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Hamilton’s principle for non-holonomic systems
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In the paper “Le principe de Hamilton et I'holonomisme” Prace mit.-fiz.38,
Kerner has proved the theorem:

Holonomity is the necessary and sufficient condition for Hamilton’s iptan¢o be
true,

or, more precisely:

Holonomity is the necessary and sufficient condition for the cormgeatens of
mechanics to be equivalent to the equations that are obtained from the Lagrangian
method of variational calculus with supplementary conditions with the help of
parameters.

It is good to add that:

The former equations are completely equivalent to the latter ones, andayot,
obtained by specializing the additional parameter.

Otherwise, the theorem can be false.

Geometrically, the following fact is fundamental: Aswell-known, non-holonomic
conditions do not reduce the dimension of the space tbmoOn the contrary, this is
not true for the direction of motion. Thus, the nemyfifiy paths that one must consider
in the calculus of variations are in a space of higheedsion than the ones that one
arrives at by supplementary displacements. With thatan happen that these
displacements involve a choice of paths in the cadcoluvariations, which likewise,
along with the starting paths, are themselves the cdopaths of mechanics, while the
theorem of Kerner extends the identity and thus theldmg of the dimension count.

In the following, it will be shown:

1. The Hamilton principle is always correct for areot formulation, which is an
old, but less mentioned theorem.

2. The theorem of Kerner may be proved by my method ugimg, leffortless
calculations (see: “Die Lagrange-Eulerschen GleichuntggrMechanik,” in Zeitschr. f.
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Math. u. Phys.50, “Uber die virtuellen Verschiebungen in der Mechanik,” Math
Annalen70, and “Uber nichtholonomen Systemen,” Math. Ann&2n
3. It can be false, when one does not observe thé@udiremark above.

§1
Hamilton’s principle
From d’Alembert’s principle, in Lagrangian form:
Sdmwt= SdkdT

(S means one sums over the systé&nis the position vectorgdm, the mass elementy,

the acceleration vector andk is the vector of applied force), what follows, withet
always supplementary assumption that:

ddor-odr =0,
is the central Lagrangian equation:

%S dmwTt-JdE-U) =0,

where v refers to the velocityE, to the kinetic energy, and, to the potential energy
that are assumed to be present. It yields, by integrater the time interval frory to
to, at whose ends the virtual displacements shall lwe zer

b
jaLdt:o L=E-U),

Y

hence, Hamilton’s principle. The variations must tfereebe regarded as supplementary
displacements here, from which, the neighboring pdtht ane arrives at will not be
supplementary to the rule. For the sake of simplicity take the system to be
scleronomic.

Let the Lagrangian coordinatesdpetp, ..., 0. . In place of thej, we think of there

beingn linearly independent couplings introduced between them:

dg _ n ) _ n
—L=w=>Nh.0 or, when solved:  ¢,= Y ¢, @,

i=1

which we can do in such a way that the non-holonomiclition equations become:

w1 = 0, Wi2=0, ...,a0=0 k<n.
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The commutation equations may be:

d 89,— 3d9,= Y B, ,09 dI,.

They, together with Hamilton’s principle, immediatelyvey the correct equations of
motion fork <n (sincedd, = 0 for > k)

dp oL :
I —+ s mWsPn— ), —C =0, i=1,2, ...k
() dt Szmﬁl,s,m spm - 605

Thepm =0dL / 0w, are the impulses. On the contrary, the problem of dileulus of
variations:

olLdt=0

with the supplementary conditionag:1 = 0, a2 = 0, ..., &y = 0, gives:

ja(L+zn:/1V%)dt -0

k+1
or.

jZ(pmm ) dw,, +z—5q, dt=0,

V

whered; = 0,4, =0, ..., A& = 0, and the otheA are the Lagrangian parameters. As
before, it now follows that théS, are all to be treated as arbitrary:

0 EICRYIED W NICRYRE Z—c =0,

which is now true for all.

8 2.
Proof of Kerner's theorem

Should (I) and (ll) both be correct, it then folle from a comparison of the firkt
equations that:
=12k,

. wA =0 for
Szmﬁus,m Jm S:1,2,"',k,

or, since the values @& can be given freely at any location:
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(1) > BewAn=0 sandi=1, 2,3, ...k

m=k+1,k+2;--,n
Thus, thed give the differential equations:

%(pi +4)+Z,6fsmws(pm+)ln)—zg—L c,;= 0, i=k+1,k+2, ..,n
s,m ' s qs

Now, should a complete identity between both systef equations exist in the sense
described in the introduction, then thewhich can be chosen freely at any location, are
subject to no finite restrictions like (111), suthat one must have:

Lsm=0 forsandi=1, 2, ...k and m=k+1,k+2, ...,n

However, the commutation equations for the {agten take the form:

dd9,—-3d9s= Y B.,09,d9, s=k+1lk+2 ..,n

i,s=k+1,k+2,..,n
From a theorem of Frobenius (Crei2 pp. 267, see also the Enzyklopadie der math. W.
I, A5, 15, pp. 319, rem. 90), this is, howeveuffisient for us to conclude the
integrability of our equations of condition. Kerisetheorem is thus proved.
§ 3.
A counter-example
The following example shall show that the theorgrfalse when one does not require

the complete identity.
Let:

L=3(¢ + 6 + ),
with the particular non-holonomic condition:
W= G+ g = 0.

Because, from a well-known theorem (see my fiegigu, pp. 25) one can set= 0
from the outset, the correct equations of motiadre

g =0, g, =0, w= 0.

On the contrary, the equations of the variatigmablem read:
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d d
,-A¢ =0, —(¢q,+Aq)=0, —A=0, w=0,
G -G, g &t "

such thatd = const. If one now adds the restriction that O then one obtains the correct
equations of motion.
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