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§ 1.  Introduction. 
 

 Rankine published (*) a theorem on the equilibrium of forces in a polyhedral rod 
frame, which said that a system of external forces that act upon the nodes of such a rod 
framework will be in equilibrium when the forces are proportional to the areas of the 
faces of a polyhedron whose edges lie in planes that are drawn through a fixed point O 
and perpendicular to the rods of the frame, and are directed perpendicularly to those 
planes.  The stresses in the latter rods will then be proportional to the triangular areas that 
project the polyhedral edges from O and are perpendicular to the rods in question. 
 Clerk Maxwell next sought to relate that theorem to the reciprocal planar figures of 
graphical statics by means of the polar system of the sphere (** ), when he regarded a 
planar rod framework as the projection of a corresponding spatial rod framework.  Since 
one must impose the restriction on the external forces into this that they must all go 
through a point – namely, the center of the sphere – which must be moved to infinity, the 
verification of that promising thought was not achieved in the desired degree of 
generality.  Maxwell thus treated the problem of reciprocal force diagram later in a piece-
wise analytical way, in which he replaced the sphere with a paraboloid of rotation (*** ).  
On the other hand, Cremona appealed to the null system in order to establish the theory of 
reciprocal figures in graphical statics with its proper synthetic elegance (**** ). 
 Granted, the principle that the spatial structure whose projection is considered to be a 
planar rod framework can be assigned a concrete meaning as a spatial rod framework 
stayed more or less in the background of the last two papers.  These original thoughts of 
Maxwell, as well as his subtle search to make Rankine’s theorem subordinate to it by 
means of the polar system of the sphere, has a certain charm to it that makes taking up 

                                                
 (*) See: Rankine, “Principle of the equilibrium of polyhedral frames,” Phil. Mag. (4) 27 (1864), pp. 
92.  The theorem was published without proof.  
 (** ) See: Clerk Maxwell, “On reciprocal figures and diagrams of forces,” ibidem, pp. 250.  
Furthermore: Clerk Maxwell, “On the application of the theory of reciprocal polar figures to the 
construction of diagrams of forces,” Engineer 24 (1867), pp. 402.  
 (*** ) See: Clerk Maxwell, “On reciprocal figures, frames and diagrams of forces,” Transactions of the 
Royal Society of Edinburgh 26 (1870), pp. 1.  Unfortunately, this extremely significant treatise does not 
seem to be sufficiently well-known, which is very regrettable in relation to the Culmann’s polemic 
regarding Maxwell in the Foreword (pp. x) of the 2nd ed. of Culmann’s Graphische Statik. 
 (**** ) See: Cremona, “Le figure reciproche nella statica grafica,” Milano, 1872.  
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that search again seem to be all the more justified as the resolution of various open 
problems of paramount importance that the theory of reciprocal force diagrams still hopes 
to establish at this time. 
 When seen from this viewpoint, it will be shown in the present article in the synthetic 
way that the polar system of the sphere, and in fact, any second-order surface of rotation 
will fulfill the condition in the same way as the null system, in such a way that rod 
frameworks and force frameworks can generally be considered to be the projection of 
reciprocal polyhedral structures.  The proof comes about with the aid of the method of 
reciprocal projection – a type of projection whose presentation already seems to be 
justified, insofar as the surface locus projection (*) that was previously introduced by Fr. 
Neumann for crystallographic purposes proves to be a special case of the stated 
projection method.  Furthermore, the planar rod framework will related to the spatial rod 
framework, and the connection between Rankine’s theorem and the reciprocal planar 
figures of graphical statics will be made clear.  The following simple consideration will 
define the starting point for this: 
 If one regards a planar system of n forces that is found to be in equilibrium as the 
orthogonal parallel projection of a spatial system of n forces then the latter will not 
necessarily be likewise in equilibrium.  It is only requisite that it can be reduced to a 
single force (a single force-couple, resp.) as a resultant that is perpendicular to the plane 
of projection.  However, one can also add the resultant with the opposite direction to the 
spatial system, and the planar system of n forces in equilibrium will then be represented 
as the projection of a spatial system of n + 1 forces in equilibrium, one of which is 
perpendicular to the plane of projection. 
 
 

§ 2.  The reciprocal projection. 
 

 The foregoing problem is connected with the theory of the trilinear affinity of planar 
systems in the broader sense. 
 Three planar figures have a trilinear affinity when they can be exhibited as the 
projections of one and the same spatial figure.  One can now apply a manner of 
projection in place of the usual kind of projection that we call reciprocal projection and 
would like to define as follows: 
 We imagine that a spatial polar system has been given and determine the projection of 
each straight line L of the object to be projected in such a way that we draw, not the line 
L itself, but the line L that is conjugate to it in the polar system, from the center of 

projection O to a plane of projection and make it intersect the plane of projection.  Under 
this kind of projection, a planar surface of the object will project to a point that is 
obtained when one draws a projecting ray from O to the pole of the surface and makes it 
intersect the plane of projection.  The object-points possess no direct projections. 
 If one allows these reciprocal projections, along with the usual projections, then of 
the three planar figures that represent the projections of one and the same spatial figure, 
either all three of them will always be equivalent or two of them will always be 
equivalent, while the third one will be inequivalent. 

                                                
 (*) See Fr. Neumann, Beiträge zur Krystallonomie,” Berlin and Poznan, 1823.  
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 Two inequivalent projections can also be regarded as the images (in the usual sense) 
of two reciprocal spatial figures. 
 The reciprocal manner of projection simplifies essentially when one gives the center 
of projection O a special position in regard to the polar system that the projection process 
is based upon.  Indeed, in what follows, we would like to always couple the concept of 
reciprocal projection with the assumption that the center of projection O lies at the 
center of the polar system. 
 Thus, if one has any straight line L and lays the reciprocally-projected plane from O 
to its conjugate L then that plane will be identical with the diametral plane that is 

conjugate to the direction L.  Moreover, if one has a planar surface and draws the 
reciprocally-projected ray from the pole of O then it will represent the diameter that is 
conjugate to the position of plane.  We thus have the following definition: 
 
 1. The reciprocal projection of a straight line is obtained when one determines the 
diametral plane that conjugate to its direction (as the reciprocally-projected plane) and 
makes it intersect the plane of projection. 
 The reciprocal projection of a planar surface is obtained when one determines the 
diameter that is conjugate to its position (as the reciprocally-projected ray) and makes it 
intersect the plane of projection. 
 
