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Introduction 
 

 Mathematicians have frequently addressed the study of non-holonomic (i.e., non-
integrable) constraint equations in mechanics in the last twenty years.  First, one deals 
with demonstrating the presence of such constraint equations and showing how they 
could be treated in kinetic problems.  However, one then asks, above all else, to what 
extent the fundamental laws of mechanics can still be applied to them.  As long as the 
principle of virtual work, the so-called Hamilton  principle, and the principle of least 
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action come into question, everything can probably be explained; it would suffice to 
recall the investigations of Voss, Routh, C. Neumann, Hertz, and Hölder (1). 
 Moreover, Lagrange (2) knew of non-holonomic constraint equations, if only in 
statics.  Although he possessed all of the means to also solve problems with non-
holonomic constraint equations in form of the transitivity equations and his central 
equation, he still did not address those problems. 
 The following two questions demand to be resolved: 
 
 1. Can one (at least, under certain assumptions) still apply the Lagrange equations 
when non-holonomic constraint equations appear, and indeed in such a way that in the 
expression for the vis viva T, the non-holonomic constraint equations are employed in 
order to eliminate coordinates whose derivatives alone enter into T? 
 
 2. Which equations enter in place of the Lagrange equations in the general case? 
 
 The fact that first question can generally be answered with “no” was known already 
to C. Neumann (3); up to now, Hadamard (4) probably examined it at the most 
fundamental level.  However, there are two reasons why I regard the question as still not 
having been resolved: First of all, Hadamard’s conditions are only also necessary for its 
confirmation, in general.  However, as we will see, we can cast the correct light upon the 
first question only when we connect it with the second one. 
 Answers to the second question exist in the literature already.  Voss treated the 
general problem in his cited paper, but only with the use of Lagrange multipliers (5).  
Special problems were frequently addressed with special methods by various authors.  
Appell (6) once more took up the resolution of the question in general; however, the first 
form that he gave to it was followed through only slightly.  An expression entered in 

                                                
 (1) Voss, “Über die Differentialgleichungen der Mechanik,”  Math. Ann. 25 (1884). 
  Routh, Advanced Rigid Dynamics, 1884, pp. 329, § 445 in the German translation.  See also the 

remark of F. Klein in the German translation, pp. 534. 
  C. Neumann, “Grundzüge der analytischen Mechanik, insbesondere der Mechanik starrer Körper,” 

Leipziger Berichte 1887 and 1888. 
  Hertz, “Die Prinzipien der Mechanik,” Werke III, Leipzig, 1894. 
  Hölder, “Über die Prinzipien von Hamilton and Maupertuis,” Göttinger Nachrichten, 1896, pp. 122. 
  See also Richard Greiner , “Über die Einführung der Bedingung in das Hamiltonsche Prinzip,” 

Dissertation (Teubner, 1901). 
 (2) Lagrange, Mécanique analytique, t. I.  Part One, Sect. IV, § 11, no. 13, pp. 77. (Bertrand’s third 

problem).  
 (3) In addition to the aforementioned presentation, see C. Neumann, “Über die rollende Bewegung 

eines Körpers auf einer gegebenen Horizontalebene unter dem Einfluß der Schwere,” Math. Ann., 
Bd. 27, and Leipziger Berichte 1885. 

 (4) Hadamard, “Sur les mouvements de roulement,” Mémoire de la société des sciences physiques et 
naturelles de Bordeaux. (4), t. V, 1895.  Reprinted in Appell “Les mouvements de roulement en 
Dynamique,” Scientia no. 4, 1899. 

 (5) The paper of Korteweg “Über eine ziemlich verbreitete unrichtige Behandlungsweise eines 
Problemes der rollender Bewegung…” Nieuw archief voor wiskunde, 1899, takes essentially the 
same viewpoint.  

 (6) See the previously-cited monograph in the collection Scientia, and no. 23, in particular.  One will 
find Appell’s further papers on this topic mentioned in the article by Voss in der Enzyklopädie der 
Mathematischen Wissenschaften, IV, 1, no. 38, pp. 82. 
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place of ∂T / ∂qi that Appell denoted by Ri , but with no further discussion.  But what 
does the Ri mean?  Appell’s second attempt, in which introduced a new function S of the 
acceleration in place of the vis viva, cannot be methodologically satisfying, despite its 
esthetic advantages.  On the one hand, it required the transformation of the second 
derivatives of the coordinates, but then the vis viva T completely lost its dominant role for 
him, such that the systems with non-holonomic constraint equations were separated from 
the systems with holonomic constraint equations by a deep chasm, which does not 
correspond to the difference between the two problems.  Finally, the holonomic 
constraint equations define only one special case of the non-holonomic ones. 
 On that basis, the relationship between the general constraint equations and 
Lagrange’s equations should also emerge clearly, such that the latter will emerge as a 
special case.  Such a general form for the equations of motion of mechanics is possible; 
exhibiting that form should be the first priority of the following examinations.  I call 
those equations the Lagrange-Euler equations (see § 6); they are denoted by (IV) [(IV′), 
resp.] in the following text.  I came across them when I posed the following very general 
question. 
 
 Which equations will enter into mechanics in place of Lagrange’s equations when I 
introduce any n independent linear couplings ω1, …, ωn of the dqλ / dt in place of the n 
position-dependent parameters (viz., Lagrangian coordinates) q1, …, qn , along with the 
latter parameters? 
 
 One can find that question being posed before in a paper by Boltzmann (1), which I 
learned about only during the publication of this article from a cordial communication by 
the author.  Boltzmann also gave essentially the correct answer already (2): The 
Lagrange-Euler equations demand that (3).  The way that one obtains them led me from 
the principle of virtual displacements to Lagrange’s central equation (§ 4) and to the use 
of the transitivity equations (§ 2) for achieving the desired objective (§ 5).  However, 
seeing that objective clearly, in general, and in detail was first made possible in light of 
Lie’s ideas: The study of the Lagrange-Euler equations led me ever deeper into the 
theory of groups.  Therefore, I have referred to the initially-formal connection between 
my research and that of Lie already in § 3 (4). 

                                                
 (1) Boltzmann, “Über die Frage der Lagrangeschen Gleichungen für nicht-holonome, generalisierte 

Koordinate,” Sitzungsberichte der Wiener Akademie, Bd. CXI, Abt. IIa, Dec. 1902. 
 (2) Loc. cit., page 1612, equations (24).  However, those equations are still not formed completely.  By 

contrast, they are more general than the Lagrange-Euler equation in regard to the presence of time.  
 (3) See the remark on page 15 in regard to the connection between the Lagrange-Euler equations and the 

completely-general equations that Lagrange and Poisson derived by transformation. 
 (4) I cannot see clearly the extent to which Lie himself has thought of applying his ideas to mechanics.  

I found no applications to mechanics in the work that Engel and Scheffers produced; indeed, the 
introduction to the third section of Transformationsgruppen that Lie himself wrote contained the 
statement on page VII: “The principles of mechanics have a group-theoretic origin,” although the 
meaning of that was a riddle to this reader.  I would almost like to believe that Lie was thinking of 
only the theory of integrating the differential equations of mechanics, the connection between 
Jacobi’s canonical substitution with his contact transformations, and an extension of the theory of 
geodetic lines.  The following changes in the cited location no longer allow me to suspect that.  The 
meaning of the sentence “Kinematics and its laws can, in part, be assigned to some entirely special 
cases of my general theorems” is especially difficult for me to fathom, due to the “in part.” The 
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 The fact that addressing the general question that was posed above was also made 
possible by a systematic resolution of the first question that was posed on page 2 needs to 
be explained.  §§ 7 and 8 in the present paper deal with the response to that. 
 The fact that the Lagrange-Euler equations had already been posed for some special 
cases (if one ignores the aforementioned general investigations by Boltzmann) should 
not be amazing.  Yet, the impulse equations belong to them, as well as the ordinary Euler 
equations of the rigid body that rotates about a fixed point; one will get the former when 
one replaces ω1 , ω2 , ω3 with π, κ, ρ, resp., which are the components of the rotation 
vector with respect to three axes that are fixed in space, but the latter when one 
introduces p, q, r, namely, the components of the rotation vector with respect to three 
axes that are fixed in the body, in place of ω1 , ω2 , ω3 .  One has Lagrange (1) to thank 
for the derivation of Euler’s equation in the general form, which he also obtained in the 
manner that was outlined above.  I see a second major point in the following 
considerations in an investigation of the systematic positions that the impulse equations 
and Euler’s equation assume in mechanics.  I will characterize them group-theoretically 
and show inter alia that Euler’s equations exist for any mechanical system in a certain 
extended sense, but not the impulse equations (§ 9 and § 10). 
 To my knowledge, the Lagrange-Euler equations have been exhibited in two special 
cases; however, the link to the group-theoretic viewpoint was still not exhibited.  The 
equations that C. Neumann gave in the cited paper in the Annals under no. 45 on page 
492 belong to those equations, as well as the equations that Carvallo (2) presented in his 
award-winning paper on the rolling of a body on a plane.  However, except for the special 
case of wheels, his equations were not developed as far as those of Neumann, and in that 
regard, they do not imply any progress from Appell’s first equations, and go beyond them 
only in regard to the general concept of the velocity parameters that was employed. 
 My own general impulse equations (§ 9) are characterized by the fact that T admits 
the infinitesimal transformations that correspond to constant infinitesimal, and in fact, 
virtual, values of the velocity parameters.  If we set dϑλ = ωλ ⋅⋅⋅⋅ dt then the variation of T 
will be performed here in such a way that dδϑλ = 0.  By contrast, one will get the general 
Euler equations (§ 10) when T admits the transformations above, but under the 
assumption that the velocity parameters themselves remain unchanged under the 
variation, so one sets δωλ = 0 – i.e., δdϑλ = 0.  Now, the remarkable relation exists 
between the two assumptions dδϑλ = 0 and δdϑλ = 0 for rigid bodies that they will both 
say the same thing when one replaces the ω with π, κ, ρ in the first case and p, q, r in the 
second.  Hence, in § 11, I shall pose the more general question: When can one take the ω 
to ω′ by a linear transformation with variable coefficients in such a way that the 

                                                                                                                                            
papers that Lie cited by Painlevé (Comptes rendus 114 and 116), Staude (Leipziger Berichte 1892 
and 1893), and Stäckel (Leipziger Berichte 1893, 1897, Crelle’s Journal 107, Comptes rendus 119) 
probably have hardly any points in common with my own investigations.  By contrast, let it be 
emphasized that Hadamard had referred to the connection between his studies and Lie’s theory of 
groups in a second brief note: “Sur certains systèmes d’équations aux différentielles totales” (Procès-
verbaux des séances de la société des sciences physique et naturelles de Bordeaux, 1894-95, 
reprinted in the aforementioned volume of Scientia).  

 (1) Lagrange, loc. cit., t. II, Section IX. Chap. I, § II, no. 22, pp. 208.  
 (2) Carvallo, “Théorie du mouvement du monocyle et de la bicyclette,” Journal de l’École 

Polytechnique Paris, II Série, Cahiers 5, 6 (1900 and 1901), and in particular, cahier 6, no. 72, pp. 
36. 
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assumption dδϑλ = 0 will go to d λδ ϑ′ = 0, and the impulse equations will also be 

transformed into Euler’s equations by it? The answer is very simple and noteworthy: 
“The infinitesimal transformations that correspond to the δϑλ must generate a finite n-
parameter group.  Furthermore, that condition is also sufficient.”  On top of that, one also 
gets that the group that belongs to the ω′ is precisely the reciprocal group of the given 
one (§ 11). 
 For rigid bodies, the coefficients of the aforementioned transformation will be the 
direction cosines of the one axis-cross with respect to the other one.  If one asks when the 
coefficients have that character in general then one will encounter a special class of 
groups – I call then rotation groups – that are characterized by the fact that Lie’s 
composition constants ci,k,s will admit the infinitesimal transformations of a cyclic 
permutation of their indices for a certain choice of infinitesimal transformation.  I shall 
then call a mechanical system with n degrees of freedom that admits an n-parameter 
rotation group a rigid body with n degrees of freedom (§ 12) (1). 
 Since the “rigid bodies” that belong to the same rotation group, relative to which the 
mathematical steps are closely related, in the sense that their purely-kinematical 
equations can be converted into other ones by a point transformation, while their Euler 
equations will be identical in their form, only one type of “rigid body” will belong to any 
rotation group. 
 That justifies the fact that I will deal with the rotation groups only in the last 
paragraphs.  When I use the beautiful investigations of Killing  and Cartan (2) as my 
foundation, I will succeed in dispatching the real rotation groups up to a certain degree; 
only one complication remains to be overcome for the complex ones, which I will refer to 
in § 14.  Finally, I will exhibit the only types of “rigid bodies” of less than eight degrees 
of freedom that can be represented by systems that are composed of independent, 
ordinary, rigid bodies and points with translational motions. 
 That is the content of the present paper in brief.  I would like to remark that the 
purely-mechanical part can be understood with no deeper knowledge of group theory, so 
it will almost suffice for one to know about the concepts of “infinitesimal transformation” 
and “group.”  When I require further theorems from group theory at other points, I will 
cite the two books: Lie-Engel, Theorie der Transformationsgruppen, in three parts, 
Leipzig, Teubner, 1888-1893, and Lie-Scheffers, Kontinuierliche Gruppen, Leipzig, 
Teubner, 1893, and indeed I shall briefly refer to them by the names of their authors in 
what follows.  Similarly, I shall refer to the monograph of Klein  and Sommerfeld, Über 
die Theorie des Kreisels, Leipzig, Teubner, 1897, which I will frequently cite for the 
more convenient enlightenment of the reader when I treat the rigid body as an example. 
 
 

 
 
 
 
 

                                                
 (1) Moreover, I remark that despite those statements, I do not abandon the mechanics of three-

dimensional space at any point. 
 (2) Bibliography on page 50.  
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CHAPTER I 
Geometric-kinematical considerations 

 
 § 1. Introduction of new velocity parameters. – We consider a mechanical system 
with n degrees of freedom.  Let x  be the vector that determines the position of an 
arbitrary system point at any time, and let q1, …, qn be n independent Lagrangian 
coordinates that establish the position of the system uniquely, while a, b, c are three 
parameters that allow one to characterize the individual points of the system.  (One can 
regard a, b, c as, say, the three rectangular coordinates of the point at any arbitrary, but 
well-defined and possible, position of the system.)  One then has (1): 
 
  x  = x (a, b, c; q1, …, qn), 
 
along with the velocity vector: 

(1)     v ≡ dx

dt
≡ xɺ = 

1

n x
q

q λ
λ λ=

∂
∂∑ ɺ , 

 
when we denote time by t and the derivative with respect to time by a dot. 
 We shall defer the introduction of non-holonomic constraint equations until later. 
 We now think of new velocity parameters ωρ being defined in place of the qλɺ  by the 

linear equations: 
(A)      qλɺ  = ,ρ λ ρ

ρ
ξ ω∑ . 

