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RADIATION COUPLES

AND

ELECTROMAGNETIC MOMENTS

By Emile HENRIOT

Professor at the University of Brussels

FOREWORD

The present work is the result of an effort thas wadertaken to bring about an initial
development of a question that has remained with no aleawer, even up to relatively
recent times.

Chronologically, an experimental difficulty has heiks point of departure. For a
decade, | have been forced to measure the couples thaukrty-polarized wave can
exert on matter directly. In those experimentsr@utar wave that issued from a Fresnel
parallelepiped crossed a half-wave or quarter-wave |fgene and left it inverse-
circularly or rectilinearly polarized. Under those ditions, one would expect to exhibit

a couple that the layer is subjected to that would be ¢g@#&t / win the former case and

P | win the latter one, wher® is the power that is carried by the wave, and its

pulsation. The extreme smallness of the predicted eowpl render the experiment
difficult and its results indecisive, so a lack of tiaral adequate means have obliged me
to defer a realization of that experiment. In thentgne, a doubt was born in my mind,
which quickly dissipated, moreover. The principle afaterminacy that was just stated
makes the pursuit of some research chimeridal example, the research that consists of
exhibiting the spin of an electron by a method that isogoais to the one that Stern and
Gerlach used for atoms. Should one not fear that smaanced consequence of the
principle of indeterminacy might show the vanity of aewperimental effort that was
directed along those lines? Nonetheless, | can iegr indirect experiment whose
basic principle | shall describe at the end of this wasksomething that proves the
observable character of light couples.

On the other hand, | have the very strong sentitiexttit is necessary to subject the
theoretical arguments that are invoked in order to predich couples to an examination
and a complete, critical revision. Indeed, those argtsnkck coherence, and their
deduction from the classical equations of electromagneasiso indirect and so unnatural
that it is impossible to escape the impression thatmiginod that is utilized in the course
of those arguments must be made more precise, if n@octed.

The better part of this monograph is devoted to an efflortg those lines that is
purely deductive and uses only the classical equations ofvdlawith no necessity for
any supplementary hypothesis of a theoretical naturethamavill give its conclusions a
certain degree of certainty. As for the interest sigh an effort might present, one must
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not forget that, thanks to the correspondence princigie, results of classical

electromagnetism retain all of their importance ie @tontext of quantum theories.
Despite it all, should one hope to find something in amdhht is as well-examined as
classical electromagnetism that has not been seanlclalready and would also be of
some interest? The conversations that circumstances led me to carry on with

Lorentz and the most knowledgeable theoreticians shearlglthat they felt that the

answer to the problem that had been posed was unclear amédaeqare work.

On 19 December 1790, a forgotten physicist named Vassaliywat@ contemporary
of Volta, read a paper to the Turin Academy of Sciermesome experiments with
electricity that began with these words: “After muesearch and many experiments that
were preceded and followed by the deepest examinatiotriedéscience seems to have
reached its highest point of perfection. That wouldnmsedmost ridiculous to the
common minds that have to deal with it, moreover, extegit nature is hidden in its
progress.” That citation reminds us that we must n@wep to conclusions in the
answers that one gives to the questions that are possiknge.




CHAPTER |

Statement of the problem

1. Moments of the first and second kind— When the electromagnetic theories of
light are substituted for Fresnel's elastic theoriesstnof the facts that are predicted by
them will find a pre-existing framework and a well-adaptechigology in them, as well
as an entirely natural explanation. Meanwhile, onastmpoint out an important
exception: The theory of elasticity easily predictattiwhen a plane, elliptic wave with
semi-axesa and b propagates in the direction inside of an isotropic solid, it will
transport an impulse moment fl@s along thez-axis and an energy fluX, , and the ratio
of the one to the other will be given by:

2ab
a’+p?’

(1)

M |NO

-1
w

4

Is it possible to transpose that theorem into th@esa of electromagnetism? One
can define an impulse densityin electromagnetism. Most authors up to now have
referred to the vector product:

(2) A=[r ],

in whichr = OP, whereP is the point where one calculated the density, by theenaf
thedensity of the impulse moment with respect to atgai Now, in the case of a plane
electromagnetic wave that is normalz@ will be in thez direction, and the component
Az will be zero. The definition (2) of impulse momenbwid lead to a zero impulse
moment with respect to theaxis, and theorem (1) could not be transposed into
electromagnetism. However, there is a whole sateafons that caution one against
using formula (2) and its aptness for solving such probldfrst of all, the introduction
of the finite segment has the consequence that the formulas that one dedilicest be
written in the language of space-time. Now, the usual lesgdlle that contemporary
physicists use in the equations of special relativity deanigsdeep physical significance
to such formulas. The less-physical character of #fenitlon (2) will become even
more noticeable when one takes the viewpoint of genelatlvity.

Later on, we shall define a moment of the second kindmomentor that we shall
not call the “impulse moment” because it can be remo-zat a point where the
electromagnetic impulse is zero and whose propertieg wansposed into general
relativity in the course of my prior research (In addition, the definition (2) gives only
one measure for the moment density, and it must be eteaplas we shall do in Chapter
VI, by an expression for the corresponding moment fhat permits one to translate the

() E. HENRIOT, “Les moments d'impulsion en théoriecélemagétique,” Bull. Cl. Sci. Acad. Roy. de
Belgique 20 (1934), pp. 505 and 874. “L’'aspect antisymmétrique de I'éiectgmétisme,”ibid., 21
(1935), pp. 29 and 127. “Les moments électromagnétiqgiled,’21 (1935), pp. 363. — Y. DUPONT, “Les
couples de forces et les moments d'impulsion électrogtague dans la gravifique de Th. de Donder,”
ibid., 20 (1934), pp. 773 and 1008. — TH. DE DONDER, “La gravifique toudsidlire,”ibid., 20 (1934),
pp. 986.
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theorem of the conservation of moments. Other reasall be given in the course of
this study that will show that it is impossible to @semula (2) for the problems that we
shall address.

