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FOREWORD 
 

 The present work is the result of an effort that was undertaken to bring about an initial 
development of a question that has remained with no clear answer, even up to relatively 
recent times. 
 Chronologically, an experimental difficulty has been its point of departure.  For a 
decade, I have been forced to measure the couples that a circularly-polarized wave can 
exert on matter directly.  In those experiments, a circular wave that issued from a Fresnel 
parallelepiped crossed a half-wave or quarter-wave layer (lame) and left it inverse-
circularly or rectilinearly polarized.  Under those conditions, one would expect to exhibit 
a couple that the layer is subjected to that would be equal to 2P / ω in the former case and 

P / ω in the latter one, where P is the power that is carried by the wave, and ω is its 

pulsation.  The extreme smallness of the predicted couple will render the experiment 
difficult and its results indecisive, so a lack of time and adequate means have obliged me 
to defer a realization of that experiment.  In the meantime, a doubt was born in my mind, 
which quickly dissipated, moreover.  The principle of indeterminacy that was just stated 
makes the pursuit of some research chimerical − for example, the research that consists of 
exhibiting the spin of an electron by a method that is analogous to the one that Stern and 
Gerlach used for atoms.  Should one not fear that some advanced consequence of the 
principle of indeterminacy might show the vanity of any experimental effort that was 
directed along those lines?  Nonetheless, I can interpret an indirect experiment whose 
basic principle I shall describe at the end of this work as something that proves the 
observable character of light couples. 
 On the other hand, I have the very strong sentiment that it is necessary to subject the 
theoretical arguments that are invoked in order to predict such couples to an examination 
and a complete, critical revision.  Indeed, those arguments lack coherence, and their 
deduction from the classical equations of electromagnetism is so indirect and so unnatural 
that it is impossible to escape the impression that the method that is utilized in the course 
of those arguments must be made more precise, if not corrected. 
 The better part of this monograph is devoted to an effort along those lines that is 
purely deductive and uses only the classical equations of Maxwell with no necessity for 
any supplementary hypothesis of a theoretical nature, and that will give its conclusions a 
certain degree of certainty.  As for the interest that such an effort might present, one must 
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not forget that, thanks to the correspondence principle, the results of classical 
electromagnetism retain all of their importance in the context of quantum theories.  
Despite it all, should one hope to find something in a realm that is as well-examined as 
classical electromagnetism that has not been seen clearly already and would also be of 
some interest?  The conversations that circumstances have led me to carry on with 
Lorentz and the most knowledgeable theoreticians show clearly that they felt that the 
answer to the problem that had been posed was unclear and required more work. 
 On 19 December 1790, a forgotten physicist named Vassali, who was a contemporary 
of Volta, read a paper to the Turin Academy of Sciences on some experiments with 
electricity that began with these words: “After much research and many experiments that 
were preceded and followed by the deepest examination, electrical science seems to have 
reached its highest point of perfection.  That would seem almost ridiculous to the 
common minds that have to deal with it, moreover, except that nature is hidden in its 
progress.”  That citation reminds us that we must never jump to conclusions in the 
answers that one gives to the questions that are posed by science. 
 
 

___________ 



 

CHAPTER I 
 

Statement of the problem 
 

 1. Moments of the first and second kind. – When the electromagnetic theories of 
light are substituted for Fresnel’s elastic theories, most of the facts that are predicted by 
them will find a pre-existing framework and a well-adapted terminology in them, as well 
as an entirely natural explanation.  Meanwhile, one must point out an important 
exception: The theory of elasticity easily predicts that when a plane, elliptic wave with 
semi-axes a and b propagates in the z direction inside of an isotropic solid, it will 
transport an impulse moment flux Cz along the z-axis and an energy flux Σz , and the ratio 
of the one to the other will be given by: 
 

(1)      z

z

C

Σ
= 

2 2

1 2ab

a bω +
. 

 
 Is it possible to transpose that theorem into the context of electromagnetism?  One 
can define an impulse density g in electromagnetism.  Most authors up to now have 
referred to the vector product: 
(2)      λλλλ = [r ⋅⋅⋅⋅ g], 
 

in which r  = OP
����

, where P is the point where one calculated the density, by the name of 
the density of the impulse moment with respect to a point O.  Now, in the case of a plane 
electromagnetic wave that is normal to z, g will be in the z direction, and the component 
λz will be zero.  The definition (2) of impulse moment would lead to a zero impulse 
moment with respect to the z-axis, and theorem (1) could not be transposed into 
electromagnetism.  However, there is a whole set of reasons that caution one against 
using formula (2) and its aptness for solving such problems.  First of all, the introduction 
of the finite segment r has the consequence that the formulas that one deduces will not be 
written in the language of space-time.  Now, the usual length scale that contemporary 
physicists use in the equations of special relativity denies any deep physical significance 
to such formulas.  The less-physical character of the definition (2) will become even 
more noticeable when one takes the viewpoint of general relativity. 
 Later on, we shall define a moment of the second kind – or momentor – that we shall 
not call the “impulse moment” because it can be non-zero at a point where the 
electromagnetic impulse is zero and whose properties were transposed into general 
relativity in the course of my prior research (1).  In addition, the definition (2) gives only 
one measure for the moment density, and it must be completed, as we shall do in Chapter 
VI, by an expression for the corresponding moment flux that permits one to translate the 

                                                
 (1) E. HENRIOT, “Les moments d’impulsion en théorie électromagétique,” Bull. Cl. Sci. Acad. Roy. de 
Belgique 20 (1934), pp. 505 and 874.  “L’aspect antisymmétrique de l’électromagnétisme,” ibid., 21 
(1935), pp. 29 and 127. “Les moments électromagnétiques,” ibid., 21 (1935), pp. 363. – Y. DUPONT, “Les 
couples de forces et les moments d’impulsion électromagnétique dans la gravifique de Th. de Donder,” 
ibid., 20 (1934), pp. 773 and 1008. – TH. DE DONDER, “La gravifique tourbillionaire,” ibid., 20 (1934), 
pp. 986. 
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theorem of the conservation of moments.  Other reasons will be given in the course of 
this study that will show that it is impossible to use formula (2) for the problems that we 
shall address. 
 The history of science shows that often a term that is poorly-chosen or too vague has 
been the source of a long series of errors in conception or methodology.  It seems that we 
find ourselves in a typical case of that kind here, and that is what I would like to try to 
bring out in the sequel.  We place ourselves in the case of the dynamics of solid bodies 
and suppose that we are using a solid body that moves in all of its directions around a 
fixed point O and plays the role of a ballistic body that is intended to measure the 
moments of impulse in the same way that the ballistic pendulum measures impulses.  
There is good reason to distinguish between the moment of the resultant applied force 
with respect to the point O and the moment of the resultant applied couple, which is 
defined independently of the point O.  If one shoots unrifled projectiles that are animated 
with a translational velocity of v then they will communicate impulse moments that are 
defined and calculable only when one is given the point O and the point where they 
collide with the ballistic body, and which I shall call impulse moments – or moments – of 
the first kind.  On the contrary, some rifled projectiles or tops will reach the ballistic body 
with a translational velocity that is zero, but an angular velocity ω that communicates 
moments of the second kind, which are independent of the position of the point O and the 
point of impact.  Furthermore, in the case of the dynamics of solid bodies, the problems 
of the second kind can be reduced to ones of the first kind.  Indeed, if one mentally 
decomposes the top into volume elements and considers the impulse or quantity of 
motion of each of them then upon adding their moments with respect to the point O 
geometrically, one will in fact find a resultant that is independent of the point O and the 
position of the rotor.  The question that one poses is that of knowing whether a similar 
reduction of moments of the second kind to ones of the first kind is always possible in 
every case – notably, the case of electromagnetism.  We see that in certain cases, the 
impulse moment can be zero, even though the moment of the second kind – or momentor 
– can be non-zero. 
 Another transposition from the dynamics of material bodies to electromagnetism that 
is very hasty seems to be the following one in many cases: The tensor of tensions that are 
applied to the faces of the elementary parallelepiped in the theory of elasticity is coupled 
to the density of force f by relations of the form: 
 

fx = − xyxx xz
pp p

x y z

∂∂ ∂− −
∂ ∂ ∂

. 

 
 The nine quantities p, which are surface efforts per unit area, can be envisioned as 
impulse fluxes that traverse the faces of the elementary parallelepiped per unit time and 
area, and they express the theorem of the conservation of impulse.  When f is finite, the 
quantities p will form a symmetric matrix; that is, pxy = pyx .  The tensor p has only six 
independent components, and it is symmetric.  It seems that such a symmetric tensor will 
suffice to solve all of the problems in elasticity on the scale of quantities that one usually 
envisions. 
 In electromagnetism, one defines a tensor that is called the impulse-energy tensor and 
whose components expression the fluxes and spatial densities of impulsion and energy.  It 
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corresponds to the tensor p of the elasticity and like that tensor, it is symmetric, 
especially when the medium in which the phenomena are located is the vacuum.  That 
very close analogy has led many theoreticians to assume that the symmetric energy-
impulse tensor will suffice to solve all problems in the case of electromagnetism.  In what 
follows, we shall see that there is an entire class of problems that are insoluble by the use 
of only the symmetric tensor that yields the impulses, and their solutions can be obtained 
only by the use of antisymmetric tensors that will be defined later on.  Those are the 
problems of the “second kind.” 
 
 
 2. Exchange of moments of the second kind between an electromagnetic field 
and matter. – I would like to show how one can write the accounting for these 
exchanges in a simple example.  Let h and H be the electric and magnetic fields that act 

upon a substance that we assume to be electrically neutral and isolated, to simplify; i.e., 
the true density of electricity ρ is zero, as well as the conduction currents.  Fields provoke 
the appearance of electric and magnetic polarizations − say p and P, resp.  These 

polarizations do not have the same direction as the fields that induce them, so one will 
have: 
(3)      γγγγ = [p ⋅⋅⋅⋅ h] + [P ⋅⋅⋅⋅ H] 

 
per unit volume for a couple (1), in which, the products are vectorial.  If we envision 
things from the viewpoint of the Maxwell-Hertz theory, without appealing to Lorentz’s 
electronic mechanism, then such a couple will be defined without one being obliged to 
fix the point O with respect to which one defined the force moments. 
 On the contrary, suppose that a solid body moves around a point O, and one gives an 
electric charge q to a point P.  If the solid body is placed in the field h then it will be 
subjected to a couple whose moment will be equal to that of the force qh with respect to 
the point O.  The moments that correspond to the latter case will be of the first kind, 
while the ones that are expressed by (3) will be of the second kind, with the terminology 
that we have adopted.  Since the distinction is essential from the viewpoint that we have 
taken, so the couple of the first kind will be referred to by the term force couple, and we 
shall reserve the term torque for that of the second kind.  Similarly, the moments that 
pertain to problems of the first kind will be referred to as impulse moments, and those of 
the second kind will receive the name of momentors.  It is impossible to call both of them 
impulse moments, because the moments can be non-zero when the impulse is zero. 
 For reasons that we shall see later on, and which pertain to the axial nature of torque, 
its three components along x, y, z will be denoted by γyz , γzx , γxy , resp.  For example: 
 

γyz = py hz – pz hy + Py Hz – Pz Hy . 

 
 We now fix our attention on the elementary parallelepiped dx dy dz.  The matter that 
it contains is subject to a torque; i.e., the momentor of the electromagnetic field will 
diminish, in particular.  Let µyz be the density of the electromagnetic momentor along the 

                                                
 (1) That couple might not be the only one that is exerted on the matter by the field.  
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x-axis, let Myxz denote the momentor flux along the x-axis that crosses the face that is 
normal to x per unit area and time, let Myyz be the momentor flux along the z-axis that 
crosses a face that is normal to y, etc.  Myxz is equivalent to a flux of tops along the x-axis 
that cross the face that is normal to x.  The extreme indices denote the direction of the 
momentor axis, while the middle one denotes the normal to the face envisioned.  On first 
glance, it can seem that such a notation is unworkably complicated, but we will see later 
on that it is the only one possible. 
 We write down that the torque that is imparted to the matter is equal to the loss that is 
suffered by the electromagnetic momentor.  We obtain, from an argument whose form is 
classical: 

γyz = − yxz yyz yzz yzM M M
x y z t

µ∂ ∂ ∂ ∂− − −
∂ ∂ ∂ ∂

, 

 
along with two analogous equations.  The form of the equation suggests a more 
symmetric notation.  If we use Minkowski’s variable u = ict, instead of t and set: 
 

Myuz = ic µyz  
 
then we will get expressions of the form: 
 

γij = − ixj iyj izj iujM M M
x y z u

µ∂ ∂ ∂ ∂− − −
∂ ∂ ∂ ∂

 

or 
(4)      γ = − ∆iv M 
 
for the three components, in which the divergence is taken with respect to the middle 
index.  Equation (4) corresponds to the one that expresses the density of force that is 
exerted on the matter by the field, and that one will write: 
 

f = − ∆iv T, 
 
in which T is Maxwell’s impulse-energy tensor.  In writing with equation (4), we have 
implicitly supposed that the problems of the first and kind are completely separable; i.e., 
that the momentor that disappears per unit volume and time will give the torque that is 
exerted per unit volume on the matter by the field.  In Chapter VI, we shall see that one 
can have exchanges between the moments of the second and first kind by the 
intermediary of matter. 
 The torque that the matter experiences can include other terms than the ones that are 
expressed by equation (3).  Here, I would only like to show how one can write the 
conservation of moments in a definite example. 
 