 
The ξρ,λ (like all of the functions that will occur, moreover) shall be regular functions of 
the q for the motion in the domain that comes under consideration, but otherwise 
arbitrary up to the condition that the determinant: 
 

| ξρ,λ | 
 

must be non-zero.  That restriction obviously says nothing but the fact that the ωρ are in a 
position to describe the velocity state completely. 
 We can then solve equations (A) for the ω and thus obtain: 
 
(A′)     ωρ = , qρ λ λ

λ
π∑ ɺ . 

The relations: 
(2)      , ,ρ λ ρ λ

ρ
ξ π∑ = δλ, µ  

 
exist between ξ and π, in which δλ, µ  is equal to zero or 1 according to whether λ and µ 
are different or equal, resp. 

                                                
 (1) We shall overlook system couplings that include time here; therefore, time will not enter explicitly 

into x . 
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 If we introduce the ω into equation (1) then v  will take on the form: 
 
(3)      v = eρ ρ

ρ
ω∑ , 

in which: 

(4)      eρ = ,

x

q ρ λ
λ λ

ξ∂
∂∑  

or 

(4′)      
x

qλ

∂
∂

= ,eρ ρ λ
ρ

π⋅∑ . 

 
 For the sake of simplicity, we would like to assume here that the ξ do not depend 
upon time explicitly; that does not represent an essential assumption, though. 
 The fact that we have introduced the ω into equations (A) linearly might be justified 
on the grounds of need and convenience.  In the few cases that have been treated already 
(see the Introduction), one must always deal with linear equations, and the non-
holonomic constraint equations, of which we will speak later on, will always be linear.  
Whether one can be in complete agreement with Hertz’s proof that only linear constraint 
equations are possible will not be discussed here. 
 
 

§ 2. – The transitivity equations. 
 
 If we let δqλ denote a virtual, infinitely-small change in the coordinate qλ then we 
shall let the virtual displacements δϑρ be defined by the equations: 
 
(A″)     δϑρ = , qρ λ λ

ρ
π δ∑ , 

 
which are analogous to (A′), but we will not say that there must be coordinates ϑρ .  
Nevertheless, in what follows, we will frequently use the notation: 
 

d

dt
ρϑ

= ωρ , 

in place of ωρ . 
 However, when position-determining coordinates ϑρ do exist, the known equations 
from the calculus of variations: 

d δϑρ = δ dϑρ 
 
will then exist, as well.  However, when that is not the case, some other equations will 
enter in place of these equations that we, with Heun (1), would like to call the 

                                                
 (1) Heun, “Die Bedeutung des d’Alembertschen Prinzips für starre Systeme und Gelenkmechanismen,” 

Archiv der Mathematik und Physik III, 2, pp. 300. 
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Lagrangian transitivity equation, since Lagrange (1) exhibited them already for the case 
of a rigid body that rotates around a fixed point. (One employs three ω here, namely, the 
three components of the Eulerian rotation vector.  Furthermore, Kirchhoff  [in his 
Mechanik, pp. 59, equations 9] and C. Neumann [in the cited paper] have also derived 
the transitivity equations for that case.) 
 In our general case, it follows from (A″) that: 
 

d δϑρ =
,

,
,

d q dq q
q

ρ λ
ρ λ λ σ λ

λ λ σ σ

π
π δ δ

∂
+

∂∑ ∑ ; 

 
by contrast, (A′) implies that: 
 

δ dϑρ =
,

,
,

d q q dq
q

ρ λ
ρ λ λ σ λ

λ λ σ σ

π
π δ δ

∂
+

∂∑ ∑ . 

 
If we subtract these two equations and observe that: 
 

d δqλ − δ dqλ = 0 
 
then that will yield: 

dδϑρ − δ dϑρ = , ,

,

dq q
q q

ρ λ ρ σ
σ λ

λ σ σ λ

π π
δ

∂ ∂ 
− ∂ ∂ 

∑  

 
when we switch the λ and σ in the last sum in the second equation.  If we now introduce 
dϑ and δϑ in place of dqσ and δqλ using equations (A) then we will get: 
 
(I)     dδϑρ − δ dϑρ = , ,

,

dµ ν ρ µ ν
µ ν

β δϑ ϑ∑ , 

in which we have set: 

(5)     βµ,ν,ρ = , ,
, ,

, q q
ρ λ ρ σ

µ λ ν ρ
σ λ σ λ

π π
ξ ξ

∂ ∂ 
− ∂ ∂ 

∑ . 

 
 Equations (I) are the desired transitivity equations; they express the difference dδϑρ 
− δ dϑρ as a bilinear function of the dϑ and δϑ ; the coefficients β are connected with the 
π (the ξ, resp.) by the relations (5). 
 It is only when the β are zero that the ϑ will be actual coordinates, and the β will be 
zero only when: 

, ,

q q
ρ λ ρ σ

σ λ

π π∂ ∂
−

∂ ∂
= 0, 

 
so when the ϑ are actual coordinates.  We can then solve equations (5) and get: 
                                                
 (1) Lagrange, Mécanique analytique, t. II, Part Two, Section IX, Chap. I, § 1, pp. 200. 
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(5′)     , ,

q q
ρ λ ρ σ

σ λ

π π∂ ∂
−

∂ ∂
= , , , ,

,
µ ν ρ µ ν ν ρ

µ ν
β π π∑ . 

 
 

§ 3. Connection with Lie’s theory of groups 
 

 It would be useful to discuss the formal connection with Lie ’s theory of groups here. 
 
 We can regard equations (A) and the more general one for virtual displacements: 
 
(A″′)     δqλ = ,ρ λ ρ

ρ
ξ δϑ∑  

 
as the equations for infinitesimal transformations.  The δϑρ are the infinitesimal changes 
in the parameters, so they can be regarded as constant here; the ξρ,λ are the quantities that 
Lie likewise denoted by ξρ,λ . 
 That concept corresponds to the symbol of the ρth infinitesimal transformation: 
 

(B)      Xρ f = ,

f

qρ λ
λ λ

ξ ∂
∂∑ . 

 
We have still not said whether or not these n generate a finite group.  However, two 
possible displacements – i.e., ones that are compatible with the constraints of the given 
system – will probably again yield another one, and as a result, the n partial differential 
equations Xρ f = 0 must define a complete system; i.e., relations of the form: 
 

(Xρ , Xσ) = , , Xρ σ τ τ
τ

γ∑ , 

 
in which (Xρ , Xσ) means the Jacobi bracket symbol.  That is obvious here, moreover, 
since the (Xρ , Xσ), which are linear in the ∂f / ∂qλ (λ = 1, 2, …, n) must naturally also be 
capable of being expressed linearly in terms of the n completely-independent Xτ . 
 I now assert that the γ are nothing but the β that were introduced above (§ 2).  
Namely, one has: 

qλ + dqλ = qλ + X dν ν
ν

ϑ∑ , 

 
in which the operation Xν shall refer to f = qλ , as in what follows.  Furthermore: 
 

qλ + dqλ + δqλ + δdqλ = qλ +
,

X d X X X d X dν ν µ µ µ ν ν µ ν ν
ν µ ν µ ν

ϑ δϑ ϑ δϑ δ ϑ+ + +∑ ∑ ∑ ∑ , 

whereas: 
 

qλ + δqλ + dqλ + dδqλ = qλ +
,

X X d X X d X dµ µ ν ν ν µ ν µ µ µ
µ ν ν µ µ

δϑ ϑ ϑ δϑ δϑ+ + +∑ ∑ ∑ ∑ . 
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Since the left-hand sides are equal to each other (since dδq = δdq, by the conventions of 
the calculus of variations), the right-hand sides must also be equal.  When one introduces 
the Jacobi symbol: 

(Xν , Xµ) = Xν Xµ – Xµ Xν , 
 

and subtracts the first equation from the second one, one will get: 
 

0 = 
,

( , ) ( )X X d X d dν µ ν µ ν ν ν
ν µ ν

ϑ δϑ δϑ δ ϑ+ −∑ ∑ , 

 
or when one employs the formula (Xν , Xµ) and inverts the summation indices in the last 
sum: 

0 = , ,
, ,

( )d X d d Xν µ ρ ν µ ρ ρ ρ ρ
ν µ ρ ρ

γ ϑ δϑ δϑ δ ϑ+ −∑ ∑ . 

 
 However, Xρ (qλ) = ξρ, λ ; it then follows that: 
 
 d δϑρ – δ dϑρ  = − , , dν µ ρ ν µγ ϑ δϑ∑  

  = , , dµ ν ρ ν µγ ϑ δϑ∑ , 

i.e., due to equations I (§ 2): 
γµ, ν, ρ = βµ, ν, ρ  

and 
(II) (Xρ , Xσ) = , , Xρ σ τ τ

τ
β∑ . 

 
The coefficients βρ, σ, τ that appear in equations (II) for the definition of the bracket 
symbol are precisely the same coefficients that we learned about in the transitivity 
equations. 
 
 Now, according to Lie (1), the necessary and sufficient condition for the 
transformations (B) to generate a finite, n-parameter group is that the β must be 
constants.  (Second Fundamental Theorem)  We then have the theorem: 
 
 The coefficients β in the Lagrangian transitivity equations are constant when and 
only when the associated infinitesimal transformations (B) of the system generate an n-
parameter group. 
 
 In that case, we would like to set: 
 

βµ, ν, ρ  = cµ, ν, ρ , 
 
as Lie did.  It must be further remarked that: 
 

                                                
 (1) Lie-Engel I, Chap. 9.  
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 If we integrate the ordinary differential equations: 
 

dx

dt
= eλ λ

λ
ω∑  

 
for constant, but arbitrary, ω then we will get any possible position from the initial 
position 0x ; ω1 t, …, ωn t are the so-called canonical parameters of the finite equations 

for the group that are obtained by integration (i.e., the isomorphic group in x ). 
 
  Now, I shall further assert that the transitivity equations are most closely connected 
with the equations that define the infinitesimal transformations of the adjoint group (1). 
 Namely, the symbol of those infinitesimal transformations (2) is: 
 

Eν f = , ,
,

f
cµ ν κ µ

µ κ κ

ω
ω
∂

∂∑ , 

so for f = ωκ , one will have: 
δν ωκ = , ,cµ ν κ µ ν

µ
ω δϑ∑  

and 
δωκ ≡ ν κ

ν
δ ω∑ = , ,

,

cµ ν κ µ ν
ν µ

ω δϑ∑ . 

 
However, those are our transitivity equations, except that we have set dδϑκ = 0, which 
indeed also corresponds to the assumption of constant δϑ that is necessary here.  That 
assumption is not made in the general transitivity equations, and those equations will still 
remain true when the β are not constant, in addition. 
 However, if the β are constant then Lie ’s two characteristic relations (3) will 
naturally be fulfilled: 

(6′)    
, , , ,

, , , , , , , , , , , ,

0,

( ) 0,

c c

c c c c c c
ρ σ τ σ ρ τ

ι κ σ σ λ τ κ λ σ σ ι τ λ ι σ σ κ τ
σ

+ =
 + + =

∑  

 
the first of which is explained immediately by (5), while the second one follows from the 
Jacobi identity: 

((Xι Xκ) Xλ) + ((Xκ Xλ) Xι) + ((Xλ Xι) Xκ) ≡ 0. 
 
It would be useful to derive the general equations that correspond to these. 
 The fact that the equation: 
(6a)     βρ,σ,τ + βσ,ρ,τ = 0 

                                                
 (1) Naturally, the actual basis for understanding the equation γµ, ν, ρ = βµ, ν, ρ  is connected with this.  One 

can derive the meaning of the adjoint group directly from the transitivity equations I (§ 2). 
 (2) Lie-Engel I, pp. 275.  Theorem 48.  Lie-Scheffers, pp. 464, equation (19).  The quantities that were 

denoted by e there correspond to our ω. 
 (3)  Lie-Engel I, pp. 170.  Theorem 27. 
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remains valid is clear. 
 Furthermore, the Jacobi identity: 
 

((Xι Xκ) Xλ) + ((Xκ Xλ) Xι) + ((Xλ Xι) Xκ) ≡ 0 
remains valid; i.e.: 
 

, , , , , ,, , ,X X X X X Xι κ σ σ λ κ λ σ σ ι λ ι σ σ κ
σ σ σ

β β β     + +     
     
∑ ∑ ∑ = 0 

or 

, , , , , , , , , , , ,
,

( )Xι κ σ σ λ τ κ λ σ σ ι τ λ ι σ σ κ τ τ
σ τ

β β β β β β+ +∑  

− , , , , , ,
, , ,

,

X
q q q
ι κ σ κ λ σ λ ι σ

λ ρ ι ρ κ ρ σ
σ τ ρ ρ ρ

β β β
ξ ξ ξ

 ∂ ∂ ∂
+ +  ∂ ∂ ∂ 

∑ = 0, 

 
and since the Xσ are completely independent, it follows from this that: 
 

(6b) , , , , , , , , , , , ,( )ι κ σ σ λ τ κ λ σ σ ι τ λ ι σ σ κ τ
σ

β β β β β β+ +∑ = , , , , , ,
, , ,

, q q q
ι κ σ κ λ σ λ ι σ

λ ρ ι ρ κ ρ
σ τ ρ ρ ρ

β β β
ξ ξ ξ

 ∂ ∂ ∂
+ +  ∂ ∂ ∂ 

∑ . 

 
That is the second equation, which replaces Lie ’s equation (6′). 
 
 

Chapter II. Kinetic considerations 
 

§ 4. Lagrange’s central equation 
 
 At the summit of our actual mechanical considerations, we place the fundamental 
equation that we would like to refer to as Lagrange’s central equation.  It defined the 
actual core of the so-called Hamilton principle, but it is more encompassing, since it also 
includes the principle of varied action.  Since it seems to be less known, permit me to 
derive it here briefly. 
 Let m (a, b, c) be the mass of a system point and let: 
 

(C)      T = 21
2Smxɺ  

 

be its kinetic energy.  (We shall let S denote the summation over the points of the 
system, in which we leave open the issue of whether we are dealing with a sum over a 
discrete set of points or an integral).  If we denote the inner (i.e., scalar) product of two 
vectors x  and y  by x y⋅  then the identity: 
 

( )Sd
m x x

dt
δ ⋅

 
ɺ = ( )Sm x xδ ⋅ ɺɺ  + δT 
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will be true for all virtual xδ . 
 If we now make d’Alembert ’s Ansatz: 
 
(D)      m xɺɺ= K R+ , 
 
in which K  means the impressed elementary force that acts upon the point, but R  means 
the reaction force, then from the principle of virtual work, we will have: 
 

SR xδ⋅ = 0 
 
for all displacements that are compatible with the constraints of the system; i.e., for all 
δqλ , and so for all δϑλ , as well. 
 If we then define n system forces Qλ by the identity in the δϑλ : 
 

(E)      
1

n

Qλ λ
λ

δϑ
=
∑ = SK xδ⋅  

 
then we can convert our previous identity into the following equation: 
 

( )Sd
m x x

dt
δ ⋅

 
ɺ =SQλ λδϑ +δT, 

 
which is true for all δϑλ .  Finally, if we define n impulse components Jλ by the identities: 
 

(E′)     Jλ λ
λ

δϑ∑ = Smx xδ⋅ɺ , 

 
which corresponds to (E), then our equation will read: 
 

(III)    
d

J
dt λ λ

λ
δϑ 

 
 
∑  = Qλ λδϑ∑ + δT, 

 
and that is Lagrange’s central equation (1); its meaning can be expressed as follows: 
  
 The total variation of the virtual work of the impulse is equal to the virtual work done 
by the impressed forces plus the virtual variation of the kinetic energy. 
 

