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 Abstract: If not only a force, but also a couple acts upon an area element in a continuum then we must 
introduce the so-called couple-stresses, in addition to the force-stresses.  In this article, we shall emphasize 
the importance of couple-stresses in dislocated solids. − § 2 gives a short review of the present state of the 
theory of couple-stresses.  In classical elasticity, couple-stresses are to be interpreted as a non-local effect 
that is intimately connected with the range of the atomic forces.  The couple-stresses are of a higher order 
in that range than force-stresses and can therefore be usually neglected. 
 However, in the field theory of dislocations, couple-stresses are generally of the same order of 
magnitude as force-stresses.  Hence, they can cause considerable effects.  In § 3, we shall determine the 
macroscopically-observable couple-stresses of homogeneously-distributed screw and edge dislocations by 
averaging over their microscopically-fluctuating stress fields.  In § 4, we use the PEIERLS model to show 
that the core of a dislocation produces an asymmetric state of stress, and for that reason, couple-stresses, as 
well, which are negligibly small under certain circumstances.  In § 5, by introducing a polycrystalline 
model, we derive the constitutive relations for couple-stresses and dislocation density in an isotropic form.  
The results are discussed in § 6. 
 
 
 §1. Introduction. – At a sufficiently high temperature, a plastically-bent beam that is 
composed of crystalline material will possess surplus edge dislocations of one sign that 
are distributed in a macroscopically-homogeneous manner (Fig. 1). 
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Figure 1.  Macroscopically-homogeneous distribution of  
edge dislocations in a plastically-bent beam (schematic). 

 
 We can think of a dislocation state of this kind as being produced as follows: Take 
rectangular plates of density Y whose edges are parallel to the coordinate axes (Fig. 2a).  
If we let moments M3 of well-defined magnitude act upon planes that are perpendicular to 
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the x-axis (Fig. 2b) then the plates will take on an elastic bending curvature K13 according 
to: 

M3 = 
3

1312

EY Z
K .     (1.1) 
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Figure 2.a    Figure 2b.   Figure 2c. 

Rectangular plates of density Y.  Elastic bending of the plates. Welding the plates together. 
   

In this, E is the elastic modulus, and Z is the thickness of the plate in the z-direction.  If 
we weld the plates together (Fig. 2c) then their bending states (1.1) will remain the same, 
since no forces acts upon the outer surfaces that are perpendicular to the y-axis. 
 Now, if the plates have a crystalline structure (for example, primitive cubic with 
BRAVAIS vectors that are parallel to the coordinate axes) then a jump in the lattice 
constants will appear in the y-direction at the weld locations, and it will produce an 
interaction between the plates.  Since cohesive forces are short-range (at least, in metals), 
only forces that point in the x-direction will act approximately from the atoms of the 
lowest net-plane of one plate to the upper atomic plane of the neighboring plate, and 
conversely (Fig. 3a), which is an effect that can produce rotational moments 3

pM  that act 

upon the x-surfaces, in addition.  On energetic grounds, the state that is depicted in Fig. 
3a is then known to be unstable, and it will lead to the formation of individual edge 
dislocations (Fig. 3b), but that will not change anything qualitatively in the state of affairs 
that was just described. 
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Figure 3a.   Figure 3b.   Figure 3c. 

 Unstable arrangement for Stable arrangement after Measuring the moment- 
 a unicrystalline structure formation of edge dislocations. stresses in a test section 
 of the plates  
 
 Therefore, our Gedanken experiment has produced a distribution of dislocations as 
in Fig. 1.  We see two things, above all: The geometric state in Fig. 1 can be described 
macroscopically by a curvature Kij [namely, the curvature of the plate in Fig. 2b (2c, 
resp.)], which can be expressed in terms of the dislocation density αij as follows, 
according to NYE (1) (*): 
                                                
 (1)  J. F. NYE, Acta Met. 1 (1953), 153. 
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Kij = 1
2 δij αkk – αji .     (1.2) 

 
Only the component K13 of this is non-zero in Fig. 1. 
 The static state will be understood macroscopically in a corresponding way by means 
of moment-stresses τij (

2,3) that will, as a test section will show (Fig. 3c), result in two 
types of components: One of them comes from the moment M3 that is necessary to bend 
the plate, and another one that comes from the additional moment 3

pM  that appears at the 

location of the weld.  M3 can be ascertained by a calculation from the theory of elasticity, 
while 3

pM  can be understood, at least qualitatively and up to its sign, by means of the 

half-lattice-theoretic dislocation model of PEIERLS (4). 
 If ∆Fi is an arbitrarily-oriented macroscopic surface element upon which a rotational 
moment ∆tj acts then the moment-stresses will be defined by: 
 

∆tj = τij ∆Fi .      (1.3) 
Hence, only the component: 

τ13 = (M3 + 3
pM ) / YZ     (1.4) 

 
will be non-zero in Fig. 1.  Since analogous statements are true for screw displacements, 
one can state the following: If dislocations are distributed homogeneously in a crystalline 
solid body then the material will respond with moment-stresses, when viewed 
macroscopically.  This paper shall deal with the study of the corresponding material law. 
 In § 2, we shall be concerned with a general overview of the realm of moment-
stresses.  In § 3, the moment-stresses that are produced by macroscopically-homogeneous 
distributions of dislocations (Fig. 4, 5) shall be calculated by means of elasticity theory, 
and certain relationships to the two-dimensional COSSERAT continuum shall be 
revealed.  The contribution from the center of the dislocation that is neglected in that 
analysis will be discussed in § 4 with the help of the PEIERLS model.  In § 5, we shall 
introduce a simple polycrystalline model and in that way obtain the material law that 
couples the dislocation density to the moment-stresses in isotropic form.  In § 6, we will 
discuss the results. 
 
 
 § 2. Generalities in moment-stresses. – In last century, VOIGT (5) had already 
placed the concept of force-stresses σij (which are usually referred to casually as 
“stresses”) alongside the analogous concept of moment-stresses τij [cf., (1.3)].  One will 
find the equilibrium conditions for forces and moments in a well-known way in the form 
of the fundamental equations of statics (fj = volume force, cj = volume moment): 
 

                                                                                                                                            
 (*) We shall always calculate in Cartesian coordinates; doubled indices will always be summed over.  δij 
means the KRONECKER symbol, while εijk means the totally-antisymmetric unit tensor of rank three.  
 (2) E. KRÖNER, Arch. Rational Mech. Anal. 4 (1960), 273. 
 (3) E. KRÖNER, Int. J. Eng. Sci. 1 (1963), 261. 
 (4)  R. E. PEIERLS, Proc. Phys. Soc. London 52 (1940), 34. 
 (5) W. VOIGT, Abh. königl. Ges. Wiss. Göttingen (math. Kl.) 34 (1887), 3. 
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ij

ix

σ∂
∂

≡ σij , i = − fj ,      (2.1) 

τij , i + εjkl σ[kl] = − cj ,     (2.2) 
 
which were likewise given completely by VOIGT.  One can also confer the Handbuch 
articles on that topic by HELLINGER (6) and HEUN (7), as well as TRUESDELL and 
TOUPIN (8).  The square bracket in (2.2) means antisymmetrization: 
 

σ[kl] ≡≡≡≡ 1
2 (σkl −−−− σlk),     (2.3) 

 
while parentheses will be employed for symmetrization: 
 

σ(kl) ≡≡≡≡ 1
2 (σkl ++++ σlk).     (2.4) 

 
 Generally, speaking, a material will react to stresses with changes to its geometrical 
structure.  Changes in distance will be described by the strain tensor εij , as one will see 
especially clearly from the definition: 
 

ds2 − 2
0ds  = 2 εij dxi dxj ,    (2.5) 

 
in which the ds0 means the distance between two neighboring points of the continuum 
before the deformation, and ds means the distance between the same two points 
afterwards.  It is known that the continuum will respond to that with symmetric force-
stresses according to: 

