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In this paper, we will attempt to achieve a quantuasititical mechanics that is based exclusively
upon relationships between quantities that are obdetvalprinciple.

It is known that one can raise the serious objectmrthe formal rules that are
generally employed in quantum theory for the calcutatib observable quantities (e.g.,
energy in the hydrogen atom) that those rules of caionlare obtained essentially as
constituent relations between quantities that cannot benadss in principle (such as,
e.g., the position or orbital period of the electraw) those rules will obviously lack any
intuitive physical foundation if one would not like tontinue to maintain the hope that
those up-to-now unobservable quantities might perhaps bee nexperimentally
accessible at some later point. That hope could bededjas justified if the stated rules
were applied to a certain unlimited domain of quantum-dgtea problems in an
intrinsically consistent way. However, experimenpwsh that only the hydrogen atom
and the Stark effect of that atom obey those formbsrof quantum theory, but that
fundamental difficulties will appear already in the pesblof “crossed fields” (e.g., the
hydrogen atom in electric and magnetic fields of différéirections), namely, that the
reaction of the atom to periodically-varying fieldsrtainly cannot be described by the
stated rules and that ultimately an extension of thetquarules to the treatment of the
atom and many atoms has proven to be impossible. Itcustemary to refer to this
breakdown of the quantum-theoretical rules, which casead be characterized
essentially by applying classical mechanics, as a devidtaon classical mechanics.
However, that relationship can hardly be regarded aalogy when one considers that
already theEinstein-Bohr frequency condition (which is indeed valid in full geneyali
represents such a complete negation of classical meshar even better, from the
standpoint of wave theory, of the kinematics that mehanics is based upon, that one
cannot think of there being an absolute validity of atadésmechanics even for the
simplest quantum-theoretical problems. From this stdtaflairs, it seems more
advisable to give up completely on any hope of an observadf the hitherto-
unobservable quantities (such as the position and orbriatpef the electron), and thus,
at the same time, to grant that the partial agreeneniglen the stated quantum rules and
experiment is more-or-less coincidental and to attempbohstruct a quantum-theoretical
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mechanics that would be analogous to classical mechamieghich only relations
between observable quantities would be present. Oneegard not only the frequency
condition, but als&ramer’s dispersion theory'f and the further work that was done on
that theory J) as the most important initial Ansétze for such a quastheoretical
mechanics. In what follows, we would like to seek tespnt some new gquantum-
mechanical relations and to employ them for a compiletatment of some special
problems. Therefore, we will restrict ourselves tagems of one degree of freedom.

8 1.— In the classical theory, the radiation of a movilegteon (in the wave zone —
i.e.,&~$ ~ 1/r)is given by not just the expressions:

€= —= [e[vd]],
rc

e .
9=zl

but also some terms that one must add in the mpgxbaimation — e.g., ones of the form:

€ ob
rcd

which one can refer to as *“guadrupole radiationyfid aterms of even higher
approximations — e.g., ones of the form:

e .,

——oo°.

rct

The approximation can be continued arbitrarily ifathis way. (In the foregoing, $
mean the field strengths at the reference pa@ntneans the charge of the electrén,
means the distance from the electron to the refer@oint, ancd means the velocity of

the electron).

One can ask what those higher terms must lookifikguantum theory. Since the
higher approximations can be calculated simplyhim ¢lassical theory when the motion
of the electron (its Fourier representation, regpgiven, one would expect something
similar to be true in quantum theory. That questibas nothing to do with
electrodynamics, but it has a purdljnematical nature, and that seems especially
important to us. We can pose it in its simplestf@s follows: If one is given quantum-
theoretical quantity that enters in place of thessical quantity (t) then what quantum-
theoretical quantity would enter in placexdt)??

H. A. Kramers, Nature113(1924), 673.
M. Born, Zeit. Phys26 (1924), 379.H. A. Kramers andW. Heisenberg Zeit. Phys.31 (1925),
. Born andP. Jordan, Zeit. Phys. (to appear).
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Before we can answer that question, we must rdeatlibh quantum theory it is not
possible to assign a point in space that is a functidime to an electron by means of
observable quantities. But the electron can probablglée assigned radiation in the
guantum theory. That radiation will be described, fostll, by the frequencies that
appear as functions of two variables, which take the form:

vinnn—a) ={W(n)-W((n-a)}
in quantum theory and the form:

1dw
vina)=alk(n)=ag——
(n, a) (n) Hdn

in classical theory. (In this, [h = J, which is one of the canonical constants.)
One can write down the following combining relations ciearacteristic of the
comparison between classical and quantum theory indegahe frequencies:
Classical

vinna)+v(nf=v(n a+p.

