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Introduction

Mathematicians have frequently addressed the study mhalenomic (i.e., non-
integrable) constraint equations in mechanics in thetvesnty years. First, one deals
with demonstrating the presence of such constraint equatiothsshowing how they
could be treated in kinetic problems. However, one #sks, above all else, to what
extent the fundamental laws of mechanics can stithfggied to them. As long as the
principle of virtual work, the so-calletiamilton principle, and the principle of least
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action come into question, everything can probably h@a@ed; it would suffice to
recall the investigations afoss Routh, C. Neumann Hertz, andHélder (%).

Moreover, Lagrange (°) knew of non-holonomic constraint equations, if only in
statics. Although he possessed all of the means to sals@ problems with non-
holonomic constraint equations in form of the trawsyti equations and his central
equation, he still did not address those problems.

The following two questions demand to be resolved:

1. Can one (at least, under certain assumptionsypflly theLagrange equations
when non-holonomic constraint equations appear, and indemetima way that in the
expression for thevis vivaT, the non-holonomic constraint equations are emplaoged
order to eliminate coordinates whose derivatives alotex éroT?

2. Which equations enter in place of ttagrange equations in the general case?

The fact that first question can generally be answetitd“no” was known already
to C. Neumann (%); up to now, Hadamard (%) probably examined it at the most
fundamental level. However, there are two reasonslwégard the question as still not
having been resolved: First of aladamard’s conditions are only also necessary for its
confirmation, in general. However, as we will s&e,can cast the correct light upon the
first question only when we connect it with the secomel. o

Answers to the second question exist in the literatiready. Voss treated the
general problem in his cited paper, but only with the uskagfange multipliers {).
Special problems were frequently addressed with specialodgethy various authors.
Appell () once more took up the resolution of the question in gertevalever, the first
form that he gave to it was followed through only slight An expression entered in

() Voss “Uber die Differentialgleichungen der Mechanik,” MatmnA25 (1884).

Routh, Advanced Rigid Dynamic4884, pp. 329, § 445 in the German translation. See aso th
remark off. Klein in the German translation, pp. 534.

C. Neumann “Grundzuige der analytischen Mechanik, insbesondere ddnavigcstarrer Korper,”
Leipziger Berichte 1887 and 1888.

Hertz, “Die Prinzipien der Mechanik,” Werke l1ll, Leipzig, 1894.

Holder, “Uber die Prinzipien von Hamilton and Maupertuis,” Bigjer Nachrichten, 1896, pp. 122.
See alsRichard Greiner, “Uber die Einfiihrung der Bedingung in das Hamiltonschiazi,”
Dissertation (Teubner, 1901).

() Lagrange, Mécanique analytiquet. I. Part One, Sect. IV, § 11, no. 13, pp. 77. (Redts third
problem).

() In addition to the aforementioned presentation, Ged&leumann “Uber die rollende Bewegung
eines Kdrpers auf einer gegebenen Horizontalebene wmer=ihflu der Schwere,” Math. Ann.,
Bd. 27, and Leipziger Berichte 1885.

(% Hadamard, “Sur les mouvements de roulement,” Mémoire de la &bdés sciences physiques et
naturelles de Bordeaux. (4), t. V, 1895. Reprintedppell “Les mouvements de roulement en
Dynamique,” Scientia no. 4, 1899.

() The paper ofKorteweg “Uber eine ziemlich verbreitete unrichtige Behandlurgjser eines
Problemes der rollender Bewegung...” Nieuw archief voor wiskunde,, 18R8s essentially the
same viewpoint.

(®) See the previously-cited monograph in the collecSeientia, and no. 23, in particular. One will
find Appell’s further papers on this topic mentioned in the artigl®/ossin der Enzyklop&die der
Mathematischen Wissenschaftén 1, no. 38, pp. 82.
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place ofdT / 0q; that Appell denoted byR , but with no further discussion. But what
does theR mean?Appell’s second attempt, in which introduced a new funcBaf the
acceleration in place of thas vivg cannot be methodologically satisfying, despite its
esthetic advantages. On the one hand, it requiredréinsfarmation of the second
derivatives of the coordinates, but thenylevivaT completely lost its dominant role for
him, such that the systems with non-holonomic condtequations were separated from
the systems with holonomic constraint equations by @ ddwmsm, which does not
correspond to the difference between the two problemsnally the holonomic
constraint equations define only one special case ofahdéralonomic ones.

On that basis, the relationship between the generastreamt equations and
Lagrange's equations should also emerge clearly, such that trer lati emerge as a
special case. Such a general form for the equationsotén of mechanics is possible;
exhibiting that form should be the first priority of thelldwing examinations. | call
those equations tHeagrange-Euler equations (see §); they are denoted by (1V) [(IV,
resp.] in the following text. | came across them whpased the following very general
guestion.

Which equations will enter into mechanics in placé ajrange’'s equations when |
introduce any n independent linear couplings ..., a) of the dg/ dt in place of the n
position-dependent parameters (vizagrangian coordinates) g ..., g , along with the
latter parameter®

One can find that question being posed before in a papgolmmann (%), which |
learned about only during the publication of this articlenftao cordial communication by
the author. Boltzmann also gave essentially the doraeswer already?: The
Lagrange-Euler equations demand tha).( The way that one obtains them led me from
the principle of virtual displacement®s Lagrange’s central equatior(8 4) and to the use
of the transitivity equationg8 2) for achieving the desired objective %8 However,
seeing that objective clearly, in general, and in detadl fivat made possible in light of
Lie’s ideas: The study of theagrange-Euler equations led me ever deeper into the
theory of groups. Therefore, | have referred to thealty-formal connection between
my research and that bfe already in 8 (%).

() Boltzmann, “Uber die Frage der Lagrangeschen Gleichungen fiir hiolshome, generalisierte
Koordinate,” Sitzungsberichte der Wiener Akademie, Bd. @Xt, lla, Dec. 1902.

() Loc. cit, page 1612, equations (24). However, those equations aresfiirmed completely. By
contrast, they are more general than the Lagrange-Ejatien in regard to the presence of time.

() See the remark on page 15 in regard to the connectioedethe Lagrange-Euler equations and the
completely-general equations thaigrange andPoissonderived by transformation.

() 1 cannot see clearly the extent to whidh himself has thought of applying his ideas to mechanics.
| found no applications to mechanics in the work thatjel and Scheffersproduced; indeed, the
introduction to the third section dfransformationsgruppethat Lie himself wrote contained the
statement on page VII: “The principles of mechanics teggoup-theoretic origin,” although the
meaning of that was a riddle to this reader. | would alrilas to believe thatie was thinking of
only the theory of integrating the differential equatiafsmechanics, the connection between
Jacobi's canonical substitution with his contact transfatiores, and an extension of the theory of
geodetic lines. The following changes in the cited looatio longer allow me to suspect that. The
meaning of the sentence “Kinematics and its laws capait, be assigned to some entirely special
cases of my general theorems” is especially difficultrfee to fathom, due to the “in part.” The
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The fact that addressing the general question that wasl pd®ve was also made
possible by a systematic resolution of the first questiabhwas posed on page 2 needs to
be explained. 8% and8 in the present paper deal with the response to that.

The fact that théagrange-Euler equations had already been posed for some special
cases (if one ignores the aforementioned generaltigagsns byBoltzmann) should
not be amazing. Yet, thepulse equationbelong to them, as well as the ordin&yler
equations of the rigid body that rotates about a fixed poiné will get the former when
one replacesu , @, ay with 77 «, p, resp., which are the components of the rotation
vector with respect to three axes that are fixed pacs, but the latter when one
introducesp, g, r, namely, the components of the rotation vector widpeet to three
axes that are fixed in the body, in placecaf a, az. One hasagrange (*) to thank
for the derivation oEuler’s equation in the general form, which he also obtaingtien
manner that was outlined above. 1 see a second majmt po the following
considerations in an investigation of the systematic ipasitthat the impulse equations
andEuler’s equation assume in mechanics. | will charactaheen group-theoretically
and showinter alia that Euler’s equations exist for any mechanical system in a certain
extended sense, but not the impulse equatioBsa(&l §10).

To my knowledge, theagrange-Euler equations have been exhibited in two special
cases; however, the link to the group-theoretic viewpee still not exhibited. The
equations tha€C. Neumanngave in the cited paper in the Annals under no. 45 on page
492 belong to those equations, as well as the equatian€ahaallo (°) presented in his
award-winning paper on the rolling of a body on a planewd¥er, except for the special
case of wheels, his equations were not developed as those oNeumann, and in that
regard, they do not imply any progress from Appell’s fegtiations, and go beyond them
only in regard to the general concept of the velocitypatars that was employed.

My own general impulse equations 8are characterized by the fact tRaadmits
the infinitesimal transformations that correspond tastant infinitesimal, and in fact,
virtual, values of the velocity parameters. If wed&f = ay [t then the variation of
will be performed here in such a way t@%, = 0. By contrast, one will get the general
Euler equations (810) when T admits the transformations above, but under the
assumption that the velocity parameters themselvesainemnchanged under the
variation, so one setéwy = 0 — i.e.,addd), = 0. Now, the remarkable relation exists
between the two assumptiodés, = 0 andadd, = O for rigid bodies that they will both
say the same thing when one replaceswhgth 7z k, p in the first case ang, g, r in the
second. Hence, in Bl | shall pose the more general questiten can one take the
to ' by a linear transformation with variable coefficients in such a waat the

papers thakie cited byPainlevé (Comptes rendu$l14 and116), Staude (Leipziger Berichte 1892
and 1893), an&téackel (Leipziger Berichte 1893, 1897, Crelle’s Jourh@V, Comptes rendu$l9
probably have hardly any points in common with my awwvestigations. By contrast, let it be
emphasized thaitadamard had referred to the connection between his studiet.ia’gltheory of
groups in a second brief note: “Sur certains systemes diégsaux différentielles totales” (Procés-
verbaux des séances de la société des sciences physiqatureles de Bordeaux, 1894-95,
reprinted in the aforementioned volume of Scientia).

Lagrange, loc. cit, t. I, Section IX. Chap. I, § 1, no. 22, pp. 208.

Carvallo, “Théorie du mouvement du monocyle et de la bicyglettiournal de I'Ecole
Polytechnique Paris, Il Série, Cahiers 5, 6 (1900 and 1901)ngvatticular, cahier 6, no. 72, pp.
36.
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assumption &%, = 0 will go to ddJ,= 0, and the impulse equations will also be

transformed into Euler's equations by iThe answer is very simple and noteworthy:
“The infinitesimal transformations that correspond lie &%, must generate a finite-
parameter group. Furthermore, that condition is alficent.” On top of that, one also
gets that the group that belongs to thieis precisely the reciprocal group of the given
one (811).

For rigid bodies, the coefficients of the aforenmmtd transformation will be the
direction cosines of the one axis-cross with resfmetite other one. If one asks when the
coefficients have that character in general then wileencounter a special class of
groups — | call therrotation groups— that are characterized by the fact th&t’s
composition constants;xs will admit the infinitesimal transformations of a cicl
permutation of their indices for a certain choicerdinitesimal transformation. | shall
then call a mechanical system wihdegrees of freedom that admits aiparameter
rotation group aigid body with n degrees of freeddg12) (%).

Since the “rigid bodies” that belong to the same mmtagroup, relative to which the
mathematical steps are closely related, in the sehae their purely-kinematical
equations can be converted into other ones by a point trenafon, while their Euler
equations will be identical in their form, only one tygfe‘rigid body” will belong to any
rotation group.