The history of science shows that often a termithpborly-chosen or too vague has
been the source of a long series of errors in cormepti methodology. It seems that we
find ourselves in a typical case of that kind here, andishahat | would like to try to
bring out in the sequel. We place ourselves in the catdgeafynamics of solid bodies
and suppose that we are using a solid body that movdkahies directions around a
fixed point O and plays the role of a ballistic body that is idketh to measure the
moments of impulse in the same way that the balligindulum measures impulses.
There is good reason to distinguish between the mouofetiite resultant applied force
with respect to the poinD and the moment of the resultant applied couple, which is
defined independently of the poi@t If one shoots unrifled projectiles that are animated
with a translational velocity of then they will communicate impulse moments that are
defined and calculable only when one is given the pOirdnd the point where they
collide with the ballistic body, and which | shall kcmhpulse moments or moments- of
the first kind On the contrary, some rifled projectiles or topks each the ballistic body
with a translational velocity that is zero, but amgalar velocity w that communicates
moments of the second kinehich are independent of the position of the p@irand the
point of impact. Furthermore, in the case of the dyina of solid bodies, the problems
of the second kind can be reduced to ones of the first kindeed, if one mentally
decomposes the top into volume elements and consideramipulse or quantity of
motion of each of them then upon adding their momeuritis respect to the poind
geometrically, one will in fact find a resultant thetindependent of the poif and the
position of the rotor. The question that one posesaisdhknowing whether a similar
reduction of moments of the second kind to ones effitist kind is always possible in
every case — notably, the case of electromagnetigve. see that in certain cases, the
impulse moment can be zero, even though the momehe akticond kind — anomentor
— can be non-zero.

Another transposition from the dynamics of matebidies to electromagnetism that
is very hasty seems to be the following one in manyscadee tensor of tensions that are
applied to the faces of the elementary parallelepipeata theory of elasticity is coupled
to the density of forcéby relations of the form:

f :_apxx _apxy _apxz
T ax 9y 9z

The nine quantitiep, which are surface efforts per unit area, can be envitiase
impulse fluxes that traverse the faces of the el¢angmparallelepiped per unit time and
area, and they express the theorem of the consenddtionpulse. Wheiti is finite, the
quantitiesp will form a symmetric matrix; that igixy = pyx . The tensop has only six
independent components, and it is symmetric. It seerhsubh a symmetric tensor will
suffice to solve all of the problems in elasticity the scale of quantities that one usually
envisions.

In electromagnetism, one defines a tensor that isccdie impulse-energy tensor and
whose components expression the fluxes and spatialidsr&iimpulsion and energy. It
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corresponds to the tens@r of the elasticity and like that tensor, it is symneet
especially when the medium in which the phenomendoasded is the vacuum. That
very close analogy has led many theoreticians to asdhat the symmetric energy-
impulse tensor will suffice to solve all problems ie tase of electromagnetism. In what
follows, we shall see that there is an entire ctdgroblems that are insoluble by the use
of only the symmetric tensor that yields the impuls@sl their solutions can be obtained
only by the use of antisymmetric tensors that will béneée later on. Those are the
problems of the “second kind.”

2. Exchange of moments of the second kind between an electagnetic field
and matter. — | would like to show how one can write the accountiog these

exchanges in a simple example. beand$) be the electric and magnetic fields that act

upon a substance that we assume to be electricallyahautt isolated, to simplify; i.e.,
the true density of electricity is zero, as well as the conduction currents. Figidsoke
the appearance of electric and magnetic polarizatiorsay p and 3, resp. These

polarizations do not have the same direction as #ldsfithat induce them, so one will
have:

(3) y=[p Ch] + [P [¥]

per unit volume for a couplé)( in which, the products are vectorial. If we envision
things from the viewpoint of the Maxwell-Hertz theowithout appealing to Lorentz’s
electronic mechanism, then such a couple will be defingabut one being obliged to
fix the pointO with respect to which one defined the force moments.

On the contrary, suppose that a solid body moves a@aintO, and one gives an
electric chargey to a pointP. If the solid body is placed in the fieldthen it will be
subjected to a couple whose moment will be equal to thdieoforcegh with respect to
the pointO. The moments that correspond to the latter cadebwibf the first kind,
while the ones that are expressed by (3) will be osdm®nd kind, with the terminology
that we have adopted. Since the distinction is essémtra the viewpoint that we have
taken, so the couple of the first kind will be refertedy the ternforce couple and we
shall reserve the termorque for that of the second kind. Similarly, the momeitist
pertain to problems of the first kind will be referredagimpulse momentsand those of
the second kind will receive the namenodmentors.It is impossible to call both of them
impulse moments, because the moments can be nomvherothe impulse is zero.

For reasons that we shall see later on, and whidhipéo the axial nature of torque,
its three components alomgy, z will be denoted by, , }sx, )y, resp. For example:

Wz =Py h, —p; hy +§By5z)z—§nz5z)y .
We now fix our attention on the elementary paralliplegpdx dy dz The matter that

it contains is subject to a torque; i.e., the momenfothe electromagnetic field will
diminish, in particular. Let4, be the density of the electromagnetic momentorgatba

() That couple might not be the only one that is exentetthe matter by the field.
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x-axis, letMyy, denote the momentor flux along tkeaxis that crosses the face that is
normal tox per unit area and time, &y, be the momentor flux along ttzeaxis that
crosses a face that is normaltcetc. Myy, is equivalent to a flux of tops along thexis
that cross the face that is normalxo The extreme indices denote the direction of the
momentor axis, while the middle one denotes the norortdiet face envisioned. On first
glance, it can seem that such a notation is unworkabhptcated, but we will see later
on that it is the only one possible.

We write down that the torque that is imparted to théens equal to the loss that is
suffered by the electromagnetic momentor. We obfeom an argument whose form is
classical:

0 0 0 0
< axMyxZ aysz 6ZM v at'u v

along with two analogous equations. The form of the émuatuggests a more
symmetric notation. If we use Minkowski’'s variable ict, instead of and set:

Myuz =iC L4
then we will get expressions of the form:

0 0 0 0

=M. —M.. —M.. — U
K ax ixj ay iyj 9z izj auHUJ

or
4) y=-Aiv M

for the three components, in which the divergence isntakieh respect to the middle
index. Equation (4) corresponds to the one that expreéksedensity of force that is
exerted on the matter by the field, and that one witlew

f==AivT,

in which T is Maxwell's impulse-energy tensor. In writing wiglguation (4), we have
implicitly supposed that the problems of the first and lanel completely separable; i.e.,
that the momentor that disappears per unit volume arel wiith give the torque that is
exerted per unit volume on the matter by the field. hagier VI, we shall see that one
can have exchanges between the moments of the semmhdfirst kind by the
intermediary of matter.

The torque that the matter experiences can include tahas than the ones that are
expressed by equation (3). Here, | would only like to show bne can write the
conservation of moments in a definite example.



CHAPTER I

THE ANTISYMMETRIC ASPECT
OF ELECTROMAGNETISM

3. Review of some notions regarding tensors)( — We confine ourselves to the
case of special relativity. The passage from oneeBystf axesS to another system of
axesS’that moves with respect to the latter with a veéjoeiin thex direction will imply
a transformation of the coordinate&sy, z, u = ict that is provided by the Lorentz
formulas:

X = Xcosg+using y'=y),
U =-Xxsing +ucosg (z'=2),
in which:
1 , 8 v
cos¢ = : sing = (ﬁ:—j.
\J1-5° J1- 32 c

4-vectors are physical quantities with four componemts py, p, pu. whose
transformation when one changes axes is the sarhatasf the coordinates; i.e.:

P<= PxCOSP +pysing By =Py,
Pu=—pxSing + p, cosp (P2 = P2).

