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 The stimulus for this work was given in two notes of Ivan Tzénoff: “Sur les equations 
du movement des systèmes matériels non holonomes,” which appeared in 1920 in 
Liouville’s Journal 1) and then in 1924 in these Annals 2).  Tzénoff derived equations of 
motion that represent a combination of the equations of Lagrange and Appell.  The 
calculation can be simplified considerably so that one recognizes the result immediately; 
this shall be done in § 1. 
 Moreover, Tzénoff compared his equations with the ones that Woronetz derived in § 
5 his 1911 work 3) “Über die Bewegung eines starren Körpers, der ohne Gleitung auf 
einer beliebigen Fläche rollt” and which agree in content with the equations of motion 
that I gave in my 1903 Habilitationsschrift (also in the Zeitschrift für Math. und Physik 
4), in 1904): “Die Lagrange-Eulerschen Gleichungen der Mechanik,” as well as in the 
Annals paper 5) “Über die virtuellen Verschiebungen in der Mechanik,” except that my 
equations are considerably more far-reaching, in that they admit the use of arbitrary non-
holonomic velocity parameters.  However, my equations are clearly the same in form as 
the Lagrange ones, which one cannot say about those of Woronetz.   Since my papers are 
obviously little known – Tzénoff did not mention them – in § 2, I would like to briefly 
show how the equations of Woronetz are included as special cases of my own ones. 
 Thirdly, at the conclusion of his paper, Tzénoff mentioned a remarkable theorem of 
Woronetz on Hamilton’s principle (§ 7 of the cited paper).  However, not only Woronetz, 
but also Tzénoff, proved its validity only to the extent that it agreed with their own 
equations of motion, while one can also immediately recognize the theorem − practically 
without calculation − from Hamilton’s principle, when correctly understood, if one 
employs the results of my work; this shall be carried out in § 3 of this Note.  I avail 
myself of the notation of my textbook on “Elementare Mechanik” (Teubner, Leipzig, 
1912, 2nd ed., 1922). 
 

                                                
 1)  Journal de Math. pures et appliquées (8) 3. 
 2 ) Math. Annalen 91. 
 3) Math. Annalen 70.  
 4) Zeitschr. f. Math. u. Physik 50.  
 5) Math. Annalen 59.  
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§ 1. 
 

The equation of Tzénoff 
 

 Suppose we have a rheonomic system with a finite number of degrees of freedom; 
i.e., the position vector of any point of the system may be represented by: 
 
(1)    r = r (q1, q2, …, qn , qn+1, …, qn+k; t), 
 
such that the kinetic energy E becomes a quadratic function of qɺwhose coefficients can 
that depend upon the q and the time t. 
 Furthermore, the following conditions, which are generally non-holonomic, may be 
given: 

(2)     n mq +ɺ = ,
1

n

m s s m
s

a q a
=

+∑ ɺ   (m = 1, 2, …, k), 

 
which correspond to the following conditions for the virtual displacements: 
 
(2′)     δqn+m = ,m s s

s

a qδ∑ . 

From (2), one has: 
(3)     n mq +ɺɺ = ,m s s

s

a q∑ ɺɺ + … 

and thus: 

(4)     n m

s

q

q
+∂

∂
ɺɺ

ɺɺ
= am,s . 

 
From (1), it follows in a well-known way that the velocity of a system point is: 
 

v = 
dr

dt
= 

1 1

n k

i n s
i si n s

r r r
q q

q q t+
= = +

∂ ∂ ∂+ +
∂ ∂ ∂∑ ∑ɺ ɺ  

and for the acceleration: 

w= 
2

2

d r

dt
 = 

1 1

n k

i n s
i si n s

r r
q q

q q +
= = +

∂ ∂+ +
∂ ∂∑ ∑ɺɺ ɺɺ ⋯  

and thus: 

(5)      
i

w

q

∂
∂ɺɺ

= 
i

r

q

∂
∂

  (i = 1, 2, …, n + k). 