 This definition immediately yields the following theorem as the fundamental property 
of reciprocal projections: 
 
 2. The reciprocal projections of parallel lines fall upon the same line.  The 
reciprocal projections of parallel planes fall upon the same point. 
 
 Furthermore, if one has a number of straight lines that lie in the same plane or are 
parallel to it then their conjugate diameters will all go through the diameter that is 
conjugate to that plane.  The theorem follows from this that: 
 
 3. The reciprocal projections of straight lines that lie in the same plane or are 
parallel to the same plane all intersect at a point that represents the reciprocal projection 
of that plane. 
 
 On the other hand, if one has several planes that go through the same straight line or 
are parallel to it then their conjugate diameters will all lie in the diametral plane that is 
conjugate to that straight line.  It will then follow that: 
 
 4. The reciprocal projections of all planar surfaces that go through the same axis or 
are parallel to that axis lie along a straight line that represents the reciprocal projection 
of that axis. 
 
 If one takes the polar system that is at the basis of the projection process to be the 
polar system of a sphere then one will obtain a special case of reciprocal projection that 
behaves similarly with respect to the general case as orthogonal projection does with 
respect to skew parallel projection, and which proves to be identical with a process of 
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projection that Fr. Neumann already defined and exhibited for the purposes of 
crystallography; for that reason, we would like to refer to this special case briefly as 
Neumann projection in the sequel.  Namely, since any diametral plane is perpendicular to 
the line-direction that is conjugate to it in the polar system of the plane, and any diameter 
is perpendicular to the plane position that it conjugate to it that will specialize our 
definition (Theorem 1) above for the polar system of the sphere to the following theorem, 
which coincides with Neumann’s definition: 
 
 5. Neumann’s projection of a straight line is obtained when one lays a plane 
through the center of projection O that is perpendicular to the line and makes it intersect 
the plane of projection. 
 The Neumann projection of a planar surface is obtained when one draws a ray 
through the center of projection O that is perpendicular to the surface and makes it 
intersect the plane of projection. 
 
 Neumann called the projection of a surface its surface location, and the projection of 
an edge direction – or “zone axis” – the corresponding zone line, which is a terminology 
that we would also like to carry over to the general reciprocal projection.  The simplicity 
by which the Neumann method of projection gives one a picture of the zone connection 
of the surfaces of a crystal is demanded by Theorem 4 above, which would read, in 
Neumann’s terminology: The surface locations of all surfaces that belong to the same 
zone will lie along a straight line, namely, the zone line in question. 
 
 

§ 3. 
 

Relationship between orthogonal projection, reciprocal projection relative to a 
second-order surface of rotation, and reciprocal projection relative to a null system. 

 
 If one simultaneously draws the Neumann projection l and the orthogonal parallel 

projection l of a straight line L onto the same plane of projection P then, from a known 

theorem, since l represents the trace of plane that is perpendicular to L, l must be 

perpendicular to l.  For this, one requires a special relationship between the Neumann 

projection and the orthogonal parallel projection of a polyhedral structure onto the same 
plane of projection.  It is illustrated in more detail in Fig. 1, which represents the 
Neumann projection (dashed line) and, at the same time, the orthogonal parallel 
projection (plain line) of a polyhedron (*): 
 

                                                
 (*) The projected polyhedron is the iso-angular, semi-regular polyhedron whose 26 faces consist of 6 
regular octangles (hexahedral faces), 8 regular hexangles (octahedral faces), and 12 squares (garnet faces − 
Granatoëderflächen).  The plane of projection is parallel to a hexahedral face, while the center of 
projection O is taken along the perpendicular to the plane of projection that goes through the center of the 
polyhedron.  The surface locations of the hexahedral, octahedral, garnet faces are indicated by h, o, g, resp.  
The surfaces that are perpendicular to the plane projection project orthogonally as straight lines; the 
associated surface locations (viz., two points h and two point g) lie at infinity. 
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 Any straight line in one figure of projection corresponds to a line in the other one that 
is perpendicular to it, and indeed, in such a way that all lines of the one figure that meet 
at a point will correspond to just as many lines in the other figure that define a closed 
polygon, and conversely. 
 
(In Fig. 1, this arrangement is drawn in such a way that the vertices of the one figure will 
lie completely inside the corresponding polygon in the other figure, and conversely.) 
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Figure 1.  
 

 However, this relationship does not restrict to just Neumann projection, but is also 
valid in the same way for reciprocal projection relative to the polar system of any second-
order surface of rotation when the plane of projection is aligned perpendicular to the axis 
of rotation.  This is easily obtained from the following consideration: 
 One imagines the polar system of a second-order surface of rotation whose center is 
O and whose axis of rotation is perpendicular to the plane of projection P, and then the 

polar system of a sphere whose center O′ lies on the axis of rotation.  If one then draws 
the reciprocal projections of any spatial object relative to both systems then the rays and 
planes that are reciprocally-projected from O and O′ will define a sheaf of diameters and 
diametral planes relative to the polar systems that are conjugate to those planes and line-
directions; as a result, these two sheaves will be collinear with each other.  Now, in the 
polar system of the surface of rotation, as in that of the sphere, any diametral plane that 
goes through the axis of rotation will be perpendicular to its conjugate diameter.  Any 
such diametral plane will then be conjugate to the same line-direction in both systems.  
The two collinear sheaves O and O′ will thus have the corresponding pencils of planes 
that cut the rotational axis in common, and will thus be found to be in perspective 
position (*).  It follows from the omnidirectional symmetry that its perspective 
intersection must be perpendicular to the axis of rotation, and thus, parallel to the plane of 
projection.  If one displaces the sphere parallel to itself, while one lets its center O′ move 
along the axis of rotation, then one will alter the perspective intersection.  However, since 
it remains consistently parallel, it must coincide with the plane of projection P for some 

                                                
 (*) Cf., H. Schroeter, “Theorie der Oberflächen zweiter Ordnung,” § 45.  



