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On the reciprocal figures of graphical statics

(By Guido Hauck

Translated by D. H. Delphenich

8 1. Introduction.

Rankinepublished () a theorem on the equilibrium of forces inpalyhedral rod
frameg which said that a system of external forces thaupon the nodes of such a rod
framework will be in equilibrium when the forces ar@mportional to the areas of the
faces of a polyhedron whose edges lie in planes thadraren through a fixed poir®
and perpendicular to the rods of the frame, and aretddeperpendicularly to those
planes. The stresses in the latter rods will theprbportional to the triangular areas that
project the polyhedral edges frainand are perpendicular to the rods in question.

Clerk Maxwellnext sought to relate that theorem to the reciprocalapléigures of
graphical statics by means of thelar system of the sphefe), when he regarded a
planar rod framework as the projection of a correspandpatial rod framework. Since
one must impose the restriction on the external foine this that they must all go
through a point — namely, the center of the sphere ehwhust be moved to infinity, the
verification of that promising thought was not achievedthe desired degree of
generality. Maxwellthus treated the problem of reciprocal force diagraer lata piece-
wise analytical way, in which he replaced the sphétle aparaboloid of rotation(” ).

On the other handiremonaappealed to theull systemin order to establish the theory of
reciprocal figures in graphical statics with its propertbketic elegance ( ).

Granted, the principle that the spatial structure wippsgction is considered to be a
planar rod frameworlkan be assigned a concrete meaning as a spatial rod framework
stayed more or less in the background of the last tworpagéese original thoughts of
Maxwell as well as his subtle seartth make Rankine’s theorem subordinate to it by
means of the polar system of the sphées a certain charm to it that makes taking up

()  See:Rankine “Principle of the equilibrium of polyhedral frames,” PiWag. (4)27 (1864), pp.
92. The theorem was published without proof.

(") See: Clerk Maxwell, “On reciprocal figures and diagrams of forcestidem pp. 250.
Furthermore: Clerk Maxwel] “On the application of the theory of reciprocal pofegures to the
construction of diagrams of forces,” Engin2dr(1867), pp. 402.

(") See:Clerk Maxwel| “On reciprocal figures, frames and diagrams of fofcBsansactions of the
Royal Society of EdinburgR6 (1870), pp. 1. Unfortunately, this extremely significereatise does not
seem to be sufficiently well-known, which is verggrettable in relation to th€ulmann’s polemic
regardingVlaxwellin the Foreword (pp. X) of thd%ed. of Culmann’sraphische Statik

ok ok

() See:Cremona“Le figure reciproche nella statica grafica,” Miar872.
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that search again seem to be all the more justifieth@gesolution of various open
problems of paramount importance that the theory oprecal force diagrams still hopes
to establish at this time.

When seen from this viewpoint, it will be shown in thegamt article in the synthetic
way that thepolar system of the spher@nd in factany second-order surface of rotation
will fulfill the condition in the same way as thelhgystem, in such a way that rod
frameworks and force frameworks cganerally be considered to be the projection of
reciprocal polyhedral structures. The proof comes abouit tvé aid of the method of
reciprocal projection— a type of projection whose presentation already sdentse
justified, insofar as theurface locus projectiofl) that was previously introduced By.
Neumannfor crystallographic purposes proves to be a special odsthe stated
projection method. Furthermore, the planar rod framkwall related to the spatial rod
framework, and the connection between Rankine’s theaednthe reciprocal planar
figures of graphical statics will be made clear. Thewang simple consideration will
define the starting point for this:

If one regards a planar systemroforces that is found to be in equilibrium as the
orthogonal parallel projection of a spatial systernadbrces then the latter will not
necessarily be likewise in equilibrium. It is only resie that it can be reduced to a
single force (a single force-couple, resp.) as a r@stuthat is perpendicular to the plane
of projection. However, one can also add the resultéh the opposite direction to the
spatial system, and the planar system &drces in equilibrium will then be represented
as the projection of a spatial systemrof 1 forces in equilibrium, one of which is
perpendicular to the plane of projection.

8 2. The reciprocal projection.

The foregoing problem is connected with the theory etrilinear affinity of planar
systems in the broader sense.

Three planar figures have a trilinear affinity whemythcan be exhibited as the
projections of one and the same spatial figur€@ne can now apply a manner of
projection in place of the usual kind of projection tivat callreciprocal projectionand
would like to define as follows:

We imagine that a spatial polar system has been gnémletermine the projection of
each straight line. of the object to be projected in such a way that wevdnat the line
L itself, but the lineg that is conjugate to it in the polar system, from thetereof

projectionO to a plane of projection and make it intersect thaeolaf projection. Under
this kind of projection, glanar surfaceof the object will project to a point that is
obtained when one draws a projecting ray floro the pole of the surface and makes it
intersect the plane of projection. The object-poitsspss no direct projections.

If one allows these reciprocal projections, alonghwvifte usual projections, then of
the three planar figures that represent the projectbsie and the same spatial figure,
either all three of them will always be equivalent taio of them will always be
equivalent, while the third one will be inequivalent.

() SeeFr. NeumannBeitrage zur KrystallonomjeBerlin and Poznan, 1823.
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Two inequivalent projections can also be regarded asrtageis (in the usual sense)
of two reciprocal spatial figures.

The reciprocal manner of projection simplifies essdiytwhen one gives the center
of projectionO a special position in regard to the polar system thaprihyection process
is based upon. Indeed, in what follows, we would lik@leays couple the concept of
reciprocal projectionwith the assumption that theenter of projection O lies at the
center of the polar system

Thus, if one has any straight liheand lays theeciprocally-projected planérom O
to its conjugatef then that plane will be identical with tlidametral planethat is

conjugateto the directionL. Moreover, if one has a planar surface and draws the
reciprocally-projected rayfrom the pole ofO then it will represent thdiameter that is
conjugateto the position of plane. We thus have the followingnitedn:

1. The reciprocal projection of a straight line is obtained when one deterrtiiees
diametral plane that conjugate to its direction (as the reciprocally-ptepk plane) and
makes it intersect the plane of projection.

