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Section Two

Statics

Chapter V

Staticsof rigid bodies (theory)

111. Problem statement and definitions. On the basis of the argument that was
made in no. 106, in this chapter we will once more sedkdoequilibrium conditions
that are necessary, as well as sufficient, buticestr this time to rigid bodies as the
objects in question; i.e., bodies that always remaigmemnt to themselves.

Previously (no. 47), we stated equilibrium conditions thate true in full generality,
namely, that for any volume element the sum of thees that are distributed in the
space it occupies and across its bounding surface mustilbe With this condition,
however, we can still accomplish only so much, sirfeeinternal stresses of the rigid
body are necessarily reaction forces, and are thusownkrbut there are, of course, no
deformations in the interior of a rigid body (see 58).

We now seek conditions in which only the externatdsrthat act on a rigid body
figure: In the following, when we speak casually of foraeswill always mean external
forces.

However, we will extend the problem of this chaptethm following way:

We refer to two force systems on a material sysésm‘equivalent” when they
produce the same state of velocity and accelerationyarakk:

When are force systems on a rigid body “equivalemgach other?

If a force system is so numerous that it is as iforce at all were acting, then we
also say that the forces cancel out on the rigid podpreserve its equilibrium, while we
shall speak of the equilibrium of the body itself witeronstantly remains at rest.

§ 23. Theadmissible operationsand their invariants

112. Case of a finite number of forces. Concept of moment. We next make the
assumption that a finite number of finite forc&g En act upon our rigid body at the

given pointsAy, ..., Ay, which are described by the vect&s ..., a,. Later (no. 113),

we will see the meaning of this assumption, which doestniotly correspond to nature
itself.

We shall call the line through the poiitwith the direction ofk theline of action of
the force.

We then speak of the following, most plausible, axiom:

When two equal and opposite forces act along the saeeflaction, one may add or
omit them at will.
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(One can derive this axiom, for the more specific questaf the equilibrium of the
body from the law of adequate grounds [see no. 63], wheradds the axiom that the
guestion of the equivalence alone will decide betweerfdtee itself and its point of
application. Thus, in this case there is either angistshed direction along which the
body moves or a distinguished axis around which it rotates.)

Thus, we come to the previously-discussed parallelogram(ia. 44): One may
combine forces that act at a point into a resultant.

From our new axiom, we immediately infer thrandation theorem, whose traces
emerged in the Middle Ages with Jordanus de Nemore, becaare distinct with
Benedetti, the forerunner of Galilei, and came intousoowith Varignon, who
summarized elementary statics in his “projet d’'une ndeveaEcanique” in 1687, and in
his much-neglected “Nouvelle mécanique” (1725), he made itradftion of statics:

One may trandate a force on a rigid body arbitrarily along its line of action; i.e., two
egual forces along the same line of action are equivalent to each other.

Proof: The forcek acts at the poimA. At the pointB, which lies on the line of action
of k, one adds a forck =k and a forcek,= -k , which, from our recent axiom, we may

do. However, from the same axio, and k, cancel out, which leavel . k is then

equivalent tok, . Q.E.D.

As admissible operations, we would now like to pointtbatfollowing ones:

1. Translation of a force along its line of action.

2. The insertion of two equal and opposite forces atahe goint of application.

3. Combination of two forces that act at the same pwiimg the parallelogram law.

We call any expression that includes the forcesiramariant when it remains
unchanged under these operations.

We would now like to show that there are two invariants:

a) The geometric sum of all forces:

K=Yk.
b) The geometric sum of the moments of all the forces, relative to any point:
=3 ak .

In this, we therefore understand the moment of eefdhat acts aA relative to the
point O to mean the outer produek of the vectorsa = OA andk ; i.e., a vector that is
perpendicular to the plane throughand the line of action ok and is directed such that
when one looks outward from it the for&e points to the left (when one brings batk
and k to 0), and whose magnitude is:

ak =alk[sin@,k)=hk
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whereh is the length of the perpendicular that one can drect O to the line of action
k. his also called the “lever arm” of the for&erelative toO.

That K andM are invariant is easy to confirm.

ForK = ZIZV , the assertion is entirely self-explanatory, simde clear that each of

the terms indeed remain unchanged by operation 1, and eeswains unchanged when
one insertions two equal and opposite terms or whercaméines two terms.

The fact thatM = Y ak, can be shown as follows: Each term remains uncltange

under operation 1, since the plane, sense, and magnitude nodng&ent remains
unchanged.M does not change under 2 either, since two equal and opgosiith the

samea have equal and opposite moments. The fact Mhatlso is invariant under 3
emerges from the assertion that:

ak +ak, = a(k +k,),

in which perhapsk, and k, act at the same poinA(a) and will thus be combined into

+k,. This statement is, however, correct, since ibihimg but the distributive law of
2

outer multiplication (see Appendix I, 5).
One can thank Varignon for the latter fundamentabtém, if only in the case where
all of the vectors lie in the same plane.

113. Reduction of the general case to the previous one. Axiom group VII. We
now consider the case in which an infinite numdespatially or superficially distributed

forcesdk act on the body.