                                                
 (1) Lagrange, loc. cit.., t. I.  Part Two, Sect. IV.  Nos. 1 to 5, especially no. 3, pp. 283.  Strictly 
speaking, Lagrange described only the identity that was written down at the beginning of this paragraph, 
and since the principle of least action was at the foreground in his era, Lagrange strived to employ that 
principle, above all.  (See also t. I, Part Two, Sect. III, § VI, and Sect. IV, no. 6.  He went over to the 
integral principle directly at those two locations.) Furthermore, the term “central equation” was used 
already by Heun in his Vorlesungen über Mechanik. 
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 That equation encompasses the whole volume of forces that act over time in kinetics; 
the so-called Hamilton principle will follow from it by integration when one assumes that 
the δqλ are equal to zero at the limits of the integral. 
 
 

§ 5. The Lagrange-Euler equations 
 
 We now introduce our substitution: 
 
(3)      xɺ  = eλ λ

λ
ω∑  

 
into equation (III).  The kinetic energy will then become: 
 

 T = 1
2S m e eλ λ µ µ

λ µ
ω ω⋅∑ ∑ ,  or 

(7) 

 T = 1
2 S me eλ µ λ µ

λ
ω ω ⋅ ⋅∑ . 

 
Naturally, T is a quadratic form for the parameters ωλ , which determine the velocity. 
 According to (3) (§ 1), it also follows immediately from (E′) (§ 4) that: 
 

 Jλ = S m e eµ µ λ
µ

ω∑ , or from (7) 

(IVa) 

 Jλ = 
T

λω
∂
∂

. 

 
The λth impulse component is equal to the partial derivative of the kinetic energy with 
respect to the λth velocity parameter. 
 
 As a result, we can also write (III) as: 
 

dJ d
J

dt dt
λ

λ λ λ
λ λ

δϑ δϑ+∑ ∑ = 
T

Q J q
qλ λ λ λ λ

λ λ λ λ

δϑ δω δ∂+ +
∂∑ ∑ ∑ . 

 
If we now observe the transitivity equation: 
 

d

dt
δϑλ − δωλ = , ,

,
µ ν λ λ ν

µ ν
β δϑ ω∑ , 

 
as well as equations (A″′) (§ 3), and imagine that the equation above must be valid for all 
δϑλ then we will get: 
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(IV ′ b)    , , ,
,

dJ T
J

dt q
λ

µ ν λ µ ρ λ ρ
µ ρ ρ ρ

β ω ξ∂+ −
∂∑ ∑ = Qλ . 

  
With that, we have already found the general equations of mechanics that we seek.  If we 
introduce the symbolic differential quotients: 
 

(F)     
T

λϑ
 ∂
 ∂ 

= ,

T

q λ ρ
ρ ρ

ξ∂
∂∑ , 

 
which are defined by analogy to actual differential quotients, then we can also write: 
 

(IVb)    , ,
,

dJ T
J

dt
λ

µ ν λ µ ρ
µ ρ λ

β ω
ϑ

 ∂+ −  ∂ 
∑ = Qλ . 

 
 We would like to refer to these equations as the Lagrange-Euler equations of 
mechanics (1). 
 With that, we have discovered the Theorem: 
 
 If we introduce parameters ω1, …, ωn into the consideration of a mechanical system 
of n degrees of freedom that determine the velocity as independent, linear functions of the 

1qɺ , …, nqɺ , along with the coordinates q1, …, qn that determine position then the more 

general equation IV will enter in place of the Lagrange equations.  In them: T means the 
kinetic energy, Jλ means the impulse components that belong to the ωλ by way of (E′), 
and the β are the coefficients of the transitivity equations: 
 

dδϑλ − δdϑλ = , ,
,

dµ ν λ µ ν
µ ν

β δϑ ϑ∑  
d

dt
ν

ν
ϑω = 

 
. 

 

T

λϑ
 ∂
 ∂ 

 means nothing but ,

T

q λ ρ
ρ ρ

ξ∂
∂∑  and will go to 

T

λϑ
∂
∂

when all Jλ are actual 

coordinates that determine position.  In that case, all β will also be zero, since the β are 
determined in terms of the ξ by way of equations (5) (page 8) and (2) (page 6). 
 

                                                
 (1) If one expresses T in terms of the qλ and Jλ in equations (IV) then, after some other minor 
alterations, one will get equations that represent a special case of the Lagrange-Poisson-transformed ones.  
(Lagrange, t. I, pp. 315; see also Cauchy, “Report on the recent progress of theoretical dynamics.” Works 
III, no. 195) They express dJλ / dt and dqλ / dt linearly in terms of ∂T / ∂q and ∂T / ∂J with coefficients that 
amount to the Poisson bracket symbols for the special substitutions qλ = qλ and Jλ = , pλ τ τ

τ
ξ∑  (in which pτ = 

/T qτ∂ ∂ ɺ ). 
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 It should be stressed that if one wishes to exhibit these equations then one needs to 
known only the expression for the kinetic energy T and the quantities ξλ, ρ , which 
establish the connection between the qλɺ  and the ωλ . 

 
 

§ 6. Discussion of the Lagrange-Euler equations. Example of rigid body. 
 
 I would like to justify the fact that I have referred to equations IV as the Lagrange-
Euler equations of mechanics as follows: 
 First, they subsume the Lagrange equations; indeed, one needs only to assume that 
the ϑ are coordinates in order to get immediately: 
 

Jλ = 
T

λω
∂
∂

, 

dJ T

dt
λ

λϑ
∂−
∂

= Qλ , 

 
i.e., the Lagrangian equations.  However, in addition, we also recall that the first and last 
terms on the left-hand side suggest the structure of the Lagrange equation in its general 
form, and finally, one has Lagrange to thank for their derivation. 
 In order to justify the name Euler and at the same time to give an example, permit me 
to apply the entire theory to the rigid bodies that rotate about a fixed point. 
 If we take the Euler angles ϑ, ϕ, ψ to be the position-determining coordinates, and let 
p, q, r be the components of the rotation vector relative to the axes through the fixed 
point in the body that take the form of the principal axes of inertia then p, q, r will be 
linear couplings of the ϑɺ , ϕɺ , ψɺ  of the kind that we assumed in equations (A).  Namely, 
one has (1): 
 ϕɺ = r – cot ϑ (p sin ϕ + q cos ϕ), 
 

 ψɺ =      
1

sinϑ
(p sin ϕ + q cos ϕ), 

 
 ϑɺ =                  p cos ϕ + q sin ϕ. 
 
The kinetic energy assumes the following form in the p, q, r: 
 

T = 1
2 (A p2 + B q2 + Cr2), 

 
in which A, B, C are the (constant) principle moments of inertia (2).  Our J will now 
become: 

                                                
 (1) Klein-Sommerfeld, pp. 45, equations (7) and (9).  
 (2) Ibidem, pp. 100, equation 13.  
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J1 = 
T

p

∂
∂

 = Ap,  J2 = 
T

q

∂
∂

 = Bq,  J3 = 
T

r

∂
∂

 = Cr,  

 
and thus precisely the ones that Klein  and Sommerfeld called the impulse components L, 
M, N (1).  Now, in order to derive the transitivity equations, we construct the symbols for 
the three infinitesimal transformations using the equations above: 
 

 Xp = 
f

ϕ
∂
∂

(− cot ϑ sin ϕ) +
sin

sin

f fϕ
ϕ ϑ ϑ

∂ ∂+
∂ ∂

cos ϕ, 

 

 Xq = 
f

ϕ
∂
∂

(− cot ϑ cos ϕ) +
cos

sin

f fϕ
ψ ϑ ϑ

∂ ∂−
∂ ∂

sin ϕ, 

 Xr = 
f

ϕ
∂
∂

. 

 
If we calculate the bracket expression (Xp, Xq) from this then we will get precisely ∂f / 
∂ϕ ; i.e., Xr, etc.  The relations then exist: 
 

(Xp, Xq) = Xr ,      (Xq, Xr) = Xp ,      (Xr, Xp) = Xq . 
 
(Let it be expressly remarked that these relations are true only when p, q, r are referred to 
axes that are fixed in the body; for π, κ, ρ, which are the components of the same vector 
with respect to three axes that are fixed in space, the signs will be just the opposite.) 
 Hence, all β are constant (which is certainly not surprising), and indeed: 
 
 β1, 2, 1 = 0, β1, 2, 2 = 0, β1, 2, 3 = 1, 
 β2, 3, 1 = 1, β2, 3, 2 = 0, β2, 3, 2 = 0, 
 β3, 1, 1 = 0, β3, 1, 2 = 1, β3, 1, 3 = 0. 
 

Finally, since the 
T

λϑ
 ∂
 ∂ 

 are all zero, our equations (IV b) will read: 

 

 1dJ

dt
+ ω2 J3 – ω3 J2 = Q1 , 

 2dJ

dt
+ ω3 J1 – ω1 J3 = Q2 , 

 3dJ

dt
+ ω1 J2 – ω2 J1 = Q3 , 

 
(ω1 = p, ω2 = q,  ω3 = r), 

 

                                                
 (1) Lagrange had no special term for them, but the facts were already completely present for him.  
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and these are precisely the equations that, e.g., Klein-Sommerfeld, pp. 141 (3′) gave, up 
to notations; they are the Euler equations for the motion of a rigid body about a fixed 
point.  Moreover, as was mentioned already in the introduction, Lagrange had already 
derived these equations in their general form, and in essentially the same way (loc. cit., t. 
II, Section IX, Chap. I, § II, no. 22). 
 However, it emerges clearly from that example that the terms in equations (IV b) that 
are in the second position have entirely the same type as the terms that enter into the 
Euler equations for the derivatives of the impulse components, and that justifies the name 
“Lagrange-Euler equations.”  Furthermore, in the later considerations, it will be precisely 
Euler’s particular vectorial notation that will suggest itself more strongly in conjunction 
with Lie’s ideas. 
 
 

§ 7. Non-holonomic constraint equations 
 
 The main advantage of the Lagrange-Euler equations consists of the fact that they 
allow one to treat any non-holonomic constraint equations that might appear in a 
systematic way that is similar to what Lagrange applied to holonomic constraints. 
 We assume that ν < n linear, independent, and generally non-integrable constraint 
equations that do not include time explicitly are given for the δq.  By a suitable choice of 
the ω, we can likewise arrange that the constraint equations read simply: 
 
(G)     δϑn−ν+1 = 0, δϑn−ν+2 = 0, …, δϑn = 0. 
Naturally, the n equations: 
(V a)     ωn−ν+1 = 0, …, ωn = 0 
 
will be correspondingly fulfilled throughout the motion. 
 Nothing major has changed from our previous investigations.  We now have n – 
ν arbitrary, independent displacements δϑ1 , …, δϑn−ν .  The law of virtual displacements 
will be true for the new reactions that appear in equations (V a) when we consider only 
(G), and we will then get the equations of motion when we append the first n – ν of 
equations (IV b) to equations (V a), in which we observe that the Q1, .., Qn−ν are to be 
calculated from only the impressed external force using formulas (E) (§ 4).  When we 
take equations (V a) into account, we will get the n – ν equations: 
 

(V b)    , ,
1,2, ,

1, ,
n
n

dJ T
J

dt
λ

λ µ ρ µ ρ
µ ν λ

ρ

β ω
ϑ= −

=

 ∂+ −  ∂ 
∑
…

…

= Qλ  

 
(λ = 1, 2, …, n – ν). 

 
Equations (V a), (V b), (IV a), and (A) will then suffice completely to determine the 
motion.  We then have the theorem: 
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 If ν generally non-holonomic constraint equations are given for a mechanical 
problem with n degrees of freedom then one introduces linear combinations of the qɺ  by 
way of equations (A) (page 6) in such a way that the constraint equations assume the 
form δϑn−ν+1 = 0, δϑn = 0.  One calculates the forces Qλ in terms of only the impressed 
forces using (E) (page 13).  Equations (Va), (Vb), (IVa), and (A) then determine motion 
of the system completely.  However, let it be further remarked if one is to calculate the vis 
viva then one generally known the terms that are linear in ωn−ν+1 , …, ωn , since one 
requires the Jn−ν+1 , …, Jn in equations (Vb). 
 Now, the most important case is naturally the one in which one takes ω1 , …, ωn−ν to 
be simply 1qɺ , …, nq ν−ɺ  – i.e., velocities of n – ν suitably-chosen coordinates. 

 Naturally, one will then have that all of the: 
 

βλ, µ, ρ = 0 
for the ρ ≤ n – ν.  Now, one will have: 

dδϑρ = δdϑρ 
 
for such a ρ.  Equations (V b) then assume the form: 
 

(V b′)   , ,
1,2, ,

1, ,
n

n n

dJ T
q J

dt
λ

λ µ ρ µ ρ
µ ν λ

ρ ν

β
ϑ= −

= − +

 ∂+ −  ∂ 
∑
…

…

ɺ = Qλ  

 
(λ = 1, 2, …, n – ν). 

 
The expression that appears to the left of dJλ / dt is precisely the same as the one that 
Appel denoted by – Rλ . (See Introduction) Naturally, in the present case, one also has: 
 

ξλ, λ = 1 and ξρ, λ = 0 for all ρ ≠ λ 
 
for λ ≤ n – ν. [See equations (A)] 
 

 
§ 8. When can one employ the Lagrangian equations and the “illegitimate form” 

 of the vis viva for non-holonomic constraint equations? 
 
 We shall now address the question that many authors (1) have treated in recent times, 
when we simply put the Lagrangian equations in place of equations (V b′) and in that 
way, at the same time, the “illegitimate form” (2) of the vis viva that arises by setting 
ωn−ν+1, …, ωn in T can be employed, as long as one assumes that the coordinates qn−ν+1, 
…, qn do not enter into the abbreviated T anywhere. 
 From the last remark of the previous paragraphs, one will have: 

                                                
 (1) See the literature that was cited in the Introduction.  
 (2) An expression that C. Neumann used.  See “Beiträge zur analytischen Mechanik,” Leipziger 
Berichte, 1899, page 437; also Voss, Enzyklopädie der mathematischen Wissenschaften IV, 1, no. 38. 
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T

λϑ
 ∂
 ∂ 

 = ,
1

n

n

T T

q q λ ρ
ρ νλ ρ

ξ
= − +

∂ ∂+
∂ ∂∑  

 
for λ ≤ n – ν.  Now when the illegitimate T is free of qn−ν+1 , …, qn , if we employ (Va) (1) 
already then what will remain is: 

T

λϑ
 ∂
 ∂ 

 = 
T

qλ

∂
∂

    (λ = 1, 2, …, n – ν). 