__________ 



 

CHAPTER II 
 

THE ANTISYMMETRIC ASPECT  
OF ELECTROMAGNETISM  

 
 3. Review of some notions regarding tensors (1). – We confine ourselves to the 
case of special relativity.  The passage from one system of axes S to another system of 
axes S′ that moves with respect to the latter with a velocity v in the x direction will imply 
a transformation of the coordinates x, y, z, u = ict that is provided by the Lorentz 
formulas: 
 x′ =    x cos ϕ + u sin ϕ  (y′ = y), 
 u′ = − x sin ϕ + u cos ϕ  (z′ = z), 
in which: 

cos ϕ = 
2

1

1 β−
, sin ϕ = 

21

iβ
β−

 
v

c
β = 
 

. 

 
 4-vectors are physical quantities with four components px, py, pz, pu whose 
transformation when one changes axes is the same as that of the coordinates; i.e.: 
 
 px′ =    px cos ϕ + pu sin ϕ  (py′ = py), 
 pu′ = − px sin ϕ + pu cos ϕ  (pz′ = pz). 
 
 6-vectors are physical quantities with six components that correspond in space-time 
to axial vectors in three-dimensional space.  They are tensors with two antisymmetric 
indices whose components Aij transform in the same way as pi qj – qi pj in the course of a 
change of components, where p and q are two arbitrary 4-vectors.  For example: 
 
  Ax′u′ = Axu , 
  Ay′u′ = Ayu cos ϕ + Axy sin ϕ, 
  ……………………………. 
 
The transformation can be performed by using the table with double entries below: 
 

 Ay′ z′ Az′ x′ Ax′ y′ Ax′ u′ Ay′ u′ Az′ u′ 
Ayz … 1 0 0 0 0 0 
Azx … 1 cos ϕ 0 0 0 − sin ϕ 
Axy … 0 0 cos ϕ 0 sin ϕ 0 
Axu … 0 0 0 1 0 0 
Ayu … 0 0 − sin ϕ 0 cos ϕ 0 
Azu … 0 sin ϕ 0 0 0 cos ϕ 

 

                                                
 (1) The reader will find all of the notions that are necessary for understanding the following section in 
von Laue’s Théorie de la Relativité (translation by G. Létang, Gauthier-Villars, 1924). 
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 This table will not change if one permutes the first three columns with the last three 
as a whole, and the first three rows with the last three as a whole. 
 As a result, when one has a 6-vector Ayz , Azx , Axy , Axu , Ayu , Azu , one can form a 
second one that one calls its associate A*, and whose components will be: 
 
  yzA∗ = Axu , xuA∗ = Ayz , 

  zxA∗ = Ayu , yuA∗ = Azx , 

  xyA∗ = Azu , zuA∗ = Axy . 

 
 If one lets b and B be electric and magnetic induction, resp., while h and H are the 

corresponding fields, then the set of all their components will define two 6-vectors M 

and N: 

 Myz =    Bx , Mzx =    By , Mxy =   Bz , 

 Mxu = − ihx , Myu = − ihy , Mzu = − ihz , 

 
 Nyz =    Hx , Nzx =    Hy , Nxy =   Hz , 

 Nxu = − ibx , Nyu = − iby , Nzu = − ibz , 

 
and their associates will be M* and N* : 

 
 yz

∗M  = − ihx , zx
∗M  = − ihy , xy

∗M  = − ihz , 

 xu
∗M  =    Bx , yu

∗M  =    By , zu
∗M  =    Bz , 

 
 yz

∗N  = − ibx , zx
∗N  = − iby , xy

∗N  = − ibz . 

 xu
∗N  =    Hx , yu

∗N  =    Hy , zu
∗N  =   Hz . 

 
The tensorial character of those quantities is established by the fact that if one performs 
the operation ∆iv on them then one will obtain: 
 
(5) ∆iv M* = 0,  c ∆iv N = 4π C 

 
from Maxwell’s equations.  C is the current quadri-vector, whose components Cx, Cy, Cz 
are the true electric current densities, and Cu = icρ, where ρ is the true density of 
electricity.  It is well-known that one can define a symmetric tensor from two 6-vectors 
by using the multiplication rule below.  When that rule is applied to M, N, it will yield a 

symmetric tensor T that will be the impulse-energy tensor in the special case of the 
vacuum: 

4Tjk = jx kx jy ky jz kz ju ku

jx kx jy ky jz kz ju ku

+ + + 
 + + + + 

M N M N M N M N

N M N M N M N M
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 − jx kx jy ky jz kz ju ku

jx kx jy ky jz kz ju ku

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

 + + + 
 + + + +  

M N M N M N M N

N M N M N M N M
. 

 
 The 6-vectors M and N are not arbitrary, and their first three components can be 

regarded as a physical vector in xyz-space, as well as their last three components.  That 
character is intrinsic and will be conserved in the course of a Lorentz change of axis.  
Starting from these 6-vectors, one can define a new antisymmetric tensor with two 
indices Γjk – viz., a 6-vector – by means of the multiplication rule: 
 

4 Γjk = jx kx jy ky jz kz ju ku

jx kx jy ky jz kz ju ku

+ + + 
 − − − − 

M N M N M N M N

N M N M N M N M
 

 + {associated quantities}. 
 
 The second set of brackets is identical with the first one and will simply double it 
when one takes the sum.  If one substitutes the values of M and N then one will obtain: 

 

(6)    
2 [ ] [ ] ,

2 {[ ] [ ] },
yz x x

xu x xi

Γ = ⋅ + ⋅
 Γ = ⋅ − ⋅

b h

b h

B H

B H
 

 
and four other components that are deduced by permutation. 
 
 
 4. Electromagnetic torque and momentor. – The physical nature of the 
components yz, zx, xy of Γ is displayed when one considers the relations between the 
inductions, the fields, and the polarization vectors: 
 

b = h + 4π p, B = H + 4π P. 

 
If one substitutes this into the expressions for T then the real components will take the 
form: 

2 Γyz = 4π {[ p h]x + [P H]x}. 

 
If one refers to equation (3) (Chap. I, 1) then those quantities will have the nature of a 
couple density of the second kind – or torque.  One can have electromagnetic torques of 
another nature, but as we shall see, they will have a special importance.  We let γ denote 
the antisymmetric tensor (or 6-vector) that is defined by: 
 

(7)    
4 2 ,

4 2 ,
yz yz

xu xu

π γ
π γ

= Γ
 = Γ ⋯

 

 
and we shall refer to it by the name of torque density.  The three real components have 
the significance that was given above, while the imaginary components will be 
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interpreted in what follows.  The existence is necessary; indeed, in the course of a 
Lorentz change of axes, they will yield a real contribution to the real components. 
 When the ∆iv of a 6-vector is zero, the associated 6-vector can be considered to be 
the derivative of a potential 4-vector.  In order to not prolong this discussion 
unnecessarily, we shall suppose that the true current C and the charge density ρ are zero, 
except in the cases where we shall specify to the contrary.  The Maxwell equations (5) 
will then become: 

∆iv M* = 0,  ∆iv N* = 0. 

 
M can be considered to have been derived from a vector potential F that is defined by: 

 

(8)   

, ,

, ,

, .

y u xz
yz x xu x

yx uz
zx y yu y

y x u z
xy z zu z

F F FF
ih

y z x u

FF FF
ih

z x y u

F F F F
ih

x y z u

∂ ∂ ∂∂= = − = − = − ∂ ∂ ∂ ∂
 ∂∂ ∂∂ = = − = − = − ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂= = − = − = −

∂ ∂ ∂ ∂

M B M

M B M

M B M

 

 
Similarly, N* can be considered to be the derivative of a potential F*: 

 

(8′)   

, ,

, ,

, .

y u xz
yz x xu x

yx uz
zx y yu y

y x u z
xy z zu z

F F FF
ib

y z x u

FF FF
ib

z x y u

F F F F
ib

x y z u

∗ ∗ ∗∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗ ∗ ∗
∗ ∗

 ∂ ∂ ∂∂= − = − = = − ∂ ∂ ∂ ∂
 ∂∂ ∂∂ = − = − = = − ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂
 = − = − = = −

∂ ∂ ∂ ∂

N N H

N N H

N N H

 

 
 The potentials F, F* are not defined completely by these conditions, and one imposes 
the complementary Lorentz condition upon them: 
 

∆iv F = 0, ∆iv F* = 0. 
 
 Recall the components of γ that are provided by (6) and (7); for example: 
 

4π γyz = by hz – bz hy + By Hz – Bz Hy . 

 
If one substitutes the quantities h and B in this, when they are expressed as functions of 

F as in (8), then after a simple transformation, and taking into account Maxwell’s 
equations and the condition ∆iv F = 0, one will have: 
 



Chapter II – The antisymmetric aspect of electromagnetism 11 

(9)   4π γyz =
x

∂
∂

(− Fx Hz – Fz Hy + Fx Hx) +
y

∂
∂

(Fx Hz + i Fu bz + Fy Hx) 

 +
z

∂
∂

(Fx Hz + iFu by + Fz Hz) +
u

∂
∂

(− iFz by + i Fy bz + Fu Hx) 

 − Fx ∆iv H + Fu 
yx z

ibib

u y z

∂ ∂ ∂− + − ∂ ∂ ∂ 

H
. 

 
 The last two terms must be considered separately.  We call them complementary 
terms.  In most cases, they will be zero, but it can happen that they are different from 0.  
We denote them by the notation – 4π θyz , …, – 4π θxu , so: 
 
(10)  – 4π θyz = Fx ∆ivu N

* − Fu ∆ivx N
* = u x x uF F F F∗ ∗−□ □ , 

 
in which □  is the d’Alembertian operator.  The complementary terms constitute a 
complete 6-vector like γ.  We see that these terms have the significance of a torque 
density that we call the complementary torque, and which we write: 
 

4π (γ + θ)yz =
x

∂
∂

(− Fz Hz – Fy Hy + Fx Hx) + …, 

 
which is an equation that, when it is compared to equation (4) in paragraph 2, will give a 
first expression for the electromagnetic momentor: 
 

(11)    

4 ,

4 ,

4 ,

4 ,

yxz y y z z x x

yyz x y u z y x

yzz x z u y z x

yuz z y y z u x

M F F F

M F iF b F

M F iF b F

M iF b iF b F

π
π
π
π

= + −
 = − + −
 = − − −
 = − −

H H H

H H

H H

H

 

 
and twenty other analogous components. 
 When the complementary torque θ is annulled, what will remain is only the principal 
torque γ, and we will have the relation: 
 

γij = − ∆ivij M, 
 
in which the divergence is taken with respect to the middle index.  The tensorial character 
of M is fixed in the following manner: 
 Form the expressions: 

τijk = Fi Njk + Fj Nik + Fk Nij , 

 
while respecting the order of the indices.  For example: 
 

τyxz = Fy Nxz + Fx Nyz + Fz Nyx . 



12 Radiation couples and electromagnetic moments 

Moreover, consider the 4-vector: 
J = [F ⋅⋅⋅⋅ N]; 

i.e.: 
Jx = Fx Nxx + Fy Nxy + Fz Nxz + Fu Nxu . 

It is easy to see that: 
4π (γij + θij) = ∆ivij t + rotij J. 

 
 However, since J is itself a tensor with three degenerate indices, if one sets: 
 
 − Jx =    σxyy = − σzzx =     σxuu , 
 − Jy =    σyzz = − σxxy =     σyuu , 
 − Jz =    σzxx = − σyyz =     σzuu , 
 − Ju = − σxxu = − σyyu = − σzzu , 

 
while all of the other components of σ are zero, then: 
 
(11′)  4π (γ + θ)ij = ∆ivij (σ + τ), and 4π M = − (σ + τ). 
 
