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Abstract: If not only a force, but also a couple acts upon aa atement in a continuum then we must
introduce the so-called couple-stresses, in additionetdarce-stresses. In this article, we shall ersigiea
the importance of couple-stresses in dislocated soti#s2 gives a short review of the present state of the
theory of couple-stresses. In classical elasticibyple-stresses are to be interpreted as a non-ldeat ef
that is intimately connected with the range of theré¢dforces. The couple-stresses are of a higher order
in that range than force-stresses and can theretansually neglected.

However, in the field theory of dislocations, couple-stegsare generally of the same order of
magnitude as force-stresses. Hence, they can cansel@@ble effects. In § 3, we shall determine the
macroscopically-observable couple-stresses of homogslyetistributed screw and edge dislocations by
averaging over their microscopically-fluctuating stressifielin 8§ 4, we use the PEIERLS model to show
that the core of a dislocation produces an asymmette of stress, and for that reason, couple-stresses, as
well, which are negligibly small under certain circtiamges. In § 5, by introducing a polycrystalline
model, we derive the constitutive relations for cowgttesses and dislocation density in an isotropic form.
The results are discussed in § 6.

g1. Introduction. — At a sufficiently high temperature p&astically-bent beam that is
composed of crystalline material will possess surplus ddgdecations of one sign that
are distributed in a macroscopically-homogeneous manigeri(fF

_)X

Figure 1. Macroscopically-homogeneous distribution of
edge dislocations in a plastically-bent beam (schematic).

We can think of a dislocation state of this kind as¢pgiroduced as follows: Take
rectangular plates of densi¥ywhose edges are parallel to the coordinate axes (Big. 2a
If we let momentd; of well-defined magnitude act upon planes that are perpdadio
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thex-axis (Fig. 2b) then the plates will take onedasticbending curvatur&;s; according
to:
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Figure 2.a Figure 2b. Figure 2c.
Rectangular plates of denslty Elastic bending of the plates. Welding the plates togethe

In this, E is the elastic modulus, alis the thickness of the plate in thelirection. If
we weld the plates together (Fig. 2c) then thendiogg states (1.1) will remain the same,
since no forces acts upon the outer surfaces tagtespendicular to theaxis.

Now, if the plates have erystalline structure (for example, primitive cubic with
BRAVAIS vectors that are parallel to the coordinabtees) then a jump in the lattice
constants will appear in thgdirection at the weld locations, and it will praguan
interaction between the plates. Since cohesiveefoare short-range (at least, in metals),
only forces that point in th&-direction will act approximately from the atoms thie
lowest net-plane of one plate to the upper atontace of the neighboring plate, and

conversely (Fig. 3a), which is an effect that cemdpce rotational momentdl! that act
upon thex-surfaces, in addition. On energetic grounds,sthée that is depicted in Fig.
3a is then known to be unstable, and it will leadthe formation of individual edge
dislocations (Fig. 3b), but that will not change/dning qualitatively in the state of affairs
that was just described.

- T 11
N ralBBuEEEELN
A1 DY B
( ) @
U |4 N LTIy =
y S y =
L. L. 2
X X
Figure 3a. Figure 3b. Figure 3c.
Unstable arrangement for Stable arrangement after asiteng the moment-
a unicrystalline structure formation of edge dislogstio  stresses in a test section

of the plates

Therefore, our Gedanken experiment has produahdtiabution of dislocations as
in Fig. 1. We see two things, above all: Tgeometricstate in Fig. 1 can be described
macroscopically by a curvatui; [namely, the curvature of the plate in Fig. 2b,(2c
resp.)], which can be expressed in terms of théochsion densitya; as follows,
according to NYEY) ():

() J.F. NYE, Acta Metl (1953), 153.
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Kij = %d] Ok — i . (1.2)

Only the componerKs of this is non-zero in Fig. 1.

Thestatic state will be understood macroscopically in a corregipgnway by means
of moment-stresses; (3 that will, as a test section will show (Fig. 3asult in two
types of components: One of them comes from the moMethat is necessary to bend
the plate, and another one that comes from the additmomentM . that appears at the
location of the weld.M3 can be ascertained by a calculation from the thebejasticity,
while M can be understood, at least qualitatively and up togts &iy means of the

half-lattice-theoretic dislocation model of PEIER{*%
If AF; is an arbitrarily-oriented macroscopic surface elemgoin which a rotational
momentAt; acts then thenoment-stressesill be defined by:

At = 1 AF . (1.3)
Hence, only the component:
3= Ms+ M3p) IYZ (1.4)

will be non-zero in Fig. 1. Since analogous statemargdrue for screw displacements,
one can state the following: If dislocations arerdisted homogeneously in a crystalline
solid body then the material will respond with momsinesses, when viewed
macroscopically. This paper shall deal with the studh®ftorrespondingaterial law

In 8 2, we shall be concerned with a general overview ofrdam of moment-
stresses. In §, the moment-stresses that are produced by macrositgiicenogeneous
distributions of dislocations (Fig. 4, 5) shall be ctted by means of elasticity theory,
and certain relationships to the two-dimensional COSSERontinuum shall be
revealed. The contribution from the center of th&lodiation that is neglected in that
analysis will be discussed in&8with the help of the PEIERLS model. In68we shall
introduce a simple polycrystalline model and in that watain the material law that
couples the dislocation density to the moment-straasisstropic form. In &, we will
discuss the results.

§ 2. Generalities in moment-stresses. — In last century, VOIGT®) had already
placed the concept of force-stressgs (which are usually referred to casually as
“stresses”) alongside the analogous concept of momesgssty; [cf., (1.3)]. One will
find the equilibrium conditions for forces and moments iwell-known way in the form
of the fundamental equations of statis-(volume forceg; = volume moment):

() We shall always calculate in Cartesian coordinatesbléd indices will always be summed ovey.
means the KRONECKER symbol, whitg means the totally-antisymmetric unit tensor okrtiree.
() E. KRONER, Arch. Rational Mech. Anal.(1960), 273.
() E.KRONER, Int. J. Eng. Scl (1963), 261.
() R.E.PEIERLS, Proc. Phys. Soc. Lon&@(1940), 34.
() W. VOIGT, Abh. konigl. Ges. Wiss. Géttingen (math. K4)(1887), 3.
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00.
_0-“ Eij,i:_fja (2.1)
0%
Gj,i ¥ &k Oy = — G, (2.2)

which were likewise given completely by VOIGT. One @dso confer thédandbuch
articles on that topic by HELLINGER)(and HEUN (), as well as TRUESDELL and
TOUPIN @). The square bracket in (2.2) means antisymmetrization:

Oha) =4 (G — i), (2.3)
while parentheses will be employed for symmetrization:
OZk|) E%(O[d + 0|-k) (24)

Generally, speaking, a material will react to stressds changes to its geometrical
structure. Changes in distanceill be described by the strain tensgr, as one will see
especially clearly from the definition:

ds’ —d§ =2 g dx dx , (2.5)

in which thedsy means the distance between two neighboring pointeeotontinuum
before the deformation, andls means the distance between the same two points
afterwards. It is known that the continuum will respond to thath symmetric force-
stresses according to:

Jiij) = Cikl & - (2.6)

Cja Is the (HOOKEAN) tensor of the elastic moduli in theearized theory that is
considered here.