 
Therefore, everything comes down to investigating when (2): 
 

, ,
n
n

Jλ µ ρ µ ρ
ρ ν
µ ν

β ω
> −
≤ −

∑  = 0, 

 
and indeed identically in all ωµ for µ ≤ n – ν. 
 Now, upon consideration of (V a): 
 

 Jρ = 
2

n

T
κ

κ ν ρ κ

ω
ω ω≤ −

∂
∂ ∂∑ . 

Hence, one must have: 

(8)     
2

, ,
n

T
λ µ ρ

ρ ν ρ κ

β
ω ω> −

∂
∂ ∂∑ = 0 

 
for all λ, µ, κ = 1, 2, …, n – ν. 
 These are the necessary and sufficient conditions for one to be able to employ simply 
the Lagrangian equations for q1, …, qn , which arise from the abbreviated T. 
 We need to discuss those conditions.  If ν = 1, so only one non-holonomic condition 

is present, things will be very simple.  Namely, either all 
2T

ρ κω ω
∂

∂ ∂
(κ < n) must vanish 

(i.e., the total kinetic energy T is composed of the part that is free of ωµ and a term in 2
nω ) 

or all βλ,µ,n must be zero (i.e., the infinitesimal transformations that belong to the q1, …, 
qn commute with each other), and the constraint equation will be integrable. 
 We will obtain the same result when more than one constraint equation is present.  
We will then proceed as follows: 
 Instead of ωn−ν+1, …, ωn , we can also introduce any sort of new linear and 
independent coupling of them.  Hence, we set: 
 

ωσ = ,σ ρ ρ
ρ

α ω′∑    (ρ, σ = n – ν + 1, …, n), 

                                                
 (1) Which is permitted here.  
 (2) The theorem of Korteweg (loc. cit.) that one can employ the illegitimate form of T for infinitely-
small motions follows immediately here from the form of the terms in question.  
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in which one must have only | ασ,ρ | ≠ 0.  If we introduce this substitution into T then we 
will get: 

2T

ρ κω ω
∂

∂ ∂
= 

2

,
n

T
σ ρ

σ ν σ κ

α
ω ω> −

∂
∂ ∂∑  

1, ,

1,2, ,

n n

n

ρ ν
κ ν

= − + 
 = − 

…

…
. 

 
We now construct a matrix of ν (or less) columns and (n – ν)2 rows from the βλ,µ,σ , in 
which we associated the various σ with the columns and the various µ and λ with rows.  

However, we would like to drop the columns with σ for which all 
2T

κ ρω ω
∂

∂ ∂
 are zero (κ ≤ 

n – ν).  Let ε be the rank of that matrix then (i.e., let the highest non-vanishing 
determinant that it contains have degree ε), and let that be true precisely for the last rows 
and columns ρ, σ = n, n – 1, …, n – ε + 1, which we can assume with no loss of 
generality.  We then set: 

ασ,ρ  = βλ,µ,σ 
 
for all σ > n – ν and ρ = n, n – 1, …, n – ε + 1, in which we associate each ρ with a 
certain pair of values for λ, µ, namely, one for which the ε-term determinant does not 
vanish.  We set all other ασ,ρ equal to zero, with the exception of: 
 

αρ,ρ = 1 
for 

ρ = n – ε, n – ε + 1, …, n – ν + 1. 
 

The determinant of the αρ,σ that are thus determined does not vanish, while for ρ = n, n – 
1, …, n – ε + 1 and κ ≤ n – ν : 
 

2T

ρ κω ω
∂

∂ ∂
= 

2

, ,

T
µ λ σ

σ σ κ

β
ω ω
∂

∂ ∂∑ , 

 
and that must now be zero, from equations (8).  With those substitutions, we have then 
succeeded in eliminating terms from ωκ ωρ from T with κ = 1, 2, …, n – ν and ρ = n, n − 
1, …, n – ε + 1 [in the event that (8) is fulfilled], while the coefficients of ωκ ωρ with ρ = 
n – ε, n – ε – 1, …, n – ν +1 remain unchanged, and therefore vanish if that is what they 
did before. 
 If we determine the β that are associated with the recently-introduced ω, and if they 
are still not all zero, then we can apply the procedure above; one can still make the 
coefficients of T that are endowed with ωκ ⋅⋅⋅⋅    ωρ  (ρ > n – ν, κ  ≤ n – ν) vanish.  That 
process must terminate, since the number of those coefficients is finite – i.e., either all 
coefficients of ωκ ωρ can be made to vanish, or when that is not the case, all βµ.λ,ρ for 
which not all coefficients of ωκ ωρ vanish will vanish.  With that, we have reached our 
goal.  We have then arrived at the following theorem: 
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 If we are allowed to pose the Lagrangian equations for the first n – ν coordinates 
that comes from the abbreviated – i.e., illegitimate – T then the r constraint equations 
must be brought into a form: 
 

ωn-ν+1 = 0, …, ωn-ν+τ = 0; ωn-ν+τ+1 = 0, …, ωn = 0 
 
by linear combinations such that terms with ωκ ⋅⋅⋅⋅    ωn-ν+ρ do not enter into the expression 
for the vis viva, while for λ, µ = 1, 2, …, n – ν : 
 

βλ,µ,n-ν+τ+σ = 0    (σ = 1, 2, …, ν – τ), 
 
such that the brackets (X λ, X µ) will be composed from only Xn−ν+1, .., Xn−ν+τ .  τ can have 
all values from 0 to ν in this.  In particular, if τ = 0 then the first n – ν infinitesimal 
transformations must commute with each other, so the infinitesimal motions that are 
actually possible will generate a group.  By contrast, if τ = ν then the energy must be 
composed of two separate terms: The part that is free of ωn-ν+1, …, ωn and a part that 
includes only those non-holonomic velocity parameters. 
 The conditions are also sufficient.  In the case τ = 0, the equations ωn−ν+1 = 0, …, ωn 

= 0 must be capable of being brought into an integrable form such that in reality no non-
holonomic constraint equations are present, moreover.  Since the displacements that are 
compatible with the ν Pfaffian equations dϑn−ν+1 = 0, …, dϑn = 0 will be represented by 
δq1, …, δqn−ν , but from the above they will generate an n – ν-parameter group in the 
variables q1 , …, qn , precisely ν finite constraint equations will exist, namely, the n 
equations that arise by eliminating the n – ν parameters from the equations of the finite 
group.  However, with that, we have once more arrived at the result that Hadamard 
stated in no. 8 of the treatise that was cited in the introduction.  However, he had to add 
the words “en générale”; his en générale corresponds to our τ = 0; i.e., to the case in 
which there is no ρ > n – ν for which all coefficients of ωκ ωρ (κ ≤ n – ν) in T will vanish. 
 If we now ask, more generally, not whether we can employ all constraint equations 
that we get from the outset by elimination from T, but which of them that we can employ, 
then that will yield an equation as a criterion that is entirely analogous to (8), except that 
the summation is extended over only the ρ that come into question.  We will come to the 
following theorem by essentially the same argument that we presented before: 
 
 We form all (Xλ, Xµ) for λ, µ = 1, 2, …, n – ν and select the independent ones from 
among them.  If there are ωn−ν+1 , …, ωn for which the associated infinitesimal 
transformations are independent of those brackets then we can employ those independent 
ωρ for the elimination from T.  Generally speaking, ν – (n – ν)(n – ν – 1) / 2 such ω will 
go away. 
 
 That is precisely Hadamard’s result (1) that he stated in the conclusion of no. 7 in the 
first-mentioned paper, except that in general this result only implies the necessary 

                                                
 (1) Hadamard has also expressed it in this group-theoretic form in his second note: “Sur certains 
systèmes d’équations.” 
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condition: We can, in fact, also drop an ωρ from T only when the associated infinitesimal 
transformation indeed results from the definition of the (Xλ, Xµ), but ωρ itself does not 
appear in T in conjunction with ω1 , ω2 , …, ωn−ν , and with that additional restriction, the 
condition will also be general and necessary. 
 However, things will become clearest here when we pose the problem somewhat 
more generally and renounce the demand that the first n – ν ω must be precisely the qɺ , 
and ask: 
 
 Let ν constraint equations be given.  Which of those equations can one employ for the 
presentation of the n – ν Lagrange-Euler equations (Vb) for the elimination from T? 
 
 The path to the solution of this problem remains entirely the old one, so it results 
from equations (8), and the answer then reads: 
 If one has brought the constraint equations into the form ωn−ν+1 = 0, …, ωn = 0 then 
one can set equal to zero, in addition to such independent combinations of those ω that 
do not enter into T in conjunction with the first n – ν ω, also the ones before exhibiting 
the first n – ν Lagrange-Euler equations in T that are linearly-independent of those 
combinations of the ω that belong to the infinitesimal transformations that result from the 
(Xρ, Xσ) (ρ, σ = 1, 2, …, n – ν).  Hence if the partial differential equations Xρ f = 0 (ρ = 1, 
…, n – ν) then define, in particular, a complete system, or – what amounts to the same 
thing – two possible (1) infinitesimal displacements again produce a possible 
infinitesimal displacement, then one can set all ωn−ν+1 , …, ωn equal to zero in T from the 
outset. 
 

 
Example of the two-wheeled wagon 

 
 As an example, we consider the motion of a two-wheeled wagon on a horizontal 
plane.  The wheels might be perpendicular to it and fixed along an axle of length 2l; we 
let their diameters be 2r, while we would like to ignore their thicknesses.  Let the axle of 
the wagon be permanently linked with the wagon.  If we assume a rectangular coordinate 
system x, y, z such that the z-axis falls along the vertical then the center of the wagon axis 
might have the coordinates x0, y0, and r. 
 Let ϑ be the angle that the direction that points from the left-hand wheel to the right-
hand one makes with the x-axis.  We still require two more coordinates then in order to 
establish the position of the wheels.  For that purpose, we employ in each wheel the angle 
ϕ1 (left) [ϕ2 (right), resp.] that a certain radius vector in each wheel subtends with the 
forward-pointing horizontal, and indeed we would like to measure the angle in the sense 
that forward, below, backward, above follow in sequence, such that ϕ1 and ϕ2 will 
increase when the wagon rolls forward. 
 We would like to ignore any rotation of the wagon about the horizontal axis, such that 
the five coordinates x0, y0, ϑ, ϕ1, ϕ2 will suffice to determine the position of the system 
completely. 

                                                
 (1) i.e., compatible with the constraint equations.  
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 Now let a, b, c be the coordinates of a point of the wagon relative to the system that is 
fixed in the wagon and is constructed from the axle, the shaft that is used for towing it, 
and a perpendicular to the latter two axes, so for a point of the wagon itself one will have: 
 
 x = x0 + a cos ϑ – b sin ϑ, 
 
 y = y0 + a sin ϑ + b cos ϑ, 
 
 z = c + r, 
so 
 xɺ  = 0xɺ − (a sin ϑ + b cos ϑ) ϑɺ , 
 
 yɺ  = 0yɺ − (a cos ϑ − b sin ϑ) ϑɺ , 
 zɺ  = 0. 
 
However, if we establish a point in the wheels by the polar coordinates ρ1, α1 (ρ2 and α2, 
resp.), in which α1 and α2 might be measured from the directions that are fixed in the 
wheels in the same sense as ϕ1 and ϕ2 , then we will have: 
 
 x = x0 – l cos ϑ – ρ1 cos (ϕ1 + α1) sin ϑ, 
 
 y = y0 – l sin ϑ + ρ1 cos (ϕ1 + α1) cos ϑ, 
 
 z = r – ρ1 sin (ϕ1 + α1) 
 
for a point on the left wheel, so: 
 
 xɺ  = 0xɺ  + [l sin ϑ – ρ1 cos (ϕ1 + α1) cos ϑ] ϑɺ + ρ1 sin (ϕ1 + α1) sin ϑ ⋅⋅⋅⋅ 1ϕɺ , 

 
 yɺ  = 0yɺ  − [l cos ϑ + ρ1 cos (ϕ1 + α1) sin ϑ] ϑɺ − ρ1 sin (ϕ1 + α1) cos ϑ ⋅⋅⋅⋅ 1ϕɺ , 

 
 zɺ = – ρ1 cos (ϕ1 + α1) 1ϕɺ , 

 
and we will have: 
 x = x0 + l cos ϑ – ρ2 cos (ϕ2 + α2) sin ϑ, 
 
 y = y0 + l sin ϑ + ρ2 cos (ϕ2 + α2) cos ϑ, 
 
 z = r – ρ2 sin (ϕ2 + α2) 
 
for a point on the right wheel, so: 
 
 xɺ  = 0xɺ  + [− l sin ϑ – ρ2 cos (ϕ2 + α2) cos ϑ] ϑɺ + ρ2 sin (ϕ2 + α2) sin ϑ ⋅⋅⋅⋅ 2ϕɺ , 
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 yɺ  = 0yɺ  − [− l cos ϑ + ρ2 cos (ϕ2 + α2) sin ϑ] ϑɺ − ρ2 sin (ϕ2 + α2) cos ϑ ⋅⋅⋅⋅ 2ϕɺ , 

 
 zɺ = – ρ1 cos (ϕ2 + α2) 2ϕɺ . 

 
 Now since the lowest point of each wheel must be at rest during the rolling motion, 
and since ϕ1 + α1  = π / 2, ϕ2 + α2 = π / 2, ρ = r for those points, we will get the four 
conditions: 
 0 = 0 1sin sinx l rϑϑ ϑ ϕ+ +ɺ ɺɺ , 

 0 = 0 1cos cosy l rϑϑ ϑϕ− −ɺ ɺɺ , 

 0 = 0 2sin sinx l rϑϑ ϑ ϕ− +ɺ ɺɺ , 

 0 = 0 2cos cosy l rϑϑ ϑ ϕ+ −ɺ ɺɺ . 

(The two zɺ  will each be zero.) 
 However, these four equations are not independent of each other; one can derive the 
following three independent constraint equations from them: 
 

 ω3 ≡ 1 1

1
( )l

r
ϕ ω ϑ+ + ɺɺ  = 0, 

 ω4 ≡ 2 1

1
( )l

r
ϕ ω ϑ+ − ɺɺ  = 0, 

 ω5 ≡ 0 0cos sinx yϑ ϑ+ɺ ɺ  = 0. 

In them, one has set: 
ω1 ≡ 0 0sin cosx yϑ ϑ−ɺ ɺ ; 

 
ω1 means the component of the velocity in the direction of the shaft, so it is the velocity 
of the actual forward motion. 
 We would now like to introduce: 
 

ω1 ,  ϑɺ = ω2 , ω3 , ω4 , ω5 
 

as the five independent velocity parameters; the constraint equations then read simply: 
 

ω3 = 0,      ω4 = 0,      ω5 = 0. 
 
