, 'y + 9, [, — O 04l 4,
and the divergence of that will be:

ayauru+a/[av r/j_auaara = Drv +a|/a/1 ry_ayaara .

This will be zero. Thus, the three terms undersateration do not contribute to the total
divergence.
As for the other terms:

—m(mj—aa[* L uj_aa[ syw}_aa(swuj,

r r r

one can transform them using formula (17) into:

—_ 1 d * *

rdr( m,u, +m,y+2 Sy 9.
They will then be of the fornm,, / r, and can therefore be incorporated into the
monopole term.

Therefore, as a consequence of the first relatos, will see that the only terms that
remain in the development (18) wf,., will be the term im, and the antisymmetric part
of the terms ir5,, .

Henceforth, we shall write:

Muo = S Y+ By Y+ B QM

where the tensdfqy is antisymmetric
One recalls that:

S, =0 and n,u,=0.
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It is possible to simplify this expression again when seeks, as we have done for
the monopole case, to give it a physical interpretdtyprcomparing the potential that it
provides us with, namely:

Y = GH[S””LL+ S 4+ Py 'uj+ n

r r

with the one that the ordinary dualistic theory gives us:

1 1
ou=tEmuu o, (2] Tmyyor .
0 0
If one compares the 44 components then one wtilihge:

Yas=~— CzaK (%} +% == CznaaK (%) +—rn44 — rc26K &

and
2

Dy = szn‘b%aa(%j —f—z n.,
0

0

upon neglecting the other terms.
One can then identify corresponding terms and set:

Na= Y my,,

which is zero, since we have localized the pdintvhich we take to be the origin, at the
center of gravity relative to the proper system.
One then finally has:

(1.20) Mg = Qe Yt By W
and

ny=0 implies that d,n,=0 and  mu=-¢ > m.

(We have suppressed the coefficiet ~2/7)
It is possible to go further and identify thecdmponents. One gets:

Wy =-0, (@j+ﬂ = - iﬁ(%+aks‘aj+ icd, Gj S

r r Lic
and

Pa == Dy + ic@{%) S myy.
0 0
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One then sees that this identification will afféde tomponents that include a factor
of vi / ¢, as opposed t@us and P44 (while the components include two). This then
amounts to a second-order approximation, in comparisonet@ake of the monopole
potential, where we were allowed to identify only the 4hgonents. It will then follow
that:

m i —
i_é_aaSa - Zn‘b\{
and

Sa== 2 MV Y-

Since we have agreed to retain only the antisymmpé#nt ofS,,, we will have, in
reality:

SEEESNUTCARAR

In other words: The space component§gj in the proper system represent iternal
angular momenturof the drop relative to the center of gravity, and oikindeed have:

(1.22) S =0,

which is the Frenkel condition.
We now recall the second relation, which annuls ¢nstin 1 /r® in the divergence

~ If we replacem,y, by the expressiom,y = Sgy Uy + S Uy then we will have for the
various terms:
Muva Uy Aa + Ua A) = Sapg (Uy Aa + Ua A) Uy + Sanp Uy Uy A+ Sang Uy Uy Ag == € Ao
The first term goes to zero, by antisymmetry, whilelaisé one will go to zero from (21):
Myva (Qua — 8y Aa) = Oua Sepr Uv + Sgpu Uy = 6Sgy Ag Ay Uy = 6y Ag Ay Uy = 6C S A
if one takes (10), (21), and the antisymmetr$gfinto account.

m,uva(A,uua +Aa Liz) = Sa,u(A,u[',y +Aa LL) lIJ + §v y )7”;1 + §Aa ;}‘jp == C2 Sav uaa
upon taking antisymmetry, (10), and the relation:
which follows from:

into account. On the other hand:

My =S4+ S, U+ S S
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. : . ) : ) d
mﬂVﬂaﬂU = ;mrs[aﬂ] Yy + %v U+5;m §/1] F= SﬂVLL+ %v Y= E(S,W LL) =0,

mﬂva/]ﬂ o= S[Hﬂ]/]ﬂ/]a Y + %HV] Aa/]ﬂ H + §A Aa/]ﬂ 'J”H_ [§1 /]a/]v ‘ﬂl
— 2 ¢ .
=-C S[Hﬂ]/]a + %ﬂ;& A IZM;!’

m,uva (A,uua +Aa Liz) = (gap] L’/ + $a,u] U)(Ap 9 +Aa H)
S b AUt Bl YU R MM R A LY
== CZS[m/] Lir - 6 gmx]Aa’
upon taking the antisymmetry §f,; and equations (10), (21), and (22) into account.

One thus gets:

%SHV(BAIB%AH - l%/ +3A,u yzAa)-i_ sv (Aa - 2 H/ g

o %(Sw 4 +25, Y+ §A =S, (la—ual©),
for the dipole terms d,, since:
S,u+S,y :i(savua):o.
av v dT

Finally, the monopole terms give:

m/jv (Aa_ Ua/ C) .
Thus, by definition:
(1.23) By= (Sa + M) Aa—Uqs/ ) =0.

In order to understand this relation better, we decomgheséensom,, in the same
way that we did withm,,,:

(1.24) Mgy = *Mgy + Po Uy + Py Uy + g Uy Uy,
with
*Mgy Ug = *Mgy Uy = Py Uy = 0.
One then remarks that:
(1.25) Uy (Aa—ugs/ c) =0,

by virtue of (10). Thus, the termsury in the development (24) will disappear identically
in equation (23), which one can write as:

(Sgy+ *May + PoU)(Ag—Ug/ €) = 0.
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If one contracts this with, then one will get the expression for the vector:

1

: 1
Cz Sm/ U=—=

Qv=- CZSW'LQ,,

and one will that upon contracting this with, one will get:

1 .
Qvuv=§8ww=0,

by antisymmetry.
If we then contract (26) with, directly then it will happen that:

S‘m/q/ _C2 Pa: 0,
so we will obtain the expression Bg:

1.
?Sm/q/’

Py=
which we may substitute into equation (26), as well asah@, :
. . 1 . 1.
Sm/+ nlv+? %ﬂ 9 Y _?S//]Lkl’b’

i 1 i .
Sm/ +* m, = ?U/J(S//Jl’b - %/J U) .

One then sees that all of the terms are antisymmatocand v, except for iy, which
is symmetric. Thus,m,, = 0, and what will remain is:

. 1 . .
(1.27) Sw :?(sw,w,— Y.
We remark that the vector:
1 .
Pa= ?Sm/ Yy

can also be written:

1

Po=~- ?Sm/ Yy,

since:
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Thus, the vectoP, can be identified with the transverse momentum ehkel's
theory. Upon introducing it into equation (27), it willdoene:

Sw=BY4 - RY

which is the second Frenkel equation, in the absenae eleatromagnetic field.

It remains for us to annul the term in 1 ih the divergence,, namely,C, . If we
leave out the expressions that go to zero by antisyrgrtieen, upon taking (20) into
account, we will get:

m,AA, =- C2 ém/Anr +2”§V ‘IIIIA/IAH + §V“WﬂA”’

wa’'ula

My Ae == S A+ S, yd A,

wa’'ula

mluyaAluAa: _C2 S A

av’a?

That will give:
1 .. . Ul A Ugd, . A
?[_CSHVAH+2§V gAﬂAa*— §/ M,u a]+3 C3 (_ Ca§ a+ aﬁﬂﬂlﬂ a)
u,A )? u,A
+ 3( ﬂcf) (-cS, A, )+ ﬂc L (-cS,4,)
1

. 1 .
=-=S A, —=A,l A

c av’'a c ﬂ% %v a
for the dipole terms i€, .

Since the monopole terms are:

1. 1, .
-—m, A, —?)Iﬂuﬁ mA,

c
one will see that one can set:

Rav = mav + SHV )
and that one will have:

1. 1,
Co==-RuA =5 ALRA,.

Upon taking advantage of the facts that:

Mgy =Po Uy + Py Uy +q Uz Uy
and

S,, =Pau,—Py,ug,
it will then happen that:

Row =(2Pv+Qg W) Ug,
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R, =(2R+qu+ay)y+(@2pP+ ap)y.
Thus:
RawAe=—-c (2P, +qw)
from (10), so:

R.A. ==C (2R +qu +ay)+A, 4 (2 P+ ap),
or finally:
C,=2R +qu +qy =0.
In order to recover the Frenkel equations, one can set

q:—ZQﬁo, Gy:mOU/I_P/[,

and one finally comes back to the first Frenkel equation

Thus, Mathisson’s formalism permits us to show thagtmeral principle of Einstein
and Infeld that matter can be considered to be a singutHrthe gravitational field can
be applied to spinning particles, and not just classica¢matpoints, which will permit
us to the describe the global motion of a material étapbre finely by the introduction
of a supplementary quantity, namely, the internal angolamentum. As for the
classical material point, one will recover the resthat are obtained in the context of the
usual dualistic conception of the dynamics of a spinning point

8 6. Weyssenhoff's theory. The dynamical equations of a spinning particle, for
which we have indicated two different paths of approach.ewkrduced by Jan v.
Weyssenhoff2] by starting from a different viewpoint in some papersvhich we will
make frequent allusions in what follows, because he comstiigs model in the context
of a theory of a relativistic fluid that is given arternal rotation. The hydrodynamics of
Weyssenhoff is constructed by axiomatic means. He derssa fluid that is defined at
each point by the data of three relativistic tensor guesttiaunit-length current velocity
u,, for which one hasi, u, = - ¢, amomentum densityectorg,, which we have not
constrained to be collinear with the current, and finadln antisymmetrianternal
angular momentum densitgnsors.;, for which one supposes that all of the components
are in the local proper space, which is expressed byatindliary kinematic condition”
Suw Uy =0.

Weyssenhoff then made the fluid subject to two dynantewed, which are expressed
by the conditions of zero divergence foremergy-momentum densiignsor and #otal
moment of rotation densitgnsor.

Weyssenhoff considered a fluid that was composed of “pateery and devoid of
internal stresses. Now, in the case of such d,fand in the absence of internal rotation,
one has that the momentum density will be collineaéh the velocity:g, = 1o U, (Lo
being the invariant mass density) and the relativisiezggrmomentum tensor will have:
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t/jV:ﬂO Utu:g/I UV

for its expression. Weyssenhoff preserved the secypession, and further assumed
that it was also valid in the case of a momentumvilaat not collinear with the velocity.

It is essential that we remark thag, which is symmetric in the classical case, actually
becomes an asymmetric tensor. The first dynamagaWill then become:

aut/ju :au (gy UV) = 0

In order to write the second law, the path that ¥genhoff followed amounted to
adding a supplementary quantity that related to the mtexngular momentum to the
ordinary expression for tHerbital” moment of rotation density- which isx, t,y — X, .,

— namely, the“proper” moment of rotation densitywhich one expresses I8y, U,
which gives:
0a Xyt =X t) +0,4(Sw ) =0

for the second dynamical equation. One may transfbrsnetxpression by introducing
the “derivatives along a streamline” (see Appemix

g, =0v(uv gy, S, =0x(Us sw),
and, on the other hand, by remarking that:

a/] (X,u tw — th,u/]) = ajl,u tw— 5Av t/M + X,u a/l tw _Xva/l t/M .

The last two terms are zero by virtue of the firstssyaation law. The other two provide
ty, —tu , which is the antisymmetric part of the tengpr. One will then have:

02 (X tid — % tw) =ty —tuw =gvUy—guUy.
Together, the two equations imply that:
g,=0 and $§, =gvU,—0guUy.

Up to now, our concerns have been those of hydrodynamiow, consider thical
proper space at a poiRtof the fluid. One may cut out an infinitesimal drogtetm this
space that contains the poiht-i.e., a droplet that sweeps out an infinitesimal waurlzke
in the course of its motions — and integrate the vauemsities in the proper system that
we have considered over the proper volWwheof the droplet. One will then have the
momentum of the droplet:

Gu= '[Vo g,dV,
and its internal angular momentum:
S/IV] = '[Vo S,uv d\{) .
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One can then integrate each side of the Weyssenhotitiens over the proper
volume of the droplet, which will give:

J, 9.9% =0, J, 800N = [, gud%-[ gy ay.

One finds that the type of derivation that is employednits us to write:

. d : .
IVO g,dy, = Ej.vo g,dv, =G, (see Appendin),

and similarly:
J, 8u0% =S,

On the other hand, the Weyssenhoff formalism amouwnrtisthe one hand, to the
separation of the true velocity at each point into pamts: a group velocity, and a
“pure” velocity, which pertains to only the unique charastes of the fluid; namely, a
momentum that is not collinear with the velocity aand internal angular momentum.
One then has the right to assume thatesults from an average for the fluid that is
estimated over a small domain of another point and ssaeétively little, and in a
continuous fashion. One neglects these variatioribescale of the droplet considered,
which allowsu, to emerge from the proper space integral. By defmitibe local
Weyssenhoff equations translate into the global equsation

G, =0 and S, =G,u,—G U,

for the droplet, which, when combined with the condit8snu, = 0 that one obtains in a
similar fashion by integrating the hydrodynamical relatsp, u, = 0, will give us the
system of Frenkel and Mathisson.

The extension of the Weyssenhoff theory to the edsere there exists an external
electromagnetic field results immediately in the hydradyical translation of the
classical results on the action of a fidtg, on an electric charge and a dipole of
electromagnetic momepls .

The charged point is subjected to a force:

F,= EFW Uy (viz., the Lorentz force).

The dipole is subjected to a force:

Dy =1 150, Fap (viz., the Stern-Gerlach force)
and a torque:
Ny = oy Fav — Hov Fay -
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The Weyssenhoff hypotheses lead us to assume thatuttieisf given acharge
distribution with a volumetric density of electricitge and aninternal electromagnetic
moment distributiof volume densityou,s . One will then have force density per unit
volume:

_ pe
F U, += ,ou 50, Fop

f
e

and a density of electromagnetic torque:

Nuv = P Hay Fav— P Hov Fay -

Moreover, Frenkel and Weyssenhoff suppose that thenaiteslectromagnetic
moment densitypu,s is proportional to and collinear with the internal aimgul
momentum densitg,g:

PHap = X Sap

in which yis a constant. The classical laws of hydrodynamien throvide the
equations:

Oyt = '0 F. U, += ,ou 30, Fs s

0, M = Play Fav — Plav Fay

gﬂ-peFu+Xsa

c U aﬂ’

gu U/j_gy UV+ SpV:XSa/l FHV_XSHV Fay .
One integrates all of these equations over the propeameobf an infinitesimal fluid

without difficulty by supposing that the variations of fiedd are negligible on the scale
of the dimensions of the droplet and introducing the tdtatge:

Q= J.vo'oed\{) '
It happens that:

SW =Gy U, =Gy uy+ X(Sau Fav = Sav Fap),

S,y =0.

v

These are the Frenkel formulas. One may show witddfitulty that the momentum
necessarily involves an electromagnetic term, ansl ih the same fashion that we find
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the proper mass, which permits us to define the partidhe expressions for these terms
will be the same as the ones in Frenkel's papers,rendi¢ntification will be complete.

It is interesting to remark that since one is coreerwith fluids with no internal
stresses the Weyssenhoff droplet will not be subjeceghy action on the part of the
fluid at rest, and one may consider it to be isoldi@dthat matter. The global equations
above thus characterize the dynamics of a dropletiglzed small as one pleases, and we
therefore obtain the dynamics of an isolated, spinnirgienal particle. It is for this
reason that the system of equations that we obtaindénsical with the ones that were
given by Frenkel and Mathisson in order to charactenzeaated spinning point.

Similarly, one may reverse Weyssenhoff's argument, aotely by reason of the
absence of internal stresses, take as one’s poinpaftdee, not the continuous fluid that
was defined axiomatically, but the Weyssenhoff droplet, whsc identical with the
Frenkel-Mathisson spinning particle, and is charactetigea momentuns,, that is non-
collinear with the velocity,, and an internal angular moment& .

If one considers a collection of such particles, \appropriate initial conditions, then
that will constitute a fluid of “pure matter” that wihot be different from the
Weyssenhoff fluid. This viewpoint seems more productivasioand we will adopt it in
the sequel because it will permit us to construct other sgnfluids by introducing
forces of interaction between the droplets that apeessed by the internal stresses in the
fluid.  Furthermore, if one demands that the fluid musbppgate waves then
consideration of internal stresses will be indispensiblehe Weyssenhoff fluid will
therefore appear to be a particular case of the flinds dne may construct from the
Frenkel-Mathisson particles, which will be the case ‘gfuae matter” fluid.



CHAPTER Il

THE GENERAL THEORY OF
RELATIVISTIC SPINNING PARTICLES

8 1. Principles. The works that we just discussed, most of which asady quite
old, were inspired by the problem of the spinning electasnit manifested itself in the
study of spectral lines. Their objective was to permielativistic treatment of that
problem in the spirit of the old quantum theory: Giveeltivistic model of alassical
spinning particle that yields the rules of quantizatiblowever, quantization, which was
attempted notably by Mathisson, did not give the correstili® Furthermore, one finds
that the problem of the relativistic spinning particle bagn resolved completely (at
least, from the formal viewpoint) by Dirac’s theoryndain the context of wave
mechanics. However, it is not without interest,nfrour standpoint of non-quantum
dynamics, to demand that the non-quantum spinning particleldstiead to the Dirac
formalism in such a way that the classical particteil be to the Dirac electron what the
Newtonian particle is to the Schrddinger electron.

One finds that the operators that are formed fronDilec matrices by means of the
wave function permit one to express a series of teggantities that appear in quantum
theory as representing “mean densities” for the obbérvaroperties of the electron.
From the classical viewpoint, one can consider therseots to be ones that expressed the
physical properties of a classical particle directiye review the “classical Dirac
particle” in detail in the next chapter. For now, notdydhat Dirac’s theory causes a
second-order antisymmetric tensor to appear, among others:

i 4
uaﬁ=§B¢/ Va (Vo Yo=Y Vo) Y

(B is the Bohr magneton), which provides the mean denkigectromagnetic moment
such that one can observe it when an electromagneld dicts upon the electron.
However, one recalls that Frenkel posed two hypothesé#lseabasis for his model of
spinning particles:

1) The electromagnetic moment and the internal angudanent are proportional:
e
Hap= —Sup.-
m,C

2) Both moments belong to proper space:

Hap Up = SapUp = 0.
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It seems reasonable to preserve the first hypothethe iDirac case, and to set:

B .
%‘/’ Vo (Vo Vo=V Vo) Y-

i
SaﬁE

However, one will then arrive at a tensor that do@sbelong to proper space:

Saﬁ Ug# 0.

If one gives a physical interpretation to such a pariicthe classical theory then one
must arrive at a theory of the dynamics of a spinning @arthat has the Frenkel-
Weyssenhoff dynamics as a special case and which neghitdreat interest as far as the
relativistic rotations, in their full generality, arercerned if one desires to build a model
of fluids that are given internal angular momentum.

An attempt that is guided by these considerations it us to show that it is the
analysis of the pure and simple problem of the relakivisttation of a particle that will
necessarily introduce the supplementary parameterswitig@ not understood by the
theoreticians whose work we discussed. Non-relaitwisechanicgand even relativistic
mechanics, when one does not consider “internal rostilntroduces the notion of
dimensionlesgoint matteras the constitutive element of matter in a complatatural
fashion, without having to account for the fact that tlaacept is defined in reality by
considering a smalkolid body of the kind that we presently experience, and kiging
its dimensions tend to zero. |If the particle spinsualitself then the dimensionless
material point will no longer suffice as a represeamat It must be considered to be a
differential edifice if it is small and simplified,ebause an internal motion will
necessarily assume that there are distinct partathateparated in space and move with
respect to each other.

Naturally, one can proceed by analogy with Newtoniamtpmatter, when it is
regarded as the limit of a small, solid body, and enviaie@mall,rigid body in motion;
our particles will then be small “tops.” This is rgate hypothesis of Bohm, Vigier, and
Lochak [L7]. However, that is not the only hypothesis, and in,facwill raise great
difficulties, in principle. Indeed, the solid body tlegipeals to the intuition of common
sense is impossible to conceive with full rigor in tiglatic physics. The rigorous
simultaneity of the displacement of all of its psirmust be realized in an arbitrary
reference frame. One can also say that if it is p#yfeigid then it will transmit
deformations with an infinite velocity, and these ahmindgs that are forbidden by
relativity. These difficulties must therefore nesady arise in a relativistic treatment
when we endow the solid body with distinct parts Hratas small as necessary and when
we renounce the Newtonian point matter that is devoahgfparts.

When one renounces the constitution of particles by solid structures, one will
attempt to consider the fluid (or “sub-fluid”) to benaposed of tiny, fluid droplets whose
form is simply that of alassicalfluid. One might rightfully reproach such a model as
being arbitrarily “mechanistic.” To be sure, the cleakiluid is an “element” of our
current intuition (in the sense of the four “elementisplaysics in antiquity). That is true
by virtue of our gross experience with matter at our lew#wever, it can be remarked
that under these conditions, it is no more “mechanisti@an a classical solid.
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Constituting a fluid (which is purely representative, eamer) by means of particles that
are, in themselves, liquid droplets is certainly a debatstap, but no more so than the
hypothesis that constitutes gases, liquids, and solids dgnsnof particles that are
themselves conceived to be small, solid grains. Howebet is the path that was
followed by all atomic physicists since Democritus;, i@ employ the precise and
deterministic form that Louis de Broglie called “the rt@éaian representation of
phenomena by figures and motiorEl][” That path, which was refuted priori a
number of times by philosophers, is nonetheless onéhésaled to brilliant successes in
numerous domains in the hands of physicists and cherargishas given birth to such
admirable edifices as the kinetic theory of gases,ntbécular theory of crystals, the
stereochemistry of carbon, etc. In any case whegls (the mechanical theory of the
ether, for example), this concept can then be acanfsegchanism and rejected with no
regrets. Any time that it does not succeed in renderoagract account of phenomena, it
is legitimate to adjust one’s confidence in its prattdfcacy to that fact, and it will be
likewise legitimate to see the reflection of a mprefound physical significance in that
selfsame efficacy.

It is in that spirit, and in view of its practical aggations, that we shall now being the
study of theclassicaldynamics of relativistic fluid masses in rotationdgopting a point
of view that will lead us to a new dynamics of corpusclend in turn, to a new
hydrodynamics that is capable if representing the wanetiins of quantum corpuscles
that are endowed with spin.

8 2. Kinematical quantities.— The great merit of the theory in the former work of
Mgller [12] and Pryce 13], which is due to essentially to D. Bohm and J. Pierifl4],
is to introduce quantities that represent matter in madioout itself in addition to the
guantities that represent the energy of matter, whidhbeiquantities that are abstracted
from its mass, energy, and the internal stresses dt@atnecessary to maintain its
cohesion. The classical tendgy — viz., the energy-momentum tensor — is involved at
once, as well as, in principle, without specifying or ddfgiating them, all of the forms
of energy that the “molecules” possess, such as propegy kinetic energy, or potential
energy that is due to stresses. However, one can gperaly kinematical initial
description of a fluid by means of the locelit-speedvelocity u, (u, u, = - ¢® and the
invariant matter density, which involves only the number of “molecules” that tlwed
is composed of (which we assume to be identical), araigmntheir mass or energy.

One therefore defines a vector: the spacetime culssdityj, = o u,.

If we refer this vector to the local proper systenmtive will have:

ik =0, is =pic, o jJ=p

The time component ¢f in the local proper system will thus be simply the iresatr
matter density. In an arbitrary reference frame titihe componenjy will again be the
spatial density of matter relative to the referencené&an question, while the spatial
components will form a spatial vector — viz., the “teacurrent density” — that js= g
Vi, each of which represents the matter flux (or “mdi&culux) through a unit area that
is perpendicular to the corresponding axis. One can kethat if one assumes that the
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molecules each carry the same electric chadben s e will represent the electric
charge density, ange will represent the components of the electric curdemisity, and
that will be true in any reference frame, simces a relativistic invariant. That remark
will serve to make the physical significance of the gueelctorj, more precise, which
will be a significance that persists in the absenahafge, of course.

The current vector is conservative, independently adyalamical laws. Indeed, the
relation:

aﬂj# - all(pu#) =0,

expresses simply the idea that:
p=0,

i.e., thatpis conserved along the streamline (see Appeayiand we will also have that
this signifies that the proper volume integral:

Q= .[vopdvo

that is attached to a given droplet (which is nothing batghantity of matter that is
contained in this droplet) is conserved in the courses ofiotion.

We shall now consider a macroscopic fluid mass, wiwelassume to be bounded in
space and to remain connected in the course of its mofoincaré has shown that the
existence of internal stresses makes such a mass Igetemd to a stable form, such as
for example, a rotating torudg].) We shall see the restrictions that the relafigy), = 0
imposes on the possible motion of that mass upon digeotim attention to the global
properties of a fluid mass when they are taken oventtisety.

In order to do that, we shall utilize Mgller's meth(sde AppendiXd) and cut the
spacetime hyper-tube that is swept out by the mattersimotion with a space-like
hyperpland that is orthogonal to a time-like axfs One then considers the integral
while holding time constant and taking it over all of fleed volume.

If we then “weight” each of the points Bfwith the matter density:

jD:.—j4,
IC

wherej, is the projection of the curreptonto theA axis, then we can define two sorts of
integrals:

1) The integral:

J:LjD du,

which we call thequantity of matterbecause it represent simply the total quantity of
matter (i.e., the total number of molecules) th& eontained in the fluid mass. It is
physically obvious that this quantity is invariafiom any viewpoint — ie., it is
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independent of the reference framé in question, and it is constant in the course of its
motion, in such a way that during the time intervakhich one described its motion:

E =0.
dt
Upon remarking that:
1.
J= EL j,du,

one will find general proof of the tensorial characted @onstancy in time of such
integrals in Appendid, which is a proof that is necessitated by the condajop = O.
One recalls that Mgller’s theorem is necessitatech the outset by the condition that

the integral j j,do, should be zero on the boundary that is swept oub®gtrface of

the drop. That will immediately imply the fact thddy, is orthogonal to the space-time
velocity at each point on the boundary; ijgdg, = 0.
One will likewise see that the derivative:

dJ . .
a = '[S(J4Vk_lcjk)dsk

is zero in an arbitrary reference frame. Indeéane evaluates the scalar differential
element 4 Vk —ic jx) dsc in the local proper reference frame of the areanehtds; (as
one has every right to do) then one will see that:

V) =0 and ) =0,
and the term in parentheses will be zero.

2) The integrals:

In =, isx dv

define the coordinategy of a point on the hyperpland and resemble the classical
formulas that define the barycenter in non-relatigiphysics. (If one stipulates that the
spatial coordinatex of the present point must be assumed to be refféora triacthat is
situated in the hyperpland then coordinateg will, of course, become uniform, since
the integration is performed with constant time-lowever, the present case is much
more complicated than that of the barycenter, stheepoints is not unique; it will
change when we consider another reference fildmé For that reason, we shall call
that point thgpseudo-center of matter relative to the hyperplanand we stress that one
will not have the right to speak of a pseudo-ceniatess one has specified the
hyperplane to which it is associated.

At first, we shall proceed physically with an exalen Suppose that the fluid mass in
guestion is a sphere of homogeneous compositidnstibantered ab at a given moment
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t (when one follows a slice; = ic t that is parallel to the hyperplanB in the reference
frame NMA and relative to the simultaneity that is defined by trasticular reference
frame, and suppose that this sphere expands in the aduise. Of course, the pseudo-
center of matter will be the poif®d in the referencd1A. However, if we consider
another reference frami@ /A’ then the points that are considered to be simultanelus w
longer be the same ones. For example, the poinketaght ofl1" will be considered to
be an instant that is previoustt(.e., since the sphere is expanding, they will bsel to
O than in the preceding calculation), so the points ¢ol¢ft, which are considered to be
an instant that is later thanwill be more distant fron®. The pseudo-center of matter
will no longer beO, but will be translated to the left.

In order to show the same thing mathematically, wst fiemark that the three
integrals:

Jjk= L jDXk du

are performed by setting eaghequal to a constant, and that the point thus-obtainkd wi
obviously haverj = x for its fourth component. It will then result thatwie define the
fourth integral:

[ ixdo = [ jox,do
in an analogous fashion then we will find that:
/74J‘z JoX,dv =14 J.

One can thus define the pseudo-center of matter relaiivé by its space-time
coordinates:

(1.1) Jny:jzjmxﬂdu.

1, Will then represent thepace-timevector that defines the pseudo-center of maitatr
is attached to the hyperplam& in the course of its motion as a space-time poird,ian
any system of axes. By contrast, the right-hand sidéh® last equation does not
represent a vector (we shall prove that much, at least) the equality (1) will not be
valid in the systemlA; we shall be inspired by Mgller's method (see Appe#dix

Cut the tube with another hyperpldnéthat defines another Lorentz reference frame
MA'. In that new reference frame, the same conditiahsiefine a space-time point,

that will be the pseudo-center of matteliative to the hyperplan@’:
Jn, = J'zjmxﬂdu.

We must consider the two poings and s, at the same instattwhich — if it will not
confuse us — will translate into the conditign = 77, in an arbitrary reference frame
which is a condition that restricts the choice @& tiyperpland1’. For example, if we
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know the pointr, relative to the systemA then we will force the hyperplad& to pass
through it. The hyperpland$ andll’, along with the boundary; that is swept out by
the surface of the drop, will therefore delimit a agrthyper-volume that we shall call

Now, consider the tens@yx,. We compute its divergence:
Ou (%) =Xv Ouju+juOuXv -

The first term is zero, sin&g, j, = 0.

The second one will becomed., =jv .

Now, consider ainiform and arbitraryvector fieldk,, and scalar multiplk, by the
two derived expressiots j, = 0, (Ku jv %), sinceky is uniform.

Multiply this by the hyper-volume elemendiw and integrate the result over the
domainQ that we just defined:

(11.2) [ ki dw=] 0,k jx)do.

By applying Gauss’s theorem, the second integeal be transformed into a
hypersurface integral that we split into three pénat relate to the three hypersurfages
>, andX;:

Jok b dow = [ K j,x do,+[ k% do,+[ K jx &,

The hypersurface integral an will be zero, sincg, dg, = 0. On the other hand, since
the quantitiek,, j,, X,, anddg, are vectors, every differential eleméntj, x, dg, will
be a scalar that keeps the same value in any nefefeame to which one refers the four
vectors that comprise fit.

Refer the vectors that are contained in the $iusface integral to the reference frame
MA. The only non-zero component ad, will be the time componentas = ic dv, and
one will have:

(.[sz J#)ﬂ/ dO'#)nA: (K/L 1%, iCdU) ;

MA
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ic(kvjz J4X, du) =ic (kv I 7)na .

MA

since one will find that it belongs to the reference &a&m.

Similarly, if we evaluate the second surface integr#he reference frami@d'/\’ then,
upon remarking that in that case the only non-zero coeoofdgy, will be daz = - ic
du, the integral will become:

-l (K’.[z 1%, du)n'/\': ~ie (k] OL)H'N ;

k,andz, are, of course, evaluated in the referet&’, this time.
The right-hand side of equation (2) will then reduce éodifference:

ic J[(kv m)na = (kv 77, )rra] -

If the point under scrutiny is independent of the chdsgrerplane them, and 77,

will represent the components of tkamevector in the two references framidé\ and
M'A', and a¥, is also a vector, the expressign, , which is the scalar product of two
vectors, will be independent of the reference fraragé ithused for the evaluation:

(kv m)na = (kv 17, ) -

The condition of the invariance of the poiptis therefore that the right-hand side of
equation (2) must be zero for aky:

[ }idw=k [ jdw.

However, this time the integral will be\actor, and the condition that its scalar
product with anyarbitrary vector k, must be zero will become the condition that the
vector itself must be zero:

jQ j,dw = 0.

This will produce four independent equations, while we havednced two conditions:
na =11, and  9,j,=0.

Therefore, the requisite condition is satisfied, inegah and the point, will depend
upon the reference frame to which we have referredufterhass.

We shall now study the spatial velocity of an arbitraseudo-center of matter
relative to its defining reference frame.

If x4 =ic t is the fourth coordinate, which is measured along/thexis, then the
spatial velocity of the point whose spatial coordinajieis the hyperplanél is:
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This gives:

. d . dJ
JVWe=ic —(J , Sihce — =0.
k dx4( ) at

Upon taking the relation that defingginto account and recalling that the domain of
integration varies in the course of time, it wabkult that:

Cod (1) A 1
JW—waZ(ELu&de—LQUMumHngmwﬂs

in whichSis the surface of the drop in the reference frame

Sincexs andx, are independent variables, one will h@véj, ) =X« 04j4 , and upon
taking the conservation relatian j, = 0 into account, one will gedsjs = - 0iji .

Finally, upon integrating by parts:

Xk 0aJa ==X 0iJi == (X ]i) +]i A,
so one will get:

ING== [ 8,(x j)do+] jodu+] joxV ds.
The first term defines a surface integral that gie:
[V = j)%ds
when it is combined with the former one, which Vil zero, sincg =jp Vi . It will then
result that:

Jw:Lth

Therefore, the velocity of the pseudo-center oftenan its defining reference frame
will be:

1.
V, _FL jdo. |.

These three expressions, which behave like thepocoents of a spatial vector
relative to a rotation of the spatial axes of tigpdrpland, will, on the contrary, depend
upon the choice of hyperplarié in a complicated manner, since under a change of
hyperplane that corresponds to a Lorentz transfoomaveryjx will transform like the
spatial components of a quadri-vector, but thegratgon will no longer be performed
over the same domain, moreover. One will thendreerned with thg that are found at



56 The relativistic theory of spinning fluids

different points, and it will generally be impossibdespecify the dependency gf upon
the choice of hyperplari@ without knowing all of the details of the motion oétfuid.

8 3. The energy-momentum density and the moment of rotatior. We shall now
introduce some new quantities that relate todymamicallaws that govern the motion of
the fluid and succeed in determining it, as well.

One knows that relativistic hydrodynamics expressespttoperties of a classical
fluid by means of the tensor that represents the totlggrmomentum density and is
composed of two terms:

t,=pmuy+6, (see AppendiB).

p andu, have the same meanings as befong,is the individual proper mass of the
molecules, which are assumed to be identical, &ndk the internal stress tensor, which
will be a proper space tensor (i.8., u, = 8, U, = 0) and will play the role of a potential
for the force densitf,, = -0, ..

When referred to the local proper system, the compormérite energy-momentum
tensor will be:

t) =6

ij o

respectively (i.e., the internal stress tensor tkatisually defined in non-relativistic
dynamics):
t2 =t =0 and t2, =pm

(i.e., the proper mass density). Thus, in relatividbion, the fundamental law of
hydrodynamics is expressed by tbenservativecharacter of the energy-momentum
tensor:

namely:
av(pn‘bulu UV) :_au Byv.

Indeed, if we remark that the prodyztm u, that appears in the left-hand side is
nothing but the relativistic momentum dengity and if, on the other hand, we involve

the force of stress per unit volurhe= - d, §,, then, conforming to the usual notions, it
will happen that:

ov(guuw) =g, =1 (see AppendiAd).

If we multiply this by the hyper-volume elemedw and integrate the result over the

hyper-tube that is swept out by the infinitesimal droptethie proper time intervalr
then we will get:

[ g.dw=] f,dw.
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However, one has (Append® that if one introduces the total momentum of thepbiio

Gu= '[Vo g, do®
then one can write:

. _(d
J'wgﬂ dw = (EG‘J dr.

On the other hand, if one makes the time intervalicsefitly small then one will
likewise have:

[ f,dw=dr| f,d° =drF,,

if we let F, denote the relativistic force that acts upon the drapletto the stresses in
the surrounding fluid:

Fu= " f,dov’.

Moreover, if the integration is performed over the dryfube in question then the
equation of conservatiad), t,, = 0 will translate into simply the relation:

i.e., therelativistic theorem for the quantity of motiohthe droplet.

On the other hand, the stresses that are introduceldsical dynamics are assumed
to be derived from aymmetrictensor§,, , and since the termp mp u, u, is likewise
symmetric, the classical theory considers only symmetrergy-momentum tensors. It
is easy to see that this hypothesis will lead to theodhiction of a newconservative
tensor, namely, theotational moment density:

Mux = )&LA - >$',1w

which will be of order three and antisymmetrigdmndv. Indeed, its divergence is:
04 My =Xy 04 tua =Xy 04 tua + Ot tua — A L,

The first two terms will be zero, sindg, is conservative. The last two terms simply
express the antisymmetric panf, — t,, of the energy-momentum tensor. If it is
symmetric then the angular momentum density will beseorative, and vice versa.

One can then exhibit the dynamical significance ofsyrametric character af, by
following the same path that we did just now. Upon m@pét,, with its expression, the
relation:

om, =0

VA

will give:
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The left-hand side of this is the derivative of the esgionn,,; = X, gv — X, 9, along
the streamline; i.e., the moment of momentgym

Upon taking into account the symmetric character efdtness tensof,,, the right-
hand side will reduce to:

X,u a/l (_ewl) — Xv a/l (_e,u/l);
ie., to:

X/IfV_X/IfV:J//IVl

which is the internal stress dipole moment per unitmelu
One will then have:

n,uv = MIV :
Finally, if one integrates over the hyper-tube elemasitwe did just recently, then if
one sets:
IVO n,du, =My
(viz., the internal angular momentum of the droplet): an

.[vo yﬂvdUO =l

(viz., the total dipole moment of torsion) then thediban t,, = t,, (or 0, mu, = 0) will
be equivalent to:

M =T

v A

i.e., to therelativistic theorem of the kinetic momeas it is applies to the droplet.

In order to define the dynamical properties of the fautg fluid that we are in the
process of studying, the example of classical relativisgdrodynamics will lead us to
introduce an energy-momentum tenggrand its moment:

m,uv/i :)ﬁzh_)ﬂw

but it is not useful to specify the complete expres$wrthe tensot,, as a function of
the various kinds of energy that one deals with fotenma fluids.
We must be content to require (see AppeR}ikhat:

1) The tensoty, is conservative:

ot, =0.

7%

2) It admitsu, as a proper vector:
tw Uy =Kuy,.
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3) Itis symmetric:
t,uv = tv,u ’

or —what amounts to the same thing — that the temggris also conservative:

o,m,, =0.

HvA

We remember that this hypothesis expresses (in a gdoarathat is still classical)
the two fundamental laws of dynamiesviz., the conservation of the quantity of motion
and the conservation of the kinetic momenwhich, with the hypothesis that was given
to begin with that:

which translates into the conservation law of mattend we thus succeed in
characterizing our fluid entirely, as well as charaetegi it as aclassicalfluid.

8 4. Total momentum.— We have seen how one can represent the quantity of
motion of aninfinitesimaldroplet by the vector:

G, = IVO g, du, .

We shall seek to extend this concept to macroscopianass. First, we remark that one
can always defin&, by the integral:

_ 1
Gu= —?J.VO t,u, du,,
for that matter. Indeed, if we take the expression,fanto account then we will get:
1 1
Gy = .[vo(_? 94U =6 Laj W, .

The second term will be zero sinég belongs to proper space, and siogel, = — ¢, it
will result that:

Gu= .[vo g, du, ,

which is precisely the expression that was givesvab Since we shall no longer specify
the expression fay,, from now on, we shall start with the form:

_ 1
Gu= _?J.vo t,u, du, .
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However, one will encounter difficulties when onedrto generalize this form to the
case of a macroscopic fluid mass. Indeed, it is odtiaby cutting the hyper-tube that is
swept out by the droplet with a particular hyperplane ighatthogonal to the current in
such a way that one integrates overgreper volume of the droplet. That will no longer
be possible in the case of a macroscopic fluid massweé\did in relation to kinematic
magnitudes, one must cut the macroscopic hyper-tube witpexgigne1 and integrate
over the volume that it determines, but that hyperplane might not teogonal to the
vectoru, at all points, since it varies from point to poirfthus, we will seek a different
definition to associate with that of the infinitesinthoplet. In order to do that, we
remark that in the infinitesimal case, if one calcidd®g in the proper reference frame
then the differential element will contain only tigems:

0

0 0 —;
t°,u =ic t2,,

so:
GO = ic

o == ?Lot24 dv®= Lotﬂm do® .