6-vectors are physical quantities with six components dbaespond in space-time
to axial vectors in three-dimensional space. They emsors with two antisymmetric
indices whose componemg transform in the same way gsg; — q pj in the course of a
change of components, wheyandq are two arbitrary 4-vectors. For example:

Ax’u' = Axu ’
Ay'u’ = Ayu COS¢ + Axy Sln ¢,

The transformation can be performed by using the tabledwitible entries below:

Ay’z Az’x' Ax’y Ax’u’ Ay’u’ Az’u’
Ay, 1 0 0 0 0 0
Azx 1 cosg 0 0 0 -sing
Ay 0 0 cos¢g O sing 0
A - 0 0 0 1 0 0
Ay . 0 0O -sing O cosg O
An. 0 sing 0 0 0 cos¢

() The reader will find all of the notions that are essary for understanding the following section in
von Laue’sThéorie de la Relativitéranslation by G. Létang, Gauthier-Villars, 1924).
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This table will not change if one permutes the firseéhcolumns with the last three
as a whole, and the first three rows with the lastd as a whole.

As a result, when one has a 6-ved¥r, Ay, Ay, Ay Ay, A, ONe can form a
second one that one callsdssociate A and whose components will be:

AX?Z: AXU ’ A(Du: AyZ ’
AZDX: AyU ’ AX?U = AZX ’
A(Dy: AZU ’ AzDu: AXy '

If one letsb and®B be electric and magnetic induction, resp., whiland$) are the
corresponding fields, then the set of all their comptsevill define two 6-vectorSit
and9t:

myz: By , My = sBy, mxy: B,,
mxu:_ihx, myu:_lhy, mzu:_ihz,
myz = 9, MNax = ﬁy, mxy = 9,
mxu == ibx, myu == |by, mzu == ibz,

and their associates will B8 and’:

m,, =—ihy, m> =—ihy, m, =-ih,,
mfu: %X1 meu: %y, E)ﬁfu= %Z,
‘ﬁsz =—iby, ‘ﬁfx =-iby, ‘ﬁfy =—-ib,.
Ny = O, N, = 9y, N = H,.

The tensorial character of those quantities is estaddi by the fact that if one performs
the operatio\iv on them then one will obtain:

(5) Aiv M =0, c Aiv 9 = 477C

from Maxwell's equations.C is the current quadri-vector, whose compon€ht<C,, C,
are the true electric current densities, &d= icp, where p is the true density of
electricity. It is well-known that one can definesyammetric tensofrom two 6-vectors
by using the multiplication rule below. When that r@depplied tdJt, O, it will yield a

symmetric tensofT that will be the impulse-energy tensor in the specade of the
vacuum:

4-|- _ 9jtjxgth +9jtjygtky-i_gjt jzsjt kz+9jt jm ku
o -i_gtjxgjth-i_sytjygjtky-i_gt jzaj’t kz-i_gt jm ku
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O O O O O O O O
_ mjxmkx+mjymky+mjzmkz+m jm ku}
O O O O O O O O *
+mjxmkx -*-s-'njygjtky-*-;'Yt ]'29:)’z kz+§'Yt jm ku
The 6-vectordJt and 9t are not arbitrary, and their first three componerats be

regarded as a physical vectorxyespace, as well as their last three components. That
character is intrinsic and will be conserved in the eaawfsa Lorentz change of axis.
Starting from these 6-vectors, one can define a newsyammnetric tensor with two
indicesl — viz., a 6-vector — by means of the multiplicatioleru

4rjk — 9:nJ'thkX+s:):niygtky-i_gﬁjzgt kz+m jm ku}
_mixmkx _mjymky_m jzfm e~ N jpﬁ ku
+ {associated quantities}.

The second set of brackets is identical with the tirsee and will simply double it
when one takes the sum. If one substitutes the vafuBsand9t then one will obtain:
2r  =i{[b¥,dh}

and four other components that are deduced by permutation.

4. Electromagnetic torque and momentor.— The physical nature of the
components/z, zx xy of I' is displayed when one considers the relations betwreen
inductions, the fields, and the polarization vectors:

b=h+4mp, B =9 +4TP.

If one substitutes this into the expressionsTidhen the real components will take the
form:

2Ty, = 4r{[p hlx+ [P H]4-

If one refers to equation (3) (Chap. I, 1) then those gieswill have the nature of a

couple density of the second kind — or torque. One candlaggomagnetic torques of

another nature, but as we shall see, they will lzaspecial importance. We Igtdenote

the antisymmetric tensor (or 6-vector) that is defibg:

@) { amy, =21 ,,
ary,, =2 .

and we shall refer to it by the nametofque density The three real components have
the significance that was given above, while the im@y components will be
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interpreted in what follows. The existence is neagssadeed, in the course of a
Lorentz change of axes, they will yield a real contrimuto the real components.

When theAiv of a 6-vector is zero, the associated 6-vector @wednsidered to be
the derivative of a potential 4-vector. In order to moblong this discussion
unnecessarily, we shall suppose that the true cudremd the charge densipyare zero,
except in the cases where we shall specify to theraignt The Maxwell equations (5)
will then become:

Aiv O =0, Aiv 0N = 0.

<M can be considered to have been derived from a vectemt@d that is defined by:

oF

mzz%xzi—_y, mxu:—ihX:aFu_E,
Y oy 0z ox odu
oF
€) o, =m,=2 0% gy oy 20T
0z 0Xx dy Odu

oF
o, =m,=20-% g =_jh =0 _OF
ox ody dz adu

Similarly, 91" can be considered to be the derivative of a potdntial

nY =-ib _aiZD_G_FyD mno =9 —aFuD_aLXD
yz X ay 62 ’ Xu X 6x auy
. _OF oF’ oF OoF
8 N =-ip, =—%-—=, nl =5 =—u-—2
(&) i Y0z  0x w=9y oy du
aFD O O O
my, =-ib, =" =% =g =0 OR
ox oy dz du

The potentials, F~ are not defined completely by these conditions, andropeses
the complementary Lorentz condition upon them:

AivF=0, AivF =0.
Recall the components gthat are provided by (6) and (7); for example:
Ay, = by h,— by hy+ By H,—B; Ny .