The reciprocal projection of a planar surface is obtained when one deterthies
diameter that is conjugate to its position (as the reciprocally-prajecg) and makes it
intersect the plane of projection.

This definition immediately yields the following theorasthe fundamental property
of reciprocal projections:

2. The reciprocal projections of parallel lines fall upon the same Ilin€he
reciprocal projections of parallel planes fall upon the same point.

Furthermore, if one has a number of straight lines lie in the same plane or are
parallel to it then their conjugate diameters will gd through the diameter that is
conjugate to that plane. The theorem follows from thas: th

3. The reciprocal projections of straight lines that lie in the same planare
parallel to the same plane all intersect at a point that representetijgrocal projection
of that plane.

On the other hand, if one has several planes th#étrgagh the same straight line or
are parallel to it then their conjugate diameters allllie in the diametral plane that is
conjugate to that straight line. It will then follownath

4. The reciprocal projections of all planar surfaces that go through the seiseor
are parallel to that axis lie along a straight line that represents dugprocal projection
of that axis.

If one takes the polar system that is at the bdsiheoprojection process to bee
polar system of a sphetben one will obtain a special case of reciprocajgution that
behaves similarly with respect to the general case thegumal projection does with
respect to skew parallel projection, and which provesetadentical with a process of
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projection that Fr. Neumann already defined and exhibited for the purposes of
crystallography; for that reason, we would like to referthis special case briefly as
Neumann projectiom the sequel. Namely, since any diametral plane [sepeticular to
the line-direction that is conjugate to it in the polgtem of the plane, and any diameter
is perpendicular to the plane position that it conjugatet that will specialize our
definition (Theorem 1) above for the polar system efgphere to the following theorem,
which coincides witiNeumann’definition:

5. Neumann’s projection of a straight line is obtained when one lays a plane
through the center of projection O that is perpendicular to the line and nitakésrsect
the plane of projection.

The Neumann projection of a planar surface is obtained when one draws a ray
through the center of projection O that is perpendicular to the surface andsniak
intersect the plane of projection.

Neumanrcalled the projection of a surface #isrface locationand the projection of
an edge direction — or “zone axis” — the correspondornge line which is a terminology
that we would also like to carry over to the generaipr@cal projection. The simplicity
by which the Neumann method of projection gives one tung@of the zone connection
of the surfaces of a crystal is demanded by Theorem 4 abdueh would read, in
Neumann’s terminologyThe surface locations of all surfaces that belong to the same
zone will lie along a straight line, namely, the zone line in question

§ 3.

Relationship between orthogonal projection, reciprocal projedbn relative to a
second-order surface of rotation, and reciprocal projection elative to a null system.

If one simultaneously draws the Neumann projectiamd the orthogonal parallel
projection| of a straight line. onto the same plane of projectighthen, from a known
theorem, sincd represents the trace of plane that is perpendidoldr, | must be
perpendicular td. For this, one requires a special relationship betwbe Neumann

projection and the orthogonal parallel projection godyhedral structure onto the same
plane of projection. It is illustrated in more déta Fig. 1, which represents the
Neumann projection (dashed line) and, at the same tihee,otthogonal parallel
projection (plain line) of a polyhedron){

() The projected polyhedron is the iso-angular, semi-requdyhedron whose 26 faces consist of 6
regular octangles (hexahedral faces), 8 regular hexargiedhédral faces), and 12 squares (garnet faces
Granatoéderflachen The plane of projection is parallel to a hexahedak, while the center of
projectionO is taken along the perpendicular to the plane of piojethat goes through the center of the
polyhedron. The surface locations of the hexahedralhedral, garnet faces are indicated)by, g, resp.
The surfaces that are perpendicular to the plane pajeproject orthogonally as straight lines; the
associated surface locations (viz., two poingnd two poing) lie at infinity.
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Any straight line in one figure of projection corresponds to a line irother one that
is perpendicular to it, and indeed, in such a way that all lines obtigefigure that meet
at a point will correspond to just as many lines in the other figure defihe a closed
polygon, and conversely.

(In Fig. 1, this arrangement is drawn in such a waytti@twertices of the one figure will
lie completely inside the corresponding polygon in therdibare, and conversely.)

Figure 1.

However, this relationship does not restrict to Neumann projection, but is also
valid in the same way for reciprocal projection rekatio the polar system of any second-
order surface of rotation when the plane of projecisoaigned perpendicular to the axis
of rotation. This is easily obtained from the followitwnsideration:

One imagines the polar system of a second-order susfacgation whose center is
O and whose axis of rotation is perpendicular to theeplaf projectiort]d, and then the

polar system of a sphere whose ceelies on the axis of rotation. If one then draws
the reciprocal projections of any spatial object redatty both systems then the rays and
planes that are reciprocally-projected frarandO'" will define a sheaf of diameters and
diametral planes relative to the polar systemsdhatconjugate to those planes and line-
directions; as a result, these two sheaves willdenear with each other. Now, in the
polar system of the surface of rotation, as in thahefsphere, any diametral plane that
goes through the axis of rotation will be perpendiculatgaonjugate diameter. Any
such diametral plane will then be conjugate to the siameedirection in both systems.
The two collinear sheaved andO' will thus have the corresponding pencils of planes
that cut the rotational axis in common, and will thusftwend to be in perspective
position (). It follows from the omnidirectional symmetry théds perspective
intersection must be perpendicular to the axis of ratatad thus, parallel to the plane of
projection. If one displaces the sphere parallelgelfitwhile one lets its cent€ move
along the axis of rotation, then one will alter thespective intersection. However, since
it remains consistently parallel, it must coincide with plane of projectiofd for some

() Cf., H. Schroeter“Theorie der Oberflachen zweiter Ordnung,” § 45.
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particular position of0'. If we fix that position then the perspective intetgm will,
moreover, represent the reciprocal projection ontgtaee of projection, relative to the
polar system of the sphere, as well as the polaremsysif the surface of rotation.
Conversely, each figure that is drawn in the plane @eption — e.g., like the dashed part
of Fig. 1 — can be regarded as the reciprocal projecti@nsphtial object relative to the
one surface, as well as the other one. A theoremstipaoved for Neumann projection is
therefore true in the same way for the reciprocalgutajn relative to the surface of
rotation.

