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On virtual displacements in mechanics
By
GEORG HAMEL in Karlsruhe

Translated by D. H. Delphenich

Introduction.

When Lagrange elevated the principle of virtual work, whigd already been
expressed in a certain degree of generality by Johann @krrio the status of the
fundamental tool for all mechanics, he was so deeply \wedolwith isoperimetric
considerations that — in any case, in his analytical raegis — he identified virtual
displacements with the variations of the isoperimemioblem, and thus implicitly
employed the relation that is true for any coordirgatand necessary for the calculus of
variations, namely:

doqg—-adg=0
for mechanics, as well.

Since then, it has become a dogma that — ddq = 0 must be the characteristic
feature of a true (holonomic) coordinate, while:

dod—-add#0

characterizes the non-holonomic (generalized) coomlifAat

Now, the coupling of mechanics with the calculus of venes has become so fruitful
(Lagrange, Hamilton, Jacobi) that one cannot deny thatafbrementioned way of
looking at virtual displacements is one-sided and itsharical interpretation does not
correspond completely, so it actually stands in the wfathe connection to broader
relations that lie outside the field of view of thectddis of variations. Moreover, the
noteworthy opinion that is so extensive in the litemtinat the essence of Lagrangian
mechanics is stuck in the so-called variational prinsiglgems to me to have its roots in
this dogma.

In the following, it shall be shown that any assumptboutddg — adq is completely
unnecessary for mechanics and that the singling out of non-holonomic coordiiess
only in the relationship betweendd — &dJ and in the event that the g are true
(holonomic) coordinates.

This theorem is, in itself, self-explanatory, sinlce principle of virtual work does not
include theddq at all. However, if one regards the equations of modtibmechanics as
not only the result of a more or less arbitrary andadental conversion of d’Alembert’s
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principle, while the emphasis lies in the meaning thatcttncepts of energy and impulse
thus take on, then the stated law admits further devedopmi.e., an explicit verification
following a path along which one stands to encounteratbeementioned concepts, as
well as the expressioshdg — dg. Now, there is an equation that seems to me to unite
essentially almost all of these paths, and thaheggeneral central equation.For that
reason, in what follows we would like to base the sipmn of virtual displacements
itself on this fundamental equation, in order to arrivéhatgeneral equations of motion
from it, independently of any assumptiona®? — &dJ.

However, from the standpoint that we arrive at, Wentcatch a glimpse of the
relationship between mechanics and the calculus oftiwarsa from which we will
especially see how the clarity that was first addim recent times concerning the so-
called Hamilton principle is completely present wheme cstarts fornon-holonomic
equations of motiowith the central equation.

Finally, we consider the relationship between mechamdsthe theory of Lie groups.
Indeed, | have already presented the affinity betweesetlievo domains in my
Habilitationsschrift: “Die Lagrange-Eulerschen Gleiogen der Mechanik®), and | will
also add nothing new to its individual results here, whilenomre general way of looking
at virtual displacements will give us an, in part, newd,aas | also believe, clearer
representation of the nature of things. In particuldras now been possible for me to be
led to the proof of the theorem of the simultaneous ext&t of Euler equations and
impulse equations in a purely abstract way. A purely groeprétic theorem that | had
only briefly mentioned in my Habilitationsschrift thusw serves as a welcome bridge.

§1.

Definition of virtual displacements for holonomic
and non-holonomic coordinates.

We first consider a free point with a well-defined timo in space, such that its
position vector:

X =9(t)
can be known for all values of tinbén a certain interval, and therefore also its gityo

X
t

Ei

=¢()

V =

Qo

at every location along its path.
We now associate the points at each moment witirtaal displacementox by
setting:
oxX = W(t),

) Also in the Zeitschrift f. Math. u. Phys. Bd 50, Heft1804. In the sequel, this will always be
referred to as “L. E. Gl.”
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where W is a continuous and continuously differentiable, but etlser arbitrary,
function of time. If we write:
X = X+0X = @(t) +W(t)

then every point of the path is assigned to a neighbpong.