Quantum-theoretical

vinnn-a)+vin—-an-a-p=v(nn-a-p
or

vin-Bn-a-p+vinn-pH=v(nn-a-p,
resp.

Along with the frequencies, the amplitudes are necgskar the description of
radiation; the amplitudes can be regarded as complex se@tath six independent
determining data), and they determine polarization and phEsey are also functions of
the two variables anda, such that part of the radiation in question can bessemited by
the following expression:

Quantum-theoretical

Re {2l (n,n—q) “nn-ay (1)
Classical
Re {2, (n) € “O &Y 2)

The phase (which is included #) does not seem to have a physical meaning in

guantum theory at first, since the frequencies of quanheory are not commensurable
with higher harmonics, in general. However, we will semediately that the phase also
have a well-defined meaning in quantum theory that is anatogothe one that it has in
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classical theory. If we now consider a well-defirgeéntityx (t) in the classical theory
then we can think of it as being represented by a set otitjes of the form:

Q[a (n) eI w(n) Oot

which can be combined into a sum or integré) that is represented by:

x(n,t) = f A, (n) X
or
- (2a)
x(n,t) = j A, (n) oD oy,
resp.

Due to the equal status of the quantittesn — @, such a combination of the
corresponding quantum-theoretical quantities does seem possible without some
arbitrariness, and for that reason, it is not reabte. However, one can probably regard
the set of quantities:

ei wh,n-a)t

Ao (n,n -0a)

as the representative of the quantities) and then look for the answer to the question
that was posed above: How will the quantitff)® be represented?
Obviously the answer reads:

Bo(n) € “0A= Y A A, Ui 3)
or
- J A, A, gdemaB-atgny (4)

resp., classically, in which one then has:

X (t)% = i B ,(n) 44 (5)
or ﬂ:_w
= T%ﬂ(n) e dg, (6)
resp. B

Quantum-theoretically, the simplest and most rstassumption seems to be to
replace the relations (3, 4) with the following ene
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By(n,n-HermnAt= i A(n, n-a)2A(n-a, n- ) &t 7)
or )
= j da2(n, n-a)A(n-a, n=F) &AY (8)

resp., and indeed this type of combination will ibgplied almost inevitably by the
combining relations of the frequencies. If one ggmkhe assumptions (7) and (8) then
one will also recognize that the phases of the gumaitheoreticakl have just a great a
physical meaning as the ones in the classical yhemly the starting point in time, and
therefore a phase constant that wouldcbemmmonto all 2, is arbitrary and physically
meaningless. However, the phases ofitldévidual 2l enter essentially into the quantity
B (). A geometric interpretation of such quantum-tietioal phase relationships in

analogy with then ones in the classical theory seleandly possible.
If we further ask what the representative of thergity x (t)*> would be then we
would find with no difficulty:

Classicall

+00

=S S A MAMA,, (1) ©)

a=-cw f=-c0

Quantum-theoretically

+00 +00

cmn-p=> > A, (nn-a)A,(n-a,n-a-B)Y,, ,(n~a-B,ny), (10)

a=—o ff=—c0

or the corresponding integrals, resp.

All quantities of the fornx (t)" can be represented quantum-theoretically in alaimi
way, and when any function is givéfx (t)], one can obviously always find the quantum-
theoretical analogue when that function can be ldpee in power series i However,
an essential difficulty will arise when we consideo quantitiesx (t), y (t) and ask what
the produck (t) y (t) would be.

Let x (t) be characterized B andy (t) be characterized B8, so the representation

of x (t) y (t) would be:
Classicall

o= 1,0, (1)

() Cf., alsoH. A. Kramers andW. Heisenberg loc. cit. The phases enter into the expressions for the
induced scattering momentum in that article in an essevdial
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Quantum-theoretically

cC(nn=-p = i A, (n,n-a)B(n-a,n-L).