σ(ij) = cijkl εkl .      (2.6) 
 
cijkl is the (HOOKEAN) tensor of the elastic moduli in the linearized theory that is 
considered here. 
 The moment-stresses are now characterized according to the following argument: In 
the ordinary theory of elasticity, the strain can be derived from a displacement field uj : 
 

εkl = u(j, i) .      (2.7) 
 
Position-varying displacements then lead to a strain in the continuum, and therefore to 
force-stresses.  In a similar way, position-varying rotations ωj will give rise to a 
curvature kij : 

kij = ωj, i .      (2.8) 
 
The curvature, in its own right, will lead to a material law for the moment-stresses τij : 
 

                                                
 (6) E. HELLINGER, Enc. math. Wiss. IV, 4, Art. 30, 1914, Teubner, Leipzig, 1907/14. 
 (7) K. HEUN, Enc. math. Wiss. IV, 2, Art. 11, 1914, Teubner, Leipzig, 1904/35. 
 (8) C. TRUESDELL and R. TOUPIN, Handbuch der Physik (ed., FLÜGGE) III/1, 226, Springer-
Verlag, Berlin 1960. 
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τij = aijkl kkl ,     (2.9) 
 
which is linearized here.  aijkl is a fourth-rank tensor of material constants that can be 
expressed in terms of three independent moduli a1, a2, a3 according to: 
 

aijkl = a1 δij δkl + a2 δik δjl + a3 δil δjk    (2.10) 
in the isotropic case. 
 The various attempts at a theory of moment-stresses differ mainly by the way that 
they interpret the rotations ωj that enter into (2.8) 
 
 § 2.1 Non-local moment-stresses in the classical theory of elasticity. – The next idea 
to develop is probably the one that one adopts from the geometry of the usual theory of 
elasticity.  The rotations ωj are then derivable from the displacement field uj : 
 

ωj = 1
2 εjkl u[l,k] = 1

2 εjkl ul,k ,    (2.11) 

 
such that knowing the fundamental displacement field will also imply knowing the 
rotations.  With (2.7), (2.8), and (2.11), we will then get the curvature as: 
 

κij = ωj, i = 1
2 εjkl ul,ki = 1

2 εjkl εil, k ,   (2.12) 

 
from which, one sees that also κij ultimately results from changes in distance, so it cannot 
be regarded as a fundamentally-new deformation quantity.  The moment-stresses then 
come about as reactions to κij , according to (2.9). 
 A theory of that kind was developed almost simultaneously by AERO and 
KUVSHINSKI (9) for infinitesimal deformations and by GRIOLI (10) for finite ones.  
Further work can be found in MINDLIN and TIERSTEN (11) (infinitesimal deformations, 
examples), TOUPIN (12) (finite deformations, propagation of waves), and KOITER (13) 
(boundary conditions, minimal principles).  KRÖNER (3) has shown that the moment-
stresses (*) that are treated here carry with them a certain non-locality as a correction to 
the otherwise-strictly-local classical theory of elasticity, and that will result in a very 
small, but still finite, range to the atomic forces of interaction. 
 VOIGT (5) has already proved that these moment-stresses can be neglected 
completely in comparison to the force-stresses.  We quote him: “…the coefficients that 
are found in the expressions for the rotational moments are then to be regarded as 
infinitely-small in comparison to the ones that appear in the components Xx , …”  

                                                
 (9) E. L. AERO and E. V. KUVSHINSKI, Soviet Phys. – Solid State 2 (1961), 1272.  
 (10) G. GRIOLI, Ann. Mat. Pura Appl., ser. IV 50 (1960), 389. 
 (11) R. D. MINDLIN and H. F. TIERSTEN, Arch. Rational Mech. Anal. 11 (1962), 415.  
 (12) R. A. TOUPIN, Arch. Rational Mech. Anal. 11 (1962), 385.  
 (13) W. T. KOITER, Proc. Kon. Ned. Akad. Wetenschap B 67 (1964), 17.  
 (*) Generally, along with the rotational moments that are discussed here, other moments of the same 
rank will appear in (3) that give rise to an strained deformation. 
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VOIGT’s components Xx , … correspond to our σij in that statement.  Furthermore, 
McCLINTOCK, et al (14) showed that: 
 

| ∂εij / ∂xk | ≥ | εmn | / l  (εmn ≠ 0)    (2.13) 
 
is a necessary condition for the appearance of moment-stresses to become noticeable.  l is 
interpreted as a linear dimension for a surface element in this, and for metals, it can have 
the order of magnitude of a few atomic distances: 
 

l  ≈ 10 Å.     (2.14) 
 
Deformation gradients in the order of magnitude that is required in (2.13) and (2.14) 
appear in crystals at most at singular locations (14), and thus possibly along dislocation 
lines in the interior [McCLINTOCK (15)] and at notches and similar things on the outer 
surface.  However, since the strain field εij of a singularity must drop off at least as fast as 
1 / r, it will follow from (2.13) that: 

r ≤ l;      (2.15) 
 
i.e., moment-stresses are first noticeably present in domains in which the application of 
not only the linear theory of elasticity, but also the nonlinear theory, is normally no 
longer meaningful. 
 However, in connection with dynamical problems (which will not be treated in this 
paper), the condition (2.13) might possibly be applicable to very short waves in the 
domain of validity of elasticity theory.  For this, we shall refer to a notice of 
KRUMHANSL (16). 
 In summary, one can then say that in the context of classical elastostatics, moment-
stresses are, in essence, smaller by an order of magnitude than the force-stresses, and for 
that reason, they can be neglected.  That is generally not the case in problems for which 
lengths appear that are comparable to l, such as perhaps the distance between two 
neighboring dislocations, and similar things. 
 
 § 2.2. Moment-stresses in an incompatible Cosserat continuum. – Now one can, 
however, interpret the rotations in (2.8) in yet another way.  Around the turn of the 
century, the Brothers COSSERAT (17) had already developed the theory of a continuum 
whose building blocks were not only displaced, but would also be rotated independently 
of each other.  The deformation of such a COSSERAT continuum, as it is described in a 
modern way by ERICKSEN and TRUESDELL (18) and GÜNTHER (19), will then be 
represented by a displacement field uj with its three functional degrees of freedom and a 
rotational field ϑj with just as many degrees of freedom.  The COSSERAT curvature: 

                                                
 (14) F. A. McCLINTOCK, P. A. ANDRE, K. R. SCHWERDT, and R. E. STOECKLY, Nature, London 
182 (1958), 652.  
 (15) F. A. McCLINTOCK, Acta Met. 8 (1960), 127. 
 (16) J. A. KRUMHANSL, Solid State Comm. 1 (1963), 198.  
 (17) E. COSSERAT and F. COSSERAT, Théorie des Corps Déformables, Hermann et Fils, Paris, 1909. 
 (18) J. L. ERICKSEN and C. TRUESDELL, Arch. Rational Mech. Anal. 1 (1958), 295.  
 (19) W. GÜNTHER, Abh. Braunschweig. Wiss. Ges. 10 (1958), 195. 
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Kij = ϑj, i      (2.16) 
 
is clearly independent of the strain εij here, and is therefore a truly new deformation 
quantity.  Naturally, moment-stresses τij appear once more as a reaction to the Kij , and 
they generally make a contribution to the deformation energy that has the same order of 
magnitude as the force-stresses σ(ij ) , in contrast to the aforementioned moment-stresses. 
 The explicit form of the material law for a hypothetical COSSERAT continuum was 
examined by KOSTER (20), OSHIMA (21), SCHAEFER (22), COWIN (23), and 
KUVSHINSKI and AERO (24), as well as DJURITCH (25).  Those considerations are of 
particular physical interest [and this has been known since GÜNTHER (19)] since the 
field of dislocations works with a geometric model that must be regarded as a generalized 
– namely, incompatible – COSSERAT continuum.  According to NYE (1), the structural 
curvatures Kij that appear in them can be converted into the dislocation densities αij using 
eq. (1.2).  One can confer the survey (26) for this, in which one can also find historical 
remarks. 
 The material law (2.9) of the field theory of dislocations, which is expressed in a 
concrete physical situation, and which allows one to calculate the moment-stresses from 
the structural curvatures was treated by KRÖNER (3): There, he provisionally determined 
the moment-stresses that are produced by distributions of edge dislocations.  The present 
article represents continuation of that work. 
 To our knowledge, the three-dimensional COSSERAT continuum was employed only 
in rheology.  In that domain, we refer to the papers of OSHIMA (21) (“grained” media), 
ERICKSEN (27) (“anisotropic” fluids), and to the survey of DAHLER and SCRIVEN (28) 
(“structured” continuum). 
 