This expression can be generalized to the case otestapic fluid mass under the
condition that one must consider the intersectiaf the hyper-tube with a hyperplahle
to have ararbitrary space-like nature. That hyperplane and the orthogoas\ will
define a Lorentz frame, and we can write the comporadrttse total quantity of motion
(or momentumyelative to that same reference frams

G, :J'ztﬂD du,

in whichduv is the volume element of the hyperpldhe
We see thaG, takes the form of a volume integral of the fouctmponents of a
conservative tensor. One can attempt to applyévigitheorem to it. In order to do that,

one must seek the conditions under which the hppandary integrak, J'ztwdav will

be annulled. We shall study the scalar differéiementda = k,, t,, do, over a small
domain of the hyper-boundary, and we shall chogsaraicular system of axes, namely,
we shall place ourselves in the local proper sydteahis defined by the element of the
surface considered. If one is given tkat, is orthogonal to the current then one will
have thatdos = O in the proper system, and one will have tos@er only the proper
space components tf , which will be identical with those of the intalrstress tensor:

da = K §° do’.

We refer proper space to two ax€8, x? that are tangent to the surface of the drop,

while the third onex® is collinear with the proper surface elemeisf”. One will then
have:
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do® = g, dx df? icar

Cc
= £, X0 P o = dg” dr,

o)
da=k’g’ ds’ or.

In order for that integral to be zero for any forntled drop and any choice kf, one
must have thatsgj0 dqo is zero at each point, or that it goes to zero oafdhe surface due

to some special force that manifests itself on jostdurface. Now, in reality, there exist
forces ofsurface tensiorfor material fluids that are endowed with such forcesd it
seems very physically reasonable to introduce a supplememgpothesis that would
endow the surface of our drop with the property that giv@s to the phenomenon of
surface tension. One sees, moreover, that the quafitids (we shall drop the
superscript 0 from now on) simply represents the fonete is developed by the internal
stresses over the surface elenust

It can be shown that it is always possible to equatidrthat force at each point by
means of suitable surface tensions. We will give theofpos this (), which will
necessitate using the formalism of Riemannian geometry.k&®p the Latin indicas=
1, 2, 3 in order to denote the spatial coordinates, and sk Grdicesy = 1, 2 in order
to denote the coordinates on the surface

We consider a system of curvilinear coordinates u?, u®, whose linear coordinates
are mutually-orthogonal and tangent to the three lagakx\?, x®, x® that we just
defined at each point. The surfégwill be represented by an equatish= const.

The linear element thatdts;2 = g; dX dX (since the space is Euclidian) in an arbitrary
system of Cartesian axgscan be writteds’ = g; dX d, and if one is given a choice of
a coordinate system then the metric tensor will deiged to its diagonal components,
022, 033, While the contravariant components will be:

1 1 1
git=—, 2=, g®=—.
gll 922 933

If one restricts oneself to displacements thatde# constant then one can define a
metric on the surfac8 by ds* = y,; du” duf, and it will become obvious that thgg are
identical with theg,s. One can further define the components of a metmnection on

the surface&s by:
,0 _ 1 P agg/] agﬂ/l aga/]
==g + - .
apB| 2 ou?  ou” au

These components are the same as the analogousmentp in space. Indeed, in the
latter case, one will have to consider a teffnas well, but it will be zero, sing#® = 0.

() Whose essential details come from a suggestion otEré&er.
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In order to simplify the notation, we have located quiastthat are themselves
spatialvectorsin the Riemannian manifold and we shall preserve the vectorial notation
for them. Therefore, if we connect the current spatint M in space to an arbitrary
origin O and set:

o= 00M
ou,

then we will define three orthogonal vectors in Eiledin space that are situated along the
axes of the local coordinates (wighalong the normal to the surface). One can choose
the parameterization of thgin such a way that the vectors will have unit length.

Having said that, suppose that we make an incigidninto the surface. In order to
prevent the lips from separating, we must act upontit two equal and opposite forces,
which will be represented by the vectedu', with a suitable orientation. Similarly, for
an incisiondu” one will have a forcé, di?, and for an arbitrary incisiodu’, du?, a force
tp du” (which is summed oveB). The set of to linear densities, (t,) will constitute a
surface tension On the other hand, consider the force:

Fds\y,

which is the vectorial representation of the foéelck that acts upon the surface by way
of internal tensions. (Since one is dealing with Rienn geometry, one must

introduce./ y , wherey= || yas || =011 G2 .)

We must now show that it is possible, in general, terdghe a surface tension that
equilibrates the action of the internal stresses.

Consider a portios of the surface that is bounded by a contGurEquilibrium will
be expressed by the two equations:

[ t,de’ +[ Fyds=0,
jC(OM xt ;) du’ +jc(0|v| )y ds=0;

i.e., by virtue of Stokes’s theorem:

ot, ot
(11.3) a_szl_a_lez+Fﬁ/:o’
(1.4) a(;)t:\l/l th—a?ul\z/l Xt, =erxtr—ext;=0.

We decompose each of the vectigralong the three axes, e, €3 :

t]_:nlel+rlez+ale31
b=netmet+tmes.
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Upon substituting these expressions into equation (4)ll foNow that:
eXmetexmea-—egxme—exae=0.
Since one has:
X =6, &XEe=€, EeXe =6,
it will remain that:
(m+m)es-me—are =0,
SO:
a=a =0, ng+n,=0.

It then results from the torque equation that the veticandt, are in the plane that
is tangent to the surface. One can express that by:

tp=t; e, with t} =-t2.

Equation (3) will then lead to:
0 .. 0 ...
ﬁ(tzea)_w(tl €)+ F\/T/ =0.

Now, since the vectors ande, have unit length, their covariant derivatives (in the
three-dimensional metric) will be zero:

[
Op€a=0p€s— {a,[)’} e =0,

i
036€s= )
L Ca {0’,3} (&
One will then have:

oty ot/ ol g 1 D=
- e +t -1 2+ F = 0,
[aul auzj a2 {al}q ! {a 2} ¢ V' #
hence:

a a 1 2
(IL.5) o _ o +tﬂ{a }—tf{a }+F”\/T/ =0

SO:

ot au: | p Jei

along thee, axes and:

3 3
ty -t/ +F3y =0
o] ot FY
along thee; axis.

If one adds the quantity:
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t”)l —t”)l
21 T |12

to equation (5) and simplifies then one will bring abdet¢ovariant derivative:

A
Ot = at21+t/” “ -tJ
ou £l 21

that relates to thevo-dimensional metric.
One will then have the system:

Otg -0t +F7 [y =0, (2 equations

3 3
tg’{ 1} —t7 {a 2} +F* [y =0, (lLequation)

a

which are then three equations that determine the thregitipsa
t=t,t,t,

when one knows the coefficients of the connectiorthensurface (which results from
knowing the form that is assumed by the surface) andahgonents$' of the force that
is produced by the internal stresses in the surface.

It is then possible to pose the problem in full gelitgraand one can assume the
existence of surfaces tensions on the surface of the tedpequilibrate the internal
stresses at each point.

Naturally, one assumes that these surface tensionscéuded in the expression for
the energy-momentum tensor, along with the intermakseés, and consequently, in the

vectorG, . It results from their presence that the integﬂq]tﬂvdav will be zero when it

is taken over the hyper-boundary, and consequdqt(®, will be invariant.
Likewise, the same hypotheses will permit us to prdw &, is constant in time.
One knows (AppendiR) that one has:

G)—jk( -ict,) do,.

Since the differential element is a scalar, we magyress this in the proper system.
The first term is zero, sincé = 0.
It remains that:
—ic t, do)=-ic & dog,

and one will have to consider only the spatial term
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g, do; .

Now, one knows that this quantity is zero at eachtpfithe surface when one takes
surface tension into account. Thus, one can apply Nsatleeory, which will show that,
on the one hand, the total momentusy transforms as aector under a Lorentz
transformation that simultaneously changes the coomtinates and the hyperplafe
that defines the domain of integration, and on the oblaed, that the vectoB, is
constantin time along any axid along which time is defined:

d
—G, =0.
dt *

We remark that the component:
Gp = LtDD du ,

which is the integral of the mass dengity , represents the total mass (or energy) of the
drop. As is well-known, that mass will vary witretbhoice of reference frame, since it is
(up toic) the fourth component of a quadri-vector. It then dsfferofoundly from the
guantity with the analogous form:

3= jydu

that we encountered in our kinematical study, and whigtesents the totahatterthat is
contained in the drop, and which is, on the contrary,peddent of the reference frame,
since it is an invariant from the tensorial viewpoihis is the first — but not the last — of
the fundamental differences in variance between theniaheal and dynamical
magnitudes.

As a result, one can likewise define an invariant upantiisg with the momentum by
simply taking the norm of the vect@; and setting:

(The — sign comes from the fact ti@gt is time-like.)

SinceG, is constant in time, so is its square, and the qualfityvill represent an
invariant and constant total proper mass of the drop. Thigtigyavhich was introduced
for the first time by Louis de BroglieL§], will be called theproper mass of momentum

8 5. The pseudo-center of mass: In attempting to define a barycenter for the
ensemble of the drop, we proceed by analogy with the latieah study. We “weight”
each point of the volume with the mass density;, and form the integrals:

Gyé =ty X with Go= [ t,. du,
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which define the coordinates relative the referdnéeat a pointék of the hyperplané€l
that we call thepseudo-center of masBecause it is a point that is associated with the
hyperpland1 and will change with it.

The fact that the pseudo-center of mass varies hatheference frame is well-known
[12]. We shall show this by means of a simple physixah®le:

Consider a mass that spins about itself and appearsadbmogeneous sphere that
spins about its fixed cent® in a certain reference frame, at least, as fatsamass
distribution is concerned. Obviously, the pseudo-centerass will then be aD.

Next, consider another reference frame that movdbedeft of the preceding one
with a velocity ofv. That velocity will add to the velocity of rotatiar the points of the
lower hemisphere (such &5) and subtract from it for points of the upper hemispher
(such ad). If one is given the relativistic variation of theass with velocity then it will
result that the mass of the mower hemisphere willjteater in the new reference frame,
and that the mass of the upper hemisphere will be emallFrom the geometric
viewpoint, the two hemispheres will be transformed leydbntraction into two halves of
an ellipsoid of revolution that is flattened in the diren of v. It will thus remain
geometrically symmetric, while becoming asymmetric asafaits mass is concerned. It
will then result that in the new reference the pleeaenter of mass will not be found at
the geometric center of the ellipsdXl but will be shifted towards the bottom.

In order to make this mathematically precise, we §instw that the defining formulas
of the pseudo-center of mass relative to a certain higrexpl, in fact, characterize a
quadri-vector. Indeed, the integral:

Go &= LtDDxk du

is taken with constant time&; = constant =, .
Thus, one can write an analogous formula:

Go&=¢&f th,du = [ t,.&du = |ty x, du.
Thus, we will have the general formula:
Go &= J‘ztmxﬂ duv.

Therefore, the space-time vecirdefines the pseudo-center of masisitive to the
given hyperplandl intrinsically, and in any reference frame, but as Wwallssee, the
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right-hand side of the last equation is not a vectowthe equality will no longer be valid
in the reference fram@aA.
We remark that:

1
Go Cz,u:EG4§(,u

has the form of the fourth component of a tensor.révfwecisely, one can consider the
expression:

Mu=Gy&—Gaéy

to be the fourth component of a tenddy,, and later on we will confirm that it indeed
relates to the total angular momentum:

Miat = [ (X4 =% 80) 0,

which is a tensor that is independent of the hylpes and which has the quant@®y &
— G4 &y as its fourth component in every reference frawtegre ¢, denotes the pseudo-
center of maseelative to the reference frame under consideration

Next, consider a hyperplamg the orthogonal axid, and the pseudo-center of mass
&, relative toll. Choose a reference fram@that has\ for its time axis and is such that

the axes will coincide with the poid}, at time zero. Thus, one will need to ha;ife: 0
and & = 0 in that coordinate system.

The component of the total angular momentum atbagime axis\ will be given by
the general formula:
M =G/ & -Gl&,.
It will then be zero.
Now, perform a pure Lorentz transformation (with motation of the spatial axes),
which we assume is infinitesimal. It will be expsed by:

X=X FEGX X=X TELX,
with & = — §a.

This transformation will take us to another refere frameR' that simultaneously
determines another hyperplafié that intersects the hyper-tube in a &utthat will be
different fromZ. A pseudo-center of mass will correspond to this and if we place
ourselves in the new reference fré&®hthen the property that was pointed out for total
angular momentum will result that one will have:

Miu = Gi(&)" = Gy(&)",

where M,,, G;, G, represent theametensors as ever — viM,, andG, — relative to
the new reference frame. On the other hand, ifloo& for the coordinateg, of the
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pseudo-center of mass relative to the old hyperfTaitethe reference fram@* then the
Lorentz formulas will give us:

& =&l rEuél =0,
S =&irendl =0,

It will then result from this that if the two pseudaiter's coincide — i.e., if one has:

E)=@E*'=0 and (&) =(&)'=0

in the same referend@" then the fourth component of the total angular momentum
which we assumed was zero in the reference fidineill be:

Mli4 = Gifi—Gifkl

here; i.e., it will also be zero in any referencarfedR’ that is obtained fron®° by an
arbitrary infinitesimal Lorentz transformation. Thanfirms what we saw qualitatively
before: The variability of the pseudo-center of masshwlte reference frame is
connected with the rotation of the fluid mass. Ineyah every reference frame will have
its own pseudo-center of mass for a rotating fluid mss&Ee will have its own special
pseudo-center of matter. Moreover, it is obvious that ways that the two pseudo-
centers change under a change of reference frarhbenrofoundly different, since one
of them involves the mass and its particular relatwisariance, while the other one
involves only kinematical properties.

As we did for the pseudo-center of matter, we shatlysthe velocity of the pseudo-
center of mass relative to its defining referencenffa We take the derivative &fé«
with respect to time and project it onto the axis

GoVk=Gy 4 & =9 (c&),
dt dt

since the derivative of the component$afwith respect to nothing but time are zero.
Since:

Gka = '[tDDXk dU,
one will have:

d , .
Go W = aj.ztmxk dv = |CJ'264(tDka)du =ic LX@JDD dv = J'zxk64tD4 duv.

Since:
Oy toy=0=0 to + 04 o4,
one will get:

Go W =- L)g o,t, dv.
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One can integrate this by parts and suppress the pad oftdgral that is taken over
a space-like surface that is contained entirely withevacuum:

Go W= Ltmx duv = Ltm,dk dv = Ltmkdu = Ltkm dv

(sincet,, is symmetric) or finally:

GV, =G.

The spatial velocity of the pseudo-center of madative to its defining reference
frame is then given by:

Vi = &
Gy

SinceGy andGp are constant in timé&/x will also beconstant

One sees that in every reference frame the pseewter of mass enjoys the
fundamental property that characterizes the batgcan non-relativistic dynamics: In
the absence of external forces, its motion wilubgorm andrectilinear.

One similarly exhibits the simple significancetloé¢ relationGy Vi = Gy .

Indeed, one can deduce the expression for theangth velocityw, of the pseudo-
center of mass from it, and its components in gfenohg reference frame will be:

w=aVi and w=ica, with a=@1-?/)™?

GG
\IZZVka:—CZ—Ckazk,

4
V2 +Gka _ G#Gﬂ __ M;C2 — M;
g e T @ G

, from which Wk:G—& & and W4:ii02&,
M, M, M, M,

B
<|©

0

which one can write as simply:

This is the relativistic expression for the spaoget momentum of anaterial pointof
proper mas#o .

Therefore, it seems that we can generalize thenaasproperty of the barycenter of
non-relativistic dynamics to a relativistic treatmiewhich consists of the possibility of
describing certain characteristics of the globafiomoof a material system by considering
a materiapoint that is situated at the barycenter and has tla nadss of the system for
its mass. However, in reality, this is not theecasecause we know that the pseudo-
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center of mass, despite the dynamical relationsittisdseys, cannot be considered to be a
material point in any way, since its coordinates arecowariant. It is a mathematical
fiction, in the same sense as the pseudo-center éémnand it does not play the role of
either a material or a geometric “object.”

Meanwhile, the covariant role that we just gave toviHecity invites us to extend the
significance of the motion of the pseudo-center of m&xsnsider the reference frarbe
At each instant = x4 / ic, the drop will possess a pseudo-center of mass retatitreat
reference frame that is well-defined by its coordinadfes One can characterize it by a
space-time poin§, = (&, Xs) in the reference frame,

However, this same point can be located in any otHererce frame’ by simply
applying the Lorentz transformation that makego to ' to the é, . & will then be
considered to be a space-time vector that definestamsic point in all of the reference
frames. Naturally, the poird, is only a pseudo-center of mass relative to the referen
frameZ in which it is defined. One will similarly define the etrcoordinate&‘;, in the

reference fram&’, which will define a space-time point that is distincinh , . This
novel concept suggests that there exist an infinitude afdpseenters of mass. The
covariant relation that we just established, namely:

MO W/[ = G/[ y
shows that all pseudo-centers of mass will have theesalocity. In particular, if one
places oneself in the particular reference framehithvthe space-time compone@sof
the momentum are zero (vizthe reference frame of inerjighen one will see that all of

the pseudo-centers of mass will have a zero spatiatitxeld hat is, all pseudo-centers of
mass are at rest in the reference frame of inertia.

8 6. Total and internal angular momentum.— Having introduced dynamical
concepts that are defined by means of the energy-momeansaorf we shall introduce
the ones that are defined with the aid of the momendtafion tensor density:

rT'I,uv]/] = X,u tur — Xy t/M .

We defined théotal angular momenturof an infinitesimal droplet above by:
My, = J.VO (X,0, =% q,) d.
This expression can also be written, more generaly, a

1
Myv = - ?J.Vo mﬂM u, dJO
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and that is the form that we shall use. Indeed, upongahkto account the expressions
follow that:

M/,V:—C—lzj%[(xﬂgvuﬁ—&g,u) Y+( 56, - Wa) W o

The second term is zer@f uy = 6, wy = 0), and upon taking the fact thatu, = — c?

into account, what will remain is:
M, = J.VO (X,0, =% q,) d.

As before, we remark that one cannot directly extemd tefinition to the
microscopic case if one is given that there is no Iplpaell that corresponds to the
properspace at every point.

We refer the preceding definition to the proper refezeiname of the infinitesimal
droplet — i.e., to the same hyperplane over which we iategr

ME, == S (68X w, = [ . @,

and we generalize to an arbitrary hyperplBinBy explicitly assuming that the tensors are
referred to a reference frame that is definedby

My = [, (.8, =% Q) b,

In this form, which no longer involves proper spathe definition of the internal
angular momentum can be generalized to a macrastioj mass.

Sinced, (X tuy — Xy ) = 94 muy = 0, we once more meet up with the volume
integral of the fourth component of a conservatieasor, and we can apply Mgller’'s
theorem (AppendixA). Moreover, one will immediately see that by wetof the

hypotheses that we made for surface tension, therHyoundary integrajn k,m,, d,

will be zero. Indeed, if one expresses the diffeed scalar element relative to the three
axesx?, x@ x® of the local proper system that we consideredreetfoen one will make
the quantity:

M dg & = (X, t, dg'= ¥ f dg) d7

appear, whose terms will both be separately equakto at every point, provided that
one knows that energy-momentum of the surfacedartbat we previously introduced in
the expression for the energy-momentum tensor @suface.

Similarly, one easily shows that the scalarM,, (and as a consequence, the tensor
M,y) is constant in time. Indeed, one has:



72 The relativistic theory of spinning fluids

d .
a(k/lvM/w) = .[Skpu(nlm\ﬁ -icm,) @, .

Upon evaluating the differential element in theger reference frame, all that will
remain is:

0 : 0
-k, icmp,, dg,

which is a quantity that will be zero when one takarface tension into account, as we
just showed. One can thus conclude: On the ond, e total angular momentum
varies like a second-order, antisymmeteinsorthat will be independent of the choice of
hyperpland, provided that the spatial axes of the adopteereete frame are always
chosen to be in that hyperplane. On the other hdwedtensoiM,, will be constantin
time for any time axis that is adopted:

d
—M, =0.
dt

The physical significance of the spatial composent
Mi = [ (Xt —xt.) dv

is clear if one remembers that the compongntsepresent the momentum density in a
relativistic fashion. M;; is thus akinetic moment relative to the origiat least, if one
assumes that the origin is found in the same dpatiaas the instantaneods i.e., that
the constant timg, is zero, as one can always assume.

On the contrary, the role of the time components:

Mio = [ (Xt =%t,) v

does not seem obvious on first glance. Howevemd separates the two terms then one
will see thatVl; ; involves the pseudo-center of mass.

gDJ'ztiD dU = QZD c':‘i y

so one will finally haveMin =G § — G & .

This is the relation that we utilized above in ammer that anticipated the proof that
the pseudo-center of mass varies with the referkaoge.

This relation can be simplified if one chooses dhngin to belong to the hyperplane
M and changes the time origin to &e= 0, and what will remain is:

Mim =G4,
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i.e., as is well-known 1], these are the components of th&rycentric moment with
respect to the initial position of the pseudo-center of mass.

Louis de Broglie has often insisted upon the fact thaelativity the kinetic moment
with respect to an arbitrary origin of one’s coordinakes does not have to have any
particular physical significance. The important quantyhe proper kinetic moment
relative to a point that is connected with the fluid pJroranslates with it, and is
characterized by a well-defined physical propetfly [The choice of that point (which,
from a certain viewpoint, ought to play the role of tberiter” of the drop) presents some
difficulties. We will address them shortly. For tement, we assume that one has, in
some fashion, defined a given po@that is connected with the drop and is independent
of the reference frame. We shall call the tensar hobtained in same mannerNag,
the internal angular momentur®,,, but we shall take the poirf® to be the origin,
independently of the reference frame, and we will defteteoordinates by, which
will be covariant by definition. One will then have:

Sw= [ 1%, =Y) o -(%=Y) o] @

in the reference frame that is determined by theehyland1 over which one integrates.
Upon separating the terms wifrom the terms irY, one will get:

SﬂV: L(Xptm _x/tpm) dU—YpL I @+ YJ; ;ED @,
SO:
(1.6) SW = MW —Y# G+Y 9

Since the three terms on the right-hand sideearsotrs, independently of the chosen
hyperpland, it will result thatS,, is also a tensor.

8 7. The fundamental equations. Center of mass.If we endow the point with
the quality of being a “center” for the fluid maben it will be natural for us to introduce
the proper timer of the pointC as themean proper timef the fluid. If the pointC
considered possesses a spatial veldditin the reference frami@A then it will be easy

to define:
-1/2
o= @ﬁj

and to calculate the quantitiek = a Vk andU4 = ic a, which will be the components of
the unit-speed velocity, of the pointC in the reference framBA. The unit-speed
velocity will then be a quadri-vector under the divion the C should be an intrinsic
point whose coordinates transform according toLieentz formulas under a change of
reference frame. One will then pass from the tintieat relates to the reference frame
A to the proper time by way of:
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dt _U
— =2 =q
dr ic

We shall now differentiate equation (®ith respect to proper time Given that:

d _dt d

-G =—EG, =0,
dr * dr dt *

d dt d d

—M,, =—LE-M,=0, —Y, =U,,
dr » dr dt » dr » *

if we denote the derivative with respect to proper tima kgt then it will follow that:

S,=GU -GU,

which is a formula by which one will recover the secondigrof Frenkel-Weyssenhoff
equations, to which, one can immediately append thegfiostp, which is expressed by:

as we just recalled.
We must point out a further important detail that comse internal angular
momentum: If one takes its time components in thereeice framéElA then:

So= [0 1o =06 = Y) f] @5
ie.:
So=Go &—YGo,
or furthermore:

(1.7) So =G~ Y)

Therefore, in an arbitrary reference frame, theetcomponents of the proper angular
momentum relative to aarbitrary, intrinsic point will constitute a spatial vector that is
collinear with and proportional to the vector thahnects that point to the pseudo-center
of mass relative to the reference frame considered.

We seek to give a covariant form to that relatibm.order to do that, we remark that
since the point is an intrinsic point, its velocitly, will be a well-defined quadri-vector,
and one can always find a reference fraxge(which is determined up to a spatial
rotation) in which the poin€C is at rest. The hyperplai& will be orthogonal to the
quadri-vectolJ,, . We shall call this reference frame thean proper reference franoé
the fluid mass. If we write the preceding relatiorihe systen, then upon multiplying
it by U7 =ic, one will have:

S} ic= Glic(&2-YY),
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or furthermore:
Sl?m Uf: Gf Uf(fko‘Yko),

if we denote the components with respect to the referblame with the superscript O.
One can further remark that:
S, =0 (antisymmetry)
and
&-Y2=0 (simultaneity),

which one can just as well write as:
SAUVEIVHE Y

However, since the spatial componekt§ are zero in the systeidy, the quantities
S, U; and G; U, will be nothing but the expressions for the contracteddeproducts

Sw Uy, andG, U, respectively.
One can thus write:

(SwU)° = G UY(E5-Y,) -

In order to make this equation covariant, we must consiikier.{l‘j to be the

coordinates of amntrinsic point in the proper system that is defined all of theeot
systems by convenient Lorentz transformations, as awe Isaid. That point will be
called thecenter of mass X properly speaking, and will be the pseudo-center of mass
only for a proper space cut. Moreover, we must rematkthiga“‘center’C of the drop
will generally accelerate. The Galilean proper refeeename in which it is at rest at the
instantt will not generally accelerate. Furthermore, atitfgantt’, the pointC will no
longer be at rest, so it will be necessary to considdifferent proper reference frame.
Since the center of mass at each instant is defirlativeeto the proper reference frame
relative to that instantit will result that the center of mass is not ayakecenter of
mass. It would be a gross error to apply the formiolaselocities that were established
for pseudo-centers to such a point. In particular, lithwitrivially at rest in the reference
frame of inertia.

By means of these hypotheses, the equality:

(SwUn)° = Gy U)° (X2 -YP)

will be, at the same time, a tensorial equation, &ndgill be true in any arbitrary
reference frame. One can write it in the covarfashion as:

S,llV UV:GV UV (X/I_Y/I)
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Finally, the contracted produ@, U, is an important invariant, which we, following
Weyssenhoff, can write as:

GU, =-Mm.,

in which a new proper mas%, appears that differs frodM,, and which is not generally

constant in time, and which we shall call freper mass of inertia
It then ultimately follows that:

S,UVUV :mocz(yl - )sl)

It is remarkable that the two formula that were lggthed forS'ﬂ andS,, U, do not

involve any properties are peculiar to the p@nbther than the fact that it is atrinsic
point that is defined by covariant coordinates. It isless obvious that the proper
angular momentum can no longer have any physical signde when the poir€ is
defined by starting with the properties of the fluid dropableast, when it is related to
the “form” that this drop takes, in some arbitrary fashi@hese are the problems that are
provoked by a choice of the poi@tthat remain for us to explore.

8 8. A fundamental reference frame.— The study of points in relativistic
hydrodynamics can play a role for a macroscopic fluas$that is analogous to the role
that is played by the center of gravity in non-relatigistynamics, and which has been
the object of numerous work4dd, 13]. They always collide with the facts that the
integrals that define the coordinates of a point mustssegily be taken over a “volume”
of the fluid mass that is the intersection of theldrbube with a spatial hyperplane that
relates to the chosen reference frame, and thatdbedinates thus-obtained will vary
when one changes the reference frame, as we saw aonkext of the pseudo-centers of
matter and mass. It is never possible to reduce thesggrats to merely covariant volume
integrals that are the integrals of the fourth comptseh a conservative tensor (see
AppendixA). That is why we shall adopt a different (and less tious) viewpoint.

We choose a poir@ that is defined in relation to the properties of thedfldropin a
given reference frame.Furthermore, we assume, from the outset, that thist p®
intrinsic — i.e., that we will obtain its coordinatesthe other reference frames by means
of the Lorentz transformation formulas, although ntemnd that it will no longer enjoy its
defining property in the other reference frames. We @yresed this process in order to
define the center of mass.

We therefore come back to the problem of the seanch $pecial reference system
that is defined by means of the properties of a fluid mass

It is convenient to reason by analogy with the casearofinfinitesimal droplet,
because one will immediately recognize a referencedrfor such a thing: viz., tHecal
proper reference framewhich is orthogonal to the infinitesimal hyper-tubelhat
reference frame will be defined a spatial hyperplBgethat is orthogonal to the time
axis, whose properties we recapitulate, since theyhtnrigve a different significance
when one passes to the case of a macroscopic flust mas
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1) The center of the droplet is at rest in the hypegdld, .
2) The hyperplanél, is orthogonal to the local currejpt.

3) The hyperplanél, is orthogonal to the local momentuyp, which is collinear
with j, .

Now, consider a macroscopic fluid mass. Cut the Ipfaeell in the direction of a
domainZ and see how one can generalize the three propertiesv¢heecalled above.
Remember that a hyperplahkthat passes through a given space-time pdimill be
determined completely by three independent parametersexXaonple, one can define it
by the three Lorentz coefficients =V, / ¢ of the pure Lorentz transformation that takes
the laboratory reference frame to the referenamdrid/\ that serves to fix the time axis
N\ and to leave the spatial axes undetermined in the Hgpeip.

1) One can restrict the “center” of the fluid masdé immobile in the hyperplane
M.

Relative to the reference frafié\, the role of “center” will be played by the pseudo-

center of matter, and we know that its velocity mwesekpressed by = % L jodu in

the hyperplanél in order for us to satisfy the three equativis O.

The Vi are complicated functions of six parameters: Tlffegetermine the position
of the axis/\ and three parameters (for example, the Euler a)leketermine the three
space axes in the hyperplarié, while these last three parameters can remain
undetermined. Three equations can then permit us to detetingindrees3 , but the
expressions that are found from them will contain éhei.e., we will obtain different
systemd1y /\p according to thespatial rotations that we allow in our reference frame.
We cannot generally determine the reference frAig, in a unique fashion in that way.

2) One can restrict the spatial current to be zetbgmrmean. In general, one cannot
directly consider a total current, because expressions asid, = J'zj#du are not

tensorial. However, one can express the property intignesh the case of the
infinitesimal droplet by requiring that the hypersurfat@rentdg, that is cut out by the
infinitesimal hyper-tube on a hyperplafieshould be collinear with the current:

judoy =j,doy,

which will lead us to say that the tengpdo, —j, dg;, is intrinsically zero.
If one integrates then one will get:

Y = [ (i,do, - j,dg,),
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which will be a tensofor a given hyperplané€l. Therefore, each hyperplaie will
correspond to a tens@f., that is a function of three parametés In order for the

hyperplanell to satisfy the same condition as the infinitesimalptdodoes, one must
have thatj;., is intrinsically zero. However, that is not possilifegeneral, because that
would involve six independent conditions, while we are provided with only ethre
parameters. It seems fitting that if we are givenwhsg that the current density varies
then it will not be possible to define a system thanalogous to the proper reference
frame of the infinitesimal droplet by addressing the kiagcal properties of the fluid
mass uniquely.

3) On the contrary, the third condition, which involtee dynamical properties of
the fluid, immediately provides us with a reference #anindeed, as we know, there
exists a vectoG, — viz., the moment vector — that corresponds to tbal lmomentum
density vector for the aggregate of the fluid mass. dfdivect the time axis parallel to
that vector then the hyperplafiewill be orthogonal to the total momentu®y, just as
the planell, of the infinitesimal droplet will be orthogonal to th@cal momentum
densityg, . We denote the special reference frame that isdéfised by, A4, and we
call it thereference frame of inerti@Neyssenhoff).

It is useful to given the transformation formulasttipermit us to pass from an
arbitrary reference franmi@A (e.g., the laboratory frame) to the reference &arhinertia
M1 A1 . Any vector with component&, in the reference framélA will have the
components:

G,} = /],ua Ga,
in the reference fram@; A\;, and conversely:

G/[ = I/[ﬂ Gl ,
with
Aaﬂ: Iﬂa .

The coefficientsiyz are given as functions of the relative veloeityf the systentil,
with respect to the systeimh by the well-known formulas3]:

a’ vy, av.
Ak = Qe + —F=, A == Ag=—,
k= Ok T a) & 4 4=
Ai=a with a=(1-2/cA)"

If the vectorG, is the momentum vector, and if one restricts itdigpeomponents to be
zero in the systerii; A; then one will have:

G, =Ai G+ A Gs=0,
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or, upon substituting the valuesAf, Au:

{dk +M} G=2%G,zauGs.

(1+a)c? ic

Contracting this withy, will give:

Vka:\/2 and CYZVZZCZ(CYZ—].),

SO

202 _
vﬁ#vI G=aviG=aGyviVv.
c(a”+1)

That relation is satisfied by the velocity:

(among others), which is a velocity that will etigely satisfy the complete equation
when it is substituted in it. Upon substitutmgn the transformation formulas, one will
get:
2
aG
A=K+ —F—5—— G :
Gic(l+a)

Agi == Aia= a’C?i : Asa= a.
G,ic

One can further remark that:

Gs=ic G :I4iGl+I44Gi:a'Gi:a'icMo,

SO
Go=aMo,
and finally:
G
(11.8) e P T
L (M, +G)) icM, M,

8 9. The center of gravity. Mgllers theorem.— Once we have chosen the
reference framél; A1, we can immediately consider two points: viz.,gseudo-centers
of mass and matter, which, from what we discussex/e& we consider to be intrinsic
points, and from which we will obtain the coordiesiin an arbitrary reference frame by
means of the Lorentz transformation formulas. Tifs¢ of these points will be called the
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center of gravitMgller). We denote its (covariant) component&Zpy In the reference
framell1/\;, these components will be identified with those ef pseudo-center of mass

Z, = ¢,, and its spatial velocity will then assume the pafgicexpression:

i.e., it will zero. Since the hyperpland: is orthogonal to the vectds,, the spatial
components will be zero. The center of gravity wi be determined by the fact that it
is the only pseudo-center of mass thattigestin its defining reference frame.

We can choose the center of gravity to be a pGjrdnd endow it with the role of
being “center” of the drop. That will lead us to take ititernal angular momentu&,,
relative to that point, to choose its proper timie be the global proper time of the drop,
and to attribute the unit-speed veloclty, of that point to the drop (taken as a unit),
which is a unit-speed velocity that is, we repeat, orthabmwl1,; i.e., collinear td5,, .

One will have:
G =0, G;=./G,G,,
U, =0, U; =ic
in the reference frami@i/\y; i.e.:
G,=MU; and G =MV,

and thus, the covariant equation:
G, =MU,.

The momentum is collinear with the velocity.
The two fundamental equations will give:

The first one: G =0, so U =0,

u

The secondone: S, =G U -GU, =0.

The unit-speed velocity and the proper angular momentihbe constant in the
absence of external forces.

Therefore, if one condenses the fluid drop to a natpoint that is situated at its
center of gravity then that material point will be is@mpletely classical state of motion,
and the model will not present any great interest. rAdle as we emphasized at the
beginning of this chapter, it has not been a convenieptoiveepresenting a body that is
animated with a rotation, since no points besides theecef gravity will enter into it
explicitly. The material structure will reduce to a uniguoent with no distinct parts, and
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since it hardly makes sense to attribute a proper ratépiot, since angular momentum
will no longer mean anything.

Meanwhile, that model has served to exhibit some of thmoitant properties of
global motion for a drop for Mgllerlp]. It will be useful for us to pause briefly. If we
apply formula (7) to the reference frame of inertientbhat will show us that the Mgller’s

angular momentum (which shall denotedyy, , so as not confuse it with the one that we
shall use in what follows) does not have non-vanishing teshmmmponents in that
reference frame. It can be condensed into an antigynt spatial tensofI' w» and can
also be just as well represented by its dual:

[—
/]k—i‘gijk j

which is a vector that is situated entirely in inersiphce, so inversely one will have:

L = fuk/‘k' .

i

As we will verify in the next chapter, this relatiavhich was established between the
tensor £, and the vector}, in the space of inertia, can be transformed into arinva

relation between Mgller's angular momentém and a space-time vectdy, that we call

the Mgller spin whose components along the axes of the system ¢itingll be A and
0. One will then have:

[ G,
Ay=—e vab
e M,
and conversely:
[ G,
£ =—c a_ﬂ,
e T M,

as one will easily very upon projecting onto the axéshe system of inertia. The
expression for, shows that, in addition, this vector will remaionstantin the course of
its motion by virtue of the two laws:

G, =0 and £, =0.
Having said that, formula (7) will permit us to locate giseudo-center of mass

that relates to an arbitrary reference frdiae with respect to the positioZx of the center
of gravity, which is situated in the same spacelikdtuOne will have:

Lia =Gy (& — Z).

On the other hand, upon applying transformation (8) tadmeponents of ., in the
system of inertia, one will obtain:
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— [
£k4 - Ikp |4q£pq—

G GG,
icM,

i + £yl
pq MOCZ(MO+GD):| par="pq

for the Lws components (upon considering only the spatial componentﬁ'ﬂp,f of
course), or, upon replacindpq with its expression:

Lya =

{ GG,

P 1o, + e A,
icM, P MOCZ(MO+GD)} pqr/]r

The second term will disappear by antisymmetry:

G
Lia=G —-4) =& P A",
ka = Ga (é&— 4) = & YR

0

If one denotes the spatial vector with the componéntsZ in the systenfilA by A then

one will have:

G
MO GD

This equation is not vectorial, because the quangitiedenote the components of a
vector in the space of inertia. We can considervdaor 4y to be a space-time vector

upon introducing the componedt = 0 in the systerflA. We then seek the components
of this space-time vector in the system of inertiapglying the relations (8):

. G
A = Ay A= S o By
icM, Mc” G,
A, is zero, by antisymmetry. The space-time vectorwill then be contained in the

space of the system of inertia. The two centers instque when taken to be
simultaneous in the systefA, will then be likewise simultaneous in the system of
inertia.

Similarly, one will have:

+ GJGk ‘gprk &AI
MOCZ(MO+GD) MOCZGE "

.Ajl = /]jk A = 5jk

Once again, one has a term that is zero by antisymnaetd what will remain is:
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. & G

_ prk p Al

Cuee

However, the vectoG, / Gy is nothing but the velocity, of the system of inertia
with respect to the systef/\ when it is represented along the spatial axes ofatber
system. With the reservation that the axes oftéhe systems must be parallel and
displaced without rotation with respect to each ottiex, same quantitieg, , with the
opposite signs, will represent the components of thecig of the systenflA in the
system of inertia. It then likewise represents a apagctor— V; in the system of

inertia. The equation:
E .
Ajl :_ﬁng:
c
0

will then be a vectorial equation in the space ofsysem of inertia:

VXA
M,

One then sees that for the various reference fratmas correspond (by parallel
displacement) to all of the possible velocitiegi.e., ones of norm less tha), the
various pseudo-centers of mass that are simultanedlis same center of gravity will be
divided on aiskin the space of inertia that is perpendicular to Malspin (which is an
invariant vector), and its radius will be obtained by giving mormc to v, such that:

A

A< .
el M, ¢

That disk will be immobile, since the pseudo-cestd mass are at rest in the system
of inertia. The special disposition of the psewéoter relative to the spin is related to
the fact that was pointed before that it is thatioh of the drop about itself that produces
the variation of the pseudo-center of mass aloagdference frame in which one defines
it.