 
 Moreover, it follows from (1) that the virtual displacements are: 
 

(6)     rδ  = 
1 1

n k

i n s
i si n s

r r
q q

q q
δ δ +

= = +

∂ ∂+
∂ ∂∑ ∑ , 
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and thus, from Lagrange’s principle (the combination of the principle of virtual work 
with d’Alembert’s principle): 

S dm w rδ⋅ = S dk rδ⋅ , 
upon substituting (6) one here: 
 

(7)    
1 1

n k

i i n s n s
i s

Q q Q qδ δ+ +
= =

+∑ ∑ = 
1 1

n k

i i n s n s
i s

K q K qδ δ+ +
= =

+∑ ∑ , 

 
where the Q’s are the Lagrangian acceleration components /S dm w r q⋅∂ ∂ , and the K’s 

are the force components /S dk r q⋅∂ ∂ .  (S means the summation over the system.) 
 If one now substitutes (2′) in (7) and observes that the δqi are now completely 
arbitrary then one obtains the equations of motion in the raw form (Rohform): 
 

(8)     .
1

k

i m i n m
m

Q a Q +
=

+∑ = .
1

k

i m i n m
m

K a K +
=

+∑ ≡ iK ′ . 

 
 Now, it is known that: 

(9)      Qi = 
i i

d E E

dt q q

 ∂ ∂− ∂ ∂ ɺ
. 

However, from (5), we also have: 
 

(10)    
r

S dm w
q

∂
∂

=
i

w
S dm w

q

∂
∂ɺɺ

= 
i

W

q

∂
∂ɺɺ

, 

 
where W is the well-known Appell acceleration function 21/ 2S dm w. 
 If, in (8), we use the expressions (9) for the Qi and the expressions (10) for the Qn+m 
then we obtain: 

     .
1

k

m i
mi i n m

d E E W
a

dt q q q= +

 ∂ ∂ ∂− + ∂ ∂ ∂ 
∑

ɺ ɺɺ
= iK ′ , 

or, from (4): 

(I)     
i i i

d E E W

dt q q q

  ′∂ ∂ ∂− + ∂ ∂ ∂ ɺ ɺɺ
= iK ′   (i = 1, 2, …, n), 

 
where the prime on W′ shall imply that the differentiation with respect to the qi shall be 
assumed to involve only the terms that correspond to the n mq +ɺɺ  (from (3)). 
 These are the equations of Tzénoff in the second form. 
 Its first form, however, can also be obtained immediately: 
 If one lets E″ denote the expression for E when one has replaced the n mq +ɺ  by (2) then 
one has: 

(11)   
i

E

q

′′∂
∂ ɺ

= n m

mi n m i

qE E

q q q
+

+

∂∂ ∂+
∂ ∂ ∂∑

ɺ

ɺ ɺ ɺ
 = 

i i

E E

q q

′∂ ∂+
∂ ∂ɺ ɺ

, 
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when the prime on the E′ shall imply the same thing here as it did for W′: that one 
differentiates only with respect to the variables that appear in the n mq +ɺ  (from (2)). 

 Likewise, one has: 
 

(12)   
i

E

q

′′∂
∂

= n m

mi n m i

qE E

q q q
+

+

∂∂ ∂+
∂ ∂ ∂∑

ɺ

ɺ
 = 

i i

E E

q q

′∂ ∂+
∂ ∂

. 

 
If one solves (11) and (12) for / iE q∂ ∂ ɺ  ( / iE q∂ ∂ , resp.) and substitutes in (I) then one 

obtains the first form of Tzénoff: 
 

(II)    
i i i i i

d E E E d E W

dt q q q dt q q

   ′′ ′′ ′ ′ ′∂ ∂ ∂ ∂ ∂− + − +   ∂ ∂ ∂ ∂ ∂   ɺ ɺ
= iK ′ . 

 
 

§ 2. 
 

The Lagrange-Euler equations 
 

 In my papers cited at the beginning, I proved the following (one also compares the 
presentation in Heuns: Lehrbuch der Mechanik 1, Kinematik, Göschen, 1906): 
 Let r  be a function of only q1, q2, …, qn, so E is a function of only the q and qɺ .  One 
introduces new velocity quantities as independent linear functions of the qɺ : 
 

(13)  ωi = ,
1

n

i s s
s

b q
=
∑ ɺ   or, when solved: sqɺ = ,

1

n

s i i
i

c ω
=
∑ . 

 
Correspondingly, the virtual displacements are: 
 

(14)  δϑi = ,
1

n

i s s
s

b qδ
=
∑  or, when solved: δqs = ,

1

n

s i i
i

c δϑ
=
∑ . 