If one substitutes the quantitibsand®B in this, when they are expressed as functions of

F as in (8), then after a simple transformation, ardngainto account Maxwell's
equations and the conditidiv F = 0, one will have:
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(©) T = (- Fo = Fe iy +Foc ) +aiy (Fy 5 +1 Fu b, + Fy 55,

+ 0 (F @, +iFu by + Fy 9) +-2 (=i, by +i Fy by + Fu )
0z Ju
o5, aib, _dib, j

- F¢Aiv $H+ Fy
Ju dy 0z

The last two terms must be considered separately. cANehem complementary
terms. In most cases, they will be zero, but it can happanhthey are different from O.
We denote them by the notation #8,,, ..., — 478y, SO:

(10) — 478, = Fx Aivy M — Fy Aive U = F,OF-F,OF7,
in which O is the d’Alembertian operator. The complementary $ewuonstitute a

complete 6-vector likez We see that these terms have the significance tofcue
density that we call theomplementary torquend which we write:

Ar(y+ @yz:%(_ FZﬁZ_Fyf)y‘l'Fxf)x) + ...,

which is an equation that, when it is compared to equé4ipin paragraph 2, will give a
first expression for the electromagnetic momentor:

4]TMYXZ_ Fyf)y+FZs7) Z_Ff) X
(11) 4]TMWZ _Fxﬁ y+iFLpz_F;) X
4nM ,,=-F 9 ~iFb ~F§H,
47M = iIFb ~IFp ~F &,

yuz

and twenty other analogous components.
When the complementary torgéas annulled, what will remain is only the principal
torquey;, and we will have the relation:

nW=- AiVij M,
in which the divergence is taken with respect to the lmigtlex. The tensorial character
of M is fixed in the following manner:
Form the expressions:
Tik = Fi M + F M + Fe My,

while respecting the order of the indices. For example

Tyxz = Fy sz + Fx ‘ﬁyz + FZ ‘ﬁyx .
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Moreover, consider the 4-vector:
J = [F ];
le..
'JX = I:X mXX + Fy mxy + I:Z mXZ + FU mxu .
It is easy to see that:
477'(}41' + ﬂj) :AiVij t + rofj J.

However, sincd is itself a tensor with three degenerate indicesnéf sets:

- Jx = Oxyy =~ Ozzx=  Okuu»
-y = K=~ Gxy= Guu,
_Jz = Oxx=-— 0§/yz: Ozuu »
_Ju :_Oixu:_aglyu:_aizm

while all of the other components agfare zero, then:
(11) A (y+ @ij :AiVij (o+ 1), and 4TM =- (o +1).
3. Case in which the complementary torque is annulled- In the case where the

isolated medium is the vacuum, if one refers to equa@rthen the complementary
torque will be annulled, and in effect one will then have

div$H =divB =0,
_ 99, 9ib, b, _ o
ou dy 0z

The principal term in the torqueis annulled along with its six real and imaginary
components, because therr h andB = §. That will be true in all systems of Lorentz

axes, and will possess an intrinsic character.

The complementary torque and the real componengsadlf be annulled in the case
where the medium is refringent, absorbent, or pseudmsot and when one imagines a
plane wave (see Chap. 1V). That annihilation dogsha&ve an intrinsic or invariant
character and will persist in the case when the ameds in motion in the system of axes
envisioned (i.e., the case of the dragging of waves by rpatte

In the case of an anisotropic medium, when one ingsgia plane wave that is
propagating along a principal direction of a crysgalill be likewise annulled, as far as
its real components are concerned.

As an application of the preceding results, in whébvics, we propose to treat some
simple problems that are approachable when one spettiGeantisymmetric tensdr,
but insoluble when one specifies only the symmetricaieiis and which are indeed
problems of the second kind.
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APPLICATION TO THE CASE IN WHICH
THE MEDIUM IS A VACUUM

6. Case of a plane elliptic wave- In any case where the medium is a vacuum, the
force densityf will be zero, and it is related to the symmetricrggempulse tensor by
the relationf = — Aiv T. Even wherf is zero, T cannot be zero, since its components
represent the flux and densities of impulse and enempp., which cannot be zero,
because the wave transports energy and quantity of mo8anmilarly, in the case of the
vacuum,ywill be zero, butM cannot be zero since the conservation of momentsdwoul
not be assured then. Take the case of a plane elliptie with its semi-major axia
alongx and its semi-minor axis alongy, and let it propagate in ttadirection, withb =

h, B =%:

hy -acosa)( j ﬁx:—bsinw(t—gj,

hy =bcosw|t j Hy= acosa)(t—zj,
c
FX_ e (t__j FZ: Fu: 0,
w c
Fy = b cosa)(t—zj, F'=F=0,
w c
F'=- _lcb cosw(t—zj,
w c
F,=- _Ica sma)(t—zj.
w c

From the formulas that are deduced from (11) (8 4) by ytion:
M —i(F Ny + Fx Hx—F2 9,)
xzy A7 y Sy X JJX z4)z
represents the momentor flux along thé, y, resp.) axis that crosses a surface that is

normal to thez axis per unit time and arés :

ab
szy— CZ - Tm)c

The momentor densiy,, along thez axis is:

1 ab
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Since the ratio of the flux to the density as one can say that the momentor
propagates with a velocity of The fluxes and densities along thandy axes are zero.
The mean energy flux, which is given by the Poyntingare@gihich is deduced from the
symmetric tensor), is:

2+2
5 =&t
8

The ratio of momentor flux to energy flux is:

z

>, wa’+b’’
as in the case of elasticity (8 1).

The impulse moment that is defined by means ofdhmula (2) has @-component
that equals zero. That shows very clearly thatirtipilse moment that is defined by (2)
by starting with the symmetric tensbrand the momentor that is defined by starting with
the asymmetric tensdr are two very essentially different things that aoé reducible to
each other. Any terminology that confuses the twthe same application will be a
source of error: The preoccupation that | haveenading them by different terms is not
merely rooted in a tendency to create useless gsois.

C,_ 1 2ab

7. Case of a harmonic or Keplerian point-like radiator.— A point-like radiator is
composed of an electric charg¢éhat describes closed orbits around a ce@itander the
action of a central force that will be quasi-elasti the case of a harmonic radiator and
inversely proportional to the square of the diseamcthe case of a Keplerian radiator.
Let ¢, n, { be the coordinates of the moving charge, whidsgimed to move in thg-
plane, whileé, 7, ¢ and ¢, 7, { are the components of its velocity and acceleration
resp. We shall also make the hypothesis that thiomis quasi-stationary, moreover.
The velocity and acceleration are assumed to bd smaugh that the radiator will emit
guantities of energy during time intervals of ordsrperiod that are small in comparison
to the amount of energy that it contains. Duriagrsintervals, the trajectory will deform
very little and the means of the various quantitieg define the trajectory will be well-
defined at each instant. Let a pofhhave coordinates, vy, z, and set = OP, where&
and 7 are very small in comparison tpand& and/ are very small in comparison to
The Lorentz potentials at the poftare given by:

f , Fy=e _n ., F,=0, Fy=ice
(3 e
c c

in whichv; / c is negligible in comparison to 1.