8§ 10. The center of matter. The Bohm-Vigier model.One will arrive at more
interesting results when one chooses the secorarkafyie point to be the center of mass
for the fluid — viz., the pseudo-center roftterrelative to the system of inertia, which
shall call thecenter of matterproperly speaking, and whose (covariant) cootdmahall
be denoted by, . In the reference frani@;/\;, these coordinates will be equal to those
of the pseudo-center of mattét = 17, , and its spatial velocity will take one the spécia

expression:

I_l |
V, —jj.zle duv.
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However, these relations will no longer be true iather reference frame. It is with
respect to this center of mass that we shall evaluatentérnal angular momentugy, .
Its proper timer will be considered to be the mean proper time of the,drad its unit-
speed velocityd, = Yﬂ will be the mean unit-speed velocity of the drop. Omntsees

. . 1, .
immediately thaty, = jj.z j, du has no reason to be zero, so the center of maitter

not be at rest in the reference frame of inertia, e unit-speed velocity, will not be
collinear with the space-time moment@p.
One will therefore have, U, # G, U,, and the relation:

S;IV :G/IUV_GVUluiO

will provide us with an internal angular momentum thdt vary with time. One will
then arrive at laws of motion that differ profoundigrh the classical laws of Newtonian
mechanics.

In order to specify the definitions upon which the maests completely, it will be
useful to give the formulas that express the veloaitg the position of the center of
matter relative to an arbitrary reference (e.g., thboratory frame), which we
characterize by the values @&, G4, which provide the components of the total
momentum in that reference frame, which will, askmew, permit us to write down the
Lorentz transformations that take us to the referénacee of inertia.

As we know, the velocity of the center of mattegigen by:

1, .
Vkl = 3.[21 jll( du

in the reference frame of inertia. If one formMsV, anda = (1-V,'V, / ¢)™? then one
can write down the components of the unit-speed veltgjty the system of inertia as:

U, =aVv,, U, =ica

One passes from this to the components in the labgrsystem by transformation (8):

Ukza[vk'+ GG vk'j,

or furthermore:
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These formulas then permit us to define pheper system by means of the Lorentz
transformationx2 = Lw X, which takes us from the laboratory system to thegro

system. One will then have the classical formulas:

Uy,

Lk=k+ ———,
k= Ok U,

U
L4i:_|—i4:?l, Laa=Up,

in which it will suffice to replac&)x andUg with their values.
Finally, the coordinates of the center of mash@system of inertia are:

N o
Y/ (1) _j.[zlj'mx,'(du, Y, =ict.
If one passes once more to the laboratory system th

o GG g
M =Y Ot YDt

Y (t).

2

Yo(t) = %tl +

0 0

These formulas provide the parametric equatiomaatfon for the center of matter as
a function of time in the system of inertia. In®re convenient to introduce proper time
ras a parameter. One hbs at, so:

_ GG G
Y =Y (ar)+ M. (M. +G) Y (ar)+ IRk

Y, =S ar+ & =Y, (aT).
M, Mg

We have therefore defined three particular intcip®ints for any fluid drop:

1) The pointZ, — or center of gravity — which is at rest in tlystem of inertia, for
which it is the pseudo-center of mass.

2) The pointY, — or center of matter — which is the pseudo-ceotenatter for the

system of inertia, and is at rest in the propetesysby reason of the definition of that
system.

3) The pointX,, — center of mass — which is the pseudo-centerasisrfor the proper
system at the instant considered.
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These three points will generally be distinct, asdwee have seen, the space-time
vector that joins the center of mass to the ceotenatter — which is a vector that we
shall denote b®, — is given by:

1
:x _Y = VUV-
Qu w— Tu moczsﬂ
One obviously has:
1
Q#U#:_m CzsﬂVUVU/l:O

0

by antisymmetry, which signifies th@), is a spatial vector in proper space, and trarslate
into simply the fact that we have assumed thatwleepoints are simultaneous relative to
the proper system.

One can express the quadri-vector that joins #mec of mass with the center of
matter in an analogous fashion. Consider the sgme for the time component of the
proper angular momentuim the reference frame of inertia:

S = LI b —(X - V) 1] @,

in which the integral is not taken with constamei relative to the reference frame of
inertia: x, = constant =Y., which will annul the second term. What then remmavill
be:

S= [ Xt du-Y] b & =GLE-Y. G
SLD :Glm (5|I<_Yll)

However, G| will be the normM, of the quadri-vecto6, in the system of inertia,
and on the other hand, the pseudo-center of @hsﬂ the system of inertia will coincide
with the intrinsiccenter of gravity Z, so:

Silm = MO(ZL_ Y,)’

or, if one remarks the,; = 0 andz; -, =0 then:
Su =My(Z,-Y,).

This relation can be made tensorial by observiteg the contracted produ§t, Gy,
which is a quadri-vector, haS( G,)' = S..ic Mg and &, G,)' = 0 for its components in

the system of inertia (where the component§ovill be 0, 0, 0, andc Mo).
One then has:
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(Sw Gy =icMo S}, ==¢® MZ(Z,,-Y,),

which is a tensorial relation that can be writtearnarbitrary reference frame as:

S,uvcrl\'/:_Mé(’z(zl_ X)

We denote the space-time vector that joins the cedfitgravity Z, to the center of
matterY, by R, =Y, - Z, so:

1
(11.9) &zmﬁz

S G-

One immediately sees tha}, G, = 0:

R, is a spatial vector in the system of inertia, hig natural, since the two points
that it connects were defined to be simultaneotsahsystem.

The vectorg), andR, are thus non-zero, in general. However, one oasider the
particular cases in which they are zero.

1) R, = 0: The center of gravity and the center of masslse sameS,, G, = 0.

This is the case that was studied before. Thelelr@beys the same dynamics as
Mgller's droplet:

2) Qu = 0: The center of mass and the center mattern@eame, which translates
into the relationS,, G, = 0, which one recognizes to be the Frenkel-Weyssk
“auxiliary kinematical condition.”

Thus, one sees that the Frenkel particle (or theysaenhoff drop) realizes a
particular case of the general motion of a fluid@lmn rotation, namely, the one in which
thecenter of matter and the center of mass are idahtic

Thus, the Bohm-Vigier drop provides a generalmatof a relativistic spinning
particle quite well, which was what we desired & beginning of the present chapter.
Upon endowing the internal angular momentum witheticomponents in the proper
system, components that express the separatide akeinter of matter from the center of
mass, we introduced new parameters that one migptog, not only to represent the
“classical’ Dirac particle, but, more generally,donstitute fluids that are endowed with
internal rotation that is capable of propagatirg\tarious waves of quantum mechanics.

In fact, in a recent papeb]], which we shall be content to merely point ouigisf,
Hillion, and Lochak succeeded in quantifying thegy@l motion of the drop by making a
fixed number of stable excitation states appear vibich the internal motion was
periodic. Thus, they recovered the classificatidrthe elementary particles in such a
way that provided the experiment and its result #ilaws us to show, for the first time,
the relationship between the wave functions ofwhous elementary particles and the
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various states of the same concretely-described abh&tructure, which permits us to
attribute considerable theoretical significance to tbeehof the drop.




CHAPTER Il

THE STUDY OF SOME PARTICULAR CASES
OF MOTION

In the preceding chapter, we obtained a global expregsr the motion of a classical
fluid drop, which is an expression that we shall considebe the basis for a new
dynamics of material particles. It is a dynamic fehich the classical dynamics of
material points constitutes a first approximation, ardctv introduces several distinct
points (three, in the general case) as a represantdtia particle and shows itself to be
capable of describing, without contradiction, the typeglobal motion that reflect the
influence of the internal motions of the mattertlod particle. Upon choosing a drop of
classical fluid as a “model,” in preference to a solak&c mass or to any other type of
body, one narrows the scope of the motion, but one dgagnadvantage of recovering the
motions that were studied before, and have been usedibys/authors as special cases.
One thus comes to an interesting generalization ofatbr& that is, at the same time, an
interpretation of their hypotheses that begins in @akblydrodynamical terms.

In the present chapter, we shall develop the new dysaofiparticles in the general
case, as well as in various special cases in which wineoourselves to the case of the
free particle in the absence of external forces. W& sommence by studying the case
of the Frenkel-Weyssenhoff particle in detail, becauswilit provide us with some
interesting relationships that we will not attempt to gainee.

8 1. Weyssenhoff motion: its significance.lf we are given the equations that we
began with, which represent the evolution of the glgbahtities that characterize a drop
entirely, one might demand that some of the propeofieke local motion at each point
should correspond to this or that special case. Oghbtrtherefore propose the following
interpretation of the Frenkel-Weyssenhoff motion thane is given the conditio8,, U,
= 0 then that will translate into the idea that tkater of matter and the center of mass

are constantly identical4].

By way of example, consider a homogeneous fluid gpher
whose centelC is immobile in a proper reference frarke
such that fluid rotates about an axis that passes thiGuagid
which we take to be perpendicular to the plane of thedi

If the sphere rotates as a unit, or if the rotatigmeigormed
in a laminar fashion by spherical or cylindrical layers o
varying velocities, then the poir€, which is the center of
matter, will also be the center of mass, by symmetry.

Incidentally, in the absence of external forces, thial tmomentum relative to the proper
system will be zero, and the motion of the p&@nwill be a classical motion. The global
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kinematical properties will not be modified if the raa of the fluid is more
complicated — for example, if it involves a point, sustain a small vorticial structure
that is carried along with a velocity i.e., C will still be the center of matter and the
sphere will still be at rest in the syst&min the mean.
On the contrary, from the kinematical viewpoint, tlogtex
A will involve a supplementary energy that will have the
effect of:
1) Displacing the center of mass towards the top, which
will separate it from the center of matter, as altes
2) Causing a supplementary momentwn/ ¢ to appear
that will, as a result, yield a residual momentumha proper
system that will therefore play the role of what wadl the
“transverse momentum.”

Weyssenhoff motion corresponds to the case in whigarakvortices of the same
species are arranged in such a fashion as to negatestheffect — in the event that the
center of matter and the center of mass are idéntiséthout negating the second one —
in the event that one has a non-zero transverse ntamerit is indeed obvious that these
two conditions are distinct. For example, consiser vorticesA; andA; with energies
w; andw, , respectively, that are situated on the same diamoetesither side o€ at
distances: andr; from that point.

The center of mass and the center of matter will be
identical under the condition that r1 =w,r,. This condition
translates into the Weyssenhoff condition tBatU, = 0.

On the other hand, the transverse momentum will be:

1

p= = (Wi V1 + W2 V).

If the sphere spins as a unit like a solid body (up to
vortices) with an angular velocitgthen the first conditionv; r1 = W, r, amounts tow
wri =W, wry OF Wy Vi = W, Vo, andp is zero. However, it is natural to assume, as one
usually does for fluid masses in rotation, that the cigloof rotation varies with the
distance to the center, with the successive stratangi@bout each other.

One has:

1
VT n@y, VT Ra,  and P [wra, —wor )

p might then be non-zero. More generally, if one hasrtices then the Weyssenhoff
condition is written:

and one has a momentum that is in proper space:
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1
I3

p= ZWiri(‘J(ri)-

It is quite obvious that these two conditions wlinain constantly realized only if the
vortices are permanent and are displaced by threrduas if they were floating on water.
Indeed, upon recalling the example of the vortices, see that their orbital angular
velocity will be different since is non-zero. However, one of them will then e
with respect to the other one like the two handa whtch. They will not lie on the same
diameter, and the balance principle of Weyssenhdffnot be maintained. Conditions
must then be imposed. For instance, the condihahthe vortices must displace with
the current, or, more generally, that there mustdrestant exchanges of energy between
the vortices and the fluid layers in quasi-lamiraation, so the vortices might disappear
at one place and reappear at another in such mfastat it would constantly maintain
the coincidence of the center of mass and the cehteatter.

Weyssenhoff motion might appear to be paradoxitdhe sense that the center of
mass remains constantly identical with the centenatter, because the center of matter
is immobile in the proper system, while the cerdémass is in motion in the same
system. In reality, upon examining the Weyssenbade in detail, we will verify that the
center of matter possesses a certaicelerationthat is proportional to the transverse
momentum, even in the absence of external for¢ewill then be at rest in the proper
systemZ,, but accelerating, in such a way that at a latstant it will have acquired a
certain velocity with respect to the syst&y so 2, will cease to be a proper system,
since, as a Galilean system, it cannot be accelgraflThis acceleration of the center of
matter, which is characteristic of the non-Newtan@dynamics of the Weyssenhoff
particle, therefore permits the center of mass,ciwhis motion with respect to the
successive proper reference frames, to remainnstant coincidence with the successive
centers of matter, each of which is at rest in phaper reference frame to which it
corresponds.

This same apparent paradox provides the key tophysical explanation for the
Weyssenhoff motion. As we explained in the exangblghe vortices, the existence of a
residual momentum in the proper system implies thatcenter of mass must be in
motion in the proper system. However, this motiself can be interpreted as only a
certain internal deformation that the fluid undezgowhich will be a deformation that
gives rise to antagonistic internal forces when @ngiven the existence of stresses.
These will be forces whose effect, upon summati@mslates into an acceleration that is
applied to the center of matter. This acceleratiwwhich obliges us to change to the
proper reference frame at each instant, does netdaimple relationship with the center
of mass, in general. On the contrary, it wouldabspecial case in which it keeps the
center of mass constantly identical with the cenfematter. One then remains in the
special case that is described by the Weyssenba#t®ns.

8§ 2. Weyssenhoff motion: the dynamical equations.To the two fundamental
equations:

(11.1) G, =0,
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(111.2) S, =G,U, -Gy, Uy,

we must add the two “auxiliary relations”:

(111.3) U,U,=-¢,

SO

(111.4) u,u, =0,

and

(111.5) u,u,=-u,J,,
and

(111.6) S»Uy=0,

SO

(I”?) S;IV UV:_S;IVUV'

One needs to use the important scalar quantities:
1) The proper mass of momentip : -MZc*=G, G,.
We know that this isonstant.
2) The norm of the internal angular momentum: 32 =1S,S,,.
This norm is likewiseonstant Indeed, one has:
Z0%0= 35S, SIV: 79w (G, Uy =Gy Uy).
The two terms go to zero separately, by virtue of reiaf), and one will therefore have:
>, =0 and 3o = const.
3) The proper mass of inerti : - Mo P =G, U,.
Equation (2), when contracted by, produces:
S,, Uy == G, ¢ + MUy,

which, upon taking (7) into account, will give:

(111.8) G, =MV, +1g U,

2 Sw
C
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which is Weyssenhoff's first dynamical equation (retiadt the vector on the left-hand
side is constant).

Now, contract this equation wilﬂﬂ:

G, U, =MoU,U,+ =S, U,U

2 S v Sut
C

The first term on the right-hand side is zero, fr@n The second term is likewise zero,
by reason of the antisymmetry 8&f,. What will then remain is:

(111.9) G\U, =0.

It results from this immediately, by virtue of (1), thhe derivative o5, U, —i.e., that
of Mo — is zero. The proper mass of inertia, as well aptbper mass of momentum, is

constantin the course of motion. We may then differentt@ation (8), while taking
(1) into account:

0=MoU,+ =5, 0, +=85,0.
C C
The last term is zero:
S, U, =0.

One sees this by specifying that:
Sﬂv :G/IUV_GVU/I ’

and upon taking (4) and (9) into account. What then remsins i

(11.10) E)ﬁOUﬂ+C—];S U =o.

“ =v

The second term is zero, as a consequence of thgramtetry ofS,, . It results from
this that:
uu, =0,
and, as a result, that the scalar square:
U/IU;!
is constant. We therefore make a fourth scalar appear, viz.nthen of the spacetime
acceleration:
w=yuu,,
which is constant.
It is important to remark that equation (10) is of ot with respect to the unit-
speed velocity of the center of mass (or of orderethvéh respect to its coordinates).
After integrating, it then remains for us to choose twstems of arbitrary constants.
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One might therefore give it not only an initial vatgc but also an initial acceleration,
which will then generally be non-zero, even though tleeeno external forces. One
sees that one then finds oneself in the presencewiamic that is profoundly different
from Newtonian mechanics.

8 3. Weyssenhoff motion: spin.Following Frenkel, Weyssenhoff decomposed the
internal angular momentum in the following fashion: lacle reference frame, he
considered the purely spatial compone®its S3, S31, which constitute an antisymmetric
space tensor, and then he took the spatial dual of tisisrtemhich is a space vector:

K= 286Kk S
On the other hand, he defined another vector frometi@aral components &, :
t = 1S .

Relation (6) then translates into the hypothesis tieatectort is zero in the proper
reference frame. Louis de Broglie has remarkfdtlhat the vectors, conveniently
represents spim the proper systenbut this is no longer the case in any other system,
because the decomposition considered is not covariam.tif@n regards Weyssenhoff's
space vector:

g, = &)°

relative to the particular decomposition in theoper system(which is a vector that
expresses all of the non-zero componentS,pfn the proper system) and considers it to
be aspace-timesector whose temporal component in the proper systeeras

o, =0.

It is then possible to express the relation betweenvectors,, which represents
spin and the internal angular moment@&y [18]. In the proper system, one has:

(I11.11) ol =1g, S

We then establish a correspondence between the pewnstati the axes in space and
the permutations of the axes in space-time by settingphyention:

ik = &ijka »
SO
&k = — &4k -

Multiply and divide the right-hand side of (11) lwy which is the fourth (and only
non-zero) component of the unit-speed velocity in the preysgem. One will then get:
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1
UE = ?Cgijk4(SJpU4)o'
However, this relation may also be written as:

1
Ogq = ?C Euvap (Syv U,B)O,
because the terms in whig@d¥ 4 are all zero, and on the other hand, the fourth profect
gives preciselyo; = 0.

In this form, the relation is covariant, and therefealid in any system. One may
thereforedefinethe spin to be a space-time dual by setting:

1
(111.12) To = = Epua S

One will then have:
i
OqUg = 2_C EwapUpUa Sy =0,

by antisymmetry.
Relation (12) then necessarily leads to the “auxiliatgtion”:

(11.13) 0sUys=0

that Costa de Beauregard introduced in his thesis asgtest
If we multiply both sides of (12) by, and take duals then it will follow that:

i 1
E Earyp O Uy = _4_C Eguva Earyp Ua Up Suy,

1 cpu
= 4—C®ﬂfp Ui UpSw,

where the generalized Kronecker symbdﬁf,’,” represents the sum of all products

o’ o0, 9, when one permutes the lower indices in every possibje wiile prefixing a

— sign for the odd permutationsd. It then follows that:

i 1
E Eary Ta U, :4—C[U/1 S,pU,\ + UySpA U, + Up SApUA
-U,SU,-Uy,SaUs - U, S,U),

or, upon taking (3) and (6) into account:
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i 2
E ga/]yp Oqg UA :_4_C$/ps

or finally:

(111.14) S

i =~ Epla
C

U,o,.

Therefore, for a given velocity field, , one establishes a bijective correspondence
between the antisymmetric, internal angular monmarteensors, which are orthogonal to
the current, and the spin vectors, which are liseworthogonal to the current. Thus, in
order to express all of the components of the mateangular momentum, it is no longer
necessary that it be just a spatial spin vectarjtbtan now be @pace-timevector. In
this new formulation, Weyssenhoff's vecttris intrinsically zero, and not just in the
proper system. We add that it will reappear infdren of a covariant spacetime vector
when we pass to the study of the general casehichvthe center of mass is not identical
with the center of matter, and in whigh, U, # 0.

It is easy to see that the norm of the spin is sheme as that of the angular
momentum. If one replaces,, with its expression that one derives from (14Xhe
expression:

5 =1 SwSw

then:

1
Zg == gyuaﬁ Ua 0;8 g/[v)p UA Up - 2_02 ij Ua 0;8 UA Up,

22

where the generalized Kronecker symbdf$ are simplydyd? - 070; .
Thus:

1
Zg == 2_C2(Ua 0;8 Ua 0;8 - Ua 0;8 Uﬁ Ua),

or, upon taking (4) and (13) into account:

1
25 = 5 C0p0p= 0,
C

if we call the norm of the spigp .
One may generalize this calculation and thus olaavery useful identity: Form the
semi-contracted product:

1
Sw3n = 2 Euvap Ua O Euvyp Uy Op,

1

:_g S Ua 05Uy 0p,

1
——?[d//] UaUﬁUaUﬁ + U, 0 UVO'p + U, UﬁUﬁUV,
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_5|//1 UaUlgUIgUa - U, UlgUVUlg—UaUA UaO'V],

namely, upon taking (4) and (13) into account:

(111.15) S, S :aj(cfw +U::L2J”j—avaﬂ =on,-0,0,.

Upon introducing the dual of the angular momentum:

A |

1
Sw 5 Euvap Sap = E(U/f Uy =0y Uy,

one may perform an analogous calculation. It thidin follow that:

S, S :aguvcgﬂ—a.,m,

which is a formula that gives us, in particular:

%éﬂv SM =- g7 (one has thad,, = 4),
and similarly:

S, S,=0.

Finally, one may contra§,, and éﬂv with gy

i
S,uv oy = E Euvap Ug o0y = 0,

and, by antisymmetry:
2

é,uv g, = %(0-/1 UV_ Oy U/[)UV :_% U/[ .

8 4. Weyssenhoff motion: transverse momentumWe shall involve the spin in the
expressing of the two laws of dynamics. The fast:

uv v

1 .

decomposes the momentum into a vector that isnealti with the current (and has the
form the classical momentum) and a vector:
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1sy

2 v v
C

that is orthogonal to the current, sifggU, = 0.
It is useful to clarify the meaning of the latter we¢ctwhich represents non-classical
momentum, otransverse momentunVe set:

(111.16) P,= —C—lzswa
with

(11.17) Gy =MoU = Py,
and

(111.18) P,U, =0.

Upon replacing,, as a function of spin, it will then follow that:

i
e

(111.19) Pu= = €U U0,

It results immediately from this by antisymmetry that:

(111.20) P,0,=0,
and
(I1.21) PU, =0.

If one expresses this relation in the proper system ¢ime will get:

0 — I H 0 — I 0,,0
Pk - _3‘gk4ij|CViOUj - _2ij g VJ ’
C C
which one may write in vectorial notation as:
1
P=—=oxy.

CZ

Thus, the transverse momentum is represented by thar ygoduct of the spin with
the acceleration in the proper system.
On the other hand, the second dynamical law:

. 1 N
M, +=8,0, =0

w v

gives:

U u,ou, =0/

uvap

i
+—€
H C3
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If one contracts this witly, then the second term will go to zero, by antisymmetry,
and what will remain is:

(111.22) U,o, =0.

uu

This relation completes the set of relations (4), ({&)), (21), and shows that the
four space-time vectotd,,, U 4+ Pu, andgy are pair-wise orthogonal. Along the world-
line that is described by the center of matter, theywfarsystem of four orthogonal axes
that generalizes the Darboux-Frenet moving frame. TBigam, if one places oneself in
the proper system then the three vectoviz., U'ﬂ, P,, and g, — which are in proper
space, will form a tri-rectangular trinedron. If aegiven this arrangement then one can
define three relations between these four vectorsafgatinalogous to (19) and provide

the expressions fod,, U, and g,, and likewise one may define relations between

/1 )
bivectors. For example, multiply the two sides of (19Uhyand take duals:

1

i 1 .
E Euvap P/I U, = —2—02 Euvap é},mﬁUV UU 0p U, = —2—02 Jjayz U, U, 0p U,,

which gives, upon taking into account the orthogonalityticeia:
i 1, .
E Euvap Pa U/;— 2—C(Uy0'p —UpUy) .

There exists a natural relation between the normtheffour vectors considered,
which are norms that are constant for all four ofithelndeed, we remark that relation
(17), whose three vectors define a tri-rectangular triedtben gives us as a
consequence that:

Now, if one sets:
P, P, = Psc?

(so‘Bo now plays the role of a mass that expresses a @agsichl energy in the proper
system) then one will get:
(11.23) B2 =9M2-MZ = constant.

If one then forms the scalar squarePpf when expressed as a functionSpf, then
one will get:

1 o
Pu Py = Pc’= gsw% Uy,
or, from (15):

2711 2
o,u U, _ oly?
4 )

1 -
2.2 2

c'=—lomn, -o,0]UU =
0 C4 o'/ v Ay AV C4 c
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when one takes (4) and (22) into account.
Therefore, the desired relation between the four iamts is:

(11.24) oy, =P,

Finally, we construct the derivative of the spin in fitven (12):
o : :
g, = 2—C£mﬂﬂ(UVSgﬂ +U, )

If one replacess'aﬂ with its expression in (2) in the right-hand side then willesee

that this term goes to zero by antisymmetry. If onéaogsS,s with (14) in the left-hand
side then it will follow that:
! ! E,5U,0

o, zz_c‘gvaﬂﬂuvz app= v~ p
—ié‘”U' Uo
_CZ w v yE e
1

>UU,0 -UuU,o).

(@]

The two sides go to zero, by virtue of (22) and (24).
What will then remain is:

7, =0.

The spin thus provides a secaimhstantspacetime vector, in addition to momentum.
Ultimately, this important property results directhprin the fact that spin, which is a
proper-space vector, is perpendicular to the acceleratinodeed, if we take the proper
systemZ, at a given instant to be our reference frame, and wsider the center of
matter at the end of the tindg in this system then this point, which is acceleratw,
possess a certain velocity the direction of the acceleration vect@and the Lorentz
transformation will not involve any variation of the cter c, since it will be
perpendicular to the velocity.

8 5. Weyssenhoff motion: integration. We may now transform the expression for
the second dynamical law in such a fashion as to rah@asily integrable. Contract
(10) with S,y :

: 1 "
- 9jZOU,uS/Lu-i_? %v §/] u =0,
or, from (15) and (16):
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Mo Py + C—l{aé (Uﬂ +U, —U”CLZJ” j—aﬂaﬂuv} =0.

Upon remarking that if one differentiatesu, = 0 then it will follow that:

olU,+oU, =0,
or, since:

one sees that the last term is zero, and upongdkinto account, it will then follow
that:

Mo PPy + izag[u; —uﬁﬁgj =0,
C C
or, from (24):
oJ, +c(MZU, -9 G,) = 0.

One facilitates the integration by introducing dustant vectoG, by means of (17)
and (23):

oJ,+c* (MU, -Mm G,)=0.

This equation may integrated simply by takikig U, — 9t G, for the variable. One
then obtains a sinusoidal function whose frequeggs a function opropertime) is:

and the desired first integral is:

MU, =0 G, + A @) (no summation ovei):;
0~ A 0~A

the Ay andg, are constants.

In order to succeed in carrying out this integnatione will benefit from constructing
the radius vectoR, that joins the center of matter to the centegrakity, which is fixed
in the system of inertia. From (11.9), one has:

(111.25) Mc*R, =Suw Gy .
One knows thaR, G, = 0. On the other hand, from (6), one has:

M2c?R, U, = Suw Gy Uy = 0.
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Therefore, the spacetime vecR)yis simultaneously in proper space and the space of
inertia. In other word, the positions of the centemaks and the center of gravity, which
are simultaneous in the proper system, are also sinedus in the system of inertia.

Since the radius vector is orthogonalGpandU,, it is consequently also orthogonal
to the transverse momentwp. Finally, from (14), one has:

MSCZR/I 0-/1 = I— g/]uaﬁ Ua 0:8 GV 0-/1 = O
o
by antisymmetry.
The radius vector is therefore orthogonaUig P,, andg, . It is therefore collinear
to the fourth axis of our Frenet system; i.e.,Lig. One gets this immediately upon
substituting (8) in (25):

1 . 1 .
MSCZR/[:&V(WOUV‘F?SMU)) == ?S,uv %v UA’

or, from (15), and upon taking (4) and (22) into account:
(111.26) Mec'R,=-0U,,.

In particular, it results from this that the radiusteeclike the acceleration, possesses a
constant normRp :
TV _ ToPoC’

R2=R,R,=
° Mgc® Mg

from (24). Thus, one finally has:

R, = —ij‘fo .
oC

If we differentiate the expression fBy, then it follows that:

MR, =S, G =(G,U, -G,U) G,

= - MG, +MEPU,,
such that:
. m
(11.27) Rﬂ:Uﬂ—M—gGﬂ.
0

It is easy to interpret and verify this relationgrojecting it into the system of inertia.
Indeed, one obtains:

(11.28) R =U,,
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since the spatial components ®f are zero. If we then consider the veloaity(with
normvp) of the center of matter in the system of inenvajch is also the velocity of the

. . . -1/2
proper system with respect to the system of inertia,ifaode setsa = (1—v§ / cz)
then one will have:

: d d
U, =av and  =—R =a—R =V
» k Re=4 R g e Ve
(t' is time, in the system of inertia), and relation (&) be written:
d
- = Vg,
TS

which is obvious, since the origin & is at rest in the system of inertia.
Incidentally, as long as one considers the systerimesfia, one sees thaR is

orthogonal to the constant spatial vectgr, and its lengthR, is constant. The center of
matter thus describes a circular motion around the ceftgravity in a plane that is
orthogonal to the spin. As we have seen that thiespeed velocity is a sinusoidal
function of time, the circular motion will be unifornand the frequencf2 that we
calculated will represent the angular veloasya function of proper timeFurthermore,
one will verify this immediately upon differentiating (28hd substituting the expression
that is obtained folJ, into equation (26), when it is projected onto the spatias of the
system of inertia.

It then follows that:

(111.29) MZc’R =- gZR!,
which is an equation that can be integrated immediadaly provides a frequency:

Q= M ,C?
UO

as well.
However, equation (29) may also be expressed as a fomdtionet' in the reference
frame of inertia and integrated. In order to do this, omest calculate the Lorentz

coefficienta = (1-Vv2 /c*)™2.
One easily arrives at it upon contracting (27)y.

2 2 2

. —_ 2 0 A2 — s:mo_Mo 2

RU,=-c+—c= >—C".
Mg M,

We then express the left-hand side in the system dfanehere:

Ul =aw, R =aw,
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and where, in addition, one has:

R :aic—%‘;G"1 zic| a-2o
M M

0 0

for the fourth component. It then follows that:

2 _ap2
csz—ZMO= a’v; +aiclic a-To
MO MO
such that:
2 2
mg -1=¢° V—z—l rao,
Mg c M,
or, since:

i)ﬁﬁz m,
Mg Mg
one finally has:
(11.30) a:%.
I\/IO

Substituting this result in equation (29) will thgive:

d2
d('[')z

My _d®

M()Zc4Rl :_Ug Rliaz :_UOM_OZd(tI)Z

which, after integration, will give an angular veity as a function of timé:

2.2
(111.31) o = Mo
Uomo

This result was given before by Weyssenh@ff put the axiomatic basis for his theory
does not permit one to specify that point as béxeg and spinning.

Meanwhile, we may give the form that one findstfox expression of the velocity in
the system of inertia, because one deduces it inatedgd from formula (19). The
relation:

Gy =MMo U/I - Py )

when projected onto the system of inertia, gives:
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G=0=M Uk -R,

Pkl ZSDZOU,l =a\V.
One will get:

i .
E)Jtoavk:—sskmj O'ICEkeri O'J!,
C

from this if one let$’; denote the classical acceleration in the systeimeofia:

Ull :azrk,
and
a’® m?
Mo Wk = ?ﬂjka}l M = M—zgz‘giikailrj ’
0
So:
_ M |
Vi = Mggz gljka-i rj )
which one may write simply as:
M
111.32 v=—=>gxT.
( ) MZc?

The kinematic significance of this relation is inuhvege if one recalls that from (27) and
(29), one has:

M;c*
2 .2
mOUO

Ull :Ozrk:Fé‘i ==

One may therefore replace the acceleraftiavith:

2.4 4.4
_iz MOCz R=- Mgcz R.
a” M,o, Moo;
Relation (32) then leads to:
2.4
V= Mgcz R x g,
OUO

which is the classical expression for a uniform iowtas a function of an angular
velocity vector:

Mc?
w=—"-0,
mOUO
namely:
(1.32") V=R Xxw®

The vectorw is constant, since:
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g, =0;

it has the quantity (31) for its norm, precisely.

8 6. Wobble and gyration. We shall now study the general case, in which the
angular momentum possesses non-zero time componethis proper system (e.g., the
Bohm-Vigier drop $9, 60]). We will follow the same plan as we did for tsteidy of the
Weyssenhoff drop. One has the two equations:

G, =0,

(111.2) S, =G,U, -Gy, Uy,

with the two auxiliary equations:

(111.3) U,U,=-¢,
SO:

(111.4) u,u, =0,
and U, U, =-)3,
and

(11.33) SwU,=cty,
SO:

(11.34) t,U,=0.

Meanwhile, recall that the proper space vetias related to the vect@, that joins
the center of matter to the center of mass in the psjsee by:

In order to fix the vocabulary, we propose to call tl@stor thewobble by analogy
with certain notions in the classical mechanicsoditishodies.

Since the norm oG, is constant, that will permit us to define a proper nafss
momentum:

M Zc*= - G, G, = constant.
Similarly, one has the proper mass of inertia:

mocz == G/j U/[ .

Upon contracting (2) witkv, , one will get:
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G, =MoU, + s U, - z'swq,

u v

or, upon differentiating (33):

(111.35) G, =MV, += sy —i;

2 T
C

The variation of the mag8i, in time is given by:

(11.36) Mmec* =-GU

=
sinceG, = 0.
The right-hand side may be calculated by contractingy@s)U P

The first term is annulled, from (4).
The second term is annulled, by antisymmetry.
What remains is:

Y
GllUll—_EtllUll’

SO
(111.37) M’ =-t,U,.

Contrary to the case of the Weyssenhoff drop, the Bdlgeer drop has a mass of
inertia that varies in the course of time, in generalctvis a result that we will presently
interpret.

Differentiating (35), which is the first dynamical eqoatigives:

1g
0=y, +MU, + zsﬂq——

z#vv

or, upon taking (2) and (4) into account:

0=MM, +MU, - GUU+ su——i;

2w

From (36), one sees that the third term is two tinhessecond one, so the second
dynamical law will finally give:

MU, + 15,0, =1 ‘1;—29jtouﬂ.

z#vv

Upon contracting this with]'ﬂ and taking (5) into account, one will get:
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. 1. . .
slnoyoyo = Etpuﬂ +29ﬁ0 0

in which the norm of the acceleration is no longerstant.

We shall now introduce the vectey by an argument that is analogous to that of
Weyssenhoff. In order to avoid any confusion with spimperly speaking, which we
will recall here shortly in an important special csat relates to quantum mechanics, in
which this word consecrates a well-defined quantity by @ons intent, we shall
propose to call the vectay, thegyration Furthermore, we find that in the Weyssenhoff
case the vectoog, that we have considered is identical to the vedtat we call spin;
hence, it is not convenient to employ the two worderaghangeably in the case of the
Weyssenhoff drop. If we consider the spatial componenftshe internal angular

momentumn the proper systerthen it will constitute a spatial tens&f, for which we
take the dual in proper space:
=58

We then define the gyration to be Bace-timevector that has;, s,, s, and 0 for

its components in the proper system, except that thi®wedll no longer involve all of
the components 0%, , since it does not take the temporal componentsaotount.
Following the same principle as Frenkel and Weyssenho#,can form a space vector

t) = iS;, in the proper systerhy means of these temporal components, which will be a
vector that is non-zero, this time. If one consdéespace-timevector:

then one will see that it coincides with the precgdmctor in the proper system. We
thus see the vector that Weyssenhoff defined from theodeal components of the
angular momentum reappear in the general case. Howeverny presents itself as a
covariant spacetime vector that is not intrinsicalyo, which is precisely what happened
in the case that was treated by Weyssenhoff.

One may give the same covariant expression to tlagiggr

(111.38) S, :2_cgv”ﬂ”U” S
by the same argument as above, so:

(111.39) s,U,=0

and

(111.40) s,U,=-sU,,

and it is easy to see that, conversely, one caresgghe internal angular momentum in
an unambiguous fashion as a function of the proper sgaterss, andt,, .
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Multiplying both sides of (38) by, and taking duals gives:

i _ 1 o
5 G S Us = 035Uy Ui S,

or, upon taking (3) and (33) into account:

i _C 1
- G Su Uj —_ESW+E(Uy§g —U,t),

such that finally:

(I11.41) S, = U U, S 5 (UyL U 1)

One sees that in a given space-time velocity fieldrethis a two-to-one
correspondence between the angular momenta that ameseaped by therbitrary
antisymmetric tensors and the systems of two prqmesesvectos, andt, . As we could
have anticipated, we shall recover Weyssenhoff's prepace vectors, andty in proper
space, but the latter vector will non-zero and theaposition ofS,, will be covariant.

For the moment, we may calculate various contragateducts.

One has:
C SIVSV: (i g,uvaﬁUaSB'i' U,u tv_Uv t,u) Sy = U,utvslh
SO
_ V%
(11.42) SwsS = U,
and similarly:
A __Ls
Syt =- s U,.
One has, by analogy:
1,
upon setting, t, = t;.
Similarly:

A

1
S,uv% E( IgﬂVaﬁtVUaSg %U )

We may take the norm of the angular momentum tenso

ZES;1V$1|/: i[ 5”’BU Sﬂ +(U t—-4 L) ]

because the diagonal terms are zero.
This being the case, and upon taking (3), (34) {&o account, we have:
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»_ 1 22 212 242
Z0—2—02(20§ cE-2h),

or

However, this time the norm is no longer constdntieed:

520 =4S, 5,

2 v

or, from (2) and (33):
5.2, = % (ct, G, + ct, Gy),
SO

d oo _
Ezg =255, =4ct,G,.

Likewise, taking the norm of the dual gives:

A

35S0 Sy -8 =25

Finally, one may form the semi-contracted prodsgéw, which will give, when
one has completed all of the calculations:

S,uv %v :S//‘ S,Ut/f’
and which will give, in particular:

Finally, one may likewise construct the derivatdfe¢he scalag S, §
Upon taking the dual of (2), one will get:

i . d
5 = EwapSup = ES =1 &uap Ga Up .

Once all of the calculations have been compleaiad,will get from this that:

T(i5.5.) =405 6

8 7. Various relations in the general caseln order to examine the derivatives of
the vectors, andt,, one differentiates (41), while taking (2) intacaant:
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Multiply the two sides by, and take the duals, upon contracting wighe,.,, . The
left-hand side will go to zero by antisymmetry:

I VU 4le (Ut-Ut+Ut-U:
0= 5207 U,5 U, 5)U 5 8m, (UL = U g+ UL - U DU,

The last two terms go to zero by antisymmetry. @ftdrms that are affected by

0% | all that will remain, upon taking (3), (4), and (39) intz@unt, is:

Ap !

c’s,+U,5U, =c’5,-50, U,
from (40), so:

c’s, =50, 00, -k,,,U,tU,.

One immediately deduces from th)] that:

Upon contracting witls,, one can also write:

2 Tpvaptu v Za B

: : i :
sﬂ§,:sos,:c—£ s,U,U,t
which shows that the norm of the gyration is notstant, in general.
As in the Weyssenhoff case, we introduce the transvamsaentumP, , which is
orthogonal to the current, by setting:

The first dynamical equation (35) gives directly:

. 1 .
L, __ZSlIV U,

1
pP,==
# c C

or, upon replacin,, with its expression in (41):

3 — -
c B, =1E s

uU,s, + 2t -1U 0,

This expression simultaneously constitutes an expre&sidt), and t'ﬂ :
Upon contracting it withJ ., orsy it will then follow that:
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s
RU, = U, =L,

u=p u

from (37), and:

_ 1.
P,,S;,—Etﬂsﬂ.

