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On non-holonomic systems

by
Georg Hamel in Berlin

Translated by: D. H. Delphenich

The stimulus for this work was given in two notes @V zénoff: “Sur les equations
du movement des systémes matériels non holonomes, hvdppeared in 1920 in
Liouville’s Journal®) and then in 1924 in these Annd)s Tzénoff derived equations of
motion that represent a combination of the equationkagirange and Appell. The
calculation can be simplified considerably so that mwgnizes the result immediately;
this shall be done in § 1.

Moreover, Tzénoff compared his equations with the omasWoronetz derived in §
5 his 1911 worl®) “Uber die Bewegung eines starren Korpers, der ohméudl auf
einer beliebigen Flache rollt” and which agree in conteith the equations of motion
that | gave in my 1903 Habilitationsschrift (also in that&chrift fur Math. und Physik
%, in 1904): “Die Lagrange-Eulerschen Gleichungen der Mekhaas well as in the
Annals paper) “Uber die virtuellen Verschiebungen in der Mechanik,” except thy
equations are considerably more far-reaching, in that theyt #te use of arbitrary non-
holonomic velocity parameters. However, my equatanesclearly the same in form as
the Lagrange ones, which one cannot say about thoseminéta. Since my papers are
obviously little known — Tzénoff did not mention them —Sir2, | would like to briefly
show how the equations of Woronetz are included as spasi@$ of my own ones.

Thirdly, at the conclusion of his paper, Tzénoff mem a remarkable theorem of
Woronetz on Hamilton’s principle (8 7 of the cited papddowever, not only Woronetz,
but also Tzénoff, proved its validity only to the extéhat it agreed with their own
equations of motion, while one can also immediatelpgaze the theorem practically
without calculation— from Hamilton’s principle, when correctly understood,oifie
employs the results of my work; this shall be caroed in 8 3 of this Note. | avail
myself of the notation of my textbook on “Elementddechanik” (Teubner, Leipzig,
1912, 2%ed., 1922).
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§1.
The equation of Tzénoff

Suppose we have a rheonomic system with a finite numbedegrees of freedom;
i.e., the position vector of any point of the systeny ibarepresented by:

(1) =T (01, G s Oy Gy -oes Gpovic 1),

such that the kinetic enerdiybecomes a quadratic function gfvhose coefficients can

that depend upon tigeand the time.
Furthermore, the following conditions, which are gergnabn-holonomic, may be
given:

(2) Opem™ 2,8 s0st A, m=1,2, ...K,

s=1

which correspond to the following conditions for the waitdisplacements:

(2’) d:ln+m = zamsdqs
From (2), one has:
(3) Gram= D 8 ol
and thus:
a6
(4) M = ams-
a4,

From (1), it follows in a well-known way that theleeity of a system point is:

_dar & or | . ar_
vV=—= + R
dt ,z aq, Zaqq+S s ot
and for the acceleration:

n

__daT "
W= dtz z_q|+z—qq+s

i=1 aq| aqq+s
and thus:

ow or )
5 _= i=1,2, ...n+KkK.
®) G og ( )

Moreover, it follows from (1) that the virtual dispEments are:

n

(6) or = za G z—éqws’
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and thus, from Lagrange’s principle (the combination ef phinciple of virtual work
with d’Alembert’s principle):

Sdmwd = SdkdT,
upon substituting (6) one here:

n K n K
(7) ledq +z Q1+35q1+s: z Kldq +z Kn+55qn+s’
i=1 s=1 i=1 s=1

where theQ’s are the Lagrangian acceleration componeéhtdmwad 1/0 ¢, and theK’s
are the force componengdk@T/d q. (Smeans the summation over the system.)

If one now substitutes (2in (7) and observes that thdE; are now completely
arbitrary then one obtains tkguations of motion in the raw form (Rohform):

k k
(8) Q +zam.iQ1+m: K +zam.i Kim= K-
m=1 m=1
Now, it is known that:
d(o0E) OE
9 = —.
® - dt[aqj oq
However, from (5), we also have:
(10) s dmwdl = dmwd¥ = W
aq aq| aq|

whereW is the well-known Appell acceleration functi@h2S dmw.