Whereas classically(t) y (t) is always equal tg (t) x (t), this does not need to be the
case in quantum theory, in general. In specigsase.g., when one formst) [k ()% —
this difficulty will not arise.

If one is dealing with expressions of the form:

v(t) v(1),

as in the question that was posed at the beginoirtpat paragraph, then one should
replacevv with (vv+v\)/2 quantum-theoretically, in order to succeed in mgkiv
appear as the differential quotientwot / 2. In a similar way, one can probably always
give quantum-mechanical mean values in a natural, wehich will generally be
hypothetical to a higher degree than formulas (d) (&).

Apart from the difficulty that was just describefdymulas of type (7), (8) must
generally be satisfied in order for one to alsoregp the interaction of electrons in an
atom in terms of the characteristic amplitudeshefelectrons.

§ 2.— With these arguments, which have the kinematicguantum theory as their
subject, we now go on to the mechanical problentsichware directed towards the
determination of(, v, W from the given forces of the system. In the thagy to now,

that problem is solved in two steps:
1. Integrate the equation of motion:
X +f(x) =0. (12)

2. Determine the constant for periodic motion from
¢ pda= fmxdx =J (= nh). (12)

When one sets out to construct a quantum-theatatieory of mechanics that is as
analogous as possible to the classical one, itdvprdbably be reasonable to adapt the
equation of motion (11) to the quantum theory diyecin which it would only be
necessary — in order to not depart from certaiddmmental facts about quantities that are
unobservable, in principle — to replace the questitk, f (X) with their quantum-
theoretical representatives. In the classicalrhabis possible to look for the solution of
(11) by the Ansatz of expandinginto a Fourier series (Fourier integral, resp.)hwi
undetermined coefficients (and frequencies). Wk generally obtain infinitely-many
equations in infinitely-many unknowns (integral atjons, resp.) that can be converted
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into recursion formulas for th# only in special cases. However, in quantum theory, we

are tentatively dependent upon this kind of solution to @iti¢e, as we discussed above,
none of the functiong (n, f) can be defined to be an analogous quantum-theoretical
function.

This has the consequence that the quantum-theoretioibecof (11) can be carried
out only in the simplest cases, at first. Before wanyo those simple examples, let us
derive the quantum-theoretical determination of the emigtom (12). We thus assume
that the (classical) motion is periodic:

x= > a,(ne*"; (13)
one then has:

mx=m>_ & (n) 0w, é*

and

$mxdx=pm¢ dt= Zmi a(Na,(na’w,.

a=—o0

Since one further has, (n) = a,(n) (x shall be real), it will follow that:

$ms¢ dt= 2nm§|an(n)|zazwn. (14)

a=—o0

Up to now, one mostly sets that phase integral is gquailvhole number multiple of

h, and thus tan 0Oh. However, such a condition is not only very consing of the
mechanical calculation, it also seems arbitrary, i@ sense of the correspondence
principle, from the standpoint that has been taken upwo Mnalogously, thd are only
established up to an additive constant as whole-numbeiptaslofh, and in place of
(14), one will naturally find:

d d ,

OIn(n h) dnﬁﬁmx2 dt ;
that is:

h=27mm Eli a%(a an O ag ). (15)

a=—o

Such a condition generally establishes tealso only up to a constant, and
empirically this indeterminacy will give rise to diffities in the appearance of half-
integer quantum numbers.

If we ask whether there is a quantum-theoreticaltioglabetween observable
guantities that corresponds to (14) and (15) then thatowdé more restore the missing
uniqueness in its own right.
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Indeed, it is only equation (15) that possesses a simpéntum-theoretical
conversion{) that is connected witkramer s dispersion theory:

h = 477m i {la(n,n+a)f wmn n+a)-lamn-af wnn-a) (16)

a=0

but this relation suffices to determine theuniquely here, anyway. The initially-
undetermined constant in the quantiteesvill be established in its own right by the
condition that there should be a normal state frolniciv no more radiation can take
place. Let the normal state be denoteddyguch that:

a(np,n—a)=0 (for alla > 0).

The question of half-integer or integer quantizationushdherefore not arise in a
guantum theory of mechanics that employs only relati@teeen observable quantities.