The moment-stresses are now characterized acgotalithe following argument: In
the ordinary theory of elasticity, the strain can bawed from a displacement fielgl:

&a = Ug,iy - (2.7)
Position-varying displacements then lead to a straithé continuum, and therefore to

force-stresses. In a similar way, position-varyiegations « will give rise to a
curvature I :

Kj=ai. (2.8)

The curvature, in its own right, will lead to a matklaav for the moment-stresses:

(®) E.HELLINGER, Enc. math. Wiss. I\, Art. 30, 1914, Teubner, Leipzig, 1907/14.

() K. HEUN, Enc. math. Wiss. I\2, Art. 11, 1914, Teubner, Leipzig, 1904/35.

() C. TRUESDELL and R. TOUPINHandbuch der Physiked., FLUGGE) Ill/1, 226, Springer-
Verlag, Berlin 1960.
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T = & Ka (2.9)

which is linearized here.ay is a fourth-rank tensor of material constants that loa
expressed in terms of three independent madudi,, as according to:

aj =a1 Q Aa+ax A g +az A Ok (2.10)
in the isotropic case.
The various attempts at a theory of moment-stredéfes mainly by the way that
they interpret the rotations that enter into (2.8)

§ 2.1Non-local moment-stresses in the classical theory of elasticityhe next idea
to develop is probably the one that one adopts from the ejepwf the usual theory of
elasticity. The rotationg are then derivable from the displacement figld

W= 3 & Uik = 3 & Uk, (2.11)

such that knowing the fundamental displacement fiell aso imply knowing the
rotations. With (2.7), (2.8), and (2.11), we will then @t curvature as:

Kij = &,i =3 & Uiki =3 &kl &k, (2.12)

from which, one sees that algpultimately results from changes in distance, sorinoa
be regarded as a fundamentally-new deformation quantitye rmoment-stresses then
come about as reactions4p, according to (2.9).

A theory of that kind was developed almost simultaneously AERO and
KUVSHINSKI (%) for infinitesimal deformations and by GRIOL?Y for finite ones.
Further work can be found in MINDLIN and TIERSTEN)((infinitesimal deformations,
examples), TOUPIN') (finite deformations, propagation of waves), and KORTE®)
(boundary conditions, minimal principles). KRONE® kas shown that the moment-
stresses ] that are treated here carry with them a cemain-localityas a correction to
the otherwise-strictly-local classical theory of stieity, and that will result in a very
small, but still finite,rangeto the atomic forces of interaction.

VOIGT () has already proved that these moment-stresses eameglected
completely in comparison to the force-stresses. Weeghin: “...the coefficients that
are found in the expressions for the rotational momantsthen to be regarded as
infinitely-small in comparison to the ones that appearthe components , ...”

b
5
(

1 3)

E. L. AERO and E. V. KUVSHINSKI, Soviet Phys. —li8d5tate? (1961), 1272.
G. GRIOLI, Ann. Mat. Pura Appl., ser. 150 (1960), 389.
R. D. MINDLIN and H. F. TIERSTEN, Arch. Rational e Anal.11 (1962), 415.
R. A. TOUPIN, Arch. Rational Mech. Andll (1962), 385.
W. T. KOITER, Proc. Kon. Ned. Akad. Wetenschap/mB1964), 17.
() Generally, along with the rotational moments that discussed here, other moments of the same
rank will appear in3) that give rise to an strained deformation.
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VOIGT'’s componentsXy , ... correspond to oug; in that statement. Furthermore,
McCLINTOCK, et al {¢% showed that:

|a<9ij/axk|2|5mn|/| (&nnZ 0) (2.13)

is anecessary conditiofor the appearance afoment-stressés become noticeabld.is
interpreted as a linear dimension for a surface elemehts, and for metals, it can have
the order of magnitude of a few atomic distances:

| =10A. (2.14)

Deformation gradients in the order of magnitude thatguired in (2.13) and (2.14)
appear in crystals at most singular locations(*%), and thus possibly along dislocation
lines in the interior [McCLINTOCK )] and at notches and similar things on the outer
surface. However, since the strain figjdbf a singularity must drop off at least as fast as
1 /r, it will follow from (2.13) that:

r<i; (2.15)

i.e., moment-stresses are first noticeably presedbmains in which the application of
not only the linear theory of elasticity, but also thenlinear theory, is normally no
longer meaningful.

However, in connection with dynamical problems (whidh mot be treated in this
paper), the condition (2.13) might possibly be applicablerexy short wavesin the
domain of validity of elasticity theory. For this, w&hall refer to a notice of
KRUMHANSL (*9).

In summary, one can then say that in the contexiasisical elastostatics, moment-
stresses are, in essence, smaller by an order of madgnitan the force-stresses, and for
that reason, they can beglected. That is generally not the case in problems for which
lengths appear that are comparablel,t@uch as perhaps the distance between two
neighboring dislocations, and similar things.

8§ 2.2. Moment-stresses in an incompatible Cosserat continuurNow one can,
however, interpret the rotations in (2.8) in yet anothay. Around the turn of the
century, the Brothers COSSERAT)(had already developed the theory of a continuum
whose building blocks were not only displaced, but wowld &k rotated independently
of each other. The deformation of such a COSSERédtinuum as it is described in a
modern way by ERICKSEN and TRUESDELE®)(and GUNTHER 1), will then be
represented by a displacement figjdwith its three functional degrees of freedom and a
rotational field, with just as many degrees of freedom. The COSSERATatune

(Y F. A. McCLINTOCK, P. A. ANDRE, K. R. SCHWERDT, drR. E. STOECKLY, Nature, London
182 (1958), 652.

(*® F. A. McCLINTOCK, Acta Met8 (1960), 127.

(*%) J. A. KRUMHANSL, Solid State Commni. (1963), 198.

() E. COSSERAT and F. COSSERAThéorie des Corps Déformablddermann et Fils, Paris, 1909.

(**) J. L. ERICKSEN and C. TRUESDELL, Arch. Rational Mednal.1 (1958), 295.