Now, for the considerations of the calculus of vauisg, it is necessary and sufficient
that the totality of these neighboring points can lgamed as a new, varied path, for
which dX / dtis then also defined naturally as:

aX - -
=0+
dt oW,

such that the variatioddx = dX — dx is given by:
odx = W(t)dt = dJX.
With this way of looking at things, there thus éxithe following relation:
ddx-dox =0

However, this assumption is in no way necessaryyafregarddx and X as two
independent displacements then certaidyx is known fromJdx, but not odx, since
dx is indeed first defined for the path itself.

From now on, we thus make no assumptions about:

doxX-9ddx;

i.e., we let the definition ofix be completely free outside of the path that we have in
mind.

Obviously, we can apply the same argument to amableq that we follow as a
function of timet.

Moreover, we fix our attention on a mechanicakeysofn degrees of freedom, so
for any of its points and for all time we can set:

X =¢(abcq,,q),

wherea, b, c mean three parameters that are independent opdhme that serve to
characterize the individual points of the systeet; di, ..., g, be the time-varying
Lagrange coordinates. Timie does not enter intap explicitly, so the system is
scleronomi¢ according to a terminology of Boltzmann. Thiswasption temporarily
serves to simplify things. (For the non-sclerononase, see the conclusion of § 3.)
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We will temporarily omit possible non-holonomic cameh equations; we will speak
about them briefly in § 3.
Since then parameters or coordinatgsare, moreover, essential, there thus exists no
identity relation of the form:
Zlawa =0

in thea, b, ¢, where we have set:

and where the, are independent of ttee b, c.
With these assumptions, we define virtual displaceméxt®y:

and in a similar way, virtual variations for any functjpof theq by:

OX = ia_)(a_qﬂ,

7=100,

where the statements that were made at the stdmisgdaragraph can be made for the
In particular, corresponding to tlearacter of thed-operation as a differentiatignt
follows from:

dx = ) 1,dg,
A
that
(1) odx = Zﬂdqpqa +> 1, 0dg ),
7 00, )

in which we would, however, like to have the definit@inddqg, close at hand.
With this arbitrariness, it is, however, importanptove the following theorem:

Any assumption aboutdd — adg for any independent system of parameters fogthe
implies a decision regarding the corresponding esgions for any other independent
system of parameters.

Obviously, it suffices to show the mutual dependency éebadq — ddq and dox —
odx:
Along with equation (1), there exists the following one:

") The fact that we focus on the differential charaofehe Soperation here- in other words, that we
also do not leave the Lagrangian space of motion thi¢h(infinitely small) variation ofdx - is also
ultimately arbitrary and unnecessary. Thus, we wouldtbkaccept this assumption here.
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ol _
(2) dox = Y —2dg,dq,+ Y ,ddg,,
A.p a A A
and here because one has:
alp _al, 09

aq/] aqp - aqpaq/l ,
by subtracting (1) and (2), this yields:

(3) dox-ddx = 3.T,(dJq, -adg,).
A

The dependency oflox-dJdx on ddg, — adagy then comes to light; however, the
converse is also true. If one then thinks of eiquad3) as being true for &, b, c and
observes that theédq— ddq are independent of the b, ¢ then all of theddq— ddg must
be expressible in terms of the components of aalslyichosenddx-oJdx. A
determinant of degrea that comes into consideration in the determinabdrthe n
quantitiesddg— ddq must then be non-zero, because no relation dbtine

YLy, =0

shall exist for alla, b, ¢, and with that our assertion is provebh particular, all dog—
adg must then vanish wheddXx —Jddxis continuously zero. Otherwise, one cannot
naturally specify dox—-o0dx arbitrarily for all a, b, ¢, but only for a total ofn
independent displacements; the other componetteadox — ddx are then chosen such
that equations (3) remain possible foraab, c.