For the special case of thgaraboloid of rotation the center or the center of
projectionO will lie at infinity. The reciprocally-projected raymd planes will then be
parallel to the axis of rotation erthogonal to the plane of projection.

A null systemcan be related to the polar system of a sphere wlederds chosen
along the central axis of the null system in the sarag that it is related to the polar
system of a second-order surface of rotation. SinceahierO of the null system lies at
infinity along the direction of the central axis, tleeiprocally-projected rays and planes
will define a sheaf of parallels to the central aXiswill have a collinear relationship to
the reciprocally-projected she&f of the polar system of the sphere. The diametral
planes that are conjugate to the directions that angepeéicular to the central and go
through the central axis are, however, not perpendiculdre null system now, as they
are for the sphere, bparallel to the directions considered and will thus be perperalicul
to the corresponding diametral planes of the sph&he pencil of planes that it defines
can thus be made to coincide with the corresponding peingianes of the sphere when
one rotates one of the two sheaves around the ceréstlarough an angle of @0The
two sheaves will then lie perspectively, so the perspecintersection that is
perpendicular to the central axis will represent tlogprecal projection of the object, as
far as its form is concerned, relative to the null aystas well as the polar system of the
sphere. Moreover, since the reciprocal projectioniveldd the sphere can be identified
with the one relative to a second-order surface of rataitivill then follow that ():

The reciprocal projection of an arbitrary spatial object relativeasecond-order
surface rotation onto a plane of projection that is perpendicular to the axistation
can always be considered to be the reciprocal projection relativentdlssystem that is
coaxial with the surface of rotation that has been rotated through 90

It is further true that: If one has the reciprocadjections of a straight line onto a
plane that is perpendicular the axis relative to arstooder surface of rotation, as well
as relative to a null system, then tn¢hogonal parallel projectiorof the line onto that
plane of projection will be perpendicular to the forraad parallel to the latter.

() The relationship between the null system and the syitem of garaboloid of rotationproves to
be of especial interest. On this, confer my paper: “Uelie Beziehung des Nullsystems und linearen
Stahlencomplexes zum Polarsystem des Rotationspaiddlio the Zeit. f. Math. u. Phys., 31 Jahrg., pp.
362.
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8 4. The reciprocal figures of graphical statics.

Two plane figures, one of which isptanar rod framework(’), while the other one
represents its associatimce frameworkhave precisely the same mutual relationship as
far as their form is concerned as the ones that disceissed in the previous paragraphs
and were illustrated by Fig. 1.

We can thus state the following theorems:

A given rod framework and its associated force framework carederded as the
orthogonal projection and Neumann projection of one and the same polyhedral structure
onto the same plane of projectjon

or also:

A planar rod framework and its associated force framework can be redjasi¢he
projections of two reciprocal polyhedral structures in the polatesysof a sphere or a
second-order surface of rotation onto the same plane of rotation, whichpenuicular
to the axis of rotation, and indeed the rod framework can be regarded aghbgonal
parallel projection, while the force framework can be regarded asén¢ral projection
from the center of the polar system.

One is now confronted with the deeper problem of basieggettheorems, which were
found in an empirical wayn statics directly.

P3 P4 ¢
0 p2
b bl
g Pa 51
p1 g b’
4
Pe f 3 a

Figure 2.a Figure 2.b Figure 2.c

§ 5. Theorem on the force pyramid.

If one has a statically-determinate, planar, rod éaork withk nodes (cf., Fig. 2.a)
in the plane then the external forces that act upembdes and the stresses that act in the

() Here and in what follows, one might understand the terd frameworkto mean the actual rod
framework,along with all of the lines of action of the external forttest are applied to its nodes.
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rods must fulfill the condition that the forces tlcaime together at each individual node
must be equilibrium. In relation to the stresses, mast then observe that each of them
acts upon the two modes at the ends of the rod in questitie bpposite sensg.( The
rod framework then represengscombination of k pencils of forces that are each in
equilibrium

If one now considers the planar rod framework to bhe orthogonal parallel
projection of a corresponding spatial rod frameworkthen each of the aforementioned
pencils of forces will represent the projection ofpatgal sheaf of forces. Since the
pencil of projections should be in equilibrium, the cqroesling spatial sheaf of forces
must possess a resultant that is perpendicular tdahe pf projection. Accordingly, the
spatial rod framework represerdascombination of k sheaves of forces, each of which
possesses a resultant that is perpendicular to the plane of projeoticalso — if the
resultant is direction oppositely to the sheaf — aldoation ofk sheaves of forcegach
of which is in equilibrium, and each of which contains force that ipgreticular to the
plane of projection.

We must then (corresponding to the former picture) Hekondition that any sheaf
of forces must satisfy in order for its resultantto be perpendicular to the plane of

projection’3.

€1

p 2 QlIME
h i
: l14| '—QS: 5:14>O<‘/qus
‘B . q2 l11: k 02

Figure 3.

Let the node considered Ke(cf., Fig. 3), and let the forces that act upon iQeeQo,
ey Qn .