(*% W. GUNTHER, Abh. Braunschweig. Wiss. G&8.(1958), 195.
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Kij = 19J| (2.16)

is clearly independent of the strafp here, and is therefore a truly new deformation
quantity. Naturally, moment-stressgsappear once more as a reaction tokhe and

theygenerally make a contribution to the deformation engéingy has the same order of
magnitude as the force-stressgg, in contrast to the aforementioned moment-stresses.

The explicit form of the material law for a hypotihat COSSERAT continuum was
examined by KOSTER?), OSHIMA (), SCHAEFER ), COWIN &), and
KUVSHINSKI and AERO 1%, as well as DJURITCHX). Those considerations are of
particular physical interest [and this has been knowoesGUNTHER 9] since the
field of dislocations works with a geometric model thatst be regarded as a generalized
— namely,incompatible- COSSERAT continuum. According to NYH, (the structural
curvatures; that appear in them can be converted into the distotdensitiesy; using
eq. (1.2). One can confer the survéy for this, in which one can also find historical
remarks.

The material law (2.9) of the field theory of disldoas, which is expressed in a
concrete physical situation, and which allows one toutatle the moment-stresses from
the structural curvatures was treated by KRONBRThere, he provisionally determined
the moment-stresses that are produced by distributioedg# dislocations. The present
article represents continuation of that work.

To our knowledge, the three-dimensional COSSERAT coatinwas employed only
in rheology In that domain, we refer to the papers of OSHIMA (‘grained” media),
ERICKSEN ¢') (“anisotropic” fluids), and to the survey of DAHLE®d SCRIVEN %)
(“structured” continuum).

8 3. Moment-stresses of macroscopically-homogeneous distributions of
didocations with no regard for the center of dislocation. — Fig. 4 shows a
macroscopically-homogeneous distribution of screw dations. The dislocation lines
are parallel to the-axis and possess the coordinates4¢) X, (n +3) Y], withm, n =0,
+1,+2 =3, ... The BURGERS vector, which points in thelirection, has the

magnitudeb. The corresponding relationships for edge dislocationsegmeesented in
Fig. 5.

(*® W. KOSTER, Dissertation Utrecht 1920.

(*) N. OSHIMA, Proc. 8 Japan Nat. Congr. Appl. Mech. (1953), 77; Memoirs ofthidying Study of
the Basic Problems in Engineering Sciences by MearSegimetry |, Gakujutstu Bunken Fukyu-Kai,
Tokyo, 1955, pp. 563.

(*) H. SCHAEFER, Miszellaneen Angew. Mech. (Tollmierstsehrift) (1962), pp. 277.

(*) S. C. COWIN, Diss. Abst23 (1963), 3838.

(*% R. V. KUVSHINSKI and E. L. AERO, Soviet Phys. —li@iState5 (1963), 1892.

(*® S. DJURITCH, Dissertation, Belgrade, 1964.

(*®) E. KRONER, in SOMMERFELDVorlesung tber Theoretische Phys&' ed., v. 2, Chapter 9,
kad. Verlasges., Leipzig 1964.

(*) J. L. ERICKSEN, Trans. Soc. Rhedl(1960), 29; Kolloid-Zeit173 (1960), 117; Trans. Soc. Rheol.
6 (1962), 275.

(*® J. S. DAHLER and L. E. SCRIVEN, Proc. Roy. Soc. tlon A275 (1963), 504.

Al



Hehl and Kroner — A material law for an elastic mediuith moment-stresses. 8

y y
X24 X X
o o of° T o ([2X X
-4 4 4 <4 £ L
o [e] o O} }Y
o pY/2 s t v
o o -@@o O}Y/Z 1 1 1 _L}Y/2
Y X
o 0o o 4 L T
Figure 4. Figure 5.
Macroscopically-homogeneous Macroscopically-hgeneous
distribution of screw dislocations distribution of edggatiations

(cf., Fig. 3c)

If we denote the stress field of a dislocation thiat along the-axis by g [X, y] then
we will get the total stress field of the correspondingingement of dislocations from:

+00

g = 3 gl(x—(m+Y X y-(nrd) Y. (3.1)

m, n=—co

It is periodic inX andY, which is why the macroscopic force-stresggs which are
obtained by taking means over “large” surface el@swF;, will vanish.

From now on, we will endow all macroscopic quantithest arise by taking means of microscopically-
fluctuating ones with an overbar. On the one hand, dnface element over which one takes the mean
must be pierced by many dislocations, but on the other, itamdst be small in comparison to the external

dimensions of the probe. The error that one makes ahemneplaceAF; with the differentiadF will then
become negligible.

One can largely account for the effectogtillating micro-stresses that vanish in the
mean g;” by calculating the meamomentsthat the force-stresses;” exert upon a

macroscopic cross-section. Those moments candueilled by a third-rank tensc:(

5, = % dVoE, (3.2)

One infers from the Gedanken experiment in theodhction that the domain of
integration for our homogeneous distributions dflatiations in Figs. 4 and 5 can be
chosen as follows:

~X[2< X <+X/2
Yi2<x<+Y/2 L. (3.3)
~1/2<x,<+1/2
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We can measure the position vectpifrom an arbitrary point (for example, the origin)
since it can be chosen freely, due to the vanishing ah#@ micro-stresses:

s

1 (0] (0]
k:NAjvvagt(gk )_—jdv o, . (3.4)
X3

023

C

31

021

D&

Figure 6. The derivation of eq. (3.8):
View on a plane, = const.

X1

In order to derive the third-rank tensgy, from a second-rank moment-stress tensor
I, , we consider Fig. 6. The force-stressesand gz, with the lever armg; (&1, resp.)

in a cross-sectior, = const. are indicated in it. If we abstract frthma special case that

is represented in Fig. 6 then we can establishttimmomentss; & and di ¢ that act
upon thei-plane in the case g¢f# k (when one considers them to be vectors) are both
perpendicular to thik-plane, and therefore possess opposite signs. elHenc

Oix _a-ikj (3.5)
represents the moment-stress component that desdhle moment in theplane that

rotates around the direction that is perpendiciddhejk-plane; we would like to denote
it by 7 :

TI _TI[]k] U |k] 20—I[]k] (36)
If one goes fronT;, to the tensor; that is dual to it then one will get:
Tij = %gjkl Tijk . (3.7)

Corresponding to (3.7) and (3.8), the moment-sttessor 7; then describes the

rotational moment around theaxis that acts upon theplane, in agreement with the
definition (1.3).
Only g, enters into the expression (3.8) for. However, we will see later in

(3.16) and (3.35) thad, ,,, can be expressed in terms of #je, due to the vanishing of
someg,, -components for the distribution of dislocationd=igs. 4 and 5. Therefore,
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contains the same physical information @s in the case of dislocation theory. The
deeper basis for that fact is that dislocations carelakized by curvatures according to
(1.2). However, as gradients of rotations, curvaturesalgtl induceotational moments
0, a; » Ut NOt momentg, ,, , which are associated with stretching.