One may express these two equalities by saying that there®, — t'# is orthogonal

to the acceleration and to the gyratgn On the contrary, the vector is not orthogonal to
the current:

(cP,-t)uU, =t,U, #0.

Similarly, the gyration is not orthogonal to the gpdéime acceleration. The four
vectorsP, - t,/ ¢, Uy, U'ﬂ, s, do not form an orthogonal system of axes, in general,
while at IeastsﬂUﬂ and tﬂU' , are non-zero. One may calculate the two scaladysts
by contracting the second dynamical equation:

1

(111.44) mu,+=S,U, = !
C

Et‘u —ZSUZOUﬂ .

2 S S

First, contracting this with, will give:

Mc’s,U, =c?s,i,- 25, s ).
Now, from (42), one has:
-C $1V§1 U‘V:tg s U, U‘V:—tg S/1y2,
from (5), so:
Myc’s,U, = s,(¢1, - y5t,) .

Similarly, if one contracts (44) witty then one will get:

MU, = ctt,-cS, 1 4.
Now, from (43):
—cSws U, =-i Gty Uasp U, +tu UL U,
=i guapU, tyUass +tuty 15
Thus, one finally has:

MU, =t,(c%E, —yit,) + iUt U, S,

One now sees the important role that is played @sdhrelations by the vector
c’t, - y5t, and the pseudo-scales,, U tU s,
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In conclusion, we shall study thadius vector R that connects the center of gravity
with the center of mass in the space of inertia:

MZ*R,=Sw Gy with R,G,=0.
One has:
MgCZ R/IU/I :_CtVGV:CtVPV.
Similarly, from (42), one has:

MZCRy sy =9MC Sty .

The radius vector is no longer orthogonal to eitherciirrent or the gyration.
As in the Weyssenhoff case, the derivativikpfs:

. m
(111.45) R,=U,~-2G,
0

If one contracts (45) witR, then it will follow that:

Lk
Mic

RﬂRl =R.Uu=

Thus, the radius vector will no longer have constamm.
Finally, if we contract (45) withJ,, then we will get:

: moc?
— 2
RU, =-¢c+ MOOZ
or
: Mo —M
(111.46) RU, :%&.
0

One can interpret these results by expressing &48) (46) in the reference frame of
inertia, whereG, =0, and (45) gives us:

(111.47) R =U! = av,
and
(11.48) R =0 -Daic, :ic{a—%)

0 0
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upon settingr = (L-V; /¢®)™"?, in whichvy is the norm of the velocity of the center of
matter relative to the system of inertia. Rela(ién) is obvious, since the origin & is

at rest in the space of inertia.
Similarly, if one expresses the relation (46) as:

. . ) m‘t . m
RtiUL + F{U4 =avavw+tic {a’—M_ija: 0’2V§—O’ZCZ+O’CMO
0 0

_ ﬂﬁé B Mg 2
= —2 C ,
MO
since:
a™V:-a’c*=-¢
then it will follow that:

m 2
_C2+a,2 0 — 0 _ A2
MO 0

SO

_ M,
a=—-.
Mo

This relation can also be anticipated by startiny the definition of the center of
matter, so that point is necessarily and contigualind in the same spatial intersection

in the system of inertia as the center of gravityence, one not only haR, = 0, but
alsoR, =0; i.e., from (48)a =9,/ Mo .

1/2

Sincea = (1-V; /¢*)™'?, one will immediately get the expression for tledoeity vo

2 2

Vz_mo_Mo c2

(I mz .
0

These latter relations were found before in the/88enhoff case?], where they were
meaningful and generally significant. Amongst skkbool of Weyssenhoff, one sees that
the constancy of the mass of inertia is relatetth¢oconstant magnitude of the velocity of
the center of matter in the system of inertia. t@e contrary, the massi, varies in the

course of time in the general case; the same wilirbe for the velocity. On the other
hand, one sees that one may write:
mo =aMp,

which is a relation that has an immediate signifc@ga The mass of inertia is the mass,
relative to the system of inertia, that is possg¢4sea point-like particle that is localized
at the center of matter and has the (constant) mwBassomentum of the drop for its
proper mass.
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8§ 8. The classical Dirac particle We have seen that the Frenkel-Weyssenhoff
system of equations determines the global motion ofitbp completely — up to initial
conditions — by means of the motion of the center atena Furthermore, this results
directly from considering the number of equations thattngs satisfied by the 14
independent variables that are represented by the tworséftandG,, and the anti-
symmetric tenso®,, , namely:

One scalar equation: U,U,=-¢,
One vector equation: SwU,=0,

which, however, express only three independent condjtimesause one will obtain an
identity upon contracting withl,,, by reason of the anti-symmetry&j,:

A vectorial equation: G, =0.

Finally, one has:

A tensorial equation: S, =G, Uy-G,U,

with six independent components.
One thus has precisely 14 distinct equations.

On the other hand, the general case that we just dtugdik remains largely
indeterminate. More precisely, as one has simply suparése conditiors,, U, = 0,
the motion involves driple indeterminacy. In order to go much further, it becomes
necessary to introduce three distinct conditions, famdthis, to formulate the new
physical hypotheses that serve to determine the motidie. proceed by stages upon
restricting the generality with only two conditionsritdhe outset. We shall apply these
two hypotheses to the vectagsandt, into which the angular momentum decomposes.

The first restriction consists in supposing that the vectorss, andt, arecollinear
[61]. Since they both belong to the proper space, thdt selve to express the
coincidence of the two directions gpace which implies two distinct conditions. The
interest of this hypothesis is that it manages to mejois expression of motion with the
well-known and very important formalism of quantum hmeaacs, namely, the Dirac
formalism, or, more precisely, that which we haveethlihe formalism of the classical
Dirac patrticle.

One has that if one starts with the Dirac spigio(and independently of the wave
equation) then one can define a set of tensorial magaeittigg quantum mechanics
interprets as the densities of the mean values fopahicle of spin 1/255]. Consider
the Von Neumann matricgg and the matrices that are derived from ti@nparticular

¥6 = Mye)ss and the four matriceg, =iy )5 .)
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One remarks that the matrjg, which anti-commutes with the foyy,, plays a role
that is analogous to that of the symlapl.,s when one applies it to an anti-symmetric
product ofy matrices, while taking the commutation relations intwoaat. One thus has:

B = Vo) = Wulo = Yo Vi) V6 == Euvap Va V-

J=yK

If one sets:

(z/fr being the Hermitian conjugate yfthen one will thus define:

A scalar: Q=gy,

A (pseudo) scalar: Q =i gy,

A vector: S =igyy,

A (pseudo) vector: éﬂ =-gyy =igyyy,

An anti-symmetric tensor: M, =-— IEAF(V# Vo=V, VW .

Contrary to the situation in the case of a scalve function, which one normalizes

by simply settingy/ /= 1, one sees that one has two invarigtsnd Q, so one
normalizes the spinay by setting:

0%+ Q? = 1.

The physical interpretation of the Dirac formaligieen leads to the following
identificationsrelative to a particle:

The unit-speed velocity: U,=cS,
: ha
The spin: Oy = =S
: hoe
The electromagnetic moment:  fgg=— ———M,,
2m,c

which, by virtue of the Frenkel hypothesis, leadgaiintroduce:

: Cc
An internal angular momentum: Sy = &:uaﬂ: - EM

e 2

Having said this, one knows that there existsrees®f quadratic relations between
the bilinear combinations that were defined abdw aire independent of any choice of
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wave equation, and result simply from the existenceedhn identities between certain
products of the elements of tiprematrices. These relations, which were established by
Pauli and Koffinck $6, 57, 58], result immediately from the relations between the
dynamical magnitudes that characterize the particle.

Therefore, the three variables:

S Si=-(Q%+ Q) S,§ =02+ Q% S,5=0
imply, for the unit-speed velocity and spin, that:
h 2
One has the relations:
A A i N
M/IVS/:_ QS#, and —gyyaﬂMaﬂS/:_ QS#

2

for the anti-symmetric tensd,, . In order to interpret this, one must expresstto
invariants that are related by the normalizatidatien as functions of a single variable,
for which Takabayasi9] chose an angld. One sets:

A

Q = cosA, Q =sinA,
and one then has:
38 U :EU SinA
e Y n
and
h_zcl_zg“””ﬂs”ﬂ U, = _%Uﬂ COSA.

However, if we refer to the formalism of the Bohfigier drop then we will see that
the relations translate into simply:
t, = g, SinA,
Sy = 0, COSA.

In other words, the vectotg ands, are collinear, so one may write= A s,, where
the scalari is the tangent of Takabayasi's angle Therefore, upon assuming that the
wobble and gyration are collinear, we place oueslv a special case that allows us to
rejoin the Dirac formalism, and we introduce, id&idn to the Weyssenhoff variables, a
new variable that corresponds to the mysteriousaBaykasi anglé\, which we interpret
in terms of the classical dynamics of fluid drogstlae connection between wobble and
gyration.
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8 9. The collinearity of wobble and gyration: its significance— One might further
attempt to form an idea of the physical significancéhef hypothesis by considering a
model that was inspired by Poincaré’s work on rotatingl fmasses1b]. That scholar
showed that when there exist internal stresses, fhagses will tend toward stable
configurations that are surfaces of revolution around an auish as, for example, a
rotating torus. Suppose that one introduces internal esriito such a mas$4], which
will, as we have seen, destroy the symmetry of thesrdaestribution without modifying
the distribution of matter, and recall the argument wWe sketched out in the case of the

Weyssenhoff drop upon a more general basis, while considaripgations, and a

wobblet that will be in the proper space of the geometric ceaftehe torus, this time.

It is convenient to consider separately two typesgframetry that might be involved
with the distribution of vortices. On the one handcs oan have kateral asymmetry that
is produced by projecting all of the vortices onto the existplane of the torus, upon
which, one will find many more of them on one side tbanthe other (or at least, the
sum w; r; will be greater for one half than for the other on&he center of mass will
then be separate from the center of matter and elesh@athe equatorial planen the
direction where>, w; r; is greatest. One then get a proper space véctbat is in the
equatorial plane. As for the vecter which is the spatial dual of the proper-space

componentsS? of the angular momentum, since it will have no vesicby reason of

symmetry, it can be directed along the axis of romatitlowever, in general, it will be
more likely that there will exist a certain anglevoe¢n it and the axis of rotation, since
vortices introduce a certain extra asymmetrical orbiitaimnentum, to which, one can
associate a proper moment of rotation that is due tprihy@er spins, in which case, they
also be oriented in an asymmetrical fashion. Onethelh have a relatively complicated
situation. Nevertheless, it is easy to expect thatdtate cannot be maintained for very
long, in general, when the vortices are sufficiemiynerous. Indeed, the fact that was
pointed out above — viz., that the orbital rotation is gaheperformed with its angular
velocity varying with the distance along the axis — leaa change in the respective
azimuths of the vortices, and if they are numereasd for a stronger reason, if they are
interacting — then the laws of statistics will teachthat after a few rotations they will
lead to a uniform mean distribution along the axis, wiutethat situation, it will be their
w; r; that affects their spins. Thus, except for the aasehich some special dynamical
law maintains a certain asymmetry (whose necessitilave shown in the Weyssenhoff
case), we will rapidly arrive at a center of masat tis once more indistinct from the
center of matter, so its wobldlewill be zero, while, on the other hand, its gyratsmwill

lie along the axis of rotation.

On the contrary, suppose that the distribution of gestivariesn the direction of the
axis of the torusso — for example — upon cutting the torus with planes #na
perpendicular to the axis, one will encounter a dewdityortices that grows increasingly
larger as one translates towards the extremitiekeofikis. On the contrary, assume, to
simply, that the azimuthal distribution of vorticessone of revolution; for example, one
that results from the statistical uniformizationttiage just described. The distribution of
matter would then remain symmetric with respect toetipeatorial plane, so the center of
matter would remain at the intersection of that planté the axis; the vecta would
then be along the axis. As for the vecdpr since the object is in a state of revolution, it
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will also be along the axis, and consequently, it wilcb#inear witht, . Moreover, it is
easy to see that this state of motion will be much lesstable than the preceding one.
Indeed, since all of the motion is circular and carrietlio planes that are perpendicular
to the axis, on the surface of things, these planes atilinfluence each other in any way
that would tend to rapidly re-establish the uniformity lbé tdistribution. Without a
doubt, the asymmetry will be created by internal fordetemsion in the fluid that shift
the center of mass to the center of matter, butilithe permissible to think that the
action of those forces would be very slow with resp@the motion of the rotation of the
fluid mass, and that after an appreciable time inteyaal will be dealing with a motion
in which the vectos, is on the axis of rotation, as well as the vegtor Hence, one will
effectively have the relation that we assumed just Roviz.,tc = A scorsc=1 /At —
which permits us to set=tanA and to attribute a meaning to the variableAan

It seems possible to justify the fact that the vest@ndt, are collinear for the Dirac
particle by classical considerations, at least qualébti

By comparison, the condition:

_(nY
0,0,= E )

which implies that the norm of the spin (which is a pregmace vector) will remain
constant in time, does not seem to admit an intefetéom the quantum viewpoint.
That is because we introduced the first condition frieendutset by just setting:

S, =0,cosA and t,=0,SinA,

in which the vectorg, has a normmp that is variable, in principle. We therefore get a
dynamic that is less general than that of the BohneYidrop, such that the Dirac
particle represents a special case that is determingelgiy the condition that, g, =
(7/2)?, and the Frenkel-Weyssenhoff particle constitutes atbases even more special
than that.

8 10. The collinearity of wobble and gyration: characteristic riations. — The
expression for the angular momentum and its dual, wheamgn the general case, can be
written as:

Suw = &uapUq 0, COSA + (U, 0,—U, g) SINA,

i i : 1 .
2_C£/I|/aﬁSaﬂ: E gyuaﬁ Ua UﬁS|nA_ E(U/I UV—UVU/I) S'nA .

In this form, one recognizes two of the Pauli-Koffindentities. Similarly, the
contracted products of these two tensors with the spiwill give two other known
identities:

_ oZsinA

S;IVUV_—U/Ia

c
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(111.50)
0% CosA

i
— g,uvaﬁ Sa,B Oy=-— U,u )

2c
upon settingo; =g, g, .
It is possible to calculate the contracted prosi&gt S, &Vém, as we did in the

Weyssenhoff case, by using the contracted prodii¢te Levi-Civita symbols. One will
then get:

1 1 .

The squared terms will be zero, since expresssocd assapUq 0 U, 0, go to
zero by antisymmetry.
The first term can be written:

—C—lzco§A % Uy s Uy 0, .

Upon developing this and taking the orthogonaditys, andU,, into account, all that
will remain is:

2

(Uozciw +0?2 U::U” —O'VO'AJ cogA.

Similarly, upon carrying out the second produlttthet will remain is:

(002 vy, —O'VO'AJ Sirf A

CZ

One thus finally gets:

(1

(111.51) S, S, :ag(am cos AkU::#j—UVUA :

This is another Koffinck identity, from which, waill extract, in particular (sincé,,
= 4)
SwSu=02(4 cod A—2) = 22cos A

which we can infer directly from the formula thaasvestablished in the general case.
Finally, the producB,, S, likewise gives:

1 :
=z EuwapUa O Eupyp Uy, 0, COSA SINA
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—C—lz(Uy o, -U,0,)(Uy g —U, g,) sinA cosA

uu .
(Uochw +0,——4~0,0, |cosAsinA
c

- (USU”LZJ” —O'VO'AJ COSA SinA .
c

All that remains is simply:

S,uv ’S(v :%Ug 5v/1 Sin 2 A

which is another Koffinck identity, from which, wefer, in particular, that:
Sw éwz 207sin 2A .

The derivatives of the contracted products naiutake the form:

(111.52) %(% S,,S,) =—2c gy P, coSA,
d -\ .
(111.53) E(%sﬂv §,) =-2c g, P,sinsA.

If we recall the expressions for the derivatives,aandt, then it will follow that:
(111.54) s, =i guapU U, gpsinA + g, U, cosA U, .
Upon contracting this witlw,,, one will see that:
(111.55) s,0,=0,

which signifies that not only is, is orthogonal td,, as in the general case, but also that:

$,s =0.

]

In other words, the nor of the gyration isconstantin time; this is probably the
most important special property of the motion urstady:

S = 0p COSA = constant.
One can likewise write:
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(11.55") ¢t =—i&upU,U_ ogszcosA+ao,U, sinAU,+c*P,,
[ Lvaps a Y8 v /2 U

which will give us an expression for the way that thenmof the wobble varies.
On the other hand, one has:

(111.57) $, = 0,c0sA— gy A sinA,

(111.58) t, == 0, sinA+ g, A cosA.

One can then find the derivatives@fandA:
g, =8, cosA+t, sinA,

A g,=- 8, sinA+1t, cosA,

which will give, upon employing equations (54) and'}(55

(111.59) c’o,=o,UU,+c’P,sin A
and
(111.60) c’o, A= ~ie,,;U,U,0,+CP,cosA

These relations provide, by contracted multiplication:
The variation of the norm of the spin:

d
dr

(03) = 20,0, = X° P, gy sinA

two expressions for the variation of the anfjle

(11.61) 02A =c P, g, cosA, oJU,A=cP,U, cosA,
and finally, the norm of the transverse momentum:

¢'P,P,co§ A= j2o2-(oU,)*+c? A0l

On the other hand, we can use these expressions toysfiexifvay that the mass of
inertia varies in time, which will be equal to:

e e : .
Mme=tU, =04, sinA+g U, cosALA,

in the general case, or, upon replaciigvith its value (61):
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) 1 .
(11.62) m.c :?aﬂuﬂ [, U,.
0

This latter expression shows the particular casghich the mass of inertia of inertia
will be constant in time.

In the various relations, we were involved witlvaniants that were zero in the
Weyssenhoff case and which, in the present casdharreason that certain vectors fact
are longer orthogonal, so certain quantities waillenger be constant. This is notably the

case fora'ﬂU' ,» and above all, fog, P, . The latter once more enters into the relations

that apply to the radius vect®;, which we content ourselves to merely transcrilies
angle that the radius vector makes with the ureesipvelocity depends upon the product:

(111.63) MZ2c® R, U, =c g, P,sinA,
which is, as one knows, the same quantity thatrgimeo the variation of the norm Bf,:

d . 2 .
(111.64) a(Rg) =2R,R, =5 G, PusinA

0

Finally, the angle between the radius vector ardsfhin will depend upon the product:
(111.65) M2 R, g, =Moc aZsinA.

One will then see that the two vectors will be ogbnal only if sinA = 0; i.e., when we
are dealing with the Weyssenhoff case uniquely.

8 11. The classical Dirac patrticle: the dynamical equatian All of the relations
that just established suggest different interegiins by which to choose a third relation
that would serve to determine the dynamics of thigle. We now concern ourselves
with the most interesting case in the context efdbestion with which we are occupying
ourselves, namely, the one in which one constrhiegarticle to satisfy the third Dirac

equation:
h 2
o0,=|—= .
=[5

In the interest of preserving the greatest gegrave content ourselves with taking
o; to be constant, without giving it the value of theantum of action, in particular.

We have already given the expression for the dévie of g7, namely:

(11-66) di(ag) = 2¢* P, g, SinA.
4
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It is zero in two cases:
1. sinA=0.

This is simply the Weyssenhoff case; it does notasteus, here. Furthermore, we
remark, in passing, that one also Ra®j, = 0 in the Weyssenhoff school. If the second
factor of (66) is zero then the first one will be wasl.

However, the converse is not true.

2. Pyo, =0.

This is the case that we studied that serves to defia¢ we have called the classical
Dirac particle 2]. We shall then recover our formulas by settigg= constant, or, in an
equivalent fashiorP, g, = 0.

The relatiorP, g, = 0 implies that, g, = 0.

Spin is a spatial vector in the inertial systemneQuill thus haveP, g« = 0 in the
space of that system.

Since, from (17), one has:

Pk = 9o Uk — Mo a Wk

in that space, one will likewise have:
Ok Vk =0.

The velocity of the center of matter relative he tenter of gravity is then orthogonal
to the spin (which varies with time, moreover).
Relations (52) and (53) immediately show us that theraotad products:

SwSw and S, §,
are bothconstant.
Sinceqy is constant, the relatiosg = gy cosA = constant will show us that the angle
A is just as constant. One sees this directly ftben expression found fadA / dt,
moreover. It results from this that the norm & thobblet, = o Sin A is also constant,
as one confirms directly from the expression (5&} gives its derivative.
Furthermore, equation (62) gives us:

Mm,c? = 0.

The Weyssenhoff proper inertial mass is likevaisastant. It then results that:

The acceleration then belongs to the inertial spdtalso results that the velocity of
the center of matter relative to the inertial systeill then have constant magnitude,
since:



Chapter 1l - The study of some particular cases of motion 125

Similarly, the norm of the transverse momentum:
Py Pu= Poc’= (Mg —Mg)c?

is likewise constant. Its value may be easily deducsud the expression fd?,, which,
from (60), may be reduced to:

_ a0
“ c’cosA
so one will get:
2 _ 112
P/l P/J — y§0-04 (UVUV)
c*cos A
upon setting:
y;=U M

as one does in the Weyssenhoff case.
Finally, contracting the expression (59) watl,, / dt gives us:

dﬂUﬂ =cC F;,Uﬂ sin A,
and since:

so one can immediately deduce that:

PU,= 0,
one will see that:
ou, = 0,

which implies, from (57) and (58), that:
sU =0 and U, =0.

Now, we introduce the radius vectr From (63), one sees that U, = 0.

The radius vector (and, as a consequence, theradrgravity) is in proper space. As
would be natural to suggest, we may localize the spthe center of matter (which is
instantaneously at rest) and the transverse mommetduthe center of gravity. The
relations:

G,R,=0 and P,0,=0
give:
PcR«=0 and Pcao=0



126 The relativistic theory of spinning fluids

in the proper system, respectively.

The transverse momentum is thus perpendicular to #me @f the vectorB ands .
They have the disposition depicted below (see Figure)chwbhows that in the case
considered there exists a close relationship betweerfatfital” motion, which is
characterized by a residual momentum in the system whereenter of matter is fixed,
and, on the other hand, by the “proper” rotation thaxsessed by the spin.

Pk
—

One must recall, however, that the elements tlemesented aréenstantaneous
elements, since spin varies in the course of tane, that the center of matter is at rest
only in the reference frame in question at theainistonsidered.

Relation (64) gives us:

R,R, =0.

If one places oneself in the system of inextiawhere the center of gravity, which is
the origin of the radius vector, is always at régn one will hav® R = 0.

The center of matter remains at a constant distdnoen the center of gravity.lt
moves on a sphere whose radi4ss easy to calculate:

One ha®k, R, M; ¢'= S, G, Su G , which gives, from (51):

CZ

MR = (002 J,, cos A+002U”U” —O'VO'AJ G, Gy,

SO:

_ O (MZ-MZcos’A)
Mc? '

R

Now, replacing G, by its expression (35) in the expression for tlaalius
vectorM¢c*R, =S, Gy, will give:

e <y, u- 69V

The first term on the right-hand side of thisimgy:

Mo ¢ t, =Mp cay, SINA.
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The second term give:'LsSMa'A sin A(sinceA = 0).
c

Now, one ha$,, g, = Eag sinAU,, from (50), and on the other harl,,0, = (G,
C

U,—-G, Uy gy =0, sincegy U, = 0 anday G, = 0. What then remains is:

) 1 . .
S0, = EagsmAuﬁ :

Finally, from (51), the third term givesiz(ag U,cos A-aio,U,o,).
c
One then has:

2
(111.68) MZC’R, = (ﬂﬁocsin A+c_1ZU”U"jU“ —%Uﬂ :

This relation will provide the expression f&§:

2
(111.69) M2c?R? = (Smocsin A+C—1ZUVUVJU# R, —% UR .
One replaces? with its express in (67)g, Ry, by its expression in (65), arldIﬂRﬂ
with —UﬂRﬂ, which is given by formula (46). These identifioas permit us to deduce
the expression for the invariaatU, from the equality (69):

oU __(MZ-Mj)c’sinA
1% 1% mo

which is an expression that is constant in timmalfy, upon substituting this value in the
expression foP, P,, one will get a relation between the invariants:

Yo T Mg = (M5—M (M5~ M gsin“A)c”,

which is a relation that shows one that the acatitar U , has a constant norm.
We know thatU ., is spatial in the system of inertia. In that spagpon passing to

the time in the system of inertia, we will be alledvto define an acceleration veclqr=

2 2
MOZ U, , which has constant magnitulg= %yo, namely:

0 0
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_ Mg’

I11.70 o=
(1-79) T o,

\/E)Jté—M(f\/imf,—MjsinA.

If we substitute the value that we found fgyU, in expression (68) for the radius
vector then it will follow that:
_o,sinA o;U,

.71 R .
( ) e Mm2c

Therefore, the acceleration and the radius vectdrb&ikcoplanar in the space of inertia.
Finally, if we differentiate this last equation themvitl follow that:

- sinA o?
(11.72) R = ' oy .
Lome o MEct

From the general theory, we have tlﬁ'gt =U,—(M,/M2)G,, .

On the other hand, upon substituting the expressionvthatfound fora, U, into
equation (59), one will get:

2 _ 2 3 -
(11.73) 2o =- P —Mg)c’sinA

= U, +c P, sinA.
U mo H H

Equation (72) will then become:

2 _pnp2 ) 2
U/I_%SG/I :_MSinZAU#—SIn AB{_ 02-04U;11
M, m, m, Mgc
or furthermore, upon taking into account t@at= "t U, — P, :
(11.74) M&c*U (M5 - MZsin? A)+ Mo U, = O 5~ M sin? AN G, ,

which will constitute theequation of motion.
This equation is of order two lt, or of order three relative to the coordinates of the
center of matter, since the Mathisson equation conssitatgeneralization of it. One is

cautioned that the right-hand side is a constant v,esitmeGﬂ =0.

8 12. The classical Dirac particle: integration of the madn. — We place ourselves
in the system of inertig, , for whichG, = 0.
We get the hodograph equation:
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MZc*(MmzZ-MZsin? AU+ o 20U, =0,

22

or, upon taking into account that (¥*/ =Mo / Mo, we will get:

2d°V, _

(11.75) MZcH (S - Misin® AV, + M o i—< = 0.

It is obvious that the hodograph remains constantly ptaae that is determined by
the initial orientation of the velocity and the a@ration, which is an initial orientation
that is, one knows, arbitrary for both of the twatees. On the other hand, since we
have seen that the velocity and the acceleratiom lete constant magnitude, from (49),
the hodograph will be @rcle of radiusvy:

MZ
(11.76) V2 =¢ {1— smozj'

It performs a uniform motion whose angular veloc#ydeduced immediately from
equation (75):

_ Mg -Msin® A
m; o, |

(11.77) W

The motion of the center of matter is carried ontthe sphere that has the center of
gravity for its center and a radius of:

9

Ro= JMZ-MZcog A,

Mic
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It will remain in a plane that is parallel to the hodaggr. It is thus a uniform, circular
motion that hagvfor its angular velocity.

It is possible to determine its center and radius, siheeorientation of the plane
depends upon just the initial condition. If the radiughefcircle isro then one will have
the relationvy = ro ey from which, one will deducs, sincevy, and ware known, and it
will follow that:

c Moo 1
fo= o0 M, - §M3C2° EVER T
0 0 \/ﬂﬁo—Mosm A
SO
EVE
(111.78) ro= Do | Mo~My
Mgc '\ M5 —Mgsin® A

If one lets denote the&onstanthat the radius makes with thiged axisOz around
which its motion is performed, then one will easihd that:

r

2 2°
I:‘)o_ro

. r
:_0, tr? =
sing R arf 5

Upon replacingo andRy with their values, one will easily find that:

o:siff Acos A _ ——

20, M2 —M
oc'=2z%, tanf=—2Y"° 0

M¢ sin 2A

1.79) R:-12 = =
WL79) R= % c?(IMZ - MZsin’ A)

However, this axis of rotation is not trivially idigcal with the spin, as opposed to the
Weyssenhoff case.

The position of the poin€ relative to the center of gravity is determined thg
vector:

(111.80) (OC)k:Zk:Rk"'% lo,

0

because the acceleration vector obviously passesigh the center of motion. We
calculate the space-time vector:

U
Zy=R,+—+-

o,
Yo

and upon taking formulas (71) and (78) into accooné will have:

Z,=
O'#SinA_U#0'5+ Moaoup M0, Smf,—Mf)
M Mt [ (m2-M2MZ-MZsin?A) Mic | Mg - Mcsin® A
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g,sinA U, o2M{ sir? A
= + ,
Mm,c M (MZ- MZsin® A)

or

o,sinA U,o? sif A
(111.81) Z, =
M, (My;—-Mgsin“ A)c

We show that this point is fixed. One differentiatée texpression (81) by
deducingr, from (73) andJ , from (74):

. i M 2cU
Z, = SINA[ MoCl, -cG, [sinA
Mel M,
o sin® A

+ M2 —MZsin? A)N c*G, — MZc*U
(S)Jté—MgsinzA)c“fméacf[( °o o JOMoC G, ~ MoC'U, ]

2 2.4 e
=u, [ Mo g A-MoC on2 M2 sin? A) sin” A
u > 2 0 0 2 22 2
m; M (My;—-Mgsin“ A)c

- 2 -
p|SICA,_ SITA (M2 -MZsin? A c* |.
M, (M2-M7Zsin®* A)cm?
The two components are annulled separately. Olhéhen haveZ'l, = 0, precisely.

It is easy to see thdl, is spatial in the system of inertia, and thathbsition of the
fixed pointC in that space is given by the vector:

(11.82) , _OSinA_ T, Mg sin’ A
| oM MZONE-MZsin® A)ct
0 0 0 0
where:
k
dt' M2

represents the acceleration in the system of aerti

One easily verifies from this expression tHatis orthogonal to the velocityx and
perpendicular to the acceleratibg and that the vectd® — Z, which is the radius of the
circle that is described by the center of matteprecisely collinear with the acceleration.

One can seek to recover expressions for the vgltiwat are analogous to the ones
that we obtained in the Weyssenhoff case by coriegl@ny vectors that are collinear
with Z to be constant.

If we set, by analogy with (32):
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v="To axr
MZc

then upon taking4 to be along the axi& that is orthogonal t& andl’, one must get a
norm:

m
Vo = |V|0222 Ao lo,
or, upon utilizing (76) and (70):
C m.Mmzc ,
0 M2-M2 = WJW@—M@JWS—WSWAAO,

SO:
moao

AO: - ’
\/ﬂﬁé—MgsmzA

which will give:
cM,

k= ——2,,
sinAcosA ¢
upon taking the value @, in (79) into account, or upon defining a space-time vector

2 .
cm, g, M0, SInA

Ay=— o 7 = T, U,.
# sinAcosA™*  cosA ¢ OZ- M2 sirf A)cosA ¥
This vector is obviously constant, a<js. It plays the same role in the present case that
was played by spin in the Weyssenhoff case, to whiclilibesidentical when one sefs
=0.
One can likewise define an angular velocity vectonglthe same axis by settiNg=
r x w, by analogy with (32, wherer is the radius of the circle.
One must therefore have=rq @, in such a way that, from (78):

i\/ﬁﬁé -M/Zsin’A =

m, MZc

9:noa-o\/ 9:n%)_Mcz) W,

M —MZsin* A
o)

_ M2y MmZ-M2sin? A
M50, |

2

One can therefore define an angular velocity weittahe system of inertia that is a
constant vector that is collinear with

o= M (M2 - MZsin® A) .
M2oZsinAcosA
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Naturally, the normwof this vector is equal to the value (77) of the angudéwarty.

It remains for us to study the disposition and motiothefspin, and therefore, the
wobblet,, which is collinear with it and which determines theigims of the center of
mass. We know that spin is a spatial vector in tiseesy of inertia. Equation (80) shows
that the three vectorsy@«, andZ, to which the vectook can be appended, from (82),
are all in the same plane that rotates abutvith the angular velocity otw that
accompanies the center of matter. It is easy tdlsgespin makes a constant angle with
Zy, which shall calh. We then have:

COSA = U"—Zk.
UOZO

Since ZﬂUy =0, formula (81) thaZ =2, Z,=2, g, sinA Mg c. Therefore:

Zka-k —_ Z/IU/I —_ MOCZO
Z, Z, sinA

so finally:
_ 1 Mg  ogysinAcosA

Z,0, O, SinAc\/img—MgsinzA’

namely:

Spin will then describe a cone whose axig ,i@long with the angular velociip. [If
one considers the fact that spin characterizeprityger rotation of the drop then one will
see that in the system of inertia the axis of propetiost will submit to a precession that
is quite intimately coupled to therbital rotation of the center of matter, since it
accompanies it precisely, as it is simultaneouslyllgdi@nd synchronous, rather like the
case of the proper rotation of the moon. It is, meeeoeasy to see that the cone that is
described by spin is inside of the one that is describetldbyadius vector. It suffices to
calculate the other angles that fix the position wi$pect to the three vect@sR, and

Z, by means of the cosinezzé% and%. One then sees thaits necessarily between
0 UO

R andZ.
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The wobble is likewise in the space of inertia, whiesatisfies:
tx = ok SINA.

Similarly, the vecto that joins the center of mattit to the center of mag3can also
be found in the space of inertia. One then@as tx / 91, C.

If we would seek to localize the center of masstirao the fixed center of gravity
O then we would have to calculate the vector:

o, SinA

X = + = -
k =R+ Q=R M

However, if we consider formula (71) then it willvg us:

_o;sinA_ gp My

R«
me Mt M2~

in the system of inertia, and we will see tRats already decomposed into a vectd —
and a vector:

;Mg
Mgc*

X, =- M.

One then sees that the center of mass describiesuaic motion at the same time as the
center of matter, buh the same plane with the center of gravity.
The radius of the circle is:

_ OG- MZJME-M Zsin® A

X
° Mz c

One remembers that in the Weyssenhoff case thercehtmass, which is identical with
the center of matter, describes a circular motiatisely that is centered at the center of
2 2

0 0
2
0

In one case, as in the other one, one will hawgooBly discoveredMagller’s diskin
the fixed plane where the circular motion of tha@tee of mass is performed, which is
related geometrically to the pseudo-centers of passis at rest in the system of inertia.
It will then be obvious that the fixed axdsin the space of inertia, around which all of the
motion takes place, is nothing but Mgller’s spirhiet is orthogonal to the plane of the
disk.

Therefore, when one considers a zero aAglene will get the Weyssenhoff motion.
In the reference frame of inertia, spin, whichnsimavariant, will be on the axis of orbital
rotationZ. The center of matter and the center of masserataether in the pland

. . . O .
gravity, but its radius—> IS greater thaiXy .
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o M5 ~M¢

with the center of gravity on a circle of radius vE
C
0

and with an angular
velocity of:

Mic?

Uomo .

w =

On the contrary, if the angke is non-zero then spin will be detached from the @xis
and will precess around it. The center of massrefiain in the planél, but the radius
of its orbit will become smaller. The center of teatwill be separated from the center of
mass and will leave the plam& while describing a circular motion that is paralletia
coaxial to the preceding one, but will have a largdiusa The radii of the orbits of the
centers of matter and mass relative to the ra#gief the Weyssenhoff motion will have

the values:
E)Jtoaow/imf,—Mf) - m,

M2cM2-M2Zsin A JIm2-MZsin’A’

o

00\/9ﬁ§—M§\/9ﬁ§—M§sin2A :mo\/img—MgsinzA

Xy =
° MM2c m,

such that one will have Xo = R2.

Finally, the spin and the two centers rotate asiain the same plane that passes
through the axi€ and in the same direction of that axis with anudaigvelocity:

o= Mgcz\/img— MZsin? A
Mo,

which is equal to:

_ \/i)ﬁﬁ—M(fsinzA
a)_q m )
0

and as a consequence, it will be smaller than ¢fecity ay of the Weyssenhoff motion.
Naturally, this comparison will make sense onlyhé initial conditions are the same.
More precisely, one has assumed that the motiotis dmrespond to the same value of
spin gp and to the same value of the mass of inéitia

Since that is given b1, = Mo+/ 1-VZ /¢?, that will amount to taking the same value

for the velocity of theenter of matter From formulas (77) and (78), that hypothesid wil
lead to the fact that the expression for that vgloe namely,ro ap — is completely
independent of the angke




CHAPTER IV

THE GENERAL THEORY
OF HYDRODYNAMICAL MODELS

8 1. Local velocity and matter density. Having begun to constitute fluids with
molecular structure by means of the spinning particles wieahave studied, we shall
devote the present chapter to the study of representhiids that one might constitute
by starting with the wave functions of quantum mechaniesmore generally, the
arbitrary wave functions that are at the basis @f tihassical theory of fields. In
Appendix C, we show how, upon starting with a wave functioraofarbitrary nature
whose wave equation can be derived from a Lagrangianatiem one may deduce a
system of conservative tensors, namelguaent vector j, for whichd, j, = 0, a second-
order tensot,, — viz., thecanonical energy-momentum tensofor which one ha9, t,,
= 0, and finally, a third-order tensdj.;, — viz., the Belinfante tensor- which is
antisymmetric iny andv, and obeys the equation:

ag f[/,v],] =0.

We will also show that one may subject the last tartsors to a very general gauge
transformation that leaves the two fundamental equaiiovariant and does not modify
certain global tensors that are integrated over theado of the field; hence, one may
consider the transformed tensors to represent the fwagéon just as well as the tensors
t,» andfi..;1, which comes about as a result of their indetermingcto a suitable choice
of gauge.

We shall start with the tensorial formalism, andwhthat one may, in any case,
deduce the variables that constitute a hydrodynamical maxtal ify because they obey
general relations that one may interpret as fundameéwptamical equations.

Start with the curreny, , for which we recall the expression:

L oL oL
V.1 = ' -y :

and give it the usual form of a fluid current in relaiia hydrodynamics. If one leps
denote thematter density(i.e., the number of “molecules” per upitoper volume) and
lets u, denote the localnit-speed velocitpf the fluid, for which one has, u, = - ¢,

then one can set:

j,=hpu,.
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The Planck constant intervenes as a dimensionarfa¢hdeed, in the formalism of
quantum mechanics, Lagrangians always have the dimeoS®mergy. In order fou,
to the dimension of a velocity, one easily seesdha must divide the current by a factor
that has the dimension of an action. It is a singpiestion of convenience, because it is
quite certain that the significance of the hydrodynahfmanalism will not be affected
by any factor that one assume depends upon the densitherefore, one hgg j, = -
n? 0# ¢, which will immediately provide the expressions for the hydrodynamical

guantities:
1 — 1.
,O—h—c‘/—jﬂjﬂ and u/,—%jﬂ.

Sincej, may be replaced with its expression in (1), ores sbat the density of matter
and the unit-speed velocity may be expressed astifuns of the wave functiory
uniquely.

The significance of the conservation equatign, = 0 is immediate.

If one writes it as®d),, (ou,) = O then one will see that it is the derivatige of the
guantity o along a streamline (cf., Appendd}, and one will see that the invariant matter
density is conserved in time when one follows e fluid element in the course of its
motion. If one applies the general method of AgjperA then one will consider an
infinitesimal droplet of fluid whose proper volungV, . The quantity of matter that it
contains may be expressed by:

Q:J.VO,OdVO.

The droplet evolves between an instardnd an instant, , and therefore sweeps out
a portion of a current tu2. One knows that one then has:

'[dew =Q2-Qq,

and since we hav@ = 0 here, one sees thd = Q;.