* %

*

We would now like to also extend the definition \aftual displacements taon-
holonomicvelocity parameters.
We think of the velocity state of the system asdpedepicted by new velocity

parametersy in place of then quantitiesdq, / dt, which are introduced by means of the
linear equations:

(4) 8,=>¢,@,..
p=1

Let the determinantdy,, | be non-zero in the domain that comes under deregion
for the motion, such that we can also solve eqnatfd) for thew

(4) W=D 10,0, -
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Now, despite the fact that thg, are not generally total derivatives with respect to time
we would still like to write symbolically:

d7
=_7
“ dt

and refer tod, as anon-holonomic (generalized) coordinate.
We also defina virtual displacements that correspond to equationway of:

(@) 89,= 31,50,
A=1

When expressed in terms of tthé (JJ, resp.), now let:

dx = Zl_ﬂdzﬁ’ﬂ ,
A
ox = > 1,09,,
A
where we have, however, set:
= _ )4
(5) l, = ZE@W

moreover, or, by analogy, it can be written symbdliicas a true differential quotient:

T =|9%
rolas, )
The expressionsdd — a4 again relate to the &) — ddq as a complete dependency.
Namely, from equations (%tand (4), one has:

: o, o
das,— &d,= 3 1, ,(ddq, —5dq)+z[ﬂ—ﬁj5q dg ,
A=1 Y g aqg aq/i
or
0 ddd,— &, = Y 7, ,(ddq, —odg) +) B, ,85, d5,,
A y78%

in which we have set, to abbreviate:

orm,, O,
,B,u,v,p: Z[ pA P,

=\ aq, aq, jgﬂ’ﬁ”"
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One easily recognizes that tji, , vanish when and only when ti#eare true (i.e.,
holonomic) coordinates.

We would like to call equations (I) thérdnsitivity” — or ‘transition’ — equations of
the first form. We obtain the second form when we solve (I)déy, — &g, :

dd:h - djqﬁ = zgp,/l (d5q4 - 5dq1 ) + zgp,/l Zﬁp,v,pd?u d'9v ’
P P 8%
and substitute this into the equation:

doX-&dx = z%(dcm -5dg),

A

in which we observe equations (5). We then obtain:

(I dox-ddx = 3T (dds,-3d3,)+>S 1> B,, 09,3,
P P uv

which isthe transition equation of the second form.

In our more general way of looking at virtual diapéments, non-holonomic
coordinates# are therefore not characterized by — J&d being non-zero, but are,
moreover, characterized by the form of the rela{ibp[(l), resp.],in which &3 — 4
stands fordox —ddx (ddg — &g, resp.),if the q are true coordinates.

§ 2.
The general central equation and the Lagrange-Euler equations.

In order to now show that mechanics is independdgnany assumption about
ddx -odx that goes beyond the previous statements, wedektethe general central
equation which defines the nucleus of all kinetics.

We start from the identity):

d d7<j
dt dt)’

%(mﬁ) = imm(%?@)ﬁ{—rx—a—

in which, following Newton, an overhead dot dendtesderivative with respect to time,
and x [Bixdenotes the inner — or work — product of the vestorand dx, etc. This
equations immediately brings the concepts of virtwark of velocity, virtual work of
acceleration, and kinetic energy to the foreground.

") Under the assumption thddx - 5dx = 0 of Lagrange, t. |, sec. Part, Sect. IV, no. 3.
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If we now letm(a, b, ¢c) be the mass of a system point, and we understand the
operationSto mean summation — or possibly integration — ovea,dl| c then it follows
from the identity above, when we then introducekinetic energy of the system:

Sm¥,

I\)|H

that

—{SmxF} = SHiXB x+S T+ S ——--5—

d dox dS(j
dt dt dt

Now since, from d’Alembert’s principle, for adlg, , and therefore also for af%,, one
has:

SMiXd % = SKIDX,

where K means the force that is applied to the system poimenwve definen system
forcesQ, by the equation that exists for aif, :

andn impulse component$, by the analogous equation:
>°J,09, = SmxD ¥,
A=1

the identity above goes to the following equation, whectailid for allod;

d — (dox dx
133,09, | = 39, + 0T+ Smxl — -0 —
dt[; / ”j ;Q” / et dtj

In order to convert the last term, we now appeal ¢otthnsition equation in the second
form (I'), and since one easily finds that:

Jy=SmxJ] = aaT ,

W,

we obtain:

() %[Z j 2Q:%, +5T+ZJ(d5_—5£(j ZJZﬁm . dt
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;rhis is thegeneral central equationt is distinguished from Lagrange’s central equation
) by the appearance of the last two sums, which coltdgtivanish when we make the
assumption thatiox -odx = 0.