The concept of translating an isolated force isamegless. We thus express the
axiom in the preceding paragraph in connection wiite parallelogram law in a
somewhat altered form, in such a way that for theeoof finite forces the two become
identical:

Axiom VII.1: If the lines of action of several foes dk go through a point then the
forces are all equivalent to a single force whase bf action goes through the same

point and whose surbdk is the force in guestion.

In addition, we make use of the inverse paralieloglaw:

One can decompose any force into three compotiegitsact on the same point and
have given directions, assuming that these dinestido not all lie in a plane (see
Appendix |, 1).

We would like to show that one can reduce any force system on a rigid body to three
forces.

Proof: We choose three poirlds, O,, Oz in a plane outside of the rigid body that do
not lie in the same line. Any force that acts abant A can then be decomposed into the
directionsAO;, AO,, AOs, since these directions certainly do not lie iplane. The
entire force system now consists of three grougse first one has a line of action
throughO,, the second one, through, and the third one, througb; . From axiom
VII.1, we can combine each group into a singledorQ.E.D.
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The fact that the sums (integrals):
K =Sdk, M =Sadk

are invariant under the operations allowed by axiom VIl.d #e parallelogram law
should be clear.

From the following examinations of this chapter (no. 11#}), it will then emerge
that these are also the only invariants.

To axiom VII.1, we add the following plausible axioms, @fhare put to the test in
daily life:

Axiom VII.2: A rigid body is certainly not in equililmm when a single non-zero
force acts upon it.

Axiom VI1.3: A rigid body is certainly not in equilibrm when a so-called “force-
couple” acts upon it — i.e., two equal and opposite nondpeoes that do not have the
same line of action — or wheme isolated force andne force-couple act upon it.

The fundamental concept of force-couple goes back twsbf“Statique,” 1803).

Axiom VII.4: A rigid body is certainly in equilibrium wdn no forces at all act upon
it.

(If we were to assume the general center of massréim [see no. 52 or 107] then
axiom VII.2 would naturally be an immediate consequenct likewise, VII.3 would be
a consequence of the moment theorem [see no. 108 and Akhdye all, only axioms
VII are necessary for a self-contained presentatictaics.

114. Definition of the moment for a different reference point. The moment of a
force-couple. If we define the sum of the moments for a new refsgepointO’ then we
obtain no essentially new invariants.

Thus, letO'A = y, OO =5 so that:

a=y-s,
and it follows that the new moment is:

M' = Sydk = Sadk+sSdk
or:

M'=M +sK .

One thus obtains the moment relative to the new reference point when one adds a

moment to the old moment that one obtains when one lets the resultant K act upon the
old reference point O and forms its moment relative to the new one.
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From this, it immediately follows that the momeitadforce-couple — we understand
this to mean the sum of the moments of the two foofdlse pair — is independent of the
choice of reference point. One then héas= 0. If we then choose the reference point to
be the point of application of one of the two fordesntwe recognize that the moment of
a force-couple is perpendicular to its plane in suctag that when one looks along the
moment vector the force exhibits a sense of rotatgoaraarrow and that the magnitude
of the moment is equal to the product of the magnitudésedbrces and lever arm of the
couple; i.e., the normal distance between the tvweslof action.

8 24. Combination of forcesin the plane

115. Combination of two forces. Let a finite number of finite forces be given —
from no. 113, we can indeed restrict ourselves to this-caseaich lie in a plane and act
upon a rigid body. We likewise choose the referendet iof the moment to be in that
plane. Thus, all moments are perpendicular to thisepand differ from each other only

by their magnitudes and senses. For that
reason, it suffices here to regard the
Oo moments as scalars that can be positive or
negative. If we imagine ax y coordinate
Oa system as being defined in the plane then
we would like to choose the direction of
the z-axis to be the positive direction for
the moment; we let the y, z system be a
right-handed system - i.e., theaxis
Fig. 67 poi_nts to the right, \_Nhile_thg.uaxis points
to its left, so the-axis points upwards. A
moment is positive then when the force vector, as §eenabove — i.e., along tleaxis
— points to the left relative to the reference p@nt

Now, if the lines of actions through the given forcdsnsect at a poirsthen we can,
from axiom VII.1, replace the two forces
with a single resultant.

If two forces are parallel and point in
the same direction then one can likewise
replace them with a single resultant.

Proof: Let p and g be parallel and
point in the same direction. At two points
A and B of the two lines of action, one
inserts two opposite and equal forces
and-s with the same line of action, which
we may do. Now, one combings and s
into a resultantu, and combinesy and

-3 into a resultanv .
The lines of action ofad and v
intersect, however, at a poitand can therefore be combined into a resulfant

=1
~l

Positive momer  Negative momel
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From the theorems tha¥ k and > ak are invariant, one may now determine the

direction, magnitude, and position bf with nothing further.
One must have:

r=p+q;

i.e., T has the same direction as the given forces, anthagnitude is equal to the
ordinary sum:
r=p+aq,
Furthermore, one must have:
xr = ap+bqg

relative to an arbitrary poin©®, where X, @, b are the vectors to the points of
application ofr, p, Q.
If we chooseéO to be on the chosen line of actionfothen one has:

O=ap+hq.