The conservation of current then signifies that qnantity of matter in the droplet is
conserved in the course of its motion; there cam the no creation or annihilation of
matter at each point of the fluid.

The determination of the unit-speed velocity pésms to analyze the tensays and
fua , along with their decomposition into hydrodynaahiquantities, and then, as we just
did, to follow a fluid drop in the course of its timm and to therefore specify the laws
regarding the hydrodynamical quantities that ateiobd.

8 2. The decomposition of the energy-momentum tensokVe commence with the
tensort,y:
oL

oy,

t/jV: 4[/;1—5!”[,.
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One then decomposes the tertgpinto components that are collinear with or orthogona
to the current, following a method that was already pdimiut (Chap. I). It results that:

t,uv ::uou,uuv_ ppq/+ q L}1+e,uv’

with:
pyu, =0, 0guu,=0, Guwuy,=Guu,=0.

The coefficients of this development are easy toutatle as functions df,, andu,
(and, as a consequence, of the wave functigiisone contracts with, u, . It then
results that:

— 4
t,uvu,uuv - ﬂOC ,

from which, we obtain the scalas , which one calls theroper mass densityve shall
soon see why. If one contracts withor u, then one will find that:

__ 2 2
tu Uy = —C Ll Uy + CPy,

hence:
_ 1
pp _ﬂouﬂ+?tﬂvq/
and
- 2 2
tyva—_CﬂOUV_CqV,
hence:

1
qp = _ﬂoup _? t,uv Y,

respectively. What ultimately remains is:

e,uv :t,uv _:uOu,uuv + ppq/ - q "}1

In the decomposition df,,, one recognizes two classical terms (cf., AppeB)ixu
u, uy,, which expresses the dynamical part of the classicalggmeomentum tensor
(from which, one gets the interpretation/@), and the proper space tensgy, which
provides the internal stress tensor. However, it beyemarked that, on the one hand,
Lo may generally be put into only the classical fommy , because one does not have:

fiy =0,

and, on the other hand, the force density that is difrean the tensof,,, — viz., ¢, =
-0y g, — is not generally contained in proper space. We shallexamine this point.
By hypothesis, one has:
Gvu, =0,
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from which, one infers that:
0v(Guwuy) =0,
and not that:

Puuy =0,

Uyaueyuz 0

which would demand that:

Now, decomposé, into a component that is along the current, which wiewas:

WO
Cz ull’
and a proper-space componént
w, .
¢,,:C—§uﬂ+f , with f,u,=0.

These two quantities may be calculated immediately byracting withu,, :

W
¢/1u/1:_W01 fy:¢/1_c—guﬂ.

As we will verify shortly,f, plays the classical role of therce densitythat is exerted
by the internal stresses. It leads to the fact tiiataction of the internal stresses on a

small parallelepiped (in the proper system, for examplsronger on the one face than it
is on the opposite face. On the other hand, one nakg e expression faw explicit:

Wo == @, U,==0y6u U, =0, Uy) + GuoyUy.

The first term on the left-hand side is zero, and whthremain is:

(IV.2) w,=8,,0,u

v

In order to interpret this quantity physically, we placgselves in the proper system,
where 8, possesses only spatial components. One then has:

Wo = 8°(0,u,)°, suchthat  wo=g°(0v,)°.

Since one must take into account the local variatidrike velocity, the model of the
infinitesimal drop, whose parts reasonably have the saatoeity and was of service to
us in AppendixA especially, will no longer suffice. One must considgointC that is
determined by the drop and describes a world-fineith a velocityU,, and refer the
drop to the proper systeat this point C The quantity that is studied thus brings other

parts of the drop into play, relative to the axes ddfiaethe pointC. Having said that,
we place ourselves to begin with in the simple eelsere the stress tensor (when referred
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to the proper system) has all of its off-diagonal comptsv@qual to zero, and its
diagonal components equalﬁﬁ =p° g -

We will then be in the case of theerfect fluid so p° represents the pressure.
Equation (2) leads taw, = p°(@ivi)°. In order to interpret this, it suffices to integrater
the volume of the droplet in the proper system:

J, wedVo = [, P°@)°d\ = p°f @) dY,

upon neglecting the variation of pressure on the séadlealroplet.
Finally, one has:

— R0 0_ Oé\/O
.[VOWodVo =P zo\/iodai =P o

and the integral, when multiplied by a proper time eldnggrobviously represents the
increase in volume in the droplet. The calculated egmeshen represents the effect of
the force of pressure (per unit time) that is caused Oyagation or contraction of the
droplet.

In the general case, one must superpose another withdhe preceding one that is
related to the off-diagonal components of the stresfhese components give us:

&, ©@v)°dy,

fori #j, namely:
QﬁL vido, .

This time, we are dealing with the effect of the rin& stresses on the components of
the velocity that are tangent to the surface of thapldt. That brings into play the
differences between the velocities of the fluid fayavhich slide over each other; for
example, due to the rotation of the drop in the systeaxes that is defined by the point
C, which is a rotation that gives rise to friction betwehe surface of the drop and its
fluid environment. In this case, there is an effeat th produced by the existence of off-

diagonal components mﬂf which amounts to assuming that one is dealing with a
viscous fluid which means that it should be subject to the lawgsabsity that one finds
in material fluids (cf., AppendiB).

One can summarize the results of this discussionobgidering the proper space
stresses that provided our decomposition as being applige tdroplet globally. The
stresses produce two entirely different types of eféecthe droplet. On the one hand,
there is the effect of a fordg (which is integrated over thelumeof the droplet), which
takes the form of an external force that is appled material point. Its only effect will
be to increase the kinetic energy of the droplet.ti@rother hand, the wokk is due to
the effects of dilatation and viscosity. The laigerelated to the fact that the droplet is
not a material point, because it essentially possessegirate extension. The wonky
does not translate into any global mechanical effedherdroplet. If it is positive then
its energy will increase in a non-mechanical fornt trde may not express as a function
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of the parameters that were introduced. One is nedgsdad to introduce a
supplementary specific energy that naturally posseasesass, but which may be
expressed as a function of the motion of the fluMie shall call this energheat
following a suggestion of Takabaya&4], as long as it is clearly understood that one
cannot associate it with any of the usual interpretatafrthat word that relate to thermal
agitation, entropy, and more generally, to the steaiststructure of the fluid. The
guantitywp will therefore be called theroper caloric energy density.

In order to interpret the other quantities thatis comprised of explicitly, we shall
discuss the conservation relation:

0o Uy Uy— Py Uy + Qy Uy + 6,) = 0.

Since the first two terms contawp , the divergence will have the form of a derivative
along a streamline (cf., Append®, which we denote by either/ dr or a dot. As fop,
6,v, we write it out in detail:

d W, _
ar (Ho Uy —Py) +0uUQqv Uy) = ?Up_ fu=0.

The last two terms have the form that one finds inctassical Euler formula, where one
is led to consider the vectqw u, — p, as something that represents a generalized
momentum density,g One remarks that it is composed of a classical pgunthat is
collinear with the velocity and a ternpg that is in proper space, and which we shall call

thetransverse momentum dengisge Chap Ill). One therefore has:

1
gp - _?t,uvuw
This equation will then lead to:
N WO —_
(IV.3) 9y+av(q,uﬂ)_? u, =fu.

If we contract this withi, then it will follow, upon remembering thgtu, = 0, that:

g,u, +U,04qyUy) +Wo=0;

le.:
d .
7 (9U) =94 +0,(-Ca)- gyd, y+ w=0.
Now, one knows thai, u, = 0 andu, u, = — ¢% so one will get:
u, 0y u, =0,
and finally:

g,u, =~ p.U, = P,
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Thus, one finally gets:

[,C° + U, = W - ¢o, q.

This relation obviously provides us with the accountingsha the “proper” energy.
In the left-hand side, we recognize the variation ef phoper mass density and a term
that appears to be difficult to interpret, because one dotgenerally have:

pﬂuﬂ =0 or pﬂuﬂz 0.

In the right-hand side, we recover the caloric epéhgt is created by the work done by
the internal stresses. However, the last term svamthat this caloric energy cannot be
localized to the point where it was produced and thahiggation is represented by the
vectorq,, which we — following Takabayas?4] — call theheat current densitylts role
will become precise immediately.

Now, consider equation (3), and integrate it over aigqouf the tube that is swept
out by a droplet in timer.

One knows (cf., Appendi&) that if we consider the total momentum of the droplet

Gu= |, 9,4V
then the integraJ'Q g,dw can be written aé';ﬂdr. Similarly, J'Q f,dw can be written as:
drjvo f,dv, =drFy,

in whichF is the total force that is exercised by the stressefor
The integraljgav(q,uﬂ) dw reduces toJ'z q,u, do, , which is an integral that is taken
over the entire hypersurface that bounds that o the tube. The integrals over the

two proper-space ends; and C, will be zero sincey, is in proper space, so one will
have: q)dg? = 0.

On the contrary, on the boundary one must say:

doy = L ¢ dX2dx? d?,

~ Cuvpl
c e
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where the three infinitesimal elements(’, dx?, dx® are taken over the hyper-
boundary.
One may choose one of them — for examplé? - to point along the current, and

calculate the produd}, do, in the proper system. One then has:

dx® =0, dx® =ic dr,
do® =0, do° = '—Cqm(d>¢1> dx? icr,
or, upon settingja = & , by convention:
doy = g, dxVd¥? o

One therefore obtains simply the usual area elendghtover the surface of the
droplet in proper space. We therefore obtain the integral

dr J:% u,q dg,
which, if one neglects the variationswpfat the level of the droplet, will give:

drU, [ ofdg =drU, d,

and we shall caltby the heat flux or the flux of the heat current vector that passes
through the drop in proper space. If this equation is integraver the drop then that
will give:

(IV.4) Gﬂ—Uﬂ('[v%d\/o—j%cfdﬁj: E.

One sees that the total momentum of the droptiligected to two entirely different
types of variations: On the one hand, the dynamiaahtion, which is measured by the
force F,, as is the case for the classical material pol@h the other hand, there is a
“thermodynamic” variation that is due to the fabtatt one part of the energy that is
contained in the drop is composed of the heats Tiay increase as a result of the work
that is done by the internal stresses and decisaseresult of one particular process of
“conduction.” It is only the difference betweenretlotal variationdG, / dt of the
momentum and that of the supplementary momentumighafforded by the heat that
intervenes in the laws of dynamics.

Therefore, we find a justification for the integpation that we have given to the two
quantities ., d» U, and q,, which, we believe, may not be interpreted in aepu
dynamical fashion.
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8 3. The decomposition of the moment of proper rotation We shall now use the
projections onto the current in order to analyze tledinBante tensor density of the
moment of proper rotation, whose expression in termth@foperator of infinitesimal
rotations we recall:

oL

S/ AppendixC).
oy LW (App )

fln = ]

One obtains a covariant decomposition by taking antisgtry into account:

fr1r = Ayaia + BuUs = BuyUs + Mg Uy +¢(Ty Uy =Ty Uy) Ua,
with
A,uwl U,u = A,uwl uy = A,uwl u = 0,
B U, =Buu,=0,
M/IVU/I = Myvuv =0,
T,u,=0.

This decomposition remains very complex, and Takabg@yaposed to simplify it by
profiting from the indeterminacy in the gauge. To that @ndelps to have in mind the
physical idea that the abstract notion of “moment of prapé&ation” in the kind of
hydrodynamics under scrutiny must correspond to the existef an intrinsic rotation
that affects the elementary particles that the fiondy be regarded as composed of.
Among the tensors into whidh.;x may be resolved, only one of them can conveniently
represent the intrinsic rotation of a spinning partidtds the antisymmetric proper-space
tensor My, to which Takabayasi gave the status of a proper angutememtum.
However, we encountered more general motions in thigsas@f the spinning particles
that took the form of intrinsic rotations by using an antisygtric tensoi§,,; that is no
longer in proper space. If we would like to take into aotdhe possibility of such a
motion for the elements of our fluid then we would Het we must consider not only
the termM;,,; u,, but also the terro(T, u, — Ty u,) Uy — i.e., the set of terms that contain
u, as a factor. We are thus led to the following decompaosit

(IV.5) f,uwl = %S[,uv] u, + +f[,uv]/] )
with:
+f[/w]g u) = 0.

The tensor 1/%,,; may be decomposed into a proper-space g} that one may,
like Takabaysi, interpret as being due to the gyratiormahentum of the particles and a
partc (T, u, — T, uy) that is orthogonal to proper space and is due to theat&ma
between the center of mass and the center of nfatteach particle, if it exists. As for
the rest of the tensor, it does not appear to be possilgiee it a physical interpretation.
Also, it is legitimate to make it disappear by a coneenhchoice of gauge, which, as we
know, leaves not only the validity of the fundamentplaions of conservation invariant,
but also the value of the total momentdin and the total angular momentuip, when

one integrates over the domain of the field. Onectbee makes the transformation:
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f;m =Ty — +f,u|//1 )
which must naturally accompany the transformation:

t;,,, = t,uv - a/] cD,uvA y
with:
cD,uvA = +f,u|//1 - +f/Mv - +f|//1,u .

Of course, this transformation modifies all of thenawical quantities that we deduced
from t,, but not the equations to which they are related, r®g aonsequence, their
hydrodynamical interpretations. Since, on the one handand *f,,, are perfectly
determined as functions &f,,, and consequently, of the wave function, by the relation
that is deduced from (5) upon contracting wigh

1 —
2 Suv = ? f,uv/iu/i )

+. —
f,uvA - f,uwl - %S,uv uy,

one sees that all of the formalism continues to depeaderfectly unambiguous fashion
on the wave function.

By means of this gauge transformation, one has timpliied expression (upon
suppressing the signs):

-1
f _Es,uvu/i

HVA

for the tensof,., . It remains for us to justify the dynamical intetpt®n that makes us
identify s,, with a density of proper angular momentum. The condervatjuation for
momentum gives us:

t,uv - tv,u =2, f,uvA =0, (S,uv U/]) = S,UV )

upon introducing the derivative of the densityalong the streamline (Appendd.
On the other hand, one can spetifyas a function of the dynamical quantities:

tuv = tuy = Ho Uy Uy — Py Uy + Gy Uy + Gy — Ho Uy Uy + Py Uy — Gy Uy — By,
=St py) U= @Qut Pr) Ut 200> =8, .
One thus makes a generalized transverse momentum deesity appear:
P, =Put Qu,

which permits us to give the equation the condensed form:
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pl’/u;l - FL Y +2€<,uv> = .§1v’

which provides a generalization of the Frenkel-Weysserdwpfation.
In order to utilize the customary procedure of integgativer an element of the tube,
it is preferable to preserve the initial form:

g/juV_un/j-l'qVUy_quuV'l'2€</1|/>: S,UV'

Upon integrating, the right-hand side givesé%dr. For each term on the left-hand

side, decompose the space-time elementditalt, and integrate over the proper volume
by assuming that it is small enough that the velocitiesaonly a little over it and may be
taken out of the integral. One will then have:

GuUy -G Uy+ Uy | ad-Uy [ qdv%+2] 6,.d% =S,

<ﬂV>
One may constructtatal heat currenvector:
Q'u = .[vo q/‘dvo

using the vector density of heat currept . It will be a proper-space vector that
represents a quantity of the same nature as the momé&htu

Finally, &~ has the dimensions of a dipole density, siha®, has the dimensions
of a force density. One may thus defin®t@l dipole:

N[/IV] = 2 .[VO 8 d\/O .

<AUV>

One may finally write the equation of the droplet as:

(1V.6) (G,~Q, - (G-Q)U,+ N, = S,

One sees that this equation expresses the classoatth of the kinetic moment for
the droplet. As we found in all of the situations in whweé were concerned with a
relativistic spinning particle, the variation of the taagular momentum is composed of
an orbital ternU, G, — U, G, that expresses the “curvature” of the global motibthe

droplet and a supplementary terfmw] that defines the existence of a “proper” angular

momentum, and thus justifies our interpretatiorsgfas a proper angular momentum
density. On the other hand, this variation is equah&duantityN;.;, which, as the
integral of the antisymmetric part of the internaéss tensor, obviously plays the role of
a dipole of torsion.

It remains for us to interpret the appearance of heaie 8es that it presents itself
here in the form of a heat current:
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Qu= '[Vo q,dV,

whereas in the force equation it takes the form ofjtremntity:

Ao= IVO%dVO—jSO q,ds .

In both cases, the total momentu®y expresses the motion of the totality of the
energy, which is composed of caloric energy hereeglration (4), it plays the role of the
variation of the momentum during a tinte. It is composed of a dynamical part that is
due to the variation of the velocity under the actibthe force and a non-dynamical part
that is due to the variation of the proper mass during @dimwhich is a variation that
results in the creation of heat by the work that waseday the internal stresses and the
loss or acquisition of heat by conduction. The second g@lthe variation of the
momentum does not have any dynamical cause. It ddedepend upon the external
force, which acts upon only the dynamical part. In otdesbtain the latter, one must
then subtractthe non-dynamical variatioA; U, from the total variationG. On the
contrary, in the dipole equation one is involved wite #xpressiorG, U, - G, U,,
which represents the variation of the orbital angafementum ofall of the energy,
which is composed of heat here. Now, this will expeeeacdouble displacement: On
the one hand, there is one that relates to the met#¢rincreases its inertia and is
involved with the current and contributes to the dynahmwament of rotation of it by the
same right as mass, properly speaking, from which, itneil be discernible, moreover.
On the other hand, in the interior of the matter curiewill submit to a thermal
“migration” that has no dynamical cause, so therd wabult an apparent angular
momentum that must not be accounted for in the dipoletiequand thus, for that
reason, one musubtractit from the total orbital angular momentum in ordeattbnly
the dynamical part should remain, which will thus taleftrm:

(GvUu=-GyU)) —QuUu—Qu ).

It is for the same reason that we have been led rite ihe equation for the
momentum density:

pl',uﬂ - F’;,LL +20,,.=$,,
upon introducing a generalized transverse momenpjn p, + gy, which is in proper
space. If one contracts witly then it will follow that:

1.
?Sﬂvuﬂ .

(IV.7) Py =PutQu =

This relation shows, among other things, that if ihelfdoes not possess a proper
angular momentum then one will haug+ g, = 0.
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One thus remarks that the existence of a transwveoseentum (or the fact that the
momentumg, is not collinear with the current) is not necesgaah indication of a
proper angular momentum. It likewise results fromehkistence of a heat current, and it
can be used in the decomposition into two terms that geesiomentum as:

1.
v =L uV+qV—?S,uvu,u'

As we did for the particle quantities in Chapter llie wan decompose the angular
momentuns,, in a covariant fashion into two space-time vectors:

Sy = 2'—0 Evapu Uy Sop or the gyration density,
and

t, = %s/,.,u./ or the wobble density,
and one has:

i 1
S/IV = E gyuaﬂ UQ Sﬂ + E (t/j UV —tu Uy)

One may express the derivatigg that factors in the dipole equation as:

Sy =

Euvap (ua'sﬂ +U, %)+%( lllz.I_ u-}_*_ H = .UJ)

ol-

Equation (7) then yields:

oo G e+l +t'VuV
Pu = G wash e S EL @ U

which, upon contracting witk, ands,, respectively, will provide the two equalities:

I
P.Y, = Etllull’
P L
pﬂsﬂ = Et“s"'
Otherwise speaking, the space-time vector:
o1 ta - 1.
P, Etp =PutQu Etp

is simultaneously orthogonal ta, ands,.
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Naturally, the same thing will be true for the vedp# g, — Et'ﬂ :
c

8 4. Another decomposition that was proposed by TakabayasWWe now point out
that TakabayasiZ{] likewise used another decomposition of the terfggr(which is
equivalent to the one that we proposed ab@%eZ7). We will then explain why it does
not seem satisfactory to us. One causes the compéatedymmetric part of the product
Suus to appear, which is defined as it was in the foregoing. nUfaking the
antisymmetry of,, into account, it will be easy to see that the tensor:

Capva = S Ur + §ua Uy + S Uy

is completely antisymmetric. (We remark that underapisration, the part o, that is
not located in proper space will disappear, and we wikhéor that matter:

3 COuvay = My Up + My Uy +Mpg Uy,

which is, moreover, the expression that was consideyetiakabayasi.) One may then
attribute the significance spinto ¢y or its dualo, , which are related by:

| .
Og = E Eauvr OuvA » Ouval = V&uvra Oq -

One then performs a gauge transformation that is diffefrom the one that was
proposed previously. The decomposition:

fuvA :% S,uv u + +f,u|//1
leads to:

f,uvA :% CO[/JV/]] _% Svi U,u _% S/],uuv + +f,u|//1 y
and one takes the quantity:

++ _+
f,uvA - f,uvA +iSAVU,u _iSA,uUV
2 2

to be a gauge, in such a fashion that one will have simply
fum = ¢ Oluvn = | Ewia O
N= = N == -
V. 2 [uvA] 2 wia Ya
Under these conditions, the torque equation will become:

p:/uﬂ - qu L’/ + 2€</1|/> = iCtg/IV/]a 6/1 Ua.

The appearance of the intrinsic rotation in the fafmthe dual of the rotation of the
spin is correct in the case of the Dirac equatio s effect the hydrodynamical
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representation that results from the gauge transfovmé#tiat we have envisioned in the
Dirac case will correspond precisely to the hydrodynaraicghe Dirac fluid that was
obtained by Takabayasi in a very natural manfgr However, one will encounter very
grave difficulties in its interpretation in the gerlezase when one integrates the equation
over an element of the tube: One will find the sanpression on the left-hand side that
we just found:

[(G,u_ Qu) Uy— (GV_ Q/) U,u+ N[,uv]] dT-,

and with the same interpretation. In order to deah whe right-hand side, we place
ourselves (as Takabayasi did) in the case whgrg = O.
One will then have (see Chap. Ill):

i
S/IV = E gyu/]a Uy 0;5

We have to calculate the integral:
J'Qicsﬂmaﬂaadw = J'zicsﬂmaad% :

which is taken over the domain of the hypersurface thahd® that tube element (we
denote the hypersurface elementXyin order to avoid confusion with spin). At the

endsC; andC; in proper space, one has:

u
dQ[/] = —C—;dVO
and
— u/1
dQ[A - +? dV() ’

respectively.
Thus, the contribution:

i i
B J.CLE gﬂvAaUauA dVO + '[C?E‘gﬂvﬂaaa UA d\é

will become:
drij. le o,u,d\,

dT v © wia™~ a
which is nothing but:

d _ .
drajvo s, dy =dt$,,.

One then recovers the correct term in the Frenkeydsenhoff equation precisely.
We have seen that on the hyper-boundary one may, upongaaeself in the proper
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system, expresd®2l; in terms of the proper space surface elenaghtas d2() = dg dr;
one thus has the integral:

Iy =IC Enaa Lﬁ o,dA; .

The pure space componeri;?s are zero because their integrands contain the factor
o, or d2l;, which are zero. The remaining components are:

ic ic
19 =dr EgMjkLo (0ds’ - o’dg) = drzj.% £, (020s" - 0P d) .

Now one knows (Chap. Ill) that in proper space one has:

Uio = &k S?k )
SO:

One thus has:
_ . c _ . c
G =dr 2f (Gdd -4 § df =dr 2 $ag.

One therefore sees the flux of the proper angular entum appear, which is more
conveniently transformed into a volume integral:

ic
10 :dTEIV06J§? d\, .

If one remarks that = U then one can give the antisymmetric form:
1
I[?4] _EdT(USIVOa?%Od\é_ UiOJ‘voaio"f d\{)
to 15, since the second term is zero, or similarly:
1
i = 2ar(US], 0355 dy - U7 07, ay),

which amounts to adding the zero teréfss’,. (Recall that thes, components are zero

in the proper system.) One then sees that with this for I[?4] , since all of the spatial

components are equal to:
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I 0

1
o - Edr(ugjvoags;; ay - U], 05 ¢ dy),

which are zero because thE are, one can construct a tensor whose components in th
proper system are all identical to those of the comtitensor:

lun ==30r(U, [, 0,5,0%- U [ 0, 5, a)

or, if one sets:

1
Dy = ), 0:8: 4%

then we will have:
I/IV == dT(U/[ DV - UV D/[)

Hence, the equation of the drop will be:
S, =Gu-Q) Uy~ (G- Q) Uy +Nu+ (U, Dy—U, D).

It must be strongly emphasized that the quamjys a function of only the distribution
of the density of the proper angular momentum in the leidtithe drop.

If we would like to interpret this relation then we mfistt remark that in making the
internal stresses tend towards zero (which all but abligeto suppress the heat current,
as well, since there will no longer be any productionaddric energy specifically), one
must, in any case, be led to the suppression of any typetioh on the drop on the part
of the rest of the fluid, and one must thus arrive atdfuations of motion for a free,
isolated drop. In that case, one will have:

S;IV :G/IUV_GVU/I +U/1 DV—UV D/[

Now, in all of the analysis of the free drop in atstof rotation that we did
previously, we never found any terms, other tt@p, for which the proper angular

momentum intervened. Furthermore, in the case of “matter,” we were justified in
regarding a hydrodynamical model that provided us with decms with distrust.
Naturally, it might happen that by reason of the fafrthe Lagrangian, certain particular
wave functions will provide us with internal stressest tire determined, at least in part,
by the Dirac wave function. In that case, the temj might enter into the torque,, .
However, we would then be dealing with only one particoése, whereas here we are
seeking a general method that would be applicable to any waeton. At the very
most, one can accept that one is restricted to aplarticlass of hydrodynamical models
for which the proper angular momentum has a conservéltixein the absence of an
antisymmetric part to the stress tensor. The vedofowill then be annulled at the same
time as the torqué\,,, and in the case of “pure matter,” we will recovee tisual
equation for the free, spinning particle.
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8 5. The classification of hydrodynamical models.The foregoing considerations
provide us with the framework for a logical classificatof hydrodynamical models. To
begin with, one may distinguish the fluids that areegian internal angular momentum
from the ones that are not.

On the one hand, the former fluids may be charaetgrizy the properties of the
internal angular momentum. As for the more genemakgcfor which we have the two
fundamental equations:

. W
gp +av(q/up) :_ave,uv = f,u +C_g Lil’

(9,-9)y-(g-q)y+26 ,.=75,

to which, the decomposition relation f§; may be adjoined:

i 1
S,uv :E‘g,uvmiun§ +E( L}z J -y ,L)i

we may, as we were inspired to do in Chapter Ill, cersiwo restrictions:

1) The two vectors,sand §, are collinear. They are expressed as functions of a
unique proper space vector — viz., §pen g, — and a scalar variabl

S, = 0, COSA, t, = g, SinA.
If one makes the moment of proper rotation intervene:
fun =% Sw,
which is considered after making the gauge transformatminriakes the other terms

disappear, then one will have:

2f u
2 luvp Yo
CZ

S/II/ -

i i
Su = o Evapy Uy Sap = =5 Evapye Uy fago Up,

t—ls u,= fuouy U
p— — SuvYv = 73 luyp Yy Yp-
c ct

One then expresses the idea sandt, are collinear by means of the relatiem,.,
s, t, = 0, which annuls their exterior product, such that:

Eapuv Eraru Ua Sor Syp Up = 0,
Gy Ua Sor Syp Up = 0.
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The left-hand side gives us:

Sap Uy §ug Up + Spv Ua Syp Up + Sva Ug Syp Up

and three similar terms. The first of these termgaro by antisymmetry. What will
remain is:

Sup Up (Sua Uﬁ— SV,B UQ) = 0,

or, when expressed as a function of the moment of profegion:

fvmupuﬂ( fmﬂ - fvﬂ )=0.

2) In a more restrictive fashion, one might have thsecin which theangular
momentum is in proper space:

t,=0 or Suw Uy =0.

For the moment of proper rotation, this translates int

fWuVuﬂ =0,

once one has made the appropriate gauge transformation.
In this case, one knows that the angular momentum beamepresented in an
equivalent fashion in terms of spin, which is a propecespactor:

i
U,u = 2_C gvaﬁ,u Uy Saﬁ,
with

i
S/IV = E gyuaﬁ Uy 0;8
The generalized transverse momentum can be written:

. _ 1, _ 1 oo )
pp _p/l+ qu = ?S,uv Y, __?S,uv Yy =- gg,uvaﬂuaaﬂuv’

and one has:

It is orthogonal to the current, the spin, and the€esjiane acceleration.

Other restrictions that are independent of the pragednes might pertain to the
energy-momentum tensor. To begin with, one might rassthatthere is no heat
convectioni.e.,g, = 0.

One would then have tht, u, = — uc® U, is collinear with the current, which is a
condition that can be written as:



Chapter IV - The general theory of hydrodynamical models 155

gaﬂyu tpy Up Uy = O,
such that:

uu
tov Up 7va = tpy Up (Cym + ::2) j =0.

With these conditions, the transverse momentum:

P
pp_?spvq/

is solely due to the angular momentum. It is deterdhimethe gyration and the wobble
of the spin, which obey the relations that we jusite/for the quantityp, =p, + dy .

The two fundamental equations can then be written:

gﬂ :_av e/[v;
QuUW—Q U+ 20q0-=$, .

An even more special case is the one in which tieeneeither convection nor
production of heat.Thus, along with the preceding condition, we will diswe:

eyu au Uy = 0,
which will give us:

eijo(aivj )O: 0
in the proper system.

If we exclude the case in which only the global coadiis satisfied (which is a case
that is particularly difficult to interpret ) then weust have, on the one that, that:

'@V )°=0 for i#j,

which signifies that there is no viscosity. Therefdhe fluid must beperfect and the
non-relativistic stress tensor will then be writeen

& =qrp"
Moreover, one must have that:

3 p0iv) =0 or  p@w)°=0,
which is possible only in two cases:
1) @iv)° = 0, which isthe case of a perfect, incompressible fluid.

2) p°=0, so there is no internal stress.
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This is the case of pure matter fluid This last case realizes the Weyssenhoff
hydrodynamics when one has, moreover, tgat u, = 0, or else it realizes the
generalizations that are suggested by the Bohm-Vigier |gagtyamics.

Finally, one may considerfluid that is devoid of any internal angular momentuiin
is not necessary that the Belinfante terfggr must be identically zero. It suffices that
one should havg,, uy = 0 — i.e., thaf,., should reduce to the part that we have seen fit
to eliminate by a gauge transformation in all cases.

It will then result from this hypothesis that, on e hand, the energy-momentum
tensor (after a gauge transformationysnmetri¢c and, on the other hand, that+ q, =
0.

The existence of a transverse momentum is solelytdune heat current. The
fundamental equations then take the form:

gp+ aI/(quuv) ==0y e,uv,

Ou—q)uw—(9v—0) Uy=26,-.

One may recover the hypotheses that we made regatdingnergy-momentum tensor
for this type of fluid.

If there is no heat current — i.g, = 0 — then the momentugp will be collinear with
the current. The kinematical part of the energy-matoma will then reduce to a
symmetric termip u, u,, so the stress tensor will likewise be symmetria] &ime
fundamental equations will reduce to:

Ou = Ho Uy,
gﬂ :_au B/IV-

Finally, if one assumes that there is no productiohezit, moreover, then one will
recover the two classical cases of the perfect,nmpeessible fluid and the pure matter
fluid.

We remark that the angular momentum interveneseretfuations of motion only by
means of the derivatives,, . If the proper angular momentum is not zero along the

streamline, but only constant (which is a case thatrweuntered above when studying
the Mgller drop) then one will recover the same equatas the ones above.

8 6. The representation of the Schrodinger wave functionWe shall now apply
the preceding considerations to the principal wave fanstof quantum mechanics. First
of all, we may reconsider the hydrodynamical representaf the Schrodinger equation
that we began with in our Introduction (i.e., the Madel@lagl) in terms of the general
formalism that we just discussed. Although it is esaliyita non-relativistic equation,
the transposition is immediate.

As we know, the Schrddinger equation can be derivedh feo non-relativistic
Lagrangian:
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(wa 7)) +—6kwﬂakw +HVyYy .

¢ denotes the complex conjugate @fand ¢ denotes the ordinary derivative with
respect to time. Upon writing the Euler-Lagrangeation that relates to the two groups
of variableg andx,, one will obtain:

) [ oL j ( oL j oL
e O +ak ol o’
at\ ay ow, ) oy

hoy
i o8 2m

such that we have:

—0,0y +VyY=0;

i.e., the Schrédinger equation. One has an anatogquation fory .
One easily deduces the components of the curremtn fthis Lagrangian.
Corresponding to the spatial variables, one has:

jk:i(lﬂ oL _ Daﬁ} i(l,lfakl,l/ W oY),

oy, = oY) 2m

and corresponding to time, one has:

n 0L .
_—— =h :
(lﬂ oy alﬂmj v

this last component obviously represents the filadsity (up to the factok).
We now pass on to real functions by making thestiarmation:

Y=Re&".
This makes the Lagrangian take the form:
2
r= P(6_8+6 S0, S Vj+h—a" P, F
ot 2m 8m P

(if we setR? = P).
The Euler-Lagrange equations will then be:

2
R 95,1550 s AR
ot 2m 2m R
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(©) oP +0, ( Paks} =0 (see Introduction),
ot m

which, when substituted in the Lagrangian, gives itrthe form:

12 12
£=—(ROR+ARAR) = —AP.

The current components are:
. hP .
jk:—aks, jD:hP,
m

which corresponds to a matter density:

_Jo -
=— =P
p h
and a velocity:
_0S
Vk_ ]
m

conforming to the previously-chosen hypothesesimihediately results from equation
(C) that one has:
6'0 = % =0

L +90 =
ot (V) at

There is conservation of matter in the course sf thotion. One easily constructs a set
of quantities that comprise the space-time tendoer@rgy-momentum in the non-
relativistic case. They are:

1) A spatial energy-momentum tensor:

2 6-P6-P 6 S@ S
t= 2L op+ 25 55 g =0T - 5 Pap,
0P, 0S, 4m P m 4m’

or

2

L=pmyy+ (2 R RG[BRY B R

This is a symmetric tensor.
2) A momentum density vector:

oL
k=t = gaks =P oS
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or
3) An energy density current vector:
ok = a_['S = PE .S,
0S, m
or, from QJ):
—1 = PEV,.
4) Finally, one has an energy density scalar:
10, _1
tog = —2£S = ?PS,
or
E
—1p = ,0?-
The relativistic equation of conservationt,, = 0 is thus subdivided into:
— An equation of momentum conservation:
0
6,- tij + atm =0,
such that:

)
0i(p muv;) + a(p mv) +0;6; = 0,

or, upon recalling thgbm v is the momenturg;, and that- 0;8; = ¢; is the density of the
stress forces, it will then happen that:

d /)]
ag.—¢..

Similarly, one has an equation of energy cons&mat
0
6,- tDj + atDD =0,
such that:

— Oj(0E W) — %(pE) = —% (6E) = 0.

Hence, sincelp/ dt = 0, one will have:
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Thus, the energy is invariant in the absence of extérzes.
Therefore, from the equation of momentum conservattoresults that the second
term of the tensa; represents the internal stress tensor:

2
h > [20ROR~&(RAR +0ROR)]

0,00
g - (ﬂ_wj,
2m yoj

Meanwhile, this tensor, which is always symmetdifers completely from the one
that one obtains by the Madelung method (see ntineduction), namely:

or furthermore:

hZ
8 = (ROOR-ORIR)

or furthermore:
2

7
=" 00,0 log p.
G 2 P0i0;10g p

Similarly, the internal pressures that one deduagscontracting have different
expressions, namely:

L1 h?
p = 30 ——(3RAR+6R6R)
while for the Madelung case one has:
2
p:%Qi ——h_( RAR +3RAR).

By comparison, the only physical quantity in th@ression for the force density that
is deducible from the tens@k that intervenes in the hydrodynamical equationsiexy
is:
2
4 =-06 = —;’— [200R R + 2RAR - GRAR - ROAR - 200R R ;
m

2 2
4= (ROAR-AROR) = Rza[h ARJ,
2m 2m R

which is the same expression that we started witlorder to derive the Madelung
stresses. Thus, the two models are physicallyvatgnt.
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8§ 7. The Klein-Gordon wave function: the representation of @ Broglie and
Takabayasi. We now pass on to the relativistic wave functionsie ®nows that they
must all satisfy the Klein-Gordon equation:

¢
aya,,dD:nE—ZCD,

and that in the case of a scalar wave functiondbigdition will suffice to completely

determine the wave equation. We shall begin to study #se by first recalling the

procedure that was employed by Louis de Brodl& §2], and reprised by Takabayasi
[43], which is a procedure that generalizes that of Madelung.

Upon settingd =R €°'", the Klein-Gordon equation will split into:

© 0,(RRd,9=0
) 9,59, S+ nﬁcz—hzu—: = 0.
Here, one may not simply set:
0,S
u, =—*—.
m,

because the conditiam, u, = — ¢ will not be satisfied, in general. One forms soalar
0, S0, Sand sets:

upon introducing a scaldfy , which is variable, in general, in lieu of theper massn
that appears in the non-relativistic equation. g thus set:

)
n

Thus, equation]j leads to:
“Mict e =

Hence, the expression fbty is:

h* OR
MOZ =m§—F—R. .

One sees thaM, differs frommy by only a correction term that is simultaneously
guantum and relativistic. One has, furthermore:
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approximately, which is a formula in which one recognibesrelativistic generalization
of the quantum potential:
h* AR
Q=-——.
2m R
As Takabayasi pointed out, the introduction of gs@ntityMy is possible only under
the condition that:
h_ZE< 2
RO
which is a relation that might be found wanting foarticles of vanishing mass or in
regions wheredR/ R becomes very large. On the other hand, notestizdtion J) may
be written:

(upon introducing the derivative along the streas)li so if one desires to preserve the

significance of the action functional f&ithen—S will be the proper energy, and one will
have:

M,S =-MZc*= - Eo Mo
or
Eo = MoC?,

which will serve to establish the significanceMyd, which will then appear to betatal
proper mass.
If one takes the gradient of equatidpthen one will get:

20,,50,0, S= 0, (rﬁ%{j.

Upon dividing both sides by\&, one will get:

d 1 OR 1
u,0,0,S=— (Mou,) = 9 | nP— | =———08 (M2c?) =-09d,M?,
1 Oy dr(o) ZMOV[ Rj 2|Vlov(o) (Moc?)

such that:

9 M) = -9, (M),
dr
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Therefore, the quantitylp will simultaneously play the role of a variable propgss
and that of a scalar potential of relativistic fordéat corresponds to the quantum
potential of the Schrdodinger wave function.

One sees that (for reasons of homogeneity) one setrst

p= RZ%,
m

and one will then have:
P =0,(u,p)=0 (see Appendir)
One then writes equatiod)(in the form:
Uy 0, S=— MoC2.
Multiply this by p and then take the gradient. The left-hand side wifi thee us:

0y (OU 049 =pUu0y0yS+0,0,50Uy)
=0y (P Uy 0,S) — 0,50, (o Uy) +MoUy 0y (0 Uy).