Equations (11) and (16) together, when they can be soleedaic a complete
determination of not only the frequencies and energiesalbatthe quantum-theoretical
transition probabilities. However, the actual mathéaatmplementation of that can be
achieved only in the simplest cases, for now. A speoiaiplication also arises for many
systems (such as, e.g., hydrogen atoms) in such a wayothat &f the solutions will
correspond to periodic motions, while others will cquoew to aperiodic ones, which has
the consequence that the quantum-theoretical serieq8)/)and equation (16) will
always split into a sum and an integral. Quantum-iaeiclally, a split into “periodic and
aperiodic motions” cannot generally be performed.

Nonetheless, one can perhaps regard equations (11) andt(B&st, in principle, as
a satisfactory solution of the mechanical problem whenaameshow that this solution
coincides with (does not contradict, resp.) the quanheurttical relationships that are
known up to now, and therefore that a small perturbaifom mechanical problem will
give rise to additional terms in the energies (fregiesnecesp.) that correspond to just the
expressions thakKramers and Born found, in contrast to the ones that the classical
theory would deliver. One must further examine whethegeimeral, equation (11) also

corresponds to an energy integain ¥ + U (X) = const. in the quantum-theoretical

picture that is proposed here and whether the energyotitagied (similarly to what is
true classically = 0W/ 0J) satisfies the conditioAW = h [. A general response to that
question could first exhibit the intrinsic connection betwehe quantum-mechanical
attempts up to now and lead to quantum mechanics that congqudy operated with
observable quantities. Except for a general relatiomvdsn Kramer’s dispersion
formulas and equations (11) and (16), we can answer theansegiat were posed above
only in the entirely specialized cases that can be ddlyea simple recursion.

That general relationship betwe&mamer’s dispersion theory and our equations
(11), (16) consists of the fact that it follows from egpm (11) (i.e., its quantum-
theoretical analogue), just as it does in the classierlry, that the oscillating electron
behaves like a free electron compared to light, whishnmach shorter wave lengths than

() This relation was given already on the basis ofatresideration of dispersion By. Kuhn, Zeit.
Phys.33(1925), 408, andhomas, Naturwiss13(1925).
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all of the eigen-oscillations of the system. Thasuit also follows fronKramers’s
theory when one considers equation (16). In tacdmers found that the moment that is
induced by the wave cos 2w t:

M:eZEcosmvtDEZ

a=0

la(n,n+a)fv (n,nta) |a(nnma)iv (nra
vi(n n+a)-v? vi(nna)-v? ’

and thus fow > v (n, n + a):

_wi{la(n n+a)fv(nma)-| dnra)fv(nra),

M=
v2 h e~

which goes to:
_e’Ecos 2wt

M =
v [Arm

due to (16).

8 3. — As the simplest example, we shall treat the ambaic oscillator in what
follows:

X+ af Xx+A X = 0. (17)
Classically, this equation can be satisfied byAagsatz of the form:
X=Aay+a coswt + A aycos wt + A2azcos It + ... +Ar " a,cost wt,
in which thea are power series iA that begin with terms that are free Af We shall
attempt to make an analogous quantum-theoreticsht#xrand represexty terms of the
form:
Aa(n, n), a(n,n—1) cosw(n,n—1)t, Aa(n, n-2) cosw(n,n—-2)t,

.., A7 a(n, n-1) cosw(n, n-t, ...

From equations (3), (4) [(7), (8), resp.], theurson formulas for the determination
of thea and w(up to terms of ordet) read:
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Classicall

aéao(n)+¥=0,
-+ =0,

2
(—4af+w§)ag(n)+—aién) =0, (19)
(-9 +af )ay(n)+ a 8, =0,
Quantum-theoretically
a’(n+L,n+a&(nn1)
of ay(n) + > =0,
- (n,n-1)+af=0,
(= (N, n-2)+ 2 ) a(n, - 2)+ a(n,n-1) a2(n—1, n-2)_ 0, (29)
(—a(n,n-3)+a )a(n, n-3)+ a(n, n—1)a2(n—1, n- 3)+ annm2) ;( r2 R 3):0,
The quantum condition:
Classical § = nh)
_ d <& elafw
1=2mrm— 2
"waT
Quantum-theoretically
h:ﬂmi la(n+r,n)Fwh+r,n-lah,n-1F wh n-1)]
=0
must be added to this.
In the first approximation, this implies that:
az(n), a?(n,n— 1), resp., w, (20)
7may,

classically, as well as quantum-theoretically.