 
 § 3. Moment-stresses of macroscopically-homogeneous distributions of 
dislocations with no regard for the center of dislocation. – Fig. 4 shows a 
macroscopically-homogeneous distribution of screw dislocations.  The dislocation lines 
are parallel to the z-axis and possess the coordinates [(m + 1

2 ) X, (n + 1
2 ) Y], with m, n = 0, 

± 1, ± 2, ± 3, …  The BURGERS vector, which points in the z-direction, has the 
magnitude b.  The corresponding relationships for edge dislocations are represented in 
Fig. 5. 
 

                                                
 (20) W. KOSTER, Dissertation Utrecht 1920.  
 (21) N. OSHIMA, Proc. 3rd Japan Nat. Congr. Appl. Mech. (1953), 77; Memoirs of the Unifying Study of 
the Basic Problems in Engineering Sciences by Means of Geometry I, Gakujutstu Bunken Fukyu-Kai, 
Tokyo, 1955, pp. 563. 
 (22) H. SCHAEFER, Miszellaneen Angew. Mech. (Tollmien-Festschrift) (1962), pp. 277. 
 (23) S. C. COWIN, Diss. Abstr. 23 (1963), 3838.  
 (24) R. V. KUVSHINSKI and E. L. AERO, Soviet Phys. – Solid State 5 (1963), 1892.  
 (25) S. DJURITCH, Dissertation, Belgrade, 1964.  
 (26) E. KRÖNER, in SOMMERFELD, Vorlesung über Theoretische Physik, 5th ed., v. 2, Chapter 9, 
Akad. Verlasges., Leipzig 1964. 
 (27) J. L. ERICKSEN, Trans. Soc. Rheol. 4 (1960), 29; Kolloid-Zeit. 173 (1960), 117; Trans. Soc. Rheol. 
6 (1962), 275. 
 (28) J. S. DAHLER and L. E. SCRIVEN, Proc. Roy. Soc. London A275 (1963), 504.  
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 Figure 4. Figure 5. 
   Macroscopically-homogeneous     Macroscopically-homogeneous  
 distribution of screw dislocations distribution of edge dislocations 
  (cf., Fig. 3c) 

    
 If we denote the stress field of a dislocation that runs along the z-axis by σij [x, y] then 
we will get the total stress field of the corresponding arrangement of dislocations from: 
 

tot
ijσ  = 1 1

2 2
,

[( ( ) , ( ) ]ij
m n

x m X y n Yσ
+∞

=−∞

− + − +∑ .   (3.1) 

 
It is periodic in X and Y, which is why the macroscopic force-stresses ijσ , which are 

obtained by taking means over “large” surface elements ∆Fi , will vanish. 
 
 From now on, we will endow all macroscopic quantities that arise by taking means of microscopically-
fluctuating ones with an overbar.  On the one hand, the surface element over which one takes the mean 
must be pierced by many dislocations, but on the other hand, it must be small in comparison to the external 
dimensions of the probe.  The error that one makes when one replaces ∆Fi with the differential dFi will then 
become negligible. 
 
 One can largely account for the effect of oscillating micro-stresses that vanish in the 
mean tot

ijσ  by calculating the mean moments that the force-stresses tot
ijσ  exert upon a 

macroscopic cross-section.  Those moments can be described by a third-rank tensor (3): 
 

ijkσ = tot1
ij k

V

dV
V

σ ξ
∆∆ ∫  .    (3.2) 

 
One infers from the Gedanken experiment in the introduction that the domain of 
integration for our homogeneous distributions of dislocations in Figs. 4 and 5 can be 
chosen as follows: 

1

2

3

/ 2 / 2

/ 2 / 2

1/ 2 1/ 2

X x X

Y x Y

x

− ≤ ≤ + 
 − ≤ ≤ + 
 − ≤ ≤ + 

.    (3.3) 
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We can measure the position vector ξk from an arbitrary point (for example, the origin) 
since it can be chosen freely, due to the vanishing of the mean micro-stresses: 
 

ijkσ = tot1
( )ij k k

V

dV c
V

σ ξ
∆

+
∆ ∫  = tot1

ij k

V

dV
V

σ ξ
∆∆ ∫ .   (3.4) 

 
 x3 

x1 

σ23 

σ21 
ξ1 

ξ3 
 

Figure 6.  The derivation of eq. (3.8): 
View on a plane x2 = const. 

 
 In order to derive the third-rank tensor ijkσ  from a second-rank moment-stress tensor 

ijτ , we consider Fig. 6.  The force-stresses σ21 and σ32 with the lever arms ξ3 (ξ1 , resp.) 

in a cross-section x2 = const. are indicated in it.  If we abstract from the special case that 
is represented in Fig. 6 then we can establish that the moments σij ξk and σik ξj that act 
upon the i-plane in the case of j ≠ k (when one considers them to be vectors) are both 
perpendicular to the jk-plane, and therefore possess opposite signs.  Hence: 
 

ijk ikjσ σ−      (3.5) 

 
represents the moment-stress component that describes the moment in the i-plane that 
rotates around the direction that is perpendicular to the jk-plane; we would like to denote 
it by ijkτ : 

ijkτ = [ ]i jkτ = ijk ikjσ σ− = [ ]2 i jkσ .   (3.6) 

 
If one goes from ijkτ  to the tensor ijτ  that is dual to it then one will get: 

 

ijτ = 1
2 jkl ijkε τ .     (3.7) 

 
Corresponding to (3.7) and (3.8), the moment-stress tensor ijτ  then describes the 

rotational moment around the j-axis that acts upon the i-plane, in agreement with the 
definition (1.3). 
 Only ( )i jkσ  enters into the expression (3.8) for ijτ .  However, we will see later in 

(3.16) and (3.35) that ( )i klσ  can be expressed in terms of the ijτ  , due to the vanishing of 

some iklσ -components for the distribution of dislocations in Figs. 4 and 5.  Therefore, ijτ  
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contains the same physical information as iklσ  in the case of dislocation theory.  The 

deeper basis for that fact is that dislocations can be realized by curvatures according to 
(1.2).  However, as gradients of rotations, curvatures will also induce rotational moments 

[ ]i klσ , but not moments ( )i klσ , which are associated with stretching. 