That justifies the fact that | will deal with thetation groups only in the last
paragraphs. When | use the beautiful investigation&ilihg and Cartan (%) as my
foundation, | will succeed in dispatching the real rotagooups up to a certain degree;
only one complication remains to be overcome forcthraplex ones, which | will refer to
in 8§ 14. Finally, I will exhibit the only types of “rigid baes” of less than eight degrees
of freedom that can be represented by systems thatamposed of independent,
ordinary, rigid bodies and points with translationakioms.

That is the content of the present paper in briefwould like to remark that the
purely-mechanical part can be understood with no deeper &dgwlof group theory, so
it will almost suffice for one to know about the copteof “infinitesimal transformation”
and “group.” When | require further theorems from group thedrgther points, | will
cite the two booksLie-Engel, Theorie der Transformationsgruppem three parts,
Leipzig, Teubner, 1888-1893, aride-Scheffers Kontinuierliche Gruppen Leipzig,
Teubner, 1893, and indeed | shall briefly refer to them bynt#raes of their authors in
what follows. Similarly, | shall refer to the monagh ofKlein andSommerfeld, Uber
die Theorie des Kreiseld eipzig, Teubner, 1897, which | will frequently cite for the
more convenient enlightenment of the reader when I tineatigid body as an example.

() Moreover, | remark that despite those statements, hatoabandon the mechanics of three-
dimensional space at any point.
(® Bibliography on page 50.
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CHAPTER |
Geometric-kinematical considerations

8 1. Introduction of new velocity parameters.— We consider a mechanical system
with n degrees of freedom. Let be the vector that determines the position of an
arbitrary system point at any time, and &gt ..., g, be n independentLagrangian
coordinates that establish the position of the systeiguely, whilea, b, c are three
parameters that allow one to characterize the individaaits of the system. (One can
regarda, b, c as, say, the three rectangular coordinates of th& pbiany arbitrary, but
well-defined and possible, position of the system.) ®gea has?):

X =X(a,b,c; o, ..., On),

along with the velocity vector:

dX_ - _ & O0X
1 V=E—= X= —q,,
(1) o > 5

when we denote time kyand the derivative with respect to time by a dot.
We shall defer the introduction of non-holonomic coaist equations until later.

We now think of new velocity parameteig being defined in place of thg, by the
linear equations:

(A) q/i = zgp,ﬂ a)p '
P

The &,, (like all of the functions that will occur, moreovesfall be regular functions of
the q for the motion in the domain that comes under consider, but otherwise
arbitrary up to the condition that the determinant:

| 1 |

must be non-zero. That restriction obviously says ngthut the fact that they, are in a
position to describe the velocity state completely.
We can then solve equations (A) for le@and thus obtain:

(A) W= 7,,4,.
A
The relations:
(2) DT, = O
P

exist betweerf and 7z in which &, , is equal to zero or 1 according to whetheasnd i
are different or equal, resp.

() We shall overlook system couplings that include timehierefore, time will not enter explicitly
into X .



Hamel — The Lagrange-Euler equations of mechanics 7

If we introduce thawinto equation (1) their will take on the form:

(3) V=>Ye w,,
P
in which:
_ oX
(4) ep: z_gpy/]
¥ 00,
or
oX
4 —=>)e lr ,.
( ) aq/‘ ; 0 0,

For the sake of simplicity, we would like to assumeehthat theé do not depend
upon time explicitly; that does not represent anrggdeassumption, though.

The fact that we have introduced ttento equations (A) linearly might be justified
on the grounds of need and convenience. In the few taselsave been treated already
(see the Introduction), one must always deal withalinequations, and the non-
holonomic constraint equations, of which we will speatlerl on, will always be linear.
Whether one can be in complete agreement Mihz’s proof that only linear constraint
equations are possible will not be discussed here.

§ 2. — The transitivity equations.

If we let &, denote a virtual, infinitely-small change in the coordingtehen we
shall let the virtual displacemends, be defined by the equations:

(A") 09y = zﬂp,ﬂ oq, ,
)

which are analogous to (A but we will not say that there must be coordinafgs
Nevertheless, in what follows, we will frequently uke notation:

dd,
a
in place ofay, .
However, when position-determining coordinat&sdo exist, the known equations
from the calculus of variations:

d 69,= 5d3,

will then exist, as well. However, when that is nat tfase, some other equations will
enter in place of these equations that we, vigun (*), would like to call the

() Heun, “Die Bedeutung des d’Alembertschen Prinzips fiir starréeSys und Gelenkmechanismen,”
Archiv der Mathematik und Physik IIlI, 2, pp. 300.
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Lagrangian transitivity equatiansinceLagrange (*) exhibited them already for the case
of a rigid body that rotates around a fixed point. (Ompleys threew here, namely, the
three components of the Eulerian rotation vector. théamore, Kirchhoff [in his
Mechanik pp. 59, equations 9] ar@. Neumann[in the cited paper] have also derived
the transitivity equations for that case.)

In our general case, it follows from'(Athat:

orr
4 dadq ;
5 3949

dds,=>7,,doq, +Y
A Ao

o

by contrast, (A implies that:

o
ddd,=>"m,,ddg, +>’ 5 £A
A Ao

0q,dq .

o

If we subtract these two equations and observe that:

dogy—-ddg =0
then that will yield:
o o
ddd,— ddI,= Y| =24 -—2% |dg o
(i (i ;[ 3, 3, j q,0q,

when we switch thd and g in the last sum in the second equation. If we novedhice
dZ and o in place ofdg, anddg, using equations (A) then we will get:

0] dod, - odd, = Zﬁw,p d9ﬂ dJg, ,
y78%
in which we have set:
om,, 0m,,
(5 ,B,u,v,p: ;[W[:_a—éjgﬂd §(v,p )

Equations (l) are the desired transitivity equaspthey express the differendésd,
- 0dY, as a bilinear function of the:? and o7 ; the coefficientg? are connected with the
77(theé, resp.) by the relations (5).

It is only when theB are zero that thé will be actual coordinates, and tfFawvill be
zero only when:

arm,, _ om,, _

aq, dq,

so when the? are actual coordinates. We can then solve equationad%et:

() Lagrange, Mécanique analytique. Il, Part Two, Section IX, Chap. 1,1§ pp. 200.
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07, 07, _

51
®) dq, 0q,

z'gﬂ,v,p ﬂw ﬂv,p :
Y78
8 3. Connection with Lie’s theory of groups
It would be useful to discuss the formal connection Witis theory of groups here.

We can regard equations (A) and the more general onetioal displacements:

(A"') d:]/] = zgp,/l d9p

as the equations for infinitesimal transformations.e &#, are the infinitesimal changes
in the parameters, so they can be regarded as constantheé,, are the quantities that
Lie likewise denoted by, .

That concept corresponds to gyanbol of the;p‘h infinitesimal transformation:

of
B Xpf = —.
( ) /4 ;gtp,ﬂ aq/‘

We have still not said whether or not thesgenerate dinite group However, two
possible displacements — i.e., ones that are compatitilethe constraints of the given
system — will probably again yield another one, and aswtrehen partial differential
equationsX,f = 0 must define a complete system; i.e., relationBeform:

(X,Da XU) = zyp,g,rxr ’

in which (X,, X;) means thelacobi bracket symbol. That is obvious here, moreover,
since the X,, X,), which are linear in thef / dg, (4 = 1, 2, ...,n) must naturally also be
capable of being expressed linearly in terms ohtbempletely-independeix; .

| now assert that thgr are nothing but theg3 that were introduced above @&.
Namely, one has:

+dg =g+ X, dJ, ,

in which the operatioiX, shall refer td = q,, as in what follows. Furthermore:

G +do+ ap+ Ao =g+ X, dd, +> X, 9, +> X, X, &, 39, +> XJd,,
v Y% v,u v

whereas:

o)+ an +dq/]+ddl/]:q/l+zxﬂ&9p+zxv d79./+z>$>§1 d9vd9p+z >$1 059/1'
U v V.U U
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Since the left-hand sides are equal to each other (ddoce g, by the conventions of
the calculus of variations), the right-hand sides nalssi be equal. When one introduces
the Jacobi symbol:

(Xv, X)) =Xu Xy — X Xy,

and subtracts the first equation from the second omewihget:

O ZZ(XV’X;/) dﬂvézu-f-z X/(wv_dﬁv)’

or when one employs the formuld,(, X,) and inverts the summation indices in the last
sum:
0= z Yy updd, 00, X, +Z(dd9p—5d9p) X, .

Y P

However, X, (i) = &, 4 ; it then follows that:

do9,—6dd, =— Yy, ,,dJ, 33,

= Zyﬂ,v,p dﬁv 59/1 !
i.e., due to equations | @§:
Yi,v,0=Buv,p
and
(11 (X0, Xo) = 2. B Xs -

The coefficientss, , ; that appear in equations (ll) for the definitior the bracket
symbol are precisely the same coefficients thatleaened about in the transitivity
equations.

Now, according toLie (%), the necessary and sufficient condition for the
transformations (B) to generate a finite;parameter group is that th8 must be
constants. (Second Fundamental Theorem) We themnthe theorem:

The coefficients in the Lagrangian transitivity equations are cargt when and
only when the associated infinitesimal transfororadi (B) of the system generate an n-
parameter group.

In that case, we would like to set:

Buv,p =Cu v, p

asLie did. It must be further remarked that:

(*) Lie-Engell, Chap. 9.
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If we integrate the ordinary differential equations:

for constant, but arbitrary,w then we will get any possible position from thaiah
positionX,; a t, ..., ax t are the so-called canonical parameters of timétdi equations

for the group that are obtained by integratiprm., the isomorphic group ir).

Now, | shall further assert that the transitivityuatjons are most closely connected
with the equations that define the infinitesimal transgations of thedjoint group(*).
Namely, the symbol of those infinitesimal transfations ¢) is:

Ev f_z (N #aa)

so forf = w, , one will have:
d/ W = z ,uv;(a) d9|/

and

O = 250) ZWK

However, those are our transitivity equations, excegt We have sedldd, = 0, which
indeed also corresponds to the assumption of condtatitat is necessary here. That
assumption is not made in the general transitivity eqogitiand those equations will still
remain true when thg are not constant, in addition.
However, if the S are constant themie’s two characteristic relations(®) will
naturally be fulfilled:
c,,,+tc . =0,

'0,0,T 0’ o,

(6') Z(IKU U/1T+Q(,/1HQT/I 9,;;9“):0,

the first of which is explained immediately by (®)hile the second one follows from the
Jacobiidentity:

(X X Xa) + (Kee Xa) X)) + ((Xa X)) X = 0.

It would be useful to derive the general equatitias correspond to these.
The fact that the equation:

(6a) Boor+ Bopr=0

() Naturally, the actual basis for understanding the equytio ,= B, ., » is connected with this. One
can derive the meaning of the adjoint group directly ftoentransitivity equations | (8).

() Lie-Engel I, pp. 275. Theorem 48Lie-Scheffers pp. 464, equation (19). The quantities that were
denoted b there correspond to our

() Lie-Engell, pp. 170. Theorem 27.
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remains valid is clear.
Furthermore, thdacobi identity:

(X Xe) Xa) + ((Xe Xa) X)) + (X2 X) X)) =0
remains valid; i.e.:

(Zﬁ/,/{,axai x/lj-i_(Zﬁk,ﬂ,a X[f’ x/j-i_[Zﬁ/i/[f )gﬂ &j: O
or

z(ﬁ/,/(,aﬁa,/i T + ﬁK,/] ﬁﬁa/,r +ﬁ/1 { gﬁak r)xr

_ aﬁ/,/{,a Q( + aﬁk,) o
~\ oq, " 0q,

aﬁ)/a —
g(/,p + aqo 5K,pj X[J’_ O’

and since th&, are completely independent, it follows from thiatt

(6b) Z(ﬂ/,/(,aﬂa,/l T + ﬂ/(/l ,aﬂgl I + ﬂ/l { aﬂgk r) ZZ(agaKﬂ {/],p + alg;/] = {,,p + ag;;g {K’pJ *
o or o o

That is the second equation, which replddes equation (6.