As we will see in 84, one must associate the center of any dislocatiah am

asymmetric stress tensor. We would like to ignoré fdeat in all of 83 from now on;
i.e., we will work with a symmetric tensor exclusivellf one then calculates tiwace of

the moment-stress tensgyr from (3.8) then since:

5-[ik]l =0, (3.9)
one will have:
f' = ‘gikl O_-ikl = ‘gikl 0_-[ik]l = 0 (310)

§ 3.1.Moment-stresses in Fig. 4 (screw dislocatiorslf. one treats dislocations with
the methods of linear elastostatiéy then one will get the force-stress field:

Gb
md&ﬂ=%ﬂxﬂ:+5;%zf, (3.11)
Gb x

&B3[X Y] = ;w2 [X, Y] = - (3.12)

2 x> +y°
for a screw dislocation that runs along thexis. All other components vanisks is the
shear modulus, while is length of the BURGERS vector.
Corresponding to (3.2), (3.11), and (3.12), at tintwgelve of the moment-stress
components:
O15= Oy Oy = Ogy 1=1,2,3 (3.13)

can then be non-zero. If one divides a body imto parts with an arbitrary surfa¢e
then one will ALBENGA'’s theorentY) for the proper stresses:

[o,dr=0. (3.14)
F

With its help, one can easily show that the eigbtmant-stress components are:
5-131: 5-311: 5-133: 5-313: 5-232:5-322: 5-233: 5-323: 01 (315)
such that, from (3.13), at most:

5-132 = 5-312 and 0-2312 5-321 (3 . 16)

(*® G. ALBENGA, Atti Accad. Sci. Torino, Classe ScisFMat. Nat.54 (1918/19), 864.
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are non-zero.

If we go over to7;,

using (3.8), then that will yield the following non-varirgg

components:
T~ &y Oy =~ 0y, (3.17)
T5= &5 Oyq =104, (3.18)
T33= &34 Ogq =+03,= 05p= ~ Ty ~ Ty (3.19)

The dislocation density is knowh ¢o be defined by:
Db = 3, AF . (3.20)

Ab; is then the total BURGERS vector of the dislocatitheg cross an arbitrary oriented
surface elemenhF; . Therefore, only the componem,, of the dislocation density is

non-zero in Fig. 4. Since a dislocation exists inrfean on a surface of ar&, one
will have:

T,,= b/ XY. (3.21)

If one considers (3.17)-(3.19), (3.2), (3.1), (3.11), (3.82d (3.21) then, after a
simple calculation that is based upon Fig. 4, one wiltige moment-stresses:

F(Y, X) 0 0
7= 5331% 0 F(X.Y) 0 , (3.21)
0 0 -F (Y, X)= F(Y, X)
with
B 6 4o *+X/2 +Y/2 y[y_(n+i)ﬂ
Fv,x)=-2 dx [ dy nty y 3.23
== 3 | K] Sy Xy D (3:23)

We shall return to the calculation Bf(Y, X).

8 3.2.Moment-stresses in Fig. 5 (edge dislocatiors)lhe moment-stresses of the
dislocation arrangement in Fig. 5 have already be detechapproximately fo¥ / X <«
1 ). An exact solution will be given here.

The crystal in Fig. 5 is not to be perturbed macrosctpi@ee., & = 0). Therefore,
we must let boundary forces of suitable magnitudes act upon the planest co andz

= — oo in order to hinder a lateral contraction in theirection. The boundary conditions
P = g ny imply that:

Ps (z=% ) = x0;,;, (3.24)

while it follows from the theory of planatrain states that one has:

tot —

o9= V(oS +0Y (3.25)
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for oy, ; vis the POISSON number in this. It should be emphdsizt the macroscopic
quantities p, that correspond to the microscopic boundary stregssed| vanish, due to
the fact thatg; = 0:

1 +X/2 +Y/2
P(z=+ )= 0% = s j dxj dyo' = 0. (3.26)

-X/2 -Y/2

Linear elastostatics gives a stress field for an edgleadtion that runs along theaxis
(*°):
AYBEHY)

g [xy] = Ty (3.27)
_ __AX(X-y)
2 [% Y] = &1 [% Y] = _AW’ (3.28)
G2 [X, Y] = Ay( —Y) (3.29)
(x*+y?)*
G [X, Y] =V (Gir + o) =2V AT, (3.30)
X*+y
with:
A= ££ .
2mrl-v
b is once more the length of the BURGERS vectot.otkler gj will vanish.
One has:
5-13i = 5-311' = 5-23i = 5-32i = 0 (331)

for the moment-stresses, since the associated cwnfmof the stress tensor are equal to
zero. If one applies ALBENGA'’s theorem (3.14)timn, and observes (3.26) then one
can prove the vanishing of the following 11 comptre

Ulll 5- 5-121 = 5-122 = 5-123 = 5-2112 5-212 = 5-213 = 5-222 = 5-223 = 5-333 = O ' (3 . 32)

If one switches the integration variabbesindy in the componen®,,, in the integrand
then (3.32) will give:

0,,,= 0. (3.33)
With (3.2), (3.25), and (3.32), one will get:

0331 4 (0111 + 0221) - (3-34)
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from this. Hence, from (3.31)-(3.34), only the components:

0,,, and 0,,, (3.35)

will remain, and (3.8) will yield at most the following neanishing7; :

T13= &y Oy =+ Oy, (3.36)
T3~ & O034= — Og,- (3-36)

Due to (3.25), one can give a very simple connectiowdst the two components
T,, and7,,. Itresults from (3.37), along with (3.2), (3.25), (3.3#)d (3.36):

[33= 7 Oz3, =~ V(5111+5221) == V0, == VI;. (3.38)
The single non-vanishing component of the dislocatiositieim Fig. 5 is:

a, =b/XY. (3.39)

One then obtains the moment-stresses in Fig. 5 fl@B8), (3.2), (3.1), (3.30), and
(3.39):
0 0 -F(,X)
6(1G—v) 0 0 : (3.40)
VFE(Y, X) O 0

T =8y

F (Y, X) is, in turn, the function that was defined in (3.23). théen see that the moment-
stresses in Figs. 4 and 5 can be calculated with the &aroion, which is a result that
ultimately originates from the conditiory = 0, and therefore from the symmetry of the

stress tensor.
§ 3.3.Combining the moment-stresses in Figs. 4 andBhe explicit calculation d¥
(Y, X), which is, above all, in no way trivial due to the douhlenmation that appears in
it, can be circumvented by a trick, as we will see bel@8v60) will then yield:
F(Y,X)=+Y?2 (3.41)
If one substitutes this in (3.22) and (3.40) then one will ge
Y> 0 0
T, =8,—| 0 X 0 (3.42)
0 0 -Y?’-X?
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for the moment-stresses in Fig. 4 and:

s [0 o-r

7 =a, 0 0 0 (3.43)
6(1-
TV by 0 o

for the ones in Fig. 5. Cyclic permutation of thigl then yield the moment-stresses of
all homogeneous distributions of dislocations fdrickh the BURGERS vector and the
line directions of the individual dislocations rparallel to the coordinate axes, as in Figs.
4 and 5.