If, in (8), we use the expressions (9) for @eand the expressions (10) for tQem
then we obtain:

Kk
d(OE) OE &, oW

—- i :K."
atlaq ) aq & oq.,

or, from (4):

(1 a a_g _9E OV _ K/ (=12, ..n),
dt{og ) og 09

where the prime ollV shall imply that the differentiation with respdottheq; shall be
assumed to involve only the terms that corresponte ¢, (from (3)).

These are the equations of Tzénoff in the secand fo

Its first form, however, can also be obtained irdiately:

If one letsE” denote the expression farwhen one has replaced thg,, by (2) then
one has:

OE" _ OE
11 ===
ah g 0g 2

OE 0G,., _ OE , OF
aQw+m aq aq| aq
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when the prime on th&' shall imply the same thing here as it did ™t that one
differentiates only with respect to the variables Hygdear in thej,, , (from (2)).

Likewise, one has:

(12) 6£:6_E+z 0E 09,

_ O, 0F
aq aqi m aqﬂﬂ1 aq aqi aq .

If one solves (11) and (12) fadE/dq (0E/dq, resp.) and substitutes in (I) then one
obtains thdirst form of Tzénoff:

d(oE"} oE' 0E dfoE) owW_ ,
(In —| = |—=t+——=| —|*—=K/.
dt[aqj 0oq 0q dt[aqj o0q
§ 2.

The Lagrange-Euler equations
In my papers cited at the beginning, | proved the followoge also compares the

presentation in Heuns: Lehrbuch der MechdniKinematik, Goschen, 1906):
Let T be a function of only, 0, ..., g, SOE is a function of only thg and . One

introduces new velocity quantities as independent lineastions of theq :
(13) W = Zn:h,sqs or, when solved:  ¢.= Zn:csyia), .
s=1 i=1
Correspondingly, the virtual displacements are:
(14) og = Zn:qschs or, when solved:  &gs = Zn:csyidﬁ’i :
= i=1

From these two definitions, under the additioralbut not actually necessary
assumption that:
(15) odg =d &y ,
which is equivalent to:
odr = dodr,

there follow thecommutation equations:

(16) d On—0ddn= 3 B, 09,03,

whered# = wdtand we have set:
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b ob .
(17) Bsm= ;[ a(; —%qugs

It is useful, but not necessary, that th# be regarded as constants, and the second
equations (14), as infinitesimal transformations, sosé®nd equations (13), together
with the commutation equations (16), give the extended paimsformation® dg; .

From the Lagrangian principle, one will then have:

(18) ZQldBi:ZKidBi’

where the right-hand side is the virtual work of the ipplorce S dkdt, while:

_dy
(19) Qi = E X E.

Thus, the impulse quantity refers to the derivative & with respect taw , while X; E is
the extended point transformation &f associated withd% . When written out
completely, one has:

(19) Q= [ j IR saE (Z—EJ

Here,0E / 0w is an abbreviation foE(aElaos) C,;- IftheJ; are regarded as arbitrary

coordinates then thg are null, and we have the well-known Lagrangiapression (9)
for theQ; in the (19).

Now, if theq are all independent, and thus #2are all arbitraryso we thus have a
holonomic, scleronomic system, although it is fotmthe good (es aber fir gut finden)
to introduce the non-holonomic velocity quantitegsthen, from(18), the equations of
motion read):

(1 Q =K i=1,2, ..n),

where theQ; are to be determined from (19) ((19esp.), and one has:

=Xe, Sdk——Sdk o
aq 0%

However.if the system is non-holonomic and rheonotinén we can arrange that:

(20) 0= =t, andthen g,=an=1,

®)  Equations (lIl), with (19, were already known to Volterra in 1989: “Sopra unaselati equazioni
dinamichi,” Atti di Torino33, as well as Woronetz, loc. cit., eq. (25) § 8.
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and correspondingly:
(20) Ah =09 =0,

and, moreover, that the non-holonomic condition equatassume the form:
(21) a+n=0 h=12, ..n-k-1),
and correspondingly the virtual displacements vanish:

(21) O+n =0, th=1,2, ..n-k-1),
while the firstk & remain free.

As a result, only the firsk of the equations of motion (lll) persist in the non-
holonomic conditions (21), and must then still substi{@® and (21) in them, such that
the summation symbalin (19) only takes on the values 1 kandn. Furthermore, one
sees: If and is a true coordinate then, from (16), fhevith the last index are null, and
the corresponding terms in (1@an be neglected.