Hauck – On the reciprocal figures of graphical statics. 6 

particular position of O′.  If we fix that position then the perspective intersection will, 
moreover, represent the reciprocal projection onto the plane of projection, relative to the 
polar system of the sphere, as well as the polar system of the surface of rotation.  
Conversely, each figure that is drawn in the plane of projection – e.g., like the dashed part 
of Fig. 1 – can be regarded as the reciprocal projection of a spatial object relative to the 
one surface, as well as the other one.  A theorem that is proved for Neumann projection is 
therefore true in the same way for the reciprocal projection relative to the surface of 
rotation. 
 For the special case of the paraboloid of rotation, the center or the center of 
projection O will lie at infinity.  The reciprocally-projected rays and planes will then be 
parallel to the axis of rotation or orthogonal to the plane of projection. 
 
 A null system can be related to the polar system of a sphere whose center is chosen 
along the central axis of the null system in the same way that it is related to the polar 
system of a second-order surface of rotation.  Since the center O of the null system lies at 
infinity along the direction of the central axis, the reciprocally-projected rays and planes 
will define a sheaf of parallels to the central axis.  It will have a collinear relationship to 
the reciprocally-projected sheaf O′ of the polar system of the sphere.  The diametral 
planes that are conjugate to the directions that are perpendicular to the central and go 
through the central axis are, however, not perpendicular in the null system now, as they 
are for the sphere, but parallel to the directions considered and will thus be perpendicular 
to the corresponding diametral planes of the sphere.  The pencil of planes that it defines 
can thus be made to coincide with the corresponding pencil of planes of the sphere when 
one rotates one of the two sheaves around the central axes through an angle of 90o.  The 
two sheaves will then lie perspectively, so the perspective intersection that is 
perpendicular to the central axis will represent the reciprocal projection of the object, as 
far as its form is concerned, relative to the null system, as well as the polar system of the 
sphere.  Moreover, since the reciprocal projection relative to the sphere can be identified 
with the one relative to a second-order surface of rotation, it will then follow that (*): 
 
 The reciprocal projection of an arbitrary spatial object relative to a second-order 
surface rotation onto a plane of projection that is perpendicular to the axis of rotation 
can always be considered to be the reciprocal projection relative to a null system that is 
coaxial with the surface of rotation that has been rotated through 90o. 
 
 It is further true that: If one has the reciprocal projections of a straight line onto a 
plane that is perpendicular the axis relative to a second-order surface of rotation, as well 
as relative to a null system, then the orthogonal parallel projection of the line onto that 
plane of projection will be perpendicular to the former and parallel to the latter. 
 
 
 

                                                
 (*) The relationship between the null system and the polar system of a paraboloid of rotation proves to 
be of especial interest.  On this, confer my paper: “Ueber die Beziehung des Nullsystems und linearen 
Stahlencomplexes zum Polarsystem des Rotationsparaboloids,” in the Zeit. f. Math. u. Phys., 31 Jahrg., pp. 
362. 
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§ 4.  The reciprocal figures of graphical statics. 
 
 Two plane figures, one of which is a planar rod framework (*), while the other one 
represents its associated force framework, have precisely the same mutual relationship as 
far as their form is concerned as the ones that were discussed in the previous paragraphs 
and were illustrated by Fig. 1. 
 We can thus state the following theorems: 
 
 A given rod framework and its associated force framework can be regarded as the 
orthogonal projection and Neumann projection of one and the same polyhedral structure 
onto the same plane of projection, 
 
or also: 
 
 A planar rod framework and its associated force framework can be regarded as the 
projections of two reciprocal polyhedral structures in the polar system of a sphere or a 
second-order surface of rotation onto the same plane of rotation, which is perpendicular 
to the axis of rotation, and indeed the rod framework can be regarded as the orthogonal 
parallel projection, while the force framework can be regarded as the central projection 
from the center of the polar system. 
 
 One is now confronted with the deeper problem of basing these theorems, which were 
found in an empirical way, in statics directly. 
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§ 5.  Theorem on the force pyramid. 
 

 If one has a statically-determinate, planar, rod framework with k nodes (cf., Fig. 2.a) 
in the plane then the external forces that act upon the nodes and the stresses that act in the 

                                                
 (*) Here and in what follows, one might understand the term rod framework to mean the actual rod 
framework, along with all of the lines of action of the external forces that are applied to its nodes.  



Hauck – On the reciprocal figures of graphical statics. 8 

rods must fulfill the condition that the forces that come together at each individual node 
must be equilibrium.  In relation to the stresses, one must then observe that each of them 
acts upon the two modes at the ends of the rod in question in the opposite sense (*).  The 
rod framework then represents a combination of k pencils of forces that are each in 
equilibrium. 
 If one now considers the planar rod framework to be the orthogonal parallel 
projection of a corresponding spatial rod framework (** ) then each of the aforementioned 
pencils of forces will represent the projection of a spatial sheaf of forces.  Since the 
pencil of projections should be in equilibrium, the corresponding spatial sheaf of forces 
must possess a resultant that is perpendicular to the plane of projection.  Accordingly, the 
spatial rod framework represents a combination of k sheaves of forces, each of which 
possesses a resultant that is perpendicular to the plane of projection, or also – if the 
resultant is direction oppositely to the sheaf – a combination of k sheaves of forces, each 
of which is in equilibrium, and each of which contains force that is perpendicular to the 
plane of projection. 
 We must then (corresponding to the former picture) seek the condition that any sheaf 
of forces must satisfy in order for its resultant V to be perpendicular to the plane of 
projection P. 

 O 
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Figure 3.  
 