One reads off from (3.42) and (3.43) that thedratthe moment-stress tensor will
always vanish, in agreement with (3.1Gj}. will then be adeviator, which we would like

to abbreviate with a superscriptDf

= _ =D
Tij _Tij +

5T =Ty (3.44)

1 ij

wl-

Now, for suitably-chosen constariig by, bs, (3.42) and (3.43) can be represented in the
form:

T, - bda +ha+h3g, (3.45)

in which the asterisk over the equal sign means ttie equation is true only in the
coordinate system. If one constructs the deviatoboth sides of (3.45) and considers
(3.44) then that will yield:

T, =b,3°+h3°. (3.46)

This equation allows one to think of all momenest states as being produced by
deviatoric dislocation densities, and thus,dalgedislocations, as long as the center of
the dislocation is neglected, as was emphasizedeabdAs a result, (3.42) will be
included in (3.43) implicitly!

In the field theory of dislocations, the diagonal companeftthe dislocation tensog; appear as

screw dislocations, while the remaining components amseadge dislocations. However, that is not an
invariant decomposition: If one transforms, e.g., eodadion density:

a 0 O
0 -a O
O 0 O

by a rotation of 45around the-axis then one will get a matrix:
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o Q o
o O Q
o o o

i.e., the dislocations that were screws originally appeape edge dislocations in the new coordinate
system. By contrast, the trace af is invariant, so the three mutually-perpendicular famibé screw

dislocations will describe the same density. One sheoinpare this to the corresponding behavior of the
strain tensorg; .

8 3.4.Relationships to the two-dimensional COSSERAT contingWe bring the
edge dislocations in Fig. 5 ever closer together withtemb¥ in thex-direction and thus
reduce their BURGERS vecttrin such a way that the magnitude of the macroscopic
dislocation density:

Y

- _ b _

= iy

b
— 3.47
XY X (3.47)

-<|C7I

remains preserved.

SOMIGLIANA
/ dislocation

v{ g 7
Y 12{ «
Y12

‘ 7

Figure 7. Passing to the limit of a SOMIGLIANA dis#gion (cf., Fig. 2c)

If we perform the corresponding passage to the linehtle will get the infinitesimal
BURGERS vectodb for any dislocation:

db/dx=b/X=h. (3.58)

Now, a so-calledOMIGLIANA dislocatiorfFig. 7) will arise in the surfage=(n+ 1) Y
with a linearly-increasing jump displacement in xh@irection:

[u1] = (b/ X) x + const.; (3.49)

the square bracket in this shall represent an abbreviatidjump.”
It is known sufficiently from the literature [MASKS and POLANY! £%, MANN
(Y, NYE (9, and INDENBOM {3)] that the unperturbed parts of the material that lie

s
e

G. MASING and M. POLANYI, Ergeb. exakt. Natur/(1923), 177.
E. H. MANN, Proc. Roy. Soc. London 199 (1949), 376.
J. F. NYE, Proc. Soc. LondonZ00 (1949), 47.
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between the (unstable) SOMIGLIANA dislocations in Figwill undergo an elastic
deformation that corresponds to a pbendingof those “plates.” For that reason, in the
absence of lateral contraction in thedirection, (3.25) will yield [cf., e.g.,
TIMOSHENKO and GOODIER*)]:

. _ b 2G -

g, = Wﬂy, (o V01D1 (350)1 (351)

for the plate -Y/ 2 <y < +Y/ 2, and with HOOKE's law, that will give:
En=ooYr &= Tgll (3.52), (3.53)
The constants in (3.50) were arranged so thatispgade ment:
SN (3.54)
BTy '

that (3.52) implies would describe precisely thengudisplacement that is required by
(3.49). Our plate will then take on an elasticvatureb / XY whose magnitude agrees

with the structural curvatur_, in Fig. 5.

This is closely related to the idea that th&ribution of dislocations in Figs. 4 and 5
are equivalentas long as the contribution of the dislocationtee can be neglected in
comparison to the moment-stresses, as before.

Proof: From (3.1), (3.2), and (3.36), the compong&gtfor the dislocations in Fig. 5
is defined as follows:

1 +o0  +X/2 +Y /2
m

=T =g Y | o[ dyolx(m X y (") Y. (355)

\TE=0 —X /2 -Y/2

In order to take the quantity over which we are summing out of the integrands, w
displace the limits of integration &f

_ 1 +00 -mX +Y/2
I,= sz [ x| dyo[x y-(md) ¥ o (3.56)

PF-o _(mil) X -Y/2

With that, the summation oven can be evaluated in an elementary way:

(3 V. L. INDENDOM, Plasticity of Crystal{ed. Klassen-Neklyudova) Consultants Bureau, New York,
1962, pp. 105.
(% S. TIMOSHENKO and J. N. GOODIERheory of ElasticityMcGraw-Hill, New York, 1951.
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T= oy 2 | X | dyoulx y-(mH Y (3.57)

On the other hand, one easily sees that (3.551s@ an expression for the moment-
stresses in Fig. 7. Any infinitesimal dislocatieith the abscissaand ordinater(+1) Y

will generate a moment with respect to the oridin o
dbO1b) o [-xy—(+3) Y] ¥ (3.58)

on the surfaca& = 0. If we take the mean of this moment oydérom —Y /2 to +Y/ 2
and sum (integrate, resp.) over all dislocatiomntthat will yield eq. (3.57), because of
(3.48).

T,, can be converted in just that way. Since no &rrtnoment-stresses appear in
Fig. 7, as we see from (3.50) and (3.51), the issegibove has been proved.

The functionF(Y, X) that is defined in (3.23) can now be easily deteed. The
moment-stresq,, is clearly the negativeending moment Mper unit cross-sectional

area.