The second term is zero, on account of equa@n What will remain is:

av (ﬂ\/lo UV U/j) + MQU/I,OGVU/I+ MOU/[ Uyaup

The second term will be zero, singgeu,, = — ¢

Thus, one finds that:
0, (Mo Uy U,) = MoC?d, 0 = — 9, (OMo &),

Oy (Mo Uy Uy) == p Ay (Mo €.

or furthermore:

Transforming the right-hand side by expressingnd M c*as functions oR will
give:

2
R 3, (Méc?)
2m,

-pd, (Mo &) =- RZ%aV(MocZ): -
m,

2 2
- R av(hzuRj: " (Ro,0R-9, RO B.
2m, R 2m,

We may transform the term in parentheses as wanditle case of the Madelung
stress tensor:

The equation can ultimately be written as:
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hZ
2m,

In this form, the equation then expresses the idealibativergence will vanish for
an energy-momentum tensor that expressed in the form:

2

h
t, =pPMu u, +

om, (0,R0,R- R0, R

Moreover, upon remarking that:

a R
Rava/,R—avRa,,R:Rzav( Ee j =R*d,0, logR,

and upon introducing the density:

p= RZ%
m
we will get:
hZ
t, =pMu, U, _'OZMO 0,0,logR

By generalizing Lichnerowicz’s theory of classidlalids, it is easy to show that the
Klein-Gordon fluid is a holonomic fluid, and thahet above form for the energy-
momentum tensor makes the pseudo-rvasappear, along with the pressure tensor:

2
y = h (@R0,R-R0,0,R (cf., AppendixB).
Tl 2m, u u

One has, indeed:

9,7 = (@RO, R+, R0, R9, R,0, R ®RO F=_ R (Ej
VIZ/V 2% U v v u v vYu 2% U R )

or, upon utilizing equationy:

R? M
—6.;7%/ :Ha#(nﬁ_ Mg) C2=—R2E:)0ﬂl\/|0 C2=—6ﬂMOCZ.

Therefore, the internal force per unit pseudo-n&ss

K,=-¢c?d,logMp.
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This takes the form of a gradient precisely, and upon siisp®f the indeterminacy
in the coefficient, one will immmediately get the ed

One therefore has a third interpretation for dege’s variable mass: It corresponds
to the index of a holonomic fluid, in the Lichnerow sense. Moreover, equatiod) (
permits us to expre$sas a function of the variabke

h* OR

F2:1— —
mc R

or:
__M CR
2 R’

~

approximately.

One then sees the significance of the vedi®/ my in the causal interpretation, as
well: It represents Lichnerowicz’s weighted velgorectorC, (see AppendiB); i.e., the
unit-speed velocity relative to the Riemannian ioetinat is associated with the fluid.
This vector:

will be a gradient, as opposed to the unit veloalfly . Its rotation, which is
Lichnerowicz’s vorticity tensor, will therefore lzero. Thus, the Klein-Gordon motion is
essentiallyirrotational.

The vectoIiC, also allows us to express the relativistic comgibaigty:

0,.C :—igs

u=u m,

The case in which the Klein-Gordon fluid is incaegsible is thus expressed s
= 0; in other words, the phase wave propagates thighvelocityc, which implies a
vanishing proper mass. One may likewise remarkftban equation@) one has:

The case of the incompressible fluid is thus furttlearacterized by the fact that the
gradientd, R is orthogonal to the gradiedt S; i.e., it is situated in proper space.

Once more, we consider the energy-momentum teasdryemark that the part that
we have called a pressure tensor, namely:
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2

/]
- 0,0,logR,
P oM. K g

0

possesses components aleng as well as along,. If one is to obtain an internal stress
tensor that is contained in proper space then it mudebemposed, and this will make a

transverse momentum and a heat current appear.
In order to rapidly calculate these vectors, it isvement to remarkq] that the

projection relative to the indeof a tenso”,z on the current is:

Aav[—@j,

c

whereas the projection onto proper space is:

A, [5 +u”u/”j = s Aa
v VB Cz 79 v

We will then obtain the momentugy immediately upon projecting, ontou, :

2
j = PMo Uy Uy + 2f/|hc2 Uy 8,9, log R L,

0

u
Gu U =1, (_ :;V

2

/]
= u, + uy0,0,logR.
gy = PMo Uy pZMCZ 100,109

0

One obtains the transverse momentupy, By projectingg, onto proper space — i.e.,
= Pu = 0a i — Namely:

2

/)
P, = —PW u,0,0, log RY,,-

In the absence of proper angular momentum, thedwgeent is, as one knows, equal
to the transverse momentum:

hZ
q,= +,0m u,0,0, log Rz, ,.

0

The proper mass density may be obtained by projectirig, onto the current for

each of the two indices:
_ uuy, Uy
Ho Uy Uy =1,, (_::_zj(_?J !
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SO:

hz
/'10 :p(Mo_muﬂugaﬂag |Og Rj

0

Finally, the proper space stress tensor is obtained lgcprgt,, onto proper space
for each of the two indices:

2

7l
HW = —pmaﬂag log RW,,1,,-

We may deduce two quantities from this expresthan physically translate into the
effect of quantum stresses by forming the veetat, §,, and then projecting it onto
proper space and the current:

2

/7A,u av(’?vaRz a/l aa
2m,

_au eyu

|Og R D?Vg'aun/]/j

The first term is explicitly a proper space vecgnce it involves the,,. As for the
second term, we see that:

uu 1
aun/]y:av[ /C]:Zﬂj :?(U/]auulu+ UyaVU/]),

which is an expression whose first term is orth@joo the current — i.eu, 0, u, = 0 —
and must therefore contribute to the proper-spaceef, , and whose second term is
along the currentl, , and must therefore provide an enevgythat is produced per unit
time by the internal stresses in the form of h&ae therefore has, in summation:

hZ
f, = mo{/yﬂﬂav(Rza a, log Rm]m)+q 02 £ Ro,0, log Rp, }

or

i R®
f,u =— 2% {Uﬂ [ Cz ﬂa/]aa Iog Rl]]vaj +av( Fgaﬂag Iog FE]VJ} )

One sees that the force involves a non-relatistprincipal term
n*12m,0,(Rd,0, log R, aterm ini?/c?, and a term im”/c*. On the other hand, the

energywp is given by:

hZ
W°:2|v| 4

p0,0_ logRLy,0,U,
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whose principal part has the same order as the quantunofptre proper masgo |,

namely:
2

h
mp aVU/] @VGA log R.
0

Finally, one likewise expresses the internal presseiz., 7= 36,, — as:

2

o
TP e

(Dlog R+C—12 u, u,0,d, log Rj ,

0
namely:

2

T=—-
Pom,

1)69,9, 10gR.

One may perform these various operations by plyssdking the conservation
relation into account, namel&,,(MoRzu,,) =0.
We confine ourselves to a few remarks:

1) As we know, de Broglie’'s variable proper mads differs from the constant
proper massy by a quantity:
_ n* OR
2m, ¢ R’

which is a quantity that has order two from therguen viewpoint, as well as from the
relativistic viewpoint. It is only this mass thappears in the case of the Takabayasi
decomposition. The term that we were led to adt tamely:

2
- 2|\i|1 U101 0sl0g R
0

is considerably smaller, because it is of fourttheorfrom the relativistic viewpoint.

2) Upon examining the Weyssenhoff particle, weeMed to define another proper
massMy by the relation:

99

=-Mc?.
P p

The expression that was found fprgave us:

2 2
~M2c? = (Mouﬂ+%czuﬂaﬂaﬂ log Rj :

namely:
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. 2n’
M2 = Mj—thélMou#uvaﬂav log R;

0

upon neglecting the term i’ / c®, which will give, to the same approximation:

2
M? = Mo—ﬁuﬂuﬂaﬂaﬂ log R;

0

I.e., the same expression that we deduced §php CL,, .
One remembers that in the Weyssenhoff case, fleatice between the two masses
was given by:

2
M(') —mo = E_yésofs )
29n,c

where s, was the norm of the spin, namehy/ 2, after quantization. The difference
between the two masses then has ofdéc®, whereas in the Klein-Gordon case it is of

order #*/c®. One sees that it is considerably smaller, oshohy reason of the absence
of proper angular momentum.

3) In a general fashion, the difference betweennilass of momentum and the mass
of inertia is due to the fact that the momentunmas collinear with the current. The
magnitude of this difference is related to thathaf transverse momentum. Now, in the
Weyssenhoff case, the transverse momentum hadothesago / ¢°. It was essentially

related to spin, and its order of magnitude wids>. On the contrary, in the present

case, the transverse momentum is due to the heantuit has orderi®/c®>. The
phenomena that are taken into account by our deesitign (and that do not appear in
Takabayasi’'s decomposition) are thus weaker tharoties that we focused upon in the
case of fluids that are given an internal angulamantum.

4) Finally, the stress tensor involves a prindipguantum, but not relativistic, term,

namely:
2 2

h h
Y oM. 7 g W Y oM

0 0

040,100 R,

which is the one in Takabayasi's decomposition, @vwl new terms, one of which is of

order #%/c?, and the other of which is much smaller and ofeortf /c*. These two
terms obviously disappear in the non-relativisppr@ximation.

8 8. The Klein-Gordon wave function: another representation ath the non-
relativistic approximation. Up till now, the decomposition of the energy-maroen
tensor onto the current and proper space has bedéormed in a covariant form. It is



170 The relativistic theory of spinning fluids

nonetheless obvious that our expressions will takermanch simpler form if we refer the
tensors to the proper axes themselves. One then sets:

ul =0, uy =ic.
The derivatives ofi, may be obtained easily (see Append)x

0
0,u)° = @w)°’,  (@au)’= —Cana ©jus)’ = @aus)° = 0.

The continuity reIatior@,,(MoR2 u,) = 0 can be put into the form:

a° a°
ZE log R+E logM,+ @,V ¥ =0,

and the tensors that characterize the fluid witldmee:

hZ
t?k = —pma?af |Og R,

0

., a°
© =t =! °LlogR,
4 'OZMO FThe
t24:_ 2M01
hz 92 0
Lo =pPMo— p ( jlogR
at?
—p°=q°-—p : ao( OlogR),
,C° ot
0 2 070
0, __'OZMO 0.0, logR

5= )| e 92%°log R+—Ja°a—olog R+u'?6°a—olog R
K2 ) ¢ ot 1ot

60
6t(R2 £970%log R}

SO:
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g = 10 =

R?| ., d° 9° ov, \°
+—10°~—logR(0 .V +6°—|0 0. +6°6 lo k ,
Cz{katm y+30 2 log RO, v’ gF{atH}

so that finally:

2
2’:110 {83(R?0 10g R

_ K
Wo = —o C4,06‘,26?Iog R@,v)°

0
w2 1(a2Y
T=- °logR+—=| — | logR| =- A’logR.
'06M0£ g cz(aj 9 '06M0 g

In order to compare these results with the hydrodyre@migpresentation of the
Schrédinger equation, we make the non-relativistic apprdioma In order to do this,
we must subtract the proper enempc?, which does not intervene in non-relativistic
physics, from the relativistic energy. This amountsstitractingmec® from the
derivative—S, or furthermore, taking the action function to $e= S + mect, from
which, one will find that:

0S _ 0S 2 9°S _ 9°S
— = ——mC, — = :
ot ot o> ot

and

One then projects the Klein-Gordon equations ontophtad axes and the time axis,
and upon neglecting the terms it will then follow that:

0,50,S= (0S)* - (a—s—m)czj —(DS)2+2Tbaa—?— e,

0S =AS, OR=AR  0,Rd,S= aRas+mo%

The Klein-Gordon equationg)(and C) give:

S, LR
0S + 2mp — - #?=— =0,
™ 5 R

2
ZR(ai R, S+ m%—?} +RAS = 0(R0:S) + my aaF:

01

which are the Schrodinger equatiod¥ &nd §. De Broglie’s variable proper mass is
given by:
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oS

-wﬁ&s@5@5:@3f++2m5F—wﬁi
so from equationJj, one will have:
~MZc? = mpc + AR
The difference between the two masses is given by:
nﬁ—'\/'cf:h—jﬁ, Mo;’mo(l— hi ﬁj.
¢ R 2mic R

This difference must be negligible in the non-relativistpproximation. One can
therefore identifyMo with mp and set:

The components of the energy-momentum tensor theomies

hZ
tj = RPmoviv; +
2m,

(OROR-RAIR).

The second term is precisely the Madelung stress tensor:

) ) h? R 10R
tya = Ok ic = RPmy W ic + 6RE11———F6—— ,
= B o Y ZmO( “Tic at “ic atj

so that:
tko =0k = Rmy Wi,

since the second terms is of ordes® 1and:

K (10R 10R 10°R
tye=RoMy(- ) + - | LIR1IR, p 10" K],
u=Rm{=¢) 2mo(icaticat czatzj
so that:
2
tDDE—RZEO :—Rzn'b.
C

One thus recovers all of the characteristics oMaeelung fluid precisely.
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We shall now re-examine the same problem by means getieral method that was
described at the beginning of this chapter. We startthélKlein-Gordon Lagrangian as

a function of the scalar wave functidn

hZ
2m,

L=-"9,09,0 +MC g
2

One immediately sees that the Euler-Lagrange equatiens

9,0,® = %@, 0,0,0 = S o

hZ

namely, the Klein-Gordon equations.
From our general formalism, we obtain a current:

) ih? x
Ju 2m, (P00 — D9, D)

and an energy-momentum tensor:

hZ

ty = 0,00 +9,09,0) - L.

Since the wave function is a scalar, it is, by definitimdifferent to a rotation of the
axes, and there will be no moment of proper rotation.
If we introduce the real fieldR andSthen the Lagrangian will become:

h? R 2
L= 0,RO,R + 0,S0,S+ :
m AR 0, 2m (0,S0,S+ npc?)
or, upon taking equatiod) into account:
hZ
L= > (0,R0,R + ROR),

which is more conveniently written as:

2p2
£:hR
2m,

(20,logR 0,log R + OlogR).

The current becomes:

T 5
I 25 5]
= om, ( h ”j
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namely:

. h
jy:RRZG#S: phu,.

Hence, one has a matter density:

9,50,
—n'ﬁCZ

m

p=FR

or, upon setting,S9,S=-MZc:

p= RZ % ,
m
and a unit-speed velocity:
_0,S
U, = IS
0

These are the results that we obtained before.
The energy-momentum tensor becomes:

h? R?
t/jV: 2% 2[?aﬂsav S+a# Fav % - 5/1I/£1

or, upon introducing, Mo, anduy,

2

h
t,uv :pMou,uuv +p

oM [20,log R0, log R-9,, (X, log R, log RO log R].
0

One sees that the quantum term differs from thahe de Broglie and Takabayasi
model, as was the case before for the Schrodirgiel: f Meanwhile, it again plays the
role of an internal pressure tensor for a holonoftoid that corresponds to the pseudo-
massMo:

2
—avzzzw:—;b[zaﬂRDR+2aﬂav Ro, R-d, R),0, RO, R R &®RO ]
2 2
. [RO,0R-0,ROR = i Rzaﬂ(D—Rj.
2m, 2m, R

From this viewpoint, there is nothing to changenimat we said about the de Broglie-
Takabayasi fluid. One obtains the same index:
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F= %
m,
and the same weighted velocity:
d,S
Cu=—+,
m

and the motion will likewise be irrotational.

By contrast, the decomposition onto the proper axess ghfferent quantities; we
shall simply present the results.

One finds a transverse momentum:

2

h
pu=—p M C2 u, 0, |OgRaV|OgRD7/1V,

0

in which one may naturally replacg 0, log Rwith —-0OS/2 M, .
The heat current will naturally be:

2

h

0

The proper mass density will be:
2

Mo = PMo +,0Mh—cz(26,, logRO,logR 77, + OlogR).

0

The proper-space stress tensor will be:

2
O = pIC’I [20410gR 05109 R ey 175y — (Olog R+ 20, log R, log R) 77,4].

0

Its divergence, namely,0,6,,, will provide us with an internal stress density:

h? u
¢”:_mjcz {uaav {C—‘z‘ R¥[20,log Rd, log Ry, — @log R @, log R, log B, }

+0,{R?[20,log Rd,, log Ry, - Qlog R+ B, log R, log R3,,}].

and a caloric energy that is produced per unit:time

2
Wo = — zf/lhc“ [0,log Rd, log Ry, — (@log R- 2, log R, log RY,, P, u.
0
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and finally, one will deduce an internal pressure from this:

2
= Ph
2M,

@60, logRd,; log Ry, -Olog R- 3, log R, log %

As we did before, we express these quantities relatitieet proper axes. Calculation
gives:
2

60
-p’=q’= —logRlogR
p=q=p MOCZ ot g g
hZ

Lo=pPMo + p ~(20°logR° logR + Olog R),

2M ¢

hZ

G, =p [20$logRd, log R-3,, (D, log R, log R-O log R).

2M,
Thus, upon setting:

ph’ _
N(Zaﬂ logRo , logR+Olog R)= L,

0

the forceg will becomes:

2 0 0°v. 0
0 = - %{6&R|ZA°R+%£66$6?\{ +0° Ra—‘?ﬂmj" FEajOaKO R%aa ?aj"kvj}

1 £6°vk
c® ot

+ 00 L+

and the caloric energy will become:

2

Wo=-p f
° 2M c*

(97logRd, log R- 9, L).
In this simplified form, one sees that one doesalmé&in all of the same expressions that
one got for the de Broglie-Takabayasi fluid.

In order to express these differences preciselg, mwake the non-relativistic
approximation on the components of the energy-maoummetensor:

2
f [2 0ilogR9;logR—9; (20« logR ok log R + A log R)],

ti':R2 i'+R2
= Rimn + R
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such that:

hZ
tj = RRmowy; +
2m,

[20ROR-3g; 2UORIR+RAR)],

tkDEgk:RZmOVk, tog = - Ry .

Upon applying our general procedure to the Schrédinger equanenwill see that
one recovers the expressions that we obtained exadtigh are expressions that differ
from the ones that describe the Madelung fluid by the fofrthe quantum stress tensor.
Moreover, we know that the (non-relativistic) fordestress is the same in both cases. In
the rigorous, relativistic formulation, one sees thal are not the same, and that the two
expressions forg, differ noticeably. One is therefore dealing with twotiditly
different fluids.

8 9. The Dirac wave function: its tensorial representation.We now apply our
method to the case of the Dirac equations for partaiespin 1/2. We will not give any
details, but merely content ourselves with rediscawggtine results that that were given in
the fundamental treatise of Takabay&idy our own method. One knows that the Dirac
wave function is a spinor. We will now deal with theblem of giving it a tensorial
hydrodynamical representation. This is why is seemaubfaf us to rapidly recall the
classical relations between spinors and tensors hehe. variance of spinors with four
components (which one sometimes cdlispinorg is closely linked with the properties
of the four Dirac matrices, which are matrices thatdefine by the commutation rule:

(IV-8) Vu Vot Vo Vu= 20m.

It is unnecessary to specify the chosen representata content ourselves with
assuming that we have chosedermitianrepresentation:

Yy =W

The indexu takes on the four values 1, 2, 3, 4, corresponding to treecXdinkowski
spacetime.

There exists a fundamental relationship between thengmidransformations that
operate on these matrices and the Lorentz transfanmsathat act on the axes of
Minkowski space. We proceed to associate an infinitdsimasrix transformation:

T=1+ Vil W

with every infinitesimal Lorentz transformatiorL,, = du + W (W = —@uw being
infinitesimal). One easily shows that the transfation T acts on the matrix products
yay In a manner that is equivalent to the action of tleresponding Lorentz
transformation on each of the matricgg;, when they are considered to be the four
components of a vector:
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T 0T = (9w + @) (1)f)-
Indeed, take the Hermitian conjugate of the definingiogiat
T= 1+ G, T =1+ynd,.
rL]Jpon taking care thady are real, and that thexs and ax are pure imaginary, one will
ave:
TI=1+ypan - 30 kada — 5 K0 @,
and sincew; is anti-symmetric, the commutation relations willgi
TI=1-3)K @ — 4k = § Ko

In order to obtain a covariant form, one right-npliks this by )4 , and upon taking
the commutation relation into account, it will folldhat:

T= -2y n e — 21k haks — 2 1 Jh e Qx,
or finally:

T %= (L =% Vu Vo @)-
Upon remarking that the term in parentheses is sim@yntatrixt that is inverse td,
one will get:
Tha= it with t=1-2y W auw.
One may now express the transformaﬁo*rpa W Tas:
Tl T= 16 (L= b @) 14 (L4 Y o ),
or, upon neglecting the term ing(./)z, as:
ThanT=pln +3aw(a v = vunw )l
From (8), the parentheses yield:
(Vuya + 200) Yo = Wu(=ya Yo + 200) = 200uk — O Y,
Than T =y + 2@ — Quydl = W+ @uiak = G + @) 1k -
This is precisely the Lorentz transformation thatpr@mised.

Since the Lorentz transformations and the transfoomat j; T constitute two
groups, this property can be generalized to an arbitrangfsrmation that is considered
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to be the product of infinitesimal transformation: Quae define a transformatidnsuch
that:

T T=Lw yn

corresponds to each Lorentz transformatignuniquely.

Consider a spinor with four components then. Thatmot ¢ represents a set of four
components that are expressed in the form of a coluntrixngad are subject to the
ordinary rules of matrix algebra:

l/l(l)
_ | ¥
1778
Y

Y

One similarly defines the complex conjugate which is formed from the complex
conjugates of the):

Yo
| Y
Y
Y

Y

The Hermitian conjugate " is the row matrix that is composed of tz]ﬁé):

- 0 0 0 0
W= Wy Wy Wi

Finally, we define Diracadjoint spinor — or simply theadjoint spinor— by the
product:

T=¢n.

We then fix the variance of the spinor by the follogv rule: Every Lorentz
transformation that acts on the reference systelincatirespond to the action that was
defined above of the operaféron the spinor. While a vectéy, transforms asA, =Ly

Ay, a spinory will transform as:

Yw=Ty.

The conjugate spinay' transforms agy’ " = ¢/T', and the adjoint spinap = (¢ j4)
transforms as:
g=y¢Tu=¢ ut=gt.

This being the case, once one has chosen a represefibdatihe),, with the aid of a
spinor ¢, one can form the quantities:

Av=0 .y,



180 The relativistic theory of spinning fluids

which are, in fact, bilinear combinations of the compdésiehthe spinor. If one operates
on it with a Lorentz transformation then it willlfiow that:

AT =0 tnTe=¢utuTe=¢'T Ty
or, upon applying the fundamental propertyfof
A =Y Lo =L @ o= L A

One sees that the quantitiggarevectors
This conclusion immediately extends to the caseno&mitrary product of thgy,
matrices. Therefore, the quantity:

W= w Y
is an anti-symmetric tensor of second rank. Onemangover, choose operators of such

a sort that the tensor magnitudes are real — or, &, It their spatial components are
real and their temporal components are pure imaginangrefore, if one sets:

=Py

then the complex conjugate of a spatial component:

SEiYuky
will be:
S =-ig Ky
or, on account of (8):
S =ik =5,
One will have:
S =iy S, =-iduny=-s

for the temporal component.
One may then form a set of real tensorial magnittlagscorrespond to a complete
set of matrices that are formed from ghe One therefore has:

A scalar: Q=gy,

which corresponds to the identity matrix,

A vector: S, =gyy,
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which corresponds to thg matrices, and

An anti-symmetric tensor: | M, = —I—Zgzi[yﬂyv R ANZ

which corresponds to the six independent matrggs — i, ), that one derives from the
productsy;, y while taking the commutation rules into account.
One may also form the (pseudo) tensor:

M1 = =2 EpasPVa VY-

The tensoM,, will then be dual tovl -

~

i
M,UV ZE £/1I/£7,8 Maﬁ .

Thus, these two tensors express the same basimation.
The products of three matrices lead to only foewncompletely anti-symmetric,
independent matrices. If one replaces them weir ttuals:

n=éamnnm-
then one can define:
A (pseudo) vector: S, =-Uiy,
and finally:
A (pseudo) scalar: Q =iy (& = UIBJ41A).

One remarks that when takes the commutation oektinto account the matrps ,
which commutes with the foyy, matrices, will play a role that is analogous tat thf the
EwapSymbol when one applies it to the anti-symmetriodpict of the y, matrices.
Therefore, one has:

6 Vo= Vo) = Ve o= Vo) V6 == Euvap Va VB

Sso:

A 1

Mo =S TWuto= Yol 6 4.

Similarly:

N i .

Vu = gfuvaﬁyvyayﬂ: Vi )6,
Sso:

Sp = IwVSpr
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Of course, these tensorial magnitudes, which are detetrbipehe eight variables
that are implied by the four complex components ofsffiaor, are not independent. The
relations between them may be obtained by using a fundahrentity that was proved
by Pauli b6] between the elements of thgmatrices. One has, upon specifying the row
and column index of each element by a superscript:

(IV.8) ViV =8O+ Ty7) 2677677 - 2(B7 ) BT .

B denotes a matrix that was introduced by Pauli and wharfsforms eacly, into its
matrix transposg;, :

y, =By, B™.

This matrix is antisymmetric, just likBy, andBys . Upon multiplying this relation
by an element of the matriy;” or y[j.""one or more times and contracting the
multiplication with respect to the one of the upperiaed, one will obtain a series of
other identities.

If one now multiplies one of these relations by teemponentsy °w ? of a spinor
and two component@”@” of its adjoint and sums over the four indices thea wiill

obtain an identity between the tensorial magnitudes. eé@mple, if one simply
multiplies the fundamental relation (9) by them thew avill see contracted products
appear that can be written, in spinorial notation, as

W prpr vy = @yl pr v W = Oy Wy etc.

The last term disappears, in any case, on account ehtleymmetry oB* and 8%,
since@’@* and ¢ °y ° are symmetric.
Finally, it follows that:

Dy Py =— @y + Py yyp) + 204
such that:
-5,85=0Q0M+ QM.
In this fashion, one will obtain the following four agibns, which we call “identities
of the first kind”:
(IV.10) S/ S =-(Q%+ Q%)
(IV.11) S,5 =@+ Q),

(IV.12) S,S =0,
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(IV.13) @+ Q) Muw=Q(S,S- S 9- Qs S 5

This last relation determinés,, completely as a function of the quantltiésQ Sy,
S Upon multiplying by +/2 &,,,, one will obtain an analogous expression ITA);V

(IV.14) @*+Q)M,=-Q(S5,S- S 9- Q& S5

One may derive two other interesting identitiesrfrthese two relations.

Multiply (13) by Q, (14) by —Q, and take the adjoint. Sin€¥ + Q? is a factor, it
will follow that:
(IvV.15) oM, -QOM =S S- $ 5

Similarly, upon multiplying (13) b and (14) byf), one will have:

(IV.16) OM,, +OM = =i gues S, S -

Therefore, we have to consider that only the twotarsS, and éﬂ, and the two

scalarQ and Q — namely, ten quantities — are basic tensorialnitiades. Furthermore,
they are subject to three identities (10), (11)d #b2). We therefore have seven
independent quantities, while the spinor that dessrthe wave function involves eight
real independent quantities. That will therefordige us to appeal to some other
tensorial quantities that we shall derive fromgpaor in a different way.

If we consider the transformation of the gradiépy of the wave function under a
Lorentz transformation then it will be obvious thia¢ operatod, submits to the vectorial
transformationL,, and the functiony, to the spinorial transformatioh The gradient
becomed ,,d, T¢. One can then repeat the proof that we made dantities of the
type:

Ay =0y y (quantities of the first kind)

and apply it to the quantities of the type:
=gy, 04 or Cyu=0gyy (quantities of the second kind).

One then shows that these quantities are once telsersthat are formed by means
of the functiony. Moreover, we remark that:

0Ty W+Py o =90, @yy).

The sumBy, + Cy, is therefore the gradient of the vector of thetfkind gy ; it
will not provide us with any new quantities. Bynteast, the difference:
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Cv,u - Bv,u = avéﬁyﬂlﬂ—lﬁ ypavw

does not directly involve any quantities of the first kindl.is such differences that we
will consider. We shall use only three of them:

Two vectors: J, =@ gy-gou)=iglo ly

and

J, =0, By -Fyd &) =ild,iyp.

A tensor: T =—00y,¥-@y,04)=-010,]yy.

The symbol §,] indicates that one takes the difference of the tevms thus obtained
by first differentiating the adjoint spingf and then the spinay. The facton has the
purpose of making the spatial components real dad témporal components pure
imaginary. Therefore, if we take the complex cgajie¢ of the components &, it will
follow that:

J,=—i@oy-o,py) =iglo,ly,
such that, sinc@d, =—dxandd;, =—04:

30 =iy =3,
35 =- g0y =- .

It is, moreover, possible to form other tensonagnitudes of the second kind by
means of the various combinations of jhe but we shall not use them.

Then again, the Pauli identities regarding themelats of the), matrices allow
identities to appear among the magnitudes of thergkkind. It suffices to operate on

the products of the typa &° ¢°@* ° by contracted multiplication and to subtract the
relation that one gets by contracting the sametityefor 427p6ﬂ41/”427p'41/”' from the

relation thus obtained. The terms that containdbebly-anti-symmetric produ@’®
(B will once more disappear because it remains a stnimproduct, such ag’ ¢
or . One will thus obtain a series of identities tgpress all of the quantities of

the second kind as functions of the only the twotwesJ, and jﬂ, along with quantities
of the first kind. The only one that we will hateconsider relates to the ten3gp:

(IV.17) QT =3,S+9,QS +3,5 M.

Furthermore, the vectots and J , are related by the relation that is obtained f(G@)
in the same manner:
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(IV.18) 0J,-Q3,=50,5=-59,5 .

Of the eight quantities that are expressedJpyand J only four of them are

independent. One can represent them by the nearvec

u

(IV.19) K

QJ1,+QJ,

U

by means of which, one may exprdgsand jﬂ upon taking (18) into account, and, as a
consequence, all of the magnitudes of the secamdt Kultiply (18) byf) and (19) by
Q, and take their adjoints:

Q%+ Q%) J, =QK,+ QS,0, 5.

Multiplying (18) by —Q and (19) byf) will give:
Q%+ Q%)J, = QK,-QS9,5.

Furthermore, Takabays®][ has shown that when one starts with an identitthe
second kindK,, will be restricted by a “kinematic condition ofetlsecond kind,” which
we shall not describe, except to say that one magracterize it as a “quasi-
irrotationality” condition. It results from thidat, in reality, K, (and, indeed, the whole
set of quantities of the second kind) containyy one independent quantityhich is a
guantity of the second kind, and which brings tlhenber of independent components
that are expressed by all of the tensorial formatis exactly eight.

It is useful to derive some other identities frequation (17) that we will need. Upon

multiplying it by Q, one will have:

A

QQTW=Q%S +Q0,Q5 + QS M.

Now, from (15), one has:
QM =QM,, +§5-$ &

Upon multiplying this byd, Sy, one will cause to appear, on the one h&d, S,
which, from (10), is equal to Q 9,Q - Q0d,Q, and, on the other han&,0,, S, which,

from (18), is equal t€ jﬂ -Q J, . One will therefore have:

QQT,,

A

=QJS +Q0,Q08 +Q3,SM,, -Q9,Q85, - Q9,05 +QJ,S - QLS
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such that after reducing this and dividing®yone will have:
(IV.20) QT =3,5-0,05+0, S M,
Finally, upon multiplying (17) b® and (20) byf), one will get:
Q%+ Q)T =(QJ,+QJ,) S +(Q0,0-00,Q) S+3, S(Q M +Q ).

One thus sees the previously-defined ve&tprappear in the first term, and in the
second one, a quantity that is derived from thentjies of the first kind that we denote
by:

Q. =00,0-00,0,

and finally, in the third term, one sees a quardjppear that, from (16), is equal ta —
Eviap S, Sp. Thus, one gets:

(IV.21) (Q*+Q)T, =K,§+QS-0, S,,, S5

§ 10. The Dirac wave function: a hydrodynamical model. Currentind spin. It
is essential to point out that the definition of #ese tensorial magnitudes and the
identities that we established between them aneegnindependent of the Dirac theory,
and are derived solely from the fact that the waweetion is a 4-spinor, and that its
variance makes thgmatrices intervene. One may apply this formalisrother spinorial
equations that are like that of Dira®6]. However, we shall now pass on to the Dirac
case and introduce new quantities and hydrodyndreigaations that are essentially
related to the Dirac theory; i.e., they are applieato only the wave function of the
electron.

We use the (real) Dirac spinor Lagrangian, ivibsy Neumann formq1]:

= h—zc(w V0,00 40 y b+ 26)
with:

One immediately derives the Dirac equations frbist t

yllallw :_Kw!
ogy, =+kg.

It results from these equations that the Lagranigiaero:L = 0.
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We shall deduce the fundamental magnitudes of our hydrodgsafmom this
Lagrangian, conforming to the method that was describetheatbeginning of this
chapter.

Thecurrentis given by:

. _ . hC .
Ju=1 7(4271/;,40 +yy )= ey y .
One forms the vector:
S=igyy .
so one will find that:
Ju=hcSy.
Furthermore, it immediately results from the Diempiation thaf, is conservative:
incd , (Py ) =0uju=1c(Py, 040 +0,0 y,4)=0.
The matter density is given by:
juin=- =SS,
F=-%S

Now, relation (10) gives us:

PP =Q%+Q%

Hence, one directly deduces tna@t-speed velocity:

U :j_#:csﬂ _ cS
“oon op Jozed?
which gives us precisely:
U/I Uy =- C2.

We now pass on to the Belinfante tensor:

oL oL =
fpnr = mzlw](op.)‘/’ +WTW](OP')¢7 :

A

We know that, for an infinitesimal Lorentz transfotimoa ¢, the spinory is subjected
to the transformatiogy’ = Ty, with:

1
T:1+2(Vuyv) W
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or, to take into account the anti-symmetrygf :
1
T=1+20ap=yn) aw,

For the spinory, the operatofy,,; is thus:

1
Tl op) = 3 MWw=vn .

We have the transformatio@@’ = @t for the adjoint spinoy = z/fr Ja , wheret is the
inverse ofT, which will give us an operator:

= 1
S wop) = _5 2l AR

All totaled, one thus has:

fic 1 1
f[m:7[wya§(myu—yum)w +tﬁ§(myu—yv1¢) Vit

Upon applying the commutation relations, one will get:

viaw=—vu) = W — il + 200 Vo — 20w Vi,
VW= Wud ==l — Whav + 2% 0w — 24 O -

Upon adding the two operators, only the terms insidg#nentheses will remain, from
which, one finds that:

fic
f[,uv]A = —3427(%114%‘ yl/yﬂMl) o

From the original formula, one knows that the onbn4zero components of this
tensor will be the ones for whigh# v. One may consider the components for which:

fic
frvu = —gw v = Vo) @ =0,

and the same thing will be true whér v# L.
Thus, the only components to consider are the oneghioh:

A£ UZ VY,

and it will then result from the commutation relasothat the tensdi,., is completely
anti-symmetric, and one may write:
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he
Tt =7 vy i ¢ Uz vz A).

One may likewise introduce the fourth matnpx («# v#A# a) and write (with no
summation):

hc
f,uvA :74271//1%/1//1 Va Va l//

One then observes that one hag )i Vo = &uaa 16, SO 0ne will find that:

fic
fuva :7 Euwia Y VoYa Y

i7 :
== %ﬁwxm D\ysya

which will bring the following vector into play:

S, =il w0
One finally gets:

The internal angular momentwsyp,; may be obtained immediately from:

_ 2 _ |hC ~
f,uvA uy=-cC %S,uv— - Tfywla Sau/l )

SO

in -
(IV.22) Sw = 5g Ewiah S

One sees at once tha} u, = 0: The Dirac-Takabayasi fluid is then a Weyssenhoff
fluid. As in the Weyssenhoff case (see Chapter Illlg oan put the internal angular
momentum into the form:

i
(IvV.23) Suy :E Euia Up Og ,

in which, g, denotes the spin density, which is orthogonalfo Since equation (12)
shows us tha§, is indeed orthogonal ta,, we can identify equations (22) and (23) upon
setting:

g,==S,.

N | S

Relation (11) will then show us that:
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O, = 04 O, ,0

so the norm of the spin densityas= np/?2.

In other words, the “particle” spin is constantaagual ton/2, which is a property
that the particles that might constitute our flaithre with the electron.

One may remark that the tensgr, can be reduced to just the tesgp u, . One has

the development:
ihc ~ (u.u
frva = s Uy = ) EpnaS (—::2/1 +(5MJ :

HVKa ~a

Normally, we must make the last term disappear guge transformation and operate
on the energy-momentum tensor, which remains fotousxpress, with the equivalent

transformation. Meanwhile, since we would like ginply summarize the theory of

Takabayasi here, we content ourselves with applyiveg “second gauge procedure,”
despite the objections that we made at the beginairthe present chapter. From this
point of view, one does not have to perform anyggatransformation since the tensor
fuva can be expressed exclusively in terms of the spin.

Of course, the expression far, , viz.:
ic
f,uwl == E Euwia Oa

is not the Weyssenhoff expression. The Weyssenbaftie equation:

t/lV - tV/I = S,uv )

which translates into simply the general conseovelaw:

t,uv - tv,u = 26/] f,uwl ,
must be replaced with:

t —'[ =-ice

174 ,uv/ma Ua '

§ 11. The Dirac wave function: the energy-momentum tensor and
hydrodynamical equations. We now pass on to the study of the energy-monmentu
tensor. One has:

6[,
tw = al// ¢/ 4277_ #V'C"

= 7(427 Y00 0,0 yy).

One recognizes a magnitude of the second kind:
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S0 =T,

One may therefore express this by using the identity (2theifiorm:

_ hc|p 2 2,0
b = 207 [ Kl +—Q.0, ~— I€,,050,,(PU)) T, uﬂ}
In order to express the quant@y, = Qaﬂé—éaﬂn, one must specify the invariants

Q and Q as functions opand a new variable that we represent by an alygés in the
study of the classical Dirac particle (Chap. IlI).

We set:
Q = pCosA, Q = psSinA,
which gives:
Q%+ Q% =7,
precisely.

We will then have:
Qu=pcosA(pcosAd, A+ sinAd, p)—psinA (- psinAd, A+ cosAd,p),

such that:

Q,=p% A

On the other hand, if one develafs(ou,) in the expression far,, then the ternu,
0, p will go to zero, by anti-symmetry. The last tembrackets will then become:

20 .
- T[ZI Egmﬁpay Uy Og Ug,
namely:

2
The energy-momentum tensor then takes the form:
h

We deduce the momentum from this by way of:

h
_ngy EtquV:_CZZ_pK/I,

SO
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h K
9, =—_4£
2 p
which will givet,, the form:
(IV.24) t,=9,u+d,A,+s0,y.

The non-kinetic part, which is comprised of the lagt tarms, permits us to define:
A heat current: -c%qy = (CA,A Oy +S10,U) Uy

namely:

1. 1
qV:_EMV_?$/1 Y.

An internal stress tensor:

/]

which may be written more simply as:

u.u
eﬂv :,7;1/1 (Caﬂ AO—V + %Ha) L!l) [,7/1/1 = 5/1/1 + 22/1 j )

If we would like to decompose and analyze this momenmnore closely then we
would have to introduce a supplementary relation bessttese our formalism involves a
variableA that cannot be interpreted from the hydrodynamicaltpmfiview, and which
IS not, as a consequence, governed by any dynamical laer.mMgt borrow from the
wave equations themselves. (We remark, in passing, tkdath is exclusive of the fact
that Takabayasi deducedl of the hydrodynamical equations.) We simply start whin
fact that the wave equations annul the Lagrangianeasave mentioned before. On the
other hand, the Lagrangian can be expressed as a funétibe fundamental tensorial
guantities as:

L= ’;’—Zc(wyﬂaﬂwaﬂwyﬂwzww

fic
= 7(T/1/1 + 2kQ),

or, as a function of the hydrodynamical variables:
L =t,, +0m ¢ cosA.

One thus has, by virtue of the wave equations:
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t,, +0mp ¢ cosA =0,
which will give:
Ou Uy + €0, 0, A+ 5,00, Uy + pmec® COSA = 0

upon replacingd,,, with its expression.
One infers from this the expression for the propersniassity, which was given for
the first time by YvonT2):

1 1
(Iv.25) Mo = ,omocosA+Eaﬂaﬂ A+? $:0, Y.