Chapter Il. Kinetic considerations
8 4. Lagrange’s central equation

At the summit of our actual mechanical consideratj we place the fundamental
equation that we would like to refer to laagrange's central equation. It defined the
actual core of the so-callétlamilton principle, but it is more encompassing, since it also
includes the principle of varied action. Sinceseems to be less known, permit me to
derive it here briefly.

Letm (a, b, c) be the mass of a system point and let:

(C) T=1Smx

be its kinetic energy. (We shall I& denote the summation over the points of the
system, in which we leave open the issue of whetleeare dealing with a sum over a

discrete set of points or an integral). If we denihe inner (i.e., scalar) product of two

vectorsX andy by X[§ then the identity:

%[Sm(é‘i[&)} =Sm(oxK) + or
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will be true for all virtualox .
If we now makel’Alembert’s Ansatz:

(D) mx=K +R,

in which K means the impressed elementary force that acts upguotht, butR means
the reaction force, then from tpenciple of virtual work we will have:

SR©Bx=0

for all displacements that are compatible with thastaints of the system; i.e., for all
A, , and so for albd, , as well.
If we then definen system forces by the identity in theXd, :

(E) Y Q, 9, = SK 8%
A=1
then we can convert our previous identity into thé®fwing equation:
d < _
S Sm(x18%) | =5, 88, +aT,
which is true for albd,. Finally, if we definen impulse componentg By the identities:
(E)) " 3,39, = SmxBX,
A

which corresponds to (E), then our equation will read:

D) %[ZJA &%j =2.Q, 85, +dT,

and that id_agrange's central equatior(*); its meaning can be expressed as follows:

The total variation of the virtual work of the impe is equal to the virtual work done
by the impressed forces plus the virtual variatbithe kinetic energy.

() Lagrange, loc. cit., t. I. Part Two, Sect. IV. Nos. 1 to 5, especialty 3, pp. 283. Strictly
speakingLagrange described only the identity that was written downhat lbeginning of this paragraph,
and since the principle of least action was at thedimund in his era, Lagrange strived to employ that
principle, above all. (See also t. I, Part Two, SHtt.8 VI, and Sect. IV, no. 6. He went over to the
integral principle directly at those two locationsyrthermore, the term “central equation” was used
already byHeun in hisVorlesungen tGiber Mechanik.
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That equation encompasses the whole volume of fohegsct over time in kinetics;
the so-called Hamilton principle will follow from By integration when one assumes that

the dg, are equal to zero at the limits of the integral.

8 5. The Lagrange-Euler equations

We now introduce our substitution:

3) X =3

D

) Wy

into equation (ll1). The kinetic energy will thendmme:

T=3SmY g W Xgw,, or
A U

(7
T:%Z@wﬂﬁm@ ®.

Naturally, T is a quadratic form for the parametess which determine the velocity.
According to (3) (8l), it also follows immediately from (kE(8 4) that:

JA:sz_q,a)ﬂ_q, or from (7)
U
(Iva)
J/1 = ot .
0w,

The A™ impulse component is equal to the partial derivatof the kinetic energy with
respect to thel™ velocity parameter.

As a result, we can also write (lIl) as:

da,
5 dt

d oT
39,+>3,—-09,=5Q,39,+ J,aw, +> ——aq, .
A dt A A A a%

If we now observe the transitivity equation:

d
SO -om= B, 8,
Y78

as well as equations (A (8 3), and imagine that the equation above must be validlfor a
od) then we will get:
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, dJ T
(IV b) d_:+zﬁﬂv'/~/] wﬂJp_zagﬂ,p:Q/‘
up P lo

With that, we have already found the general equatbnsechanics that we seek. If we
introduce the symbolic differential quotients:

T ) < aT
) [6191 j_ Zp:aqp o

which are defined by analogy to actual differential quotjehen we can also write:

dJ oT
(IVb) d_':+zﬁw'ﬂ w,J, —(aj: Q,.

o

We would like to refer to these equations as lthgrange-Euler equations of
mechanics(}).
With that, we have discovered thheorem:

If we introduce parameteray, ..., a, into the consideration of a mechanical system
of n degrees of freedom that determine the velocity as independeantflinetions of the
¢, ....0,, along with the coordinates. ..., g, that determine position then the more
general equation IV will enter in place of thagrange equations. In them: T means the
kinetic energy, J means the impulse components that belong tadhiey way of (B,
and theg are the coefficients of the transitivity equations:

ds
433 -8 = 3 B,,., 39,49, (@ = dth.
uv

oT means nothing butza—TEM and will go to a—Twhen all J are actual
09, > 0q, 09,

coordinates that determine position. In that cadef will also be zero, since th@are
determined in terms of thigby way of equations (5) (page 8) and (2) (page 6).

() If one expressed in terms of theq, and J, in equations (IV) then, after some other minor
alterations, one will get equations that represempieaial case of theagrange-Poissortransformed ones.
(Lagrange, t. I, pp. 315; see algdauchy, “Report on the recent progress of theoretical dynsrhiVorks
[ll, no. 195) They express), / dt anddaq, / dt linearly in terms 0BT / dq andoT / dJ with coefficients that
amount to the Poisson bracket symbols for the spseimtitutionsy, = g, andJ, =X ¢&,, p, (in whichp,=

aT19q,).
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It should be stressed that if one wishes to exhibgetteguations then one needs to
known only the expression for the kinetic enef@yand the quantities, , , which
establish the connection between tf)eand thew .

8 6. Discussion of the Lagrange-Euler equations. Example of riglabdy.

| would like to justify the fact that | have referrem équations IV as theagrange-
Euler equations of mechanics as follows:

First, they subsume tHeagrange equations; indeed, one needs only to assume that
the & are coordinates in order to get immediately:

52 0T
ow,

dJ, aT _

at o5,

i.e., the Lagrangian equations. However, in additiamaigo recall that the first and last
terms on the left-hand side suggest the structure ofdjgjeabhge equation in its general
form, and finally, one has Lagrange to thank for theiivdéon.

In order to justify the namEuler and at the same time to give an example, permit me
to apply the entire theory to the rigid bodies that eo&ddout a fixed point.

If we take the Euler angle$ ¢, ¢ to be the position-determining coordinates, and let
p, g, r be the components of the rotation vector relative éoakes through the fixed
point in the body that take the form of the principeés of inertia them, g, r will be
linear couplings of the¥, ¢, ¢ of the kind that we assumed in equations (A). Namely,
one has’):

@=r—cotd(psing +qcosy),

Y= i (psing +qcosy),
sing

9= p cosg@ + q sin @.
The kinetic energy assumes the following form inghe, r:
T=4(ApP+Bd+Cr),

in which A, B, C are the (constant) principle moments of inerfla (OurJ will now
become:

() Klein-Sommerfeld, pp. 45, equations (7) and (9).
() Ibidem pp. 100, equation 13.
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and thus precisely the ones tKd¢in andSommerfeld called the impulse componerits
M, N (). Now, in order to derive the transitivity equationg, construct the symbols for
the three infinitesimal transformations using the equatabove:

of . of sing of
Xy, = —(—cotZsing) +— +—Cco0sg,
P a¢( Z dp sing 09 ¢

of of cosp oOf .

= —(-cotZcosyp) +—————sin ¢,

%q 6¢( 2 oY singd 09 ¢
x =

¢

If we calculate the bracket expressiofy, (X;) from this then we will get preciseBf /
0¢;i.e., X, etc. The relations then exist:

(Xpy Xg) =X, Ko X0) =Xp, &K, Xp) =Xq.

(Let it be expressly remarked that these relatayegrue only whep, g, r are referred to

axes that are fixed in the body; fay «, p, which are the components of the same vector

with respect to three axes that are fixed in speesigns will be just the opposite.)
Hence, al|g are constant (which is certainly not surprisirag)q indeed:

Br21=0, B 22=0, B 23=1,
B31=1, [£32=0, [£32=0,
,33,1,1:0, ,33,1,2: 1, ,33,1,3: 0.

Finally, since th{%} are all zero, our equations (1V b) will read:
A

ﬂ'*‘C¢/2~]3—6'.a§~]2:Ql,
dt
dJ,
- k=Q,
ot wIh—-wI=Q
%‘FQA_Jz—@Jl:Qs,

(m=p, x=0q, ag=r),

') Lagrange had no special term for them, but the facts wer@direompletely present for him.
g
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and these are precisely the equations that, Klgjn-Sommerfeld, pp. 141 (3 gave, up
to notations; they are thieuler equations for the motion of a rigid body about a fixed
point. Moreover, as was mentioned already in the dhtcton, Lagrange had already
derived these equations in their general form, and in gali¢ithe same wayigc. cit, t.

I, Section IX, Chap. I, § II, no. 22).

However, it emerges clearly from that example thatterms in equations (IV b) that
are in the second position have entirely the same agpthe terms that enter into the
Euler equations for the derivatives of the impulse compisnand that justifies the name
“Lagrange-Euler equations.” Furthermore, in the laters@erations, it will be precisely
Euler’s particular vectorial notation that will suggest litsaore strongly in conjunction
with Lie’s ideas.

8 7. Non-holonomic constraint equations

The main advantage of thegrange-Euler equations consists of the fact that they
allow one to treat any non-holonomic constraint equatithat might appear in a
systematic way that is similar to wHadgrange applied to holonomic constraints.

We assume thar < n linear, independent, and generally non-integrable constraint
equations that do not include time explicitly are giventhedy. By a suitable choice of
the wy we can likewise arrange that the constraint equations read simply:

(G) wn—wl = 0, 519n_./+2 = 0, ...,d?n =0.
Naturally, then equations:
(Va) 0}1—.;+1:0,...,ah:0

will be correspondingly fulfilled throughout the motion.

Nothing major has changed from our previous investigation® nd¥w haven —
v arbitrary, independent displacemedts , ..., &9,-,. The law of virtual displacements
will be true for the new reactions that appear in equat{da) when we consider only
(G), and we will then get the equations of motion whenappend the firsh — v of
equations (IV b) to equations (V a), in which we obserat theQ, .., Q,-, are to be
calculated from only the impressed external force usingdtas (E) (84). When we
take equations (V a) into account, we will get thev equations:

oT
Vb —4 4 wd —-| —|=
( ) dt ﬂ:L;n_V ﬁ/i,p,p u™ p [679/1 j QA

p=1,...n
(A=1,2,..n—1).

Equations (V a), (V b), (IV a), and (A) will then sig#f completely to determine the
motion. We then have the theorem:
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If v generally non-holonomic constraint equations are given for a mechanical
problem with n degrees of freedom then one introduces linear comobmaif theq by
way of equations (A) (page 6) in such a way that the constraint equatiamaesise
form &,-+1 = 0, &%, = 0. One calculates the forces, @ terms of only the impressed
forces using (E) (page 13). Equations (Va), (\(Ba), and (A) then determine motion
of the system completelfHowever, let it be further remarked if one is tacuoédte thevis

viva then one generally known the terms that are lineagyiy1, ..., @, Since one
requires thel-+1, ..., Jy in equations (Vb).
Now, the most important case is naturally the one@hich one takesgu , ..., an-y to

be simplyq,, ..., g,., —i.e., velocities ofi — v suitably-chosen coordinates.
Naturally, one will then have that all of the:

Brup=0
for thep<n —v. Now, one will have:

dé9, = &,

for such go. Equations (V b) then assume the form:

oT
Vb =iy Y 1,9, -| — |=
Ve "y, P (aﬂ)j @

p=n-v+l,..n

(A=1,2,..n—1).