The transitivity equations in this case are especially easy to exhibit; one gets: 
 
 β5,2,1 = 1, β2,5,1 = − 1, all other βκ,λ,1 = 0, 
 
 βκ,λ,2 = 0, 
 

 βκ,λ,3 = βκ,λ,4 = 
1

r
βκ,λ,1 , 
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 β1,2,5 = − 1, β2,1,5 = 1, all other βκ,λ,5 = 0. 
 
 Now since all βκ,λ,5 and βκ,λ,4 for which the κ and λ have the values 1 or 2 are zero, 
one can employ the conditions ω3 = 0 and ω4 = 0 directly for the purpose of exhibiting T, 
but not ω5 = 0, since β1,2,5 is not zero. 
 If we now let M denote the mass of the wagon alone, and let a* and b* denote its 
center of mass coordinates, while k is the radius of inertia relative to a vertical through 
the center of the axle then the vis viva for the wagon, but without its wheels, will be: 
 

Tw = 2 2 2 2
0 0 0 0[ 2 ( sin cos ) 2 ( cos sin )]

2

M
x y k x a b y a bϑ ϑ ϑ ϑ ϑ ϑ ϑ∗ ∗ ∗ ∗+ + − + + −ɺ ɺ ɺɺ ɺ ɺ ɺ  

 

= 2 2 2
1 2 1 2 2 5[ 2 2 ]

2

M
k a bω ω ω ω ω ω∗ ∗+ − − . 

 
we have already dropped 25ω . 

 If we then denote the mass of each wheel by m and assume that the center of mass of 
each wheel lies in the hub and that the wheel possesses rotational symmetry about the 
hub then the vis viva of the left wheel will be: 
 

Tl = 2 2 2 2 2 2 2
0 0 0 0 1 0 0[ ( 2 ) 2 sin 2 cos ]

2

m
x y l k k l x l yϑ ϕ ϑ ϑ ϑ ϑ+ + + − + ⋅ − ⋅ɺ ɺ ɺɺɺ ɺ ɺ ɺ , 

 
in which k0 denotes the polar radius of inertia.  (By assumption, 202mk  will then be the 

moment of inertia around an axis in the plane of the wheel that goes through the center of 
mass.) 
 For the right wheel, one will have: 
 

Tr = 2 2 2 2 2 2 2
0 0 0 0 2 0 0[ ( 2 ) 2 sin 2 cos ]

2

m
x y l k k l x l yϑ ϕ ϑ ϑ ϑ ϑ+ + + + − ⋅ + ⋅ɺ ɺ ɺɺɺ ɺ ɺ ɺ . 

 
If we add Tl and Tr then the last two terms will cancel, and after one introduces the ω, 
while considering the facts that ω3 = ω4 = 0, what will remain will be: 
 

Tl + Tr = 
2 2

2 2 2 2 20
1 2 0 02 2

1
2 2 2 2

2

k l
m m m l k k

r r
ω ω
    

+ + + +    
   

. 

 
With that, the total vis viva (i.e., when one sets ω3 and ω4 equal to zero and drops the 
term with 2

5ω ) will be: 

 

T = 
2 2 2

2 2 2 2 20 0
1 2 0 1 2 2 52 2

1
2 1 2 2 2 2

2

k k l
M m Mk m l k Ma b

r r
ω ω ω ω ω ω∗ ∗
        + + + + + + − −       

        
. 
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T no longer contains any coordinates explicitly.  Therefore, the equations of motion read 
simply: 

 1dJ

dt
− ω2 J5 = Q1 , 

 2dJ

dt
+ ω1 J5 = Q2 , 

and therefore one will have: 
 

 J1 = 
5

1 0

T

ωω
=

 ∂
 ∂ 

= ω1 
2
0
2

2 1
k

M m
r

  
+ +  

  
– ω3 M a*, 

 J2 = 
5

2 0

T

ωω
=

 ∂
 ∂ 

= ω2 
2

2 2 2 0 2
0 2

2 2
k l

Mk m l k
r

  
+ + +  

  
– ω1 M a*, 

 

 J5 = 
5

5 0

T

ωω
=

 ∂
 ∂ 

= ω2 M b*, 

 
which are then linear couplings of ω1 and ω2 with constant coefficients. 
 Q1 means the force that pulls in the direction of the shaft, while Q2 means the 
rotational moment relative to the center of the wagon axle.  That might suffice for the 
purposes of the present study.  If one would actually like to examine the motion of such a 
wagon then one would now have to enter into the much-more-difficult part of the 
problem, namely, the study of the force systems for any sort of forward motion of the 
wagon. 
 
 

§ 9. The impulse equations 
 
 We shall now turn to some other questions, and indeed we will give free rein to those 
ideas that come out of the consideration of the motion of the rigid body almost 
intrinsically. 
 It is entirely clear that the expression for the vis viva of the rigid body admits the 
group of its own motions; i.e., the rotations. 
 We ask, more generally: 
 When does our expression for the vis viva T admit an infinitesimal 
transformationX fρ ?  From our definition of Xρ f, and in the sense of group theory, we 

would like to regard the δϑ as constants here, such that one can set: 
 

d δρ ϑλ = 0 . 
 
 The answer to this question is not hard to find.  If T is to admit the ρth infinitesimal 
transformation, and indeed the extended point-transformation, then one must have: 
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Xρ T = 0; 
i.e.: 

,

T T

q ρ σ ρ σ
σ σσ σ

ξ δ ω
ω

∂ ∂+
∂ ∂∑ ∑ = 0. 

[from (B), page 9] 
 However, from [(I), page 8]: 
 

δρ ωσ = − , ,ρ µ σ µ ρ
µ

β ω δϑ∑ . 

Hence, one must have: 
 

(9)     , , ,
,

T T

q ρ σ ρ µ σ µ
σ σ µσ σ

ξ β ω
ω

∂ ∂−
∂ ∂∑ ∑ = 0. 

 
However, if we imagine that, from [(F), page 15], the first sum will be nothing but 

T

ρϑ
 ∂
  ∂ 

, while the second one means precisely , ,
,

Jρ µ σ µ σ
σ µ

β ω∑ , then we will see that all 

terms up to the first one on the left in the ρth equation (IVb) will drop out, and since all of 
the conclusions can be inverted, we will have the theorem: 
 
 The assumption that the expression for the vis viva will admit the ρth infinitesimal 
transformation Xρ under the assumption that d δρ ϑλ = 0 has the consequence that the 
Lagrange-Euler equation reads simply: 
 

(VI)     
dJ

dt
ρ = Qρ , 

 
and conversely: If it so happens that this equation assumes such a simple form then T 
must admit the ρth infinitesimal transformation.  The analytic expression for T to admit 
that transformation is equation (9). 
 We would like to refer to equations (VI) as the impulse equations. 
 Incidentally, that yields yet another theorem: 
 
 One can also write the general Lagrange-Euler equations thus: 
 

(IVc)     
dJ

dt
ρ − Xρ T = Qρ , 

 
in which Xρ is the symbol of the ρth infinitesimal extended point-transformation. 
 In this form, our equations come to light more clearly as generalizations of the 
Lagrangian equation in a different way.  Xρ T is intrinsically connected with ∂T / ∂ϑρ 
conceptually, and indeed it also goes over to it when the ϑρ are actual coordinates. 
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 Example: If we consider a rigid body that rotates around a fixed point and introduce 
the projections π, κ, ρ (1) of the rotation vector onto three orthogonal axes that are fixed 
in space as the parameters ω then, as we remarked before, T will admit the group of those 
motions, and therefore the equations of motion will read simply: 
 

1dJ

dt
= Q1 , 2dJ

dt
= Q2 , 3dJ

dt
= Q3 , 

in which one has (2): 

J1 = 
T

π
∂
∂

, J2 = 
T

κ
∂
∂

, J3 = 
T

ρ
∂
∂

. 

 
 We shall return to the general case. 
 
 If T admits precisely ν ≤ n of the infinitesimal transformations (B) then ν equations 
that are analogous to the area theorems will exist in the case of force-free motion, 
namely: 

Jλ = const. 
 Furthermore, one has the theorem: 
 
 If we know any ν infinitesimal transformations: 
 

Xρ f = ,

f

qρ λ
λ λ

ξ ∂
∂∑    (λ = 1, 2, …, ν) 

 
the T admits for a mechanical system with n degrees of freedom then we make the 
substitutions (A), for a suitable choice of the other ξρ,κ .  The first n equations of motion 
then read simply: 

dJ

dt
ρ = Qρ . 

 
In particular, if the motion is force-free then we will know ν first integrals directly, 
namely, Jρ = const. 
 It would be consistent with the Thomson-Helmholtz view of things to refer to the ωρ 
for which Xρ T = 0 and Qρ = 0 (so Jρ = const.) as cyclic velocity parameters; they then 
define the natural generalization of the cyclic coordinates (their derivatives with respect 
to time, resp.). 
 Let it be stated expressly that not every mechanical system possesses impulse 
equations. 
 
 
 
 
                                                
 (1) This is the same notation as in Klein-Sommerfeld, pp. 45, equations (8).  
 (2) Ibidem, pp. 115, Theorem IIa.  
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§ 10. Euler’s equations 
 
 We shall take our basis to be our ongoing assumption that just dδϑρ shall be zero 
under infinitesimal transformation (variation), which is entirely arbitrary, if also closely 
related to group-theoretic concepts.  Any other assumption about dδϑρ is likewise 
permitted.  For example, we can then consider a variation for which, in particular: 
 

dδϑρ = , , dλ µ ρ µ λβ ϑ δϑ∑ , 

  
such that one will have directly that: 

δ d ϑρ = 0. 
What does that mean? 
 Only that we leave the velocity parameters unchanged under the variation.  However, 
we once more consider the rigid body and now introduce the components p, q, r of the 
rotation vector along three orthogonal axes that are fixed in the body to be ω1, ω2, ω3, 
resp.  The assumption that δp = 0, δq = 0, δr = 0 will then mean that we generate the 
varied motion directly by an infinitely-small, constant rotation around an axis that is fixed 
in space; then and only then do the velocity components not change relative to the axes 
that are fixed in the body. (Analytically-speaking: The position of the body at every time 
is fixed by p, q, r, up to a rotation of the coordinate system.) In this example, we see how 
the assumption that dδϑ1 = 0, dδϑ2 = 0, dδϑ3 = 0 (the δϑ are referred to axes that are 
fixed in space) can be closely related to the assumption that δ dϑ1 = 0, δ dϑ2 = 0, δdϑ3 = 
0 (the δϑ are referred to axes that are fixed in the body).  A deeper study of this 
remarkable relationship in the general case shall follow later; for now, that remark might 
suffice to justify the consideration of the assumption: 
 

δλ dϑλ = 0. 
 
 We once more ask: When does T admit the ρth infinitesimal transformation under this 
new assumption? 
 
 Obviously, one must then have: 

(10)     ,

T

q ρ σ
σ σ

ξ∂
∂∑ = 0, 

or 

T

ρϑ
 ∂
  ∂ 

= 0, 

 
and the ρth Lagrange-Euler equation now reads: 
 

(VII)    , ,

dJ
J

dt
ρ

λ µ ρ µ λβ ω+∑  = Qρ . 

 
We would like to call such an equation an Euler equation (in the broad sense). 
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 We have then arrived at the theorem: 
 
 The assumption that the expression for the vis viva T admits the ρth infinitesimal 
transformation under the assumption that δρ dϑλ = 0 (for all λ) has the consequence that 
the simple Euler equation (VII) will enter in place of the ρth Lagrange-Euler equation.  
Conversely: If one succeeds in giving the ρth equation that form then T must admit the ρth 
infinitesimal transformation under the assumption that δλ dϑλ = 0. 
 
 If we assume that T admits all n infinitesimal transformations then we will naturally 
get nothing but Euler’s equations.  However, it also follows from equations (10), which 
must now be true for all ρ, that: 

T

qσ

∂
∂

= 0 for all σ ; 

 
i.e., T must have constant coefficients. 
 
 Theorem: A mechanical system will move in accordance with Euler’s equation (VII) 
if and only if T has constant coefficients after one introduces the ω, so if and only if T 
admits all infinitesimal transformations (B) under the assumption that δωλ = 0. 
 In particular, if the n infinitesimal transformations generate a group, so when all β 
are constant, then the Eulerian equations (VII) will contain nothing but the ω as 
variables on the left-hand side. 
 
 In this case, one would probably be advised to refer to equations (VII) as Euler’s 
equation in the narrow sense. 
 Since the rigid body obviously fulfills all of the stated conditions when one 
introduces the projections p, q, r of the rotation vector onto axes that are fixed in the 
body, its equations of motion must have precisely the form (VII), in which J1 = ∂T / ∂p, 
J2 = ∂T / ∂q, J3 = ∂T / ∂r, and T means a quadratic form in the p, q, r with constant 
coefficients.  One then needs only to determine the special form of the β, as was done 
above on page 17 in order to be able to write down the ordinary Euler equations for rigid 
bodies directly on the basis of this argument and our general theorems. 
 For the general, it should be remarked that: Since one can always introduce velocity 
parameters such that T constant coefficients (since one can in fact bring any definite 

quadratic form T into the form 2

1

n

i
i

ω
=
∑  by a real linear substitution), there will be Euler 

equations in the broad sense for any system.  However, the β will naturally not be 
constant. 
 
 Any system of n degrees of freedom then possesses Euler equations in the broad 
sense, but not also in the narrow sense. 
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§ 11. The relationship between the assumptions dδϑ = 0 and δdϑ = 0 
 
 We now take up the question of the relationship between the two assumptions dδϑ = 
0 and δdϑ = 0 that we already brushed upon briefly above. 
 Since one can go from the p, q, r to the π, κ, ρ by a rotation of the coordinate system 
– i.e., by a linear transformation (with variable coefficients) – then we shall now pose the 
following general question: 
 
 If we introduce n new velocity parameters 1ω′ , …, nω′   in place of ω1, …, ωn by way of 

the equations: 
(H)      ωλ = ,λ κ κ

κ
ε ω′∑ , 

 
in which the determinant | ελ,κ | should not vanish identically then can we arrange for the 
assumption that dδϑλ = 0 to go to d λδ ϑ′ = 0 by a suitable choice of the ε (which depend 

upon the q)? 
 
 (Henceforth, we shall denote all quantities that refer to the ω′ with primes.) 
 It follows from the equation: 

δϑλ = ,λ κ κ
κ

ε δϑ′∑ , 

which corresponds to (H), that: 
 

(11)    

, ,

, ,

,

and from (H) itself :

.

d d d

d d d

λ λ κ κ λ κ κ
κ κ

λ λ κ κ λ κ κ
κ κ

δϑ ε δϑ ε δϑ

δ ϑ δε ϑ ε δ ϑ

′ ′ = +



 ′ ′= +


∑ ∑

∑ ∑
 

 
The first set of these equations can be employed to calculate d κδϑ′  when one considers 

that dδϑλ = 0; however, when one considers the transitivity equations on the left of the 
second set and the assumption that d κδ ϑ′  = 0 on the right, it will follow that: 

 
− , ,

,

dµ ν λ ν µ
µ ν

β ϑ δϑ∑ = , dλ κ κ
κ

δϑ ϑ′∑ . 