 As we will see in § 4, one must associate the center of any dislocation with an 
asymmetric stress tensor.  We would like to ignore that fact in all of § 3 from now on; 
i.e., we will work with a symmetric tensor exclusively.  If one then calculates the trace of 
the moment-stress tensor ijτ  from (3.8) then since: 

 

[ ]ik lσ  = 0,     (3.9) 

one will have: 

iiτ  = ikl iklε σ  = [ ]ikl ik lε σ = 0.    (3.10) 

 
 § 3.1. Moment-stresses in Fig. 4 (screw dislocations). – If one treats dislocations with 
the methods of linear elastostatics (29) then one will get the force-stress field: 
 

σ13 [x, y] = σ31 [x, y] = + 2 22

Gb y

x yπ +
,  (3.11) 

 

σ23 [x, y] = σ32 [x, y] = − 2 22

Gb x

x yπ +
   (3.12) 

 
for a screw dislocation that runs along the z-axis.  All other components vanish.  G is the 
shear modulus, while b is length of the BURGERS vector. 
 Corresponding to (3.2), (3.11), and (3.12), at most twelve of the moment-stress 
components: 

13iσ = 31iσ , 23iσ = 32iσ , i = 1, 2, 3   (3.13) 
 
can then be non-zero.  If one divides a body into two parts with an arbitrary surface F 
then one will ALBENGA’s theorem (29) for the proper stresses: 
 

ij i

F

dFσ∫ = 0.     (3.14) 

 
With its help, one can easily show that the eight moment-stress components are: 
 

131σ = 311σ = 133σ = 313σ = 232σ = 322σ = 233σ = 323σ = 0,  (3.15) 
 
such that, from (3.13), at most: 
 

132σ = 312σ  and 231σ = 321σ    (3.16) 

                                                
 (29) G. ALBENGA, Atti Accad. Sci. Torino, Classe Sci. Fis. Mat. Nat. 54 (1918/19), 864. 
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are non-zero. 
 If we go over to ijτ , using (3.8), then that will yield the following non-vanishing 

components: 

11τ = 1 1kl klε σ  = − 132σ ,     (3.17) 

22τ = 2 2kl klε σ  = + 231σ ,    (3.18) 

33τ = 3 3kl klε σ  = + 312 321σ σ− = − 11 22τ τ− .  (3.19) 

  
 The dislocation density is known (1) to be defined by: 
 

∆bj = ij ia F∆ .     (3.20) 

 
∆bj is then the total BURGERS vector of the dislocations that cross an arbitrary oriented 
surface element ∆Fi .  Therefore, only the component 33σ  of the dislocation density is 

non-zero in Fig. 4.  Since a dislocation exists in the mean on a surface of area XY, one 
will have: 

33σ = b / XY.     (3.21) 

 
 If one considers (3.17)-(3.19), (3.2), (3.1), (3.11), (3.12), and (3.21) then, after a 
simple calculation that is based upon Fig. 4, one will get the moment-stresses: 
 

ijτ = 33

( , ) 0 0

0 ( , ) 0
12

0 0 ( , ) ( , )

F Y X
G

F X Y

F Y X F Y X

σ
 
 
 
 − − 

,  (3.21) 

with 

F (Y, X) ≡ − 
/ 2 / 2 1

2
2 21 1

, 2 2/2 /2

[ ( ) ]6

[ ( ) ] [ ( ) ]

X Y

m n X Y

y y n Y
dx dy

x m X y m Yπ

+ ++∞

=−∞ − −

− +
− + + − +∑ ∫ ∫ .  (3.23) 

 
We shall return to the calculation of F (Y, X). 
 
 § 3.2. Moment-stresses in Fig. 5 (edge dislocations). – The moment-stresses of the 
dislocation arrangement in Fig. 5 have already be determined approximately for Y / X ≪  
1 (3).  An exact solution will be given here. 
 The crystal in Fig. 5 is not to be perturbed macroscopically (i.e., ijε = 0).  Therefore, 

we must let boundary forces p3 of suitable magnitudes act upon the planes z = + ∞ and z 
= − ∞ in order to hinder a lateral contraction in the z-direction.  The boundary conditions 
pj = σij ni imply that: 

p3 (z = ± ∞) = tot
33σ± ,    (3.24) 

 
while it follows from the theory of planar strain states that one has: 
 

tot
33σ = v tot tot

11 22( )σ σ+     (3.25) 
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for tot
33σ ; v is the POISSON number in this.  It should be emphasized that the macroscopic 

quantities 3p  that correspond to the microscopic boundary stresses p3 will vanish, due to 

the fact that ijε  = 0: 

3p (z = ± ∞) = tot
33σ± = 

/ 2 / 2
tot
33

/2 / 2

1 X Y

X Y

dx dy
XY

σ
+ +

− −

± ∫ ∫  = 0.  (3.26) 

 
Linear elastostatics gives a stress field for an edge dislocation that runs along the z-axis 
(26): 

σ11 [x, y] = +
2 2

2 2 2

(3 )

( )

y x y
A

x y

+
+

,        (3.27) 

 

σ12 [x, y] = σ21 [x, y] = −
2 2

2 2 2

( )

( )

x x y
A

x y

−
+

,   (3.28) 

 

σ22 [x, y] = +
2 2

2 2 2

( )

( )

y x y
A

x y

−
+

,        (3.29) 

 

σ33 [x, y] = v (σ11 + σ22) = 2 2
2

y
v A

x y+
,   (3.30) 

with: 

A ≡ 
2 1

b G

vπ −
. 

 
b is once more the length of the BURGERS vector.  All other σij will vanish. 
 One has: 

13iσ = 31iσ = 23iσ  = 32iσ  = 0    (3.31) 
 
for the moment-stresses, since the associated components of the stress tensor are equal to 
zero.  If one applies ALBENGA’s theorem (3.14), in turn, and observes (3.26) then one 
can prove the vanishing of the following 11 components: 
 

111σ = 113σ = 121σ = 122σ = 123σ = 211σ = 212σ = 213σ = 222σ = 223σ = 333σ = 0.  (3.32) 
 

If one switches the integration variables x and y in the component 122σ  in the integrand 

then (3.32) will give: 

221σ = 0.     (3.33) 
 
With (3.2), (3.25), and (3.32), one will get: 
 

331σ = 111 221( )ν σ σ+  = 0    (3.34) 
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from this.  Hence, from (3.31)-(3.34), only the components: 
 

112σ  and 332σ      (3.35) 

 
will remain, and (3.8) will yield at most the following non-vanishing ijτ : 

 

13τ = 3 1kl klε σ = + 112σ ,    (3.36) 

 

31τ = 1 3kl klε σ = − 332σ .    (3.36) 

  
 Due to (3.25), one can give a very simple connection between the two components 

13τ  and 31τ .  It results from (3.37), along with (3.2), (3.25), (3.32), and (3.36): 

 

31τ = − 332σ  = − 111 221( )ν σ σ+  = − 112ν σ  = − 13ν τ .  (3.38) 

 
 The single non-vanishing component of the dislocation density in Fig. 5 is: 
 

31a  = b / XY.     (3.39) 

 
One then obtains the moment-stresses in Fig. 5 from (3.38), (3.2), (3.1), (3.30), and 
(3.39): 

ijτ  = 31

0 0 ( , )

0 0 0
6(1 )

( , ) 0 0

F Y X
G

a
v

v F Y X

− 
 
 −
  

.  (3.40) 

 
F (Y, X) is, in turn, the function that was defined in (3.23).  We then see that the moment-
stresses in Figs. 4 and 5 can be calculated with the same function, which is a result that 
ultimately originates from the condition ijτ  = 0, and therefore from the symmetry of the 

stress tensor. 
 