The expression that appears to the lefddf/ dt is precisely the same as the one that
Appel denoted by R, . (See Introduction) Naturally, in the present case,aso has:

Sa=1 and ¢&,,=0 forallp# A

for A <n—v. [See equations (A)]

8 8. When can one employ the Lagrangian equations and the “illegitae form”
of the vis viva for non-holonomic constraint equations?

We shall now address the question that many authohs\e treated in recent times,
when we simply put theéagrangian equations in place of equations (Y Bnd in that
way, at the same time, the “illegitimate fornf) of the vis vivathat arises by setting
th-+1, -.., G4 IN T can be employed, as long as one assumes that tréinaiesq,-,+1,
..., o do not enter into the abbreviat€dnywhere.

From the last remark of the previous paragraphs, ondawit:

() See the literature that was cited in the Introduction
() An expression thaC. Neumann used. See “Beitrdge zur analytischen Mechanik,” Lg@zi
Berichte, 1899, page 437; algoss Enzyklopadie der mathematischen Wissenschaftely ng. 38.
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oT ) _ oT & aT
— | ==+ ____.é'
[619) j aq, p:nzwaqp e

for A<n —v. Now when the illegitimat@ is free ofgn-y+1, ..., 0, if we employ (Va) )
already then what will remain is:

oT |- 0T A=1,2, ..n-).
33, )  aq,

Therefore, everything comes down to investigating whgen (

z 'Bﬂ,ﬂ,pwﬂ‘]p =0,

p>n-v
H<n-v

and indeed identically in aly, for g<n—v.
Now, upon consideration of (V a):

0°T
Jo= —_—w .
v K;Vawpawk “

Hence, one must have:

®) S Byt =0

ooy 0w, 0w,

forallA, 1, k=1,2, ...n—v.
These are the necessary and sufficient conditionsrie to be able to employ simply
theLagrangian equations foq;, ..., ., Which arise from the abbreviatéd

We need to discuss those conditionsy # 1, so onlyone non-holonomic condition
2

is present, things will be very simple. Namely, aitai aa—T(K< n) must vanish
0 K
(i.e., the total kinetic enerdlyis composed of the part that is freecgfand a term inwf)

or all By ,n must be zero (i.e., the infinitesimal transformadioimat belong to thegy, ...,
g»commute with each other), and the constraint equatitbive integrable.

We will obtain the same result when more than amestraint equation is present.
We will then proceed as follows:

Instead of ap-41, ..., @ , we can also introduce any sort of new linear and
independent coupling of them. Hence, we set:

w=) a,,d, (0, o=n-v+1,..,n),
)

() Which is permitted here.
() The theorem oKorteweg (loc. cit) that one can employ the illegitimate formTofor infinitely-
small motions follows immediately here from the foofrthe terms in question.
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in which one must have onlya},, | # 0. If we introduce this substitution infothen we

will get:

0°T 0°T =n-v+1,...,n

—= > —a,, p .
0w, 00, 57 0w, 0w, k=12,...n-v

We now construct a matrix of (or less) columns and (- 1)? rows from theB yo, IN

which we associated the varioaswith the columns and the variowsand A with rows.
2:

However, we would like to drop the columns wittior which all _oT are zeroK <

0w, 0w,
n — v). Let ¢ be the rank of that matrix then (i.e., let the hgtheon-vanishing
determinant that it contains have degggeand let that be true precisely for the last rows
and columnsp, c=n,n-1, ...,.n — &+ 1, which we can assume with no loss of
generality. We then set:

op = Prpo

forallc>n—-vandp=n,n-1, ...,.n— &+ 1, in which we associate eaphwith a
certain pair of values foAd, 1, namely, one for which theterm determinant does not
vanish. We set all other,, equal to zero, with the exception of:

for
p=n-gn-c+1, ...n—-v+1.

The determinant of the,,, that are thus determined does not vanish, whilgfen, n —
1, ...,n—-&g+1landksn-v:

=2

aa)aa) gaa)aa) Pure

and that must now be zero, from equations (8). With tkabstitutions, we have then
succeeded in eliminating terms framp a), fromT with k=1, 2, ....n—vandp=n,n -

1, ...,n—&+ 1[in the event that (8) is fulfilled], while the efficients ofw. w, with p =
n—-&gn—-£—1,..,n—v+1 remain unchanged, and therefore vanish if that is thiegt
did before.

If we determine thgs that are associated with the recently-introduaednd if they
are still not all zero, then we can apply the procedlreve; one can still make the
coefficients ofT that are endowed withy O, (0>n -V, kK <n —V) vanish. That
process must terminate, since the number of thosei@estt is finite — i.e., either all
coefficients ofawr aw, can be made to vanish, or when that is not the edisg,., , for
which not all coefficients oty a), vanish will vanish. With that, we have reached our
goal. We have then arrived at the following theorem:



Hamel — The Lagrange-Euler equations of mechanics 22

If we are allowed to pose tHeagrangian equations for the first n + coordinates
that comes from the abbreviated — i.e., illegitimate — T then denstraint equations
must be brought into a form:

ah-v+1:0, ---1a?1-v+r:0; ah-v+r+1:0, ---1@:0

by linear combinations such that terms with k.4 do not enter into the expression
for the vis viva, while fod, y=1, 2, ...n—v:

,8/1,/1,n-v+r+a: 0 (0': 1, 2, A T),

such that the bracke{X ,, X,) will be composed from only, X1, .., Xa-sr. 7 can have
all values from 0 tov in this. In particular, ifr = 0 then the firsh — v infinitesimal
transformations must commute with each other, so rifieitesimal motions that are
actually possible will generate a group. By contrast,3f v then the energy must be
composed of two separate terms: The part that is free.@1, ..., a and a part that
includes only those non-holonomic velocity parameters.

The conditions are also sufficienin the caser = 0, the equationsy—+1 =0, ..., &
= 0 must be capable of being brought into an integrable fewch that in reality no non-
holonomic constraint equations are present, moreo$aice the displacements that are
compatible with thev Pfaffian equationsl$,-,+1 = 0, ...,d&, = 0 will be represented by
A, ..., On-y , but from the above they will generate rar- v-parameter group in the
variablesq: , ..., 0. , preciselyv finite constraint equations will exist, namely, the
equations that arise by eliminating the- v parameters from the equations of the finite
group. However, with that, we have once more arriaedhe result thaHadamard
stated in no8 of the treatise that was cited in the introductibtowever, he had to add
the words &n général& his en généralecorresponds to our = 0; i.e., to the case in
which there ish0 p>n —v for which all coefficients otuc ap, (k< n — V) in T will vanish.

If we now ask, more generally, not whether we canleyngll constraint equations
that we get from the outset by elimination fr@rbut which of them that we can employ,
then that will yield an equation as a criterion that igrely analogous to (8), except that
the summation is extended over only ghihat come into question. We will come to the
following theorem by essentially the same argumerttwigapresented before:

We form all(Xy, X,) for A, £ =1, 2, ...,n —v and select the independent ones from
among them. If there arey-.1, ..., @ for which the associated infinitesimal
transformations are independent of those brackets then we can employntiegsndent
ap for the elimination from T.Generally speaking/— (n —v)(n—v—1) / 2 suchwwill
go away.

That is preciselydfadamard’s result {) that he stated in the conclusion of ddn the
first-mentioned paper, except that in general this resaly implies the necessary

() Hadamard has also expressed it in this group-theoretic form inshind note: “Sur certains
systémes d’équations.”
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condition:We can, in fact, also drop a@, from T only when the associated infinitesimal
transformation indeed results from the definition of (kg X,), but a), itself does not
appear in T in conjunction witly , @, ..., ah-y, and with that additional restriction, the
condition will also be general and necessary.

However, things will become clearest here when wee ghe problem somewhat
more generally and renounce the demand that thenfiest cwmust be precisely thq,
and ask:

Let v constraint equations be given. Which of thoseaggus can one employ for the
presentation of the n i-Lagrange-Euler equation®&/b) for the elimination from T?

The path to the solution of this problem remains entiteé old one, so it results
from equations (8), and tl@swerthen reads:

If one has brought the constraint equations inte tbrm e -+1= 0, ..., a= O then
one can set equal to zero, in addition to such pemeent combinations of thoagthat
do not enter into T in conjunction with the first-rv @y also the onebefore exhibiting
the first n —v Lagrange-Euler equations in T that are linearly-independent obsth
combinations of thevthat belong to the infinitesimal transformatiohst result from the
Xa Xo) (0, 0=1, 2, ...,n —V). Hence if the partial differential equationgf= 0 (o= 1,
..., =) then define, in particular, a complete system, avhat amounts to the same
thing — two possible(!) infinitesimal displacements again produce a possibl
infinitesimal displacement, then one can set@ll+1, ..., a equal to zero in T from the
outset.

Example of the two-wheeled wagon

As an example, we consider the motion of a twoeldek wagon on a horizontal
plane. The wheels might be perpendicular to it andifedeng an axle of length;2ve
let their diameters ber2while we would like to ignore their thicknesses. thet axle of
the wagon be permanently linked with the wagon. If werassa rectangular coordinate
systeny, y, zsuch that the-axis falls along the vertical then the center ofwlagon axis
might have the coordinateg Yo, andr.

Let & be the angle that the direction that points fromleéftehand wheel to the right-
hand one makes with theaxis. We still require two more coordinates then ideorto
establish the position of the wheels. For that purpessesmploy in each wheel the angle
@1 (left) [¢@. (right), resp.] that a certain radius vector in eadteel subtends with the
forward-pointing horizontal, and indeed we would like teasure the angle in the sense
that forward, below, backward, above follow in sequemtgh thatg, and ¢, will
increase when the wagon rolls forward.

We would like to ignore any rotation of the wagon alitbathorizontal axissuch that
the five coordinatesoxyo, 7, ¢1, ¢ will suffice to determine the position of the syste
completely.

() i.e., compatible with the constraint equations.
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Now leta, b, ¢ be the coordinates of a point of the wagon relatiteécsystem that is
fixed in the wagon and is constructed from the axle, tldt shat is used for towing it,
and a perpendicular to the latter two axes, so for a pbthe wagon itself one will have:

X=X +acosd—bsinJ,
y=VYo+asing+bcoss,
Z=cCc+r,

SO
X = %,— (asind+bcosd) I,

V,— (@acosd—-bsind) I,

y
z =0.

However, if we establish a point in the wheels by tharpmordinategs, o1 (0, and az,
resp.), in whicha; and a> might be measured from the directions that are fikethe
wheels in the same sensef@asandg., then we will have:

X=Xy —| cosd—p; cos @1 + a1) sinJ,

y=Yo—I|sind+ o cos @ + a1) cosd,

z=r—pSin (@1 + )

for a point on thédeft wheel, so:

X = X%, + [l sind—p cos @ + a1) cosd) 9+ o sin (P + ) sin g 0Og,

y =Y, — [l cosg+ p1 cos @ + 1) sin ] 9- o1 sin (¢ + ) cosI 09, ,
Z=—p1COS @+ ) @,

and we will have:
X=Xp +| cosd—p, cos (. + i) SinJ,

y=Yo +|sind+ p, cos @, + a,) cos,
Z=r—psin (2 + )

for a point on theight wheel, so:

X =% +[-Isind—p cos @+ as) coss 9+ o sin (P2 + ) sing 0g,,
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y =Y, —[-|cosd+ p cos @ + a) sind 9— o sin (g2 + ) cosd g, ,

Z=—p1COS @+ ) 9, .