 
 3. Case in which the complementary torque is annulled. – In the case where the 
isolated medium is the vacuum, if one refers to equation (9) then the complementary 
torque will be annulled, and in effect one will then have: 
 

div H = div B = 0, 

− yx z
ibib

u y z

∂∂ ∂+ −
∂ ∂ ∂
H

 = 0. 

 
 The principal term in the torque γ is annulled along with its six real and imaginary 
components, because then b = h and B = H.  That will be true in all systems of Lorentz 

axes, and will possess an intrinsic character. 
 The complementary torque and the real components of θ will be annulled in the case 
where the medium is refringent, absorbent, or pseudo-isotropic, and when one imagines a 
plane wave (see Chap. IV).  That annihilation does not have an intrinsic or invariant 
character and will persist in the case when the medium is in motion in the system of axes 
envisioned (i.e., the case of the dragging of waves by matter). 
 In the case of an anisotropic medium, when one imagines a plane wave that is 
propagating along a principal direction of a crystal, θ will be likewise annulled, as far as 
its real components are concerned. 
 As an application of the preceding results, in what follows, we propose to treat some 
simple problems that are approachable when one specifies the antisymmetric tensor Γ, 
but insoluble when one specifies only the symmetric tensor T, and which are indeed 
problems of the second kind. 

________ 



 

CHAPTER III. 
 

APPLICATION TO THE CASE IN WHICH  
THE MEDIUM IS A VACUUM  

 
 6. Case of a plane elliptic wave. – In any case where the medium is a vacuum, the 
force density f will be zero, and it is related to the symmetric energy-impulse tensor T by 
the relation f = − ∆iv T.  Even when f is zero, T cannot be zero, since its components 
represent the flux and densities of impulse and energy, resp., which cannot be zero, 
because the wave transports energy and quantity of motion.  Similarly, in the case of the 
vacuum, γ will be zero, but M cannot be zero since the conservation of moments would 
not be assured then.  Take the case of a plane elliptic wave with its semi-major axis a 
along x and its semi-minor axis b along y, and let it propagate in the z direction, with b = 
h, B = H: 

 hx = a cos ω 
z

t
c

 − 
 

, Hx = − b sin ω 
z

t
c

 − 
 

, 

 hy = b cos ω 
z

t
c

 − 
 

, Hy =    a cos ω 
z

t
c

 − 
 

, 

 Fx = − ca

ω
 sin ω 

z
t

c
 − 
 

,  Fz = Fu = 0, 

 Fy =   cb

ω
 cos ω 

z
t

c
 − 
 

,  zF ∗ = uF ∗ = 0, 

 xF ∗  = − icb

ω
 cos ω 

z
t

c
 − 
 

, 

 yF ∗  = − ica

ω
 sin ω 

z
t

c
 − 
 

. 

 
 From the formulas that are deduced from (11) (§ 4) by permutation: 
 

Mxzy = 
1

4π
(Fy Hy + Fx Hx – Fz Hz) 

 
represents the momentor flux along the z (x, y, resp.) axis that crosses a surface that is 
normal to the z axis per unit time and area Cz : 
 

Mxzy = Cz = 
4

ab

πω
c. 

 
 The momentor density µxy along the z axis is: 
 

µxy = 
1

ic
Mxzy = 

1

4 icπ
(− ibx Fy + iby Fx + Fu Hz) = 

4

ab

πω
. 
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 Since the ratio of the flux to the density is c, one can say that the momentor 
propagates with a velocity of c.  The fluxes and densities along the x and y axes are zero.  
The mean energy flux, which is given by the Poynting vector (which is deduced from the 
symmetric tensor), is: 

Σz = 
2 2

8

a b

π
+

c. 

 
 The ratio of momentor flux to energy flux is: 
 

z

z

C

Σ
 = 

2 2

1 2ab

a bω +
, 

as in the case of elasticity (§ 1). 
 The impulse moment that is defined by means of the formula (2) has a z-component 
that equals zero.  That shows very clearly that the impulse moment that is defined by (2) 
by starting with the symmetric tensor T and the momentor that is defined by starting with 
the asymmetric tensor Γ are two very essentially different things that are not reducible to 
each other.  Any terminology that confuses the two in the same application will be a 
source of error: The preoccupation that I have in denoting them by different terms is not 
merely rooted in a tendency to create useless neologisms. 
 
 
 7. Case of a harmonic or Keplerian point-like radiator. – A point-like radiator is 
composed of an electric charge e that describes closed orbits around a center O under the 
action of a central force that will be quasi-elastic in the case of a harmonic radiator and 
inversely proportional to the square of the distance in the case of a Keplerian radiator.  
Let ξ, η, ζ be the coordinates of the moving charge, which is assumed to move in the xy-
plane, while ξɺ , ηɺ , ζɺ  and ξɺɺ , ηɺɺ, ζɺɺare the components of its velocity and acceleration, 
resp.  We shall also make the hypothesis that the motion is quasi-stationary, moreover.  
The velocity and acceleration are assumed to be small enough that the radiator will emit 
quantities of energy during time intervals of order its period that are small in comparison 
to the amount of energy that it contains.  During such intervals, the trajectory will deform 
very little and the means of the various quantities that define the trajectory will be well-
defined at each instant.  Let a point P have coordinates x, y, z, and set r  = OP

����

, where ξ 
and η are very small in comparison to r, and ξɺ  and ηɺ  are very small in comparison to c.  
The Lorentz potentials at the point P are given by: 
 

Fx = e 
1 rv

r
c

ξ
 
 
 
  −    

ɺ

,      Fy = e 
1 rv

r
c

η
 
 
 
  −    

ɺ
,      Fz = 0,      Fu = ice 

1

1 rv
r

c

 
 
 
  −    

, 

 
in which vr / c is negligible in comparison to 1. 
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hx = 
ce

r
(γγγγr – γγγγ) x = 

2
( )

ce
x y z r

r
ξ η ξ ξ+ + −ɺɺ ɺɺ ɺɺɺɺ , 

Hx = [γγγγ ⋅⋅⋅⋅ 1r]  x = 
2

( )
e

z y
r

η ξ− ɺɺɺɺ , 

 
while the other components are deduced by permutation.  We calculate the momentor 
flux Φz along the z-axis that crosses a sphere of radius r. 
 In order to do that, we imagine an element dS on that sphere.  Upon using formulas 
(11) and the ones that are deduced from them by cyclic permutation, we will find that: 
 

 4π Φz dS = 
dS

r
{  (− Fz Hx − Fx Hz + i Fu hy) x 

  + (− Fz Hy − Fy Hz + i Fu hx) y 

  + (   Fy Hy + Fz Hz –   Fx Hx) z}. 

 
 If one substitutes the values of h, H, and F and integrates over the entire sphere at x, 

y, z then some of the terms will contribute zero, since they are odd in x, y, z, while other 
terms will give a mean value of zero in time.  If one abstracts from that, then what will 
remain is: 

4π Φz = 2 2 2
2
{ ( ) ( ) ( )}

e
x c y c z

r
ξη ξ ηξ η ξη ηξ− + − − + −ɺɺ ɺɺ ɺɺ ɺ ɺɺɺɺ ɺ ɺɺ ɺɺ ɺ . 

 
 The terms that contain c as a factor have a mean value of zero in time; for example: 
 

0

1 t
dt

t
ξ∫ ɺɺ  = 

t

ξɺ
, 

 
which will tend to zero when time increases indefinitely, since ξɺ  is finite.  If one then 
takes into account the fact that: 
 

2x dS∫  = 2y dS∫  = 2z dS∫  = 
4

3
πr3 

 
then the mean momentor that is radiated per unit time is will be: 
 

(12)     zΦ = 
22

( )
3

e ξη ηξ−ɺ ɺɺɺɺ ɺ . 

 
 The mean radiated energy flux per unit time that is obtained by means of the Poynting 
vector will be: 

(13)     Σ  = 
2

2 22
( )

3

e ξ η+ɺɺ ɺɺ . 
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 The case of the harmonic radiator is the one in which one has: 
 

ξ = a cos ω t,  η = a sin ω t, 

 zΦ =
22

3

e
abω 2, 

Σ  = 
2 2 2

22

3 2

e a b ω+
, 

and 

(14)     zΦ
Σ

=
2 2

1 2ab

a bω +
. 

 
 That problem has a certain historical importance.  It was upon using formula (14), 
which he obtained by a different method, that Sommerfeld could state the selection 
principle that related to azimuthal spin.  The exactitude of formula (14) is obvious a 
priori  if one assumes that the radiated moment has its counterpart in a diminishing of the 
moment of the electron along its trajectory, and that the radiated energy has its 
counterpart in a diminishing of the energy of the radiator.  Sommerfeld obtained (14) by 
using the impulse moment that is defined by the formula λλλλ = [r ⋅⋅⋅⋅ g]; i.e., upon treating 
that problem as a problem of the first kind, and on the other hand, making use of the 
Hertz potentials.  His calculations presented the unsettling character that they introduced 
mixed quantities into the nonlinear equations that were neither pure real nor pure 
imaginary, and they were extremely lengthy.  If, instead of proceeding as he did, one 
introduces the Lorentz potentials F, instead of the Hertz potentials, into formula λλλλ = [r ⋅⋅⋅⋅ 
g] that defines the impulse moment, one will get a radiated impulse moment that equals 
zero. 
 Now, imagine the case of the Keplerian radiator.  Let L  denote the impulse moment 
of the charge that is moving with respect to the point O, and let ρ be its distance from the 
attracting center: 

Lz = m ( )ξη ξη− ɺɺ , 

mξɺɺ  = − 
2

3

e

ρ
ξ,  mηɺɺ  = − 

2

3

e

ρ
η. 

 Formula (12) gives: 

zΦ = 
4

2 3

2 1

3

e
L

m ρ
 

⋅ ⋅ 
 

. 

 
 The mean of 1 / ρ3 will be taken over a closed trajectory. 
 From (13): 

Σ  = 
6

2 4

2 1

3

e

m ρ
 
 
 

 

and 
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(15)     zΦ
Σ

 = 
( )
( )

3

2 4

1/

1/

L

e

ρ

ρ
. 

 
 All of the calculations reduce to an evaluation of the mean. 
 Take ρ and ϕ to be Lagrange coordinates, where ϕ is the angle between the radius 
vector and the major axis, and let pρ and pϕ are the canonically-conjugate moments: 
 

pρ = mρɺ , pϕ = 2mρ ϕɺ  = L = const. 
 
 Let E be the Hamilton function; i.e., the energy function that is expressed in terms of 

the coordinates and conjugate moments: 
 

 E = − 
2 22

22 2

p pe

m m
ρ ϕ

ρ ρ
+ + , 

 

 pρ = − 
ρ

∂
∂
E

 = − 
2 2

2 3

e L

mρ ρ
+ . 

 
 The mean value of pρɺ = mρɺɺ  is zero, so: 

 

(16)    2
2

1
e

ρ
 
 
 

 = 
2

3

1L

m ρ
 
 
 

, 

but on the other hand: 

(17)    
pρ

ρ
ɺ

 = − 
2 2

3 4

e L

mρ ρ
+ . 

 
 By means of a simple calculation, one can assure that: 
 

pρ

ρ
 
 
 
 

ɺ
= m 

2

2

ρ
ρ

 
 
 
 

ɺ
, 

so, upon using (17): 

(18)    m 
2

2

ρ
ρ

 
 
 
 

ɺ
= 

2
2

3 4

1 1L
e

mρ ρ
   

− +   
   

. 

 
 On the other hand, if one divides E by ρ2 and takes means then one will have: 
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(19)   m 
2

2

ρ
ρ

 
 
 
 

ɺ
= 

2
2

2 3 4

1 1 1
2 2

L
e

mρ ρ ρ
     

+ −     
     
E . 

 
 If one equates (18) and (19) and combines that with (16) then one will immediately 
get: 

(20)    zΦ
Σ

 = 
( )
( )

3

2 4

1/

1/

L

e

ρ

ρ
= 

2

2 4

2

2 3

L

L me+E
. 

 
 The mean momentor is assigned to L, and the energy, to E, so one can write: 

 

zΦ
Σ

 = 
dL

d

−
− E

. 

 
 When that relation is substituted in (20), that will give a differential equation in E and 
L that can be integrated by a quadrature, and will give: 
 

(21)     
4

3

1

2

me

L L
+E  = const. 

 
 However, if a is the semi-major axis of the ellipse, and ε is its eccentricity then one 
will have: 

L = [e2 ma (1 – ε2)]1/2,  E = − 
2

2

e

a
. 