If one now once more sets: 
d κϑ′ = ,E dκ λ λ

λ
ϑ∑  

using (H), in which: 

, ,Eκ λ λ µ
λ

ε∑ = δκ,µ , 

 
then equations (11) must be true for all dϑ and δϑ.  On the same basis, when one 
substitutes: 
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δελ,κ  = , q
q
λ κ

ι
ι ι

ε
δ

∂
∂∑ = ,

,q
λ κ

ν ι ν
ι ι

ε
ξ δϑ

∂
∂∑  

it will follow further that: 

  − βν,µ,λ =
,

, ,
,

E
q
λ κ

ν ι κ µ
κ ι ι

ε
ξ

∂
∂∑ . 

 
If one solves these equations for the derivatives of ελ,κ then one will get: 
 

(12)    ,

q
λ κ

ι

ε∂
∂

= − , , , ,
,

ν µ λ ν ι µ κ
ν µ

β π ε∑ . 

 
These are the constraint equations for the ελ,κ .  The assumption that dδϑλ = 0 will go to 
the assumption that d λδ ϑ′  = 0 under the transformation (H) if and only if they are 

fulfilled. 
 We shall now address the problem of exhibiting the integrability equations for (12).  
If we differentiate these equations with respect to qτ and then present the same equations 
when we switch ι and τ then since the left-hand sides of these two equations agree, the 
right-hand sides must also be equal.  When we combine both sides simultaneously, we 
will then get: 

, , , ,, ,
, , , , , ,

, ,q q q q
ν µ λ ν µ λν ι ν τ

ν µ λ µ κ ν ι ν τ µ κ
ν µ ν µτ ι τ ι

β βπ π
β ε π π ε

∂ ∂∂ ∂   
− + −   ∂ ∂ ∂ ∂   

∑ ∑  

 

+ , ,
, , , ,

, q q
µ κ µ κ

ν µ λ ν ι ν τ
ν µ τ ι

ε ε
β π π

∂ ∂ 
− ∂ ∂ 

∑  = 0. 

 
If we substitute equations (5′) (page 9, § 2), as well as equations (12) in this then we will 
get: 
 If we switch ρ and µ in the last sum then since the equations are true for all κ, we can 
also write: 
 

, , , , , , , , , , , , , , , , , ,
, ,

ν µ λ σ ρ ν ρ ι σ ι ν ρ λ σ µ ν σ τ ν ι ν µ λ σ µ ρ σ ι ν τ
ν ρ σ

β β π π β β π π β β π π− +∑ ∑ ∑  

= , , , ,
, ,q q

ν µ λ ν µ λ
ν τ ν ι

ν ι τ

β β
π π

∂ ∂ 
− ∂ ∂ 

∑ . 

 
We shall now steer clear of applying formula (6b) (page 12, § 3).  We can write the 
foregoing formula with permutation of the summation indices as: 
 

, , , , , , , , , , , , , ,
,

( )ρ ι σ ι ρ σ ν ν µ λ µ ρ ν ν σ λ σ µ ν ν ρ λ
ρ σ ν

π π β β β β β β+ +∑ ∑  
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= , , , ,
, ,q q

µ ρ λ σ µ λ
ρ τ σ ι

ρ σι τ

β β
π π

∂ ∂
+

∂ ∂∑ ∑ . 

 
It follows upon solving for the sum over ν that: 
 

, , , , , , , , , , , ,( )ρ σ ν ν µ λ µ ρ ν ν σ λ σ µ ν ν ρ λ
ν

β β β β β β+ +∑  

= , , , ,
, ,q q

µ ρ λ σ µ λ
σ ι ρ τ

ι σι τ

β β
ξ ξ

∂ ∂
+

∂ ∂∑ ∑ . 

 
If we switch the summation symbols τ and ι in the last sum and compare the formula, 
thus-altered, with formula (6b) then we will see directly that we can also simply write it 
as: 

, ,
, q

ρ σ λ
µ ι

ι ι

β
ξ

∂
∂∑ = 0. 

 
Since this should be true for all µ, it will follow that the necessary integrability condition 
for equations (12) is that: 

(VIII)     , ,

q
ρ σ λ

ι

β∂
∂

= 0 

 
for all ρ, σ, λ, ι ; i.e., all β must be constant. 
 Now it follows from the general theory of systems of partial differential equations 
like (12) (1) that the condition that was found is also sufficient for (12) to possess 
solutions.  Indeed, the general solution of (12) contains precisely n2 constants, say the 
values of ελ,µ for a well-defined system of values of the q.  Furthermore, each ελ,µ 
depends upon only n of those constants, since the system (12) splits into n separate 
independent systems that are represented by the various values of the index κ. 
 We then have the following Theorem: 
 
 It is possible to convert the condition dδϑ = 0 into the condition δdϑ = 0 by a 

transformation of the form (H) iff the n infinitesimal transformations Xρ = ,

f

qρ λ
λ λ

ξ ∂
∂∑  

generate an n-parameter group.  The transformation coefficients ε are determined 
completely by the partial differential equations (12), up to a well-defined system of initial 
values for the q. 
 
 In particular, for rigid bodies, the π, κ, ρ will transform into the p, q, r in precisely the 
same way that the axis-cross that is fixed in space transforms into the axis-cross that is 
fixed in the body.  Therefore, the ελ,κ will be the nine direction cosines that the system 
that is fixed in the body define with the one that is fixed in space for rigid bodies. 

                                                
 (1) See, e.g., Lie-Engel, v. I, pp. 179, Theorem I.  



Hamel – The Lagrange-Euler equations of mechanics 35 

 How do the other quantities transform under the substitution (H), namely, the β (for 
which we will now write c), the e , the x, the J, and the Q?  It follows from the first row 
of equations (11) that: 
 d κδϑ′  = − , ,

,

d Eλ µ µ κ λ
µ λ

ε δϑ′∑  

  = − ,
, ,

, , ,

d E
q
λ µ

ν ι ν µ κ λ
µ λ ν ι ι

ε
ξ ϑ δϑ

∂
′

∂∑  

  = − ,
, , ,

, , , ,

E d
q
λ µ

ν ι ν ρ κ λ ρ µ
µ λ ν ρ ι ι

ε
ξ ε ϑ δϑ

∂
′ ′

∂∑ . 

 
Hence, when we switch the indices ρ and µ, we will have: 
 

, ,cρ µ κ′ = − ,
, , ,

, ,

E
q
λ ρ

ν ι λ µ κ λ
λ ν ι ι

ε
ξ ε

∂
∂∑ . 

 
If we then substitute the value of ∂ελ,ρ / ∂qι from (12) in this then we will get: 
 
 , ,cρ µ κ′ = , , , , , , ,

, , ,

c Eα γ λ α ι ν ι γ ρ ν µ κ λ
σ γ λ ι ν

π ξ ε ε∑ ∑  

 = , , , , ,
, ,

c Eα γ λ α µ γ ρ κ λ
α γ λ

ε ε∑ . 

 
or finally, when written more clearly: 
 
(13)    , ,cρ µ κ′ = − , , , , ,

, ,

c Eα γ λ α ρ γ µ κ λ
α γ λ

ε ε∑ . 

 
Naturally, the c′ will also be constant, since no significant difference exists between the 
variations d and δ. 
 In order to find the transformation of the e , we start from the equation: 
 

dx  = e dλ λϑ∑ = e dλ λϑ′ ′∑ = ,e E dλ λ κ κϑ′∑ . 

Hence: 
eλ = ,E eκ λ κ

κ

′∑ . 

It similarly follows from: 
dqλ = , dρ λ ρ

ρ
ξ ϑ∑ = , dρ λ ρ

ρ
ξ ϑ′ ′∑  

that 
(14′)     ερ,λ = , ,Eκ ρ κ λ

κ
ξ ′∑ , 

and in precisely the same way: 
(14″)     Jλ = ,E Jκ λ κ

κ

′∑ , 
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(14″′)     Qλ = ,E Qκ λ κ
κ

′∑ . 

 
___________ 

 

 Now, if the vis viva T admits all the infinitesimal transformations ,

f

qλ ρ
ρ ρ

ξ ∂
∂∑ , in the 

sense that one takes dδϑ = 0, then naturally T will also admit the transformations 

,

f

qλ ρ
ρ ρ

ξ ∂′
∂∑ , and it is obvious that one must now set d ρδ ϑ′  = 0.  With that, we have the 

Theorem: 
 If the equations of motion of a system can be brought into the form of impulse 
equations: 

dJ

dt
λ = Qλ , in which Jλ = 

T

λω
∂
∂

, 

 
then one can introduce, under one condition, new velocity parameters ω′ by the 
substitutions (H) in such a way that the new equations of motion will read: 
 

, ,

dJ
c J

dt
λ

λ µ ν µ νω
′ ′ ′ ′+∑ = Qλ′ , 

 
in which one now has Jλ′ = /T λω′∂ ∂ , and the coefficients of the form T that is quadratic 

in the λω′  are constant.  The single condition reads: One must have that β = c, and 

therefore also β′ = c′, must be constant; i.e., the infinitesimal transformations (B) (page 
9, § 3) must generate an n-parameter group. 
 
Briefly stated: 
 
 If there are Euler equations in the narrow sense then there will also be impulse 
equations; however, the converse it true only when the transformations (B) generate a 
group. 
 
 There are a few things that can be said about the ελ,κ , namely, the coefficients in (H). 
 If we denote the initial values of the ελ,κ by (0)

,λ κε  then the integral equations of (12): 

 
ελ,κ = ϕλ,κ (q1, …, qn ; 

(0)
1,κε , …, (0)

,n κε ) 

 
will define the finite equations of a group.  If we set: 
 

, , ,cµ ν λ µ κ
µ

ε∑ = ξν, λ,κ 

then equations (12) will read: 
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,

q
λ κ

ι

ε∂
∂

= , , ,ν ι ν λ κ
ν

π ξ∑ . 

 
Since the functions ϕλ,κ satisfy these differential equations, from Lie’s (1) first 
fundamental theorem, the n equations 
 

ελ,κ = ϕλ,κ  
 

(for λ = 1, 2, …, n, but a well-defined, if also arbitrary, κ) will, in fact, represent a group; 
q1, …, qn play the role of the parameters. 
 The equations: 

ελ,κ = ϕλ,κ (q1, …, qn ; 
(0)
1,κε , …, (0)

,n κε ),  

,λ κε ′ = ϕλ,κ ( 1q′ , …, nq′  ; ε1,κ , …, εn,κ) 

 
will then imply the equations: 
 

,λ κε ′ = ϕλ,κ ( 1q′′ , …, nq′′  ; 
(0)
1,κε , …, (0)

,n κε ), 

 
in which 1q′′ , …, nq′′  are functions of only q1, …, qn and 1q′ , …, nq′ . 

 However, the infinitesimal transformations of that group: 
 

, ,
,

f
µ λ κ

λ λ κ

ξ
ε
∂

∂∑ = , ,
, ,

f
cµ λ κ

λ ν λ κε
∂

∂∑  

 
are nothing but the infinitesimal transformations of the adjoint group (2) that belongs to 

the group Xρ = ,

f

qρ λ
λ λ

ξ ∂
∂∑ . 

 We then have the theorem: 
 
 The arbitrary values of the q that are associated with the ε by (12) emerge from the 
arbitrarily-chosen initial values of the ε by an application of the adjoint group to the 
given group (B), in which the coordinates q1, …, qn play the role of parameters.  
However, the parameter group of that new group is once more the old group. 
 
 In order to prove the last statement, we write (12) as: 
 

ξµ,λ,κ =
,

, q
λ κ

µ ι
ι ι

ε
ξ

∂
∂∑ . 

 
However, from a theorem that Lie proved (1), it will follow from this equation that: 

                                                
 (1) Lie-Scheffers, pp. 376; Lie-Engel III, pp. 563.  
 (2) Lie-Scheffers, pp. 464, formula (19). 
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,

f

qµ ι
ι ι

ξ ∂
∂∑ ; 

 
i.e., the symbol of the µth infinitesimal transformation of the original group (B), is 
simultaneously the symbol of the µth infinitesimal transformation of the parameter group. 
 We would like to derive yet another remarkable relationship.  Namely, I assert that 
the given group (B) and the reciprocal group (2) that corresponds to the ,ρ λξ ′  [see 

equation (14′)] are simply-transitive groups. 
 Namely, if we set: 

Xρ′ = ,

f

qρ λ
λ λ

ξ ∂′
∂∑ , 

 
analogous to (B), then I assert that we will have: 
 

(Xρ, Xσ′ ) = 0 

 
for every pair of values ρ, σ, and since our groups are simply-transitive, from the 
assumptions that: 

| ξρ,λ | ≠ 0 and | ερ,λ |  ≠ 0, 
 
the first statement will follow from our new one by Lie ’s theorems in Chapter 20 of 
Transformationsgruppen. 
 However, our new assertion is very easy to prove.  Since: 
 

( )X Xρ σ′ = , ,
, ,

,

f

q q q
σ λ σ λ

ρ µ ρ µ
λ µ µ µ λ

ξ ξ
ξ ξ

 ′∂ ∂ ∂′−  ∂ ∂ ∂ 
∑ , 

and from (14′): 
,κ λξ ′ = , ,ρ λ ρ κ

ρ
ξ ε∑ , 

 
the statement will follow from a simple calculation when we observe equations (12) for 
the ερ,κ and equations (5) for the cλ,µ,ν (page 8). 
 Since one can determine the ερ,κ uniquely from the given ,κ λξ ′  and ξρ,κ using equations 

(14), that will imply the following purely-group-theoretic theorem: 
 
 If we have two classes of n infinitesimal transformations in n variables: 
 

Xρ = ,

f

qρ λ
λ λ

ξ ∂
∂∑   and Xσ′  = ,

f

qρ λ
λ λ

ξ ∂′
∂∑ , 

 

                                                                                                                                            
 (1) Lie-Scheffers, v. I, pp. 407, Theorem 72. 
 (2)  Lie-Scheffers, v. I, pp. 380, Theorem 68. 
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and none of the determinants | ξρ,κ | and ,κ λξ ′  vanish identically then the 

transformations of the one class can be switched with all transformations of the other 
class only when the transformations of each class generate an n-parameter group.  
Naturally, the groups will then be simply-transitive and reciprocal to each other. 
 
 Since I will not need this theorem, I can probably suppress its proof; however, all of 
the pieces that are necessary for that proof are contained in the considerations of these 
paragraphs. 

 
 

§ 12. The “rotation group” and the “rigid body with n degrees of freedom” 
 
 As we see from equations (H), (14), (14′), (14″), (14″′), so the e , J, ξ, Q will 
transform differently from the ω.  There would be a certain interest to examining the case 
in which the e , J, ξ, Q transform precisely like the ω for rigid bodies. 
 However, one sees immediately that one only needs to have: 
 
(J)      Eκ,λ = εκ,λ 
then. 
 However, the equations: 

, ,Eκ λ λ µ
λ

ε∑ = δκ,µ 

then imply that: 

(15)    

2
,

, ,

1,

0, when .