From this, it next follows thatr lies betweenp and @, since only then canp and q

have equal and opposite moments. Furthermoeeaifidb are the distances from the line
of action ofr from p andq, then it follows that:

pa = qb;

i.e., T divides the distance betwegnand @ into inverse ratios of forces.
With that, this case is resolved.
One can likewise reduce two oppositely-directed, unequal forcesto a single force.

The proof is analogous to the previous one. Moreoverfotttesti, Vv now intersect
at a pointS while U, v are rotated
around p, Qqwith the same sense.
However, the angle betweep and u
will be less the angle betweapn and v,
because we have assumed tpat .

There will then be a resultant .
From the fact that:

r=p+dq,

it follows, as before, that: Fig. 69
The resultant has the same direction as the greétdre two forces p) and its

magnitude is equal to the difference of the given forces:

r=p-q.
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If we again choose the reference point for the maneebe onr then this gives:
O=ap+hq.
From this, one recognizes thatmust lie outside ofp and @, and that one must have:
ap =bq
moreover, ifa andb mean the distances betweesndp (q, resp.).
From this, it ultimately follows that since > g, one must havé > a; i.e., the
resultant lies on the side of the greater of theftwoes.

What still remains is the case of equal and opposite$or i.e., a force-couple.
One cannot reduce a force-couple to a single force.

If this were possible, witlr the resultant, then one would have= p + (-p) = 0.
On the other hand, one would have:

xr =ap+b(-p) =(a-b)p =M,

where M is the non-vanishing moment of the force-couple. TRuspst be non-zero.

One can interpret this result by saying: A force-couplegsivalent to a force of
magnitude zerof{ = 0) that acts on the infinitely distant lin& £ «). However, one
gains nothing in practice by this way of looking at things.

116. Combination of arbitrarily many forces. The equilibrium conditions.
When arbitrarily many force&’, k", ..., k™ are given with the points of application
3, a, .., a", we can always combine them in pairs at most one foréerce-couple
remains; thus, among three forces, at most two of tbembe equal and oppositely
directed.

Therefore, one can reduce a force system into the plane to a single force or a single
force-couple,
which are also free to be zero.

However, one can determine this result directly foamtwo invariants:

K=>k and M:ZQ.
a) If:
K#D0,

then the result is a single force. If the result i®rce-couple, or if the force system were
equivalent to zero, then one would need to hidve 0.

K then already gives the magnitude and direction ofebeltant.

In order to find its line of action — the so-called “wahaxis” of the force system —
we then make use of the fact that the total momezdris. Letx be the vector from the
reference poin® to a point on the central axis, so one must have:
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XK =M.

This is the equation of the central axis (see AppendiR)ll,Leth be the distance from
the central axis t@, so the equation that was presented in the statemtethis beginning
of no. 115 can also be written as:

+h[K =M.

The = sign is determined from that bf. This sign and the magnitudeh)ﬂeiermine the
position of the central axis completely, since itediion is indeed given bil (cf., Fig.
67).

b) If K = 0, but M # 0 then only one force-couple can be the result of the
reduction, since the other cases are excludéds the moment of this force-couple.

c) If K =0 andM = 0 then the force system is equivalent to zero, atulirigs
equilibrium to the rigid body. It must then be tHag¢ force system can be reduced to two
equal and opposite forces in the same line of actiorghwthen cancel each other.

K= Yk=0and M= > ak = 0are then, in any case, sufficient equilibrium
conditions for rigid bodies; that they are also necessary follows from axioms VI1.2 and
VII.3.

If a force acts on the rigid body then from axiom.¥the body is in equilibrium; i.e.,
it remains at rest if was once at rest.

It suffices for us to state the conditid = O for a point: If, following no. 114, for a
new reference point one h&é'= M +sK then M’ is itself zero wherM and K are

zero.
In the special case of three forces acting on tfid body, when at least two of them

(k' and k") intersect at a poin§ the equilibrium condition can be expressed in a
particularly intuitive way as:

>k =k+k"+k" =0,
which says that the forces define a closed trianglentihey are placed end-to-end. The
condition:
> ak =0
says that when we mal&the reference point:

alem — 0’
i.e., k" likewise goes through:
The lines of action of three forces must go through a point.

The combination of force-couples is included in our foregamgsiderations. Two
force-couples are then nothing but four forces of a spsgal
One immediately recognizes that:
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Two force-couples in the same plane again yield a force-couple whose moment is
egual to the sum of the moments.
Two force-couples with equal and opposite moment cancel each other.

From this, it ultimately follows that:
Two force-couples of equal moments are equivalent to each other.

In general:
Two force-couples of equal moments and equal resultants are equivalent to each
other.

Proof. LetS be one and le§ be the other system. One constructs the opposite
systemS, to & in which one has rotated all of the forces to the sippalirection. Thus,

S and S, cancel each other out, and one also adds both of th&m tMoreover, S and
S, also cancel, since the sum of their forces andstira of their moments is, by
assumption, zero. What then remainS;is Q.E.D.

Thus, it likewise proved, at least for the plane, that:
K and M arethe only invariants.

Force systems with equil and M are then equivalent in all cases.