FX:e
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hy = %e(y—nx: f—f($x+/7y+$z—$r),

m:[ymr]x:r—‘i(ﬁz—fw,

while the other components are deduced by permutation. altalate the momentor
flux @, along thez-axis that crosses a sphere of radius

In order to do that, we imagine an elemé8ton that sphere. Upon using formulas
(11) and the ones that are deduced from them by cyclic pationytwe will find that:

477, dS :dTS{ (= F2 $x— Fy 92 +1 Fu hy) X
+EEFRH-FH+iFuh)y

+( Ry Hy+FH.— F9H)

If one substitutes the valuestpf$), andF and integrates over the entire spherg, at

y, z then some of the terms will contribute zero, sir@gytare odd irx, y, z, while other
terms will give a mean value of zero in time. If @isstracts from that, then what will
remain is:

A, = S{X( =) + Y(=ng =119 + A& =nd} -
The terms that contamas a factor have a mean value of zero in timeefample:

Lot _é
Ej.ogdt _T’

which will tend to zero when time increases indefinitelgcs ¢ is finite. If one then
takes into account the fact that:

4
x?dS = [ y?dS = [ Z2dS = = °
J¥ds=[yds=[Zds=2
then the mean momentor that is radiated per unit timdlibe:
(12) ®,= = (&7-né).
The mean radiated energy flux per unit time thathtained by means of the Poynting

vector will be:

(13)

2= 2@,
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The case of the harmonic radiator is the one in whinehhas:

é=acoswt, n =asin wt,
2
CTJZ:Z—eaba)Z,
3
2 2
i:zia+b2a)2’
3 2
and
®, 1 2ab
14 _Z=__
(14 > wa*+h?

That problem has a certain historical importantewas upon using formula (14),
which he obtained by a different method, that Sonfefe could state the selection
principle that related to azimuthal spin. The exade of formula (14) is obvioua
priori if one assumes that the radiated moment has utstegart in a diminishing of the
moment of the electron along its trajectory, andttthe radiated energy has its
counterpart in a diminishing of the energy of thdiator. Sommerfeld obtained (14) by
using the impulse moment that is defined by thentda A = [r [g]; i.e., upon treating
that problem as a problem of the first kind, andtlo@ other hand, making use of the
Hertz potentials. His calculations presented theettling character that they introduced
mixed quantities into the nonlinear equations theftre neither pure real nor pure
imaginary, and they were extremely lengthy. Ift@ad of proceeding as he did, one
introduces the Lorentz potentidis instead of the Hertz potentials, into formdla [r O
g] that defines thempulse momenione will get a radiated impulse moment that egjual
zero.

Now, imagine the case of the Keplerian radiatoet L denote the impulse moment
of the charge that is moving with respect to thefp®, and leto be its distance from the
attracting center:

L:=m (5’7_5,7),
mé":—igf, mf7‘=—§3/7-
P P

Formula (12) gives:

y _
cT)z: Zezlj]‘ _13 '
3m P

The mean of 1 & will be taken over a closed trajectory.

From (13):
= _2°( 1
> = 3m’ [_“j
Yo,

and
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(15) 3, L (1/,03) |

All of the calculations reduce to an evaluatiorihef mean.
Take p and ¢ to be Lagrange coordinates, whefes the angle between the radius
vector and the major axis, and fgtandp, are the canonically-conjugate moments:

Pp= MP, Py = Mp°$ =L = const.

Let £ be the Hamilton function; i.e., the energy functtbat is expressed in terms of
the coordinates and conjugate moments:

2 2 2
E=- e_+&+_p¢ ,
0 2m 2nmp’

0 _ €& I
- +

T T mp

The mean value op,= mp is zero, so:
_ y —
(16) e’ iz =L is :
Y m{ o
but on the other hand:

- 2 2
(17) b__€e, L

By means of a simple calculation, one can as$ate t

' e
Polom| £,
P P
S0, upon using (17):

B
p p’) mlp

On the other hand, if one dividédy ¢ and takes means then one will have:
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2 e e 2 ("2
(19) m| £ |= 25[%}2&[%}—5[—14}.
Y Y Y m{ p
If one equates (18) and (19) and combines that with (16)dherwill immediately
get:

= 1/ p°
(0) 3 e_LZEW;: 2|_2524|:23me4'

The mean momentor is assigned_t@nd the energy, 6 so one can write:

®, _ -dL

Z —

Ml
I
o
S

When that relation is substituted in (20), that give a differential equation i& and
L that can be integrated by a quadrature, and wil:g

mée* 1
13

E— = const.
2 L

21) %+

However, ifa is the semi-major axis of the ellipse, and its eccentricity then one
will have:

L = [ ma(l-&)]*? E=-—.

If one substitutes these values in (21) then otleyet:

4

&
22 —_—
2 [al- &%)’

= const.

In the course of time will diminish, whilea will decrease, andwill change in such

a manner as to insure the constancy of the expre§2?).
We can imagine two extreme cases:

1. The orbit is initially circularg = 0, so the constant is zero, and the orbit resnain
circular.

2. The orbit is initially rectilinears, = 1, so the constant is infinite, and the orbit wi
remain rectilinear.
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If the orbit is initially elliptical, so 0 < < 1, £ will diminish in time,a will likewise

diminish, and formula (22) will show thatdiminishes, so the trajectory will tend to a
circular form. That will have the consequence thatcircular motion is stable, and that
the rectilinear motion that is envisioned in the cask pe, by contrast, unstable.

On the other hand, the result of the calculation$ parmit us to correct a very
pervasive notion that is reproduced very often in theotdtieatises. One sometimes
says: When the electron is on a quantized orbit, it dmésradiate, and the Lorentz
formulas that express the radiation are not valid,when it leaves a quantized orbit to
go to another one, the Lorentz formulas will be apylie during the transition. Now,
since the radiation will essentially obey classieaVd, the passage from one quantized
orbit to another will be possible only if one has, from (21)

the left-hand side of which expresses the quastitiat relate to the starting orbit, and the
right-hand side of whichpertains to the final orbif one expresses the ener§yf a

hydrogen atom as a function of a principal quantwmbern and its moment. as a
function of Sommerfeld’s azimuthal quantum numbkéhen the radiative transition, a la
Lorentz, will be possible only if:

(23) . .

Now, there are cases in which some possible qoantansitions do not satisfy that
equation. For example, from (23), the transitior=(3) - (' =2), k=2) - (K = 1),
which is possible as a quantum transition, will t@ of the radiation takes place
according to the Lorentz laws.