 Let the node considered be K (cf., Fig. 3), and let the forces that act upon it be Q1, Q2, 
…, Qn . 
 We imagine a sphere with radius r that is described around an arbitrary point O on 
space and consider its polar system.  Let h be the perpendicular that is dropped from O to 
the plane of projection P; the pole P of the plane of projection P, which we would like 

to refer to casually as the pole, lies along it. 
 We now displace the sheaf Q1 Q2 … parallel to itself to the pole P, at which position, 
the lines of action might be denoted by 1Q , 2Q , …, and carry out the examination in 

question in that position. 
 To that end, if we construct the polar figure of the sheaf then since 1Q , 2Q , … go 

through P, the polars q1, q2, … must lie in the plane P.  q1, q2, … then likewise represent 

                                                
 (*) For example, if rod 1 in Fig. 2        .a suffers a tension then it will, conversely exert two forces s1 and 

1
s′  on the nodes I and II whose common line of action is the line 1 and which have equal intensities in the 

opposite directions to each other. 
 (** ) It should be thought of as an open, non-rigid, polyhedral structure.  
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the Neumann projections of 1Q , 2Q , … onto the plane P.  According to the properties of 

the polar system of the sphere, two conjugate lines iQ  and qi must intersect 

perpendicularly.  The plane that is laid through O and qi is perpendicular to the iQ , just as 

the plane that is laid through O and iQ  is perpendicular to qi .  The product of the 

distances of both lines from O is equal to the square of the radius of the sphere.  If one 
then denotes the distances from the lines 1Q , 2Q , … to O by e1, e2, …, resp., and the 

distances from the lines q1, q2, … to O by e1, e2, …, resp., then one will have: 

  
(1)       ei ei = r2 . 

 
 If one fixes a particular sequence to the n forces 1Q , 2Q , … and then makes each of 

the polars q1, q2, … intersect the next one in that sequence then one will obtain a closed 

n-angle in the plane P whose sides might also be denoted q1, q2, … according to their 

lengths.  This n-angle defines the base surface of a pyramid whose vertex is O and whose 
faces are perpendicular to 1Q , 2Q , …, resp.  In the faces, e1, e2, … represent the altitudes 

that belong to the base lines q1, q2, …, resp.  If one then denotes the areas of the faces by 

∆1, ∆2, … then one will get: 
(2)       2 ∆i = qi ei . 

 
 Now, should the n forces 1Q , 2Q , … possess a resultant that is perpendicular to the 

plane P, so it is in the direction PO, then the sum of their rotational moments about an 

arbitrary point of the that line − e.g., around O – must be equal to zero.  If we represent 
the rotational moments by their instantaneous axes then they must combine into a closed 
polygon.  However, since the instantaneous axes are perpendicular to the planes that the 
forces 1Q , 2Q , … project onto from O, they will be parallel to the polars q1, q2, …, resp.  

The n-angle q1 q2… can thus be regarded as the axis polygon.  That is: If the moments of 

1Q , 2Q , … relative to the point O are proportional to the segments q1 q2… then the 

resultant of 1Q , 2Q , … is perpendicular to P. 

 (The direct converse of the conclusion is valid only for a sheaf of three forces.  For 
more than three forces, the converse must read: If the resultant is perpendicular to P and 

the n – 2 sides of the n-angles q1 q2… represent the moments of the corresponding forces 

relative to O then this will also be true for the remaining two sides.) 
 If we accept that q1, q2, … are instantaneous values then if we understand Q1, Q2, …, 

resp., to be likewise the intensities of the forces then: 
 
 Qi ei = qi , 

or [due to (1)]: 
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 Qi 
2r

ie
 = qi , 

or 

 Qi = 
2

i

r
iq e , 

or [due to (2)]: 

(3) Qi = 
2

2

r
∆i . 

 
 If α1, α2, … are the angles that Q1, Q2, …, resp., make with the perpendiculars to the 
plane of projection then the base inclination angles of the corresponding side faces of the 
pyramid will also be equal to α1, α2, …, resp.  If one then denotes the area of the base 
surface of the pyramid by Π then the resultant of the forces  1Q , 2Q , … will be: 

 
 V = Q1 cos α1 + Q2 cos α2 + … 
or [due to (3)]: 

  = 
2

2

r
( ∆1 cos α1 + ∆2 cos α2 + …), 

or: 

(4) V = 
2

2

r
Π. 

 
 (3) and (4) yield the theorem: 
 
 The forces Q1, Q2, …, and their resultant V are proportional to the areas of the 
pyramid faces that are perpendicular to them. 
 
 Since q1, q2, … have corresponding senses as sides of the axis polygon, the forces 1Q , 

2Q , …, resp., must also be directed in the same senses as the surfaces ∆1, ∆2, …, resp.; 

that is: Either all of them point from the inside of the pyramid to outside or all of them 
point from outside to inside, while the resultant V is directed in the opposite sense to the 
base surface Π.  For the case in which the base edge, and accordingly also the side faces 
of the pyramid, intersect themselves, the area of the base surface must be determined in 
the Möbius sense.  If one then counts the base surface as having the positive sense under 
traversing its perimeter for any base edge with an external side and an inner side, then it 
must also be determined what one means by external side and inner side of the side face 
that has the base edges in question, and accordingly also which direction of the arrow that 
is perpendicular to the side face points from inside to outside or from outside to inside. 
 We shall now go on to the planar pencil of forces q1 q2 …, which is defined by the 
orthogonal parallel projection of the sheaf Q1Q2…, resp.  The lines of action of q1, q2, … 
are (from § 3) perpendicular to q1, q2, …, resp.  Their magnitudes are equal to Q1 sin α1, 

Q2 sin α2, …, resp.  If one then observes that in the right triangle that is defined by ei and 

h one has sin αi = h / ei then one will get: 
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 qi = Qi ⋅⋅⋅⋅ sin αi , 
 
or [due to (3)]: 
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(5) qi = 
2 i

h

r
q . 

 
That is: The forces q1, q2, … are proportional to the segments q1, q2, …, resp. that are 

perpendicular to them.  The n-angle q1 q2 … can thus be regarded as the force polygon 

for the plane pencil of forces. 
 If we add the force V with the opposite arrow direction to the sheaf of forces Q1, Q, 
… then we will obtain a sheaf that is found to be in equilibrium, relative to which, we can 
formulate the total result of the foregoing argument as follows: 
 
 If the lines of action of the n + 1 forces of a sheaf of forces are individually 
perpendicular to the n + 1 faces of an n-sided pyramid with arrow directions that either 
all point from inside to outside or all point from outside to inside, and if the magnitudes 
of the forces are proportional to the areas of the faces that they are perpendicular to then 
the sheaf of forces will be in equilibrium. 
 