 
If one substitutes these values in (21) then one will get: 
 

(22)     
4

2 2[ (1 )]a

ε
ε−

= const. 

 
 In the course of time, E will diminish, while a will decrease, and ε will change in such 

a manner as to insure the constancy of the expression (22). 
 We can imagine two extreme cases: 
 
 1. The orbit is initially circular: ε0 = 0, so the constant is zero, and the orbit remains 
circular. 
 
 2. The orbit is initially rectilinear: ε0 = 1, so the constant is infinite, and the orbit will 
remain rectilinear. 
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 If the orbit is initially elliptical, so 0 < ε0 < 1, E will diminish in time, a will likewise 

diminish, and formula (22) will show that ε diminishes, so the trajectory will tend to a 
circular form.  That will have the consequence that the circular motion is stable, and that 
the rectilinear motion that is envisioned in the case, will be, by contrast, unstable. 
 On the other hand, the result of the calculations will permit us to correct a very 
pervasive notion that is reproduced very often in theoretical treatises.  One sometimes 
says: When the electron is on a quantized orbit, it does not radiate, and the Lorentz 
formulas that express the radiation are not valid, but when it leaves a quantized orbit to 
go to another one, the Lorentz formulas will be applicable during the transition.  Now, 
since the radiation will essentially obey classical laws, the passage from one quantized 
orbit to another will be possible only if one has, from (21): 
 

4

3

1

2

me

L L
+E = 

4

3

1

2

me

L L

′
+

′ ′
E

, 

 
the left-hand side of which expresses the quantities that relate to the starting orbit, and the 
right-hand side of whichpertains to the final orbit.  If one expresses the energy E of a 
hydrogen atom as a function of a principal quantum number n and its moment L as a 
function of Sommerfeld’s azimuthal quantum number k then the radiative transition, à la 
Lorentz, will be possible only if: 
 

(23)    
2 3

1 1

k k
−

′
= 

2 2

1 1

n k n k
−

′ ′
. 

 
 Now, there are cases in which some possible quantum transitions do not satisfy that 
equation.  For example, from (23), the transition (n = 3) → (n′ = 2), (k = 2) → (k′ = 1), 
which is possible as a quantum transition, will not be of the radiation takes place 
according to the Lorentz laws. 
 On the other hand, if one introduces the Lorentz vector potentials while using formula 
(2), which gives the impulse moments, then one will get a zero mean value for the 
impulse moment that is found between r and r + dr.  The problem has the second kind, 
and a consideration of the impulse moment will not permit one to solve it. 
 
 
 8. Rotation of an electrified sphere. – This problem has a certain historical 
importance: Indeed, it was upon calculating the magnetic moment and electric moment of 
a rotating, electrified sphere that Goudsmit gave a first interpretation of the spin of the 
electron.  We envision two problems in what follows: 
 
 Problem a. – The sphere carries a surface density of electricity σ and turns with an 
angular velocity of ω around the z axis. 
 
 Problem b. – A sphere of density σ turns with an angular velocity ω while in 
immediate contact with an immobile sphere of the same radius that carries the surface 
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density – σ.  This corresponds to the case of a superconductor that carries immobile 
positive charges and electrons that circulate on the surface.  Such a case can also give one 
a picture of the spin of the neutron that is probably rather far-fetched. 
 In what follows, S and m will denote the mechanical moment and magnetic moment, 
resp., while a will denote the radius of the sphere.  In the two problems, the magnetic 
moment and the magnetic field have the same value: 
 

 mx = my = 0, mz = m = 
21

3

ea

c

ω
, 

 

 ( )i
xH  = ( )i

yH = 0,  ( )i
zH  = 

3

2m

a
. 

 
 The magnetic field is uniform inside (i).  Externally (e), it is a doublet field: 
 

( )e
xH = 

3

3m

r
x z,  ( )e

yH = 
3

3m

r
y z,  ( )e

zH = −
2

3 2

3
1

m z

r r

 
− 

 
 . 

 
Problems (a) and (b) can be separated if one writes the electric field and vector potential 
as: 

(a)   

( ) ( ) ( ) ( )
3 3 3

( ) ( ) ( ) ( )
2 2

( ) ( ) ( ) ( )
2 2

0, , , ,

, , 0, ,

, , 0, .

i e e e
x y z

i i i i
x y z u

e e e e
x y y y

ex ey ez
h h h h

cr cr cr
my mx ie

F F F F
a a ca
my mx ie

F F F F
r r cr

 = = = =

 = − = = =

 = − = = =


 

 
∆iv F = 0, and F is continuous on the sphere, but its derivatives, which give the field, will 
be discontinuous: 
 

(b) 
( ) ( ) 0.

The components , , , and  are the same as in case (a), but  = 0 and iv  = 0.

i e

u

h h

x y z F F F

 = =
 ∆

 

 
The magnetic energy corresponds to the kinetic energy of rotation: 
 

2

8π∫
H

 dv = 1
2 Iω2, 

 
in which the integral is taken over all space – inside and outside – and I represents the 
moment of inertia.  The same thing will be true in both cases, so one will get the same 
value for the moment of inertia I that one can deduce from an initial evaluation of S: 
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(24)     S = Iω = 
2

2

2

9

e a

c

ω
. 

 
 A second method consists of calculating an electromagnetic impulse moment density 
by means of the formula λz = [r ⋅⋅⋅⋅ g]z and integrating over all space.  When applied to 
problem (a), that method will give the result of formula (24), as opposed to when it is 
applied to problem (b), which will give 0, so the application of that formula will give 
results that are hardly coherent.  A third method consists of considering the problem to be 
a problem of the second kind and imagining the momentor.  Meanwhile, we find 
ourselves in a particular case that we must treat directly because in our general formulas, 
we have supposed that the true charge density was zero.  Now, it will be non-zero on the 
surface of the sphere, here. 
 Take the expression for the antisymmetric tensor: 
 

4π γ = [b ⋅⋅⋅⋅ h] + [B ⋅⋅⋅⋅ H], 

 
and write down the real components.  Then, replace h and B with their expressions as 

functions F (§ 4) in the expressions for those real components.  If one takes into account 
Maxwell’s equations with an electric current: 
 
 Cx = ρξɺ , Cy = ρηɺ , 

 y xz ib

y z u

∂ ∂∂ − −
∂ ∂ ∂

HH
= 

4

c

π ρξɺ , y xz
ihih

y z u

∂ ∂∂ − −
∂ ∂ ∂

H
= 0, 

 …………………………….. ……………………… 
 
then an easy calculation will give: 
 

(25) 4π γxy  = 
x

∂
∂

(Fz Hx – iby Fu + Fx Hz)  +
y

∂
∂

(Fz Hy + iby Fu + Fy Hz) 

 + 
z

∂
∂

(– Fx Hx – Fy Hy + Fz Hz) +
y

∂
∂

(− ibx Fz + iby Fx + Fu Hz) 

 + 
4

c

π
[Fx Cy – Fy Cx]. 

 
Outside the current sheet C = 0, and the momentor density along the z axis will be µxy 
will be: 

Mxuy = i e µxy , 
so 

(26′)    4π µxy = bx Fy – by Fx – uF

i
Hz . 
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 In the case of problem (a), it suffices to set b = h in the last formula and to replace F 
with the values that were given above in regard to that case, and one will find that outside 
of the sphere: 

( )4 e
xyπ µ  = 

4

2em

cr
(1 – 2 cos2 θ), 

 
in which θ is the colatitude.  If one integrates this over all external space then that 
expression will give the total momentor that is localized in the exterior as: 
 

( )4 e
xySπ  = − 8

3

me

a

π
. 

 
 Inside of the sphere, only the term in Fu will exist, and one will find by a simple 
calculation that: 

( )4 i
xySπ  = + 8

3

me

a

π
. 

 
 The momentor density is not zero either inside or outside the sphere, but when it is 
integrated over all space, it will give a total momentor of zero. 
 
 In the case of problem (b), b and Fu will both be zero inside and outside, so the same 
thing will be true for µ, and the total momentor will be zero, as in problem (a).  It 
remains to calculate the momentor that is localized on the current sheet.  The term that 
provides it will be: 
(26)    4π [F ⋅⋅⋅⋅ C]xy = 4π ( )x yF Fρη ρξ− ɺɺ . 

 
 One can put this into the form of a divergence, and in order to see that, it will suffice 
to replace the expressions of the form ρξɺ  with the corresponding d’Alembertian, 
because: 

− F□  = 4π ρξɺ , 
 
and to take into account some identities of the form: 
 

2 2

2 2

y x
x y

F F
F F

x x

∂ ∂−
∂ ∂

= y x
x y

F F
F F

x x x

∂ ∂∂ − ∂ ∂ ∂ 
. 

 
However, that way of writing things is not in the spirit of the problem, and those formulas 
are not applicable to the present case, since F is not differentiable with respect to any of 
the four variables on the sphere.  Nonetheless, F is continuous on the sphere, and the 
expressions that were given above will give one the value of F on the surface.  Fx and Fx 
have the same value in problems (a) and (b), so the expression (26) will give the same 
result in both cases, and the calculated moment will again be the same.  It is convenient 
to use spherical coordinates such that r = a, ϕ is longitude, and θ is colatitude.  If γ (s) is 



Chapter III – Application to the case in which the medium is a vacuum. 23 

the surface density of torque, ( )sCϕ  is the line density of moment flux in a direction that is 

tangent to a parallel, and µ (s) is the surface density of momentor along the z axis, then the 
balance of moments that are applied to an infinitesimal spherical rectangle is that found 
between (θ, θ + dθ), (ϕ, ϕ + dϕ) can be written: 
 

(27)  γ (s) = −
( ) ( )s sC

a t
ϕ µ
ϕ

∂ ∂−
∂ ∂

. 

 
 Here, since the phenomenon has axial symmetry, ∂ / ∂ϕ ≡ 0, and the same thing will 
be true for the acceleration that the sphere can experience.  On the other hand, if one 
introduces the expressions for Fx and F into (26): 
 

4π γ (s) = 4π [F ⋅⋅⋅⋅ C]xy = − 4
( )

m
x y

ca

πσ ξ η+ɺ ɺ  = 0, 

 
in which σ is the surface density of electricity, then γ (s) can be put into the form of a 
partial derivative with respect to time. 
 Consider the functions that depend upon the spatial coordinates: 
 
 x = a sin θ cos ϕ, 
 y = a sin θ sin ϕ, 
 
and the functions of space and time: 
 
 ξ = a sin θ cos ω t = a sin θ cos Φ, 
 η = a sin θ cos ω t = a sin θ sin Φ, 
 

ξɺ  = d

dt

ξ
, ηɺ= d

dt

η
, 

 

x yξ η+ɺ ɺ = 
t

∂
∂

[a2 sin2 θ cos (ϕ – ωt)], 

 
in which the derivative is taken at the instant t = ϕ / ω . 
 The function: 

4 m

ca

πσ
sin2 θ cos (ϕ – ωt) 

 
is such that its partial derivatives with respect to time will change sign and take the value 
4π times the surface density of torque at the instant t = ϕ / ω .  It is natural to take the 
surface density of momentor to be the function: 
 

µ (s) = 
m

ca

σ
sin2 θ, 
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which will give a total momentor of: 

S = 
2

3

em

ac
 

when it is integrated over the entire sphere. 
 When one replaces the magnetic moment m in this expression with its value, one will 
find that: 

S = 
2

2

2

9

e a

c
ω . 

 
 The moment is the same in the two cases, as the result of an energetic calculation that 
involves only the magnetic field would suggest.  The anomaly that is introduced by the 
use of formula (2) that yields a moment of zero in case (b) will then be discarded.  I shall 
not elaborate further upon that problem, so I shall pass over everything that one might say 
about imaginary torque and momentor components.  Similarly, for reasons of brevity, I 
shall give the last part of the calculation a form whose rapidity can be subjected to some 
criticisms, as I see it.  I will return to these various points in other publications. 
 
 

___________ 



 

CHAPTER IV 
 

APPLICATION TO THE CASE OF 
A POLARIZABLE SPACE 

 
 

 In this chapter, I will confine myself to some applications of the general formulas to 
some simple cases for which the complementary torque θ is zero. 
 
 
 9. Birefringent medium. – We shall study the exchanges of momentor between a 
plane, elliptic wave that propagates in a principal direction of a crystal and the matter in 
it.  We assume that the medium is not absorbent and is referred to its principal directions: 
 

bx = 2
xn hx , by = 2

yn hy , bz = 2
zn hz , 

 
in which the n are the three principal axes.  Let a and b be the semi-axes of the ellipse, 
and let z be the direction of propagation. 
 

hx = a cos ω xn z
t

c
 − 
 

, hy = b sin ω yn z
t

c

 
− 

 
, 

Bx = Hx = − b ny sin ω yn z
t

c

 
− 

 
, By = Hy = b nx cos ω xn z

t
c

 − 
 

, 

Fx = − ca

ω
sin ω xn z

t
c

 − 
 

, Fy = 
cb

ω
cos ω yn z

t
c

 
− 

 
, 

Fx = 0,  Fu = 0. 
 

