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On discontinuous fluid motions

By
H. Helmholtz

Translated by D. H. Delphenich

It is known that the equations of hydrodynamics yieldcizely the same partial
differential equation for the interior of an incommide fluid that is not subject to
viscosity and whose particles possess no rotationalonmotihat exists for stationary
currents of electricity or heat in conductors of unifammmductance. One can thus expect
that the form of the currents of a drop-forming fluicgagticity, and heat should be the
same for the same form of the space that is floweolutfh and the same boundary
conditions, up to small differences that would depend upgplementary conditions.
However, in reality, easily-recognizable and very coiigeldifferences exist between
the distribution of current in a drop-forming fluid andat of the aforementioned
imponderables in many cases.

Such differences, in fact, prove to be quite striking mtiee current enters a larger
space through an opening with sharp edges. In such casesetimalines of electricity
will radiate from the opening the same way in all dicewt, while a streaming fluid (e.g.,
water or air) will initially move forwards from thepening in a compact jet and then
resolve into vortices at a lesser or greater digtdrmm it. By contrast, the part of the
fluid in the larger container that lies close to tigening, but outside of the jet, can
remain almost completely at rest. Everyone knowsiatimat kind of motion, as an air
current that is impregnated with smoke will show quiguitively. In fact, the
compressibility of air does not come under consideratorihese processes in an
essential way, and air will thus exhibit the same fofrmotion as water with only minor
deviations.

From the large deviations between reality and thetsesifiktheoretical analysis up to
now, the hydrodynamical equations of the physicists m&sin to be a very incomplete
approximation to reality in practice. One would like topges that the root cause of that
situation lies in the internal viscosity of the fluidthaugh there are all sorts of strange
and jump-like irregularities that everyone must struggléh waind which are imposed
upon fluid motions by observations that cannot be explaingtidbyiscosity, which acts
continuously and uniformly, in any event.

The examination of the cases in which periodic motaresexcited by a continuous
air current — as, e.g., in organ pipes — allowed me lieveethat such an effect can be
provoked only by a discontinuous kind of air motion (édeast, something of a closely-
related nature), and that led me to search for a condiiat must be considered in the
integration of hydrodynamical equations, and has thus b&erlooked (as far as |
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know). By contrast, by considering it in those casesre/hcalculations can be
performed, one will, in fact, deduce forms of motiontthh@ have observed in reality.
That is the case at hand.

In the equations of hydrodynamics, the velocities andspresof the streaming
particles are treated as continuous functions of thedewaies. On the other hand, there
is nothing in the nature of a drop-forming fluid, when wa&sder it to be completely
fluid (and thus, not subject to viscosity) for sayingtttwo fluid layers that lie next to
each other cannot slide past each other with finitecugs. At the very least, the
properties of fluids that are considered in the equstadrhydrodynamics — namely, the
constancy of mass in every spatial element and the equdlithe pressure in all
directions — obviously define no impediment to saying tagential velocities of a finite
absolute difference cannot exist on both sides of a sutfaat extends through the
interior. By contrast, the components of the velesitthat are perpendicular to the
surface and the pressure must naturally be the same lorsibes of such a surface. In
my paper on vortex motions){ | have already pointed out that such a case musiroc
when two previously-separate and differently-moving mas$egter come into contact
at their outer surfaces. In that paper, | was led tadneept of aeparation surface or
vortex surfaceas | called it there — in such a way that | thoughtarstex filaments as
being distributed continuously along a surface whose n@ads de vanishingly small
without its rotational moment vanishing.

Now, a fluid that is initially at rest or moving continugly can produce a finite
difference from the motion of the immediately-neighbg fluid particles only by means
of moving forces that act discontinuously. Thus, amoagittiernal forces, only impacts
will come under consideration.

However, a source that can generate discontinuitiése motion is also present in
the interiors of fluids. Namely, the pressure care@tlassume any arbitrary positive
value, and the density of the fluid will always vary womously with it. However, a
discontinuous variation in the density will come abous@sn as the pressure passes the
value zero and becomes negative; i.e., the fluids \wikpart.

Now, the magnitude of the pressure in a moving fluid depepds the velocity, and
indeed the reduction of the pressure in incompressible fluillbe directly proportional
to thevis vivaof the moving water patrticle, all other things being equBhus, if the
latter exceeds a certain magnitude then, in fact, trespre must become negative and
the fluid must tear apart. At such a place, the acathg force (which is proportional to
the differential quotient of the pressure) will obvioubgcome discontinuous, and will
thus fulfill the condition that is necessary in orftera discontinuous motion of the fluid
to come about. The motion of the fluid past such aeptan happen only in such a way
that a separation surface is defined from there onward.