 § 3.3. Combining the moment-stresses in Figs. 4 and 5. – The explicit calculation of F 
(Y, X), which is, above all, in no way trivial due to the double summation that appears in 
it, can be circumvented by a trick, as we will see below.  (3.60) will then yield: 
 

F (Y, X) = + Y 2.    (3.41) 
 

If one substitutes this in (3.22) and (3.40) then one will get: 
 

ijτ  = 

2

2
33

2 2

0 0

0 0
12

0 0

Y
G

a X

Y X

 
 
 
 − − 

    (3.42) 
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for the moment-stresses in Fig. 4 and: 
 

ijτ  = 

2

33
2

0 0

0 0 0
6(1 )

0 0

Y
G

a
v

Yν

 −
 
 −
 
 

    (3.43) 

 
for the ones in Fig. 5.  Cyclic permutation of this will then yield the moment-stresses of 
all homogeneous distributions of dislocations for which the BURGERS vector and the 
line directions of the individual dislocations run parallel to the coordinate axes, as in Figs. 
4 and 5. 
 One reads off from (3.42) and (3.43) that the trace of the moment-stress tensor will 
always vanish, in agreement with (3.10).  ijτ  will then be a deviator, which we would like 

to abbreviate with a superscript of D: 
 

ijτ  = 1
3

D
ij ij kkτ δ τ+  = D

ijτ .    (3.44) 

 
Now, for suitably-chosen constants b1, b2, b3, (3.42) and (3.43) can be represented in the 
form: 

ijτ  
∗
=  1 2 3ij kk ij jib a b a b aδ + + ,    (3.45) 

 
in which the asterisk over the equal sign means that the equation is true only in the xi 
coordinate system.  If one constructs the deviator on both sides of (3.45) and considers 
(3.44) then that will yield: 

ijτ  
∗
=  2 3

D D
ij jib a b a+ .     (3.46) 

 
This equation allows one to think of all moment-stress states as being produced by 
deviatoric dislocation densities, and thus, by edge dislocations, as long as the center of 
the dislocation is neglected, as was emphasized above.  As a result, (3.42) will be 
included in (3.43) implicitly! 
 
 In the field theory of dislocations, the diagonal components of the dislocation tensor ija  appear as 

screw dislocations, while the remaining components appear as edge dislocations.  However, that is not an 
invariant decomposition: If one transforms, e.g., a dislocation density: 
 

0 0

0 0

0 0 0

α
α−

 
 
 
 

 

 
by a rotation of 45o around the z-axis then one will get a matrix: 
 



Hehl and Kröner – A material law for an elastic medium with moment-stresses. 15 

0 0

0 0

0 0 0

α
α
 
 
 
 

; 

 
i.e., the dislocations that were screws originally appear to be edge dislocations in the new coordinate 

system.  By contrast, the trace of ija  is invariant, so the three mutually-perpendicular families of screw 

dislocations will describe the same density.  One should compare this to the corresponding behavior of the 

strain tensor ijε . 

 
 § 3.4. Relationships to the two-dimensional COSSERAT continuum. – We bring the 
edge dislocations in Fig. 5 ever closer together with constant Y in the x-direction and thus 
reduce their BURGERS vector b in such a way that the magnitude of the macroscopic 
dislocation density: 

31a  =
b

X Y
= 

1b

X Y
⋅  = 

b

Y
    (3.47) 

remains preserved. 
 

{Y  

{/ 2Y  
{/ 2Y  

{Y  

y 

x 

SOMIGLIANA 
dislocation 

11σ ∗  

 
Figure 7.  Passing to the limit of a SOMIGLIANA dislocation (cf., Fig. 2c) 

 
If we perform the corresponding passage to the limit then we will get the infinitesimal 
BURGERS vector db for any dislocation: 
 

db / dx = b / X = b .     (3.58) 
 
Now, a so-called SOMIGLIANA dislocation (Fig. 7) will arise in the surface y = (n + 1

2 ) Y 

with a linearly-increasing jump displacement in the x-direction: 
 

[u1] = (b / X) x + const.;    (3.49) 
 
the square bracket in this shall represent an abbreviation for “jump.” 
 It is known sufficiently from the literature [MASING and POLANYI (30), MANN 
(31), NYE (32), and INDENBOM (33)] that the unperturbed parts of the material that lie 

                                                
 (30) G. MASING and M. POLANYI, Ergeb. exakt. Naturw. 2 (1923), 177.  
 (31) E. H. MANN, Proc. Roy. Soc. London A 199 (1949), 376.  
 (32) J. F. NYE, Proc. Soc. London A 200 (1949), 47.  
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between the (unstable) SOMIGLIANA dislocations in Fig. 7 will undergo an elastic 
deformation that corresponds to a pure bending of those “plates.”  For that reason, in the 
absence of lateral contraction in the z-direction, (3.25) will yield [cf., e.g., 
TIMOSHENKO and GOODIER (34)]: 
 

11σ ∗  = 
2

(1 )

b G
y

XY v−
, 33σ ∗ = 11ν σ ∗    (3.50), (3.51) 

 
for the plate – Y / 2 < y < + Y / 2, and with HOOKE’s law, that will give: 
 

11ε ∗  =
b

y
XY

, 33ε ∗ = − 111

v

v
ε ∗

−
    (3.52), (3.53) 

 
The constants in (3.50) were arranged so that the displacement: 
 

1u∗  =
b

xy
XY

     (3.54) 

 
that (3.52) implies would describe precisely the jump displacement that is required by 
(3.49).  Our plate will then take on an elastic curvature b / XY whose magnitude agrees 
with the structural curvature 13K  in Fig. 5. 

 This is closely related to the idea that the distribution of dislocations in Figs. 4 and 5 
are equivalent, as long as the contribution of the dislocation center can be neglected in 
comparison to the moment-stresses, as before. 
 
 Proof: From (3.1), (3.2), and (3.36), the component 13τ  for the dislocations in Fig. 5 
is defined as follows: 
 

13τ  = 112σ  = 
/ 2 / 2

1 1
11 2 2

, / 2 / 2

1
[ ( ) , ( ) ]

X Y

m n X Y

dx dy x m X y n Y y
XY

σ
+ ++∞

=−∞ − −

− + − +∑ ∫ ∫ . (3.55) 

 
In order to take the quantity m over which we are summing out of the integrands, we 
displace the limits of integration of x: 
 

13τ = 
/ 2

1
11 2

, ( 1) / 2

1
[ , ( ) ]

mX Y

m n m X Y

dx dy x y n Y y
XY

σ
− ++∞

=−∞ − + −

− +∑ ∫ ∫ .    (3.56) 

 
With that, the summation over m can be evaluated in an elementary way: 
 

                                                                                                                                            
 (33) V. L. INDENDOM, Plasticity of Crystals (ed. Klassen-Neklyudova) Consultants Bureau, New York, 
1962, pp. 105. 
 (34) S. TIMOSHENKO and J. N. GOODIER, Theory of Elasticity, McGraw-Hill, New York, 1951.  
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13τ = 
/ 2

1
11 2

/ 2

1
[ , ( ) ]

Y

n Y

dx dy x y n Y y
XY

σ
+∞ ++∞

=−∞ −∞ −

− +∑ ∫ ∫ .  (3.57) 

 
 On the other hand, one easily sees that (3.57) is also an expression for the moment-
stresses in Fig. 7.  Any infinitesimal dislocation with the abscissa x and ordinate (n + 1

2 ) Y 

will generate a moment with respect to the origin of: 
 

db ⋅⋅⋅⋅ (1/b) ⋅⋅⋅⋅ σ11 [− x, y – (n + 1
2 ) Y] ⋅⋅⋅⋅ y    (3.58) 

 
on the surface x = 0.  If we take the mean of this moment over y from – Y / 2 to + Y / 2 
and sum (integrate, resp.) over all dislocations then that will yield eq. (3.57), because of 
(3.48). 
 31τ  can be converted in just that way.  Since no further moment-stresses appear in 

Fig. 7, as we see from (3.50) and (3.51), the assertion above has been proved. 
 The function F(Y, X) that is defined in (3.23) can now be easily determined.  The 
moment-stress 13τ  is clearly the negative bending moment M3 per unit cross-sectional 

area: 

13τ  = − 3M

XY
= − 

/ 2

11

/ 2

1 Y

Y

dy y
Y

σ
+

∗

−

⋅∫ .   (3.59) 

 
If one substitutes (3.50) and observes (3.47) then a comparison with (3.40) will give: 
 