* %

*

We now derive the general equations of motion fromceatral equation. If one
performs the differentiation with respect to timelif &nd considers that one has:

3dd oT
a=>1 L+ | — |09,
;” dt Z[aﬁﬂj ’

A

oT ) _ <« 0T
o) TR 6

7 00,

where once more once sets:

by analogy with a true differential quotient, then dilthee terms irdd and &dd< drop out,
and since the central equation is true identically i@dllthis yields the equations:

dJ oT
la A+ w,J, —|— | =Qai,
( ) dt ;/:ﬁ/]uu'u Uv [aﬁ)j Q/‘
which, together with:
(1Mb) = a—T
0w,

define the'Lagrange-Euler,” —i.e., the general kinetic — eaions of mechanics.)

They were derived with no assumptionsdaix — d dx, and with that, the assertion is
proved that any assumption otdx —Jdx that arises from the general differential
nature of the d-operation is superfluous for meaotgam itself.

If the & are true coordinates then tBevanish, and we have the ordinary Lagrangian
equations in (lI1).

") Essentially in Lagrange, t. |, sec. Part. Sectni/, 7.
") “L.E.Gl,”§5, (IV). Moreover, these equations haeady been derived by V. Volterra (“Sopra
una classe di equazioni dinamiche,” Atti di Torino XXX[1I1898) and P. Woronetz (“On the equations of

motion for non-holonomic systems,” [Russian], Mathoi®ik, Moscow, t. XXII, 1901).
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8§ 3.
Virtual displacements and variations.

(Hamilton’s principle and the principle of varied action.)

One will naturally employ the complete freedom tcabé to specifyddd — ad for
any holonomic or non-holonomic coordinate system in ondere.g., arrive at a
simplification of the derivation of the kinetic equat®in individual cases, as well as
when one proceeds from d’Alembert’s principle to one’sdiye along another path
that does not involve the central equation.

| would not like to go into the methodological advaets of our general conception
here, since this viewpoint will be developed in concreteegan the soon-to-appear
Lehrbuch der Kinematilof K. Heun. By contrast, allow me to point out Wwisafreer
standpoint one now has for connecting mechanical esalhips with other domains of
mathematics; e.g., the calculus of variations andhéery of Lie groups.

In order to stick to known things, | would first like toidfly sketch out the
relationship to the calculus of variations. This imthae place to make the assumption
that:

dox-odx =0,

since this equation, as we already remarked, is chastterf the calculus of variations.
The central equation then reads:

d
azJﬂwﬂ = ZQAd?A +al,
p p

which we would like to distinguish from the general onéhasLagrangian equation.
If we set the virtual work done by the applied forcéhis equal to:

ZQAd?A = A

then it follows by integrating between the limit poiftand 1 that:

1

(V) > 3,09, = [ (oA+aT) dt.

If we takedd = 0 at the limits then the so-called Hamilton prineifdllows, which takes
the following form for the case in which a force fuoatV exists:

sl (v+T)dt=o0.
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. . 1 . .. .
However, if we think ofION +T) dtas a function of the limit coordinatef’ andq®,
when one uses the equations of motion in integral fard,sets this equal to:

S(d”,..., ¢ ¢"...., ¢v)

then equation (V) yieldslamilton’s principle of varied actignwhen it is converted into
the following form for non-holonomic coordinates:

3w =95 |, a0 =-[ 9 |
PR FER

* %

*

Now, if our system oh degrees of freedom is then subjectvte n generally non-
holonomic condition equations in which time does ndeeexplicitly, then one bring
these condition equations into the form:

a,h—v+1:0, ey %:01

in which one chooses thiesuitably.
The variations are therefore now restricted by theagons:

&9n—y+1: 0, ...,d?n = 0,

so, from the principle of virtual work, the virtual digpements must satisfy the equations
of condition; nothing changes from the previous argumerthf® remaining ones, except
that of then Lagrange-Euler equations, now only the first v remain, from which, the
equations arise):

ah-p1 = 0, ey, @ =0.