The velocity that the tearing of the fluid must induge¢hen one that the fluid must
assume when it flows into the empty space under tesyre that the fluid would have in
the rest state at the same position. In generalighatrelatively appreciable velocity.
However, it should probably be pointed out that if thepdiorming fluid is to flow
continuously like electricity then the velocity at astyarp edge around which the current
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bends must become infinitely largd.( It follows from this thatany geometrically
complete sharply-defined edge at which fluids flow past must &wsf ftom the most
typical velocity of the remaining fluid and define a separation surfdgg.contrast, at
incompletely formed, rounded edges the same thing will écstur at certain large
velocities. Pointed projections on the wall of @aitn channel must have similar effects.

As far as gases are concerned, the same situatibbevtilue for them that is true for
fluids, except that theis vivaof the motion of a particle will not be directlygmortional
to the reduction of the pressupebut with consideration given to the cooling of thels
its expansion, to the decreasepdf wherem= 1 — 1 /) and y means the ratio of the
specific heat at constant pressure to the specificdteainstant volume. (For the air in
the atmosphere, the exponenthas the value 0.291.) Since it is positive and @al,
like p, can decrease only to zero for high values of the \g|cand not become negative.
Things would be different if the types of gas simpljofwed Mariotte’s law and suffered
no change in temperature. The quantitypogould then enter in place pf', which can
become negatively infinite withoyt having to become negative. A tearing of the air
mass would not be necessary under that condition.

One becomes convinced of the actual existence of suatntisgities when one lets
a jet of smoke-impregnated air emerge from a round openiagylindrical tube with a
moderate velocity in such a way that no sputtering srisdJnder advantageous
circumstances, one can obtain thin jets of the kind dfaaeter in a longitude with
several feet. Inside of the cylindrical outer surfate air is then in motion with a
constant velocity, while outside of it, the air doet move at all, or only slightly, in
close proximity to the jet. One also sees this shapgargtion very clearly when one
directs a calmly-flowing cylindrical jet of air throughethip of a flame, from which, it
then cuts out a precisely-delimited piece, while tist o€ the flame remains completely
undisturbed, and at most a very thin lamella that correlgpto the boundary layers that
are influenced by friction will be carried along somewhat.

As far as the mathematical theory of these motism®ncerned, | have already given
the boundary conditions for an internal separation ser¢dahe fluid. They consist of
saying that the pressure must be the same on both sitles sdrface, and likewise for
the component of the velocity that is directed nortoalhe separation surface. Now,
since the motion in the entire interior of an inconspiiele fluid whose particles have no
rotational motion will be determined completely when thetiomo of its entire outer
surface and its internal discontinuities are givers, only a matter of establishing the rule
for the motion of the separation surface and the ggwin the discontinuity on it for an
externally-fixed fluid boundary.

Now, such a separation surface can be treated maibaliya¢xactly as if it were a
vortex surface— that is, as if it were continuously filled with vex filaments of
infinitely-small mass, but finite rotational momerih each surface element, there will be
a direction along which the components of the tangemcities can be taken to be
equal. At the same time, it will give the direction thle vortex filament at the
corresponding place. The moment of that filamenseas to be proportional to the
difference that the components of the tangential W&dscthat are perpendicular to it
exhibit on both sides of the surface.

() At the very small distancg from a sharp edge whose faces come together at the anthe
velocity will become infinite likgp™, wherem= (n—4g / (2n — 3.
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The existence of such vortex filaments is a mathiealdiction for an ideal, inviscid
fluid that integration will alleviate. In a real faiithat is subject to viscosity, that fiction
will rapidly become a reality when the boundary p#ticare set into rotation by friction,
and thus vortex filaments of finite, gradually-decreasiagsas will arise there, while the
discontinuity in the motion will become simultanelyusalanced out by it.

The motion of a vortex surface and the vortex filataethat lie in it is to be
determined by the rules that were established in my papewootex motions.
Admittedly, the mathematical difficulty in that problezan be first overcome in some of
the simpler cases. By contrast, in many others;as®e can at least infer the direction of
the variations that will occur from the given wayladking at things.