117. Analytical formulation of theresult. Along the right-angled axesy, k has

the componentg,, k , K has the components,, Ky, and a has the components b.
Let the reference poii likewise be the origin of the coordinate system.
Then from:
K=Yk

K= D K,
Ky=>k,,

one derives the two equations:

and sinceak has the components:

0, 0,aky — bk,
y ky
(see Appendix 11, 1), the equation:
Al > M = ak
a i b
a ! becomes the one equation:
@) .
Flg. 70 M = Z(aky _bkx)

The validity of this formula also follows immedistérom the illustration (Fig. 70).
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As the equilibrium conditions, one thus has:

3k, =0,
>k, =0,

Z:(aky -bk,)= 0.

and

This equation once again leads one to the first two eadusativat were discussed in
Section I.

If K # 0 then since one must have:
xK =M

the equation of the central axis reads:
YKy = XKy = M;
X, y are then the running coordinates of the central axis.

Problem 58. Reduce the forces whose magnitudes are 10,112k, whose lines of action intersect
an axis at angles of 3090°, 45° 120° at four points, which are at distances of 3, 2, and #4om £ach
other.



§ 26. Combination of forcesin space

124. Reduction to one force and one force-couple. Let there be given a series of
forcesk,, ..., k. with the points of applicatioA,, ..., A,. We choose a reference point

O, and the vector®A may be calleda: a, ..., a,.
To each forcek,, we now add a force &

and a force:
K =-K,
which we may do.
We add up the forcek atO to form a resultant that will be applied @and whose
magnitude and direction is determined by:

K=Yk

v=1

k, and k' = - k, define a force-couple of momemtk, . We thus confront the

problem of combining force-couples whose planes interseotthey all have the poit
in common.

We only need to show that we can combine two such ceougleone: The fact that it
then has a moment that is equal to the geometric dutheomoments of the given
couples follows from the invariance of this sum underatleevable operations.

In order for us to now show that one can combine twoefcouples with intersecting
planes, we proceed as follows: We choose a line saghiein the line of intersection of
both planes as it pleases us. We can then replabdaae-couple with one for whiok
B are the points of application. Indeed, we need onlyHere to be two such forces in
each plane that are applied Aatand B and preserve the sense and magnitudes of the
moments, which is always possible. Now, however, we Faweforces in all, of which
two of them are applied & and two of them are applied Bt The fact that we can
reduce them to just one is clear. Moreover, one seegdiately that a force-couple
again emerges since this is already true from the fattthe sum of the forces still
remains zero.

We can thus, in fact, combine force-couples and obtaineult:

A spatial system of forces on arigid body may be reduced to a single force and force-
couple. Thesingleforceisequal to the geometric sum of the given forces:

K=K

and is applied at an arbitrarily chosen point O; the force-couple has a moment that is
egual to the geometric sum of the moments of the given forces:
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Vi =Y ak,.

For infinitely many, infinitely small, continuously diduted forces dk, one
naturally has:
=S dk,

K
M = Sadk
(cf., no. 113).

Naturally, the equilibrium conditions read precisely as they do in a plane, as a result
of Aiom VI, 2, 3, 4

K=Sdk =0 and M=Sadk =0.

The fact that two systems of forces are equivalent when and only when the sums of the
forces K and the sums of the moments M agree is proved in precisely the same way as
the corresponding theorem for systems of forcesin the plane (see no. 116).

Thus, K and M are also the only invariants.

125. The force screw (dyname). Our result still depends on the choice of the
reference poinD. If we choose another poi® and letOO'= § then K remains
unchanged. However, from no. 114, the moment relédi@ is nowM ', where:

M'=M-sK.

The additional componeﬁ{s_K is now always perpendicular %, but, by a suitable
choice of s - i.e., O — all of the other components preserve their direstiand
magnitudes.

If one thus decomposdd and M', the moments at each point, into a component
parallel to K and another one perpendicular Ko then one cannot change the former,
while the latter is arbitrary. One can thus make it eguaero by a suitable choice sf
(O, resp.); i.e., one can arrange for the moment tostakethe same direction as the
resulting forcekK .

If we call the combination of a force and a force-cewphose plane is perpendicular
to the force- so its moment vector lies in the same line as theefe aforce screw or
dyname then we can say:

One can always reduce a force system on a rigid body to a force screw; thus, one can
arrange for one to have:

M= pK.

The number p for a line segment, which can be positive or negative, is called the
parameter of the force screw.
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Thus, in general, one cannot make the moment in sgagshy so the force system
does not reduce to a single force. The facts thatdhgonent ofM that is parallel tok
indeed cannot change, and that it is not always zerotfiemon, can be recognized from
the fact that one can just as well regard a forcensasea force system as fundamental.

The points for whichM takes on the same direction léslie on a line: the so-called
central axis of the force system.

If we let O be a point for which one thus h&% = pK then the supplementary term
sK that appears for a choice of another p@htind which is perpendicular 4§ - and

therefore toM - is zero when and only whes has the same direction 4. The
central axis then has the same directiofKas

If one letsM and K be given for any poin® thenp may be easily computed, and the equation for the
central axis in the Pliickerian form can be presentedAppendix Il, 2).