In this representation, it now quite clear from here how one is to understand
Hamilton’s principle for non-holonomic condition eqais. As before, it must be:

slv+T)dt=0

in which, however, according to the principle of virtuspdacements, the variations are
restricted by the conditions:
wn—wl = 0, ...,d?n = 0,
from which the equations:
dodr-41=0, ...,ddJ =0
follow.

*

) “L.E.GL”§7.
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Thus, for non-holonomic condition equations, Hamilton’s principle no longer has
anything whatsoever to do with the problem of the calculus of variationadnhdi a
minimum to:

Jov+Tdt=0
under the conditions:
ah—v+1:0, Ceey 0}1:0

Then, for this problem the variations are subject to tmyrestrictions:
AS-1=0, ...,dd =0,

which are generally completely different from:
dddr-s1 =0, ...,do5, = 0.

I might perhaps emphasize that one has, aboveaglabhge himself to thank for the
possibility of arriving at the foregoing facts so quicklyastearly, since he gave us the
central equations in their essenckc.(cit)

Let us make yet another remark: If the system issaderonomic then the time does
not enter intox and &,, explicitly, and if the equations that link th2 and theq are
inhomogeneous, moreover, then one introduces anf" coordinate:

On+1 = i1 = 1,

in place oft, which also makes the equations betwgeand  homogeneous, and one
now works with then + 1 coordinates in precisely the same way as one didthatn
coordinates up to now. To the condition equations thgd@seibly present, one adds:

&9n+1 =0.

In the remainingy, (n — v, resp.) Lagrange-Euler equations, one then agaimgsets t
everywhere.

The validity of this remark follows from the factathtime is not be varied in the
principle of virtual work.

§ 4.

Virtual displacements and infinitesimal transformations.
(Euler equations and impulse equations.)

In order to exhibit the relationship to the theoryLed groups, a multiple way of
looking atd? andad# is recommended.

We would now like to always regard the as constant (except for in the last
investigation that we make).
This is closely related to regarding the equations:
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d:{/\ = zgpijp
P

as infinitesimal transformations. Tld&, are infinitesimal constants and tg; are the
guantities that Lie likewise pointed out.
This concept corresponds, as a symbol, toithefinitesimal transformation:

of
Xpf=» &  —.
P Zp: Mach

We can now recognize the role that fhé the transition equations play in this way of
looking at things when we also assume that:

ad =0,
hence, that thevremain unchanged.
The transition equations of the first form thenfaat, read:

dd:h - djqﬁ =- z 5p,)ﬁp,v,pd9,ud79v )

UV P

or, when we set al®? andd$ equal to zero up t@9, = 1 andd?, = 1, in the easily-
understood notation:

day, — g, = _zgpﬁ v zgpﬁ VP
P P

- since one haf, v, = — Bvup— 1.€., when we, following Jacobi:

XI/ X/j _X/j XV = (Xv, X/j),
set:

(XV’ X/l) = Zﬁv,p,pxp .

Thep, ., are precisely the coefficients with whose aid Iaeobi symbol$X,, X,)
are expressed in terms of the, Xnearly. In particular, if the n infinitesimal
transformations generate an n-parameter group \hi Lie composition constants,,
then:

Brpp=Coup;

the coefficients in the transition equations arertttonstant.)

*

) “L. E. GL” 8 3, (ll). There, the proof is achievelirectly; also the emphasis was more on the
applicability of the transition equations to the equatitias define the infinitesimal transformations of the
adjoint group.
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If we make the assumption that? = 0, for the moment, thedl is now nothing but
the infinitesimal transformation @fwith wheld constant, or one has:

a_T = X/‘T
09,
for constantw

Therefore, when T admits all infinitesimal transformations for constaras one
easily recognizes from the general central equation tfi§ equations of motion read
simply:

dJ
#+zﬁﬂvv~p%Jp =Qp.
t 77

| have referred to these equations asittker equations in the broad sensg.