We imagine a sphere with radiughat is described around an arbitrary pdnon
space and consider its polar system. HLbé the perpendicular that is dropped frorto
the plane of projectiof; the poleP of the plane of projectiof, which we would like

to refer to casually as tipole, lies along it.
We now displace the she@i Q. ... parallel to itself to the pole, at which position,

the lines of action might be denoted @ (32, ..., and carry out the examination in

guestion in that position.
To that end, if we construct the polar figure of theadtthen sinceQ,, Q,, ... go

throughP, the polarsyi, g2, ... must lie in the plan8. g1, g2, ... then likewise represent

() For example, if rod 1 in Fig. 2 .a suffeteiasionthen it will, conversely exert two forcesand
s on the nodes | and Il whose common line of actidhesline 1 and which have equal intensitieshe

opposite directions to each other.
(") It should be thought of as an opann-rigid, polyhedral structure.
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the Neumann projections @, Q,, ... onto the plang3. According to the properties of
the polar system of the sphere, two conjugate lifi@s and qi must intersect
perpendicularly. The plane that is laid thro@handg; is perpendicular to th@ , just as

the plane that is laid througB and Q is perpendicular ta; . The product of the

distances of both lines froM is equal to the square of the radius of the sphHrene
then denotes the distances from the li@s Q,, ... to O by ey, &, ..., resp., and the

distances from the lineg, ¢z, ... toO by e, ¢z, ..., resp., then one will have:
1) ge=r°,

If one fixes a particular sequence to thiarcesQ,, Q,, ... and then makes each of
the polarsys, gz, ... intersect the next one in that sequence then oh@btdin a closed
n-angle in the plan& whose sides might also be denotgdgs, ... according to their
lengths. Thisr-angle defines the base surface of a pyramid whosexvisi® and whose
faces are perpendicular @, Q,, ..., resp. Inthe faces,, ¢, ... represent the altitudes

that belong to the base lings q», ..., resp. If one then denotes the areas of the faces

Ay, Dy, ... then one will get:
(2) 2Ai =qie.

Now, should then forcesQ,, Q,, ... possess a resultant that is perpendicular to the
plane3, so it is in the directioO, then the sum of their rotational moments about an

arbitrary point of the that line e.g., around — must be equal to zero. If we represent
the rotational moments by their instantaneous axes hagnnust combine into a closed
polygon. However, since the instantaneous axes arengkcpkar to the planes that the

forces (31, (32, ... project onto fron®, they will be parallel to the polargs, g2, ..., resp.
Then-angleq; g2... can thus be regarded as the axis polygon. That i® ihthments of
Q. Q,, ... relative to the poinD are proportional to the segments ... then the

resultant ofQ,, Q,, ... is perpendicular tg.

(The direct converse of the conclusion is valid dolya sheaf of three forces. For
more than three forces, the converse must reade Ifesultant is perpendicular 9 and
then — 2 sides of the-anglesq: q»... represent the moments of the corresponding forces

relative toO then this will also be true for the remaining two sijles
If we accept thatj;, g2, ... are instantaneous values then if we unders@an@;, ...,

resp., to be likewise the intensities of the forcea:the

Qe =g,
or [due to (1)]:
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Q—=qg,
¢
or
Q= qri E‘ :
or [due to (2)]:
3) Q=2n.

If v, o, ... are the angles th&l, Qo, ..., resp., make with the perpendiculars to the
plane of projection then the base inclination angles@icorresponding side faces of the
pyramid will also be equal to, a», ..., resp. If one then denotes the area of the base

surface of the pyramid 0y then the resultant of the force3, Q,, ... will be:

V =Qicosar +Qxcosa; + ...
or [due to (3)]:
2
g

(Apcosar + Ay cosas + ...),
or:

4 Vv :%n.
r

(3) and (4) yield the theorem:

The forces @ Q-, ..., and their resultant V are proportional to the areas of the
pyramid faces that are perpendicular to them.

Sincequ, g2, ... have corresponding senses as sides of the axis polygoforcesQ,,

Q,, ..., resp., must also be directed in the same sengbe asirfaced, 4, ..., resp.;

that is: Either all of them point from the insidetb& pyramid to outside or all of them
point from outside to inside, while the resultahis directed in the opposite sense to the
base surfac€l. For the case in which the base edge, and accordifggiythe side faces
of the pyramid, intersect themselves, the area ob#se surface must be determined in
the Mo6bius sense. If one then counts the base surfdweverg the positive sense under
traversing its perimeter for any base edge with an eadtside and an inner side, then it
must also be determined what one means by externalrmidm@er side of the side face
that has the base edges in question, and accordinglwhisl direction of the arrow that
is perpendicular to the side face points from insideutside or from outside to inside.

We shall now go on to th@anar pencil of forcesy; ¢ ..., which is defined by the
orthogonal parallel projection of the sh€af)..., resp. The lines of action gf, g, ...
are (from § 3) perpendicular t, q2, ..., resp. Their magnitudes are equaQtosin a;,

Q2 sinay, ..., resp. If one then observes that in the rigangle that is defined by and
h one has sim; = h / ¢;then one will get:
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g =Q Obing,

or [due to (3)]:

- 2ad

rz ' e

L
r’ e

or [due to (3)]:

or:

h
(5) G = r_zqi .

That is: The forces, ¢, ... areproportional to the segments, q2, ..., resp.that are
perpendicular to them Then-angleq: g2 ... can thus be regarded as the force polygon

for the plane pencil of forces.

If we add the forc&/ with the opposite arrow directioto the sheaf of force®, Q,
... then we will obtain a sheaf that is found to bequilibrium, relative to which, we can
formulate the total result of the foregoing argutrenfollows:

If the lines of action of the r 1 forces of a sheaf of forces are individually
perpendicular to the r 1 faces of an n-sided pyramid with arrow directiohatteither
all point from inside to outside or all point froautside to inside, and if the magnitudes
of the forces are proportional to the areas of thees that they are perpendicular to then
the sheaf of forces will be in equilibrium.