Ifwe let X = OX and letX be a point of the central axis then ¥othe moment is:

M' =M - xK .
However, we shall havél’ = pK .
Thus, we have:
XK =M - pK
If we abbreviateM - pK by € then:
XK =C

is already the equation for the central axis, linct are the Pliicker vectors. One must still fulfill:
cOK =0,

(M -pK)K =0
or:
MK -pK?=0,
from which, one obtains:
oo MK
K2

MK +MK +M K
X X y y z z

K2+K2+K2
X y z

when we introduce the orthogonal components.
If we substitute the value pfinto the expression fot then we obtain:

=

ME R = L (k% - R)K).

c= M= -

However, from the development formula (see Appendix), #his i

_ 1
=2

K (MK) =—i2(|v|K)K.
K K

The equation for the central axis thus reads definitively:
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— 1
xK =— (KM)K,
K2
so one of its points is given by:
1 —
Al

If this is the base point for the perpendicular fr@nto the central axis then one indeed hgs

perpendiculark .
The parametric equation of the central axis reads:

X=X +AK

X

whereA runs through all values fromeo to + co.

126. Analytical formulation of the result. Since ak has the perpendicular
components:
aykz_azky, azky_aykz, axky_aykx,

(see Appendix Il, 1), one then has:

Ke= D ke Ky=Xk,, K=>Kk,
Mi= 2 (ak, —ak,), My = Y (ak, —ak,), M. = > (ak, -ak,),

and the equilibrium conditions for the rigid bodiestrea

k=0 k=0 Yk=0,
Y (ak -ak,) =0, Y (ak -ak,) =0, Y (ak, —ak) =0.

Problem 60: Compute the parameter and determine tlialcaxis for the force system that consists of
three forces with the orthogonal components 0, 15 kg, @gl0, O; O, 0, 21 kg, when the coordinates of
the point of application are 0, 0, 10m; 0, 0, 0, and 5r@, O,

127. The moment relativeto an axis. The expression:
ax ky - ay kx y

or a sum over these quantities when they originate franous forces, admits a double
interpretation: Firstly, it gives the components @& thoment vector relative to a po(t
of the z-axis, along this axis, but then it also means a mothanties on the-axis that
we obtain from the given force system when weksahdz equal to zero. Thus, the
components of the moment along thandy axes will be zero, although the component
along thez-axis remains unchanged.

However, settind, andz equal to zero means nothing more than projecting tloe for
(forces, resp.) onto the-plane.
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In an analogous way, we can take the moment of ang fystem relative to any
axis:

We understand the moment of a force system rel&ingeline to mean the moment
that we obtain when we project the force system anptane perpendicular to the line
and take the moment of this projection relative topgbmt of intersectiorO of the line
with the plane.

Since we can make any line in spacezbais of a right-angled coordinate system, if
we please, it then follows in general that:

The moment relative to a line is equal to the projection of that moment vector onto the
line that one has constructed relative to a point of the line.

If one has given the line a definite sense of dirediii@m one can regard the moment
relative to it as a scalar, which is positive or negatdepending upon whether it does or
does not agree with the sense of the line.

If h is the shortest distance of the force from the timenh is also the shortest
distance of the aforementioned projection of the fawe the point of intersectio.
Moreover, ifa is the angle that line subtends with the line ofoacof the forcek then
the projection of the forck& on the plane is perpendicular to the lkeain a and its
moment relative to the line is the absolute magnitude of:

k sin a [h.

Except for thetrivial case of k = 0, the moment of a force relative to a lineis therefore
zero if either theforceis parallel to theline or it intersectsthe line.

128. The equilibrium conditions, as expressed by the annulling of the moments.
The question arises: Can one replace the equilibriurdigons for rigid bodies in such a
way that one expresses the annulling of several mofhents

If the moment vector for two poin® andQ’ vanishes, siM = 0 andM' = 0, then it
follows from:

M'=M -sK,
that:

sK =0;

i.e., if a K is possibly present then it can only lie on the coringdine OO'.

If one knows, perhaps, from the outset that thisripoissible — e.g., albk are
vertical, butOO' is horizontal — then one must have that= 0 andM’' = 0. In general,
however, there will be a third momeM”, relative to a poinD”, which must be set
equal to zero, wher®" cannot lie on the lin@'0. That certainly suffices, sinc&
cannot be simultaneously lie on three different [i®€3, O'O", O"O.

For there to truly be equilibrium, it thus suffices to set equal to zero the moment
relative to three pointsthat do not lieinaline.

Does one also encounter moments relative to lines?

Since every equation that expresses that the momnlativeeo a line is equal to zero
implies a scalar equation, the conditions:
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K=0 and M=0

however, represent two vectorial — i.e., six scalaguations, one can expect that in
general the annulling of the moments for six lines suiffice to guarantee equilibrium.
For a special type of six lines this certainly sufficBstee linegyi, gz, gz may define
a triangleOO'O", while the other threb, h', h" can go through a poi@ (O', O, resp.),
but not lie in the plane dDO'O". Then, because the moment &ar g», h” vanishes-
these three may go throu@H — so does the moment vectbt” for O" vanish when its
orthogonal projections onto three lines that do notnlia plane vanish. This is true for
any of the three poin®@0O'0", so, from the above, there actually exists equilibrium
In the next paragraphs we will examine the exceptioasés in which one may not
conclude equilibrium from the vanishing of the momentssioiines.