 If one projects the sheaf orthogonal to the base surface of the pyramid then the plane 
pencil of forces that the projection produces will likewise be in equilibrium, and the 
magnitudes of its n forces will be proportional to the n base edges of the pyramid that are 
perpendicular to them. 
 
We shall refer to this theorem (for whose converse, the same thing will be true that was 
stated above for the polygon of instantaneous axes) as the force pyramid theorem (*). 
 Finally, let the following be recalled in relation to Fig. 3: The polygon q1 q2 … 

represents the Neumann projection of the spatial sheaf of forces in its original position, 
as well as in its parallel-displaced one.  However, only the sheaf 1 2Q Q … that was 

parallel displaced to P will correspond to it as its direct polar figure.  If we were to 
construct the polar figure to the sheaf of forces in its original position Q1 Q2 … then it 
would have a different form and position Q1 Q2 …  The individual polars, however, 

                                                
 (*) The first part of our theorem can be easily generalized to an arbitrary polyhedron, as one deduces 
with no difficulty when one decomposes the polyhedron into pyramids from a point O, or even more 
simply in a hydrodynamic way when one thinks of the polyhedron as being immersed in a fluid of constant 
pressure.  (Cf., Poisson, Traité de Mécanique, 2nd. ed., t. V, nos. 577 and 580.  Furthermore: Maxwell, in 
the third paper that was cited in the beginning of this article, pp. 23.) 
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would lie in the same projecting planes as q1, q2 , …  Therefore, the polygon q1 q2 … will 

represent the projection of the polar figure Q1 Q2 … relative to O as its center of 

projection. 
 
 

§ 6.  The rod framework. 
 

 We now consider a statically-determinate, planar, rod framework (cf., Fig. 2.a) 
whose k nodes are denoted by I, II, …, and whose 2k – 3 rods are denoted by 1, 2, …  
The external forces p1, p2, … might act upon the nodes; let the stresses in the rods be s1, 
s2, … 
 We fix the rod framework as the orthogonal parallel projection of a corresponding 
spatial rod framework at whose nodes the external forces P1, P2, … act and in whose rods 
the stress forces S1, S2, … act.  Let p1, p2, … and s1, s2, … be the projection of P1, P2, … 
and S1, S2, …, resp. 
 The spatial rod framework represents a combination of k sheaves of forces, each of 
which possesses a resultant that is perpendicular to the plane of projection P.  We 

perform precisely the same operation on these k sheaves of forces that we did in the 
previous paragraph with the sheaf Q1, Q2, …  We then construct the Neumann projections 
for all of the sheaves relative to the center of projection O and the plane of projection P.  

We then obtain a figure of projection (see Fig. 2.b) that likewise exhibits the central 
projection of the polar figure of the spatial rod framework relative to the sphere O and 
which possesses the following properties: 
 Any line p1, p2, …, s1, s2, … in the planar rod framework corresponds to a well-
defined line q1, q2 , … , s1, s2 , …, resp., in the Neumann projection figure that is 

perpendicular to it.  (In Figures 2.a and 2.b, the lines s1, s2, … and s1, s2 , … are denoted 

by just the relevant numerals 1, 2, …)  All lines that lie in the same planar surface in the 
spatial rod framework correspond to lines in the projection figure that meet at a point – 
viz., the associated surface location.  (Such associated surfaces and surface locations are 
denoted in Figs. 2.a and 2.b with Latin and German symbols for the same letters a, b, c, 
… and a, b, c, …)  All lines that meet at a node in the rod framework correspond to lines 

in the projection figure that define a closed polygon. 
 Now, according to § 5, each of these latter polygons can be regarded as the direct 
polar figure of the corresponding sheaf of forces in the spatial rod framework that has 
been parallel-displaced to P, and as a result, as force polygons for the planar sheaves of 
forces, which represent the orthogonal projection of that sheaf.  The condition that was 
posed at the beginning of § 5 – that the forces that come together at each node of the 
planar rod framework must be in equilibrium – is fulfilled.  Since the proportionality 
coefficient h / r2 in equation (5) of § 5 is independent of the position of the node in 
question, all of the force polygons refer to the same unit of force.  They can then 
collectively be regarded as the force framework that belongs to the planar rod framework 
and must be regarded as such as long as the rod framework is statically-determinate. 
 This point then demands a more detailed examination. 
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 Each stress si belongs to two pencils of forces at once.  It must then correspond to the 
same segment si in the polygons of the force framework that belong to these pencils; that 

is: The two polygons must have the side si in common.  In order for this to be the case, 

the spatial rod framework, as whose projection the planar rod framework is regarded, 
must satisfy certain conditions that we have still not encountered up to now.  We consider 
matter more closely for the stress in rod 1! (Cf., Fig. 2.a, b, and c.) 
 The stress in rod 1 belongs to the two pencils of forces at the nodes I and II; for I, let 
it be denoted by s1 and for II, let it be denoted by 1s′ .  The node I corresponds to the 

triangle abg in the force framework (see Fig. 2.b and c), the force s1 corresponds to the 

segment bg = s1.  If one now goes over to node II then the segment 1′s  that belongs to the 

force 1s′  in the polygon that corresponds to this node will fall, eo ipso, on the line bg.  