M 1 +Y/2
T,,=——=-= | dyg;0y. (3.59)
13 XY Y _le 11

If one substitutes (3.50) and observes (3.47) gheomparison with (3.40) will give:
F (Y, X)=Y? (3.60)

which shows us thd (Y, X) does not depend updhat all.
The mearenergy densitpf the plates in Fig. 7 is determined from:

+Y /2
f= %QYE | avoied (3.61)
which can be recalculated as:
f= EGigy]lzdyamy:ilz T, (3.62)
2 XY Y_le 11 2 " *13°%13

by using (3.52), (3.59), and (1.2) with (3.39). eTdnergy density that is associated with
the structural curvaturKij for edge dislocations is then obtained from theesponding

formula:
f= %Tinij = %aijkl Kij Kkl : (3-63)

The results of this section are then hardly unetqk since the dislocation
arrangement in Fig. 5 macroscopically represemtsreature statek,, that is compatible
(*®), and can therefore be derived from a rotatiofd fieln that respect, Fig. 5 is the
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verification of a COSSERAT continuum. However, aglédtat is considered to be two-
dimensional can likewise be regarded as a COSSERAThoom (9, such that the
three-dimensional COSSERAT state in Fig. can be thoughs dkeing constructed from
two-dimensional COSSERAT states.

At the same time, we see that the static statieeoflislocated continuum in Fig. 5 will
be better described by only the first-order moment-strebs¢sve have used up to now
the more that the material pieces between the glaees behave like bending plates, so
the closer together that the dislocations inxtfoirection are for a giveM:

XY <« 1. (3.64)

If that relationship is not true then we will also hawanclude moment-stresses of even
higher orderin our calculations®j. Since one can generally prove that all moment-
stresses of even-number order vanish in Figs. 4 and S5firthemoment-stresses to
become considerable would be in order three.

In retrospect, one now also recognizes the relatipnséiween this section and our
Gedanken experiment in the introduction. The cal@natof the moment-stresses using
(3.2) and (3.8) (which have been purely elasticity-theorepido now) gave us only the
bending momeniM; that appeared in Fig. 2c, since we neglected the cehttdreo
dislocation, as we stated expressly. If we also dramattention to the latter, as we will

do in 84, then we will get the momen¥ that originates in the crystalline structure of

the welded plates, in addition (cf., Fig. 3b and 3c).

With the help of the results of this section, one easily see how big the moment-
stresses of distributions of dislocations will be whiegy arenot arranged as regularly
as in Fig. 5. For example, if we displace any two rafvslislocations byX / 2 to the
right then the moment-stresses witit change; we must then generally take the mean in
the y-direction from =Y / 2 to 3¢/ 2. We can verify the validity of this assertion b
employing the argument that led from (3.55) to (3.57), whsctiearly reasonable since
the original abscissa of the periodically-arranged viddial dislocations is naturally
inessential when one goes to the SOMIGLIANA disloaeio In that way, we will see
that static distributions of th@,,—dislocations will yield the same first-order moment-

stresses, as long a6is the mean lattice separation distance. We mustcexgbanost
differences in the higher moments.

8 4. Contribution of the didocation center to the moment-stresses. — In the
elasticity-theoretic model for dislocations, they aliye at the center of the stresses,
which naturally does not correspond to reality. In otdenclude the center (at least, to
some extent), one can employ the dislocation motRESERLS (), which considers the
lattice structure, and one can find it described in, ehg.wtorks of NABARRO T *9),
COTTRELL ¢, and SEEGER).

R. N. NABARRO, Proc. Phys. Soc. Londs$(1947), 256.

. R. N. NABARRO, Adv. Phys. (Phil. Mag. Supft.j1952), 269.
H. COTTRELL,Dislocations and Plastic Flow in Crystal€larendon Press, Oxford, 1953.
SEEGERHandbuch der Physited., Fliigge) VII/I, Springer-Verlag, Berlin, 1955, pp. 383.
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Entirely within the spirit of this model, we treat tbent plates in Fig. 7 that lie
between the SOMIGLIANA dislocations, which will makguanp in the lattice constants
appear in thg-direction at each of the SOMIGLIANA dislocations, \@e saw already in
the introduction. We will then suddenly “switch on” tte@hesion forces that act between
the outer surfaces of the plates, which thereforéhecsame, and which should obey the
nonlinear PEIERLS sine law)( The continuum will then go to the state of lgasssible
energy, namely, as VAN DER MERWE®Y has calculated in detail, the one that is
depicted in Fig. 5. As such, VAN DER MERWE has discugbési problem for two
(primitive cubic)half-crystals with different lattice constants. Howewee can certainly
adapt his results to the case (3.64XdfY « 1, since the “bent plate” approximation is
reasonable then, as we saw in § 3.4.

8 4.1Energy.— The energy per dislocation in the continuum of Bigs composed
accordingly of the elastic bending energy (3.61):

X 2 Gb* Y
XYf=2= | dyolel = —— 4.1
5 .[ YO én 12(1-v) X (4.1)

and the boundary-surface enefgyof the glide plane:

_ GbX mh b Y
T T \/1+((1—r)xj ’ 2

which we deduce from VAN DER MERWE's papéd)([§ 5, eq. (27)]. When (4.2) is
developed in powers d&f/ X that will give:

=G {1— il (_bj+} b/X<2(1—)/ 7 4.3)
4rr(1-r) 2(1-r X

A comparison shows clearly that for the cad®y <1 that is of interest to us, the
boundary-surface energy (4.3) can be neglectednmparison to the elastic energy (4.1),
so the contribution of theenterwill play no role. That is understandable, since the stress
field of any dislocation in Fig. 5 will possess d@atively-large range that has order of
magnitudeY. Corresponding arguments will be true for scréstodations.