Problem 61: A table with three legs — whose lower éqd C we would like to regard as points — is
supported by a horizontal surface. Aside from the suppadtionsN;, N,, N; that govern them, and are
directed vertically upwards, let the resulting fo@¢hat acts on the table be directed downwards and let its
line of action intersect the trianghe B, C at a pointSwhose distances, r, r; are given by the three sides
of the triangle. In addition, let the height of tharmigle be given.

Compute the support reactioNg N,, N3. Why can equilibrium exist only & lies in the interior of
the triangle —i.e., when, r, r3 are positive?

Use the equilibrium condition that was given at the efhthis section, and take the sides of the
triangle and the verticals through the vertices as thraent axes.

§27. Thenull system %)

129. Reduction to two forces. We know that in general one cannot reduce a force
system to one force (no. 124), but to three forces (no. 1a8j one reduce the system to
two forces?

For the case of merely a force-couple, the answer ike affirmative, but trivial.

Thus, we exclude this cas& (= 0, p = «) for the time being. Likewise, we omit the

casep = 0 —i.e.,M =0 — since one can indeed reduce the system to one force
In the general case, one can, however, likewisacepthe system with two forces.

Thus, let the force system at a poldtbe given byM and K, so one can indeed
represent the force-coupM by two forces and
g and-q, of which -q acts onO. One can
then combine-g and K into one forcer atO
and thus has two force§ and T for its
resultant.

Thus, one can still arbitrarily choose the
< magnitude and direction efg atO when it is in
- the plane of the force-couple. This has the
consequence that one can, at the very least,
prescribe the line of action @f arbitrarily.

01

Fig. 79

) These paragraphs can be omitted by the beginner.
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Namely, let the line of actiogy be given, so one chooses a p@rmn it and thinks of
the associated plane of the force-couple — which is péipdar to M — as being
distinguished. One lays a plane throulghand the given line of actiog, of T ; this
plane intersects the plane of the force-couple inegli. One can, in general, lay a force
-3 along this line in such a way that the resultant-gf and K has the prescribed

direction: Indeed, one needs only to decomplés@to two components alorg andg’,
which is always possible whegy and g do not coincide. T is thus completely
determined by': It is equal toK (and thusg = 0) wheng' coincides with the direction

of K, and it is infinite (and thug, as well) whery' lies in the plane of the force-couple.
The second forceg is then completely determined, along with its lineafan. Then, in

direction and magnitude it must certainly be given byféoe that—-g= 7 — K and its
position is given by the fact tha and— § must give the momerniyl .

One can therefore always reduce a force system to two forces: In general, one can
choose a line of action at will, so the other one is uniquely determined, as well as the
magnitudes of the forces.

The lines of space are therefore pair-wise associatggneral relative to a force
screw; one calls these paganjugate. Their relationship — namely, that one can reduce
the force system to two forces that lie in it — isha nature of this statement.

However, there are two exceptions:

1. The lines that are parallel to the central axi® they have the directiold.
will then be null, and thus, the lever arm of the écouple will be infinite. All of these
lines are thus associated with infinitely distant liassconjugates. This exception may
be regarded as having been dealt with by these remarks.

2. The lines that are perpendicular to the directibthe associated moment at a
point: For them,q will be infinite, and in order foM to be finite, the conjugate line
must coincide with it.

These lines, which one also calld| lines, are therefore conjugate to themselves.

They are called null lines, because they have theactaistic property that for them
the moment of the force system vanishes. Thus, fr]mmi 2y, it follows that the moment
vector is perpendicular to them.

130. Null points and null planes. From M
the preceding remarks, the null lines that go A
through a point define a plane, namely, the plane
of force-couples that belong to the point. One
also calls this plane theull plane of the point
and the point is theull point of the plane. 3
That there is one and only one null plane o ~ g
through each point is clear from the discussion " O
above. However, there is also, conversely, one 9
and only one null point for eactl plane. 3 Fig. &
Namely, let the planesKk and M'be '

A
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determined for a poir®’, so one can go from the ligein the plane that is perpendicular
to M', and is therefore a null line, to another pdnt The associate then differs
from M’ by a componems_K that is perpendicular tg' and lies in a lingg” that is
perpendicular tK . Everywhere else, the magnitudessf varies freely withs = OO’ .
One can therefore choo€ein such a way thaM is perpendicular to the plane; indeed,
one needs only to decompodd’ into a component along” and one that is
perpendicular to the plane (which is possible, sgfceM’, and the perpendicular to the
plane are all perpendicular ¢ and thus lie in a plane), and the former one candmeem
to vanish by the addition oK .

O is then the desired null point.

Only for a family of planes does the null point lieiafinity — namely, for those
planes that include the directidd. Thus,g" is indeed perpendicular to the plane and

sK ; hence,s must also be infinite.

Conjugate lines, null lines, null planes, and null pombsv have the following
relationship to each other:

1. Each line that cuts two conjugate lines is a
null line.

Thus, since one can reduce the force system to
two forces in the conjugate lines and they cut the
aforementioned line the moment vanishes for
them.