 
From these two definitions, under the additional − but not actually necessary − 
assumption that: 
(15)     δ dqi = d δqi , 
which is equivalent to: 

drδ = d rδ , 
 
there follow the commutation equations: 
 
(16)    d δϑm – δ dJm = , ,

,
i s m i s

i s

dβ δϑ ϑ∑ , 

 
where dϑ = ω dt and we have set: 
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(17)    βi,s,m = , ,
, ,

,

m l m h
l i h s

h l h l

b b
c c

q q

∂ ∂ 
− ∂ ∂ 

∑ . 

 
 It is useful, but not necessary, that the δϑi be regarded as constants, and the second 
equations (14), as infinitesimal transformations, so the second equations (13), together 
with the commutation equations (16), give the extended point transformations δ dqs . 
 From the Lagrangian principle, one will then have: 
 
(18)     i i

i

Q δϑ∑ = i i
i

K δϑ∑ , 

 
where the right-hand side is the virtual work of the applied force S dk rδ , while: 
 

(19)     Qi = idJ

dt
 − Xi E. 

 
Thus, the impulse quantity Ji refers to the derivative of E with respect to ωi , while Xi E is 
the extended point transformation of E associated with δϑi .  When written out 
completely, one has: 

(19′)    Qi = , ,
,

i s m s
s mi m i

d E E E

dt
β ω

ω ω ϑ
   ∂ ∂ ∂+ −   ∂ ∂ ∂   

∑ . 

 
Here, ∂E / ∂ωi is an abbreviation for ,( / )s s i

s

E q c∂ ∂∑ .  If the Ji are regarded as arbitrary 

coordinates then the β are null, and we have the well-known Lagrangian expression (9) 
for the Qi in the (19′). 
 Now, if the qi are all independent, and thus the δϑ are all arbitrary, so we thus have a 
holonomic, scleronomic system, although it is found to be good (es aber für gut finden)  
to introduce the non-holonomic velocity quantities ω, then, from (18), the equations of 
motion read 6): 
(III)    Qi = Ki  (i = 1, 2, …, n), 
 
where the Qi are to be determined from (19) ((19′), resp.), and one has: 
 

Ki = ,s i
s s

r
c S dk

q

∂
∂∑ = 

i

r
S dk

ϑ
 ∂
 ∂ 

. 

 
 However, if the system is non-holonomic and rheonomic then we can arrange that: 
 
(20)   qn = ϑn = t, and then nqɺ = ωn = 1, 

                                                
 6) Equations (III), with (19′), were already known to Volterra in 1989: “Sopra una classe di equazioni 
dinamichi,” Atti di Torino 33, as well as Woronetz, loc. cit., eq. (25) § 8. 
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and correspondingly: 
(20′)     δqn = δϑn = 0, 
 
and, moreover, that the non-holonomic condition equations assume the form: 
 
(21)     ωk+ h = 0 (h = 1, 2, …, n − k – 1), 
 
and correspondingly the virtual displacements vanish: 
 
(21′)     δϑk+ h = 0, (h = 1, 2, …, n – k – 1), 
while the first k  δϑ remain free. 
 As a result, only the first k of the equations of motion (III) persist in the non-
holonomic conditions (21), and must then still substitute (20) and (21) in them, such that 
the summation symbol s in (19′) only takes on the values 1 to k and n.  Furthermore, one 
sees: If an ϑi is a true coordinate then, from (16), the β with the last index i are null, and 
the corresponding terms in (19′) can be neglected. 
 These are the equations that I gave for non-holonomic systems and called the 
Lagrange-Euler equations. 
 In to obtain the equations of Woronetz, we only need to write down the result for the 
case described in § 1. 
 We set: 
(22)   ωi = iqɺ   and δϑi = δqi  for i = 1, 2, …, n, 

 
such that the β’s with a final index that is less than or equal to n are null. 
 We further set: 

(23)   ωn+ m = , 1
1

k

n m m s s m n k
s

q a q a q+ + +
=

− −∑ɺ ɺ ɺ = 0  for m = 1, …, k, 

and correspondingly: 
 

(23′)  δϑn+ m = δqn+ m − ,
1

k

m s s
s

a qδ
=
∑ − am δqn+k+1 = 0  for m = 1, …, k. 

Finally, we set: 
(24)     ωn+k+1 = 1n kq + +ɺ  = 1 

and: 
(24′)     δϑn+k+1 = δqn+k+1 = 0, 
 
such that the β's with the last index n + k + 1 are null. 
 