Now since the lowest point of each wheel must be sdtdering the rolling motion,
and sinceg, + o1 =7/ 2, ¢, + a» = 11l 2, p =1 for those points, we will get the four
conditions:

0 =%, +Isingdd+r sindg,,

0 =y,-lcosdI-r cos?¢,,

0 =%, —Isindd+r sind g,,

0=y, +lcosdd-r coFg,.
(The two z will each be zero.)

However, these four equations are not independent ofactaeh one can derive the
following three independent constraint equatidram them:

= ¢1+%(wl+lz?) = 0,

1 .
w = ¢2+F(w1_|79) =0,
s = X, 089+ Y, sind = 0.
In them, one has set:
@ = %, Sind -y, cosd;
aw means the component of the velocity in the direabibthe shaft, so it is the velocity

of the actual forward motion.
We would now like to introduce:

w, =, @, @,
as the five independent velocity parameters; the consggquations then read simply:
w=0, w=0, w=0.
Thetransitivity equationsn this case are especially easy to exhibit; one gets:
LGs21=1, Psi=—1, allotherf,1=0,

ﬁK,/‘,Z = 01

1
,BK,/],CB = ,BK,/],4 = F,BK,A,l )



Hamel — The Lagrange-Euler equations of mechanics 26

,81,2,5: - l, &,1,5: 1, all Othelﬁ,(,g,5 =0.

Now since allBc, 5 and S« 4 for which thex and A have the values 1 or 2 are zero,
one can employ the conditiomg = 0 anda = O directly for the purpose of exhibitifig
but notas = 0, sinceB, 25 is not zero.

If we now letM denote the mass of the wagon alone, an@ leindb” denote its
center of mass coordinates, whiles the radius of inertia relative to a vertical through
the center of the axle then this vivafor the wagon, but without its wheels, will be:

T, = %[xg+ J2+ K92 -2 49 (&singd + B cosd ¢+ 2yd (4 cof- B sit

=%[af +K’af —2a'w w,-2bw,w,] .

we have already droppesf .

If we then denote the mass of each wheahland assume that the center of mass of
each wheel lies in the hub and that the wheel possestational symmetry about the
hub then thevis vivaof the left wheel will be:

lem
2

[5C + V2 +(12+2k2) 32~ k3p 2+ 21 x,sind B - 2 y, coF B

in which ko denotes the polar radius of inertia. (By assumptimk’ will then be the

moment of inertia around an axis in the plane of the wiheg¢lgoes through the center of
mass.)
For the right wheel, one will have:

T,=10
2

[+ V2 +(12+2k2) 9%+ KXp - 21 x,sind F + 2 y, co9 [F .

If we addT, andT, then the last two terms will cancel, and after oneo@uces thew
while considering the facts thag = «w = 0, what will remain will be:

T +T, = %{af(zm 2mr5:j+w§2r{ P+ 2K+ gﬁﬂ,

r2

With that, the total vis vivéi.e., when one setgy and «w, equal to zero and drops the
term with «f ) will be:

T= %{@{M +2m[1+rﬁ:ﬂ+w§{ Mk? + Zn{ I” + 2I§+gﬂ— 2Maw, w,—- 250)20)5} :
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T no longer contains any coordinates explicitiyherefore, the equations of motion read
simply:

dJ,
— Je = ,

ot wIs=Q

dJ,

— < 4+ J= = ,

it wJs=Q

and therefore one will have:

2
le(a—Tj = {M +2m[1+5;ﬂ—a,gMa*,
oW =0 r

2
Jzz(a—Tj :Cuz{Mk2+2m(lz+2lg2+k°2|2H—M_Ma*,
0w, =0 r

Jsz(a—Tj - MU,
o, =0

which are then linear couplings af and « with constant coefficients.

Q: means the force that pulls in the direction of #haft, while Q. means the
rotational moment relative to the center of the @ragxle. That might suffice for the
purposes of the present study. If one would alstlike to examine the motion of such a
wagon then one would now have to enter into the hamore-difficult part of the
problem, namely, the study of the force systemsafoy sort of forward motion of the
wagon.

8 9. The impulse equations

We shall now turn to some other questions, andaddve will give free rein to those
ideas that come out of the consideration of theionobf the rigid body almost
intrinsically.

It is entirely clear that the expression for the vivaof the rigid body admits the
group of its own motions; i.e., the rotations.

We ask, more generally:

When does our expression for the vis viva T admit iafinitesimal
transformationX , f ? From our definition oK,f, and in the sense of group theory, we

would like to regard thé$ as constants here, such that one can set:
do,s=0.

The answer to this question is not hard to filfdT is to admit thed” infinitesimal
transformation, and indeed the extended point-foamgtion, then one must have:
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X, T=0;

z Z—éw 0.

[from (B), page 9]
However, from [(l), page 8]:

O W == z'gp,ﬂ,awﬂ 05, .
U

Hence, one must have:

oT oT
(9) ZGqU PU_Z C!) pllgw :O'
o H

However, if we imagine that, from [(F), page 15], thestfisum will be nothing but

oT .
— |, while the second one means premsEy ,@,J, , then we will see that all
679[) Pl
terms up to the first one on the left in l;bi%equatlon (IVb) will drop out, and since all of
the conclusions can be inverted, we will have the theore

The assumption that the expression for the vis wiMaadmit the,a‘h infinitesimal
transformation X% under the assumption thatdd#, = 0 has the consequence that the
Lagrange-Euler equation reads simply:

(Vi) E =Qp,

and conversely: If it so happens that this equatssumes such a simple form then T
must admit thed" infinitesimal transformation. The analytic expression fdrto admit
that transformation is equation (9).

We would like to refer to equations (V1) e impulse equations.

Incidentally, that yields yet another theorem:

One can also write the genetlahgrange-Euler equations thus:

(IVc) dJ, L_X,T=Q
dt 7 e

in which X%, is the symbol of thg" infinitesimal extended point-transformation.

In this form, our equations come to light more cleaty generalizations of the
Lagrangian equation in a different wayX,T is intrinsically connected witdT / 07,
conceptually, and indeed it also goes over to it wheftare actual coordinates.
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Example: If we consider a rigid body that rotates around a fixedtpnd introduce
the projectionsr, «, p (1) of the rotation vector onto three orthogonal atkes are fixed
in space as the parameteyshen, as we remarked befofewill admit the group of those
motions, and therefore the equations of motion watreimply:

aJ, _ aJ, _ aJ; _
p Q1, ot Q2, ot Qs,
in which one has?;:
T T T
'Jl | - 5 3= -
o oK op

We shall return to the general case.

If T admits precisely < n of the infinitesimal transformations (B) therequations
that are analogous to the area theorems will existhe case of force-free motion,
namely:

Jy = const.

Furthermore, one has the theorem:

If we know any infinitesimal transformations:
of

Xpf=>¢&, ,— =12 .,v
7 0q,

the T admits for a mechanical system with n degmdebeedom then we make the
substitutions (A), for a suitable choice of theeoth,, . The first n equations of motion
then read simply:

dJ
-0,
dt Qe

In particular, if the motion is force-free then well know v first integrals directly,
namely, J= const.

It would be consistent with thEhomson-Helmholtz view of things to refer to they,
for which X, T = 0 andQ, = 0 (soJ, = const.) agyclic velocity parameterghey then
define the natural generalization of the cyclic coordmétieeir derivatives with respect
to time, resp.).

Let it be stated expressly that not every mechanigalesy possesses impulse
equations.

() This is the same notation askitein-Sommerfeld, pp. 45, equations (8).
() Ibidem pp. 115, Theorem lla.
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§ 10. Euler's equations

We shall take our basis to be our ongoing assumptidnjuseddsd, shall be zero
under infinitesimal transformation (variation), whicheistirely arbitrary, if also closely
related to group-theoretic concepts. Any other assumploout dod, is likewise
permitted. For example, we can then consider a \@mi&r which, in particular:

d39,= Y B,,,49,39,,

such that one will have directly that:
0dd,=0.
What does that mean?

Only that we leave the velocity parameters unchanged timgleariation. However,
we once more consider the rigid body and now introdneecomponentp, g, r of the
rotation vector along three orthogonal axes that aeglfin the body to beuy, w, a3,
resp. The assumption thgp = 0, & = 0, & = 0 will then mean that we generate the
varied motion directly by an infinitely-small, constaatation around an axis that is fixed
in space; then and only then do the velocity componentshaotge relative to the axes
that are fixed in the body. (Analytically-speaking: Theipon of the body at every time
is fixed byp, g, r, up to a rotation of the coordinate system.) In thegxe, we see how
the assumption thatd$, = 0,dd% = 0,ddd; = 0 (thedd are referred to axes that are
fixed in space) can be closely related to the assumiitai@d d%, = 0, 0d% = 0, dd&s =
0 (the &9 are referred to axes that are fixed in the body).detper study of this
remarkable relationship in the general case shall fobder; for now, that remark might
suffice to justify the consideration of the assumption

0 dJ, = 0.

We once more askVhen does T admit th# infinitesimal transformation under this
new assumption?

Obviously, one must then have:

(10) z%@ﬂ =0,

(ﬂjz 0
09,

and thed" Lagrange-Euler equation now reads:

or

dJ
(Vi) a5t 2B ds = Qo

We would like to call such an equationBEmler equation (in the broad sense).
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We have then arrived at the theorem:

The assumption that the expression for the vis viva T admitg/thiefinitesimal
transformation under the assumption tldgid?, = O (for all A) has the consequence that
the simpleEuler equation (VI1) will enter in place of thé" Lagrange-Euler equation.
Conversely: If one succeeds in giving fieequation that form then T must admit e
infinitesimal transformation under the assumption thatl%, = 0.

If we assume thal admitsall n infinitesimal transformations then we will naturally
get nothing buEuler’s equations. However, it also follows from equations ,(¥@)jich
must now be true for ghh, that:

6_T:0 forallo;

aq,
i.e., T must have constant coefficients.

Theorem: A mechanical system will move in accordance witlkeiEiequation (VII)
if and only if T has constant coefficients afteeantroduces they so if and only if T
admits all infinitesimal transformations (B) undbee assumption thakwy = 0.

In particular, if the n infinitesimal transformatis generate a group, so when Al
are constant, then th&ulerian equations (VII) will contain nothing but the as
variables on the left-hand side.

In this case, one would probably be advised to refexqueations (VII) akuler’s
equation in the narrow sense.

Since the rigid body obviously fulfills all of the wd conditions when one
introduces the projectiong, g, r of the rotation vector onto axes that are fixed & th
body, its equations of motion must have precisely thea fs11), in which J; =0T / dp,
J, =0T/ 0dq, J3 =0T/ dr, andT means a quadratic form in tipe g, r with constant
coefficients. One then needs only to determine theigpfmrm of thef, as was done
above on page 17 in order to be able to write down theargdiuler equations for rigid
bodies directly on the basis of this argument and ougrgétheorems.

For the general, it should be remarked that: Sincecanealways introduce velocity
parameters such thdt constant coefficients (since one can in fact bring definite

n
qguadratic formT into the formZ(q2 by a real linear substitution), there will Beler
i=1
equations in the broad sense for any system. Howewer3 thill naturally not be
constant.

Any system of n degrees of freedom then possEsges equations in the broad
sense, but not also in the narrow sense.
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8 11. The relationship between the assumptior®)’ = 0and ddJ = 0

We now take up the question of the relationship betweetwih@ssumptiondds =
0 anddd$ = 0 that we already brushed upon briefly above.