These are the equations that | gave for non-holonomic systems and called the
Lagrange-Euler equations

In to obtain the equations of Woronetz, we only needrte down the result for the
case described in 8§ 1.

We set:

(22) w=q and 5 =& for i=1,2,..n,

such that thg8's with a final index that is less than or equahtare null.
We further set:

k
(23) @him= Opom= D, 8 s~ 8l =0 for m=1,..k

s=1
and correspondingly:

k

(23) OFn+m = Ofn+m — Zamschs— am An+k+1 =0 for m=1, ...k
s=1

Finally, we set:

(24) Uhier1 = O = 1

and:

(24) OFn+k+1 = k1 = O,

such that the¢8s with the last inder + k + 1 are null.

dJ oE
V —+ i +ma)5‘]ﬁ-m+ j R ml, A am| aa
( ) dt 5:1;.'”]&15'“ IT’F;Z:, ,kﬁ’ - rr;' [679' j
m=1,2;-- k
=K; (=12 ..n).

Therefore, foii = 1, ...,n, Jis equal tdE / dw .
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Because, however, equations (22), (23), and (24) may ik insall casesafter
differentiation— although herdeforedifferentiation, as welk one also has far=1, ...,
n:

Ji = a£
g,
On the other hand:
oE oE

aa}n+m B aqn+m ,

Jn+m =

and here one may first make use of the condition eqeat{@3) and (24)after
differentiation.
If one then compute@ from (23) and (23 then one has inV) precisely the
equations of Woronetz.
If one compares the various forms of the equatiomsation with each other then the
form of (19):
dJ

—-XE=K,
dt

along with the form of the Appell equation:

oW _

— =K,
a6

is certainly is the clearest. The question of whickdation is the simplest will depend
entirely upon the particular circumstances. Oftea,rdw form (8), with the use of (9), is
the simplest. In each case, however, one carizatithe forms of Appell and Tzénoff
for the fact that they require the functid® while one must get by witk and the
condition equations.

8 3.
The theorem of Woronetz

The central Lagrangian equation:
Sdmwod 1= %S dmVvd -0 E=AA

immediately yields by integration:

b
S dmwa i = [(JE+JA) dt,

Y



On non-holonomic systems 8

and if one does not displace the ends of the timevaltéhen one obtains Hamilton’s
principle:
(25) j (OE+JA) dt= 0.

Since the validity of the central Lagrangian ecuatis entirely connected with the
assumption that:
dor-odr =0

(see my second paper for this), one also has:

(26) ddg=4addq

for all g with no other assumptions, and for that reasonhase if:
aw=0

is a non-holonomic condition then one must inded@:t

&2 = 01
but not:
oa =0,

since otherwise from the commutation equations piesent conditions would not be
fulfilled in general. As a result, one may alsa mary the non-holonomic conditions
before applying Hamilton’s principle, but only afteards.

Now, however, if we again make use of the assumptiof § 2— in particular,
equations (20) to (2L- then one has:

(OB o = Z[a—Ej

i\ 00

wr3fs] e

0
(“l<+h:0'(‘)n:l a‘? (“l<+h:0(‘)n:l

n—-k-1 0E 0E
D e I 7 A
i=1 a’{(-ﬂ»l Wep=0,0,=1 a)l W n=0w,=1

In the first two terms, one may also sat., = 0 andaw, = 1 before performing the
differentiation, such that the first two terms ttgge yield E"; i.e., the variation ok
while giving consideration to the non-holonomic dibion equations. The last term
drops out since one hasy, = ddg,/dt=d &g,/ dt= 0.

What then remains is:

E=E+ Y .0,

1=1,--n—-k-1

and Hamilton’s principle (25) assumes the form:
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(V) JE'+ ¥ b, +3A d=0,

1=1,2;--n-k-1

where (26) is to be observed for @l
This is the theorem of Woronetz:

“In Hamilton’s principle, one may make use of the non-holonomic conditiotigein
kinetic energy before performing the variation, if one correctsrthssake by adding the
variation of the left-hand sides of the non-holonomic condition equation= 0, each
multiplied by the associated impulse, under the integral.”

Berlin, 3 March 1924.

(Received on 4, 3, 1924).