If one projects the sheaf orthogonal to the baséase of the pyramid then the plane
pencil of forces that the projection produces Wikewise be in equilibrium, and the
magnitudes of its n forces will be proportionakhe n base edges of the pyramid that are
perpendicular to them.

We shall refer to this theorem (for whose convetise,same thing will be true that was
stated above for the polygon of instantaneous ae#f)dorce pyramid theorerf).

Finally, let the following be recalled in relatiao Fig. 3: The polygon g2 ...
represents the Neumann projection of the spatfsbf forcean its original position
as well as in its parallel-displaced one. Howewmnly the sheafQ Q,... that was
parallel displaced td® will correspond to it as its direct polar figurdf we were to
construct the polar figure to the sheaf of foraes#s original positiorQ; Q. ... then it
would have a different form and positiaty Q> ... The individual polars, however,

() The first part of our theorem can be easily gereedlito an arbitrary polyhedron, as one deduces
with no difficulty when one decomposes the polyhedron pywamids from a poinO, or even more
simply in a hydrodynamic way when one thinks of the patlylon as being immersed in a fluid of constant
pressure. (Cf., Poissoffifaité de Mécanique2™. ed., t. V, nos. 577 and 580. Furthermadrexwell in
the third paper that was cited in the beginning of thislar pp. 23.)
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would lie in the same projecting planesqasqgz, ... Therefore, the polygoin g2 ... will
represent theprojection of the polar figureQ; 9, ... relative toO as its center of
projection.

8 6. The rod framework.

We now consider atatically-determinate, planar, rod framewo(kf., Fig. 2.a)
whosek nodes are denoted by I, Il, ..., and whoke-23 rods are denoted by 1, 2, ...
The external forceps, p2, ... might act upon the nodes; let the stresses indtiie lves;,
We fix the rod framework as the orthogonal parallel gotapn of a corresponding
spatial rod framework at whose nodes the externalddtce,, ... act and in whose rods
the stress forceS,, S, ... act. Letpy, py, ... ands;, S, ... be the projection d?y, P, ...
ands;, S, ..., resp.

The spatial rod framework represents a combinatiok sifeaves of forces, each of
which possesses a resultant that is perpendicularetpldne of projectiond. We

perform precisely the same operation on tHesheaves of forces that we did in the
previous paragraph with the sh€af Q., ... We then construct the Neumann projections
for all of the sheaves relative to the center ofgutapnO and the plane of projectidj.

We then obtain a figure of projection (see Fig. 2.b} tlk@wise exhibits the central
projection of the polar figure of the spatial rod framewrelative to the spher® and
which possesses the following properties:

Any line p1, p2, ..., S, &, ... In the planar rod framework corresponds to a well-
defined lineqs, q2, ... , 81, 52, ..., resp., in the Neumann projection figure that is

perpendicular to it. (In Figures 2.a and 2.b, the Iges, ... andsy, s2, ... are denoted

by just the relevant numerals 1, 2, ...) All lines thatin the same planar surface in the
spatial rod framework correspond to lines in the projectigure that meet at a point —
viz., the associatesurface location (Such associated surfaces and surface locations are
denoted in Figs. 2.a and 2.b with Latin and German symbplhdosame letters, b, c,

... anda, b, ¢, ...) All lines that meet at a node in the rod framdwmrrespond to lines

in the projection figure that define a closed polygon.

Now, according to 8 5, each of these latter polygonsbearegarded as the direct
polar figure of the corresponding sheaf of forces indpatial rod framework that has
been parallel-displaced # and as a resulfs force polygons for the planar sheaves of
forces which represent the orthogonal projection of that fsh@e condition that was
posed at the beginning of 8 5 — that the forces that cogethter at each node of the
planar rod framework must be in equilibrium — is fulfillle Since the proportionality
coefficienth / r? in equation (5) of § 5 is independent of the position ef ribde in
guestion, all of the force polygons refer to the sam@& af force. They can then
collectively be regarded as the force framework théngs to the planar rod framework
and must be regarded as such as long as the rod framevabakically-determinate.

This point then demands a more detailed examination.
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Each stress belongs to two pencils of forces at once. It must terespond to the
same segmermt in the polygons of the force framework that belonghese pencils; that

is: The two polygons must have the siglén common. In order for this to be the case,

the spatial rod framework, as whose projection thegolaod framework is regarded,
must satisfy certain conditions that we have stilleratountered up to now. We consider
matter more closely for the stress in rod 1! (Cfg. Ria, b, and c.)

The stress in rod 1 belongs to the two pencils of ®atehe nodes | and II; for I, let
it be denoted by, and for Il, let it be denoted bg . The node | corresponds to the

triangleabg in the force framework (see Fig. 2.b and c), the fefcerresponds to the
segmenbg =s;. If one now goes over to node Il then the segménhat belongs to the
force s in the polygon that corresponds to this node will fadl,ipsq on the linebg.
One endpoint will also coincide witlh (Then, since rod 3 in the spatial rod framework

must lie in the same plane with 1 and 2, the Neumanegiion of 3 must go through the
point of intersection of the projections of 1 and 2y ddntrast, the other endpoint must
not necessarily coincide with— at least, under the assumptions that we have made up to

now for the spatial rod framework; moreover, perhagpgst#iranglegb’'c’h’ (Fig. 2.c),
wheregb’ = s;, would be able to appear as the polygon for the node lbul&lboths
ands, yield the same value; =s; thenb’ would have to coincide with, or: p, must go
through the point of intersection of the lingsand 1. This is, however, possible only

when theline of action of R lies in the plane of fand the rodl in the spatial rod
framework.