F (Y, X) = Y 2,     (3.60) 
 

which shows us that F (Y, X) does not depend upon X at all. 
 The mean energy density of the plates in Fig. 7 is determined from: 
 

f = 
/ 2

11 11

/ 2

1 1

2

Y

Y

dy
Y

σ ε
+

∗ ∗

−

⋅ ∫ ,   (3.61) 

which can be recalculated as: 

f = 
/ 2

11

/ 2

1 1 1

2

Y

Y

dy y
XY Y

σ
+

∗

−

⋅ ⋅ ∫ = 1
13 132 K τ    (3.62) 

 
by using (3.52), (3.59), and (1.2) with (3.39).  The energy density that is associated with 
the structural curvature ijK  for edge dislocations is then obtained from the corresponding 

formula: 
f = 1

2 ij ijKτ = 1
2 ijkl ij kla K K .    (3.63) 

 
 The results of this section are then hardly unexpected, since the dislocation 
arrangement in Fig. 5 macroscopically represents a curvature state 13K  that is compatible 

(26), and can therefore be derived from a rotation field.  In that respect, Fig. 5 is the 
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verification of a COSSERAT continuum.  However, a plate that is considered to be two-
dimensional can likewise be regarded as a COSSERAT continuum (17-19), such that the 
three-dimensional COSSERAT state in Fig. can be thought of as being constructed from 
two-dimensional COSSERAT states. 
 At the same time, we see that the static state of the dislocated continuum in Fig. 5 will 
be better described by only the first-order moment-stresses that we have used up to now 
the more that the material pieces between the glide planes behave like bending plates, so 
the closer together that the dislocations in the x-direction are for a given Y: 
 

X/Y ≪  1.     (3.64) 
 
If that relationship is not true then we will also have to include moment-stresses of even 
higher order in our calculations (3).  Since one can generally prove that all moment-
stresses of even-number order vanish in Figs. 4 and 5, the first moment-stresses to 
become considerable would be in order three. 
 In retrospect, one now also recognizes the relationship between this section and our 
Gedanken experiment in the introduction.  The calculations of the moment-stresses using 
(3.2) and (3.8) (which have been purely elasticity-theoretic, up to now) gave us only the 
bending moment M3 that appeared in Fig. 2c, since we neglected the center of the 
dislocation, as we stated expressly.  If we also draw our attention to the latter, as we will 
do in § 4, then we will get the moment 3

PM  that originates in the crystalline structure of 

the welded plates, in addition (cf., Fig. 3b and 3c). 
 With the help of the results of this section, one can easily see how big the moment-
stresses of distributions of dislocations will be when they are not arranged as regularly 
as in Fig. 5.  For example, if we displace any two rows of dislocations by X / 2 to the 
right then the moment-stresses will not change; we must then generally take the mean in 
the y-direction from – Y / 2 to 3Y / 2.  We can verify the validity of this assertion by 
employing the argument that led from (3.55) to (3.57), which is clearly reasonable since 
the original abscissa of the periodically-arranged individual dislocations is naturally 
inessential when one goes to the SOMIGLIANA dislocations.  In that way, we will see 
that static distributions of the 31a –dislocations will yield the same first-order moment-

stresses, as long as Y is the mean lattice separation distance.  We must expect at most 
differences in the higher moments. 
 
 
 § 4.  Contribution of the dislocation center to the moment-stresses. – In the 
elasticity-theoretic model for dislocations, they diverge at the center of the stresses, 
which naturally does not correspond to reality.  In order to include the center (at least, to 
some extent), one can employ the dislocation model of PEIERLS (4), which considers the 
lattice structure, and one can find it described in, e.g., the works of NABARRO (35, 36), 
COTTRELL (37), and SEEGER (38). 

                                                
 (35) F. R. N. NABARRO, Proc. Phys. Soc. London 59 (1947), 256.  
 (36) F. R. N. NABARRO, Adv. Phys. (Phil. Mag. Supp.) 1 (1952), 269. 
 (37) A. H. COTTRELL, Dislocations and Plastic Flow in Crystals, Clarendon Press, Oxford, 1953.  
 (38) A. SEEGER, Handbuch der Physik (ed., Flügge) VII/I, Springer-Verlag, Berlin, 1955, pp. 383. 
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 Entirely within the spirit of this model, we treat the bent plates in Fig. 7 that lie 
between the SOMIGLIANA dislocations, which will make a jump in the lattice constants 
appear in the y-direction at each of the SOMIGLIANA dislocations, as we saw already in 
the introduction.  We will then suddenly “switch on” the cohesion forces that act between 
the outer surfaces of the plates, which therefore act the same, and which should obey the 
nonlinear PEIERLS sine law (4).  The continuum will then go to the state of least-possible 
energy, namely, as VAN DER MERWE (39) has calculated in detail, the one that is 
depicted in Fig. 5.  As such, VAN DER MERWE has discussed this problem for two 
(primitive cubic) half-crystals with different lattice constants.  However, we can certainly 
adapt his results to the case (3.64) of X / Y ≪1, since the “bent plate” approximation is 
reasonable then, as we saw in § 3.4. 
 
 § 4.1 Energy. – The energy per dislocation in the continuum of Fig. 5 is composed 
accordingly of the elastic bending energy (3.61): 
 

XY f = 
/ 2

11 11

/22

Y

Y

X
dyσ ε

+
∗ ∗

−
∫  = 

2

12(1 )

Gb Y

v X−
    (4.1) 

 
and the boundary-surface energy Ea of the glide plane: 
 

Ea = 
2

2 1 1
4 (1 ) (1 )

GbX b b

r X r X

π π
π

   + − +  − −   

,  (4.2) 

 
which we deduce from VAN DER MERWE’s paper (39) [§ 5, eq. (27)].  When (4.2) is 
developed in powers of b / X that will give: 
 

Ea = 
2

1
4 (1 ) 2(1 )

Gb b

r r X

π
π

  − +  − −   
⋯  b / X < 2 (1 – v) / π.  (4.3) 

 
A comparison shows clearly that for the case X/Y ≪1 that is of interest to us, the 
boundary-surface energy (4.3) can be neglected in comparison to the elastic energy (4.1), 
so the contribution of the center will play no role.  That is understandable, since the stress 
field of any dislocation in Fig. 5 will possess a relatively-large range that has order of 
magnitude Y.  Corresponding arguments will be true for screw dislocations. 
 
 § 4.2 Moment-stress. – However, what gives us the right to say that the energy (4.2) 
[(4.3), resp.] can be attributed to moment-stresses?  In order to answer this question, we 
cut out a plate from the crystal in Fig. 5 that includes the inelastic domain of the 
PEIERLS model (Fig. 8).  It possesses a thickness of b and consists of only two 
neighboring net-planes.  We infer the shear-stresses that act upon its upper plane SA from 
the paper of VAN DER MERWE (39) [§ 4, eq. (23), with Z = 0]: 
 

                                                
 (39) J. H. VAN DER MERWE, Proc. Phys. Soc. London 63 (1950), 616.  
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σ21 (x, SA) = − 2 2 2

sin (2 / )

4(1 ) sin ( / )

G b x X

v X x X

π
π π λ− +

,   (4.4) 

with 

λ2 ≡ 2
2 2

1 1
1 [ ] [ ] 2

4 1 [ /(1 ) ]b v Xπ π

  + + − − 
+ −  

 

or 

λ2 = 
2

1

2(1 )

b

v X

 
 − 

+ O ([ ]3) + … for [ ] < 1.   (4.5) 

 
 

σ21 

σ21 dx 

13
P bτ  

x = X / 2 

SA 

SB 

}b  

 
Figure 8.  Antisymmetric stress state in the PEIERLS model of an edge dislocation 

 
 When regarded continuum-theoretically, an antisymmetric force-stress state: 
 

[21]
Pσ (plate) = 12 (σ21 – σ12) = 1

2 σ21(x, SA)   (4.6) 

 
(no σ12 component will appear, due to the vanishing of the vertical force transfer) will 
prevail in the plate in Fig. 8, which can be made no thinner than b physically.  From 
(2.2), (4.6) implies moment-stresses; since τ23 will be zero, on the grounds of symmetry, 
one will have: 