2. The null plane of each point of a lige
includes the ling' that is conjugate to it.

Thus, all lines through the point that cut the
conjugate line are, from 1., null lines; however,
they also define a plane, namely, the null plane of

the point.

3. The null point of each plane through a lghdies on the ling that is conjugate to
it.

Thus, from 1., all null lines of this plane indeed go tigtothe other line.

The null lines thus determine the opposite associaticconjugate lines. One now
calls the totality of null lines, along with the opposassociation of points to planes and
lines to each other that is given by il system.

131. Relation of the null system to the force screw. For the sake of convenience in
expression, we now call the direction of the cerdwd$ that is given byK “vertical
upwards,” and the directions perpendicular to it “horiagthiso it is now clear that all
horizontal lines that cut the central axis are nakd. For points of the central axis, the
moment then indeed lies in it.

If we now choose a poirh outside of the central axis at a distamacéom it and
make the base poif of this perpendicular be the reference point then theent atA
is:

M'=M-aK ,
if one hasa = OA.
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- aK is horizontal, and indeed point to the left, when orek$ofromO to A; the
magnitude of this supplement &. Thus, M’
will deviate from the vertical to the left or right —
but always perpendicular t@ - according to
whether M points upwards to downwards — i.e.,
whether it is positive or negative.

If we measure the angle by which M’ H
deviates from the normal to the null planeAab ' /
the left as being positive then, when one includes |
the sign, one has: Fig. 82
aK

a
tana = —.
p
If one then removes the poiAtfrom the central axis then the direction of theoagged
null plane is increasingly steep; far= « one will havea = 77/ 2. We also already know
that the planes that are parallel to the centrallzev® infinitely distant null points.

One also sees from this that the horizontal nodéldicut the central axis.

Furthermore, one sees that the null system admytdvaist around the central axis;
i.e., if one displaces the entire system along &m¢ral axis or rotates about it then it goes

into itself.
Now, how do the conjugate lines relate to each other?

Let g be chosen such that = OA s its shortest distance from the central axis.

The conjugate ling)' of the previous section must then lie in the null plémet
belongs toA.

Above all,g will then cut the lineOA — let B be its point of intersection — and since
one shall have:

K =g+7

—this putsq ing, T ing - and K, as well asq, is perpendicular t®A, one must then
also have thaf' is perpendicular t®A:

The two conjugate lines, together with the central ahiss cut the same linkOB
perpendicularly.

Let OB be set equal td: It will be
positive when it coincides in direction
with OA, and otherwise, it is negative.

Now, the normal to the null plane At
deviates from the vertical by an angle
for which one has:

a

a
tana = —
p

: - a is defined to be positive when the
Fig. 83 deviation in the directiona is seen as
pointing to the left — and as a result, the
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null line g’ deviates by an angle @2 - a.
On the other handj lies in the null plane dB. If one thus has:

tanb:E

p

— for positive and negative— theng deviates from the vertical by/ 2 —Sto the right.
Along with the lineg, now leta and 77/ 2 — 3 be given — i.e.a andb — so from the
previous formulas one computes distabha® the conjugate ling', including the signs,
from:
b=ptang
and its inclinatiorvz/ 2 —a from:

tana =

S|

If the two conjugate curves are perpendicular to eaddr dllen one speaks ofa@rce
cross (Kraftkreuz), and one must have taimtanfS=1; i.e.:

ab=p?.

One easily recognizes from these formulas that tné limes are conjugate to
themselves. One must then hawe g, and it then follows thad = b.

One sees that the null system depends only upon thalcaxis and the parameter
but not on the magnitude &f

132. The null system as a linear complex. If we translate our problem into the
language of vector calculus then it reads: One shalfrdete all possible vectorg, T

anda, b such that:

a, b are the vectors from the reference pdinto the pointsA (B, resp.) of the two
conjugate lines.

One solves the equations for the Pliicker vectors (pperlix |1, 2)§ and aq of
one line:

_ 1
aqzl\ﬁ—br} 1)

One then only has that the inner product vanisesne must have:

(K-TF)M —br)=0
or.



V. Statics of rigid bodies (theory) 21

KM =7 M +K [br .

=

If we set:

=
I

rig,

where/7 is a unit vector in the second line, then it follawat:
r=_ KM 0
7 M +K vy

This result shows the older one: One can, in genelnahse the one line of action —
i.e., its Plucker vectorg and@ — arbitrarily; the other line and the magnitudes of the
forcesq andt are uniquely determined (from equations (1) and (2)).

As exceptions, we mention only the cases:

1. g =0-ie,K =7, butag =M —br #0, such thai = .

2. r =, SO one also hag = . This comes about when the denominator in (2)
vanishes; i.e.:

7IM +K by =0. (1)

One easily sees that (I) is now actually the equatiothe null line. Then, from the
commutation theorem (see Appendix I, 6) the left-hadd ef (1) is equal to:

70M —bK) =770M",

where M’ means the moment vector for the pdnt

M’ is, however, the moment relative to the second &ne, equation (I) says that
this shall vanish. This was, however, the charatiepsoperty of the null line.