In fact, it should be mentioned that according to the ldas were proved for the
motions of vortices, the filamentsand with them, the vortex surface — do not arise in
the interior of an inviscid fluid, and cannot vanish, kather, each vortex filament must
constantly maintain the same rotational moment. heéantore, one has the fact that the
vortex filament along a vortex surface itself swifoswvard with a velocity that is the
mean of the velocities that exist on the two sidew@fsurface. It follows from this that
a separation surface can always lengthen only in the direction along wiecstronger
of the two currents that contact it is directed.

| then sought to find examples of separation surfacegtionary currents that exist
unchanged and for which the integration can be performedder to test whether the
theory yields forms of current that correspond to expegebetter than when one leaves
the discontinuity of the motion unconsidered. Ifeparation surface that divides calm
and moving water from each other is to remain statyotien the pressure along it must
be the same in the moving part as it is in the calm foarty which, it will follow that the
tangential velocity of the water particles must bestamt along the entire extent of the
surface; the same must be true for the density offithiéious vortex filament. The
beginning and the end of such a surface can only lie on #fleofvthe vessel or at
infinity. When the former is the case, it must tamgent to the wall of the vessel,
assuming that it is curved continuously there, since ¢dhgonent of the velocity that is
normal to the wall of the vessel must be equal to zero.

Moreover, as experiment and theory consistentlyalgwbe stationary forms of the
separation surfaces are distinguished by a strikingliy diggree of variability for the
most insignificant currents, such that they will maimtéodies that are in a state of
unstable equilibrium somewhat similarly. The astougdiansitivity of a cylindrical jet
of air that is impregnated with smoke to sound has alréadn described biyndall |
have confirmed the same thing. This is obviously a propdrthe separation surface
that has the greatest importance for the blowing of \elsist

The theory reveals that everywhere that an irreguls defined on the outer surface
of an otherwise stationary jet, it must lead to a pFsgive spiral unrolling of the part of
the surface in question (slipping away elsewhere ondt)e jThis striving for spiral
unrolling of that current is, moreover, easy to discerritie observed jets. According to
the theory, a prismatic or cylindrical jet can benitély long. In fact, such a thing
cannot be exhibited, since small currents can never toénatied completely in a moving
element that is as light as air.

It is easy to see that such an infinitely-long cyliodrijet that emanates from a tube
of corresponding cross-section into an externalflati rest and contains fluid moving
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with a uniform velocity that is everywhere parall@ its axis corresponds to the
conditions of the stationary state.

Here, | would only like to sketch out the mathemattcaatment of a case of the
opposite kind, in which the current flows from an oppace into a narrow channel, in
order to also simultaneously give an example of a aaebly which some problems of the
theory of potential functions can be solved that previoastgted complications.

| restrict myself to the case in which the motioststionary and depends upon only
two rectangular coordinates y, and in which no rotating particles are present in the
inviscid fluid from the onset, so no such particles ¢temtbe formed either. If we denote
the velocity component of the fluid particle thafasind at the pointx, y) and is parallel
to x by u and the one parallel oby v then, as is known, one can find two functionx of
andy in such a way that:

p-d2_
dx dy )
=90 _
dy dx’

The condition that the mass in any spatial elenrenbe interior of the fluid must
remain constant will also be fulfilled immediately a result of these equations, namely:

dudv_d &P &Y dy
oy dy  de ay Y (1a)

The pressure in the interior will efor constant density, and if the potential of the
external force is denoted Mythen it will be given by the equation:

g 3]zl e

(= const.

The curves:

are the streamlines of the fluid, and the curves:
@ = const.

are orthogonal to them. The latter will be thevewsrof equal potentials when electricity
flows in a conductor of constant conductance, oraetemperature, in the case of heat.

It follows from equations (1) as an integral egquathat the quantity + (/i can be a
function ofx +y i (wherei = \/—_1). As a rule, the solutions that were found praslg
can be expressed as a sum of terms that are thesdahctions ok andy. However,
conversely, one can also consider y i to be a function o + (i and develop it. For
the problems of currents between two fixed wallss constant along the boundaries, and
if one representg andy as rectangular coordinates in a plane then one lonistfor the
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functionx +y i in a strip in that plane that is bounded by two paraltaigdtt linesy = ¢,
and ¢ = c; that correspond to the equations of the wall on the adgethat it assumes
given discontinuities in the interior.

One case of this kind is obtained when we set:

x+yi=A{g+yi+e™ (2)
or
x=A¢ +A & cosy,
y=Apy+Aesiny.

y will be constant for the valueg =+ 77 and:
X=Agp-—Ad.

If @ runs from— o to + o thenx will simultaneously run from « to —A and then
back to— o . The stream curveg = + rwill then correspond to the flow along two
straight walls for whicly = + A 7z andx runs betweer o and —A.