13

1

P

x

τ∂
∂

= 2 [21]
Pσ  = σ21(x, SA)    (4.7) 

for 

(n + 1
2 ) Y − 

2

b
 ≤  y ≤ (n + 1

2 ) Y +
2

b
, 

 
whereas the right-hand side of the equation will vanish everywhere else.  Integration over 
the aforementioned domain will yield: 
 

13
Pτ (x, y) = 21 13

/2

( , ) ( / 2, ),

0

x
P

A

X

S d X yσ ξ ξ τ
+


+





∫ . 
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 If one takes the mean over the volume element (3.3) then one will get from (4.8) the 
macroscopic (PEIERLS) moment-stress: 
 

13
Pτ  = 

/ 2 / 2

13

/ 2 /2

1
( , )

X Y
P

X Y

dx dy x y
XY

τ
+ +

− −
∫ ∫  = 

/ 2

21 13

/2 / 2

1
( , ) ,

2 2

X x
P

A

X X

b X Y
dx d S

Y X
ξ σ ξ τ

+

− −

  +  
  

∫ ∫ , (4.9) 

 
or, with (4.4): 

13
Pτ  = 

2

122 2
ln 2 ln 1 ,

2 (1 ) 2 21

PG b b X Y

v Y Y

πλ τ
π π λ

    − + +  −    + 

. (4.10) 

 
If one develops (4.10) into a power series in b / X then one will see that in the first 
approximation, the second term in the square bracket can be neglected in comparison to 
the first one.  In the event that one introduces the structural curvature K13 according to 
(1.2) and (3.39), one will get: 
 

13
Pτ  = 13 13

ln 2 ( )
,

2 1 2 2
PG bX X Y

X K
v

τ
π

  ⋅ +   −   
,   (4.11) 

 
such that 13

Pτ  will then possess the same sign as 13τ  in (3.43). 

 The integration constant 13
Pτ (X/2, Y/2) cannot be determined in the context of the 

PEIERLS model, since the moment-stress of an individual dislocation will diverge at an 
infinitely-large distance from the center, as will the corresponding energy.  However, if 
one assumes that both terms in (4.11) have the same order of magnitude then 13

Pτ  in 

(4.11) can be neglected in comparison to 13τ  in (3.43), due to (3.64), which agrees with 

the argument in § 4.1. 
 In the PEIERLS model, the center of the dislocation, and therefore also the moment-
stresses, are “smeared” somewhat in the glide plane.  Naturally, that represents an 
idealization, since in reality those moment-stresses (which generally decay rapidly to zero 
with increasing distance from the center) must be thought of as being distributed over all 
space.  Therefore, we might employ (4.11) only to estimate the order of magnitude of 13

Pτ  

and to determine its sign. 
 In summation, we can then state the following: With the help of the PEIERLS 
dislocation model, we have shown (in a semi-quantitative way) that antisymmetric force-
stresses [21]

Pσ  will be generated in crystals by the center of a dislocation according to 

(4.6), and therefore also macroscopically-observable moment-stresses 13
Pτ , corresponding 

to (4.11).  However, that effect can be neglected in the case of X/Y ≪  1. 
 Since it is known that an elasticity-theoretic model for an edge dislocation can be 
obtained from the PEIERLS model by passing to the limit of vanishing dislocation width, 
it must exhibit a singular diverging σ[21] at its dislocation center.  In sees from (3.28) that, 
in fact, no shear-stresses are associated with the center – i.e., σ12 vanishes, but not σ21 
(Fig. 9): 
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σ[21] [± 0, 0] = 1
21 122 0 0

( lim [ ,0] lim [0, ])
x y

x yσ σ
→± →

− = 1
212 0

lim [ ,0]
x

xσ
→±

= − 
0

1
lim

2 x

A

x→±
. (4.12) 

 
That implies a diverging moment-stress τ13 at the center with a delta-function character, 
in analogy with (4.7).  Moreover, one likewise gets (4.12) when one employs the stress 
field of an edge dislocation that is computed with the help of the nonlinear theory of 
elasticity of PFLEIDERER, et al. (40) in the second approximation. 

 

x 

y 

σ21 

σ11 

 
Figure 9. Proving the lack of associated edge stresses at the center of a dislocation. 

 
 The stress distribution that is depicted in Fig. 9 has a certain similarity to the one in 
an example that was given by REISSNER (41).  In that example, REISSNER showed that 
the symmetry of the stress tensor was probably sufficient, but not necessary, for the 
equilibrium of moments in the classical theory of elasticity, in the event that the stress 
gradients were allowed to become infinite, as in Fig. 9. 

 

Grain 

x 

y 

x′ 

y′ 

 
Figure 10. Two-dimensional schema for our polycrystal model. 

 
 
 § 5. Material law for moment-stresses in isotropic form. – The volume element ∆V 
of a macroscopically-isotropic polycrystal consists of very many grains whose 
orientations and forms are distributed statically at random.  Let dislocations be present in 
each grain.  Their effect on the moment-stresses can, as we saw in (3.46), be described by 
edge dislocations alone, as long as we can neglect the contribution of the dislocation 
center, in the sense of § 4.  For the time being, we would like to assume that only one 
glide system is present in each grain (Fig. 10).  One can then lay out a Cartesian 
coordinate system in each of them with axes x′, y′, z′, in such a way that the active 

                                                
 (40) H. PFLEIDERER, A. SEEGER, and E. KRÖNER, Z. Naturforschg. 15a (1960), pp. 758. 
 (41) E. REISSNER, J. Math. Phys. 23 (1944), 192.  
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dislocations that are present seem to be αz′x′ dislocations (viz., x′-axis in the direction of 
the BURGERS vector, z′-axis parallel to the line direction of the edge dislocation). 
 We now choose an arbitrary xyz-coordinate system, relative to which the orientation 
of the x′y′z′-system is established perhaps by the three EULER angles Φ, Ψ, and Θ, 
which we shall collectively denote by Ω.  One will then have: 
 

dΩ = sin Θ dΘ dΦ dΨ 
2 2

0 0 0

d
π π π

Φ= Ψ= Θ=

Ω∫ ∫ ∫  = 8π 2. 

 
We denote the corresponding direction cosines by: 
 
 j

iA ′ ≡ cos (xi, xj′), 

 
and we abbreviate their product as follows: 
 
 m n

i jA ′ ′⋯
⋯

≡ m n
i jA A′ ′ … 

 
 In the volume element ∆V, a set of grains lie between the orientations Ω and Ω + dΩ 
and have a dislocation density: 

D
z xα ′ ′ (Ω) dΩ,      (5.1) 

 
which we write as a deviator, due to (3.46).  If one would like to obtain the mean 
dislocation density D

ijα  over ∆V relative to the xyz-coordinate system then we would have 

to calculate the D
ijα –component of (5.1) corresponding to the transformation law for 

tensors and subsequently take the mean over all angles: 
 

D
ijα = 

1

8
z x D
i j z xA dα

π
′ ′

′ ′
Ω

Ω∫  .    (5.2) 

 
 On the other hand, from (3.43) the moment-stresses that are produced by (5.1) 
amount to: 

z xτ ′ ′ (Ω) dΩ = 2( ) ( )
6(1 )

D
z x

Gv
D d

v
α ′ ′Ω Ω Ω

−
,   (5.3) 

 

x zτ ′ ′ (Ω) dΩ = − 2( ) ( )
6(1 )

D
z x

Gv
D d

v
α ′ ′Ω Ω Ω

−
,   (5.4) 

 
since the distance D between glide planes can depend upon only the orientation, due to 
the homogeneity of the volume element.  One calculates the mean moment-stress over ∆V 
in the xyz-system in analogy to (5.2): 
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ijτ  = 
1 1