 The complementary terms θ to the torque are annulled because: 
 

Fu = 0,  div H = 0. 

 
 The momentor flux along the z-axis that crosses a unit surface normal to z per unit 
time is Mxzy , and: 

4π Mxzy = Fx Hx + Fy Hy , 

 

4π Mxzy = cos ( ) cos 2
2 2

x y x y x y
x y

n n n n n ncab z
n n t z

c c
ω ω

ω
 + −  +    − − −          

, 

 
whose mean value in time will be: 
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4 xzyMπ  = cos
2

x y x yn n n ncab
z

c
ω

ω
+ − 

 
 

 

 
when it is taken at a point whose abscissa is z.  The density of the torque that is exerted 
by the wave on the matter will be: 

γxy = − 
z

∂
∂

Mxzy − 
u

∂
∂

Mxuy , 

 
and its mean value in time will be: 
 

xyγ = ab 
2 2

sin
2

x y x yn n n n
z

c
ω

− − 
 
 

. 

 
 There are local, periodic exchanges of torque between the wave and the matter.  The 
mean density of energy flux is given by the Poynting vector Σz : 
 

4 zπ Σ  = 
2

c
(a2 nx + b2 ny), 

 
and the mean energy density w  is: 
 

4 wπ  = 2 2 2 21
2 ( )x ya n b n+ . 

 
 When the elliptic wave penetrates the layer, the momentor flux divided by the energy 
flux will be, for z = 0: 

0

0

( )

( )
z

z

Φ
Σ

= 
2 2

2 ( ) 1x y

x y

ab n n

a n b n ω
+

+
. 

 
 That ratio is not the same as it is for the elliptic wave before it arrives at the layer, 
namely: 

0

0

( )

( )
z

z

′Φ
′Σ

= 
2 2

2 1a b

a b ω
′ ′

′ ′+
. 

 
The counterpart of the difference exists in the momentor and energy of the elliptic wave 
that is reflected when it enters the layer.  When the substance is slightly birefringent, nx 
will be slightly different from ny, and these expressions will become the same: 
 

0

0

( )

( )
z

z

Φ
Σ

= 
2 2

2 1ab

a b ω+
. 

 
 For example, imagine the case of an incident circular light wave that falls on a quarter 
wave, a = b: 
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0( )zΦ = 
( )z

ω
Σ

. 

 
 After an interval e such that e (nx – ny) = λ / 4, the wave will become rectilinear, and 
correspondingly, Mxyz will become zero, and the wave will give up all of its momentor.  
The couple that the layer experiences must be equal to the momentum flux: 
 

/ 4

0 xy dz
λ

γ∫  = xzyM , 

 
and one verifies that one indeed has: 

j = z

ω
Σ

, 

in which j is the couple. 
 In the case of the half-wave layer, the momentor flux that leaves it will be equal and 
opposite to the one that enters it, and correspondingly, the circularity will be opposite, so 
the preceding result will double: 

j = 
2 z

ω
Σ

. 

 
 The origin of such a torque is obvious a priori: b does not generally have the same 
direction as h in a crystal.  When the medium is monorefringent, b will have the same 
direction as h, so there will no longer any exchange of momentum, nx = ny, and: 
 

4 zπ Φ = 
cabn

ω
, 4 zπ Σ = 

2 2( )c a b n

ω
+

. 

 
The ratio of these two quantities has the same value as it does in vacuo: 
 

z

z

Φ
Σ

 = 
2 2

1 2ab

a bω +
. 

 
 

 10. Absorbent media. – We imagine the case of an elliptical plane wave that falls 
upon an isotropic, absorbent layer in the z direction.  As is easy to do, one uses the 
imaginary index: 

n* = n – i σ, 
 
in which σ is an extinction coefficient, so: 
 

b = n*2 h, B = H. 

The Maxwell equations: 
div b = 0, div B = 0, 
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yz

y z

∂∂ −
∂ ∂

HH
= 

1 xb

c t

∂
∂

,     yz
hh

y z

∂∂ −
∂ ∂

= − 1 x

c t

∂
∂
B

, 

in the case of a wave: 

hx = 
n x

i t
ca e

ω
∗ 

−  
  , hy = 

n x
i t

cbe
ω

∗ 
−  

  , 
 

will yield the value of the magnetic field.  To simplify the writing, set: 
 

n x
i t

c
e

ω
∗ 

−  
  = exp., 

 
Hx = − b n* exp., Hy = a n* exp., 

 
 Let A and B be the real amplitudes of a and b, and let ϕ0, ψ0 be the phases of hx and hy 
at the origin: 

a = 0iAeϕ , b = 0iB eψ . 
 
For example, take ϕ0 = 0, ψ0 = − π / 2: 
 

a = A,  b = − B i. 
 
 The values of h and H derive from a vector potential F: 

 

Fx = 
ica

ω
exp.,  Fy = 

icb

ω
exp.,  Fz = Fu = 0. 

 
 The complementary terms θ are annulled because div H = 0, Fu = 0.  We now pass to 

real quantities and set: 

ϕ = ω 
nz

t
c

 − 
 

, k = 
c

σω
, 

 
hx = A e−kz cos ϕ, hy = B e−kz sin ϕ, 

 
Hx = B e−kz (σ cos ϕ – n sin ϕ), Hy = A e−kz (n cos ϕ + σ sin ϕ), 

 

Fx = − 
eA

ω
 e−kz sin ϕ,         Fy = 

eB

ω
 e−kz cos ϕ, 

 
  bx = A e−kz [(n2 – σ2) cos ϕ + 2nσ sin ϕ], 
 
  by = B e−kz [− 2nσ cos ϕ + (n2 – σ2) sin ϕ]. 
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b and h do not have the same direction, so the wave will exert a torque on the matter 
whose density γxy is given by: 
 

4π γxy = bx hy – by hx = 2AB e−2kz nσ. 
 
 If the medium totally absorbs the wave then it will receive a couple of the second 
kind per unit area: 

2

02
kzn

AB e dz
σ
π

∞ −
∫  = 

4

ncAB

πω
. 

 
 In order for there to be conservation of moments, this must be equal to the momentor 
flux that penetrates the layer: 
 

4π Φz = 4π Mxzy = Fx Hx + Fy Hy = 
ncAB

ω
 e−2kz, 

 
and for z = 0, this is, in fact, equal to the value of the total couple. 
 On the other hand, the transversal flux is zero. 
 The momentor density: 
 

4π µxy = 
1

ic
4π Mxuy = 

1

c
(bx Fy – by Fx) = 

AB

ω
(n2 – σ 2) e−2kz. 

 
 The ratio of the flux to the momentor density is constant, so one can speak of a speed 
of propagation of momentor that is equal to the quotient of one over the other: 
 

V = 
2

21

c

n
n

σ 
− 

 

, 

 
whose value will become c / n when σ = 0; i.e., in a non-absorbent medium. 
 The density of energy flux Σz is provided by the Poynting vector: 
 
 4π Σz  = c (hx Hy − hy Hx)  

 = c e−2kz{ A2 (n cos2 ϕ + σ cos ϕ sin ϕ) + B2 (n cos2 ϕ + σ cos ϕ sin ϕ)}, 
 
whose mean value in time is: 

4 zπ Σ = 
8

nc

π
(A2 + B2) e−2kz. 

 
 If one divides the expression for the total couple, or the incident momentor, by the 
energy flux upon entering (z = 0) then one will obtain: 
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z

z

Φ
Σ

= 
2 2

1 2AB

A Bω +
; 

 
a similar relation will also be true for all of the other scales of z.  If the incident wave is 
circular, so A = B, then: 

Φz = z

ω
Σ

. 

 
 The wave loses all of its energy and all of its moment to the absorbent layer, while in 
the case of a transparent quarter-wave layer, it will lose its moment, but not its energy.  A 
direct measurement of the couple Σz / ω that is exerted by circular light on an absorbent 
layer – a blackened one, for example – would be experimentally more difficult to put into 
practice than that of the couple that a quarter-wave experiences, due to the raising of the 
temperature that is produced in the first case from the absorption of energy.  Indeed, such 
an increase in temperature can have some radiometric effects and convection currents that 
can be a source of trouble if one does not work in vacuo, and will mask the effect of the 
measurement. 
 
 
 11. Pseudo-isotropic medium. – Imagine the case of a rectilinear wave that crosses a 
medium that possesses the power to rotate.  The wave is rectilinear when it enters and 
leaves, the moment flux is zero upon leaving, as well as entering, so one would expect 
that the matter would not experience a mean couple.  Let c / n and c / n′ be the direct 
circular and inverse circular speeds of propagation, respectively, and set: 
 

N = ω 
nz

t
c

 − 
 

, N′ = ω 
n z

t
c

′ − 
 

, 

 
which are equal to the phases of the two circular waves, respectively. 
 For the direct circular wave, one will have: 
 

 hx = a cos N, Hx = − an sin N, Fx = − 
ca

ω
sin N, 

 hy = a sin N, Hy =    an cos N, Fy =     ca

ω
cos N, 

 
and for the inverse circular wave: 
 

 xh′  =  a′ cos N′, x
′H  = a′n′ sin N′, xF ′  = − 

ca

ω
′
sin N′, 

 yh′  = − a sin N, y
′H  = a′n′ cos N′, yF ′  = − ca

ω
′
cos N′. 
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 One determines the ratio of the amplitudes from the condition that the two circular 
waves transport the same energy flux; i.e., they have the same Poynting vector.  If one 
uses the language of quantum theory then one can say that the number of direct and 
inverse photons that pass through it every second is the same.  One will immediately 
obtain the condition: 

na2 = n′ a′2. 
 
 One is once more in a situation where the complementary torque θ will be zero here: 
 

Fu + uF ′= 0, div (H + H′) = 0. 

 
 The momentor flux along the z axis that crosses a unit surface normal to the z axis 
will be given by Φz : 
 
 4π Φz  = (Fx + xF ′ )(Hx + x

′H ) + (Fy + yF ′ )(Hy + y
′H ) 

  = 
c

ω
a a′ (n′ – n) cos (N + N′ ), 

 
and the mean value in time will indeed be zero. 
 The momentor density is: 
 

4π µxy =
4

ic

π
Mxuy = (bx + xb′ )(Fy + yF ′ ) − (by + yb′ )(Fx + xF ′ ), 

so 

4π µxy =
1

ω
(a2 n2 – a′2 n′2) + aa

ω
′
(n′2 – n2) cos (N + N′ ). 

 
 The torque density: 

4π γxy = [b h]xy + [B H]xy 

will be obtained by taking: 
b = n2 h, b′ = n′2 h′, 

which will yield: 
4π γxy = aa′ (n′2 – n2) sin (N + N′ ). 

 
 One has conservation of moments; i.e., one can verify by means of the preceding 
formulas that: 

γxy = − xyz

z t

µ∂∂Φ −
∂ ∂

. 

 
 The couple γ is zero only in the mean, and there will be incessant periodic exchanges 
between the field and matter.  The existence of that couple is obvious a priori, so the 
resultant induction, whose components will be: 
 
 bx + xb′ = n2hx + n′2 xh′ , 
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 by + yb′ = n2hy + n′2 yh′ , 

 
will have only the same exceptional direction as the resultant field hx + xh′ , hy + yh′ .  Now, 

the induction and the field are anti-parallel or parallel at points such as N + N′  = K π. 
 The moment flux is the same upon entering and leaving, and the pseudo-isotropic 
substance that makes the azimuth of a rectilinear vibration turn through an arbitrary angle 
will not exchange any couple or moment whose mean is not zero. 
 In Chapters III and IV, I have envisioned only some cases in which the 
complementary torque was annulled in order to show how the use of the momentor is a 
simple and coherent method of calculation for an entire series of problems that one 
cannot solve by the use of impulse moments.  In the following chapter, I will recall the 
general equations (7) and envision the case in which complementary torque θ is no longer 
zero. 
 

___________ 



 

CHAPTER V 
 

RETURN TO THE GENERAL EQUATIONS  
 

 12. Case in which the complementary term is not annulled. – Recall our general 
equations (9) and (10) (Chap. II.4), which show that one can distinguish two kinds of 
terms in the principal torque γ, one of which can be immediately expressed as the 
divergence of a three-index tensor, and the other of which constitutes the complementary 
torque, which cannot be put into that form naturally, and we have: 
 
(28)    4π γij = ∆ivij (τ + σ) – 4π θij . 
 