(V)   , , , 1,
1,2, , 1,2, ,
1,2, ,

i
i s n m s n m i n m n m n m

s m m k i
m k

dJ E
J J

dt
β ω β

ϑ+ + + + + +
= =
=

 ∂+ + −  ∂ 
∑ ∑
⋯ ⋯

⋯

   

     = Ki   (i = 1, 2, …, n). 
 
Therefore, for i = 1, …, n, Ji is equal to ∂E / ∂ωi . 
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 Because, however, equations (22), (23), and (24) may be used in all cases after 
differentiation − although here before differentiation, as well − one also has for i = 1, …, 
n: 

Ji = 
i

E

q

′′∂
∂ ɺ

. 

On the other hand: 

Jn+ m = 
n m

E

ω +

∂
∂

 = 
n m

E

q +

∂
∂ ɺ

, 

 
and here one may first make use of the condition equations (23) and (24) after 
differentiation. 
 If one then computes β from (23) and (23′) then one has in (V) precisely the 
equations of Woronetz. 
 If one compares the various forms of the equations of motion with each other then the 
form of (19): 

dJ

dt
− X E = K, 

 
along with the form of the Appell equation: 
 

W

q

∂
∂ɺɺ

= K, 

 
is certainly is the clearest.  The question of which calculation is the simplest will depend 
entirely upon the particular circumstances.  Often, the raw form (8), with the use of (9), is 
the simplest.  In each case, however, one can criticize the forms of Appell and Tzénoff 
for the fact that they require the function W, while one must get by with E and the 
condition equations. 
 

§ 3. 
 

The theorem of Woronetz 
 

 The central Lagrangian equation: 
 

S dm w rδ⋅ ≡ 
d

S dmv r E
dt

δ δ⋅ −  = δA 

 
immediately yields by integration: 
 

2

1

t

t
S dm w rδ⋅ = 

2

1

( )
t

t

E A dtδ δ+∫ , 
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and if one does not displace the ends of the time interval then one obtains Hamilton’s 
principle: 

(25)     ( )E A dtδ δ+∫ = 0. 

 
Since the validity of the central Lagrangian equation is entirely connected with the 
assumption that: 

d r drδ δ−  = 0 
 

(see my second paper for this), one also has: 
 
(26)     d δq = δ dq 
 
for all q with no other assumptions, and for that reason one has, if: 
 

ωi = 0 
 
is a non-holonomic condition then one must indeed take: 
 

δϑi = 0, 
but not: 

δωi = 0, 
 
since otherwise from the commutation equations the present conditions would not be 
fulfilled in general.  As a result, one may also not vary the non-holonomic conditions 
before applying Hamilton’s principle, but only afterwards. 
 Now, however, if we again make use of the assumptions of § 2 − in particular, 
equations (20) to (21′) − then one has: 
 

  0, 1( )
k h n

E ω ωδ
+ = =  = 

1 10, 1 0, 1k h n k h n

n n

i i
i ii i

E E
q

q ω ω ω ω

δ δω
ω

+ +
= == = = =

   ∂ ∂+   ∂ ∂   
∑ ∑  

 

     + 
1

1 0, 1 0, 1k h n k h n

n k

k l n
i k l i

E E

ω ω ω ω

δω δω
ω ω

+ +

− −

+
= + = = = =

   ∂ ∂+   ∂ ∂   
∑ . 

 
In the first two terms, one may also set ωk+h = 0 and ωn = 1 before performing the 
differentiation, such that the first two terms together yield δE″; i.e., the variation of E 
while giving consideration to the non-holonomic condition equations.  The last term 
drops out since one has δωn = δ dqn / dt = d δqn / dt = 0. 
 What then remains is: 

δE = δE″ + 
1, , 1

k l k l
l n k

J δω− +
= − −
∑
⋯

, 

 
and Hamilton’s principle (25) assumes the form: 
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(VI)   
1,2, , 1

( )k l k l
l n k

E J A dtδ δω δ+ +
= − −

′′ + +∑∫
⋯

= 0, 

 
where (26) is to be observed for all q. 
 This is the theorem of Woronetz: 
  
 “In Hamilton’s principle, one may make use of the non-holonomic conditions in the 
kinetic energy before performing the variation, if one corrects this mistake by adding the 
variation of the left-hand sides of the non-holonomic condition equation ωk+ l = 0, each 
multiplied by the associated impulse, under the integral.” 
 
 Berlin, 3 March 1924. 
 

(Received on 4, 3, 1924). 
 