Since one can go from tipeq, r to thez «, p by a rotation of the coordinate system
—i.e., by a linear transformation (with variable coéfnts) — then we shall now pose the
following general question:

If we introduce n new velocity paramete, ...,«J, in place ofa, ..., a by way of
the equations:

(H) W= &,

in which the determinarjts; « | should not vanish identically then can we arrange for the
assumption that &%, = 0 to go to dd,= 0 by a suitable choice of the(which depend

upon theg)?

(Henceforth, we shall denote all quantities thagréd thecw with primes.)
It follows from the equation:

o = Z‘Eﬂwd?/’( ,
which corresponds to (H), that:
dod, = Z de, o5, + ZSM dog,,

(11) and from (H) itself :
odd, =25£Md19; +Z£M5d19;.

The first set of these equations can be employeditolate ddJ. when one considers

thatddd, = 0; however, when one considers the transitivity Bguns on the left of the
second set and the assumption @a#?, = 0 on the right, it will follow that:

- Zﬁﬂwdﬂv o9, = z&%w dJg, .
Y787 K

If one now once more sets:
dg, = z E., dJ,
A

using (H), in which:
z EK,/1 5/1,;1 = 5/(//1 '
A

then equations (11) must be true for @#* and &J. On the same basis, when one
substitutes:
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it will follow further that:

If one solves these equations for the derivativesg pthen one will get:

6£M

(12) = Zﬁvp/i Vi ,UK'

These are the constraint equations for gie . The assumption thatd, = 0 will go to
the assumption thadd, = O under the transformation (H) if and only if they ar
fulfilled.

We shall now address the problem of exhibiting the intelisabguations for (12).
If we differentiate these equations with respeaf;tand then present the same equations
when we switchy and 7 then since the left-hand sides of these two equatigree, the
right-hand sides must also be equal. When we combirtedidés simultaneously, we
will then get:

0 0 0 0
5 ﬁg(Lsz ( Pras  Pru njg
v.u

aqr aq V.U 60, aq

0&
Zﬁvyﬂ[ V,/_ £ nl-/rj :0'

aqr aq

If we substitute equations’{qpage 9, &), as well as equations (12) in this then we will
get:

If we switchp andy in the last sum then since the equations are truelfar &k can
also write:

Z'BV;M'BJ/JV p/ﬂa/_zﬁl/ﬂﬂlga,uv arﬂl-/t Z'BV/IA'BJ## L

V,p,0
— Z aﬁvp/l _ aﬁv,,u,/l T
~ aql V,T aqT (2 *

We shall now steer clear of applying formula (6b) (page8§l2). We can write the
foregoing formula with permutation of the summationided as:

z 0.1 J/z(ﬁpavﬁvyﬂ ﬁ,upyﬁvgﬂ ﬁapyﬁvp(})
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:Z ,up/i +z 0’/ 0';1/1.

o

It follows upon solving for the sum overthat:

z (ﬁp,a,vﬁv,p,ﬂ + lgﬂ,pwgv oA + 130 U vﬁv P A)

A aa,u/i
=Y, ey, Lo

If we switch the summation symbotsand in the last sum and compare the formula,
thus-altered, with formula (6b) then we will seeedtly that we can also simply write it
as:

aﬁp gl
oA — O
Zg‘“ oq,

Since this should be true for all it will follow that the necessary integrabilitgedition
for equations (12) is that:

aﬁp,a,/l
aq,

(VIIN)

for all p, g; A, 1; i.e., allf must be constant.

Now it follows from the general theory of systeofspartial differential equations
like (12) () that the condition that was found is also sudiiti for (12) to possess
solutions. Indeed, the general solution of (12)tams precisely’® constants, say the
values ofg, , for a well-defined system of values of the Furthermore, eacls; ,
depends upon onlyp of those constants, since the system (12) spitts n separate
independent systems that are represented by timisamlues of the index

We then have the following Theorem:

It is possible to convert the conditiordl = O into the conditiondd? = 0 by a
of
ach
generate an n-parameter group. The transformatomefficients& are determined

completely by the partial differential equatiod®), up to a well-defined system of initial
values for the q.

transformation of the forn(H) iff the n infinitesimal transformations,X zg‘p A

In particular, for rigid bodies, thg «, p will transform into thep, g, r in precisely the
same way that the axis-cross that is fixed in spearesforms into the axis-cross that is
fixed in the body. Therefore, thg , will be the nine direction cosines that the system
that is fixed in the body define with the one tisdiixed in space for rigid bodies.

() See, e.glie-Engel, v. |, pp. 179, Theorem |I.
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How do the other quantities transform under the suwibistit (H), namely, the3 (for
which we will now writec), the €, thex, theJ, and theQ? It follows from the first row
of equations (11) that:

doés, = —dew a9, E
A

o€
== “‘5 ds, 59, E,,

HAV
65
=— Z “‘5,” &, ,E 105,09,
HAV,pL a

Hence, when we switch the indicesaindy, we will have:

6@ »

Cosue _Z

Avy

51// Au K/i'

If we then substitute the value @4, ,/ dq, from (12) in this then we will get:

ﬂllK Z yﬂz /‘gyp‘gw!EKA

= Z Hyﬂgaﬂ‘gypEM
a,y,A

or finally, when written more clearly:

(13) ﬂllK Z Cayﬂgap‘gyﬂEM

a,y,A

Naturally, thec' will also be constant, since no significant differerexists between the
variationsd and .
In order to find the transformation of tige we start from the equation:

0% = Y5 d3,= Y8 &%= Y8 E,, &

_:zEK/ié(

Hence:

It similarly follows from:

doy =3 ¢,,d8,=>.&,, ds,
P P
that

(14) &1= D E &,

and in precisely the same way:

(14") =D E.,J.,

35
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(14") Q=Y E.Q.

Now, if thevis viva Tadmits all the infinitesimal transformatlorﬁfﬂyp:—, in the
p o
sense that one take®)d = 0, then naturallyT will also admit the transformations

zgﬂp:—f, and it is obvious that one must now gelJ, = 0. With that, we have the
s 00,
Theorem:
If the equations of motion of a system can be ditbunto the form of impulse
equations:
dJ, . . oT
—2=Q,, inwhich J= :
dt Q ow,

then one can introduce, undeme condition, new velocity parameters’ by the
substitutiongH) in such a way that the new equations of motionredd:

dJ’

& T2 Cwd 3= Q

in which one now had,= 0T /0, , and the coefficients of the form T that is quadrati
in the «j, are constant. The single condition reads: Onetnmase thatS = ¢, and

therefore alsgB’ = c¢’, must be constant; i.e., the infinitesimal transfations (B) (page
9, 83) must generate an n-parameter group.

Briefly stated:

If there areEuler equations in the narrow sense then there will d&soimpulse
equations; however, the converse it true only wiinentransformationgB) generate a

group.

There are a few things that can be said abow;thenamely, the coefficients in (H).
If we denote the initial values of tlag « by £§°§ then the integral equations of (12):

Eix=Pax (O ooy On; €7, o )

will define the finite equations of a group. If we set:

z C/I,V,/‘ 8!1';( = 5V, /‘,K
u

then equations (12) will read:
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Since the functionsg;,, satisfy these differential equations, frohie’s (%) first
fundamental theorem, tleequations

5/1,/( = ¢A,K

(forA=1, 2, ...,n, but a well-defined, if also arbitrary) will, in fact, represent a group;
01, ---, 0o play the role of the parameters.

The equations:

g/‘,K: ¢/‘,K(qll ---aqn; 8]3(1)()1 ey 8[5?/3)!

g:],;(: ¢/1/K(q1! DR} q; a ‘gl,Ka ---1£n,l()

will then imply the equations:
E = (a, .. q; &2, .., D),

inwhich g/, ..., g, are functions of only, ...,g, andq, ..., g, .
However, the infinitesimal transformations of thatgp:

of of
;gﬂv/‘%?_ ZC;MJ( 6£M

A K Ay

are nothing but the infinitesimal transformations & #ujoint group? that belongs to
of
the groupX,= > &, , —.
7 00,

We then have the theorem:
The arbitrary values of the g that are associatétth whe £ by (12) emerge from the
arbitrarily-chosen initial values of the by an application of the adjoint group to the

given group(B), in which the coordinates.q ..., g, play the role of parameters.
However, the parameter group of that new groupniseomore the old group.

In order to prove the last statement, we write (12) as

o€,

Sk :z 5;,,, aq

However, from a theorem thhate proved {), it will follow from this equation that:

() Lie-Scheffers pp. 376.Lie-Engel Ill, pp. 563.
(®) Lie-Scheffers pp. 464, formula (19).
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of
ZEMH,

/

i.e., the symbol of thg/" infinitesimal transformation of the original group (B3,
simultaneously the symbol of th&' infinitesimal transformation of the parameter group.
We would like to derive yet another remarkable relatigns Namely, | assert that
the given group(B) and the reciprocal grou?) that corresponds to the, , [see
equation(14')] are simply-transitive groups.
Namely, if we set:

of
x' : T _,
? 2‘5’” aa,

analogous to (B), then | assert that we will have:
Xo X;) =0
for every pair of valuesp, g, and since our groups are simply-transitive, from the
assumptions that:
| o |#20 and  |ga| #0,
the first statement will follow from our new one hye’s theorems in Chapter 20 of

Transformationsgruppen.
However, our new assertion is very easy to provaceSi

=3 045, 0S50 o | Of
x XU = Y g - : g ’
( P ) -~ ( aq# P.H aqﬂ p,lljaq‘

and from (14):
g/'(,A: zgp,ﬂgp,/( ’
P

the statement will follow from a simple calculatismen we observe equations (12) for
the &,« and equations (5) for the ,,, (page 8).
Since one can determine thg uniquely from the giver, , andé, using equations

(14), that will imply the following purely-group-theoreticetorem:

If we have two classes of n infinitesimal transfations in n variables:

of of
Xo= > &, — and X =>»¢ ,—,
P ; " 9q, ; " 9q,

() Lie-Scheffers v. I, pp. 407, Theorem 72.
(®) Lie-Scheffers v. |, pp. 380, Theorem 68.
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and none of the determinants é,« | and

&.1| vanish identically then the

transformations of the one class can be switched with all transfansabf the other
class only when the transformations of each class generate an n-parametgr. gr
Naturally, the groups will then be simply-transitive and reciprocakicheother.

Since | will not need this theorem, | can probably supttesproof; however, all of
the pieces that are necessary for that proof are inedtan the considerations of these
paragraphs.

8 12. The “rotation group” and the “rigid body with n degrees of freedom”

As we see from equations (H), (14), '01414'), (14"), so thee, J, & Q will
transform differently from theu There would be a certain interest to examining #sec
in which theg, J, & Q transform precisely like thevfor rigid bodies.

However, one sees immediately that one only neetaxe:

('J) EK,/\ = 5/(,/]
then.
However, the equations:

z EK,/1£/1,;1 = 5/(//1
A

then imply that:

Y& =1,

(15) ’

> &,.£.,=0, whenk #u

A

However, since the assumption (J) implies that thedaierminant of each element in
the determinant4 « | () is equal to that element, it will also follow that:

Y& =1,
A

(15)
> &£, =0, whend#u

The quantities; « the have the character of direction cosines in-dimensional space;
as is easy to se@q,(n — 1) / 2 of them are independent, so the substitution (H)ev
orthogonal under the assumption (J).

We then have the theorem:

If the substitution (H) is orthogonal then thewill transform precisely like the &,
& and Q.

() Which will have the value 1, as a result of (15); we would like to choose + 1.
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We would like to call the totality af quantities that transform like th@ a vector
relative to the systeifl). We shall then also speak briefly of the “veloaigctor” a the
“impulse vector” J, and the “force vector’Q. However, in order to avoid
misunderstanding, we would like to always put those temmsiotation marks.