 One can also put the θ terms into the form of a divergence of a three-index tensor, but 
in a less natural manner.  From (10): 
 

 – 4π θyz = 
2 2 2 2

2 2 2 2
x u x u

u x u x

F F F F
F F F F

x x y y

∗ ∗ ∗ ∗   ∂ ∂ ∂ ∂− + −   ∂ ∂ ∂ ∂   
 

 + 
2 2 2 2

2 2 2 2
x u x u

u x u x

F F F F
F F F F

z z u u

∗ ∗ ∗ ∗   ∂ ∂ ∂ ∂− + −   ∂ ∂ ∂ ∂   
. 

 
 The quantities F and F* are functions of x, y, z, u that are given for the problem.  Set: 
 

i jk
β ∗ ∗ = 

2 2

2 2
k i

i k

F F
F F

j j

∗ ∗ ∂ ∂− ∂ ∂ 
∫ dj, 

 
in which i, j, k are one of the four letters x, y¸ z, u, and in which y*z* correspond to xu, 
z*x*, to yu, and x*y*, to zu; for example: 
 

(28′)    βyxz = 
2 2

2 2
u u

u x

F F
F F

x x

∗ ∗ ∂ ∂− ∂ ∂ 
∫  dx. 

 
 These symbols have the following meaning: Integration will be performed over x, 
while y, z, u are regarded as constants during the integration.  The result will be defined 
only up to a function K (x, z, u).  There will then be indeterminacy in the value of the 
corresponding momentor; that should be obvious a priori.  If one obtains an initial value 
for the three-index tensor that gives the momentor then one will get another one that is 
equivalent from standpoint of torque by adding a second three-index tensor with zero 
divergence to the first tensor. 
 In fact, that indeterminacy in the search for momentors is analogous to the 
indeterminacy that hangs over the symmetric impulse-energy tensor, which is defined by 
the condition that its divergence is equal to the force density: 
 

f = − ∆iv T. 
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 If one has an initial determination of T that gives a certain value to the flux and 
densities of impulse and energy then one will get an entirely different – but still valid – 
one by taking the components T + T′, where T′ is defined by the condition that: 
 

∆iv T′ = 0. 
 
 The tensor T is chosen from all of the tensors T + T′ for reasons of simplicity and 
coherence.  In fact, the same thing will be true for the momentor, and indeterminacy will 
arise in each particular case.  We can write: 
 
     4π γij = ∆ivij (σ + τ + β), 
 
and the momentor will be provided by: 
 
(28″)    4π Mijk = − (σ + τ + β)ijk . 
 
 
 13. Birefringent medium. Rectilinear wave. – Take the case of a rectilinearly-
polarized plane wave, and propagate it in an arbitrary, but non-principal, direction.  In 
general, b is in the plane of the wave, and h is not, so a certain torque density whose axis 
is directed along H will result. 

 Let (gx, gy, gz, gu) be the components of a quadri-vectorial quantity that propagates by 
plane wave in a crystal, with a wave normal that has the direction cosines α, β, γ, and a 
velocity of v.  Denote the amplitude of gi by the notation ig , set V = iv / c, and let pϕ 

denote the phase: 

pϕ = 
2π
λ

(α x + β y + γ z + Vu), 

with p = 2π / λ. 
 The propagation of the vector potentials that were defined by (8) and (8′) in 
paragraph 4 can be written: 
 
 (Fx, Fy, Fz, Fu)  = ( , , , )x y z uF F F F   sin pϕ , 

 ( , , , )x y z uF F F F∗ ∗ ∗ ∗  = ( , , , )x y z uF F F F∗ ∗ ∗ ∗ sin pϕ , 

 − i hx = u xF F

x u

∂ ∂−
∂ ∂

. 

 That gives: 

(29) 

( )cos ,

( )cos ,

( )cos ,

x u x

y u y

z u z

h ip F F V p

h ip F F V p

h ip F F V p

α ϕ
β ϕ
γ ϕ

 = −
 = −
 = −

 

 
in which V is imaginary, hx is real, Fx, Fy, Fz are real, and Fu is pure imaginary. 
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Bx = yz
FF

y z

∂∂ −
∂ ∂

 

gives: 

(29′) 
( )cos ,

( )cos ,

( )cos ;

x z y

y x z

z y x

p F F p

p F F p

p F F p

β γ ϕ
γ α ϕ
α β ϕ

 = −
 = −
 = −

B

B

B

 

 
on the other hand, ∆iv F = 0 will give: 
 
(29″) x y z uF F F F Vα β γ+ + + = 0. 

 
 One will get analogous equations upon expressing b and H in terms of F* from (8′): 
 
(30) bx = ip ( )z yF Fβ γ∗ ∗− cos pϕ, … 

(30′) Hx = ip ( )u xF F Vα∗ ∗− cos pϕ, … 

 

xF ∗ , yF ∗ , zF ∗  are pure imaginary, while uF ∗  is real. 

 Div F* = 0 yields: 
(30″) x y z uF F F F Vα β γ∗ ∗ ∗ ∗+ + + = 0. 

 
On the other hand, div H = div B = 0 is written: 

 
(31) ( )x y z uV F F F Fα β γ∗ ∗ ∗ ∗+ + − = 0, 

 
and upon combining (30″) and (31): 
 

uF ∗ = 0,  x y zF F Fα β γ∗ ∗ ∗+ + = 0. 

 
F* is transversal and situated on the wave, but F is not.  We now write the compatibility 
relations by first equating B and H, as they are inferred from (29′) and (30′): 
 

(32)    

,

,

.

x z y

y x z

z y x

V F F F

V F F F

V F F F

β γ
γ α
α β

∗

∗

∗

 − = −
 − = −
 − = −

 

 
 Suppose that the chosen system of axes is principal; i.e., that: 
 

bx = 2
x xn h = 

2
x

x

h

v
, by = 2

y yn h = 
2

y

y

h

v
, bz = 2

z zn h = 
2
z

z

h

v
. 
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 Upon using the b and h that one infers from (29) and (30), resp., one will then get: 
 

(33)    z yF Fβ γ∗ ∗−  = 
2

1

xv
(Fu α – Fx V), … 

  
 A simple combination of the preceding equations will give: 
 

2 2 2

2 2 2 2 2 2
x y zv V v V v V

α β γ+ +
+ + +

 = 0, 

 
which is the equation for the normal velocities. 
 From (28″), the momentor that is derived from (σ + τ) has a zero mean, and: 
 

4π γ = ∆iv β. 
 On the other hand, from (28′): 
 
 

y xz
β ∗ ∗ = 2 2 2( ) sinu x x up F F F F p dxα ϕ∗ ∗− ∫  

will give: 

 
y xz

β ∗ ∗ = 
2 2 1

( ) sin 2
2 4u z y

p x
F F F p

V p

α β γ ϕ
α

 
− + 

 
, 

 

 
y yz

β ∗ ∗ = 
2 2 1

( ) sin 2
2 4u z y

p y
F F F p

V p

α β γ ϕ
β

 
− + 

 
, 

 

 
y zz

β ∗ ∗ = 
2 2 1

( ) sin 2
2 4u z y

p y
F F F p

V p

α β γ ϕ
γ

 
− + 

 
, 

 

 
y uz

β ∗ ∗ = 
2 2 1

( ) sin 2
2 4u z y

p u
F F F p

V V

α β γ ϕ
π

 − +  
, 

and 

 4π γyz = 
y xz y yz y zz y uzx y z u

β β β β∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

. 

 
 If one expresses these quantities as functions of the components of the field and 
induction then one will get: 
 

4π γyz = − p2
21

( )u z y

V
F F F

V
β γ + − 

 
cos2 pϕ = [b ⋅⋅⋅⋅ h]yz . 

 
 That is what we had predicted.  In the case of a rectilinear wave, the principal torque 
is provided by just the complementary term.  However, that way of proceeding is hardly 
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natural.  Properly speaking, there is no propagation of momentor β, and we would like to 
avoid the introduction of the factors x, y, z, u that enter into the expression for β and 
cannot be transposed to the general case. 
 On the other hand, if one envisions an elliptical wave, instead of a rectilinear wave, 
then it will propagate a real momentor that is provided by the (σ + τ) terms in (28″), and 
β will not correspond to the propagation of momentor.  It is then much less natural and 
conforms to the spirit of these calculations to refer θ in the left-hand side to equation (28) 
and write: 

4π (γ + θ) = ∆iv (σ + τ), 
and to take: 

4π M = − (σ + τ) 
 

to be the momentor that is transported by the wave. 
 
 
 14. Dragging of waves by a moving monorefringent medium. – To fix ideas, we 
consider a plane wave that propagates in the z direction and is rectilinearly polarized, and 
initially place ourselves in a system of axis in which the refringent medium is at rest.  In 
this system of axes: 

Fu = 0,  div H = 0, 

 
and the complementary torque will be annulled.  The three real components of the 
principal torque are real, and the wave does not transport real momentor.  Meanwhile, the 
three imaginary components of the principal torques are not zero, and if one places 
oneself in a new system of axes S′ that moves with respect to the preceding one with 
velocity v then those three imaginary components will provide a real contribution to the 
real components of the torque γ′ in the system S′ in the course of a change of axes.  In the 
present case, the annihilation of the complementary terms does not have an intrinsic or 
invariant character, as it does in the vacuum case, and the torque γ will provide the 
complementary terms in the system of axes S′.  The change of axes that permits one to 
pass from the system S into S′ will transform F and γ in the following manner if one uses 
the formulas of paragraph 3: 
 
 Fx′ =    Fx cos ϕ + Fu sin ϕ, Fy′  = Fy , 
 Fu′ = − Fx sin ϕ + Fu cos ϕ, Fz′  = Fz , 
 
 γy′z′ = γyz , γz′u′ = γxu , 
 γz′x′ = γyx cos ϕ + γzu sin ϕ, 
 γx′y′ = γxy cos ϕ − γyu sin ϕ, 
 …………………………... 
 
 We specialize the problem by supposing that the wave vibrates rectilinearly in the x 
direction in the system S; i.e.: 
 

hx ≠ 0,  hy = 0,  hz = 0. 
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 In the course of a change of axes, the 6-vectors M and N transform in the following 

manner: 
bx′ = bx,  hx′ = hx, bx′ = n2 hx′ , 

 
hy′ = hy = 0, by′ = by = 0, 

 

bz′ = hz′ = 
21

yβ

β−

H
, Hy′ = 

21

y

β−

H
. 

 
 b′ does not have the same direction as h′ in the system S′, and a real torque will 
result.  The problem is very analogous to the problem that we treated previously – 
namely, the birefringent medium – in which the torque was provided by only the 
complementary terms.  If one writes the imaginary components of γ in the system S: 
 

4π γxu = i {[ b ⋅⋅⋅⋅ B] – [h ⋅⋅⋅⋅ H]} x , 

 
and if one uses the transformation formulas: 
 

4π γz′u′ = γzu sin ϕ + γzx cos ϕ, 
 
in which γzx = 0 and γzu ≠ 0 then one will indeed find a real torque, and one will be easily 
assured that its value is: 

4π γz′x′ = [b′ ⋅⋅⋅⋅ h′]z′x′ . 
 

 If one would like to obtain the expression for the momentors then one must conclude 
the calculation as in the preceding paragraph that related to a birefringent medium.  One 
writes the expression for F and F* in the system S, and one subjects them to the Lorentz 
transformation in order to obtain their values in the system S′, and one calculates the 
terms σ + τ and β.  Here again, the torque is provided by the complementary terms 
uniquely, and it is natural to set: 

4π M = (σ + τ), 
 

which will give a mean value of zero for the momentor that is propagated by the wave.  
The preceding calculation indeed shows the necessity for the existence of the imaginary 
components of γ. 
 