On the other hand, if one introduces the Loreetzar potentials while using formula
(2), which gives the impulse moments, then one gdt a zero mean value for the
impulse moment that is found betweeandr + dr. The problem has the second kind,
and a consideration of the impulse moment willpermit one to solve it.

8. Rotation of an electrified sphere.— This problem has a certain historical
importance: Indeed, it was upon calculating the meéig moment and electric moment of
a rotating, electrified sphere that Goudsmit gav@sa interpretation of the spin of the
electron. We envision two problems in what follows

Problem a.— The sphere carries a surface density of el@gtrac and turns with an
angular velocity otwaround the axis.

Problem b.— A sphere of density turns with an angular velocityw while in
immediate contact with an immobile sphere of thmesaadius that carries the surface
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density —o. This corresponds to the case of a superconductor ana¢scimmobile
positive charges and electrons that circulate onutface. Such a case can also give one
a picture of the spin of the neutron that is probaklyerafar-fetched.

In what follows,S andm will denote the mechanical moment and magnetic moment,
resp., whilea will denote the radius of the sphere. In the two @isl the magnetic
moment and the magnetic field have the same value:

m=m,=0 mz_m_é_eaza)
1 3 C )

) — ) — h _ 2m
s =pP=0, &Y=

The magnetic field is uniform inside.( Externally €), it is a doublet field:

m g_ m(, 37
7Y Z ﬁ?———{l—r—zj .

m
ﬁie): 3—3XZ. 5;:)(ye):3_
r r r

Problems &) and f) can be separated if one writes the electric fiald vector potential
as:

h® =0 =22 ==Y H="

cr’ cr’ cr®

i my i _ mx ; ie

(i) — _ i) — (i) — ) —

() FV=-—=, FV=—, FY=0, F0V=—,
a a ca

m mx e

FO=-10 po=T% po-9 Fo="L

r r cr

Aiv F = 0, andF is continuous on the sphere, but its derivatiwgsch give the field, will
be discontinuous:

h(i) - h(e) =0
b .
(b) {The components y z ,arfl arethesasnraase (a),buE =0aAd K =

The magnetic energy corresponds to the kineticggnedr rotation:
2
| 5 av=1143
8mr

in which the integral is taken over all space -desand outside — andrepresents the
moment of inertia. The same thing will be trueboth cases, so one will get the same
value for the moment of inertlathat one can deduce from an initial evaluatio: of



Chapter Il — Application to the case in which the mediumnvacuum. 21

26’ aw
24 S=lw=
(24) o

A second method consists of calculating an elesgnetic impulse moment density
by means of the formuld, = [r Og], and integrating over all space. When applied to
problem @), that method will give the result of formula (24 opposed to when it is
applied to problemk), which will give 0, so the application of thatrfioula will give
results that are hardly coherent. A third methowlststs of considering the problem to be
a problem of the second kind and imagining the maore Meanwhile, we find
ourselves in a particular case that we must trieatttly because in our general formulas,
we have supposed that the true charge density @as Now, it will be non-zero on the
surface of the sphere, here.

Take the expression for the antisymmetric tensor:

4rry=[b [h] + [B K],

and write down the real components. Then, repfae@d with their expressions as

functionsF (8 4) in the expressions for those real componelitene takes into account
Maxwell's equations with an electric current:

C= pé, C = pr,
oH, _GH, _0ib, _ 4_7110gé oih, _c’)ihy _0H, ~0
dy 0z odu c '’ dy 0z ou
then an easy calculation will give:
0 . 0 .
X

0 0, . .
+__FX X_F +FZ Z +__|bsz+|b Fx+Fu Z
62( Hx—Fy Hy 92) ay( y 92)

+ (R G-F, G

Outside the current she€t = 0, and the momentor density along thaxis will be z4y
will be:

Myuy =1 € fhy,
o)

F
(26) 477',ny:bx|:y—by I:x—i—uﬁz-
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In the case of probleifa), it suffices to seb = h in the last formula and to replaEe
with the values that were given above in regard todase, and one will find that outside
of the sphere:
2em

cr?

(1 -2 co%6),

Ay =

in which @ is the colatitude. If one integrates this over allemal space then that
expression will give the total momentor that is lagadi in the exterior as:

4S9 = _8rme
a
Inside of the sphere, only the termhbqn will exist, and one will find by a simple
calculation that:
i 8mme
4rSY =+ ———,
S 3 a

The momentor density is not zero either inside or detthe sphere, but when it is
integrated over all space, it will give a total momeimtiozero.

In the case of probleifb), b andF, will both be zero inside and outside, so the same
thing will be true fory, and the total momentor will be zero, as in problen (It
remains to calculate the momentor that is localizedhe current sheet. The term that
provides it will be:

(26) 4[F [Clxy = 471 (F, o1 - F,04) .

One can put this into the form of a divergence, andderatio see that, it will suffice
to replace the expressions of the foroé with the corresponding d’Alembertian,
because:

-0OF = 4 pé,

and to take into account some identities of the form:

F

0°F 2 oF
, ZY_Fanx: a F y_F an )
oX Y ox*  ox

x| “ox Y oax

However, that way of writing things is not in thergpf the problem, and those formulas
are not applicable to the present case, sthienot differentiable with respect to any of
the four variables on the sphere. NonethelEss, continuous on the sphere, and the
expressions that were given above will give one theevaflr on the surfaceFx andFx

have the same value in problenag &nd p), so the expression (26) will give the same
result in both cases, and the calculated momentagdin be the same. It is convenient
to use spherical coordinates such thata, ¢ is longitude, and?is colatitude. 1f® is
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the surface density of torqu€S® is the line density of moment flux in a directiomttlis

tangent to a parallel, ar;d(s) is the surface density of momentor alongzlais, then the
balance of moments that are applied to an infinitasspherical rectangle is that found
between @ 6+ d6), (¢, ¢ + dg) can be written:

_0CY g |

27 ®=-—
(27) y dap ot

Here, since the phenomenon has axial symmetfgg = 0, and the same thing will
be true for the acceleration that the sphere canriexge. On the other hand, if one
introduces the expressions feyandF into (26):

470m
ca

(Xé+y7) =0,

in which o is the surface density of electricity, thgﬁ) can be put into the form of a
partial derivative with respect to time.
Consider the functions that depend upon the spatial cabedin

X =asin@cosg,
y =asinédsin ¢,

and the functions of space and time:

f=asin@coswt =asin 8cosP,
n=asin@dcoswt =asingsin®,

. _dé ._dn

S dt’ dt’
. .0 . i
x{+y/7_a[a Sin dcos @ — at)],

in which the derivative is taken at the instantg / w.
The function:
4mom

ca

sirf @cos @ — a)

is such that its partial derivatives with respect tcetimll change sign and take the value
4rrtimes the surface density of torque at the instanp / w. It is natural to take the
surface density of momentor to be the function:

u® = oM 9
ca
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which will give a total momentor of:
_2em

~ 3ac
when it is integrated over the entire sphere.
When one replaces the magnetic monmeimt this expression with its value, one will
find that:

2¢’a

S=
oc?