One sees the proper particle magdgigure in this, but it is affected with a coefficient
cosA that might lead us to consider the variahleo be something that expresses some
sort of mixture of two fluids that carry, on the orent, a positive energy, and on the
other, a negative energy also intervenes by way of its gradient in the sedent. As
for the third term, it may also be written:

1
2_025/1/1 (0x W = 0x Uy),

and in this form one will see that it expresses anggndénat couples the angular
momentum with the vorticity of the current. One nago remark that the “internal
pressure” that one may derive from the stress tenabmi have written is:

= :—139## =C0,0,A+Sus 0y Uq.

Therefore, the Yvon formula expresses the idea tleag¢tiergyo moc® cosA that one
adds to the potential energy is due to the internabpreof the fluid.

We now write the torque equation, while reminding oueselthat we must place
ourselves in the second Takabayasi gauge:

t/jy - tl//l = 26/] f/jv/] == I CS/[V/]Q a/] Ua .
One will have, from (24):
== | Ctgyu/]a 6,1 Ua .
Contracting this withu, will give:

- gu+mycPu,—CAg,—Su U, =—iC&ua U0, Ta.

This gives the expression for momentum as:
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1, 1
(IV.27) Qu=Mo Uy~ — A0, —FS;M +o Emia Yo,a,

This expression may be transformed by using an identitygl@gaconsequence of the
Pauli-Koffinck relations that Vigier, Lochak, and mysptiinted out a few years ago
[26]. One has:

1 i
(IV.28) g(sm U —$,4)9, Yy +E€W0a61 y=0.

Takabayasi showed9] that such a vectorial relation is equivalent to theed
relations that are obtained by contracting with g, ands,, . We successively verify
these three relations:

1. Contracting with, gives:

i
SV/] 6/1 U, + Egyuaﬁ U/I Ogy a/] u, = 0,
because:

i
Eg,uvAa Uy, Oa=—Siv.

2. Contracting withg, annuls each term separately:

3. Contracting with:
i
Sup = c Eupyo Uy Op
gives:
1
—=0,7u,0,0,0,4,

1,, )
?(0—0’7)/;_0}0-;;)”)_ Y ola

1
s

[o3u, —0,0, 0, —w,0,0,0,u+ uo,0,0,y] =0.

ldentity (28) is thus verified. Upon substituting this in &xpression (27) fog,, it will
follow that:

[ [ i 1
(IV29) gll Ho u/1 - EAU,U +E£,uv/muva/10-a +E£,uv/m %a/ia-v _? %ﬂav l‘A lflz )

which will give, upon replacingg with its expression in (25):

1 1 i
Oy = Olo COSA Uy, + = a.,a Au, —= Aa'ﬂ + Ee,,m (Uy 04 07+ Uk 0, GY),
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such that finally:

1
g, = PM,CoS ALY, +20, MG, Y =0, u)-0, 5

Formula (29) permits the appearance of a transverse mbomealong with the
classical momentumyo u,, which is collinear with the current:

1. 1
Pu= EAU;['*'aASpA +? $0,4Y Y

1

: 1
CAO-,u_avsx,u_?L!iLLav o

or finally:

1.
pp :EMp_OMaV$/1'

Upon successively contracting the torque equation (26) with:

i i
Uy Oy , E g,uvaﬂ a? E g,uvaﬂua )

one will obtain a fundamental system of equationsvolugion for the hydrodynamical
magnitudes that is equivalent to (26):

Contracting (26) withu, g, or simply contracting (27) witkr, gives:

Ou U=~ EAO-O +E£pv/m0-puva/10-a'

One immediately obtains the evolution equation fondmgableA:

; Cc
A=-—(0,9,*5,0,0,).
UO

, o | .
Contracting Wlth2— Euwyp Oy gives:
c

i 1. .,
Esmﬁayg#uv +E£ﬂvway%6# Y —525;; 00,0, =0.

The first term becomes simpdy; U, ; upon specifying., , the second one will become:

1 1
LB _ 200 _ 2 —
P 0)apU,0,0,0 U, = P (o,0,u0,U;,+05U;,-054,0,Y -0,0,4 yoy),



196 The relativistic theory of spinning fluids
Following Takabayasi, we can introduce the vegjor
ho_o_
/Y 5 Z, = 0,0, 0y,
which represents a special quantity. On the other hamdaw replaces; with its value
0°h? 14, which will give:

C_];{pZ%(uﬂaﬂuﬂ ~ U0, Li,)+,0% z(0, 4-0, H)}

We remark that:
P Uy 0y Up= pUgly Uy =Uy0,(pUp),

due to the relatiod, (o ug) = 0.
The equation will then take the form:

1| »n? h
?{pjuﬂaﬂ(puﬂ)ﬂoz 2,(0, 4 =0 "}1)} =Spu Qu+ 0,0, Op=0y 05 0y ,

or, since:
2

i
Ou0p0y = Zpaﬁp,
one will have:

2

_Uﬂaﬂaﬂ +,0%[C—];Uﬂa#(,0uﬂ)+(aﬂp)} = %ﬂ gz _ép% %(Uﬂ ll4 _Uﬂ 9)

Finally, we contract equations (26) with:

i
2_C EmpYy

which will give:

i i 1, o
Eg,uv/lﬂ(c)apAav L{/ +E£,uv/1ﬂ %ﬂa,u lA l;) _5(2)5;}3 6/10-0' 9 = 0

The first term is:
The second one will give:
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1
?difguaapapuﬂ U,= =0y Uy Op+ Uy Oy Op= 0p Uy 0y 109 0+ 0 0y U,

when one uses the relatiogp u,) = 0.
One therefore has:

or finally:

h
0,0,Uz~U,0,0; :Epzﬂ + 0, Ag+0, 4o, logp.

It is appropriate to remark that all of this hydrodynahiformalism that we
constructed from the Dirac wave function differs céetgly from the considerations of
Chapter 1ll concerning what we called the “classical Dpacticle.” We were led to
attribute an internal angular momentum that was nottsitiuia proper space to the latter
notion, in whose expression the anglentervened essentially. Here, in the continuous
fluid, the hydrodynamical representation for the regulave (which, from the ideas of
the causal interpretation, constitutes the extended—part“wave-like aspect” — of the
Dirac electron) is a Weyssenhoff fluid; i.e., itseimal angular momentum is situated in
proper space. Its expression does not involve the akgkehose role in the present
model seems to be concerned mainly with the distribudioenergy, and the expression
for the proper mass density might possibly become negative, and therefore produce a
momentum that is directed against the current (which Taakedd referred to
picturesquely as “ass-like behavior”). The consideratisnhapter Ill that were
founded on the Dirac equation thus conveniently suggeshtaresting viewpoint for
studying a particular dynamic of the spinning particle. He@wethis dynamic does not
seem to enter into the hydrodynamical representatiothe Dirac equation in any
manner.

In conclusion, we point out that the application af general method to other wave
equations has been carried out (in work that is unpubligitddast, to our knowledge)
for the case of the Maxwell equation (spin 1 partibk)Phillippe Laruste at the Institut
Henri Poincaré, and for the Duffin-Kemmer-Petiau equatgmin O particle) by Otsuka
of Nagoya.




CHAPTER V

SPINNING FLUIDS WITH MOLECULAR STRUCTURE

8 1. Generalities.— We shall now use the particles that defined the dyrsaofic
Chapters I, Il, and Il in order to constitute fluidsatiwe shall now characterize by a
certain number of continuous magnitudes at each poinathaibtained by the taking the
mean of each particle magnitude over a large number @€lpar That will mean that
from now on we shall place ourselves at anotherese@ald that quantities GM, etc.,
will now relate to means that are taken over a langaber of particles, each of which
will relate to only theglobal properties (which we continue to denote by capital Exter
and no longer, as in Chapter I, to the local propeniea “sub-fluid” that constitutes
each particle.

In the present chapter, we shall confine ourselvesuidsflthat are composed of
Weyssenhoff particles, so the center of mass willdesatical the center of matter for
each of them.

We first study the case of “pure matter” in the absenf fields in detail, and then we
shall introduce suitable interactions between the gestithat translate into the presence
of well-defined internal stresses on the fluid.

We thus begin with particles that obey the three $§eghoff equations:

S,lll/ UI/ = 01
G, =0,

S,uv :G/IUV_GVU/I,

which are equations for which we have proposed an intatpretin Chapter II. We
assume that the distribution of the particles is omwtiis; i.e., that all of their global
properties vary only slightly at the scale of the ahse between particle neighborhoods.
Therefore, the mean value of any of these propertiespwaken over a domain that gets
smaller and smaller around a given point, will attain el-defined value in practice,
while the dimensions of the domain will be such thatiit eontain a large number of
particles. It is these limiting values that we shade for the local hydrodynamical
properties for the fluid. In particular, the local usyiteed velocity at a point will be the
mean unit-speed velocity around the point considered atehter of matterof each
particle; i.e., the quadri-vectat,, which is a mean velocity that we will denoteupyin
order to stipulate that we are dealing with a continuous kytiaimical quantity.

We introduce amatter densityp that expresses the number of particles per unit
volume, which will be a number that is calculated ireeyssmall volume and in the local
proper system. It is thus the “invariant matter density” déssical relativistic
hydrodynamics. In order to express the idea thatuhaber of particles is conserved, we
must subject this density to the conservation condifiprio u,) = 0, which will be
appropriate when one conventionally considers each lgattic be “localized” to its
center of matter.
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We can then define the hydrodynamical properties ofitiiey Such as thenomentum
density g = p C_Sﬂ and the density of proper angular momengyp+ p §W

We can likewise introduce the derivatives of these quesitalong a streamline,
which will be derivatives that we denote by a dot, and wlsaite we will be concerned
with densities, will have the expressions:

g, =0, (uvygy) and $,, =0v (U sw) (AppendixA).

Upon using the conservation relatign = d, (u, p) = 0, the particle equations that were
referred to above will yield the hydrodynamical equations:

uu,=-¢, s,y =0,

Tae

9, =0, Sv = %4~ QY.

These are identical to Weyssenhoff's axiomatic hydradyoal equations, which
should not be surprising, since as we have remarked befoeecan always construct a
Weyssenhoff fluid from Weyssenhoff particles or consal®veyssenhoff particle to be a
droplet of Weyssenhoff fluid, for that matter, since ave dealing with a “pure matter”
fluid.

One therefore defines:

A density of proper mass of inertia:
~thC=g,uy,

A density of proper mass of momentum:

- =9,0v.

One sees that the density of mapean be eliminated from all of the formulas, and it
might seem that its conservation relation is nobmed with the formalism. In reality,
one must take care that the derivative along the stirsgmnwhich we have denoted by a
dot, should represent a different operation for which loeee a density, such ag, m,

Gwm, or s,y (and similarly, the transverse momentum dengsity 6 U, —Gwu and the spin
densitygy, = (i / 2€) &uwap Uy Sop), OF, ON the contrary, a particle magnitude, such as the
velocityu,. For example, one has:

gﬂ = aV (g/l uV);
and, on the contrary:
U, =u,0yUy.

This fact goes back to the matter density that is hiddenll of the density
magnitudes and whose conservation relation will allowtausipply only the ordinary
rules to this type of derivation. Therefore, the e of a product, such ag u,, will
be:
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d

d
E(S‘”q’) = E(PSW 4) =04 (Ur 0 Sw W) =Us p0x (Sw Uy) + S Uy 04 (Us O).

The second term is zero due to the conservation @me therefore has:
d _
E(SWH,) =U P (U0 Sw+Swdau),
and by virtue of the same law, one canyup into the derivative:
d _
E(S‘”q’) =U30x (U PSw) +Ur P Sw0s Uy

One can then replageS,, with s,, and the derivatived, (u, s.) andu, 0, uy, with
$, andu,, so that:

d . .
E(S,uvq/) - S;/Vq/ + §1v llJ

Nonetheless, this rule applies here (and one must wfathis) only because the
product includes jusine density.Therefore, the relatiogy, G, = — n¢c?, which involves
the squareof a density, will lead to:

9,9,=— mm¢

precisely, as one will verify by replacing the dot wite complete operator, but the two
sides of the second equation will be the derivativeseoflo sides of the previous one.

By observing these preceding precautions, one will reaegeitts that are completely
formally identical to the ones that we obtained ia study of the Weyssenhoff particle.
If one applies them to densities then these resulissametimes take on a different
significance. Therefore, the integration of these sops will provide us with the law of
motion for a vector:

1

R,u:WSyVGV,

which is a law that translates into a uniform, giec motion around a center of gravity on
a circle of definite radius in the reference fraofienertia. In the present case, we shall
similarly get a vector:

1
Ry=——Sw v,
H n_bcz/lg

which rotates with a uniform motion in the locaasp of inertia, and upon expressing
Sw, andGy in terms of the of the densigyand the particle quantities, it will be easy to
see that the radius of the circle will be the saameit is for a single particle. The
paradoxical appearance of a finite length thatlsted to the dimensions of the particles
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in an apparently continuous hydrodynamical context has lpeéted out before by
Weyssenhoff, namely, the radius of a helicoidal motlwat appears for a droplet and is
independent of the dimensions of that droplet. This $actlated to the paradox of Costa
de Beauregard that was recalled in our introduction, and wdbtbes us to constitute
fluids that are endowed with an internal rotation dgrfsom a finite number of particles.

8 2. The Lagrangian formulation of a pure matter fluid without spin. — In order
to treat the pure matter fluid, and above all, to mktthat treatment to fluids that are
endowed with internal stresses, it will be useful tostnuct a Lagrangian formalism.
Recall how one constructs this formalism in the cdtbexclassicalpure matter fluid, in
order to extend the procedure to the fluid with spin.

The Lagrangian first includes the classical term oppr energy 9, ¢>. One adds

terms to the Lagrangian that are destined to implyvioeconditions:

The Lagrangian will then take the form:

£=,0M002+,0u#6#8—%( y y+ &),

in whichSandA are Lagrange multipliers. One will get the equations:

g—i =0, which gives: u, u,=-c?,
oc | _ . : _
2, il 0, which gives 0, (pu,) =0,
M
and
oL _ 2 _
(V.1) % =0, namely, Moc”+ u,0,S=0.

Therefore, it results thal = 0, as well.

Finally:
a_£: 0
ou,
gives:
(V.2) p£0,S—Au,=0.

Upon contracting this withi,, one will getp u, 0,S + Ac? = 0, so, from (1), one will
have:
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1 1
A :—?,ou,,a,,s :?pSmOCZ:pfmo.

If we substitute this value into (2) then it will follotvat:

That will make it apparent th&is the Hamilton-Jacobi function for a particle. Quaen
then form the energy-momentum tensor:

oL

47

The conservation equation t,, = 0 yields the classical equatip®, u,= 0.

It is easy to extend this formalism to the “perfdaidf case if one assumes the
existence of an “equation of state.” In order to do, thva replace the expressipMi, in
the proper energy term of the Lagrangian (which is charistic of the “pure matter”
case since it employs only the mass of the materiéicles for its mass) with the more
general quantityn, which we use to denote the “total proper mass densihg”vee
assume (this is the equation of state hypothesis)thist determined completely by the
conservative matter densipy; i.e., that it depends upon the coordinates and timelgnly
the intermediary ob. Now, apply the preceding method to the Lagrangian:

A
L = to(p) & +puy,0,S— > (U Uy + %) .

The condition:
oL _

% 0 will give Hy & +u,0,S=0,

if we denote the derivative gf with respect to by 4. Therefore:

Uy 0,S=- i c.
The Lagrangian is no longer zero:
L= (o - pHy)
SO
(V.3) §T£: gives p£0,S—Au,=0,

which, when contracted witl, , will yield pu, d,S+ A ¢ = 0, or furthermore} = pi,,
which will gived, S= g4 u,, when it is substituted into (3).

Finally, the expression for the energy-momentum tenisat is derived from the
Lagrangian is:
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tw = P Uy 0y S— dw L = Py Uy Uy — duv (Ho =~ pi) €.
The momentum density, is given by:
=% gy =t Uy = 0L Uy Uy — Lo G Uy + o CUy,

Qu = Ho Uy,

which is a relation that is characteristic otlassical fluid, and which shows that the
variable quantityuy has precisely the hydrodynamical significance of a propass
density.

The internal stress tensor:

' , u
v = Py Uy Uy = I (Lo = PUy) C — o uuuu=cz(puo—uo)[5w + f;’j
=N Cz(plu(')—,uo) .

This is identically orthogonal to the current, and onk see that it has the form of a
stress tensor for erfectfluid whose pressure is expressed by:

7T= (0 = H,) C°.

In a perfect fluid that has an equation of state,wiflesee that there exists a relation
between the pressure and the variation of the masstylassa function of the matter
density, which is reasonable, since the variation ofnthss density in the course of the
motion depends essentially upon the pressure, which lisrétsed to the matter density
by the equation of state. In fact, if one expressas VYhriation by starting with the
conservation equations fgy, then one will get:

(,uo +C_Zjuﬂ +f1,U, +C—IZ u,+d,7 =0,
so that, upon contracting with;:
= [4,C* = 71-U,0,7T = 0y (Uy 7 — Uy, Oy 7T= 710, Uy,
If one expresses the idea thatis a function of only then one will have:
My =0y (Uy fo) = Uy Oy Ho + o0y Uy = U, 140, 0+ [0, U,
or, upon taking into account that (u, o) = O:

Fo == PHo0,U, + o,
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Therefore, the equation of mass variation will become:
PH,C? 0 U, = 1,CD U, = 70, Uy,
or, upon dividing by the scalay, u,:
(Pt = 1) C* = 75

which is precisely the equation that we found.
We can introduce Lichnerowicz’s pseudo-mass densityAppendixB) by setting:

by = MUy Uy + Gul 75
SO

T ;
H=to+ 5= b

The internal force field is then:

!

aﬂﬂ':_ czaﬂ(pﬂé_ﬂo) :C2 {6 H, },
U pu

—2=2 -0, log(ou/)
U,

0

and since one can writg, (o = (4,0,0:

Ky=-c?0,4[log (o) —logd = - ¢ 0. log,.
Finally, the index of the fluid is given by:
Ke=-c?d,logF,
so one has simply:

F=Cu,.

One can use the “ideal gas” as an example of thisaf/fleid, which is characterized
by an equation of state:

1=K Lo (Mariotte’s law)
Ko = oty = Ho,
and which will give:
b~ 22, p=cp
Ho p

One sees that if the coupling constirtiends to zero then one will arrive at the case
of pure matter withpo = oMy .
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The integration constaf can thus be taken to be equal to the particle Siasdut

things will be different in the case whdfez 0.
The pseudo-mass density will then be:

U= pty =K+ 1)o.
The energy-momentum tensor will be:
tw=K+1)Cuu+dwK .
One easily derives the differential equation of theastilines from this:

u, :—Kc2(Jaﬂ+u‘ég”j6alog,05—anK020a|09,0-

This will bring only the gradient of th@atterdensity into play.

8 3. The Lagrangian formulation of the pure matter fluid with spin. — We shall
extend these considerations to the case of a fluidglatdowed with an internal angular
momentum density following some papers of Takabayjsird Vigier and Unalg2].
Recall that Frenkel endeavored to give a Lagrangian fation for the dynamics of a
spinning particle before, and that in the absence of hlasathat are adapted to the
representation of rotations his Lagrangian was not actdrtegral (Chapter 1). The
variables that are appropriate here are Einstein and Kmarfietrapodes” (Ger.
Vierbeing that were also used recently in order to represenDitae field 49, 53, 54].

One attaches a system of four orthonormal vecagrsa’,, &, a, to each point of the
fluid. One assumes that each of these vectorseanfressed in terms of the other three

by means of the formula:

The upper Greek letters indicate the numbers of thersebere. They vary from 1
to 4, and the formula above orients the vierbein. @eestore has:
a, = &uap & & 8,
but:

1 42 A3

d, =~ &upa 8, 8 .

Formula (4) permits us to establish some relationsdmtwhe various bivectors of
the vierbein, so:
1

(V.5) Eapuv az @4 =a,a;— 3; a; .

() Manuscript communicated by the author.
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One sees that if one contracts (4) with one offélie vectors, such aa®, then one
will find that the norma’a’, = 1 = det ||}, || if k= £and zero ifk # & sincea’, and aj

are orthogonal, which the formula shows due to theyminetry ofg,,qs.
One then has:

(V.6) ald =J".
Formula (4), when multiplied bg{ and summed ovef, likewise shows that:
(V.7) aa; = du,

which is a relation that was less obvious.

It then suits us to choos& = (1 /ic) u, to be collinear with the current arag = (1/
pPho) g, to be collinear with the spin. gf denotes the spin density here, whilg
represents the norm of tiparticle’s spin.) This hypothesis is always possible since the
spin is essentially orthogonal to the current.

As for the other two vectors, in modern researchy ti@ice is related to the wave
functions by means of spinor§3); we shall not specify them. However, any pair of
vectors that are connected with the particle in propace and are orthogonal to spin

might seem suitable. The choice aj and aj permits us to express the angular
momentum density (see Chapter Ill) by:

Suv == P Mo Euvap a;;ag
From (5), one also has immediately:
S == pho (a2 - 8'f)

The motion of these vectors permits to characteheeatation at each point. First,
consider a particle in its proper system. If the spifixed (we know that this is the case

for the free Weyssenhoff particle) then the rotatidnthe vectorsaf; and a2 will
characterize the “proper rotation.” The velocities af and & equal, orthogonal, and

situated in the plan@;a’. One knows that the spatial angular velocity veutitirthen
be collinear with the spin, and sinakanda® have unit speed, it will be given by the
vector producta x a', or by & x &% for that matter.

w Therefore:

e oAl Al _a a2 42 1 1Al 22,02
W= d a =g & & =35,(a 3 +7).

If the spin is not fixed then the velocity of the ertity
of a®> will describe the precession of the axis of proper
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rotation. The two preceding terms will cease to be capland equal, and a terai x
a® and must be added:

W= 35 @3+ & T+ T ).

One can finally add a similar terif &, where the vectog! is zero in the proper
system. One will then have:

(@) =1g, (& g)° (summation ove#).
One knows that the angular velocity vector is an laxétor that is dual to an

antisymmetric tensor that appears precisely in the forrmbtae. From the tensorial
viewpoint, it is the latter itself that must be useche@nhen sets:

(@)= 3@ & - o ).

This expression can be made covariant from the vidati viewpoint by introducing
the corresponding components in the proper system:

()’ =3 (& & - & &)°.
Since, from (7), one has:
=0.

£

as
]
One can replace:
a’ & with— a’ &,
so:
(wa)’ = (af &)°.

In this form, the significance of the time componentthe proper system will appear
immediately. Indeed, the componergs will be zero foré = 1, 2, 3. What will then

remain is the term:
0
1 1(dv
aa ===l == L |,
@a) =@) ic ' ic(dtj

Therefore, the spatial components of the teagoiin the proper system represent the
usual angular velocity tensor, and the temporal pmmants represent the linear
acceleration of the particle. One then proposesdvariant formulation:

A =50 -4 D)
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In order to form the Lagrangian that relates to thisegalized rotation, one is
inspired by the classical formula that gives the ndatikestic energy of a body that
rotates in space, namely:

T=2l@wq.
liip is the “inertia tensor” that generalizes the ele@enhotion of the moment of

inertia. From the relativistic viewpoint, since thegalar velocity is a tensor, one must
introduce a fourth-order inertia tensor and write:

T = 3 l{aa Wag Wi -

Just as one defines the non-relativistic kinetic morbgii;; «, one can identify the
internal angular momentum tensdeyz; . @Wag , and we write the energy:

T=2sw .
The Lagrangian of proper rotation will then be:
3PN &8 4 -4 9),

or, upon taking (7) into account:

%pho‘gyva/] a; a,gméi é)
We remark that this expression will be annulled by antmsgtry for £ = 3, 4. What

will then remain is:
%phogyvaﬂa; a;(qll @1+ % @

However, we know that,,.; a; a; g = — a. and thate,,;a’ a; g =+ a,,.

The Lagrangian must therefore be:
1poh (8,8 -4 §)=phic &) a,0,3.

In order to form the Lagrangian, as in the classtese, we introduce the proper
energy, which will beo 9, ¢ here, plus two Lagrange multiplier terms. Thet finse—

namely,—ic p aj 0, S— assures the conservation relation:

0 =d,(ou) =0,

while the second one — namely, (ajaf -9,,)~ replaces and generalizes the classical

termA (uy u, + c®) and provides the four vectors of the vierbein with thede@ns of
normality and orthogonality that are expressed by o#lat{7). The quantities, S and
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A, Which is obviouslysymmetricin ¢ and v, are the Lagrange multipliers. One then
has:

L=pMc’+icpad,S+icoly 4 30, §+1,( 4 a-9,).

We assume that the proper mass of the paftitjés constant.

We begin the search for the Belinfante terfggy, . It involves only the third term,
which is the only one that contains the gradié);aj, and is thus capable of changing as
a result of a Lorentz transformation. One has:

oL
0a;

=icpho & a;.

Since we are concerned with a vector, the operéiafinitesimal rotation will be:

v :%55; :% (557/1 5,8v_5av 5,8/1)1

)7

and one will therefore have:
fuir =ic pho ajal G ol a;
= ticpho (2,87 -8’8 .

One knows that the proper angular momentum is derieedffr, by way of:

— 2
f/jv/] U/] - _%C S/II/ .

That will gives,, = pho (a,8] - g’ a,) -
This is precisely what we proposed to begin with. Wémtsee that the tendgy; can
be reduced to the tersp, u; . We will not have to perform a gauge transformation.

Now, we shall describe the Lagrangian with respecth& various variables. In
addition to the two Lagrange conditions:

p =0 and ala =du,
we will obtain, upon differentiating with respectdo
(V.8) Mo ¢* +ic a,0,S+ich & 49, & =0,
SO

S=-My*-h a&.

It then results from this relation that the Lagramgiis zerol = 0. Upon
differentiation with respect ta}, :
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(V.9) phy & +2A 8 = 0.

Upon differentiating with respect ta)f, :

9, (ic phy &) = 2,82,
o)
(V.10) -pah-ph g +21,4 =0,
Upon differentiating with respect mf, :
(V.11) 2)Iwa;’; =0.
Finally, upon differentiation with respect q:

(V.12) ic pd,S+icph @, & +1,,4 =0.

In order to use the orthogonality relation, musti9), (10), (11), and (12) by, , a7,
a’, anda’, respectively, and add them:

-ph &g +ph(8g- g+ ip( P, S haa, a+24,3,=0.
If we exchangey and v and subtract the equation that is thus obtaineth fthe

preceding one then the last term will disappeardason of the symmetry a,,, and
what will remain is:

(V.13) ph(ga-d)+ph(dd- gd- g2+ A
+icp(a;0,S- 40, 9+ ip h A p0, A~ 29, A=0.

The first two terms are simply the derivative lod internal angular momentus), .
If we contract this relation Witlaj then we will get:

3,8 +ico(d 40, S0, $+ ip h A a@, &d, =0,
S0, upon taking (8) into account, we will get:
-8, 8-p(MC+d hadrio, prohd Bx & h=0,

which will provide us with the expression @S
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(V.14) ic p0,S=-pal M, ~icoh, a0, &~ 5, 4.

We can now form the energy-momentum. It is compaddéwo parts:

oL .
1 ——0,S=icpa‘d S,
) 3s, wWS=icp a0,

so that, upon taking (14) into account, we will get:

"’_ﬁa,,s:—,oimoc2 a a,—icoh g d0,9-54 4

as,
. 1 .
= pMou, ui~ic pho Ba'a + 5, Y u.
2) a—faﬂai =icpho a/8; 0,4,
da;,

which annuls the second term of the first part:
1
tyV:,Omo Uy UV+ ?Smu/] L’/ .

One sees thdy}, includesu, as a factor, which is characteristic gf@ae matterfield.
The momentung, is given by:

1 .
9u =P Mo u/l'*'gsmua-

This has precisely the form that we sought in the Weygd€ case, with a classical
termp Mo U, that is collinear with the current and a transversa:te

Py = ?sm u, .
The conservation for the tendgy gives immediately:
g, =0.
The conservation relation for the total momentashtionx, tuy — X, tu + fua gives
us the second equation:

S,uv :g/luV_gVu/l:p/luv_pvuy-

Moreover, this can be obtained directly by substitutimgviddue ford,Sinto (14).
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8 4. The Bohm-Vigier droplet in an external force field— Since our intention is to
generalize the hydrodynamics of Weyssenhoff fluids byéhicing forces of interaction
between the particles, we shall begin with the pregetagrangian and generalize it, on
the one hand, by assuming that the proper Masand the norm of the sphg for each

particle can be variable (which is a generalization efrtiethod that gave us the classical
perfect fluid), and on the other hand, by adding supplemegatergy terms. However,
in order to prepare ourselves for the interpretatiorhefresults that we thus obtain, we
must first extend the general dynamics of free, spinninigcies that we elaborated upon
in our first chapter to the case of particles thatsaitgected to external forces, and thus
connect with the hydrodynamics of fluids with intdriséresses that we encountered
before in the case of fluids that represent quantum wviiawetions. We must then re-
evaluate the considerations of Chapter Il for the motitle Bohm-Vigier droplet.

The theory of a drop in an external force field is miess satisfying than that of a
free drop. We hope to arrive at a formulation thadanalogous to that of the classical
relativistic dynamics of point-like matter; i.e., tostirdefine (and in a covariant fashion)
the global dynamical quantities that characterizedifog, then to express that laws that
determine the evolution of these quantities under theraot external forces. Now, on
the one hand, the reasons by which we proved the cowvaharacter of the momentum
G, and the internal angular moment@&p fall short here, because the energy-momentum
tensor and its moment are no longer conservativeth®wther hand, as Mgller showed
[3], it is impossible to separate the dynamical charatics of the system from those of
the external field completely. They will necessabik included in the definition of the
latter. As a result of the external force to whiob trop is subjected, thigfinitionsof
the moment and angular momentum of a given drop wilbedhe same.

We introduce our definitions while being careful that mast revert to the same
results as in the preceding study in the absence cdgor

We further assume that the fluid is classical; tlet its energy-momentum tensor is
symmetric and satisfies the relation:

twu =Kku,.
The local hydrodynamical equations are:
(V.15) Optuy =1y,
(V.16) 0 My =X, fu =%y,

in which f, is the external force density. It is obvious that seeond equation is a
consequence of the first one and the symmetty,af As in the preceding analysis, we
shall consider an intrinsic cent€& for the drop that is animated with a unit-speed
velocity U,, but we shall save the question of how it can be deffoeda later
examination. As it is impossible to derive covarmmiume integrals frony,,,» andmy,,

we can place ourselves in a particular reference framamely, theproper reference
frame g Ao of the pointC. We define the momentum and angular momentum by the
same expressions that we used for the free drop, but Weefer them to the proper
reference frame explicitly:
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1 1
0 _ 0 0o __ + 0 0 __ + 0 0
Gl = Lotm doy == - Lotwd@ = Lotﬂv da?,
M -I Mmoo =— L[ dao-—ij. m  do?
w %, v - Cz %, uv 4 4 = Cz %, A A

In this form, the various elements will be tensomalgd one can go to arbitrary axes,
but this time with the condition that we must assuhmd the domain of integration
remains the sectiohp of the tube by the hyperplam& of proper space. Under these
conditions, one can write:

_ 1
Gp - _?IZO t,uv dUV,

1
M,uv = _?IZO mﬂM dUA,

which are expressions that coincide with the onegHerfree drop only in the proper
reference frame. Moreover, that is the only refegeim which they will have a clear
significance, because it is the only one in which thel take the form of volume
integrals.

In order to write the global dynamical equations, oneegrates the two local
equations (15) and (16) over a domé&hthat is bounded by the hyper-boundargf the
tube and two proper spaces hyperpldineandl1’ that correspond to two positio@sand
C’ of the center along its world-liné and are separated by an infinitesimal interval of

proper timedr. Upon cutting way the portion of the hyperpldmehat is occupied by
matter in elementary domains, suchdag, whose center is &, it will be obvious that
the domainX2 is composed of elementary hyper-tubes of dmaand lengthd(M).

If the motion ofC is uniform and rectilinear then the hyperplafksnd M’ will be
parallel, andd will be the same for all pointéd. However, in general, the world-line of
C will be curved, so its unit-speed veloclty, will not be constant, and the hyperplanes
M andl’ will have a certain “inclination,” which is represemta the figure above by the
angle da. At the same time, it is obvious that at a point sasM, one will have to
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consider a length such 8M’'=MM”+ M"M’, whereM”M’= d(M) andM”M’= CM
oa, whenoa is small.
If one considers the problem in two dimensions, astifitesd in the figure (where the

point C is assumed to describe the cufvevith a velocity of constant norw), then one

will have:
d(M) = d(c) + da, where d(c) =v J,

and in whichda is given by the classical formula of elementary kiaécs:

da=Y& so dw = (V+C_MZJ a.
v v

Moreover, since the acceleratignis collinear with the vectoCM, and in the
opposite sense (as is the case in the figure), it beillobvious that one can wriid

:@+CM@
\%

j A, and that for very smaltX, this formula will be identical with the

2
(©)

In that form, the formula will extend without mdidation to the case of space; i.e., to
the pointsM that are not in the plane throu@tthat is perpendicular to the dihedrall’
(i.e., the plane of the figure), and likewise teseaf the relativistic space-time. In the
latter case, the constant norm of the velocit¢agic, and one will have:

x -Y)U -Y .
d,=U, & l:l_w:l U, & (“X—zﬂuyj ,

vectorial formulad = v dt {1— CM Eyj.

-c? c

if one letsY, denote the coordinates of the pothtand assumes that the poitt&indM
are simultaneous in the proper systghe Y,” or (x,—Y,) U, = 0.

o X, =Y, . .
In order to simplify, we set 1 %Uﬂ = KX), and remark that one can also write:
c

-Y, . '
V:1+&’ LU, =1--*2

since:
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Therefore, if one considers the same intedradf proper time for the point @r all
points of the drop then one will have a space-time ef¢m

dw= Kx) U, do, or

for each point, which is a differential scalar thaeaan express in the proper system,
where one has to consider only the components:

Uy =ic, doy=ic duo .
One finally has:

-y
dw=-CY(R) du, O = - c{nxﬂ—“ U } W, 7.

2 u

One can see by means of this expression, which redatels of the space-time
elements at the various points of the drop to the athes, thadr will appear as a factor
in any integral that is taken over a space-time do@@inand one will no longer have to
take a hyper-partition integral — i.e., that one wilidfioneself reverting to a proper
volume element.

Integrate the first hydrodynamical equat@yt,, = f, over the domairX2 according
to this principle.

For the left-hand side, one has:

[ o, dw= jn,otwdav —jnotwdav = %(Lotwdav) o =-¢* G, dr.

We remark that we have assumed that the hyper-bouretang is zero. We know
that this amounts to postulating the existence of ap@t@psurface tensions on the
surface of the drop. It is, moreover, obvious thateahessions will depend upon the
external force, which one must account for in the eqoatif equilibrium, of a surface
element.

The right-hand side of the equation gives:

j& fdw=-cdr LO f, y(x)du, .

We can then pose, by definition, the following exp@ssi

_ X =Y
F,=, f [1+Tuv}du0

for theglobal force One sees that this expression refers to a ptistersection of the
tube by aproper space hyperplane. However, once that intersediaefined,F, will
become a space-time vector. By means of this Imgsat, one will get:
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as a first global equation, namely, the classical egpia{Note, however, thadb, is not
generally collinear wittJ,,.)
It is easy to integrate the torque equation:

a/] rn;/wl :X,ufv_ x/f,u
in a similar fashion.
We introduce a density afternal rotational momens,,, by taking the moment af,,
with respect to the center C of the dragnd we further define the internal angular
momentum the drop by means of the integral:

1
S,uv = —?.L:O S#M dO'A .
One will then have:

7

.[ a/‘ __C2 r / v
x
for the left-hand side. Now:

1
Mav =S = — [ (Y4, =Y 1)
SO
M;IV = S;IV +U/IGV_UVG/1+YIUQ,_¥C§11

or, upon taking the first equation into account:
- M, == (S,+U,G-UG)+ Y[ fa-Y_fo,
One can make the last two terms on the right-handvsidish, which will then leave:
[l =YD £ =(x=Y) fl do==c%r [ [(x,=Y) £ -(%-Y) fl A X d.

One defines thglobal torqueby:

Cw = 16 =Y) £ =% - Y) f] [1+X*C—‘2Y* q} s,

and one will therefore have the second dynamicahegn:

S#V+Uﬂq_ Uvg:rmﬂ
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which generalizes the second Frenkel-Weyssenhoff equation

If one considers the expressions that define the fieycand the torqué . that act
upon the drop globally then it is important to remark tiether of them is to be found in
proper space, in general. Similarly, if the extern@ldfacts in such a fashion as to
produce a force densify at each point of the drop that is orthogonal toldlal current
(which will be the case for the electromagnetic fi@ldd the hypotheses that one
generally makes in classical hydrodynamics) then thegiats of that force and its
moment over all of the volume of the drop will hawve neason to be orthogonal to the
unit-speed velocityt the center of mattewhich defines the global proper system. 1t is
the one important difference that one must not loda sifjbetween our dynamics of the
spinning particle and that of the classical Newtonian garti Indeed, the proper mass

will be constant for the latter. The dynamical eouret Gﬂ =F, can be writtet, U u

=F,, so, upon contracting witt,, one will getF, U, = 0.
On the contrary, in the case of the spinning partarie, will have:

GU, =- Mc*-G,U,.

]

We will see that we will be led to confine ourselvesh® case in whicks,, is orthogonal
to, but it will still be true thakF, U, = - 9t,c°.

Indeed, the inertial mass of the drop is variable, mega, and its variation will be
equal to the temporal component Ff in the proper system — i.e., to therk that is
performed by the force. The variability of the propesss related to the existence of
numerous internal degrees of freedom that we haveut#dhlo our particle explicitly by
being endowed with an extended structure, which permits thk that is done by the
force to have other effects than just the pure andlsirmpgmentation of the kinetic
energy of translation (which is all that enters iotmsideration when one considers the
classical particle). These effects, which are egdbnthe variations of the kinetic
energy that are due to thmternal motions of the matter in the drop, translate into the
variations of the global mass, likewise relativethe proper system, with respect to
which, the classical energy of translation will bestantly zero, by definition; there will
be variation of thgproper mass.

It remains for us to specify the definition of the pdiht Naturally, we shall once
more define it to be eenter of matterbut the procedure that we employed in the case of
the free drop to choose the particular reference intwiiwill be the pseudo-center of
matter will be forbidden to us. Indeed, the vedtgr, which permits the unambiguous
definition of the reference frame of inertia, will nonger be defined in an intrinsic
fashion; it presupposes the choice of a center of mattda proper system. Moreover,
Mgller has shown that as long as one considers dwy properties of the fluid,
independently of the external field (and therefore nolbaed system), it will be vain to
hope to define a privileged vector in a covariant fashioypcdhtrast, if one considers the
total energy-momentum, which includes the part that is manidfdsgehe external field,
then one will once more find oneself in the casemilying Mgller's theorem (viz., a
general, closed system). It is then possible to deftoéal momentum vecto®,,, which
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we distinguish from the momentu@),, that one can call theternal momentunof the
drop.

We limit ourselves to the case ofhalonomicexternal force field; i.e., one whose
force density can be expressed as a divergeree 9, 7, .