If one consider the remaining nodes in the same waythagnvill generally yield the
condition that the individual rods and lines of actidrihe external forces in the spatial
rod framework must enclose nothing but planar surfaces.ca formulate the condition
for the external forces briefly ashe lines of action ainy two successive forces must lie
in a plane such that the lines of action define a closed, spatial polygon, imabene
(individual vertices of which can indeed lie at infinitgpreover).

According to the polar relationship, it follows frolig immediately that the external
forces in the force framework must also appear to forrtosed polygon one after the
other.

If external forces do not act at all of the nodemntthe band rodsGurtungsstabe
with two external forces that are associated witd ftee nodes in the spatial rod
framework, between which they lie, must lie in a plan@f no external forces were
applied to, e.g., nodes V and VI in Fig. 2.a then the rods 9,would have to lie in a
plane withP; andP,.)

In the example of Fig. 2.a, the nodes are found onlherbands. Therefore, a node
can very well also fall inside of the rod frameworkoviN no external force can act upon
it, since that would contradict the condition above.

The spatial rod framework, as whose orthogonal prioject planar rod framework is
regarded, is then to regarded in such a way that even marar [darfaces can be
attached to the band rods whose external boundary litleseadefined by the lines of
action of any two external forces, such ttieg total figure will be presented as a simply-
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connected (possibly extended to infinity), polyhedral, surface piecesvidmasdary is
defined by the lines of action of the external forces.

If we subject the spatial rod framework to the stateaditions then its Neumann
projection will, moreover, satisfgll of the requirements that are placed upon the force
framework.

Therefore, the empirically-presented theorems in 8§ 4 are pragetbng as the term
polyhedral structurethat was used there is understood in the sense of thgofag
discussion.

8 7. Special case of the funicular polygon.

One can consider the lines of the planar rod framewmbe the lines of action of a
distributed system of forces in equilibrium that aotshe plane. When any two equal
and opposite stresses have been removed, the extened Will then represent a system
in equilibrium, in their own right.

Conversely, the equilibrium of a planar system ofdsrcan always be easily verified
with the help of an arbitrary rod framework that is wovinto the forces and its
constructed force framework. As a result, the releamstruction can be simplified
essentially by specializing the rod framework.

¢

p2 c P3 p2 b 0

b

Pa
p1

a 4

Pe ps
f
Figure 4.a Figure 4.b

In Fig. 3.a, the planar rod framework is so arrangedttigarods define nothing but
triangles, so the rod framework igigid one. However, this is not necessarily required.
If we imagine, e.g., that the two trianglesindi lie in the same plane in tlspatial rod
framework then the Neumann projections of the four siled, 7, 6 of the planar
tetrangleh + i, and therefore the four lines 3, 4, 7, 6 of the forcendwork (Fig. 2.b)
must intersect in the same point (viz., the surfacetipasof the tetrangle); this has the
consequence that the line 5, which represents the stress 5, would be zero. This rod
can thus be omitted as completely irrelevant. The irengainner rods can be likewise
eliminated: Namely, if all of the five of the rods imet spatial rod framework (Fig. 2.a)
that define a triangle fall in a plane then the snedi 1, 2, 3, 6, 8, 9 in Fig. 2.b that
correspond to the six bands must intersect at a pantely, the surface position. The
stresses in the inner rods 3, 5, 7 will be zero, so tloxseaan be omitted. This case is
illustrated by Figs. 4.a. and 4.b. (The system of eatdances, as well as the triangle Il
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Il VI, agree with Fig. 2.a, while the three remainingutigles are altered in such a way
that one lets the nodes I, 1V, V move along the liokaction of their forces until the
triangle in the spatial rod framework coincides with thangle in the plane of the
triangle Il 1l VI. The position of the surface Id@n b in Fig. 4.b is, accordingly,

identical with the poinp in Fig. 2.b.)

One recognizes that the planar rod framework now reptesiothing but &unicular
polygon that is woven into the system of forces in such a wet its sides are
perpendicular to the rays that are drawn from ghé&e § to the vertices of the force

polygon. A funicular polygon that is woven into a planar force system can therefore
always be regarded as the orthogonal projection of a planar section of thaldpatie
system whose projection figures as the planar force system.

This immediately yields the theorem that when a pldowe system is woven into
two funicular polygons, the points of intersection ofy awo corresponding funicular
polygon sides will lie along a straight line that isbe regarded as the projection of the
line of intersection of the two planes of the funicysatygons, and will accordingly be
perpendicular to the connecting line of two associatethse locations in the force
framework.

With that, our considerations have arrived at the tpwoihere they encounter the
analogous investigations 6femona

Figure 5.

One can scarcely draw the conclusion from the thd@tywas just presented that it is
recommended in practical constructions for one to drawinles of the force framework
as being no longeparallel, but perpendicular, to the corresponding lines of thee ro
framework. Indeed, for the perpendicular position, thaildet relationships between the
rod framework and the force framework emerge quite gleasla rule. For example, the
sketch of the general configuration of the force franv&ws then also produced most
simply from the perpendicular position when one sketcheelevant frame figure into
the rod framework directly, such that surface locatwhere possible, falls inside of all
the faces of the rod framework in question, while itsnsxting lines intersect the
relevant separation lines of the faces perpendiculaslyis illustrated by Fig. 5 (or also
Fig. 1) in more detail. From the purely theoretical stamdpthe perpendicular position
also involves all of the same calculations as thellgdrposition, since the former
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corresponds to the theory of the composition of rotatianoments, while the latter
corresponds to the theory of the composition of isdlatorces. Nevertheless, for
practical constructions, one would do well to keep tottlesl and tested schema that
Cremonaintroduced in his splendid paper.

8 8. The forces on the spatial rod framework. Rankine’sieorem.

It still remains for us to subject the forces thatugmn thespatial rod frameworko a
brief consideration.