 
 15. Expressing for the moment in a form that uses F and F* symmetrically. – 
Recall the expression for the principal torque: 
 
  4π γxu = i {[ b ⋅⋅⋅⋅ B]yz – [h ⋅⋅⋅⋅ H]yz }, 

  4π γyz = i {[ b ⋅⋅⋅⋅ h]yz + [B ⋅⋅⋅⋅ H]yz }, 
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and once one has made each of the vector products explicit, replace b and H with their 

expressions as functions of the vector potential F* by using (8′) of paragraph 4. 
 Then set: 
 − ijkτ ∗  = i jk j ik k ijF F F∗ ∗ ∗ ∗ ∗ ∗+ +M M M , 

  − J* = [F* M];   

i.e.: 
− xJ∗ = x xx y xy z xz u xuF F F F∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗+ + +M M M M , 

so one will have: 
 xyyσ ∗ = − zzxσ ∗  =   uuxσ ∗  = xJ∗ , 

 yzzσ ∗ = − xxyσ ∗  =   yzzσ ∗  = yJ∗ , 

 zuuσ ∗ = − yyzσ ∗  =   zxxσ ∗  = zJ∗ , 

 − xxuσ ∗ = − yyuσ ∗  = − zzuσ ∗  = uJ∗ , 

 
 4π γyz + 4π yzθ ∗ = ∆iv (σ * + τ *), 
with 

− 4π yzθ ∗ = − iv ivx u u xF F∗ ∗∆ + ∆M M = x u u xF F F F∗ ∗−□ □ . 

Hence: 
(34) 4π (γ + θ *)ij = − 4π ∆ivij M *, 
with: 

M * = − 
4

σ τ
π

∗ ∗+
. 

 
 It is possible to form a more symmetric expression by taking the momentor to be 

2

M M ∗+
, so the complementary torque will be 

2

θ θ ∗+
.  In order to apply this to a 

concrete case, recall the problem of paragraph 6 and calculate the moment flux along the 
z axis by taking: 
 

Cz = 1
2 (M + M *)xyz = 

1

8π
[Fy Hy + Fx Hx + i ( )x x y yF h F h∗ ∗+ ] = 

4

ab

πω
c. 

 
 The result is therefore unmodified.  In a general manner, the complementary torque 
can be put into a less abstract form as follows: 
 Take the 4-vector q that is defined by: 
 

4π q = c ∆iv M. 

 
 If one denotes Hertz’s free charge density by ε (as opposed to ρ, which denotes the 
true charge density) then its u component will be equal to 4π qu = ic div h = 4π icε.  We 
can refer to the four components: 
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qx , qy , qz , qu = ic ε 
 
by the name of free electric current density.  It is easy to see that ∆iv q = 0, which 
expresses the idea that free electric charge is conserved, just like true electric charge. 
 Consider the 4-vector Q that is defined by: 
 

− 4π Q = ic div N*. 

 Its component Qu is such that: 
 

4π Qu = ic div H = 4π ic δ, 

 
in which δ denotes the density of free magnetism (it is not true magnetism).  We can refer 
to the four components of Q: 

Qx , Qy , Qz , Qu = ic δ 
 
by the name of free magnetic current density.  On the other hand, ∆iv Q = 0, and free 
magnetism will be conserved.  The complementary torque will then take the form: 
 

(θ + θ *)yz = 
1

c
[ ( )x u u xq F q F∗ ∗− − i (Qx Fu – Qu Fx)], 

 
which is an expression that must be approached like the one that we found in the problem 
of spheres in which the true electric charge density was not zero in (25′) of paragraph 8, 
and like the one that we will find in the following chapter.  These ways of writing the 
complementary torque are essential for the development of the theory.  I shall give their 
interpretation in a later publication. 
 

_________ 



 

CHAPTER VI 
 

MOMENTS IN LORENTZ’S THEORY  
 

 16. Conservation of moments. – In this theory, the only dielectric medium is the 
vacuum.  If ρ is the true density, and xρ ɺ , yρ ɺ , zρ ɺ  are the current densities then: 
 

Cx = xρ ɺ , Cy = yρ ɺ , Cz = zρ ɺ , Cu = ic ρ, 
 
for a 4-vector.  The 6-vectors M and N that were defined in paragraph 3 are equal to 

each other: 
 Myz =     Hx , Mzx =    Hy , Mxy =    Hz , 

 Mxu = − ihx , Myu = − ihy , Mzu = − ihz , 

 
and the Lorentz equations are written: 
 

c ∆iv M = 4π C, 

∆iv M* = 0. 

 
 The components of the force density 4-vector f are given by: 
 

fx = ρ 
1

( )x y z z yh C C
c

 + −  
H H . 

That can be written: 
c f = [C ⋅⋅⋅⋅ M]; 

i.e.: 
c fx = Cx Mxx + Cy Mxy + Cz Mxz + Cu Mxu . 

 
 The force density can be put into the form: 
 
(35)     f = − ∆iv T, 
 
in which T is the symmetric energy-impulse tensor: 
 

 Txx = 2 2 2 2 2 21
( )

8 y z x y z xh h h
π

+ − + + −H H H , 

 Txy = Tyx = − 1

4π
(hx hy + Hx Hy), 

 Txu = Tux =
4

i

π
(hy Hz − hz Hy), 

 Tuu = − 1

8π
(h2 + H2). 
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 The physical sense of these components is as follows: If i and j are indices x, y, z then 
Tij is the impulse flux in the direction i across a face that is normal to j.  Tiu is the impulse 
density in the direction i, up to a multiplicative constant. 
 We construct the force moment density with respect to the origin; i.e., we construct 
the combinations: 
 lij = [r ⋅⋅⋅⋅ f] ij = i f j – j fi , 

 
in which i, j represent two of the four components x, y, z, u; for example: 
 

(36)    
,

.
yz z x

xu u x

l y f z f

l x f u f

= −
 = −

 

 
The density thus-defined is a 6-vector.  If one replaces the values of f with the 
corresponding ∆iv T in the expression for l then one will get: 
 

 4π lyz = −
x

∂
∂

(y Tzx – z Tyz) −
y

∂
∂

(y Tzy – z Tyy) 

 −
z

∂
∂

(y Tzu – z Tyu) −
u

∂
∂

(y Tzu – z Tyu). 

 
 The 24 parentheses that one obtains by taking the six quantities l are the components 
of a three-index tensor that we will refer to by the expression impulse moment tensor, and 
we will have: 
(37)     l = − ∆iv L, 
with 

4π Lyxz = y Tzx – z Tyz ,  4π Lyyz = y Tzy – z Tyy . 
  
 The significance of its components is as follows: 4π Lijk is the impulse moment flux 
along the ik axis through a surface that is normal to j. 
 

yuzL

ic
= 

1

4 icπ
(y Tzu – z Tyu) = lyz 

 
is the impulse moment density along the yz axis: 
 

λλλλ = [r ⋅⋅⋅⋅ g], 
 
in which g is the impulse density.  That is formula (2) of paragraph 1; indeed, up to now, 
it seems to be almost the only that has been used in the study of moments.  Equation (37) 
expresses the conservation of the impulse moment.  x, y, z, u figure explicitly in the 
expressions for l and L, which shows that the moment thus-defined is a moment of the 
first kind that is meaningful only when one gives the point with respect to which one 
calculates it. 
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a 
R′ 

ω 

b 

ω′ 

R 

r 

 
Figure 1. 

 
 It is an impulse moment of that type that enters into the experiments on the radiation 
pressure of light.  A vertical torsion filament carries a vertical mirror (a) on which an 
unpolarized light ray R falls normally at a distance r from the filament.  The radiation 
pressure communicates an impulse moment of the first kind to the torsion equipment.  
Such impulse moments, which are calculated from L, certainly exist physically then, but 
that is not an intrinsic property of an electromagnetic wave.  If one confines oneself to 
them (and that seems to be what one often does) then one will have overlooked one-half 
of the terms, and in fact, the most important ones, since they belong to the moment that is 
intrinsic to the wave; i.e., the momentor. 
 Let l represent the force moment density.  However, instead of replacing the 
quantities f with their expressions in terms of T in (36), express those quantities as 
functions of C and M: 

(− z) c fy = Cx Myx + Cz Myz + Cu Myu , 

(y)  c fz = Cx Mzx + Cz Mzy + Cu Mzu . 

 
Multiply the first one by – z and the second one, by y, and then add them, while replacing 
the quantities C with their expressions as functions of M: 

 
 4π lyz = y (Mzx ∆ivx M + Mzy ∆ivy M + Mzu ∆ivu M) 

 − z (Myz ∆ivx M + Myz ∆ivz M + Mzu ∆ivu M). 

 
 Take one of the terms − for example: 
 

 y Mzx ∆ivx M = y Mzx 
xy xz xu

y z u

 
∂ + ∂ + ∂ ∂ ∂ ∂ 

M M M
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  = Mzx ( ) ( ) ( )xy xz xuy y y
y z u

 ∂ ∂ ∂+ + ∂ ∂ ∂ 
M M M − Mxy Mzx . 

 
 The first three terms are of the first kind, since y enters into them explicitly, and − 
Mxy Mzx is of the second kind. 

 Group all of the terms of the first kind.  One will get: 
 

 zx xy zx xuy y y
y z u

 ∂ ∂ ∂+ + ∂ ∂ ∂ 
M M M M  

 + zy yx yz xuy y y
x y u

 ∂ ∂ ∂+ + ∂ ∂ ∂ 
M M M M  

 + zu ux uy uzy y y
x y z

 ∂ ∂ ∂+ + ∂ ∂ ∂ 
M M M M  

 − yx xy xz xuz z z
y z u

 ∂ ∂ ∂+ + ∂ ∂ ∂ 
M M M M  

 − yz zx zy zuz z z
x y u

 ∂ ∂ ∂+ + ∂ ∂ ∂ 
M M M M  

 − yu ux uy uzz z z
x y u

 ∂ ∂ ∂+ + ∂ ∂ ∂ 
M M M M . 

 
If one uses identities of the form: 
 

zx xyy
y

∂
∂

M M = ( )zx xy xy zxy y
y y

∂ ∂−
∂ ∂

M M M M , 

 
on the one hand, and the Lorentz equations, on the other, then the terms of the first kind 
can be put into the form: 

− 4π ∆ivyz L, 
 
in which L is the three-index impulse moment tensor. 
 The terms of the second kind: 
 

− Mxy Mzx − Mzu Muy + Mxz Myx + Muz Myu = 4π γyz = 0 

 
give a zero sum.  The principal torque is zero in Lorentz’s theory, since b and h, as well 
as B and H, have the same direction. 

 Replace the second symbol in each term by its expression as a function of F, and if 
one takes into account that ∆iv F = 0 then: 
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 0 = 
4

c

π
(Cy Fz – Cz Fy) +

x

∂
∂

(Hy Fy – Hx Fx) 

 +
y

∂
∂

(− Hy Fx – Hx Fy + ihz Fu) +
z

∂
∂

(− Hz Fx – Hx Fz − ihy Fu) 

 +
u

∂
∂

(ihy Fz – ihz Fy − Hx Fu) . 

 
 If one sets: 

4π θyz = 
4

c

π
(Cy Fz – Cz Fy) 

then one will get: 

θij = 
1

c
[C ⋅⋅⋅⋅ F] ij , 

 
which is the complementary torque.  Set: 
 
 − 4π Myxz = Hx Fx – Hy Fy − Hz Fz , 

 − 4π Myyz = Hy Fx + Hx Fy − ihz Fu . 

 
If we group all of the terms then we will obtain the equations that express the 
conservation of moments of the first and second kind: 
 
(37)  l + ∆iv L   = 0, 
(38)  θ + ∆iv M = 0. 
 
 Outside of matter (i.e., the electricity), f = 0, l = 0, C = 0, θ = 0, and those equations 
will become: 

(39)     
iv 0,

iv 0.

L

M

∆ =
 ∆ =

 

 
 The moment of the first kind is conservative, as is the moment of the second kind.  
Therefore, outside of matter, there is no possibility of transforming moments of one kind 
into moments of the other kind.  On the contrary, inside of matter, equations (38) show 
that L and M are not conservative, since l and θ are no longer zero, so a certain quantity 
of moment of the first kind can be transformed into momentum of the second kind by the 
intermediary of matter. 
 
 
 17. Transformation of moments of one kind into moments of another kind. 
− Imagine, for example, the torsion pendulum that was described above (Fig. 1) and was 
intended to measure the impulse moment of the ray R.  We fix a horizontal half-wave 
layer (b) that receives a sheaf of light rays R′ that are polarized circularly in such a 
fashion that when they leave it, they will be inverse circular.  That layer will experience a 
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torque 2P / ω and a force moment 2Π / c that directed in the opposite sense, where P is 

the power that is transported by R′, and Π is the power that is transported by R.  Arrange 
P and Π in such a manner that the pendulum is in equilibrium; i.e., take: 

 

ω
P

= 
c

Π
. 

 
Since the moments equilibrate, there will be a continuous transformation of moment of 
one kind into moment of the other kind by the intermediary of the solid.  Now, suppose 

that 
ω
P

>
c

Π
, so the equipment will turn in the same sense as the radiation pressure. 