8 8
z x x z
i j z x i j x zA d A dτ τ

π π
′ ′ ′ ′

′ ′ ′ ′
Ω Ω

Ω + Ω∫ ∫ .   (5.5) 

 
In retrospect, we now know that one can admit arbitrarily many glide systems in all 
grains of our volume element as long as we associate each of them with a xi ′-coordinate 
system. 
 Due to (5.2)-(5.4), (5.5) implies that: 
 

 ijτ = 2 2[ ( , ) ( , ) ]
6(1 ) ij ji

Gv
D i j D j i

v
ν α α−

−
,   (5.6) 

in which: 

2( , )D i j  ≡ 

2( ) z x D
i j z x

z x D
i j z x

D A d

A d

α

α

′ ′
′ ′

Ω
′ ′

′ ′
Ω

Ω Ω

Ω

∫

∫
 

 
means the mean-square value of an effective glide plane distance.  In the future, we 
would like to assume that D is independent of the orientation, because only then will the 
material tensor be macroscopically isotropic: 
 

 ijτ = 
2

[ ]
6(1 )

D D
ij ji

G D

v
ν α α−

−
.    (5.7) 

 
If we express the dislocation density in (5.7) in terms of the structural curvature ijK  as in 

(1.2) then we will get the main result of our article from the validity of (3.64) in the form 
of the material law for moment-stresses in isotropic form: 
 

ijτ = 
2

[ ]
6(1 )

D D
ij ji

G D
K K

v
ν−

−
.    (5.8) 

 
A comparison of coefficients will yield the moduli that were introduced in (2.10): 
 

a1 = −
2

18

G D
, a2 =

2

6(1 )

G D

v−
, a3 = −

2

6(1 )

vG D

v−
.  (5.9) 

 
When split covariantly, (5.8) can be written: 
 

2 3

0 1 2 3

,

(3 ) ,

D D D
ij ij ji

ii ii ii

a K a K

a K a a a K

τ
τ

 = +
 = = + + 

  (5.10) 

 
such that the three moduli a0, a2, a3 can also be employed to characterize the material in 
terms of its moment-stresses.  As we saw already in (3.10) when we neglected the 
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dislocation center (cf., § 4), the modulus a0 of the “torsional curvature,” while the 
modulus a2 of the “longitudinal bending curvature” (a3 of “transversal bending 
curvature,” resp.) has the value that was given in (5.9). 
 From (3.63) and (5.8), that implies an energy density: 
 

f = 1
2 ij ijK τ = 

2

[ ]
12(1 )

D D D D
ij ij ij ji

G D
K K v K K

v
−

−
.   (5.11) 

 
Since it must naturally be positive-definite, one can derive the inequality: 
 

a2 > 0,  a2 ≥ | a3 |, a2 ≥ − 3
2 a1    (5.12) 

 
for the moduli, which is also actually fulfilled for our moduli, as a glimpse at (5.9) will 
show. 
 
 
 § 6. Discussion (*,42,43). – The field of dislocations in its differential form teaches us 
that one can interpret a dislocated solid body in its natural state as a non-Euclidian 
material space [cf., e.g., (26)].  From KONDO (44) and BILBY, et al.(45), the torsion Γ[ml]k 
of that space corresponds to the dislocation density: 
 

nka = [ ]nml ml kε Γ ,     (6.1) 

 
while the metric is described by the strain tensor ijε .  That space is defined uniquely by 

being given its affine connection: 
 

mlkΓ = − , , ,( )lk m mk l lm k lkn mnKε ε ε ε+ − − .    (6.2) 

 
The expression in parentheses represents twice the CHRISTOFFEL symbol of the second 
kind that belongs to ijε .  As usual, mnK  is the structural curvature which is, from (6.2), 

equivalent to the torsion, and therefore, from (6.1), to the dislocation density (1), as well. 
 One can now show [cf., e.g., AMARI (46)] that the relative elastic rotation dωlk of two 
neighboring volume elements can be calculated as follows: 
 

dωlk = − Γm[lk] dxm .     (6.3) 
 

                                                
 (*) In regard to moment-stresses, one can refer to the recent papers of ERINGEN (42) and MINDLIN 
(43), which unfortunately could not be considered further here. 
 (42) A. C. ERINGEN, Int. J. Eng. Sci. 2 (1964), 189. 
 (43) R. D. MINDLIN, Arch. Rational Mech. 16 (1964), 51. 
 (44) K. KONDO, Proc. 2nd Japan Nat. Cong. Appl. Mech. (1953), pp. 41.   
 (45) B. A. BILBY, R. BULLOUGH, and E. SMITH, Proc. Roy. Soc. London A 231 (1955), 263.  
 (46) S. AMARI, RAAG Memoirs 3, Gakujutsu Bunken Fukyu-Kai, Tokyo, 1962, pp. 99. 
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− [ ]m lkΓ  will then play the role of a curvature tensor; from (6.2), one will have: 

 
− Γm[lk] = , ,mk l ml k lkm mnKε ε ε− +     (6.4) 

for it.  With 

mnκ  = ,nrs ms rε ε = [ , ]nrs m s rε ε ,     (6.5) 

one can write: 
− [ ]m lkΓ = εlkn ( )mn mnKκ +      (6.6) 

 
for it.  In mnκ , we again recognize the tensor that was defined in (2.12), which measures 

the curvatures that are produced by strains.  Generally, in the field theory of dislocations, 
as opposed to the classical and COSSERAT theories of elasticity, the strain is no longer 
derivable from a single-valued displacement field.  (6.6) says that the total curvature 
− [ ]m lkΓ  is composed additively of the strain curvature mnκ  and the COSSERAT-NYE 

structural curvature mnK . 

 However, one must observe that mnκ  and mnK  are, in essence, completely different 

quantities.  Whereas mnκ  is causally linked with strains whose reactions are the force-

stresses, mnK  has nine proper functional degrees of freedom and can obviously also 

appear for vanishing macroscopic strains, as in e.g., Fig. 5. 
 In the special case of the classical theory of elasticity, the structural curvatures mnK  

are equal to zero, and what will remain are only the curvatures mnκ .  From § 2.1, the 

moment-stresses that are associated with those curvatures can be neglected.  However, 
dislocations will produce structural curvatures mnK  that, from (5.8), will demand 

moment-stresses as static reactions in their own right that should not be neglected.  We 
see from this that one cannot regard the moment-stresses as reactions to the total 
curvature − [ ]m lkΓ .  Moreover, the moment-stresses correspond to the geometric aspect of 

the structural curvatures. 
 As a result, one should understand [in the sense of LAGRANGE’s liberation principle 
(47)] the force-stresses ( )ijσ  (*,48) to be reactions to the strains ijε  and the moment-stresses 

ijτ  to be reactions to the structural curvatures ijK , which are independent of them.  

Hence, one must also not associate our considerations with the total curvature in the 
context of the original compatible COSSERAT theory of moment-stresses, as is done 
occasionally.  By contrast, the “rotational stresses” that DJURITCH (25) likewise 
introduced in a COSSERAT continuum, but whose physical interpretation he left open, 

                                                
 (47) G. HAMEL, Theoretische Mechanik, Springer-Verlag, Berlin, 1949. 
 (*) The material law of the antisymmetric part of the force-stress tensor σ[ij ] was skipped here; in the 
meantime, it was dealt with in another publication (48).  In the later, it was shown that σ[ij ] vanishes in the 
field theory of dislocations, since the geometric quantities that are associated with the σ[ij ] have a plastic 
nature.  Therefore, one cannot apply LAGRANGE’s liberation principle to the σ[ij ] , either. 
 (48) E. KRÖNER, Proc. 11th Cong. Appl. Mech., Munich, 1964, in press. 
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seem to correspond to our moment-stresses that are produced by dislocations, while “his” 
moment-stresses arise from classical kinematics, and can therefore be neglected. 
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