It follows immediately from the discussion in § 5 (vithe force pyramid theorem
that the external forcelR;, P,, ... that act upon the nodes of thgatial rod framework
and the stresse&3, S, ... that act inside of its rods can be represented bagrdees of the
triangles (pyramid side faces) that project to the corresponding linethefforce
framework (Fig. 2.b) from the point. O

The forces are next found to be in equilibrium in @matial rod framework.
However, equilibrium can be exhibited in such a way treg adds a forc¥; at each
node whose line of action is perpendicular to the plahgrojection and whose
magnitude is equal to the area of the polygon in the fbareework (viz., the pyramid
base face) that corresponds to the node.

If one combines the two external forcBsand V, — which act upon each node,
moreover —into a resulta® then the totality of all forceR will define ageneralspatial
system in equilibrium (as long as no two successiveeforintersect, in general).
However, since the projections of the forédsR,, ... are identical with the projection
P1, P2, ... Of the forced;, Ps, ..., the planar equilibrium system that acts upon thegp
rod framework will be represented as the projection @éreralequilibrium system that
acts upon the spatial rod framework.

We are then confronted with the direct problem of dating an originally given
spatial rod framework whose external forc&s, R,, ... define a complete, general,
spatial, equilibrium system, while in the rest of thd immework the conditions of § 6
might prevail, so that can happen, conversely, irffdhewing way:

One first decomposes every external fdRcanto two components, one of whithis
perpendicular to an arbitrarily-chosen plane of pr@ecd, while the other oné>;

intersects the componeBg of the next forcdx in the sequence. To that end, one lays a
plane through each external folRethat is perpendicular to the plafe labels the edges

of intersection of any two successive planes, and daaspatial polygon whose edges lie
along the edges of intersection, and whose sides gogihttie point of application of the
external forces. One then decomposes each extemsalR; into two components; V
which is perpendicular to the plane of projection, Bndwhich lies along the polygonal
side that goes through its point of application. Tlweefthe same relationships are now
exhibited that were assumed at the beginning of this paragfidphcalculations can thus
proceed in the manner described above, moreover, wherexdneits the Neumann
projection of the spatial rod framework from an arbytreenter of projectioi® onto the
plane’, and then obtains the stres&sS,, ... in the individual rods as the areas of the

relevant projected triangles.
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Our force pyramid theorencan also be applied to spatial rod frameworks whose
arrangement does not satisfy the conditions of § 63+ ®d frameworks whose rods
define the edges of elosed polyhedron. For example, it easily yields the proof of
Rankine’s theoremas well as the determination of its converse (whiak hot be
noticed, up to now, to my knowledge):

Namely, if one is given a spatial rod framework whasgsrdefine the edges of a
closed polyhedron of arbitrary shape, and at all of whosesexternal forces act, then
one would have to apply the force pyramid theorem to teafsof forces at the
individual nodes by constructing a pyramid at each node evhedex always lies at the
same poinO, whose side faces are perpendicular to the assoc@dsdand whose base
face is perpendicular to the external force that acthe node, and indeed in such a way
that two such pyramids that correspond to two nodasdalre connected by a rod will
always have side faces that are perpendicular tortdwhatin common, such that the
associated two base faces will then lie together asitbmmon base edge. All of the base
faces will then be connected by their edges, and asuly, ey will collectively define
the outer surface of a polyhedrgunst as Rankine’s theorem states.

However, one easily recognizes that this can be donyevdrén the external forces
satisfy certain conditions. Three faces would thethgough the edge that is common to
two base faces, namely, the two base faces ansidbeface that is common to the two
pyramids. As a result, the three lines that are peipelar to these faces — namely, the
two external forces and the rod that connects thadlesic-must lie in a plandhat is
perpendicular to the common base edge. This then gives:

A Rankine force polyhedron is constructible only when any two exfencak whose
nodes are connected by a rod lie in a plane.

In the special case in which the rods of the framewdafine nothing but triangles,
this condition is specialized by the fact that the exkforces must all go through a
point.

The difficulty that is rooted in this restriction woul@ lbypassed by us fapen
spatial rod frameworks by the decomposition of the extefoeces R into the
componentd/; andP; . This sheds light upon the fact that our Fig. 2.lbh s projecting
pyramids, as were considered in the beginning of this pephgepresents nothing but a
Rankine polyhedral structureexcept that the force polyhedron is not closed, but
possesses an open boundary in the poly@otef, and its faces all lie in the same plane.

With that, the theory of reciprocal figures in graphical staticselated to Rankine’s
theorem in the desired way.

8 9. Practical example. (Cf., Fig. 6).

The manner by which the spatial rod framework, whoseegtion is regarded as a
planar rod framework, can be constructed in realitg by which one can make use of
the special properties of the associated force framewnight ultimately be illustrated
by a simple practical example. It involves English roof trusqcf., Fig. 6, below), to
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whose upper nodes |, 11, ..., IX a system of paralleldsrare applied in a perpendicular
direction. The forceg,, ps, ..., ps, Which represent a uniform load, are equally large.
Each of the two support reactiogsandps is equal to one-half the sum@f ps, ..., ps .

We carry out the construction in the ground plan and leheagon, where the ground
plane will serve as the plane of projection that desoted byj3, from now on. Let the
axis of projection bé\.

The given rod framework will be considered to be the ground plan of a spati@l ro
framework whose external forces lie in planes that perpendicular to the axis of
projectionA and which are thought of as decomposed into two componre¥ts which
is perpendicular to the ground plane @&hd which is parallel to the ground plane. The
component$; project to their true sizes in the ground plaéhasp;, while they project to
points in the elevatioN’. The componentg no longer come under consideration for the
calculation of theolanar rod framework, and are thus no longer indicated in@ig.