The moment is the same in the two cases, as skt td an energetic calculation that
involves only the magnetic field would suggest.eTdnomaly that is introduced by the
use of formula (2) that yields a moment of zercase p) will then be discarded. | shall
not elaborate further upon that problem, so | gheadls over everything that one might say
about imaginary torque and momentor componentmil&ly, for reasons of brevity, |
shall give the last part of the calculation a fommose rapidity can be subjected to some
criticisms, as | see it. | will return to theseigas points in other publications.




CHAPTER IV

APPLICATION TO THE CASE OF
A POLARIZABLE SPACE

In this chapter, | will confine myself to some applioas of the general formulas to
some simple cases for which the complementary toéjsigero.

9. Birefringent medium. — We shall study the exchanges of momentor between a
plane, elliptic wave that propagates in a principal timacof a crystal and the matter in
it. We assume that the medium is not absorbentsarederred to its principal directions:

bx=nih, by=n’h, b,=nlh,

in which then are the three principal axes. leeandb be the semi-axes of the ellipse,
and letz be the direction of propagation.

n
hy = acosw(t—
C

nézj, hy =b sin w[t—L

. n, z
=53x=—bn/sma)(t—Lj, %y:ﬁy:bmcosa)(t
z

: n, z n
FX:—Esma)(t— x j Fy:ﬂocosa)[t L j
C w

w

The complementary terngto the torque are annulled because:
Fu=0, div$ = 0.
The momentor flux along theaxis that crosses a unit surface normat fger unit

time isMy.y, and:
477szy: I:x ﬁx + I:y ﬁy )

477szy—c—2)b{ 2n co{a}(n )—Z} zny % ( 2- n‘z Wj z}}

whose mean value in time will be:
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— n +n -
4, = C—acho wnx I.lyz
w 2 c
when it is taken at a point whose abscissa iFhe density of the torque that is exerted
by the wave on the matter will be:

0 0

M(y == Eszy_ % quy,

and its mean value in time will be:

—_ n2 —_ n2 —_
Yy =ab—= ysin{a)nx nyz}.
2 c

There are local, periodic exchanges of torque éetwthe wave and the matter. The
mean density of energy flux is given by the Poymuectorz, :

Ans, = g(aZ ne+b2ny),

and the mean energy densityis:
4w = $(a’nf + b))

When the elliptic wave penetrates the layer, tibenentor flux divided by the energy
flux will be, forz=0:

(®,), _ 2ab(n+n)1
(£), an+bn w

That ratio is not the same as it is for the alliptave before it arrives at the layer,
namely:
(®),_ 2ab 1
(Z)o a*+biw’

The counterpart of the difference exists in the motor and energy of the elliptic wave
that is reflected when it enters the layer. WHengubstance is slightly birefringen,
will be slightly different fromrmy, and these expressions will become the same:

(?,),_ 2ab 1
(), a+b’w

For example, imagine the case of an incident @rdight wave that falls on a quarter
wave,a = b:
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After an intervake such thae (nx — n) = A/ 4, the wave will become rectilinear, and
correspondinglyMyy, will become zero, and the wave will give up all of itementor.
The couple that the layer experiences must be equat tnamentum flux:

A4 _ _
jo Vydz=M

xzy !

and one verifies that one indeed has:

j:

e |NMI

in whichj is the couple.

In the case of the half-wave layer, the momentox that leaves it will be equal and
opposite to the one that enters it, and corresponditiggycircularity will be opposite, so
the preceding result will double:

The origin of such a torque is obvioasriori: b does not generally have the same
direction ash in a crystal. When the medium nsonorefringentb will have the same
direction ash, so there will no longer any exchange of momentuym,n,, and:

c(a®+b’)n

4rd = ——, 4773 =
w

The ratio of these two quantities has the sameevaduit does vacuo:

P 1 2ab

S wal+b?

10. Absorbent media.— We imagine the case of an elliptical plane wtha falls
upon an isotropic, absorbent layer in thédirection. As is easy to do, one uses the
imaginary index:

n=n-ig

in which gis an extinction coefficient, so:

b=n?h, B=9.
The Maxwell equations:
divb =0, dives =0,
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95, _09,_10b,  oh _oh __10%,
dy 0z cot’ dy 0z c ot

in the case of a wave:
hy = aem{t_nfj hy = bem{t_lx]

will yield the value of the magnetic field. To sinfglthe writing, set:

A7) e,

Hx=—bn exp., Hy=an exp.,

Let A andB be the real amplitudes afandb, and letgo, ¢ be the phases bf andhy
at the origin:
a=Aé*, Db=Be*.
For example, takéo = 0, ¢p =— 71/ 2:
a=A, b=-B.i.

The values olh and$) derive from a vector potentiat

Fo= Poxp., F = Poxp, F,=F,= 0.
w w

The complementary terngare annulled because div=0,F, = 0. We now pass to
real quantities and set:

¢:w(t_n_2j, k=99
Cc Cc

h«=A e**cosg, hy =B e**sin ¢,

9y =B e**(ocosg —nsin ), $y=A € (ncosg + osin @),
y
Fx=- eA e**sin g, Fy= B e cosg,
w w

by = A €**[(n* - &) cosg + 2nasin ],

by =B €[~ 2ngcosg + (n* — &) sin d).
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b andh do not have the same direction, so the wave willtexg¢orque on the matter
whose densityy is given by:

ATy = by — by b = 2AB €** no.

If the medium totally absorbs the wave then it wéteive a couple of the second
kind per unit area:
ncAB

4w

ABn—UI “eq;=
2770

In order for there to be conservation of mometts, inust be equal to the momentor
flux that penetrates the layer:

ncAB _
e 2kz,

and forz = 0, this is, in fact, equal to the value of the totalge.
On the other hand, the transversal flux is zero.
The momentor density:

The ratio of the flux to the momentor density is stant, so one can speak of a speed
of propagation of momentor that is equal to the quotienhefover the other:

whose value will become/ nwheno = 0; i.e., in a non-absorbent medium.
The density of energy flu; is provided by the Poynting vector:

4z, =c(hHy—hy H
=c 6 X4 A% (n cog ¢ + ocosg sin g) + B (ncos ¢ + ocose sin @)},

whose mean value in time is:

ans, = 2% (a2 + B?) g2
8

If one divides the expression for the total couplethe incident momentor, by the
energy flux upon entering € 0) then one will obtain:
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a similar relation will also be true for all of théher scales of. If the incident wave is
circular, soA =B, then:

The wave loses all of its energy and all of its reatrto the absorbent layer, while in
the case of a transparent quarter-wave layer, itlog# its moment, but not its energy. A
direct measurement of the couple/ wthat is exerted by circular light on an absorbent
layer — a blackened one, for example — would be experithentare difficult to put into
practice than that of the couple that a quarter-waper@nces, due to the raising of the
temperature that is produced in the first case from teerpbon of energy. Indeed, such
an increase in temperature can have some radiomi&atseand convection currents that
can be a source of trouble if one does not workacug and will mask the effect of the
measurement.