If we considery to be the expression for the stream curves then equé) will
correspond to the current from a channel that is boubhgetivo parallel planes into
infinite space. However, on the edge of the channelravhe — A andy =+ A 77 and
one has:

$=0 and y=x1m

(&) (&)=
dg) \dg)
(%jz =+ [%jz =00

dx dy '

Electricity and heat can flow in that way; howevenmforming fluids must tear apart.
Should stationary separation lines emanate from the @&dipe channel, which will

naturally be continuations of the streamlings + rthat run along the wall, and should

one find rest outside of these separation lines thatdodlie flowing fluid, then the

pressure on both sides of the separation lines would habe tihe same. That is,
according to (1b), one would need to have:

[%jz +[%j = const. (3)
dx dy

moreover, one will have:

SO:

along those parts of the lings= £ 7rthat correspond to the free separation lines.
Now, in order to maintain the basis for the motioatt thhas given in equation (2), we
add another terrr+7i to the expression for+y i above that is likewise a function gf

+ i
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We will then have:

x=Ap+ Ad cosy +0, (3a)
y=Ay+ Ad sing +r,
and we must determing+r7i in such a way that we will have:
2 2
A- A€ Ldog L far) const.
d¢ dg
along the free part of the separation surface, wigere: 7z
This condition will be fulfilled when we set:
do =0 or O = const. (3b)
d¢
and
g_; = +AJ2¢ - & (3c)
in it.

Since ¢ is constant along the wall, we can integrate #s équation ovep, and
convert the integral into a function @f +¢ i when we replace with ¢ + i (¢ + 7)
everywhere. For a suitable determination of tlhegration constant, we will get:

o+ri = Ai {\/—Zewi - 4 2arcsir{% v )’2}}. (3d)

The branch points of this expression lie wheh®' = - 2, that is, where/=+ (2a + 1) 7

and ¢ = log 2. Thus, none of them lie inside the indéfvom ¢y = + mto Yy =— The
functiono+ri is continuous here.
Along the wall, one will have:

o+Ti =+ Ai {«/ 2e’ — &’ —2arcsir{% 4’2}}.

If ¢ <log 2 then this value will be pure imaginary, e 0, whiledr / d¢ will take
on the value that is prescribed in (3c) above. t Paat of the linegy = £ rwill then
correspond to the free part of the jet.

If @ >log 2 then the expression will be real, up ® shmmands Aisrthat are added
to the value ofri (y i, resp.).

Equations (3a) and (3d) will then correspond ®ftbw from an unbounded reservoir
into a channel that is bounded by two planes wkadth is 4A7; and whose walls reach
fromx=—-ootox=—A (2 -log 2). The free separation line of theatmang fluid will
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curve slightly from edge of the opening towards a sideishapposite to the positive
where it attains its largestvalue for¢g = 0,x = - Aandy =+ A (377 + 1), in order to

then turn into the interior of the channel, and fynabymptotically approach the two
linesy = + A7z such that ultimately the width of the flowing jet islypone-half that of the
channel.

The velocity along the separation surface and attthgt end of the flowing jet is 1
[ A. Along the fixed wall, and in the interior of theifluit is everywhere smaller than 1 /
A, such that this form of motion can take place for aagmitude of flow velocity.

| emphasize that this example, in fact, shows thatform of the fluid current in a
tube can be determined from the form of the initial plangvery long extents.

Appendix concerning electrical distributions. If one considers the quantity in
equation (2) to be an electric potential then one visthn the distribution of electricity
in the vicinity of the edge of two planar and closely-gplplates, assuming that their
separation can be considered to be vanishingly small nmpagson to the radius of
curvature of their edge curves. That gives a very sirspletion to the problem that
Clausius(®) treated. Moreover, one obtains the same distributfoelectricity that he
found, at least, to the extent that it is independertteottrvature of the edge.

| would like to add that the same method suffices to &fsd the distribution of
electricity on two parallel, infinitely-long, planastrips whose four edges define the
corners of a rectangle in the cross-section. Iterp@tl functiony will be given by an
equation of the form:

1

= A heB L
X+yi=A(g+yi)+ R @00

(4)

whereH(u) denotes the function thdacobideveloped ifFundamenta novgop. 172) as
the numerator of simm u With the notation that one finds there, thepsthat it
occupies corresponds to the valugs + 2 K, such thatx = + 2 AK yields the half-
distance of the strip, while the ratio of the cans$ A andB depends upon the width of
the strip.

The form of equations 2 and 4 is revealed in saclay that¢g and ¢ can be
expressed as functionsxandy only as especially complicated series developments
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