8 4.2Moment-stress- However, what gives us the right to say thatehergy (4.2)
[(4.3), resp.] can be attributed to moment-stréssbksorder to answer this question, we
cut out a plate from the crystal in Fig. 5 thatludes the inelastic domain of the
PEIERLS model (Fig. 8). It possesses a thickndsg and consists of only two
neighboring net-planes. We infer the shear-stseds® act upon its upper plaBefrom
the paper of VAN DER MERWE®X) [§ 4, eq. (23), wittZ = 0]:

(*% J. H. VAN DER MERWE, Proc. Phys. Soc. Londi$h(1950), 616.
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G b sin(27x/X)
4(1-v) X sirf grx/ X+ A%’

/1254372{\/ 1 +1+] 2—[]—2}

1+ [ /(L- v) X

01 (X, Q) =— (4.4)

with

or

A= [2(11_\/)%} +O(1H+.. for[]<1l. (4.5)

X=X/2

Figure 8. Antisymmetric stress state in the PEIERId8lel of an edge dislocation

When regarded continuum-theoretically,aantisymmetric force-stress state:
Oy (Plate) =2 (051 — 012) = £ Gaa(X, Sn) (4.6)

(no g1, component will appear, due to the vanishing of\uedical force transfer) will
prevail in the plate in Fig. 8, which can be madethinner tharb physically. From
(2.2), (4.6) implies moment-stresses; simgewill be zero, on the grounds of symmetry,
one will have:
07y, _
0%

20—[31] = O-Zl(xi SA) (47)

for

(nN+3) Y- =< ys(n+i)Y+g,

N T

whereas the right-hand side of the equation witlista everywhere else. Integration over
the aforementioned domain will yield:

X

[ u(&.8) &+ (X2, ),

T1P3(X’ y) = +X/2
0
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If one takes the mean over the volume element (Be3) bne will get from (4.8) the
macroscopic (PEIERLS) moment-stress:

o 1 +X/2 +Y/2 o b 1 +X/2 X o x Y
T, = — dx | dyr. =—q— d d , + — —1t, (4.9
=5 Lo oo =35 T ] wane s3]} e

or, with (4.4):

—P G b2 m b P(X Yj
=————|In2-In{I+——) |+—1;| = —~|. (410
f13 2m(1-v) Y 1+ A2 y*Fl2'2 (410

If one develops (4.10) into a power seriesbirh X then one will see that in the first
approximation, the second term in the square btazke be neglected in comparison to
the first one. In the event that one introduces dtructural curvatur&;s according to
(1.2) and (3.39), one will get:

_p _| In2_G(bX) X Y
T, _{2_77 v +XT1P3(_2’_2H Ko, (4.11)

such that7,; will then possess the same sigrasin (3.43).

The integration constart, (X/2, Y/2) cannot be determined in the context of the
PEIERLS model, since the moment-stress oindividual dislocation will diverge at an
infinitely-large distance from the center, as @hle corresponding energy. However, if
one assumes that both terms in (4.11) have the sades of magnitude the,; in
(4.11) can be neglected in comparisorrtpin (3.43), due to (3.64), which agrees with
the argument in 8§ 4.1.

In the PEIERLS model, the center of the dislocatend therefore also the moment-
stresses, are “smeared” somewhat in the glide plaNaturally, that represents an
idealization, since in reality those moment-stregséich generally decay rapidly to zero
with increasing distance from the center) musthaeight of as being distributed over all
space. Therefore, we might employ (4.11) onlystineate the order of magnitude Df
and to determine its sign.

In summation,we can then state the following: With the helptbé PEIERLS
dislocation model, we have shown (in a semi-quativg way) that antisymmetric force-
stressesa'[zll will be generated in crystals by the center ofigdodation according to

(4.6), and therefore also macroscopically-obsee/aiment-stresses;, corresponding
to (4.11). However, that effect can be neglectetthé case aX/Y <« 1.

Since it is known that an elasticity-theoretic rabtbr an edge dislocation can be
obtained from the PEIERLS model by passing to itihé bf vanishing dislocation width,
it must exhibit a singular diverging.1; at its dislocation center. In sees from (3.28},th
in fact, no shear-stresses are associated witlcghter — i.e. i, vanishes, but nots;
(Fig. 9):
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, . , A. 1
Op11 [0, 0] :%(llfri10021[x0] —Ilymoalio, W) = %l|m0021[x0] == El@o}' (4.12)

That implies a diverging moment-stregs at the center with a delta-function character,
in analogy with (4.7). Moreover, one likewise gétsl2) when one employs the stress
field of an edge dislocation that is computed whe help of the nonlinear theory of
elasticity of PELEIDERERet al. (*°) in the second approximation.

y

011

114

<
X
— —>

021

Figure 9. Proving the lack of associated edge stresies eenter of a dislocation.

The stress distribution that is depicted in Fidhe® a certain similarity to the one in
an example that was given by REISSNER. (In that example, REISSNER showed that
the symmetry of the stress tensor was probablyicgerit, but not necessary, for the
equilibrium of moments in the classical theory tfs#city, in the event that the stress
gradients were allowed to become infinite, as m Bi

Figure 10. Two-dimensional schema for our polycrystadeho

8§ 5. Material law for moment-stressesin isotropic form. — The volume elemetV
of a macroscopically-isotropic polycrystal consist$ very many grains whose
orientations and forms are distributed staticallyamdom. Let dislocations be present in
each grain. Their effect on the moment-stressesasawe saw in (3.46), be described by
edge dislocations alone, as long as we can netflectontribution of the dislocation
center, in the sense of& For the time being, we would like to assume thaly one
glide system is present in each grain (Fig. 10)ne @an then lay out a Cartesian
coordinate system in each of them with axgsy’, Z, in such a way that the active

(*% H. PFLEIDERER, A. SEEGER, and E. KRONER, Z. Nfitschg.15a (1960), pp. 758.
(*) E. REISSNER, J. Math. Phy23 (1944), 192.
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dislocations that are present seem tarpedislocations (viz.x'-axis in the direction of
the BURGERS vectog-axis parallel to the line direction of the edge disimeg.

We now choose an arbitraxyzcoordinate system, relative to which the orientation
of the X'y'Z-system is established perhaps by the three EULER adyléd, and O,
which we shall collectively denote 16%. One will then have:

2mr 2mr

dQ = sin® do dod dw j j de = 877°.

®=0¥Y=00=0

We denote the corresponding direction cosines by:

A’ = cos &, %),

and we abbreviate their product as follows:
mn-— am aAn
ATTEATA L

In the volume elememtV, a set of grains lie between the orientati@handQ + dQ
and have a dislocation density:

al, (Q) dQ, (5.1)

which we write as a deviator, due to (3.46). If one wdikKd to obtain the mean
dislocation densit;c_ri}3 overAV relative to thexyzcoordinate system then we would have

to calculate thecri].D —component of (5.1) corresponding to the transformation aw f
tensors and subsequently take the mean over all angles:

=D _ 1 ZX D
ar = 8—]T£Aj al, do . (5.2)

On the other hand, from (3.43) the moment-stressas are produced by (5.1)
amount to:
Gv

r,,(Q)dQ = 6(1_\/)D Qa2 (Q)dQ, (5.3)
- Gv 2 D
r,,(Q)dQ = 6(1_\/)D Qa2 (Q)dQ, (5.4)

since the distancB between glide planes can depend upon only thatatien, due to
the homogeneity of the volume element. One calesiithe mean moment-stress ogr
in thexyzsystem in analogy to (5.2):



Hehl and Kroner — A material law for an elastic mediuith moment-stresses. 24

= 1 zZ X 1 X2z
. =—|AT,,dO+— cr, dQ. 5.5
ij 87T£ j fz'x 877£AJ X'z ( )

In retrospect, we now know that one can admit &bly many glide systems in all
grains of our volume element as long as we as®e@th of them with &-coordinate
system.