Now how does the assumption (J) relate to the réfffigal equations (12) of the
previous paragraph?

In place of (12), one can also write:

so from (J):

However, from (19, that is the same thing as:

_Z a 2 /]K V/ , |e, as- C/\,V,/I'

Thus, in any event, a necessary condition for (Jetpdssible is that:

C}u/u//] + C/‘,V,/I = 0
If one combines this with:

C,u,v,/l + Cv,,u,A = 0
then it will follow that:

(IX) { C,u,v,/i = Q/,/i U = C/i MY

:_C/i,v,,u :_Q/,,u,/i C,u/iy

Conversely, if (IX) is fulfilled then it will follow from equations (12) when one
multiplies bye, « and sums ovet that:

__zgﬂ,u z ) VI ,ukg/i,/(’

Hy.A

and that is zero, since every term on the right atsmurs with its opposite. It likewise
follows that:

A /

0¢,, ¢,
Z[‘E’A,Kﬁ . j z ,u|//1 £A,r+£;1,r£/1;() =0

Therefore, one will have:

() We are then using this term in a somewhat morecest sense thadertz used.

40
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> ¢, [E,, = const.
A

for all x, 7, and when one chooses the initial valqu of the € corresponding to

equations (15), one will find that ttealways fulfill equations (15), and therefore (J), as
well. We then have the theorem:

The substitutiorfH) that takes &%= 0to a4 = 0can be orthogonal if and only if the
constants of the grougB) fulfill equations (IX); i.e., when they admit a cyclic
permutation of their indices.

Definitions: We would like to call such a group a “rotation group” andezmanical
system withn degrees of freedom whoses viva Tadmits such an-parameter rotation
group [whether the assumptiond&d = 0 or & = 0 makes no differencé)] will be a
“rigid body with n degrees of freedom.” Here again, we would like to awagysly
guotation marks.

We would like to refer to an orthogonal substitutlmrefly as a “rotation” in what
follows. We would also like to say that the “velocitgctor” w [“impulse vector”J,
resp.] are referred to the componeatgJ’, resp.) 6w = 0) in “a coordinate system that
is fixed in the ‘rigid body,” while the components|[J, resp.] 0 = 0) are referred to a
“coordinate system that is fixed in space.”

With all of those preliminaries, we now have thedwaiing Theorem:

A “rigid body with n degrees of freedom” always moves in accordancethetbuler
equations in the narrow sense:
d‘]’ U I U
/ +zcﬂ,p,va{1‘]v = Q/i !
d

in which J),= 0T /0w, are the components of the “impulse vectord, are the
components of the “velocity vector,” ang@, are the components of the “force vector”

with respect to a “coordinate system that is fixadthe body.” The vis viva T is a
quadratic form of thew with constant coefficients, while théare Lie’'s characteristic
constants for the motion of the “body,” and theymada cyclic permutation of their
indices. All vectors will be transformed in thenmsa way under a “rotation”; in
particular, there is a “rotation” with n(n — 1) / 2arbitrary constants that takes the
assumptionddd, = 0 (one setsd, /dt = «J,) to d&5) = 0O;i.e., the coordinate system
that is fixed in the body to one of th&" ™2 “coordinate systems that are fixed in
space.”
However, the “rigid body” satisfies the n impulsguations:

dJ, _
p Qa,

() Since the group that belongs to thés also a rotation group, as one easily sees fi@ (
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relative to such a “coordinate system that is fixed in space,” irthivbne again has,J=
0T /0wy . In particular, for a force-free motion there will exist n finstegrals:

Jy = const.,

so the “impulse vector” will remain constant in space.

Chapter Ill. Group-theoretic considerations
8 13. The group of all rotations inn-dimensional space

Obviously, the “rigid body witm degrees of freedom” is essentially characterized
kinematically by its group. One can always bring Thiar the “rigid bodies” into the

form Zaf l.e., by a linear transformation of tliewith constantcoefficients, without

changing the group. THeuler equations then contain nothing besidesdlieat would
be kinematically characteristic. Equations (A) indeednéethe group then, and since
our group is naturally simply-transitive, groups that beltmghe samec, which then
have the same composition, will also be simifdri(e., all equations (A) that belong to
the same can be converted into each other by a point-transfasmat

The constants then determine the “body” kinematically. By contrasany “rigid
bodies” will belong to one group, since the group withaén unchanged under a linear

substitution of thew with constant coefficients, but tiewill take the formZaf that
was assumed above only for all orthogonal substitstafithe «y as we shall soon see.
Therefore, the theorem that the group characterizgsl ‘bodies” will remain true only
when we count all “rigid bodies” as having the same typenithey indeed belong to the
same group, but whoseincludes arbitrary constant coefficients. (In this sense, e.g.,
all ordinary rigid bodies that can rotate about adipeint can be assigned the same type.
With that convention, we can say:

If we would like to learn about all types of “rigid bodies” in a matlatical-
kinematical way then it will suffice to exhibit all rotation groups.

Let it be next remarked that the term “rotation” &r orthogonal substitution is also
justified only insofar as the expressiopsa)?, > «}?, and ) d, o are invariants for

two “vectors”df, ..., o), anddf', ..., o, , and therefore, the distance between their end-

n
points Z(a& -a))? , as well. In that way, the orthogonal substitutiane conversely
singled out from the other linear ones uniquely, and indeedllitalready suffice to

() Lie-Engel |, pp. 340, Theorem 64ie-Scheffers pp. 435, Theorem 30.
() i.e., instead of posing the diversity of Euler equationthe manifold of the samethat define the
group, while we keep the forfi = ¥ «f , we now find it preferable to pose them on the maahifaf

constants ifT, in order to be able to demand that ¢tstdould be free.
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demand the invariance onj Therefore, all rotations again define a group, namely,

thegroup of all rotations in n-dimensional space.
We would like to prove the following theorem about tpatup:

The group of all rotations of the n-dimensional space and the totality afbtgoups
is characterized by the fact that thé woefficients of each of its infinitesimal
transformationg?*):

hap= ), a,,w0r, (=1,2,...n

H=1,...n

define a skew determinant of degree n, and indeedvieryA that is present.That then
means that one has:

A pp =" pu
and
a/]/lu“u = 0
The proof reads:
It must follow from the invariance on; that:

zwpa—ﬂ Tp =0,
P
SO
zaﬂ,ﬂ,p wpwﬂ =0,
up
or
z wpwﬂ(aﬂ,ﬂ,p + aﬂ,p,ﬂ) =0
PSP
for all w

The assertion that was made then follows from tidte proof can also be inverted,
and therefore the given conditionaiso sufficient.

It follows from this theorem, for example, thaethdjoint group to a rotation group is
ann-parameter subgroup of the group of all rotati@mgl similarly for the group afthat
was mentioned on page 37, when the conditions(ppxye 40) are fulfilled.

In what follows, we would like to refer to the @n

Wb+ ... +af =0,
which naturally goes to itself under all “rotatighas theabsolute cone.

We can then prove the following theorem aboutgitwip of all rotations, which will
be important for us:

() The fact that is constant, so the infinitesimal transformatians linear functions of they is self-
explanatory, since the finite transformation equatamesindeed linear and homogeneous.
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One can take any linear structure through the origin in the spacetofanother one
of equal dimension by a rotation when neither of the two linear stretoontacts the
absolute cone.

We next prove that one can take the-(1)-dimensional plane:
2A@=0

to ay = 0 when one does not ha\E/]fz 0, so when the plane does not contact the

absolute cone.
If we then rotate things by setting:

w=Yh,d,

in which:
2, =1

U
>h.h, =0 forv# y,

and shouIdZ)Ich/ then go tod, [ const. then we would need to have:

> Ah,=0 fork=1,2,..n-1,

while > A,h,  cannot be zero.

We now proceed as follows:
We choose any system of solutions of:

zAvh/,l = 0

that is not identically zero. Upon multiplying &}, by the same factor, we can now
arrange that:
D=1

If we were to then hav{ h?, = 0 for all systems of solutions of the equatEn)Iv h,=
0 then we would need to hate: = 1o A, (*), and thereforeZ)Ij: 0, as well, which

should be excluded. i = 0 is also impossible, as well as= «.) We now take a non-
vanishing solution of the equations:

() since for alidh,; that satisfyX A, dh, , = 0, one must also havgh,,dh,, = 0.
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> Ah,=0 and Y h,h,=0.

Once more, one cannot haE h?,= 0, since otherwise one would need to have:

hyo=nhy+nA.
It follows from this upon multiplying byl, and summing that, = 0. Multiplication by
Ay, and summing oven will also giver; = 0 them so ah, > would be zero, which should

not happen, though.
One can then also succeed in having:

D on,=1.
We then proceed.
At the penultimate step, we must solve the equations:

ZAV h/,n—l =0, Zh/l h,’n_lz 0, e Zh/,n—z h,’n_lz 0.

These are — 1 linear homogeneous equations mnknowns, so they possess a non-zero
solution. If one also had thi h? .., = O for this solution then it would follow that:

hyni=nAv+nhy+ ... +hohyno.

Just as before, one must once more conclude from thistteehaso =0, =0, ..., 2
= 0 in succession, so tlravould all be zero, which cannot be. One can thenaismge

that:
D=1

It ultimately remains for us to solve:

2Nih,=0,.. Xh.h,=0

These are once mone- 1 homogeneous equations, so they have a non-zero sadurtébn,
we also do not hav{ h?, = 0, since otherwise it would have to follow that:

hyn=nhy1+ ... +%ihyna,

from which we could once more have to conclude the kamgsof all z. However, all of
the required equations for tleare satisfied with that; all that remains is towghbat

>'h, A, does nowanish.
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If that were in fact the case then since the eqnat@lh,yn h.=0 (k<n)are

fulfilled, a linear relationro A, + 11 hy1 + ... + 1 hyp-1 = 0 would have to exist, which
would likewise be impossible, from the previous argumenttaadssumption about the
h.

One can then satisfy all conditions for the
With that, it has been shown that, in fact, any @I@Ach, = 0 can be brought into

the formay = 0 by a rotation when one does not h@e%f = 0; i.e., when the plane does

not contact the absolute cone.

Now, in order show something similar for any lower-disienal [say i — V)-
dimensional] linear manifold, we lay a manifold of thext-higher dimension through it
that does not contact the absolute cone either (whiaghvays possible), etc., and finally,
an (— 1)-dimensional plane. We then rotate it inpo= 0. In that plane, we we rotate
the next-lower-dimensional manifold intg.; = 0, and proceed in that way until we have
ultimately brought the given — ndimensional manifold into the form = 0, a-1 = 0,

e -1 = 0.
The stated theorem is proved with that.

8 14. The composition of real rotation groups.

With those preliminaries, we turn to the study of rotajooups.

First of all, the group of the rigid body is a rotatgnoup, as would emerge from the
formulas on page 16.

However, there are only two three-parameter rotagimups, to begin with. Since
the c with two equal indices must always vanish, what vért remain is just; »3. If
Ci23 IS also zero then alt will be zero, and the group will consist of nothing but
commuting transformations, and would be similar to tloeigrof translations. However,
whenc; 2 3iS not zero, one can arrange tbat ;= 1 by a suitable choice of tleg in such
alway that the group is then similar to the group oftiata in three-dimensional space
().

From the remarks at the beginning of the previous paragraphsan also say that:

There are essentially two “rigid bodies with three degrees ofdbwe: the rigid
bodies that rotate about a fixed point and the freely-moving point.