Quantum-theoretically, the constant in (20) cande&ermined in such a way that
a(no, np — 1) should be zero in the normal state. If weber then in such a way that
equals zero in the normal state -ns& 0 — then it will follow that:
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nh

a®(n,n-1)= .
may

It then follows from the recursion equations (18) thahe classical theorg; (in the
first approximation i) will have the formk (7) n”' %, wherex (7) represents a factor that
is independent af. In quantum theory, (19) implies that:

(21)

in which « (7) represents the same proportionality factor that is inubbgrg of n.
Naturally, for large values of, the quantum-theoretical value af will go to the
classical one asymptotically.

For the energy, it is reasonable to try the clabginaatz:

which is also actually quantum-theoretically constim the approximation that we are
calculating in here, and from (19), (20), (21witl have the value:

Classicall

w= nha (22)
2

Quantum-theoretical [from (7), (8)]

1
W:(n+§) h&)o (23)
2ir
(up to quantities of ordet?).
In this picture, the energy cannot be represebyettiassical mechanics” [i.e., (22)],
even for the harmonic oscillator, but it will hatee form (23).
The more precise calculation in the higher appnation inW, a, w shall also be
carried out in the simplest example of the anhaimoscillator of the type:

X+af x+ A =0,
Classically, one can set:

X = a; Coswt + A ag cos 2wt + A° a5 cos Fut + ...

here, and analogously, one can try the quantum-amécdl Ansatz:
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a(n,n—1) cosw(n, n— 1)t, Aa(n, n-3) cosw(n, n—3)t,
The quantities are once more power serieslinvhose first terms have the form:

n!
(n-1)!’

ainn-0=«(1

as in (21), which one will obtain by calculating the eauet that correspond to equations
(18), (19).

If one performs the calculation af a from (18), (19) up to the approximatidf (/,
resp.) then one will get:

2nh 3h?

— 2
a)(n,n—l)-ab+)l|]m AN GZSGT @m +7)+ ..., (24)
_|_nh (., 3nh ) 3n’
a(n-1)= nwom[l AlGITwS m j A 25604 M7 (29)
N h? AN 39(n- 1)h
a(n,n-23) 32\/773%7rnan(n D(n 2)[1 A— 277a§m j (26)

The energy, which is defined to be the constam te:
X XX
m—+ maf —+— X
2 w§ 2 4

(I cannot generally prove that the periodic termesactually all zero, but that was true for
the terms that | calculated), yields:

(n+1) hay (I’12+ n+3) H 5 h® ( 51 , 59 ZJj
W= — —n+—|. (27
o ﬁswagm A e T ) @)

One can also calculate this energy from Kramers-Born procedure when one
regards the termnmi) / 4) x* as a perturbation terms to the harmonic oscillatGne
actually comes once more to the precisely the rg&ul), which seems to be to be a
remarkable vote of confidence for the basic equatiof quantum mechanics.
Furthermore, the energy that is calculated fronm) {@ffills the formula [cf., (24)]:

w(n,n— 1)

> E[W (n) -W(n-1)],
T
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which is likewise to be considered as the necessarditaom for the possibility of
determining the corresponding transition probabilitiesnfrone of equations (11) and
(16).

In conclusion, let us cite the rotator as an exampte rafer to the relationship
between equations (7), (8) and the intensity formulaghe Zeeman effect)(and for
multiplets £).

Let the rotator be represented by an electron that @daitend a nucleus atcanstant
distance. The “equations of motion” then say (cladgicas well as quantum-
theoretically) only that the electron at a constdistancea describes a uniform planar
rotation around the nucleus with the angular velocity From (12), the “quantum
condition” (16) implies that:

h="9 2mm & o,
dn
and from (16):
h=2mm{a? wn + 1,n) - a® w(n, n— 1)},

from which it will follow, in both cases, that:

w(n,n-1) :—h qun;;?St').