Due to (5.2)-(5.4), (5.5) implies that:

Gv

0= sV (D a, -D%G)a (5.6)
in which:
[D* (@A ap, do
D?(i,j) = °

.[AiZ’j){ alzli(’ dQ
Q

means the mean-square value of an effective glideepdistance. In the future, we
would like to assume th& is independent of the orientation, because ordy thill the
material tensor be macroscopically isotropic:

__GD* o o
e o0

If we express the dislocation density in (5.7)amts of the structural curvatutéj as in

(1.2) then we will get the main result of our dgifrom the validity of (3.64) in the form
of thematerial lawfor moment-stresses isotropic form:

__ GD?* 5 o
r = 6(1_\/)[Kij THE (5.8)

A comparison of coefficients will yield the modtitiat were introduced in (2.10):

o GD' _GD _ vGD
T8 P Te-v) 6(1-v)’

(5.9)

When split covariantly, (5.8) can be written:

{f#az@j“aeﬁﬁ ) } (5.10)
L=k =@atata)k,

such that the three modal, a,, az can also be employed to characterize the material
terms of its moment-stresses. As we saw alread(B.h0) when we neglected the
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dislocation center (cf., &), the modulusay of the “torsional curvature,” while the
modulus a; of the “longitudinal bending curvature”aq of “transversal bending
curvature,” resp.) has the value that was given in (5.9).

From (3.63) and (5.8), that implies anergy density:

CD" IRPRP -vRR?]. (5.1

f=iK 1

Since it must naturally be positive-definite, o clerive the inequality:
a; >0, a>|ag|, a=2-3yg (5.12)

for the moduli, which is also actually fulfilled f@ur moduli, as a glimpse at (5.9) will
show.

§ 6. Discussion (2%, — The field of dislocations in its differentialrfo teaches us
that one can interpret a dislocated solid bodytsnnatural state as @on-Euclidian
material space [cf., e.92%]. From KONDO () and BILBY, et al(*°), thetorsion I"mq«
of that space corresponds to the dislocation densit

ank: ‘gnml F[mI] k? (61)

while themetricis described by the strain tensgr. That space is defined uniquely by
being given its affine€onnection:

qu(: _(‘f_]k,m +§mk I _gm k) _‘9|er mr* (6-2)

The expression in parentheses represents twicBHIRISTOFFEL symbol of the second
kind that belongs t&; . As usual,K_ is the structural curvature which is, from (6.2),
equivalent to the torsion, and therefore, from)@&d the dislocation density)( as well.

One can now show [cf., e.qg., AMAR‘\GI] that the relative elastic rotatiaay of two
neighboring volume elements can be calculated |ms\s:

dak = — Mg dXm (6.3)

() In regard to moment-stresses, one can refer toettent papers of ERINGEN? and MINDLIN
),

(*3), which unfortunately could not be considered furtheeher
(*3 A. C. ERINGEN, Int. J. Eng. S (1964), 189.
(* R. D. MINDLIN, Arch. Rational Mech16 (1964), 51.
, Proc. apan Nat. Cong. Appl. Mech. , pp- 41.
*%) K. KONDO, Proc. #J Nat. Cong. Appl. Mech. (1953 41
(*) B. A. BILBY, R. BULLOUGH, and E. SMITH, Proc. Rosoc. London 4231 (1955), 263.
S.

(*%) S. AMARI, RAAG Memoirs 3, Gakujutsu Bunken Fukyu-Kai, Toky962, pp. 99.
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=T g Willthen play the role of a curvature tensor; fr(8r2), one will have:

g = Emk,l _‘?mLk +EmK (6.4)
for it. With

Kin = Enis Ems 1= Ens Eng s (6.5)
one can write:

T g™ Gk (R + K ) (6.6)

for it. In k., we again recognize the tensor that was defined in (2.12)hwhe@sures

the curvatures that are produced by strains. Generallgeifield theory of dislocations,
as opposed to the classical and COSSERAT theorielagifoity, the strain is no longer
derivable from a single-valued displacement field. (&&ys that theotal curvature

=l g 1S composed additively of thetrain curvaturek,,, and the COSSERAT-NYE
structural curvatureK .

However, one must observe that, and K__ are, in essence, completely different
quantities. Whereag&  is causally linked with strains whose reactions arefdhee-

stresses,K, . has nine proper functional degrees of freedom and can obvialssly
appear for vanishing macroscopic strains, as in e.g., Fig. 5.

In the special case of the classical theory oftieiag the structural curvature
are equal to zero, and what will remain are only the curestsy,. From § 2.1, the
moment-stresses that are associated with those orgsatan be neglected. However,
dislocations will produce structural curvaturd§, that, from (5.8), will demand

moment-stresses as static reactions in their ownt tigat should not be neglected. We
see from this that oneannot regard the moment-stresses as reactions to the total

curvature-T .. Moreover, the moment-stresses correspond to thmejeio aspect of
the structural curvatures.

As a result, one should understand [in the sense GRANGE's liberation principle
(*"] the force-stressed,;, (**°) to be reactions to the straifis and the moment-stresses

7, to be reactions to thstructural curvatureslzij, which are independent of them.

Hence, one must also not associate our consideratighsthe total curvature in the
context of the original compatible COSSERAT theorynaiment-stresses, as is done
occasionally. By contrast, the “rotational straiséhat DJURITCH ?°) likewise
introduced in a COSSERAT continuum, but whose physicatpnetation he left open,

(*") G. HAMEL, Theoretische MechanilSpringer-Verlag, Berlin, 1949.

() The material law of the antisymmetric part of thecésstress tensagy;; was skipped here; in the
meantime, it was dealt with in another publicatiGi. (In the later, it was shown thag;; vanishes in the
field theory of dislocations, since the geometric quastithat are associated with thg have a plastic
nature. Therefore, one cannot apply LAGRANGE's liberaprinciple to theg;;, either.

(*®) E. KRONER, Proc. .Cong. Appl. Mech., Munich, 1964, in press.
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seem to correspond to our moment-stresses that ateqa by dislocations, while “his”
moment-stresses arise from classical kinematicscandherefore be neglected.

One of the authors (F. H.) is very indebted to H&rnR. STOJANOVICH for numerous discussions
about the RICCI calculus. In addition, we would likehartk Herrn Dr. U. KOCKS for critical remarks
regarding the concept of moment-stresses.