One endpoint will also coincide with g.  (Then, since rod 3 in the spatial rod framework 

must lie in the same plane with 1 and 2, the Neumann projection of 3 must go through the 
point of intersection of the projections of 1 and 2.)  By contrast, the other endpoint must 
not necessarily coincide with b – at least, under the assumptions that we have made up to 

now for the spatial rod framework; moreover, perhaps the tetrangle gb′c′h′ (Fig. 2.c), 

where gb′ = 1′s , would be able to appear as the polygon for the node II.  Should both 1s′  

and s1 yield the same value 1′s  = s1 then b′ would have to coincide with b, or: p2 must go 

through the point of intersection of the lines p1 and 1.  This is, however, possible only 

when the line of action of P2 lies in the plane of P1 and the rod 1 in the spatial rod 
framework. 
 If one consider the remaining nodes in the same way then that will generally yield the 
condition that the individual rods and lines of action of the external forces in the spatial 
rod framework must enclose nothing but planar surfaces.  We can formulate the condition 
for the external forces briefly as: The lines of action of any two successive forces must lie 
in a plane such that the lines of action define a closed, spatial polygon, in general 
(individual vertices of which can indeed lie at infinity, moreover). 
 According to the polar relationship, it follows from this immediately that the external 
forces in the force framework must also appear to form a closed polygon one after the 
other. 
 If external forces do not act at all of the nodes then the band rods (Gurtungsstäbe) 
with two external forces that are associated with the free nodes in the spatial rod 
framework, between which they lie, must lie in a plane.  (If no external forces were 
applied to, e.g., nodes V and VI in Fig. 2.a then the rods 2, 6, 9 would have to lie in a 
plane with P1 and P4.) 
 In the example of Fig. 2.a, the nodes are found only on the bands.  Therefore, a node 
can very well also fall inside of the rod framework.  Now, no external force can act upon 
it, since that would contradict the condition above. 
 The spatial rod framework, as whose orthogonal projection a planar rod framework is 
regarded, is then to regarded in such a way that even more planar surfaces can be 
attached to the band rods whose external boundary lines will be defined by the lines of 
action of any two external forces, such that the total figure will be presented as a simply-
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connected (possibly extended to infinity), polyhedral, surface piece whose boundary is 
defined by the lines of action of the external forces. 
 If we subject the spatial rod framework to the stated conditions then its Neumann 
projection will, moreover, satisfy all of the requirements that are placed upon the force 
framework. 
 Therefore, the empirically-presented theorems in § 4 are proved, as long as the term 
polyhedral structure that was used there is understood in the sense of the foregoing 
discussion. 
 
 

§ 7.  Special case of the funicular polygon. 
 

 One can consider the lines of the planar rod framework to be the lines of action of a 
distributed system of forces in equilibrium that acts in the plane.  When any two equal 
and opposite stresses have been removed, the external forces will then represent a system 
in equilibrium, in their own right. 
 Conversely, the equilibrium of a planar system of forces can always be easily verified 
with the help of an arbitrary rod framework that is woven into the forces and its 
constructed force framework.  As a result, the relevant construction can be simplified 
essentially by specializing the rod framework. 
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 In Fig. 3.a, the planar rod framework is so arranged that the rods define nothing but 
triangles, so the rod framework is a rigid one.  However, this is not necessarily required.  
If we imagine, e.g., that the two triangles h and i lie in the same plane in the spatial rod 
framework then the Neumann projections of the four sides 3, 4, 7, 6 of the planar 
tetrangle h + i, and therefore the four lines 3, 4, 7, 6 of the force framework (Fig. 2.b) 
must intersect in the same point (viz., the surface position of the tetrangle); this has the 
consequence that the line 5, which represents the stress in rod 5, would be zero.  This rod 
can thus be omitted as completely irrelevant.  The remaining inner rods can be likewise 
eliminated: Namely, if all of the five of the rods in the spatial rod framework (Fig. 2.a) 
that define a triangle fall in a plane then the six lines 1, 2, 3, 6, 8, 9 in Fig. 2.b that 
correspond to the six bands must intersect at a point, namely, the surface position.  The 
stresses in the inner rods 3, 5, 7 will be zero, so those rods can be omitted.  This case is 
illustrated by Figs. 4.a. and 4.b.  (The system of external forces, as well as the triangle II 
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III VI, agree with Fig. 2.a, while the three remaining triangles are altered in such a way 
that one lets the nodes I, IV, V move along the lines of action of their forces until the 
triangle in the spatial rod framework coincides with the triangle in the plane of the 
triangle II III VI.  The position of the surface location h in Fig. 4.b is, accordingly, 

identical with the point h in Fig. 2.b.) 

 One recognizes that the planar rod framework now represents nothing but a funicular 
polygon that is woven into the system of forces in such a way that its sides are 
perpendicular to the rays that are drawn from the pole h to the vertices of the force 

polygon.  A funicular polygon that is woven into a planar force system can therefore 
always be regarded as the orthogonal projection of a planar section of the spatial force 
system whose projection figures as the planar force system. 
 This immediately yields the theorem that when a planar force system is woven into 
two funicular polygons, the points of intersection of any two corresponding funicular 
polygon sides will lie along a straight line that is to be regarded as the projection of the 
line of intersection of the two planes of the funicular polygons, and will accordingly be 
perpendicular to the connecting line of two associated surface locations in the force 
framework. 
 With that, our considerations have arrived at the point where they encounter the 
analogous investigations of Cremona. 
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 One can scarcely draw the conclusion from the theory that was just presented that it is 
recommended in practical constructions for one to draw the lines of the force framework 
as being no longer parallel, but perpendicular, to the corresponding lines of the rod 
framework.  Indeed, for the perpendicular position, the detailed relationships between the 
rod framework and the force framework emerge quite clearly, as a rule.  For example, the 
sketch of the general configuration of the force framework is then also produced most 
simply from the perpendicular position when one sketches a relevant frame figure into 
the rod framework directly, such that surface location, where possible, falls inside of all 
the faces of the rod framework in question, while its connecting lines intersect the 
relevant separation lines of the faces perpendicularly, as is illustrated by Fig. 5 (or also 
Fig. 1) in more detail.  From the purely theoretical standpoint, the perpendicular position 
also involves all of the same calculations as the parallel position, since the former 
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corresponds to the theory of the composition of rotational moments, while the latter 
corresponds to the theory of the composition of isolated forces.  Nevertheless, for 
practical constructions, one would do well to keep to the tried and tested schema that 
Cremona introduced in his splendid paper. 
 
 

§ 8.  The forces on the spatial rod framework.  Rankine’s theorem. 
 