If we let T represent the second Plucker vedfn_or, to abbreviate, then (1) reads:

IM+KIE=0,
or, in perpendicular components:

/7xMx+/7yMy+/72Mz+CxKx+CyKy+Csz:0. (’)

That is, however, the most general linear homogenequatien that can be given
between the six Pliicker coordinatgs, ...,c,. One now calls any manifold of lines
— there areo” lines in space, in all (see Appendix Il, 2) — that is givgm homogeneous
equation between the six Plicker coordinatesmplex. If the equation is linear then
one will be speaking of lanear complex.

Our considerations shothat a system of null lines and a linear complex are identical
concepts.

If one makes the direction of the central axis ihajiven by K be thez-axis then,
from (I'), one has:
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pn,+c,=0. "

If ais the shortest distance from the null line to thetred axis, a, the angle that it
subtends with the central axis then one has cosa; Tis perpendicular t@a, has the
magnitudea, and defines an angle(77/ 2 —a) with thez-axis, so one has =+ a sin q,
and thus, from (), one has:

pcosatasina=0,

tana =+ _p. (r

a

The sign is always given by that mfa and tana are always positive, by definition.
From the formulas (1), (2), and (I) of this sectiong aan easily obtain all of the
previous results. This may be left to the reader.

Problem 62: Show that the tetrahedron that is definethéytwo conjugate forces and g has a
volume that is independent of the choice of line of acti@ne confers Appendix Il, 1).

133. Resolving the exceptional cases of no. 128. Decomposition of a force system
into six lines. We showed in no. 128 that equilibrium is insured, in génetaen the
moments relative to six lines vanish. However, frown tesults of the previous section

that implies the existence of six equations ¥orand K of the form (1), namely:
M, +nM, +7M, +cK +c)K +¢"K, =0 ¢ =1,2, ..., 6).

From this, one can now, in fact, always conclude withvanishing o and M when
the determinant of six rows and six columns:

@ @ @
N y e G

70 a0 o

IS non-zero.

However, if it zero then the above six equations cay well come about — i.e., the
six moments vanish, or else equilibrium would not reign

What does the vanishing of the determinant now mean? {Tdaes not vanish
identically follows from the example that was givamp. 118.)

There is then a force system for which the momegitgive to the six lines vanish;
i.e., these lines define six lines of a null system.

From the vanishing of the moments for six lines, one can conclude that equilibrium
prevails when and only when these six lines do no belong to a null system.

From our considerations, there then follows the pugetymetrical theorem:

One can always lay a linear complex through five lines, but not six, in general.

Thus, to five lines, one can always determine a six¢hsoch that the aforementioned
determinant vanishes, but for six arbitrary lines the detemt does not vanish.
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One can give the vanishing of the determinant yet anothmesning. If the
determinant is null then the system of equations:

>1VA, =0,
2104, =0,

D> c¥A,=0
also has a non-zero solution.
If we interpretd, as the forces that lie along the six lines:

FYAV = k
then our equations read:
2.k =0,
>.bk =0

(since one indeed has" (A, = 7”b, A, = - bk, ), ie., the forcesk, bring about

equilibrium since their sum, as well as the sum eirtmoments, vanishes.

One can then lay six forces that are not all zero and bring about equilibrium along
six lines when and only when the six lines belong to a null system (M6bius).

However, when the six lines do not belong to a null system, one can decompose an
arbitrary force system along them; i.e., reduce it to six forces that lie along the lines.

One then needs only to solve the linear equations:

VA=K,
STAV =-M

and that can be done, since the determinant of théiaeefs of the left-hand side does
not vanish.
This theorem finds its application in the theory pditgal frameworks.

134. History and literature. The theorems and concepts that were presented here
originate with Mobius, for the most part, who was anstandingly good geometer,
mechanician, and astronomer from the start of thetdenth Century. His statics is still
very much worth reading. Yet another approach to stdtom this era must be
mentioned, which likewise placed the geometrical viewpomty much in the
foreground: that of Minding. Later, the geometers wememoccupied with the complex
theory. There is also a special theory of forcewsrthat was worked out in detail: Let
the names of Plicker, Klein, and Ball (Theory of Swe German by Budde) be
mentioned. One often summarizes the theories thag pue forth in 88 26 and 27, along
with their extensions, under the name of the “geometrprces;” the outstanding work
of Study “Geometrie der Dynamen” begins on this basis. odgnthe elementary
textbooks, let us mention: Foppl, Technische Mechanik, Bdliterding, Geometrie
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der Krafte, Marcolongo-Timerding, Theoretische MechaBit, I. One finds a purely
analytical presentation in Heuns Kinematik. (Later, wil run into the same things
again in the kinematics of rigid bodies; see 8§ 46, no. 2@3textbook that especially
emphasizes the geometric side of mechanics is thath&fllSTheorie der Bewegung und
der Krafte. Let the textbook of Webster: “The dynanutparticles and of rigid, elastic,
and fluid bodies” also be pointed out. Naturally, ors® dinds a presentation of null
systems and associated things in the great works on meghsunit as Appell: Traité de
mécanique (3 vols.) and Routh: A Treatise on AnalytiBtdtics (2 vols.). As an
overview reference, one can confer article 2 of volutwe (Mechanik) of the
Enzyklopedie der mathematische Wissenschaften: Timgrdi Geometrische
Grundlegung der Mechanik eines starren Korpers.