This case includes the case of a relativistic gradjent- 9, V, with 7, = ., V, and
therefore the case of an electromagnetic figlgg that obeys the Maxwell equations.
One will then have the Lorentz force density:

fu=Fuwiv (v Is the electric current density).
If one sets:

Tw=FaFav— % a;zv Fap Fap
then one will get:
_6/1 F/IV = F/II/ jl/

by taking the two Maxwell equations into account:
aVFV/[:J/I and ayFV/] +6VF/]/1 +a/] F/IVZO

Finally, when we constitute our fluid model with interagtdroplets, it will be just
such forces that we will be led to introduce.

In any case, the hydrodynamical equatiom,, = f, will take the formo, (t., + 7,,) =
0, in which atotal energy-momentum tensappears — Vviz. g, = tu + 7, — that is
conservative. Under these conditions, and the restrithat tensor,, must be zero at

infinity in any spacelike cut, one can apply Mgller's argmtnand define &otal
momentum:

&, = LT/ﬂ du,

which will be avector, independently of the spacelike hyperplane over which one
integrates, under the condition that one index must tefthe component &, along
the time axis that is orthogonal to the hyperplane irstiju@ Moreover, the vecta,
will be constant time.

This proof necessitates several precautions that relabgper-boundary integrals.
One can decompose the divergence integral into two amespart relates to the tensor

t,, namely J' d,t, dw, and is taken over two separate domains. One théamd one

has the interior of the tube that is swept out bydiep, and Gauss’s theorem can be
applied with no difficulty, since the boundary term wa# annulled by the presence of
surface tension. On the other hand, one has thefrepacetime, wherg, will be zero

everywhere, so the integral will not contribute anythigs for the termJ' 0,7, dw, it

will be integrated directly over all of space-time. uSsis theorem can be applied with no
special precautions, since the functiapsare continuous, and as a result, the boundary
term will disappear (as in Mgller’s original argument)em the hypersurface is pushed
out to infinity, wherer,, is zero everywhere. We note that althouyh can also be
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decomposed int('f o du+J' T, du, it will be only the sum that is tensorial. A Late

transformation that accompanies a corresponding chdrgg will transform each of the
two integral in a non-tensorial fashion, but the charfes are due to the Lorentz
formula will cancel when they are summed by reasoh@tbnservative character of the
total tensor.

The total momentum vector thus expresses the ideahbatnergy-momentum of
matter and that of the field are connected indissolwiaych conforms to the thinking of
general relativity. However, it gives us a privilegeftrence frame — viz., theference
frame of inertial1; A1 — in which its spatial components are zero, and whieh can
express relative to the laboratory reference fram&yhich the components aé , &4,

by means of the formulas that we established in theafabe free drop.

That reference frame will serve to define a pseudo-cemtemass for us that can be
expressed as an intrinsic point in any arbitrary reterdrame. It will be theenter of
gravity Z,. It will no longer be either at rest in the refeze frame of inertiéil; /A1 or in
uniform motion, as it was for the free drop. Of coutke,energy with which we weight
each point of the drop is uniquely that of matter:

Z[ todd = [ ¢ K.

Since the integrals are taken over aXjuby the spacelike hyperplane of inertia, unlike in
the case of the free drop, we cannot associate thhaatbastic of the center of gravity
with the components of thaternal momentum, for which the integrals are taken over
properspace sections.

However, above all, the reference frame of inestih permit us to define a pseudo-
center of matter that we take to be the intrireater of matter (by calculating its
coordinates in an arbitrary reference frame by means o$uitable Lorentz
transformation. The transformation formulas, ad a&khe ones that make us pass to the
proper systenthat is attached to the poi@t are the ones that we gave in the context of
the free drop, with the condition that we should tdike ¢componentsgs, and &, of the

total momentum in the laboratory system to Gge and G,. We can then take the
reference frame in whic@ is at rest to be the proper system and make cuts thtbagh
drop in that reference frame over which we will take tbleime integrals that define the
internal momentum and the internal angular momentitineodrop.

One sees, as we have announced, that the externdl ifitdrvenes by the
intermediary of the choice of the reference framéneftia, which is related to the total
momentumG,, in the definition of the global dynamical quanttighat characterize the
drop. One remarks that it can make the energy-momentuthe drop negligible, as
opposed to that of the field, which can extend veryrer space, such that, in fact, the
privileged direction®, can be independent of the drop, in practice, and the system

inertia will play the role of a sort of absolute mefece for it. It can also be the case that
there are other drops in that space whose energy-momestiimontribute to the
determination of the reference frame of inertia, orlamy (as will be the case in fluids
that are composed of droplets) that the field is eckamiquely by the forces that are
exerted by the other droplets. In the latter caseretieeence frame considered will play
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the role of a collective reference frame that singo play the global energy of all of the
drops that constitute the fluid; viz., the internakmgyy of each drop and the external
energy that is related to the their interactions.

Since the definitions of the centers of gravity and sygspeal to integrals that are

taken over all of space, the vectythat joins these two points will no longer be given

by the expressio8,, G, /MZc?, as it was in the case of the free drop, becausetisers

that constitute that expressions will result from gméds that are taken over the proper
volume.

By contrast, if we define eenter of mass Xin the proper system then we can easily
see that the relation that we found in the caseeofrde drop, namely:

Sw Uy =M (Y, — X)),

persists, since the two sides of the equations employ prdper space integrals.
Moreover, the decomposition of the internal angulameaatum that we derive from this
relation will have a completely different charactand will take on considerable
significance.

8 5. Generalities on fluids with spin that have internastresses— We can now
consider a collection of particles of the same tyja¢ wWe have been considering that has
a continuous distribution of magnitudes that characténee and constituteféuid from
them in the same way that we did for free particlakang with the ordinary densities of
matter p, momentumg,, spins,, and internal angular momentusp,, we will also
consider a volumetric force densityand a volumetric torque densify, . (One must
take special care that these symbols should no longerthavwsame significance as they
did in the consideration of the drop. We shall hentlefgo on to another scale that is
much wider in scope where one must consider means thatkareover volumedgu that
contain a large number of spinning particles. The prdeecg densityf, is obtained by
taking the sum of the global forcEg that act on all of the particles that are contaiime

the volumedv and forming the quotient,, = > F, / dv . On the contrary, in the
preceding paragraphs, we considered a force density tlwt acthe various points of
one of the drops, which we now consider to be partieled,formed the global fordg,
by integrating that density over the volume of the drop.) Once wee heccepted the
remarks that we made about the global force and torqueilinee free to consider force
or torque densities that are not situated in proper space.

The global equations of the drop:

G :F/I,

]

Syv+ GV U/[ _G/jUI/: r/ll/

immediately give us the fundamental hydrodynamical equations
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gy — U
Sﬂv+gVu/1 — QW= Y,

to which, we append the equation matter conservation:
p =0.

The derivatives that are denoted by a dot have the signde that recalled at the
beginning of the chapter.

The forces and torques that interest us are not tée thiat are due to the action of
anything outside the fluid. They are the ones that rdsuih interactions between
particles. The forc€, and the torqué€,, to which each particle is subjected individually
are the results of the action of the set of all ofharticles upon that particle. It is
expressed completely in terms of these other partigles; in terms of the local
hydrodynamical magnitudes and their derivativég.and y,, thus constitute auxiliary
hydrodynamical properties (such asu,, 9., g, ands,,), if one assumes that one can
express the dynamical equations in such a wayfthatd ), determine the evolution of
these fundamental magnitudes by their motion.

In order to introduce different types of interactiomg, inost appropriate method is to
postulate the form of a coupling term that is represeloyean energy density, and then
add that term to the Lagrangian of the “pure matteitiflun that way, the usual method
will yield an energy-momentum tensor that involves at@part and another part that
we interpret as an internal stress ten@pr. We then derive a force density= -0, .
from this tensor, as well as a torque dengity= 8., — 6, = 2 Epus.

Therefore, that will be how we always operate,altih it will probably result in
certain restrictions on the kinds of interaction feraed torques at which we shall arrive.
However, we believe that this method will still subsuafl of the truly interesting cases.

One can encounter a difficulty in the course of making comparison that we
propose to make between the fluids that are obtainedalgyof particles that are related
by forces and torques and fluids that are derivable frobagrangian formulation.
Indeed, for the latter, we have seen that the gerabmposition of the energy-
momentum tensor will give us:

tyv:,uo U,u uV—p/l Uv+qv u/l+ e/“/’

in which the tensorg,, q,, andg,, are orthogonal to the current.

The Lagrangian treatment then gives a quanjitthat seems difficult to interpret, in
addition to an internal stress tensor that is sithatg@roper space completely, which will
then imply restrictive conditions on the force d@ndque. Indeed, if we refer @, as a
“heat current” in the general case of the hydrodynanieptesentation of the wave
functions that is defined by a Lagrangian formulatiohjchl is a current that takes the
form of an energy that flows in the fluid independgmt the matter and without the aid
of any mechanical force in the present case, thethegontrary, we will have no other
energy that is localized to the particles and moveh thiem nor other exchanges of
energy than ones that take place by means of intamesissforces. If we construct an
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energy-momentum tensor by separating the particleshenthternal forces then we will
find a kinetic parig, u, and a stress tenséy;,, but not a tensor of heat current. In order
to revert to the general formalism, one must then despbhe quantityy, .

To that end, one might be inspired by the physicalideration that we developed in
Chapter 1V in the context of the dynamics of a fluidgirevhich was a dynamic that can
be summarized by the following two global equations:

: w
G,-U, (_LO q0d§+.[%c_g djOj =Fu,

$,+(6-], 9] U-(G-], g &) v=2[ a,.dv,.

We said that these equations make the global mome@tumvhich was obtained by
the usual method, appear as a partially-fictitious quanéityd that thedynamical
guantities, whose evolution is determined entirely byftiee and torque through the
usual dynamical equations of spinning particles, are:

G;U - '[Vo quUO
for the torque equation and:

Gﬂ—Uﬂ(—J'SD ¢ d§+j%% d}oj

for that of the forces. One can apply these corsimers to the hydrodynamical
equations and change the definition of the momentum geasd the stress tensor in
such a fashion as to eliminate the heat current, atie atame time, to make magnitudes
appear uniquely that will produce dynamical quantities thate hsome physical
significance after one integrates them over the drop.

8 6. Spinning fluids with no heat current.— We first define gourely kinetic
momentum densitg,, by subtracting the heat current from the generalizechembum

densityg, : 9, =0y — Qu-

This amounts to taking the transverse momergumwhich we have seen to result, at
the same time, from internal rotation (in the cabéhe Weyssenhoff equation) and the
heat current (in the case of the Klein-Gordon), whichoants to taking a purely
kinematic transverse momentum:

P, =Pyt du,

which is no longer related to the internal rotationcsj as we showed in Chapter IV, we
will have, in any case, the Weyssenhoff relation:
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. 1
pp =Put Qu :_?S,uvq/'

Sincep, is orthogonal to the current, we do not need to mottié/ proper mass
density g, u, =gy Uy — 1% and the momentum will then take on the form thas wa

given by Weyssenhoff:

, 1
(V17) gp = o u/1 + ?S,uvq/ '

independently of the internal stresses, which showsitttextpresses a property that is
attached to the particles when the interactions aréaken into account.
It will likewise result from this equation (which is @nsequence of the torque

equation) thatg), is orthogonal to the space-time acceleratipnand to the spiny, as
one will show by contracting with these two vectoespectively, and upon taking into
account thas,, 0, = 0 and thas , U, (, = 0 (antisymmetry), we will get:

g,u, =0,

(V.18)

9,0, =0.

If we compare these equations with the results thdbwed in Chapter Il in the case
of pure matter then we will see that the system of fectorsu,, u,, p,, g all form

right angles with each other, except fgy and u,. Relation (18) results from the
contraction of the torque equation:

(Vlg) g;,uv - q, U, + 2€</1|/> = S,uv .

If one follows the Takabayasi method then one cantget other equations by
contracting withic&,vap Us andic &uap s , respectively. These two equations, along
with equation (18), will form a system that is equivalen(19).

Upon contracting withc&,ves Uqs, the two termsg,u, and g,u, will disappear. It

follows that:
2iC£/1|/aﬁ e,uv Uy = iC‘S/IVUﬁ S,uv Ug.

If one replaces,, by its expression as a function of spin and velo¢igntthe right-hand
side of the equation will give:

. i d s d
IC&uvap Eg,uvaﬂ ar (Uy O Ua==23,) ar (Uy Gp) Ua

== 2 [(uaaﬂ + uaa.-ﬂ)ua _(uﬂaa + lﬁa.-a) l‘z!/]
=-2 (-¢*0,-u,0, ) = 2 (c°c, - u,0, (L) .
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One will therefore get the first equation:

(V.20) ic&,,,:0,4, =c0,- 0,04 =n,C0,,

waf™ v S a

which is an equation that expresses the evolution laspim.
Finally, contract this with/ ¢ &ap 05 :

gpvaﬂspvaa .

i , y B
ZE ‘g,uvaﬂg,uuva-a + ? ‘g,uvaﬂe,uva-a -

i
c
The expression fog,, appears in the left-hand side, and that left-hand sili&&aome:

i
25, g;, + 2E swﬂé?waa .

The right-hand side, when transformed as before givi:
5 5% d _ 2 : 20
-29, a(uyap) Oy = —?(Uaua &, — 03U, —00,U,)

when one introduces the norm of the spih = g, g, and its derivatives,= o,0, / g, .
One then has:

_ _ 2, 2. .
- Sﬂ/j g’ﬂ - E Euvap e,uv Og =~ ?(Uaua ET/] —Uouﬂ _UOUOU/J) .

This equation can be transformed by introducing the expregkr) forg, , and upon

taking relation (111.15) into account to express the prodyes,,, the left-hand side will
become:

1 usu, i 1 i :
_?{aj (5;1./ +%j —aﬂav}uv = —?[aguﬂ —UVUVU[J :
which gives the equation:

. 2. _ . 2. .
0,0,0,—03U; =iC Euap Gu Ta + O,0,0, = 05Uy =00 Ug,

so one finally gets:

(V.21) 0,0, =ice,,..0,0,,

which is an equation that gives us an expressiothé&current.
Finally, upon contracting (20) witbz or contracting equation (21) withg, one will
get the important relation:
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. _ 2 .
IC Ewap Ou OaUg= — C 0,0,,
so that

0-00.-0 = e,uv S,uv !

which will yield the variation of the norm of the gpiand which will show that the
condition for it to be constant is:

e/ll/ S//V = 0

If we introduceg,, , in place ofg,, then the energy-momentum tensor will obviously

take the form:
t,uv: g;,uv‘l'q,u uV+un/1+ e/[v;

and we will thus make the two “heat” terms enteo ithe stresses when we 8t = 6,

T 0u U+ Qv Uy. N _
Under these conditions, one will have:

lkll/ = g;, ul/ + e;'w )
and the conservation relation can be written:
(V.22) g;, =-04 , =¢ .

Here, the new stress tensor will not be in properespsince one will have,, u, = - c?

quandé,, u,=-c’qy.

We remark that the terms that were added/jpare symmetric inz and v, so one
can simply replaceg,, with g,, in the torque equation and in the relations that result
Incidentally, it results from this that the momenttloé torqueg. . will be in space, as
in the old formalism.

We can derive two important relations from equation @2)ontracting it withu,
and gy; on will then hasg, u, = ¢, u,.

The left-hand side expression the variatioigc® of the proper mass density, since
g,u, =0.

The second relation relates to the temporal comparfeforce density in the proper
system:

,u('):iuaé” :

This relation, which translates into the conservatibanergy, differs in two respects
from the corresponding relation in Takabayasi's thed@ye the one hand, the heat
current no longer appears explicitly. The energy exgba in the proper system will
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translate into just variations of the proper mass efgarticles, which will be variations
that are, as have said, coupled to some new paraniedenelate to the structure of the
particles, and which will translate into modificatiawisthe kinetic energy of the internal
motions of each particle. On the other hand, if oneaiposes the force densi, into

a proper-space componefyf (f,u, =0) and a component along the curréat/(c?) Uy

| A ! A)
¢l1 - fﬂ+Full
then one will have:
o1, _A
o == gt =

but if one compares, with the corresponding term in the old formalism:
Wo =~ @y Uy = 6y Oy Uy

then one will see tha, involves heat terms € 9, q, and —u, u, 8, g, in addition to
Wo, and those terms can be an order of magnitude largenghetie to the factor af’.
This is related to the fact that was pointed out befiorthe context of the drop at the
beginning of the present chapter that the variation tefmal kinetic energy of the drop
can correspond to the time component in the proper systethe force that acts upon
that drop, and that time component will have a noatinastic order of magnitude, while
the Takabayasi force, which is the gradient of a propacesstresg,, , will have only a
time component in 1d2 in the proper system.

We can use this relation to write down the differergglation of the streamlines:

oo A R R
gﬂ—uouﬂ+uouﬂ+g%q+§%u—¢,,-

If we substitute the value that we found fiay and the expression fag,, then it will
become:

1
?uva HIIM ;1+/'10 + 2§1/IH+_(gll}ll_ Q};H'z <;1|/>) }J _6/16’;1/1'

The first two terms in the parenthesis go to zero,@amwill have, upon collecting the
similar terms:

2 1
(/'105 +C2 va>ju +_S L’/ ,7;1/1 ve/'h/

This equation, in which one recognizes the expads, = 7,1 ¢ for the proper-
space force in the left-hand side, generalizedvththisson equation for the pure matter
fluid (see Chapter III).

Finally, upon contracting (22) witly,, and taking (18) into account, one will get:
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9,0, =-0,0,=-906,0,,

w 2 u

or, upon deriving the expression &y from (20):

1 i )
- ?Ua”a [, gy —Efymp@'w u4=-0940,L,,

SO

i
H O, U, = E ‘gpmﬂe,;v U, gﬂ - U,uave;'w )

which provides us with the expression for the scalar ptodyg, and the orthogonality
condition for the two vectorg; and u,, :

[ .
sl = 0,0,6),

If that condition is satisfied then the last angl®ur system of vectors,, u,,, p., sy Will

be a right angle, and we will recover the generdli2arboux-Frenet system of axes that
we pointed out in the case of pure matter (Chapter IIl).

We will better comprehend the significance of oumfalism by integrating the
fundamental equations over the volume ofirdmitesimal droplet that is cut from the
fluid, according to the usual method:

Upon setting:

[ =2 jvo 8.,,-du; ,

one will immediately get:

GU,-GU,+l, =S,
for the torque equation, which is an equation whose sigimde is clear.
The calculation is a little more delicate for theck equation. One gets:

G,dr == | 9,6,,dw.

vy v

We can transform the right-hand side into a hyperseiifaegral that is taken, on the
one hand, over the proper-space endd@pand C,, and on the other hand, over the
boundaryP of the current tube (Appendi):

G,dr =~ J.Clé?l'wdav _Iq g,do, —J‘PH;N do, .

The end terms are not zero, as they were in the Tghabdormalism. Upon
transforming the two integrals over the edds into —u, dup and +u, duo, it will follow
that:
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G,dr :.[cﬂlvuv du, —ICZQ’,VLL duO—J'PHl',V w, ,
)
G,dr = %J.V g,u, duodr—jpéﬂw do, .

One can differentiate under the integral sign, anowiiibgive:

(V.23) G,dr =-[ 0,6, uu,) d,d - 6, &,

In order to interpret the last term, it must be plagdo the proper system. One
knows thatdg, has only spatial components then, and they will be:

do® =- ds or,

in which dsj) is the surface element in proper space.
One then introduces a volumetric force density:
fu=-20, (H;';uuvua) -
The proper space componentd,gdre:

£0 =-0,(8,,iclc) =—ic %@4 .

As one sees, they are related to the proper-space centpmf our stress tensor.
The proper-time component is:

£0 =-9,(8,iclic) =0,

the pure time component &, = g, + g, U, + gv Uy is obviously zero.

The force density, is then a proper-space vector (like the heat currettteinold
formalism, to which it is obviously related). One whien have:

G = jvotf du, + jsoerkjo ds’.

One see that the surface integral represents simplgldblsical force that is produced
by thesurface actionghat are expressed by the stress teﬁ[ﬁ(xvhich is identical toé?,g

in proper space, since the termfsu’ and g u; are zero). The novelty, when compared

to the Takabaysi fluid, is in the terf\r) f du, , which manifests the existencewvaflume
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actions that are related to the divergengg(d,,u,u). The interactions that are

introduced in the form a coupling Lagrangian then tra@slatgeneral, into not only the
internal stresses that are exerted by the surfacesiobmt, at the same time, into an
internal field that acts upon the entire volume of the drop and isesgpd by the
volumetric force density:

f/f =~ 6/1 (H;’wu,uuu) ’

which is not situated in proper space, moreover.
Finally, in the proper system, the fourth componengoféion (23), namely:

G =-ic mozjsoea?dq‘),

will give us the variation of the total proper masscsithe componertf is zero. This
integral represents the work that is done by the stoess on the surface of the drop.

8 7. The case of a “perfect fluid” drop.— In conclusion, we shall apply our theory
to several well-defined cases of interaction. We fimstsider the case ofperfect fluid
that obeys an equation of state that generalizes whataid about the classical perfect
fluid. We have to replace the mass dengity, with the more general forpn(o) in the
Lagrangian for the spinning “pure matter” fluid:

L= () & +icpaa,S+icoly 40, §+4,( 8 A-3,).

Nothing has changed with regard to the “pure matter” flatdleast, as far as the
Belinfante tensor and the internal angular momenttercancerned, which will take the
usual form. If one differentiates with respecijptthen one will get:

S=-4c’-h g &,
which will give a non-zero value to the Lagrangian:
L= (1 — Pl C°.

The derivations with respect to t@ must give the same expressions that they do
for the pure matter fluid, and one will therefore obtan antisymmetric expression:

(V.24) s, =icp(a0,S-49, 9+ ioh A B, A~ B, 3.

Upon contracting this Witlaj and replacingS with its value, one will get:
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(V.25) ic p0,S=-puc’a) —icoh g0, & - 5 4.

One can then define the energy-momentum tensor hygtée term that contains the
Lagrangian into account:

tw == &} (0UC°8, + icoh 40, &+ 5, D+ ip h AP, A I, (U~ oLl 9,
or
1] 1 . !
b = PR UM, * 5 S Y Y =0, (Ko — L) ¢.

Upon contracting the usual expression for momentumy,byne will derive from this
that:

~ gy = phU,C =5, 4~ 4, G y+pu, Gy,
1
Ou :,UOU/J‘l'?SMU/‘.

There is no heat fluty, u, = — ¢*1o Uy, SO the stress tensor will reduce to:

O =tw—0gy U
= (Ol — Ho) U\, + €3, (o, = Ho)
SO
Ouw = C (P = Ho) 1T, -

It is symmetric, situated in proper space, and takesotime 6f a classical “perfect
fluid” stress that corresponds t@eessureof:

7T= C* (0 — Ho)-
We then have a force density:
@u==0y (N 7,

but not a torque density, sinég, is symmetric. The torque equation is then simply:
S,UV: gﬂ Uy~ Qv u/f’

as one easily verifies by replacidgSwith its expressions in (25) in equation (24).
The equations that are obtained by contracting (24) Wi, &uwas Ua, and&uvap Oy
will give, along with the usual relation:
Ou 0y =0,

2 . —_
c°0, =u,0, L,
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and:
0,0,U,=0,

respectively. It then results that, on the one hté@norm of the spin is constant:

0,=0

(which is the case for all fluids with symmetricesises, by reason of the relatiogo, =
6. Sw), and on the other handy,, which is collinear with the current, is orthogbta
the space-time acceleration:

osU, =0,
as well as to the transverse momentum:
O, P =0.
The force equation:
(V.26) 9, == 0u(u 7

will give, upon contracting with,, the relation for proper energy:
[,C° = Uy 0,8,
which takes the usual form that it takes in thee aafsperfect fluids here:
f4,C% = 0y (GuvUy) = M TTOL Uy,

such that, sincé),,u, = 0 andr,, 0,uU, =0, Uy

A2 —
Hc” == ,u,.

This expression permits us to write the differaintiquation of the streamlines:

) 1 .
luoup +?S,uv L’/ == ,7/1V aA (OVA 77)

u
=-0, (/7vﬂ7)+/7/1v775»[ égvj

== N 0 T— naﬂ[ug?’j+nav[u‘;’j+uvg” naﬂ[q’uj

uv u/i
CZ

m yu, 7
—uod,u + —uod,uy.
szﬂﬂ Cz Czpaq/
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The last term goes to zero, sing®,u, = O.
The second can be written 7/(c?) u,, so:

1. .
_zs,uvl"'/ +(lu0 +_2j % == ,7/1V6A TT.
Cc c
One will then see the pseudo-mass density foepefiuids appear (AppendB):
T
H=[o+ —.
c

On the other hand, since the vectsyst), andu, are in proper space, the left-hand
side can be projected, without modification, ontoper space:

1. .
N [g%wu uﬂ} == w0 Tg

so that finally, we will have the equation:

1. )
) [?SAVLL THY, +aaﬂ} =0.

This equation, which generalizes Mathisson’s dquasays that upon projecting into
proper space, the vector:

1 . .
?Sm/q/ tu+o,m

will be zero.

One sees Lichnerowicz’s internal force field dgnsappear, and that general
expression will make two special cases emerge ttlirethe perfect fluid without spin,
for which:

S=0 and U, +M: 0,
U

and the “pure matter” fluid with spin, for which:

6”7”:0 and C—lzsﬂvq,+,uuﬂzo.

Finally, upon contracting (26) wittr,

MO0, ==0u0y (w7
:—av(/Zquuﬂ) + /7/“/77'6./0'/1,
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0
=-0,(o, 1) + r[[aﬂaﬂ +u”u"c—2"aﬂj

I (i
=—0oyo, 711 ?Uﬂuﬂ.

Ultimately, upon introducing the pseudo-mass densityu, + 77/ ¢ once more, we
will have:

One sees the vectar, +a”ﬂ appear, which will be zero in the case of the perfect
Y7,

fluid without spin, and which will reduce t@, in the case of the “pure matter” fluid with

spin. In the general case, it is that vector, and wotto which the spin will be
orthogonal.

We can apply these formulas to the “perfect gas spih” by generalizing the case
of the “classical perfect gas.” The equation of si@e= Cd“! corresponds to the
pressurer= c? k Cd‘*l, and it will result from this that one can compute:

The pseudo-mass density: M=o+ —Z = ﬂﬂ.
c k ¢
The gradient: 0,77=(k+ 1) 770, log p.
, 0,71
The force field: ky=—= =kd,logp.

U

One then gets the variation of the pseudo-mass density:
. 1
L= ?u./(h =k, u,0,log p

from that of the mass density:

. 1
JA :—? 770, Uy .

The equation of the streamlines is:
1 . .
v [gswua +p( U, + ke, Iogp)} =0.

The angle between the spin and acceleration endy:
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(u, +k &d,logp) g, =0.

§ 8. The case of an “angular momentume-vorticity” interaction— Now, consider a
more complicated case in which the interaction bringgptioper angular momentum into
play. We consider an energy term of the fo¥sy, (3, u, — 9, u,) — or simplys,, 0, u, —

which is a term that we encountered in the represeatétiid for the Dirac equation,
along with the ones that depended upon the varRbldé we express that energy in the

proper system then it will follow that sin&, and s}, are zero:
155 (G uc—0ky)° =155 (9 ) ° - @Bk )] .

One sees the “vorticity” tensor of classical hydraayics figure in the bracket,
which must not be confused with the Lichnerowicz’s reisttic vorticity (AppendixB),
which seems difficult to express in the case of thel fluith spin. If one expresses the

spatial tensosﬁ?k as a function of spin (Chapter IIl) then one wilt:ge

1 &k o (0 U’ - Bk )],
or simply &7 & (0} vx) °.
The Lagrangian that was introduced, which will be a maxinaivan o? is parallel

to the vectoms (0; ) % thus expresses an interaction that tends to maksptheparallel
to the dual of the vorticity. It was such an inter@ctthat Vigier, in an article that is
currently going to print, recently brought into play in ttese of the wave function of a

neutrino. As a function of the vierbeaj; , it takes the form:
ic pho (a8’ - 480, g

The Lagrangian of the fluid is then:

L=pMc*+icpa,d,S+icolh ¢ 80, &+ i@l pa A aA+4,( Rjad,)

In order to obtain the internal angular momentum, fonmas the Belinfante tensor by
means of the derivatives:

o _. 41
=ic pho &, 4, ,
a2 , /
o _.
P =ic pho (a7~ & )

a,A

Upon using the infinitesimal Lorentz transformationtfoe vectors, namely:
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2 =107,

7

N

one will then have that:

fun =3dicphaj(dd-dd)+1icoh ¢ g9 d-1 ip h A0 £
=3phlu (8- + A Fu- AP- A A AN,
=iphlu(dg-dh+y(ag- & A- L 24 A4

Upon introducing the expression 8y, this will become:
f,uvA = %(S,uv u + SA,u U, — Sy U,u)-
The internal angular momentum is given by:
% f/[V/] u/] = S/II/ .

It is found to be simply the density that relatesthie angular momentum of the
particles (which is vacuously unnecessary in the general case, wherstresses can
intervene in the expression for the hydrodynamical angmamentum). It is then
orthogonal to the current (which is no longer necdgstre case for any fluid that is

composed of particles that each possess this property)reivark that the Belinfante
tensor does not reduce £0s,, U, , as it does for the “pure matter” fluid. We willeti

have to perform a gauge transformation that is expréssed
¢,u|//1 = %(S,uv Uy — Siv U,u),
q)/jy/] = S/]V u.

This is the transformation that we have encounterédeibirac case.
The Euler-Lagrange equations that are derived from dlgealngian are:

For the variablgo:
(V.27) Mo c® + S+ Qe}§+% 50, h=0.

It results from this thaf = 0.

For the variableaj, :

ICphO aja/ia;-*- Icph) %(ay é_a,u d)+2A;m # =0.

For the variableaf, :
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d,(ic phyaya,) =-ic pho &, (9,8, -0,a;)+24,,8=0.
For the variableaf, :
24,85 =0.
For the variableaf, :
icpd,S+icph a0 & +24,, 4 = 0,lic ohy (& a - & §)] .
These equations transform into:

0=ph & +ph &0,y -0,y)+24, 3,
0=-ph & -ph d-ph 40©,y-09,y+2, §
0=2A,a7,

0 =icpd,S+ icph) &0, & —icd,s,+24,, &.

Upon multiplying these equations &), &, a’, a' , adding them, and taking the
antisymmetric part iz andv of the result (which will eliminate thé,,), one will get:

ph(&g-d&)-phdd-po N Eda-"A3+p hakp 2, So 4
+phy&yd, d-ph gud, g+po H 4 49, -0, p- A 49, M0, )
- a,8(0,4y,-0,u)+d &0, y-9, Wl- 1o, 5+ 9, $=0.

Upon remarking that the first four terms represtve derivative-$,,, and upon

v !

contracting withu,, , this will give:

- 8,u,+py St épd, Sp f{ paar T, o b0,u’ga, y 3
Uy Uy 0)S1—C* 0,151, =0.

Upon replacingS with its value in (27), one will have:
=P (MoC® Uy + & &Y +4 Sqp0qUsUy—C° 0y

+ phyal (u &+ G0, §)- &, §[5 +”g§‘“j = 0.

Hence, the expression for the gradienswill be:
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(V.28) 00, S= C—lzsaﬂav Up Ty + 70 D S + 0 Mo Uy — pho & 0, 2.

We can then construct the canonical energy-mometdgosor. One has:

oL
0S

WV

0,S=puw0,S,

so, from (28), one will get:
1
?Saﬂaa Uﬁ Uy UV + /7[;/1 aasaﬂuv + pmo u/l uV _pho ai]- q/ ayi (7)

oL
Fayaj = phouva/ila,uef’
AV

which cancels the last term in the preceding expression:

oL
ou,

0,1 =phy(8a - §8)0, Y=5,du i,

v
so, finally:
t/ju :pmo Uy UV+ SV/] 6/1 U/] +6/] S/]/j UV.

In order to rejoin the Weyssenhoff formalism, we muy&rform the gauge
transformationt,, =t —®u, :

t, =PMoUy Uy +S,1 0y Uy +0; Siy Uy =0, (Sua Uy)
=pNMoUy Uy + S (0,Un =0, Uy) + U, 04 Siv+UL04 Sy

One easily decompose this tensor along the currenthwhicgive us:

— The momentum (we suppress the prime):
1
Qu=pPMo Uy + 0, Siy —?GA Siv Uy Uy .
— The non-kinetic part:
1
Tuy =S (0, Uy — 0,4 Uy) +Uu0, S,1V+? 01 SiaUqg Uy Uy =Spy (Op Ux — 04 Uy) + 1uali SiaUy.

The latter tensor can be decomposed according to #abagasi formalism into:
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— The heat current:

1 .
qv= _? S,u Tt /7vaa/l Sia,
— and a proper-space tensor:
1 .
T =S (0pUr =04 Uy) + ?Uﬂ%ﬂ U =S (MuaO0aUy =01 Uy) ,

so, upon subtracting the zero term (£)/u, U, 0, Uz = 0 we will get:

e,uv :,7;1a§//1 (aa u/i _6/1 L!y)

This stress tensor expresses precisely a coupling betwbeemroper angular
momentum, which is in proper space, and the projectioth@fvorticity tensor into
proper space, which is not contained in proper space, ergen

We can make an important remark in regard to this expresgione contract#),,
with the vorticity:

H/IV (6/1 UV - au U/j) = SV/] /7/157 (aa U/] - a/] UQ)(a/I UV - av U/j)
then it will follow, upon taking the properties gf, into account, that:

G Oy Uy =0y Uy
= Si Mua Oq Uy Oy Uy — Spy 0g Uy 0y Ug = Spp 04 Ug Oy Uy + Sy3 04 Uy 0y Uy .

The last term is zero, by antisymmetry. The secondlardlones will be cancelled after
one changes the dummy indices. What will then rensain i

u,u,
H/IV (6/1 uy _au U/j) :SV/] (5Hﬂ +g—2j aa U) 6/1 Uy
1 .
:SV/]a/IU/] ayUV‘F?ﬁMUAL’,

Both terms are zero, by antisymmetry; one then has:
H/IV (6/1 UV - au U/j) = 0

We know thatg,, is not the true stress tensor. We can immediatete:

(V.29) 6.,.0,u, =0,

<AUV>
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which is a relation that persists for the tengfyr, which has the same antisymmetric part

asfu .
We can now perform the transformation that wasrdsst in our study of the general
case, and which makes the heat current disappear. h©msets:

9, =0u—0u
_ 1 1.1
—pfmouﬂ_?aaswq/%'*_? S q_?aﬂ o K Y

2 1 .
=p Mo Uy — ?a/ls/ivu,uq/ +? $a Y
so:

, 1 1.
9, :[Pmo‘*‘?sm(aa%‘aa‘%)"‘g & lz"}

which is a relation that brings the proper massitigimto consideration:

1
ﬁ«=mmaq;%A%Qrﬁam)

and the transverse momentum, with its usual exjom@ss

p’-—ls u
f o2 M

One can easily write the torque equation, bus inbre interesting to write the three
equations to which it reduces by going to the galnsase directly. One then has, along
with the usual equation:

9,0, =0,

that:
e,uv Sw =~ Suw S (/7va aa u — a/] U,u)
= (0u Oy — T4 M) (Mva 0 Ux — 04 Uy),
S0, upon taking into account that:

Nur Oy =0y and M 0aUy =0, Uy,
one gets:

Ou Sw =04 O3 g Uy = Ty Gy 05 Uy =0} Nag g Up +0% Mua 03 U, = 0.

It then results that:
0,0, =0;
i.e.,the norm of the spin is constant.
Finally, the equation that gives the spin precassan be written:
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ic Guap St Ua (Mup 0p Wi — 04 U) = € N T, .
The expressiort &,vqs Sva Ug transforms into:
_ 2 _ 2
pr'iﬂuyap U, = Uy (Ug gy — Uy Op) +C" (O Oy — O Op) =C° (1ap Ou— oy Tp) -
In the left-hand side, one then has:
c? (1728 G — Moy 9B) (MuaOa Uy — 04 Uy)
= 02 (’7A,B Uyaa Uy —aa Ulgaa Uy — g Uyag U, + Ulgag U/1)
= 02 /7/1,5(02760, u — Uyag U/,).
SO:

Mp(Oa0a Uy — 0,05 U, — §,) =0,

which one can develop into:

. 1 . 1 .
Uﬂ+?uﬁuﬂaﬂ = 0,04 Us — 0,05U, — ?uﬂgﬂuﬂ.

One sees that the last terms on both sides of thei@yeancel, which finally gives:

0,=0,(0,Uu;=0,U,).

We can also apply relation (29) to the torque equatidpon contracting it witld,,
u,, one will get:

$,0,4= (9,4, ~q U)o,y 2640, u=-g,u, =0.

One will then have the important relation:

(V.30) 5,0, =0.

We must finally express the corrected stress as:
9, :eyu-l'q/juV-l'qVUy

v

1. 1.
=81 (MuaOa Uy —0p Uy) WU Z e YUY + ya Uy 04 Sia + Nva Uy 0 Sias

which one can easily put into the form:

1 )
9;'1u :%(apua -0, LL)_? Sy y+a, )ﬁ;(’ha U+, ;U)
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One can calculate the force density:

_¢ v ,uv

—av Sua (a,u U _a/l U,u) + S, a|/a,u u + avaA Sia (’7,ua u, + Nva U,u)

+0, Sia (/7,uaav Uy + a0y U,u) +0, Sia

u,u, u,u,
+|:uvav( C j+ a ( C j:| 2%)% Cz§/1

The relation that gives the variation of the masssity then gives:

ﬂO = u,uave;'/v

= ausmua *+ S, L}za Y- &7va vU) ﬁy_aa ﬁ/'[}-‘_aa s a'au v
= Uy (S 0y 0, Uy =040, Sua Ua) =0y Sua (U, + Uy O Ug).

In order to transform the first term in this, diféntiate the relation:

s,ywm=0
by 1, and then by, and one will get:

Sva ava,u uj +av Sua a,u Uy +a,u Sua av Uy =—Sn ava,u u; .
Thus:

[C* ==0,S,U,— 0y S Ui 0g Ug + Uy (25,0 0y 0, Us + 8y Syp 0y Uy + 0 St 0y Uy)
==0vSu U 0gUy+ U0, S0 0, Uy + 2U, S, 0,0, Uy.

Since one knows that:
§,0,U, =0, (UySm) 0,y =0,
it will follow that:

The first term goes to zero:

fC® =2u,$,0,0,4 = 5o (6 y-0a, ).

One should compare this relation with the one ihatbtained by differentiating the
expression fopp ¢, namely:
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. . d
:uocz = pMOCZ+a[$}/‘(aVL!1 _aa Ll!-)] )

or, upon taking (30) into account:

. . d
:uocz = pMOCZ +S, a(avua _aa LJ)-

One then sees that this says simply that the propssii, that corresponds to the

pure matter fluid, in particular, @onstant. In other words, the proper mass that relates to
the kinetic energy of the internal motion of the drop is constarthe course of motion.
The only thing that varies (by being a function of theknatbiat is done by the stresses) is
the proper mass that is related to pla¢entialenergy of the drop in rotation in the stress
field. Its variation will depend uniquely upon the variai®f the local vorticity, which

is coupled to the internal angular momentum. We retteksinces], and s;, are zero

in the proper system, the vorticity that enters inbmsideration will be, in fact, the
proper-space tensor of non-relativitistic hydrodynamiced anot Lichnerowicz’s
relativistic vorticity.