 It still remains for us to subject the forces that act upon the spatial rod framework to a 
brief consideration. 
 It follows immediately from the discussion in § 5 (viz., the force pyramid theorem) 
that the external forces P1, P2, … that act upon the nodes of the spatial rod framework 
and the stresses S1, S2, … that act inside of its rods can be represented by the areas of the 
triangles (pyramid side faces) that project to the corresponding lines of the force 
framework (Fig. 2.b) from the point O. 
 The forces are next found to be in equilibrium in the spatial rod framework.  
However, equilibrium can be exhibited in such a way that one adds a force Vi at each 
node whose line of action is perpendicular to the plane of projection and whose 
magnitude is equal to the area of the polygon in the force framework (viz., the pyramid 
base face) that corresponds to the node. 
 If one combines the two external forces Pi and Vi − which act upon each node, 
moreover –into a resultant Ri then the totality of all forces Ri will define a general spatial 
system in equilibrium (as long as no two successive forces intersect, in general).  
However, since the projections of the forces R1, R2, … are identical with the projection 
p1, p2, … of the forces P1, P2, …, the planar equilibrium system that acts upon the planar 
rod framework will be represented as the projection of a general equilibrium system that 
acts upon the spatial rod framework. 
 We are then confronted with the direct problem of calculating an originally given 
spatial rod framework whose external forces R1, R2, … define a complete, general, 
spatial, equilibrium system, while in the rest of the rod framework the conditions of § 6 
might prevail, so that can happen, conversely, in the following way: 
 One first decomposes every external force Ri into two components, one of which Vi is 
perpendicular to an arbitrarily-chosen plane of projection P, while the other one Pi 

intersects the component Pk of the next force Rk in the sequence.  To that end, one lays a 
plane through each external force Ri that is perpendicular to the plane P, labels the edges 

of intersection of any two successive planes, and draws a spatial polygon whose edges lie 
along the edges of intersection, and whose sides go through the point of application of the 
external forces.  One then decomposes each external force Ri into two components, − Vi 
which is perpendicular to the plane of projection, and Pi , which lies along the polygonal 
side that goes through its point of application.  Therefore, the same relationships are now 
exhibited that were assumed at the beginning of this paragraph.  The calculations can thus 
proceed in the manner described above, moreover, when one exhibits the Neumann 
projection of the spatial rod framework from an arbitrary center of projection O onto the 
plane P, and then obtains the stresses S1, S2, … in the individual rods as the areas of the 

relevant projected triangles. 
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 Our force pyramid theorem can also be applied to spatial rod frameworks whose 
arrangement does not satisfy the conditions of § 6 – e.g., rod frameworks whose rods 
define the edges of a closed polyhedron.  For example, it easily yields the proof of 
Rankine’s theorem, as well as the determination of its converse (which has not be 
noticed, up to now, to my knowledge): 
 Namely, if one is given a spatial rod framework whose rods define the edges of a 
closed polyhedron of arbitrary shape, and at all of whose nodes external forces act, then 
one would have to apply the force pyramid theorem to the sheaf of forces at the 
individual nodes by constructing a pyramid at each node whose vertex always lies at the 
same point O, whose side faces are perpendicular to the associated rods, and whose base 
face is perpendicular to the external force that acts at the node, and indeed in such a way 
that two such pyramids that correspond to two nodes that are connected by a rod will 
always have side faces that are perpendicular to that rod in common, such that the 
associated two base faces will then lie together with a common base edge.  All of the base 
faces will then be connected by their edges, and as a result, they will collectively define 
the outer surface of a polyhedron, just as Rankine’s theorem states. 
 However, one easily recognizes that this can be done only when the external forces 
satisfy certain conditions.  Three faces would then go through the edge that is common to 
two base faces, namely, the two base faces and the side face that is common to the two 
pyramids.  As a result, the three lines that are perpendicular to these faces – namely, the 
two external forces and the rod that connects their nodes – must lie in a plane that is 
perpendicular to the common base edge.  This then gives: 
 
 A Rankine force polyhedron is constructible only when any two external forces whose 
nodes are connected by a rod lie in a plane. 
 
 In the special case in which the rods of the framework define nothing but triangles, 
this condition is specialized by the fact that the external forces must all go through a 
point. 
 The difficulty that is rooted in this restriction would be bypassed by us for open 
spatial rod frameworks by the decomposition of the external forces Ri into the 
components Vi and Pi .  This sheds light upon the fact that our Fig. 2.b, with its projecting 
pyramids, as were considered in the beginning of this paragraph, represents nothing but a 
Rankine polyhedral structure, except that the force polyhedron is not closed, but 
possesses an open boundary in the polygon abcdef, and its faces all lie in the same plane. 

 
 With that, the theory of reciprocal figures in graphical statics is related to Rankine’s 
theorem in the desired way. 
 
 

§ 9.  Practical example.  (Cf., Fig. 6). 
 

 The manner by which the spatial rod framework, whose projection is regarded as a 
planar rod framework, can be constructed in reality, and by which one can make use of 
the special properties of the associated force framework, might ultimately be illustrated 
by a simple practical example.  It involves an English roof truss (cf., Fig. 6, below), to 
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whose upper nodes I, II, …, IX a system of parallel forces are applied in a perpendicular 
direction.  The forces p2, p3, …, p8, which represent a uniform load, are equally large.  
Each of the two support reactions p1 and p9 is equal to one-half the sum of p2, p3, …, p8 . 
 We carry out the construction in the ground plan and the elevation, where the ground 
plane will serve as the plane of projection that was denoted by P, from now on.  Let the 

axis of projection be A. 
 The given rod framework N will be considered to be the ground plan of a spatial rod 
framework whose external forces lie in planes that are perpendicular to the axis of 
projection A and which are thought of as decomposed into two components: − Vi , which 
is perpendicular to the ground plane and Pi , which is parallel to the ground plane.  The 
components Pi project to their true sizes in the ground plane N as pi, while they project to 
points in the elevation N′.  The components Vi no longer come under consideration for the 
calculation of the planar rod framework, and are thus no longer indicated in Fig. 6. 
 We next think of the elevation N′ as being known.  The force framework N that 

belongs to N is then obtained as the Neumann projection of the spatial rod framework (N, 
N′ ) onto the ground plane.  We choose the center of projection O for the Neumann 
projection onto the elevation plane.  In order to find the Neumann projection of any line 
then – e.g., the rod (1, 1′) – we lay a plane through O that is perpendicular to (1, 1′).  Its 
traces must be perpendicular to the projections 1 and 1′, respectively, and the elevation 
trace must go through O.  If one then draws Oa1 perpendicular to 1′ up to the axis of 

projection A and draws a perpendicular to 1 through a1 then that will represent the 