The J, are thus linear functions of they with constant coefficients, becausewill be
just such a quadratic form of thg if the S = c are still constant then the left-hand (i.e.,
kinematic) sides of the equations still include only dbe&s variables. Huler equations in
the restricted senyeAny free system possesses Euler equations in the beyese; these
equations are thus just as general as the Lagrange equations

The assumption:
ddg—Aadg=0

also has an interpretation in terms of group theorymég by means of it, one obtains
from:

ay = zgp,ﬂwp
P
the extended point transformation:
ag, =d = %p0
G =day = Z 9 5ﬂ10d9pd79ﬂ’
POl o

and the transition equations of the first form now ytékl infinitesimal changes in thg
insofar as these are determined by the coupling ofdthé dt and the infinitesimal
changes that we just carried out. However, from equs({ib:

(6) dap=->p,,,0,09,

becomes the variation @ under the extended point transformation.
However, from the central equation in Lagrangian form

*k

) “L.E.GL” 810, (VIl).
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inﬂwA = ZQAd?A + I,
dt 5 y

it follows immediately, since thé$, are constant, and sin€& is now to be regarded in
the sense of extended point transformations, that:

. dJ
Ila’ —A-XT=Qu,
(na’) ') pramR LI

whereX,T means thel" infinitesimal, extended point transformationTof
Naturally, this equation is entirely identical with the corresponding Lagrdfgjer
equation; we have only obtained a new conception of it.
In particular, if T admits thel” infinitesimal, extended, point transformation such
that one has:
X)T= 0,

where now they, that correspond to equations (6) are to be vatiesh theA™ equation
of motion reads simply:
dJ, _
T

| have referred to these equationsnagulse equations)

* %

*

In order to now show the relationship between the Isgpaquations and the Eulerian
equations in a manner that is similar to the situatiwwrafrigid body that rotates around a
point, we ask ourselves:

When can one convert the impulse equations:

dJ, T
— A = : Jy=—
ot Qi A 0w

(assuming that they represent the equations of motitimeasystem), by the introduction
of new, independernw:

(7) ai( = z EK,/ia)/i !
A=1
into the Euler equations:
d‘]’ ! i I
SO WA

v

*

) “L.E.GL” §09.

*

) “L.E.GL”8§0.
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(From now on, we provide everything that relates tacth&ith primes.)
If that is to be possible then under the substituf)roT = 0, in which, from (6) one
sets:

50)/‘ = zﬁu,v,a%wv !
Uy
must go tod’T = 0, where one now has to take:
o, =0, e, odd, =0.

However, in order for us to be able to &&t= 0T in general, moreover, we must
regard the variation® and o’ in the same way, and therefore, perhaps as extended point
transformations, in both cases. Contrary to the prevémsumption, we would thus now
like to assume for the consideration of the Euler eguahat:

dag —4adq=0,

in which clearlyddd, = 0 is impossible. Moreover, one must now ass)me

do,

dt = _zﬁ;hv,/]a{lwli )
y78%
On the contrary, for they one still has:
dod = 0.

One shall have’ T = 0 for & held constant whenever one séi$ = 0; then however,
since one ha®’ T = JdT = 0, also for the same kind of variation®@f the relation:

(7) ai( = z EK/la)/1
A

corresponds to this. As a result of this relation {Aust then follow that:

naT n
—ow, = ) J,ow, =0,
;GCJA 7 ;A 2

or, since this naturally shall be true for 3|l one must also have as a result of (7) itself
that:

ow = 0.