We next think of the elevatioN” as being known. The force framewdik that
belongs ta\ is then obtained as the Neumann projection of the spatdramework K,
N”) onto the ground plane. We choose the center of giit@jeO for the Neumann
projection onto the elevation plane. In order tal fihe Neumann projection of any line
then — e.g., the rod (1)} we lay a plane throudh that is perpendicular to (1)1 Its
traces must be perpendicular to the projections 1 gnedpectively, and the elevation
trace must go throug®. If one then draw®a; perpendicular to'lup to the axis of

projection A and draws a perpendicular to 1 throughthen that will represent the
Neumann projection of (1,1 it is likewise denoted by 1. One does the same thitlg wi
all of the lines of rod framework. The Neumann pro@tdipi, po, ... of the external

forcesPy, Py, ... will then fall along the axis of projection if theaeciprocal projecting
planes coincide with the elevation plane. In ordeget the projections of the rods 5, 9,
13, 17, 21 that are perpendicular to the axis of projectior,can employ a side view
plane, which is, however, not indicated specially o Bi

The three figure®N, N, 9t now representhree inequivalent trilinear figuresan the

sense of § 2. The third of them is always determinaspéetely by two of them. As we
just saw,9t can be ascertained frodhand N’, or also conversely\’, from N and 91.

However, if one recalls the properties of the spatal framework (see § 6) then the
latter construction will allow one to know only a paft)t, and indeedgust the external

force polygon. Thus, if onlyN is given originally then one proceed as follows: Ont fi
draws only the external force polygon of the figltethen constructs the lind’ that
corresponds to the two existing lineshdBnd91, finishesN” with their help, and finally
determines the still-missing lines ®Wffrom the ones that correspondN@andN”.

In our special example, one would accordingly begin riofgiong the given external
forces of the force polygomp.... po along the axis of projection. If one then draws rays

from O to its vertices and (once the poihid established arbitrarily along the altitude of
projection through 1) draws II' perpendicular to the next r&u; up to the altitude of

projection through Il, then draws’ Illl" perpendicular to the next raas up to the
altitude of projection Ill, etc., then one will obtalme individual nodes that are connected
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by rods in the same way as the ground plan. One thuekerthat, from the discussion
in 8 6, the bands 2, 6, 10, 16, 20, 24 of the spatial rod frankewat whose intermediate
nodes no external forces act, must lie in the sameeplithP; and Py, which has the
consequence that these rods project onto a straighinlittee elevation plane. N’is
obtained in that way then the constructiowbwill ultimately result in the way that was

discussed above)(
The following remarks about that might find a place here

Since the bands ¥’ are perpendicular to the ra§s,, Oay, ... that are drawn from
O to the vertices of the force polygen p.... po , resp., and since the nodesNoflie

along the lines of action g, p2, ..., the belt Gurtung can be regarded as a funicular
polygon (for the poinD as its pole) that is woven into the external foqge®,, ... This
yields that: If the fixed external forc&s, P, ... are perpendicular to the elevation plane
then the belt of the rod framework in the elevatiori Will always be identical to a
funicular polygon that is woven into the forcasm, ..., which is a form that the given
rod framework might also takdn our special case of a uniform load, the rod fraor&w
accordingly projects onto the elevationtlas carrier of aparabola.

If the external forceg;, p2, ... are not mutually parallel — as in our example — but
define ageneral planar, equilibrium system then one would proceed tertsn the
elevation figureN’as follows: One would once more begin by drawing therezl force
polygonpi p> ... in the ground plane, make its individual sides interseetaxis of

projection, and draw rays fro@ to the points of intersection. If one then deteesithe
point of intersection of the lines of action of anyotauccessive forcgs, pk, draws the
projection altitude through that point of intersectibattis perpendicular t4, and draws
perpendiculars to the corresponding rays of the p&éh&ibm one altitude of projection
to another (with an arbitrary choice of starting pothgn one will get the lines of action
of the external forces in the elevation, onto whahe finally projection the nodes of the
rod framework from the ground plan upwards.

This likewise yields the general remark that when theagrl rod framework is given
(including the external forces that act upon its npdie form of the associated spatial
rod framework will depend upon just the position of the @eat projectiorO. The form
of the spatial rod framework is determined completely from the édrthe planar rod
framework and the position of the center of projection O

Finally, let the following remark be made in regard te special properties of the
force frameworkn the example that was treated above:

The verticeg, u, v (cf., Fig. 6) in the force framewofR lie along a straight line, and

indeed, along the extension of line 3. Moreover, the4dirgoes through the vertex.

This is required by the facts that in the spatial rochéwaork the facest,(t'), (u, u’), (v,
V') that correspond to the stated vertices are paraltbetood (3, 3, and that the facey
w) is parallel to the rod (4,4 It is logical (cf., 8 2, Theorem 4) that the asated
surface location in the Neumann projection must lighenrelevant zone line. The first
of the aforementioned parallelisms is immediately obsio The other three are proved

() The compressions are indicated by double lines indigurand likewise for the tension rods in
figuresN andN".
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by the fact that the sides 13 and @Bthe trianglesi andu’, resp., will be cut by the lines
that are drawn through opposite vertices IV ant] t¥sp., parallel to 3 and,3esp., in
the same ratio 1 : 1. Likewise, the parallels todides 9 and '&hat are drawn in the
trianglesv andv from Il and III', resp., to 3 and’ 3resp., will both intersect in the ratio
1: 2. Finally, the sides 9 and @&f the trianglesv andw, resp., will both be cut by the
lines that are drawn from the opposite vertices parallé and 4 resp., in the ratio — 1 :
4. In the elevation, in order to prove this, one remtrésthe ordinates of the points']V
', ', I of the parabola on the horizontal that is drawnugloV (viz., the vertex
tangent) as the abscissa axis relate like 1 : 4 : 9: 16.

Berlin, April 1886.
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Figure 6.
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