Neumann projection of (1, 1′); it is likewise denoted by 1.  One does the same thing with 
all of the lines of rod framework.  The Neumann projections p1, p2, … of the external 

forces P1, P2, … will then fall along the axis of projection if their reciprocal projecting 
planes coincide with the elevation plane.  In order to get the projections of the rods 5, 9, 
13, 17, 21 that are perpendicular to the axis of projection, one can employ a side view 
plane, which is, however, not indicated specially in Fig. 6. 
 The three figures N, N′, N now represent three inequivalent trilinear figures, in the 

sense of § 2.  The third of them is always determined completely by two of them.  As we 
just saw, N can be ascertained from N and N′, or also conversely, N′, from N and N.  

However, if one recalls the properties of the spatial rod framework (see § 6) then the 
latter construction will allow one to know only a part of N, and indeed just the external 

force polygon.  Thus, if only N is given originally then one proceed as follows: One first 
draws only the external force polygon of the figure N, then constructs the line N′ that 

corresponds to the two existing lines of N and N, finishes N′ with their help, and finally 

determines the still-missing lines of N from the ones that correspond to N and N′. 
 In our special example, one would accordingly begin by ordering the given external 
forces of the force polygon p1p2… p9 along the axis of projection.  If one then draws rays 

from O to its vertices and (once the point I′ is established arbitrarily along the altitude of 
projection through I) draws I′ II′ perpendicular to the next ray Oa1 up to the altitude of 

projection through II, then draws II′ III ′ perpendicular to the next ray Oa4 up to the 

altitude of projection III, etc., then one will obtain the individual nodes that are connected 
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by rods in the same way as the ground plan.  One thus remarks that, from the discussion 
in § 6, the bands 2, 6, 10, 16, 20, 24 of the spatial rod framework, at whose intermediate 
nodes no external forces act, must lie in the same plane with P1 and P9, which has the 
consequence that these rods project onto a straight line in the elevation plane.  If N′ is 
obtained in that way then the construction of N will ultimately result in the way that was 

discussed above (*). 
 The following remarks about that might find a place here: 
 Since the bands of N′ are perpendicular to the rays Oa1, Oa2, … that are drawn from 

O to the vertices of the force polygon p1 p2… p9 , resp., and since the nodes of N′ lie 

along the lines of action of p1, p2, …, the belt (Gurtung) can be regarded as a funicular 
polygon (for the point O as its pole) that is woven into the external forces p1, p2, …  This 
yields that: If the fixed external forces P1, P2, … are perpendicular to the elevation plane 
then the belt of the rod framework in the elevation N′ will always be identical to a 
funicular polygon that is woven into the forces p1, p2, …, which is a form that the given 
rod framework might also take.  In our special case of a uniform load, the rod framework 
accordingly projects onto the elevation as the carrier of a parabola. 
 If the external forces p1, p2, … are not mutually parallel – as in our example – but 
define a general, planar, equilibrium system then one would proceed to ascertain the 
elevation figure N′ as follows: One would once more begin by drawing the external force 
polygon p1 p2 … in the ground plane, make its individual sides intersect the axis of 

projection, and draw rays from O to the points of intersection.  If one then determines the 
point of intersection of the lines of action of any two successive forces pi, pk, draws the 
projection altitude through that point of intersection that is perpendicular to A, and draws 
perpendiculars to the corresponding rays of the pencil O from one altitude of projection 
to another (with an arbitrary choice of starting point) then one will get the lines of action 
of the external forces in the elevation, onto which, one finally projection the nodes of the 
rod framework from the ground plan upwards. 
 This likewise yields the general remark that when the planar rod framework is given 
(including the external forces that act upon its nodes), the form of the associated spatial 
rod framework will depend upon just the position of the center of projection O.  The form 
of the spatial rod framework is determined completely from the form of the planar rod 
framework and the position of the center of projection O. 
 Finally, let the following remark be made in regard to the special properties of the 
force framework in the example that was treated above: 
 The vertices t, u, v (cf., Fig. 6) in the force framework N lie along a straight line, and 

indeed, along the extension of line 3.  Moreover, the line 4 goes through the vertex w.  

This is required by the facts that in the spatial rod framework the faces (t, t′), (u, u′), (v, 
v′) that correspond to the stated vertices are parallel to the rod (3, 3′), and that the face (w, 
w′) is parallel to the rod (4, 4′).  It is logical (cf., § 2, Theorem 4) that the associated 
surface location in the Neumann projection must lie on the relevant zone line.  The first 
of the aforementioned parallelisms is immediately obvious.  The other three are proved 

                                                
 (*) The compressions are indicated by double lines in figure N, and likewise for the tension rods in 

figures N and N′. 
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by the fact that the sides 13 and 13′ of the triangles u and u′, resp., will be cut by the lines 
that are drawn through opposite vertices IV and IV′, resp., parallel to 3 and 3′, resp., in 
the same ratio 1 : 1.  Likewise, the parallels to the sides 9 and 9′ that are drawn in the 
triangles v and v′ from III and III′, resp., to 3 and 3′, resp., will both intersect in the ratio 
1 : 2.  Finally, the sides 9 and 9′ of the triangles w and w′, resp., will both be cut by the 
lines that are drawn from the opposite vertices parallel to 4 and 4′, resp., in the ratio – 1 : 
4.  In the elevation, in order to prove this, one remarks that the ordinates of the points IV′, 
III ′, II′, I′ of the parabola on the horizontal that is drawn through V′ (viz., the vertex 
tangent) as the abscissa axis relate like 1 : 4 : 9 : 16. 
 
 Berlin, April 1886. 
 
 
 

__________________ 
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