λ κ
λ

λ κ λ µ
λ

ε

ε ε κ µ

 =

 = ≠


∑

∑
 

 
However, since the assumption (J) implies that the sub-determinant of each element in 
the determinant | ελ,κ | (

1) is equal to that element, it will also follow that: 
 

(15′)    

2
,

, ,

1,

0, when .

λ κ
λ

λ κ µ κ
κ

ε

ε ε λ µ

 =

 = ≠


∑

∑
 

 
The quantities ελ,κ the have the character of direction cosines in an n-dimensional space; 
as is easy to see, n (n – 1) / 2 of them are independent, so the substitution (H) will be 
orthogonal under the assumption (J). 
 We then have the theorem: 
 
 If the substitution (H) is orthogonal then the ω will transform precisely like the J, e , 
ξ, and Q. 

                                                
 (1) Which will have the value ± 1, as a result of (15); we would like to choose + 1. 
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 We would like to call the totality of n quantities that transform like the ω a vector 
relative to the system (1).  We shall then also speak briefly of the “velocity vector” ω, the 
“impulse vector” J, and the “force vector” Q.  However, in order to avoid 
misunderstanding, we would like to always put those terms in quotation marks. 
 Now how does the assumption (J) relate to the differential equations (12) of the 
previous paragraph? 
 In place of (12), one can also write: 
 

cµ,ν,λ = ,
, ,2

,

E
q
λ κ

ν ι κ µ
π ι ι

ε
ξ

∂
∂∑ , 

so from (J): 

cµ,ν,λ = ,
, ,2

, q
λ κ

µ κ ν ι
π ι ι

ε
ε ξ

∂
∂∑ . 

 
However, from (15′), that is the same thing as: 
 

− ,
, ,2

, q
µ κ

λ κ ν ι
π ι ι

ε
ε ξ

∂
∂∑ , i.e., as − cλ,ν,µ . 

 
Thus, in any event, a necessary condition for (J) to be possible is that: 
 

cµ,ν,λ + cλ,ν,µ = 0. 
If one combines this with: 

cµ,ν,λ + cν,µ,λ = 0 
then it will follow that: 

(IX)    , , , , , ,

, , , , , , .

c c c

c c c
µ ν λ ν λ µ λ µ ν

λ ν µ ν µ λ µ λ ν

= =
 = − = − = −

 

 
Conversely, if (IX) is fulfilled then it will follow from equations (12) when one 
multiplies by ελ,κ and sums over λ that: 
 

21
,2 q λ µ

λι

ε∂
∂ ∑ = , , , , ,

, ,

cµ ν λ ν ι µ κ λ κ
µ ν λ

π ε ε∑ , 

 
and that is zero, since every term on the right also occurs with its opposite.  It likewise 
follows that: 

, ,
, ,q q

λ τ λ κ
λ κ λ τ

λ ι ι

ε ε
ε ε

∂ ∂ 
+ ∂ ∂ 

∑ = , , , , , , ,
, ,

( )cµ ν λ ν ι µ κ λ τ µ τ λ κ
µ ν λ

π ε ε ε ε+∑  = 0. 

 
Therefore, one will have: 

                                                
 (1) We are then using this term in a somewhat more restricted sense that Hertz used. 
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, ,λ κ λ τ
λ

ε ε⋅∑ = const. 

 
for all κ, τ, and when one chooses the initial values (0)

,λ κε  of the ε corresponding to 

equations (15), one will find that the ε always fulfill equations (15), and therefore (J), as 
well.  We then have the theorem: 
 
 The substitution (H) that takes dδϑ = 0 to δdϑ = 0 can be orthogonal if and only if the 
constants of the group (B) fulfill equations (IX); i.e., when they admit a cyclic 
permutation of their indices. 
 
 Definitions: We would like to call such a group a “rotation group” and a mechanical 
system with n degrees of freedom whose vis viva T admits such an n-parameter rotation 
group [whether the assumption is dδϑ = 0 or δdϑ = 0 makes no difference (1)] will be a 
“rigid body with n degrees of freedom.”  Here again, we would like to always apply 
quotation marks. 
 We would like to refer to an orthogonal substitution briefly as a “rotation” in what 
follows.  We would also like to say that the “velocity vector” ω [“impulse vector” J, 
resp.] are referred to the components ω′ (J′, resp.) (δω′ = 0) in “a coordinate system that 
is fixed in the ‘rigid body,’” while the components ω [J, resp.] (dδϑ = 0) are referred to a 
“coordinate system that is fixed in space.” 
 With all of those preliminaries, we now have the following Theorem: 
 
 A “rigid body with n degrees of freedom” always moves in accordance with the Euler 
equations in the narrow sense: 

, ,
,

dJ
c J

dt
λ

λ µ ν µ ν
µ ν

ω
′

′ ′ ′+∑ = Qλ′ , 

 
in which Jλ′ = /T λω′∂ ∂  are the components of the “impulse vector,” λω′  are the 

components of the “velocity vector,” and Qλ′  are the components of the “force vector” 

with respect to a “coordinate system that is fixed in the body.”  The vis viva T is a 
quadratic form of the ω′ with constant coefficients, while the c′ are Lie’s characteristic 
constants for the motion of the “body,” and they admit a cyclic permutation of their 
indices.  All vectors will be transformed in the same way under a “rotation”; in 
particular, there is a “rotation” with n (n – 1) / 2 arbitrary constants that takes the 
assumption d λδ ϑ′  = 0 (one sets /d dtλϑ′  = λω′ ) to dδϑλ = 0; i.e., the coordinate system 

that is fixed in the body to one of the ∞n(n−1)/2 “coordinate systems that are fixed in 
space.” 
 However, the “rigid body” satisfies the n impulse equations: 
 

dJ

dt
λ = Qλ , 

                                                
 (1) Since the group that belongs to the c′ is also a rotation group, as one easily sees from (13).  
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relative to such a “coordinate system that is fixed in space,” in which one again has Jλ = 
∂T / ∂ωλ .  In particular, for a force-free motion there will exist n first integrals: 
 

Jλ = const., 
 

so the “impulse vector” will remain constant in space. 
 

 
Chapter III. Group-theoretic considerations 

 
§ 13. The group of all rotations in n-dimensional space 

 
 Obviously, the “rigid body with n degrees of freedom” is essentially characterized 
kinematically by its group.  One can always bring the T for the “rigid bodies” into the 
form 2

i
i

ω∑ , i.e., by a linear transformation of the ω with constant coefficients, without 

changing the group.  The Euler equations then contain nothing besides the c that would 
be kinematically characteristic.  Equations (A) indeed define the group then, and since 
our group is naturally simply-transitive, groups that belong to the same c, which then 
have the same composition, will also be similar (1); i.e., all equations (A) that belong to 
the same c can be converted into each other by a point-transformation. 
 The constants c then determine the “body” kinematically.  By contrast, many “rigid 
bodies” will belong to one group, since the group will remain unchanged under a linear 
substitution of the ω with constant coefficients, but the T will take the form 2

iω∑  that 

was assumed above only for all orthogonal substitutions of the ω, as we shall soon see.  
Therefore, the theorem that the group characterizes “rigid bodies” will remain true only 
when we count all “rigid bodies” as having the same type when they indeed belong to the 
same group, but whose T includes arbitrary constant coefficients (2).  In this sense, e.g., 
all ordinary rigid bodies that can rotate about a fixed point can be assigned the same type.  
With that convention, we can say: 
 
 If we would like to learn about all types of “rigid bodies” in a mathematical-
kinematical way then it will suffice to exhibit all rotation groups. 
 
 Let it be next remarked that the term “rotation” for an orthogonal substitution is also 
justified only insofar as the expressions 2

λω′∑ , 2
λω′′∑ , and λ λω ω′ ′′∑  are invariants for 

two “vectors” 1ω′ , …, nω′  and 1ω′′ , …, nω′′  , and therefore, the distance between their end-

points 2( )λ λω ω′ ′′−∑ , as well.  In that way, the orthogonal substitutions are conversely 

singled out from the other linear ones uniquely, and indeed it will already suffice to 

                                                
 (1) Lie-Engel I, pp. 340, Theorem 64. Lie-Scheffers, pp. 435, Theorem 30.  
 (2) i.e., instead of posing the diversity of Euler equations in the manifold of the same c that define the 
group, while we keep the form T = 2

iω∑ , we now find it preferable to pose them on the manifold of 
constants in T, in order to be able to demand that the c should be free. 
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demand the invariance of 2
λω∑ .  Therefore, all rotations again define a group, namely, 

the group of all rotations in n-dimensional space. 
 We would like to prove the following theorem about that group: 
 
 The group of all rotations of the n-dimensional space and the totality of its subgroups 
is characterized by the fact that the n2 coefficients of each of its infinitesimal 
transformations (1): 

δλ ωρ = , ,
1, ,n

aλ µ ρ µ λ
µ

ω δτ
=
∑
…

   (ρ = 1, 2, …, n) 

 
define a skew determinant of degree n, and indeed for every λ that is present.  That then 
means that one has: 

aλ,µ,ρ = − aλ,ρ,µ  
and 

aλ,µ,µ = 0. 
The proof reads: 
 It must follow from the invariance of 2

ρω∑  that: 

 

ρ λ ρ
ρ

ω δ τ∑ = 0, 

so 

, ,
,

aλ µ ρ ρ µ
µ ρ

ω ω∑ = 0, 

or 

, , , ,
,

( )a aρ µ λ µ ρ λ ρ µ
ρ µ ρ

ω ω
≤

+∑ = 0 

for all ω. 
 The assertion that was made then follows from that.  The proof can also be inverted, 
and therefore the given condition is also sufficient. 
 It follows from this theorem, for example, that the adjoint group to a rotation group is 
an n-parameter subgroup of the group of all rotations, and similarly for the group of ε that 
was mentioned on page 37, when the conditions (IX) (page 40) are fulfilled. 
 In what follows, we would like to refer to the cone: 
 

2 2
1 2ω ω+ + … + 2

nω  = 0, 

 
which naturally goes to itself under all “rotations,” as the absolute cone. 
 We can then prove the following theorem about the group of all rotations, which will 
be important for us: 
 

                                                
 (1) The fact that a is constant, so the infinitesimal transformations are linear functions of the ω, is self-
explanatory, since the finite transformation equations are indeed linear and homogeneous. 
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 One can take any linear structure through the origin in the space of ω to another one 
of equal dimension by a rotation when neither of the two linear structures contacts the 
absolute cone. 
 
 We next prove that one can take the (n − 1)-dimensional plane: 
 

ν ν
ν

λ ω∑ = 0 

 
to ωn = 0 when one does not have 2

νλ∑ = 0, so when the plane does not contact the 

absolute cone. 
 If we then rotate things by setting: 
 

ων = ,hν κ κ
κ

ω′∑ , 

in which: 
 2

,hµ µ
µ
∑ = 1, 

 , ,h hν κ µ κ
κ
∑ = 0  for ν ≠ µ, 

 
and should ν νλ ω∑  then go to nω′ ⋅  const. then we would need to have: 

 

,hν ν κ
ν

λ∑ = 0  for κ = 1, 2, …, n – 1, 

 
while ,nhν ν

ν
λ∑ cannot be zero. 

 We now proceed as follows: 
 We choose any system of solutions of: 
 

,1hν ν
ν

λ∑ = 0 

 
that is not identically zero.  Upon multiplying all hν,1 by the same factor, we can now 
arrange that: 

2
,1hν∑ = 1. 

 
If we were to then have 2

,1hν∑ = 0 for all systems of solutions of the equation ,1hν νλ∑ = 

0 then we would need to have hν,1 = τ0 λν (
1), and therefore 2

νλ∑ = 0, as well, which 

should be excluded.  (τ0 = 0 is also impossible, as well as τ0 = ∞.) We now take a non-
vanishing solution of the equations: 

                                                
 (1) since for all dhν,1 that satisfy ,dhν ν λλ∑ = 0, one must also have ,1 ,1dhhν ν∑ = 0. 
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,2hν ν
ν

λ∑ = 0 and ,1 ,2h hν ν∑ = 0. 

 
Once more, one cannot have 2

,2hν∑ = 0, since otherwise one would need to have: 

 
hν,2 = τ1 hν,1 + τ0 λν . 

 
It follows from this upon multiplying by λν and summing that τ0 = 0.  Multiplication by 
λν and summing over n will also give τ1 = 0 them so all hν,2 would be zero, which should 
not happen, though. 
 One can then also succeed in having: 
 

2
,2hν∑ = 1. 

We then proceed. 
 At the penultimate step, we must solve the equations: 
 

, 1nhν νλ −∑ = 0, ,1 , 1nh hν ν −∑ = 0, …, , 2 , 1n nh hν ν− −∑ = 0. 

 
These are n – 1 linear homogeneous equations in n unknowns, so they possess a non-zero 
solution.  If one also had that 2

, 1nhν
ν

−∑ = 0 for this solution then it would follow that: 

 
hν,n−1 = τ0 λν + τ1 hν,1 + … + τn-2 hν,n−2 . 

 
Just as before, one must once more conclude from this that one has τ0 = 0, τ1 = 0, …, τn−2 
= 0 in succession, so the τ would all be zero, which cannot be.  One can then also arrange 
that: 

2
, 1nhν −∑ = 1. 

 
 It ultimately remains for us to solve: 
 

,1 ,nh hν ν
ν
∑ = 0, …, , 1 ,n nh hν ν

ν
−∑ = 0. 

 
These are once more n – 1 homogeneous equations, so they have a non-zero solution, and 
we also do not have 2

,nhν∑ = 0, since otherwise it would have to follow that: 

 
hν,n = τ1 hν,1 + … + τn-1 hν,n−1 , 

 
from which we could once more have to conclude the vanishing of all τ.  However, all of 
the required equations for the h are satisfied with that; all that remains is to show that 

,nhν νλ∑  does not vanish. 
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 If that were in fact the case then since the equations , ,nh hν ν κ∑ = 0 (κ < n) are 

fulfilled, a linear relation τ0 λν + τ1 hν,1 + … + τn-1 hν,n−1 = 0 would have to exist, which 
would likewise be impossible, from the previous argument and the assumption about the 
h. 
 One can then satisfy all conditions for the h. 
 With that, it has been shown that, in fact, any plane ν νλ ω∑ = 0 can be brought into 

the form ωn = 0 by a rotation when one does not have 2
νλ∑ = 0; i.e., when the plane does 

not contact the absolute cone. 
 Now, in order show something similar for any lower-dimensional [say (n – ν)-
dimensional] linear manifold, we lay a manifold of the next-higher dimension through it 
that does not contact the absolute cone either (which is always possible), etc., and finally, 
an (n – 1)-dimensional plane.  We then rotate it into ωn = 0.  In that plane, we we rotate 
the next-lower-dimensional manifold into ωn-1 = 0, and proceed in that way until we have 
ultimately brought the given n – n-dimensional manifold into the form ωn = 0, ωn−1 = 0, 
… ωn−ν+1 = 0. 
 The stated theorem is proved with that. 
 

 
§ 14. The composition of real rotation groups. 