") These equations are to be regarded as differential egsdtr thed. At a location along the path,
one can choose th# arbitrarily, but then they are determined for the ergimth. The fact that th® are
not constant here does not contradict the conceptitimeakoperation as an infinitesimal transformation;
taking thed? to be constant is convenient for many purposes.
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Thus, we now have to answer the following question:
When can one take the assumption tiadt = 0 to the assumption thatl? = 0 by a
substitution:

(7) CJK = ZEKACUA 7
A

(Thus, the determinang , | shall naturally be non-zero.)
The answer reads:
The infinitesimal transformations:

of
Xf = -
4 2‘5’” aq,

must generate an n-parameter group
For the proof of this assertion, it is useful to knoatth

ay = zgp,ﬂwp
P)

and
do = ZE;Mdz?p
P

can be regarded as two independent classasrdinitesimal transformations; from the
assumption that:
dod=0 and dAad =0,

the infinitesimal paramete&? andd are independent of each other.
The assumption:

ddy— &g =0

then means nothing but the fact that these two cladsansformations commute with
each other, so one has:

(X, X,) =0

for all p, . | can then indeed think of the operattbas being performed with the help
of the &J, while the operatiodis performed with the help of th#.
Conversely, we have two classes of infinitesimal sf@mations for which the

determinants . | and‘g‘;y A‘ are non-zero, so one can always find unique quanigigs
such that the relation (7) is true for &l identically. If all of the(X ,, X,) then vanish

and we assume thdtg — ddq = 0 then under this substitutiaid? = 0 goes taddd = 0.
The proof of this converse is so elementary that | doeetl to go into it.

We thus have only the following theorem to prove, whialries a purely group-
theoretic character:

If we have two classes of n infinitesimal transfations in n variables:
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of of
Xo=3¢,,~— and X, =&, —,
e " ag,

and neither of the determinants {» | and ‘f;,ﬂ‘ vanish identically then the

transformations of the one class commute with althe transformations of the other
class only when the transformations of each classegate an n-parameter group.
Naturally, the groups are then simply transitivedanutually reciprocal.)

Proof: Assume that at least one of the two cladses not define a group, so perhaps
(Xa Xo) is not expressible in terms of thg with constant coefficients. It then follows
from the Jacobi relation:

(X, X,) X)) +((X, X) X)+(( X X) %X)=0
that one also has:
(X, X,) X)) =0;

i.e., that the new infinitesimal transformatiofy,(X,) likewise commutes with alX; .
If the X, then generate no-parameter group then there are more tharmdependent
transformations that commute with &l .

I will now show that there can be at massuch transformations, with which, the
proof of the theorem is complete.
In the n-dimensional space of thgg we consider a poin®; inside the domain in

which the determinant, ,| is non-zero, so one can, in any case, determioenstants

€, ..., € such that a one-parameter group that is defined famaformationT ’ by the
differential equations:

dg, _ .
E - zgpﬂep

P

from P; to an arbitrary poinP, in a sufficiently small neighborhood &h. This is
possible because the determinanf gf is non-zero.

When | now take any transformatidrthat commutes witf’, and through whicl,
goes toQ; andP, goes taQ,, thenTT’=T’T says nothing but the fact th@t arises from
Q1 by the same transformatidriasP, does fronP; .

If we then consider all that takeP; to Q; then this also takes any poiRt to a
completely well-defined poin@, that is independent of the special choic& ohamely,
the Q, that comes fron@, by means of th@’ that convert$; into P, . Therefore, all of
these transformationB are identical, so there is only one transformaifidhat taked?;
to Q. , and sincd&), is determined by coordinates there are aladransformations that
commute with alh transformationg™”.

*

) “L. E.GL” 8§11, final theorem.
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With that, it is then proved that th¢, generate a-parameter group, and naturally
also the X’ .

Now since, conversely, to any group there also existec@rocal group that
commutes with it, we have proved the theorem:

Simultaneous Euler equations and impulse equations can exist when and only when
the coefficientg3 of the transition equations are constant; i.e., when the n infimggs
transformations that correspond to virtual displacements generate an n-paraynatgr

The rigid body that rotates around a fixed point wiliveeas a simple example; the

group in question is the three-parameter group of rotations.

With that, | have developed the relationship betweerhamcs and the theory of Lie
groups to the extent that seems necessary for the puigfdbesforegoing paper. For the
further details, | might perhaps refer to my Habilitasisechrift.

Karlsruhe, in February 1904.