 In the following chapter, we will see that the rotation of the half-wave layer will 
change the pulsation ω = 2πv of the ray R′; it will become ω′ > ω.  We assume that the 
operation is adiabatic – i.e., the mirror is perfectly reflecting, and the half-wave layer is 
perfectly transparent, such that no part of the energy will transform into heat – and we 
assume, on the other hand, that the motion is infinitely slow, so it will be possible to 
neglect the kinetic energy of the equipment, which is assumed to be a perfect solid.  
Replace the torsion filament with a frictionless suspension pivot, in order to eliminate the 
loss of potential energy from the torsion in the filament.  When the mirror is moved far 
away from the ray R, there will be a reduction of the frequency of the reflected ray, and 
correspondingly, a reduction in the energy of that ray.  Moreover, there will be a transfer 
of impulse moment to the solid at the same time that the pulsation ω of the ray R′ changes 
with the infinitely-slow rotation of the half-wave.  Since the operation is assumed to be 
adiabatic, the energy that is lost by R is given to R′, and correspondingly, the moment of 
the first kind that corresponds to the energy that is lost will be transformed into a moment 
of the second kind in the ray R′. 
 Lorentz’s theory is itself capable of giving the mechanism of that transformation: It is 
obvious that this is not so, since unless one adds quantum theory, Lorentz’s theory is 
incapable explaining the existence of solid bodies, because by itself it is incapable of 
explaining the stability of the atoms that comprise the solid body.  We then see that at its 
basis, the mechanism that permits the transformation of impulse moments into 
momentors, or conversely, will exceed the possibilities of Lorentz’s theory, so one must 
introduce the constant h. 
 

___________ 
 

 
 



 

CHAPTER VII 
 

DOPPLER-FIZEAU EFFECT FOR ROTATION  
 

 18. Observable character of moments. – One can envision the question of the 
moments that are transported by light by using the principles of thermodynamics, and 
thus exhibit the real and observable character of the momentors that are transported by a 
circular wave. 
 For the impulse moments of the first kind, there is no doubt about their observable 
character.  If a sheaf of light rays of power Π falls upon a mirror at a distance r from an 
axis of rotation then it will exert a force: 

f = 
2

c

Π
 

 
and an impulse moment that effectively conforms to this theoretical result: 
 

2 r

c

Π
. 

 
 Suppose that a mirror M receives the sheaf normally, and it displaces with the 
velocity v, which is regarded as positive in the sense of the incident mirror, but infinitely 
small.  The mirror will impart a mechanical power fv to the light: 
 

fv = w = − ∆Π = 2Π 
v

c
. 

 
 Correspondingly, in the reflected sheaf, the frequency will diminish by the Doppler-
Fizeau effect.  If ω = 2πv is the pulsation of the incident light: 
 

ω
ω

∆
= − 

2v

c
 

and 

(40)    w = − Π ω
ω

∆
 = − ∆Π. 

 
 The Doppler effect is inseparable from the mechanical power that is given to the 
mirror.  Now, it can be exhibited indirectly by means of optical beats.  For example, 
construct an interference apparatus of the air-wedge (coin d’air) type with one fixed glass 
layer and one moving layer.  The light that is reflected from the fixed layer will have the 
same pulsation ω as the incident light, while the light reflected by the moving layer will 
have a pulsation of ω + ∆ω, and what will result is an optical beat that is effectively 
realized at a fixed point in space by the displacement of the interference fringes that pass 
through that point. 
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 The relation (40) has the consequence that if one performs a finite adiabatic 
transformation then the ratio Π / ω will remain constant. It will then result that a light 
energy E of pulsation ω will possess an entropy S that is of function of only E / ω : 

 

(40′)     S = f
ω
 
 
 

E
. 

 
Therefore, if one modifies the frequency of the light by an arbitrary adiabatic process 
then there will exist the following proportion between the energies and pulsations: 
 

(40″)     1

1ω
E

= 2

2ω
E

. 

 
 I previously indicated (1) an adiabatic process for changing the frequency of circular 
radiation by letting the radiation fall on a turning half-wave layer. 
 Now, envision such a layer that is perfectly transparent and receives a sheaf of 
circularly-polarized light with a pulsation of ω and a power of P normally.  Count 

rotations to be positive when they are in the same sense as the incident circular 
polarization.  Let z be the direction of the incident sheaf, let x and y be two directions that 
are fixed in space, normal to z, and form a right trihedron with it.  Let x and y be the 
components of the light vibration when the circular wave falls upon the layer: 
 

x = a cos ω t, y = a sin ω t. 
 

 Suppose that the half-wave layer is such that one of its principal directions forms an 
angle of α with x.  A simple calculation will show that when the circular wave leaves the 
layer, it will be inverse circular, and one can write: 
 
 x1 = a cos (− ω t + 2α), 
 y1 = a sin  (− ω t + 2α). 
 
 Now, suppose that the layer turns around a direction that is parallel to z in the positive 
sense with a very small angular velocity Ω: 
 

α = Ωt, 
 x1 = a cos [− (ω t − 2Ωt)], 
 y1 = a sin  [− (ω t − 2Ωt)], 

 
and the frequency of the emergent light is ω – 2Ω.  It will be diminished if the layer turns 
in the same sense as the incident circular wave, and augmented if it turns in the opposite 
sense.  It will produce a true Doppler effect, and the corresponding change in frequency 

                                                
 (1) E. HENRIOT, “Les couples exercés par la lumière polarisée circulairement,” C. R. Ac. Sc. 198 
(1934), pp. 1146. 
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can be exhibited in reality by a optical beat.  Indeed, if we juxtapose the turning half-
wave layer with an immobile half-wave layer whose principal directions are directed 
along x and y then the emergent vibration will be: 
 
 x2 = a cos (− ω t), 
 y2 = a sin  (− ω t). 
 
 Irradiate the set of the two layers with a circular wave, one part of which falls upon 
the turning layer, and the other of which falls upon the immobile layer, and let those two 
vibrations interfere with each other upon leaving. 
 
 x1 + x2 = 2a cos (− ω t + α) cos (Ω t), 
 y1 + y2 = 2a cos (− ω t + α) cos (Ω t) 
 
will then give the optical beat that corresponds to the predicted change in frequency. 
 What will result is a continuous motion of the fringes in a well-defined way that was 
effectively stated by Righi (1).  It would be even simpler to interpret it as a beat whose 
cancellations are produced four times per rotation that one obtains by turning a half-wave 
layer between two crossed Nicol prisms with an angular velocity Ω.  The rectilinear wave 
that leaves the first Nicol can be decomposed into two inverse circular waves of 
frequency ω.  Upon leaving the turning layer, one will have two inverse circular waves of 
frequency ω – 2Ω, ω + 2Ω, while the second Nicol will permit one to make them 
interfere and will give a beat that is a quadruple cancellation be rotation. 
 There are few practical experiments that are more current than that one, but at its 
basis, it shows the reality of the angular Doppler effect and its magnitude.  Since the layer 
is perfectly transparent, and the rotation is infinitely slow, if one assumes that the 
operation is adiabatic then, from the relations (40″), if P1 and P2 are the powers before 

and after traversal of the turning layer then: 
 

(41)     1

1ω
P

= 2

2ω
P

 = 
2

δ
− Ω
P

. 

 
The reduction δP in power must have a counterpart in a mechanical power δW that is 

given to the layer, since there is no heat emitted: 
 

δW = − δP. 

 
Since that mechanical power is correlated with a rotation Ω, that will demand that a 
couple j must exist such that: 

δP = − j Ω. 

                                                
 (1) A. RIGHI, Mem. d. accad. d. scienze di Bologna [IV], 4 (1882), pp. 247.  See also, R. D’E. 
ATKINSON, “Energy and angular momentum in certain optical problems,” Phys. Rev. 47 (1935), pp. 623.  
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That value is deduced from arguments that are solely energetic and kinematic, and is 
precisely the one that is provided by electromagnetic theory.  There is then a convergence 
in the results that is mentally satisfying, but the thermodynamic argument offers us 
something more.  The real, observable character of the change in frequency by rotating 
the half-wave layer permits one to consider the phenomenon of beats that was described 
above as an indirect measurement of the couple j and a proof of its observable, 
measurable character in the same way as for the case of the air wedge, so the 
displacement of the fringes can be considered to be an indirect measurement of the 
radiation pressure. 
 The only difficulty resides in the hypothesis that we made that the operation is truly 
adiabatic.  The displacement of the fringes in the air wedge is limited, so one can make 
only a number of fringes pass through a point of the air wedge that depends upon the 
more or less monochromatic state of the radiation, and each fringe will preserve a well-
defined order number in the course of its displacement.  These circumstances do not exist 
for the displacement of interference fringes that are produced by the turning and 
immobile half-wave layers: The displacement of fringes is then unlimited, so an 
indefinite number of fringes can pass through a point, and none of them will preserve an 
order number that is always the same in the course of its motion.  The difference is 
essential, and I will return to that difficulty in my next publication. 
 Furthermore, as convincing as such an indirect experiment can be for measuring the 
radiation couples by the change in frequency, the only experiment that would inspire 
complete confidence would be the direct measurement of the mechanical couple that is 
exerted, which I have attempted in the past, and it would be desirable that it should be 
realized despite the smallness of the couples: The utilization of short Hertzian radiation 
might possibly provide a first indication in that sense. 
 

__________ 
 



 

CHAPTER VIII 
 

CONCLUSION  
 

 19. The problems that remain to be solved. – In the foregoing treatise, for the sake 
of completeness, I was forced to raise several important questions that I passed over in 
order to limit the scope of the treatise, and also because there is no complete answer to 
them in certain aspects.  Notably, there is good reason to adopt the energetic viewpoint; 
that is, to envision, on the one hand, the exchanges of energy that are produced between 
the electromagnetic field and matter by the intermediary of torque, and on the other hand, 
to analyze the physical significance of the imaginary components of the torque and 
momentor. 
 The solution of a problem is always provisional, but it is important, above all, to pose 
it clearly. 
 The question of radiation couples is an important problem, and it has been generally 
neglected in electromagnetism: The objective of this study was to pose it, along with all 
of the difficulties that it entails, and to put it into clear focus. 
 With time and criticism, one might modify some points and add some others, but it 
will not involve any adventurous hypotheses nor leave the realm of classical theories, in 
such a way that one can hope that its essence will still remain. 
 In conclusion, I would like to indicate the reasons that determined the organization of 
this survey and pertain to the nature of the question itself.  The Maxwell-Hertz theory 
imagined a medium that was polarizable from a macroscopic standpoint, while in 
Lorentz’s theory, it was microscopically polarizable.  In the latter theory, one imagines 
that a sufficiently-subtle observer of the medium can follow the electrons of an atom or 
polarizable medium in the course of their motions.  It would then follow that certain 
problems would appear to be of the second kind in the Maxwell-Hertz theory and of the 
first kind in Lorentz’s theory.  For example, take the case of a wave that crosses a 
birefringent or absorbent medium.  In the Maxwell-Hertz theory, the problem is of the 
second kind, and in that of Lorentz, one imagines that one can conceive of the motion of 
the polarization electrons around the center of the atom, and envision the impulse of each 
of them and take its moment with respect to the center, which will amount to a moment 
of the first kind.  That was the manner by which I proceeded in a previous article (1). 
 However, we know from the statement of the principle of indeterminacy that there is 
good reason to distinguish between what can be conceived and what can be observed.  
Now, one can conceive of the motion of electrons in an atom, but from the principle of 
indeterminacy, one cannot imagine a corresponding experiment that will tell us what the 
impulse of an electron is at a given moment.  Observations of the atom will give only a 
mean effect that translates into a matrix expression, but the operation that consists of 
taking the impulse of the electron at a given instant and its moment with respect to the 
center is an operation that lies outside of physics, since it does not correspond to any 
realizable experiment.  In wave mechanics, the impulse moment of the trajectory and that 
of the spin in an atom are both of the second kind, and the subtle Lorentz observer will 

                                                
 (1) E. HENRIOT, “Les couples mécaniques exercés par la lumière polarisée elliptiquement,” Bull. Cl. 
Sc. Acad. Roy. Belg. 13 (1927), pp. 143. 
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lose his rights.  Perhaps the Maxwell-Hertz theory that provides the mean observables is 
closer to the recent wave mechanics that that of Lorentz, and that would explain the fact 
that one must indicate how to choose one over the other when one attempts to show the 
train of ideas in a natural manner.  Torque and momentor, whose existence is necessarily 
manifest in the first theory, are transposed into the second one by a sort of passage to the 
limit when the polarizable medium becomes the vacuum, and will then permit one to 
solve a series of important problems that would be insoluble without them. 
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