 
 With those preliminaries, we turn to the study of rotation groups. 
 First of all, the group of the rigid body is a rotation group, as would emerge from the 
formulas on page 16. 
 However, there are only two three-parameter rotation groups, to begin with.  Since 
the c with two equal indices must always vanish, what will then remain is just c1,2,3 .  If 
c1,2,3 is also zero then all c will be zero, and the group will consist of nothing but 
commuting transformations, and would be similar to the group of translations.  However, 
when c1,2,3 is not zero, one can arrange that c1,2,3 = 1 by a suitable choice of the ω, in such 
a way that the group is then similar to the group of rotations in three-dimensional space 
(1). 
From the remarks at the beginning of the previous paragraphs, we can also say that: 
 
 There are essentially two “rigid bodies with three degrees of freedom”: the rigid 
bodies that rotate about a fixed point and the freely-moving point. 
 
 It is a complicating fact that the characteristic distinction (IX) (page 40) of the 
rotation group does not emerge in all of its representations.  Namely, in place of the ω, 
one can introduce linear couplings ω′ with constant coefficients: 
 

                                                
 (1) Compare Lie-Scheffers, pp. 571.  Of the seven types of groups that were given there, we can then 
convert only the first and last types into rotation groups.  In regard to I, see the form I′ on page 568.  
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(K)      

,

,

,

or

,

h

H

κ κ λ λ
λ

λ λ κ κ
κ

ω ω

ω ω

′ =



 ′ =


∑

∑
 

 
in such a way that the relations (IX) are no longer fulfilled for the c′ that belong to the ω′. 
 In fact, it follows from (K), in analogy to (14′), that: 
 

ξρ,λ = , ,Hκ ρ κ λ
κ

ξ ′∑ , 

and from that: 
Xρ = ,H Xκ ρ κ

κ

′∑ , 

so 
Xκ′ = ,h Xλ κ λ

λ
∑ . 

That then implies the formulas (1): 
 

, , ,h cτ λ µ ν λ
λ

′∑ = , , , ,
,

c h hσ κ τ σ µ κ ν
κ σ
∑  

or also: 
(16)    , ,cµ ν λ′  = , , , , ,

, ,

c h h Hσ κ τ σ µ κ ν λ τ
σ κ τ
∑ . 

 
Now, when the cσ,κ,τ satisfy equations (IX) then one will have: 
 

, , , ,c cµ ν λ λ ν µ′ ′+ = 0 

only when one has: 

, , , , , , ,
, ,

( )c h h H h Hσ κ τ κ ν σ µ λ τ σ λ µ τ
σ κ τ

+∑ = 0 

for all λ, µ, ν. 
 Since the determinant of the h is naturally non-zero, it will follow that: 
 

, , , , , ,
,

( )c h H h Hσ κ τ σ µ λ τ σ λ µ τ
σ τ

+∑ = 0, 

or, when one considers (IX): 
 

, , , , , , , , , ,
,

[ ]c h H h H h H h Hσ κ τ σ µ λ τ σ λ µ τ τ µ λ σ τ λ µ σ
τ σ τ<

+ − −∑ = 0. 

 

                                                
 (1) See Lie-Engel I, pp. 290, formula (3).  
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In general, that condition will not be fulfilled, but it will probably be always fulfilled 
when hσ,λ = Hσ,λ ; i.e., when the substitution (K) is orthogonal.  We then have the 
theorem: 
 
 The condition (IX) for the rotation keeps its form under an orthogonal substitution of 
the ω with constant coefficients, but not for all linear substitutions, in general. 
 
 We would now like to prove a characteristic property of the adjoint group of a 
rotation group.  The νth infinitesimal transformation of that adjoint group reads: 
 

δν ωλ = , ,cµ ν λ µ ν
µ

ω δϑ∑ , 

 
as has been stated several times.  Now, when equations (IX) are fulfilled, the 
determinant: 

| cµ,ν,λ |     
1,2, ,

1,2, ,

n

n

µ
λ

= 
 = 

…

…
 

will be skew for all ν. 
 Therefore, from the theorem that was proved on page 43, the adjoint group to a 
rotation group will be an n-parameter subgroup of the group of all rotations in n-
dimensional space. 
 That theorem, together with the aforementioned one, makes it possible for us to now 
carry out a more precise study of the rotation groups. 
 To that end, with Lie, we appeal to the lemma that we can represent every 
infinitesimal transformation of our group by a ray ω1 : ω2 : … : ωn in n-dimensional 
space of the ω.  Any ν-parameter subgroup will then correspond to an ν-dimensional 
linear manifold through the origin that remains unchanged under all transformations of 
the adjoint group, whose representative points lie in it (1).  If the subgroup is invariant in 
the group then the planar manifold of all transformations of the adjoint group will remain 
unchanged (2). 
 We now make the assumption that the rotation group is real. 
 From now on, we shall assume that it possesses a real invariant subgroup. 
 One can introduce new ω by a substitution (K) (page 47), and indeed by a real 
rotation, such that the planar manifold that corresponds to the subgroup will go to the 
manifold ωn = 0, ωn−1 = 0, …, ων+1 = 0. (See the Theorem on page 43.)  In that way, one 
can arrange that the ν infinitesimal transformations of the invariant subgroup will be X1, 
…, Xν , precisely, since otherwise the characteristic property (IX) of the cλ,µ,ν would be 
lost (from the Theorem above).  Now, since the X1, …, Xν initially define a group by 
themselves, any c will be zero when it has two indices from the sequence 1, 2, …, ν and 
one index from the sequence ν + 1, …, n.  Since that subgroup is invariant, moreover, 
and therefore only linear couplings of X1, …, Xν will arise when one forms the brackets 
(Xκ, Xν+1) (κ = 1, 2, …, ν), all c with one index from the sequence 1, 2, …, ν and two 

                                                
 (1) Lie-Scheffers, Chap. 18, §§ 1 and 3, especially pp. 478. 
 (2) Ibidem, pp. 485.  
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indices from the sequence ν + 1, …, n will also vanish.  However, as a result of that, the 
transformations Xν+1 , …, Xn themselves will define, not just another group, but in fact an 
invariant subgroup of the entire group.  In addition, any element of the first group will 
commute with every element of the second one, since every c does indeed vanish when it 
includes one index from the sequence 1, 2, …, ν and one from the sequence ν + 1, …, n, 
regardless of what the third index might be. 
 Now, if one or both of the subgroups again contain an invariant subgroup in their own 
right then we proceed as follows: Ultimately, we must naturally reach the goal that the 
entire group consists of nothing but invariant subgroups that all commute with each other, 
and are real and simple in the reals, and thus no longer contain any more invariant 
subgroups.  With that, we have the theorem: 
 
 Any real rotation group consists of a sequence of real rotation groups X1, …, 

1
Xν ;

1 1Xν + , …, 
2

Xν ; …, 1X
κν + , …, Xn that all commute with each other and are simple in 

the reals in each of them. 
 
 If we would now like to learn more about these simple-in-the-reals subgroups then, as 
we will see, we will require a brief consideration of the homogeneous entire invariants of 
degree two of the associated adjoint group. 
 We know one such invariant, namely: 
 

2 2
1 2ω ω+ + … + 2

nω . 

 
The adjoint group is indeed a subgroup of the group of all rotations. 
 I now assert that a real, simple in the reals, rotation group can have no other 
quadratic homogeneous invariants of its adjoint group. 
 Namely, if such a thing does exist then one can bring it into the form (1): 
 

2
1 1A ω + … + 2

n nA ω  

 
by a real rotation.  However, if that should be an invariant then one would need to have: 
 

Aκ κ λ τ
κ

ω δ ω∑ = 0 

for all ω and all λ, i.e.: 

, ,
,

A cκ κ τ λ κ τ
κ τ

ω ω∑ = 0, 

so one will also need to have: 

, , , ,A c A cκ τ λ κ τ κ λ τ+ = 0 

for all κ, τ, λ. 
 From (IX), one can also write the condition as: 
 

cτ,λ,κ (Aκ – Aτ) = 0. 

                                                
 (1) See Baltzer: Determinanten, page 187 et seq. (5th ed., Hirzel, Leipzig, 1881). 
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Hence, either all A are equal to each other (and that will give only the old invariants) or 
one can sort the A into classes whose individual members are equal to each other.  
However, from the constraint equation that was written down above, all cτ,λ,κ must then 
vanish when only two of their indices belong to different classes.  However, that means: 
Corresponding to the decomposition of A, the given rotation group also decomposes into 
invariant subgroups, and indeed into real subgroups, but that should not happen.  Hence, 
there is in fact only one quadratic invariant: 
 

2
1ω + … + 2

nω . 

 
However, from the studies of Killing  (1) and Cartan (2), the adjoint group to any group 
will possess an invariant of degree two, and indeed one gets that invariant as follows: 
One forms the “characteristic determinant”: 
 

∆(α) = 

,1,1 ,2,1 , ,1

,1,2 ,2,2 , ,2

,1, ,2, , ,

n

n

n n n n

c c c

c c c

c c c

ρ ρ ρ ρ ρ ρ
ρ ρ ρ

ρ ρ ρ ρ ρ ρ
ρ ρ ρ

ρ ρ ρ ρ ρ ρ
ρ ρ ρ

ω α ω ω

ω ω α ω

ω ω ω α

−

−

−

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

, 

 
and develops this in powers of α.  The coefficient χ2 (ω) of an−2 is then a quadratic form 
in the ω and at the same time an invariant of the adjoint group. 
 We assume that this form is regular; i.e., that its discriminant is non-zero.  We can 
then arrange that this form will assume the form: 
 

2 2
1 2ω ω+ + … + 2

µω  

 
by a suitable linear substitution (K) of the ω that is possibly complex. 
 However, the arbitrary group above must go to a generally not-necessarily real 
subgroup under this transformation.  From the theorem on page 43, the coefficients cτ,λ,κ 
must define a skew determinant for all λ ; i.e., one must have: 
 

cτ,λ,κ = − cκ,λ,τ , 
 
and that is indeed characteristic of the rotation group.  With that, we have arrived at the 
new Theorem: 
 

                                                
 (1) Killing , “Die Zusammensetzung der stetigen, endlichen Transformationsgruppen,” Math. Ann. 31, 
33, 34, 36 (especially 31, § 2)  
 (2) E. Cartan, “Über die einfachen Transformationsgruppen,” Leipziger Berichte, 1893 and “Sur la 
structure des groupes de transformations finis and continus,” Thèse, Paris, 1894.  
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 Any group whose Killing invariant χ2 (ω) is a quadratic form with non-vanishing 
discriminant can be brought into the form of a rotation group – i.e., a group whose c 
possess cyclically-permuting indices − possibly by a complex linear transformation of the 
ω (naturally, with constant coefficients). 
 
 Now Cartan has shown that χ2 (ω) is actually regular for simple groups (Leipziger 
Berichte, pp. 401, Theorem I), and likewise for semi-simple groups (Thèse, Chapter IV).  
It then follows from this that: 
 
 Any simple or semi-simple group can be brought into the form of a rotation group. 
 
 Now let that result be mentioned only in passing.  In order to further investigate the 
rotation groups that are simple in the reals, we need the theorem that was contained in 
Theorems I and IV in Chapter four of Cartan’s Thèse: Any group for which χ2 (ω) is a 
regular form is either simple or composed of simple, invariant, and mutually-commuting 
subgroups; i.e., it is either simple or semi-simple. 
 Now, our real simple rotation group certainly possesses a quadratic form with non-
vanishing discriminant as an invariant of its adjoint group, namely, 2

1ω + … + 2
nω .  Since, 

from the theorem that was proved on page 49, there can be no other quadratic invariant, 
the Killing  invariant χ2 (ω) must have the form const. (21ω + … + 2

nω ). 

 Now, the constant cannot be zero, since χ2 (ω) will have the form: 
 

2

, ,
,

cκ κ ρ σ
ρ σ κ

ω 
 
 

∑ ∑  

 
in the case of a rotation group (see Killing , Annalen, 31, pp. 261).  However, that 
expression can be identically zero for real c only when all c are zero. 
 Therefore, the theorem of Cartan that was cited above will find an application to the 
real, simple-in-the-reals, rotation groups: They can be decomposed into a sequence of 
invariant, mutually-commuting, simple groups that will naturally be no longer real (when 
the real simple group was not already simple in the complexes, as well). 
 If we now accept the theorem above that was already assumed to begin with then that 
will imply the following Theorem: 
 
 Any real rotation group can be decomposed into a series of groups that are invariant, 
mutually-commuting, simple, but in general, no longer real, and which can also once 
more take the form of rotation groups.  One can then convert any simple group into a 
rotation group, but not generally in the real field. 
 
 Since Killing  and Cartan have set down all types of simple groups, that will resolve 
the problem of the examination of real rotation groups, up to a certain degree.  However, 
there would still be some value to the question of investigating, e.g., whether there are 
also real simple groups for each type of simple groups, which is a question that probably 
cannot be always answered in the affirmative. 
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 I have still not been able to carry out an investigation of complex rotation groups 
from the standpoint that was assumed for real groups.  Indeed, in general, the arguments 
proceed analogously, but there is one special case that leads to difficulties: namely, the 
assumption that a rotation group appears whose only invariant subgroups are the ones 
that represent linear manifolds that contact the absolute cone.  One can no longer give 
those subgroups in the form X1, …, Xν , without changing the characteristic (IX) of 
rotation groups.  We shall then suppress an investigation of complex rotation groups here. 

 _________ 
 
 One special result might be mentioned that would follow from an application of the 
results that are contained here to the arguments at the beginning of the third chapter: 
 According to Killing  and Cartan, there are not simple groups below n = 8, except for 
the one-parameter groups of translations and three-parameter groups of rotations. 
 
 Therefore, the only types of “rigid bodies” with less than eight degrees of freedom 
are the following ones: 
 
 1. The material point with one, two, or three translational motions. 
 2. The rigid body that rotates about a fixed point. 
 3. The rigid body that can rotate about a fixed point a material point that is 
independent of it and possesses one, two, or three translational motions. 
 4. Two mutually-independent rigid bodies that each rotates about a fixed point. 
 5. Two mutually-independent points with one, two, or three translational motions. 

 

6. One of  the last three cases, along with

7. an independent material point

8. with one translational motion.







 

 
 That should be understood to mean: The system of equations of a “rigid body” of, 
e.g., seven degrees of freedom can be brought into a form such that some of the equations 
read simply: 

kdJ

dt
= Qk ; 

 
the others can be summarized into classes of three each, such that each class assumes 
precisely the form of the ordinary Euler equations (see page 17).  However, all of the J 
can be linear combinations of the seven ω (with constant coefficients). 
 The following remark is true in general: 
 
 A decomposition of the group indeed corresponds to a formal decomposition of the 
equations, but since the impulse components J can be linear combinations of all ω, one 
cannot speak of a decomposition of the “rigid body,” but only of a decomposition of its 
type. (See the discussion of the concept of type in the beginning of the third chapter.) 
 
 Karlsruhe, in October 1903. 

______________ 