It is a complicating fact that the characterististidction (IX) (page 40) of the
rotation group does not emerge in all of its represemstidNamely, in place of the;
one can introduce linear couplinggwith constantcoefficients:

() Comparelie-Scheffers pp. 571. Of the seven types of groups that were gives, the can then
convert only the first and last types into rotatioaups. In regard to I, see the forhoth page 568.
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a)K = zhk,ﬂalﬂ
A
(K) or
CJ ZHAK K

in such a way that the relations (1X) are no lorngdfilled for the ¢’ that belong to thev.

In fact, it follows from (K), in analogy to (14 that:

o = ZHK,pf,'M :
and from that: '
Xo= 2 HipXe
SO
X.= > h X,
P

That then implies the formula¥){

zhrﬂ uyaA z LTKT

or also:

(16) ,uv) z JKrhU,,uh(,v H/l,r'

g,K,T

Now, when thee, . ; satisfy equations (I1X) then one will have:

!

c

! —
'y ,A + C/l,v,,u =0

only when one has:

z UKTh(,V(hT”u H/l,r+ bT,/‘ H

g,K,T

for all A, k, v.
Since the determinant of thas naturally non-zero, it will follow that:

z JKr(hU,,u H/i,r + hT,/i H

or, when one considers (IX).

z 0.K,T hﬂ,,uH/i,r+hT,/1 H,u,r_hquAg_ b/‘ l_LCf]:O

T,0<T

() Seelie-Engel I, pp. 290, formula (3).

47
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In general, that condition will not be fulfilled, butwill probably be always fulfilled
when hg, = Hy, ; i.e., when the substitution (K) is orthogonal. \t¥en have the
theorem:

The condition(IX) for the rotation keeps its form under an orthogonal substitution of
the wwith constant coefficientsut not for all linear substitutions, in general.

We would now like to provea characteristic property of the adjoint group of a
rotation group. The V" infinitesimal transformation of that adjoint group reads:

dw=Yc,, w05,
V%

as has been stated several times. Now, when equati¥hsale fulfilled, the

determinant:
HM=12...n
| Guna | (/1 =1,2,.. ,nj
will be skew for allv.

Therefore, from the theorem that was proved on pagdehé3adjoint group to a
rotation group will be an n-parameter subgroup bk tgroup of all rotations in n-
dimensional space.

That theorem, together with the aforementioned arakes it possible for us to now
carry out a more precise study of the rotation groups.

To that end, withLie, we appeal to the lemma that we can represent every
infinitesimal transformation of our group by aray : a : ... : a in n-dimensional
space of theww Any v-parameter subgroup will then correspond tovesimensional
linear manifold through the origin that remains unchangstkeuall transformations of
the adjoint group, whose representative points lie (.it If the subgroup is invariant in
the group then the planar manifoldallif transformations of the adjoint group will remain
unchanged?.

We now make the assumption tkiaé rotation group is real.

From now on, we shall assume that it possesses avariant subgroup.

One can introduce neww by a substitution (K) (page 47), and indeed by a real
rotation, such that the planar manifold that correspoodsé subgroup will go to the
manifold ey = 0, -1 = 0, ..., w+1 = 0. (See the Theorem on page 43.) In that way, one
can arrange that theinfinitesimal transformations of the invariant subgroup be X,

..., Xy, precisely, since otherwise the characteristic prgg#&d) of the c, ,,, would be
lost (from the Theorem above). Now, since ¥ie ..., X, initially define a group by
themselves, ang will be zero when it has two indices from the seqeehc?, ...,v and
one index from the sequeneet 1, ...,n. Since that subgroup is invariant, moreover,
and therefore only linear couplings X, ..., X, will arise when one forms the brackets
X Xiw1) (k= 1, 2, ...,V), all c with one index from the sequence 1, 2, v.and two

(") Lie-Scheffers Chap. 18, §8 and3, especially pp. 478.
() Ibidem pp. 485.
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indices from the sequencaet 1, ...,n will also vanish. However, as a result of that, the
transformation,.1 , ..., X, themselves will define, not just another group, but it dac
invariant subgroup of the entire group. In addition, any eignof the first group will
commute with every element of the second one, simes/e does indeed vanish when it
includes one index from the sequence 1, 2,v.and one from the sequenee 1, ...,n,
regardless of what the third index might be.

Now, if one or both of the subgroups again contain arriemtasubgroup in their own
right then we proceed as follows: Ultimately, we mnaturally reach the goal that the
entire group consists of nothing but invariant subgroupsathebmmute with each other,
and are real and simple in the reals, and thus no locm®&ain any more invariant
subgroups. With that, we have the theorem:

Any real rotation group consists of a sequence of real rotation groups.X
X, X o Xy b X ..., Xn that all commute with each other and are simple in

the reals in each of them.

250 V17

If we would now like to learn more about these simpléhe-reals subgroups then, as
we will see, we will require a brief considerationtldé homogeneous entire invariants of
degree two of the associated adjoint group.

We know one such invariant, namely:

W +al+ ... +af.

The adjoint group is indeed a subgroup of the group of t@tioms.

I now assert thaa real, simple in the reals, rotation group can have no other
guadratic homogeneous invariants of its adjoint group.

Namely, if such a thing does exist then one can brimgatthe form b:

Ad+ ...+ A

by a real rotation. However, if that should be anriard then one would need to have:

> AwSw=0
for all wand all/, i.e.:

> AwG, =0,

so one will also need to have:
A(Cr,/l,/( + A(‘;(,/l,r = O

for all «, 7, A.
From (IX), one can also write the condition as:

Cz'//]//( (A/( —AT) = 0

() SeeBaltzer: Determinantenpage 182t seq(5" ed., Hirzel, Leipzig, 1881).
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Hence, either alh are equal to each other (and that will give only theirldriants) or
one can sort the\ into classes whose individual members are equal to etwlr.
However, from the constraint equation that was wrilewn above, alt;, , must then
vanish when only two of their indices belong to difféarelasses. However, that means:
Corresponding to the decompositionAfthe given rotation group also decomposes into
invariant subgroups, and indeed into real subgroups, but thatdshat happen. Hence,
there is in fact only one quadratic invariant:

W+ ... +ar.

However, from the studies ¢illing (%) andCartan (%), the adjoint group tany group
will possess an invariant of degree two, and indeed onetlggtsnvariant as follows:
One forms the “characteristic determinant”:

Zcpyl,lwp -a Z Co 2,0, Z G
o o o

Zcpylzwp Zcpz,zwﬂ_a Zcpn,f‘)p
Ala)=| » P) P

Z Co1nl) Z Co 20y z Gonnlp =
o o o

and develops this in powers af The coefficienty («) of a2 is then a quadratic form
in the wand at the same time an invariant of the adjoint group.

We assume that this form is regular; i.e., thatdisgriminant is non-zero. We can
then arrange that this form will assume the form:

of +ag+ ..+ o,

by a suitable linear substitution (K) of thethat is possibly complex.

However, the arbitrary group above must go to a generalbnecessarily real
subgroup under this transformation. From the theorem on4igée coefficients; , «
must define a skew determinant for All i.e., one must have:

Cr,/l,/( == CK,A,T y

and that is indeed characteristic of the rotation groijith that, we have arrived at the
new Theorem:

() Killing, “Die Zusammensetzung der stetigen, endlichen Transfamsgruppen,” Math. Ann31,
33, 34, 36 (especiallydl, § 2)

(® E. Cartan, “Uber die einfachen Transformationsgruppen,” Leipzigeridhite, 1893 and “Sur la
structure des groupes de transformations finis ande@)tiThése, Paris, 1894.
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Any group whos«illing invariant x» (¢ is a quadratic form with non-vanishing
discriminant can be brought into the form of a rotation group — i.e., a group whose
possess cyclically-permuting indicepossibly by a complex linear transformation of the
w(naturally, with constant coefficients).

Now Cartan has shown that: («) is actually regular for simple groups (Leipziger
Berichte, pp. 401, Theorem I), and likewise for semi-&ngwoups (Thése, Chapter V).
It then follows from this that:

Any simple or semi-simple group can be brought into the form of a rotatop.

Now let that result be mentioned only in passing. Inmotddurther investigate the
rotation groups that are simple in the reals, we needhdwrem that was contained in
Theorems | and 1V in Chapter four Gartan’s Thése: Any group for whicly, (@) is a
regular form is either simple or composed of simpigariant, and mutually-commuting
subgroups; i.e., it is either simple or semi-simple.

Now, our real simple rotation group certainly possessgsadratic form with non-
vanishing discriminant as an invariant of its adjoint growmely, «f + ... + «f . Since,
from the theorem that was proved on page 49, there can bther quadratic invariant,
theKilling invarianty, («) must have the form constef + ... + &f).

Now, the constant cannot be zero, siggéw) will have the form:

(e

p.0

in the case of a rotation group (skdling, Annalen,31, pp. 261). However, that
expression can be identically zero for reahly when alk are zero.

Therefore, the theorem of Cartan that was citedv@ball find an application to the
real, simple-in-the-reals, rotation groups: They carmdéeomposed into a sequence of
invariant, mutually-commuting, simple groups that will nallyrbe no longer real (when
the real simple group was not already simple in thepdexas, as well).

If we now accept the theorem above that was alreadymed to begin with then that
will imply the following Theorem:

Any real rotation group can be decomposed into a series of groups that aremyari
mutually-commuting, simple, but in general, no longer real, and which canoalse
more take the form of rotation groups. One can then convert any symqulp into a
rotation group, but not generally in the real field.

SinceKilling andCartan have set down all types of simple groups, that wilbes
the problem of the examination of real rotation groups, wpdertain degree. However,
there would still be some value to the question of ingattig, e.g., whether there are
alsoreal simple groups for each type of simple groups, which is atigurethat probably
cannot be always answered in the affirmative.
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I have still not been able to carry out an investigatbf complex rotation groups
from the standpoint that was assumed for real groupdeeth in general, the arguments
proceed analogously, but there is one special caseetdd to difficulties: namely, the
assumption that a rotation group appears whose only invadogfroups are the ones
that represent linear manifolds that contact the absctute. One can no longer give
those subgroups in the forXy, ..., X, , without changing the characteristic (1X) of
rotation groups. We shall then suppress an investigatioaroplex rotation groups here.

One special result might be mentioned that would iollmm an application of the
results that are contained here to the arguments &ketinning of the third chapter:

According toKilling andCartan, there are not simple groups below 8, except for
the one-parameter groups of translations and three-pamagnetips of rotations.

Therefore, the only types of “rigid bodies” with less than eight degji@f freedom
are the following ones:

1. The material point with one, two, or three trafishal motions.
2. The rigid body that rotates about a fixed point.
3. The rigid body that can rotate about a fixed point a&enmal point that is
independent of it and possesses one, two, or threedttiansll motions.
4. Two mutually-independent rigid bodies that each rotesit a fixed point.
Two mutually-independent points with one, two, or thraeslational motions.
One of the last three cases, alondr

5
6
7.; anindependent material point
8.] with one translational motion.

That should be understood to mean: The system of egsiaifoa “rigid body” of,
e.g., seven degrees of freedom can be brought into a fmimtisat some of the equations
read simply:

dJ, _ ~ .
o Qk;
the others can be summarized into classes of thrde esach that each class assumes
precisely the form of the ordinary Euler equations (ssge 17). However, all of thk
can be linear combinations of the seve(with constant coefficients).
The following remark is true in general:

A decomposition of the group indeed corresponds to a formal decomposition of the
equations, but since the impulse components J can be linear combinatahguobne
cannot speak of a decomposition of the “rigid body,” but only of a decompositite of
type.(See the discussion of the concept of type in thenbetrg of the third chapter.)

Karlsruhe, in October 1903.