The condition that the radiation should vaniskhe normal staten{ = 0) leads to the
formula:

hh
wh,n-1)=—. 28
( ) 2mma’ (28)

The energy will be:
W= mvz,
2
or, from (7), (8):
m (nn-1)+a’(n+1,n) h?

W:—azﬂw2 = n>+n+1), 29
2 2 8n2ma2( 2) (29)

which again satisfies the condition tlat{n, n— 1) =2T7T[W (n) =W (n-1)]. As support

for the formulas (28) and (29), which deviate frdme usual theory up to now, one can
consider that according tkratzer (°), many band spectra (also ones for which the
existence of an electron impulse is improbablejrs&® demand formulas of type (28),
(29) (which one has sought to explain in the ctadsmechanical theory by the use of
half-integer quantization, up to now).

() Goudsmit andR. de L. Kronig, Naturwiss13(1925), 90H. Honl, Zeit. Phys31 (1925), 340.

() R. de L. Kronig, Zeit. Phys31(1925), 885A. SommerfeldandH. Hénl, Sitzber. d. Preuss. Akad.
(1925), 141H. N. Russel] Naturel15(1925), 835.

() Cf., e.qg.B. A. Kratzer, Sitzber. d. Bayr. Akad. (1922), 107.
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In order to arrive at th@oudsmit-Kronig-Honl formulas, we must leave the domain
of the problem with one degree of freedom and assumehé&abtator, which has any
direction in space, performs a very slow precessi@mound thez-axis of an external

field. The quantum number that corresponds to that piecegsll be calledm. The
motion will then be represented by the quantities:

z:a(n,n-1;m m) cosw(n, n- 1t,
X+iy :b(n, n—1;m m—1)gl@mn=-brlt

b(h,n—1;m—1,m) el @D+t

The equations of motion read simply:
X +y +7 =a%
which, from (7), gives rise to the equatiofs (

ia®(n,n—1;mm) +b*(n,n—1;m m—1) +b* (n,n—1;m, m+ 1)
+1a® (n+1,n;m m) +b* (n—1,n; m—1,m) +b? (n+1,n; m+1, m)} = &, (30)

za(n,n-1Immam-1,n-2;m m)
=b(n,n-1;mm+1)b(h-1,n-2;m+1,m)
+b(n,n—-1;mm-1)b(h-1,n-2;m-1,m). (31)

From (16), the quantum condition:

2mrm{b*(n,n—1;m m-1)w(n, n—1)-b*(,n—1;m-1,m) w(n, n-1)}
= (m+ const)h (32)
must be added to this.
The classical relations that correspond to thesetieqsa

s b+, =
38 =bh, (33)
2rrm (I, — i) = (m+ const)h

suffice to establish the, by, b-; uniquely (up to the undetermined constant nexmh)to
The simplest solution of the quantum-theoreticpiations (30), (31), (32) that one
can offer reads:

(n+m+1)(n+
4(n+1)n

b(n,n—l;m,m—l):a\/

() Equation (30) is essentially identical to Bmstein-Burger sum rules.
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(n—-m)(n—- m+1)
4(n+1)n

b(n,n—-1,m-1m) = a\/

(n+m+1)(n+ m
4(n+1)n

b(n,n—l;m,m—l):a\/

(n+m+L(n—-m
(n+1)n '

a(nn—-1,mm) = a\/

These expressions agree with the formulasGoiudsmit, Kronig, and Honl.
However, one not simply accept that these expressapmesent thenly solution of (30),
(31), (32) — which seems to be likely when one obsetwedoundary conditions (viz.,
the vanishing of, b on the “boundary”; cf., the cited paperskibnig, Sommerfeld
andHonl, Russel).

An argument that is similar to the one that wasegre=d here will also lead from the
intensity formulas for the multiplets to the resthiat the stated intensity rules are
consistent with equations (7) and (16). This result, in,taan serve to support the
validity of the kinematic equation (7).

Whether a method for the determination of quantum-theatedata from relations
between observable quantities like the one that wasopeap here can already be
regarded as satisfactory, in principle, or whether thetthod represents only one more
much-too-bold attack on the problem of formulating a quartheuretical mechanics
(which is clearly quite physically difficult, from theutset) will first be clarified by a
deeper mathematical examination of the method that wedoged very superficially
here.
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