11. Pseudo-isotropic mediums= Imagine the case of a rectilinear wave that crasses
medium that possesses the power to rotate. The wawtilinear when it enters and
leaves, the moment flux is zero upon leaving, as wedirasring, so one would expect
that the matter would not experience a mean couple.c Let andc / n" be the direct
circular and inverse circular speeds of propagation, ragpbgtand set:

N:a)(t—n—zj, N':w(t—n—zj,
C C

which are equal to the phases of the two circular waespgectively.
For the direct circular wave, one will have:

ca

hy =acosN, $Hx =—ansinN, F,=—- —sinN,
w
) ca
hy=asinN, §y, = ancosN, Fy,= —cosN,
w
and for the inverse circular wave:
U 12 V4 I [N H V4 I Ca" H 7
h=a cosN’, ¢ =an sinN, F =-—sinN/
w
2 H I [N V4 I Ca’ 4
h/:—asmN, 9, =an cosN’, Fy:——cosN.
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One determines the ratio of the amplitudes from tmdition that the two circular
waves transport the same energy flux; i.e., they hawvesalme Poynting vector. If one
uses the language of quantum theory then one can sathéhaumber of direct and
inverse photons that pass through it every second is the. s®ne will immediately

obtain the condition:

na =n a2

One is once more in a situation where the complésngtorquedwill be zero here:
Fu+F/=0, div®H+5)=0.

The momentor flux along theaxis that crosses a unit surface normal tozth&is
will be given by®, :

4r®, = (R +F)(x + 9) + B +F) 6y + 9,)

:c%ad(n’—n)cos(\HN'),

and the mean value in time will indeed be zero.
The momentor density is:

a4 : ' ’ '
4ﬂﬂxy :? quy: (bx +bx)(Fy + Fy) - (by +by)(FX +FX )’
SO

ATT Ly =c%(a2 e —d®n? +% (n'?=rf) cos N +N).

The torque density:
A1ty = [b ]y + [B H]xy
will be obtained by taking:
b =n*h, b’ =n?h,
which will yield:
ATy, =ad (' —rf) sin N +N").

One has conservation of moments; i.e., one carfyvieyi means of the preceding
formulas that:

W :_GCDZ_a/JXy
Y dz ot

The coupleyis zero only in the mean, and there will be incespanbdic exchanges
between the field and matter. The existence of thaple is obviousa priori, so the
resultant induction, whose components will be:

by +b] = n’he + n*h,,
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by +b,= n’hy + n?h,

will have only the same exceptional direction as #sltant fieldh, +h,, hy +h/. Now,

the induction and the field are anti-parallel or pafallepoints such ad + N" =K 7z

The moment flux is the same upon entering and leaand, the pseudo-isotropic
substance that makes the azimuth of a rectilinear vibratrorthrough an arbitrary angle
will not exchange any couple or moment whose meaatigero.

In Chapters 1l and IV, | have envisioned only some caseswhich the
complementary torque was annulled in order to show hewse of the momentor is a
simple and coherent method of calculation for an erggees of problems that one
cannot solve by the use of impulse moments. In tHewalg chapter, | will recall the
general equations (7) and envision the case in which cameplary torque?is no longer
zero.




CHAPTER V

RETURN TO THE GENERAL EQUATIONS

12. Case in which the complementary term is not annulled- Recall our general
equations (9) and (10) (Chap. 11.4), which show that one cstingiiish two kinds of
terms in the principal torqug; one of which can be immediately expressed as the
divergence of a three-index tensor, and the other ofrwdoastitutes the complementary
torque, which cannot be put into that form naturally, andhaxee:

(28) 4ty = Aivy (T+ 0) — 417§ .

One can also put thterms into the form of a divergence of a three-ingesor, but
in a less natural manner. From (10):

20 2O 20 20O
_4ﬂa]z:(Fuanx_FaFuj{Fan_FaFuj

»e X ox Iy Koy

aZFD aZFD aZFD aZFD
R o — Pt |+ Py —Fi |,
e

The quantitie§ andF" are functions of, y, z u that are given for the problem. Set:

_ 0°F,’ 0°F”) .
ﬁimikm_.[(lzi aJZ _Fk aJZ dj’

in whichi, j, k are one of the four lettess y, z u, and in whichy'z correspond txu,
zx, toyuy, andxy, tozu for example:

aZFuD aZFuD
(28) Bre= | [Fu R 3 j dx.

These symbols have the following meaning: Integration péllperformed ovex,
while y, z, u are regarded as constants during the integration. FEhé vall be defined
only up to a functiorK (x, z, u). There will then be indeterminacy in the value of the
corresponding momentor; that should be obviaysiori. If one obtains an initial value
for the three-index tensor that gives the momentor gdmenwill get another one that is
equivalent from standpoint of torque by adding a seconekihdex tensor with zero
divergence to the first tensor.

In fact, that indeterminacy in the search for momemnts analogous to the
indeterminacy that hangs over the symmetric impulseggrtensor, which is defined by
the condition that its divergence is equal to thedatensity:

f=—AivT.
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If one has an initial determination @fthat gives a certain value to the flux and
densities of impulse and energy then one will get ainedyndifferent — but still valid —
one by taking the componeriist T', whereT’is defined by the condition that:

AivT’=0.

The tensofT is chosen from all of the tensofs+ T’ for reasons of simplicity and
coherence. In fact, the same thing will be true ferrtftomentor, and indeterminacy will
arise in each particular case. We can write:

4ty = Aivi (0+ 1+ P),
and the momentor will be provided by:

(28") 4 == (o + T+ Pk -

13. Birefringent medium. Rectilinear wave.— Take the case of a rectilinearly-
polarized plane wave, and propagate it in an arbitrarynbotprincipal, direction. In
generalp is in the plane of the wave, ahds not, so a certain torque density whose axis
is directed along will result.

Let @« Oy, G- Ou) be the components of a quadri-vectorial quantity thapgyates by
plane wave in a crystal, with a wave normal that thasdirection cosines, £, y; and a
velocity ofv. Denote the amplitude @f by the notationg,, setV =iv/ c, and letpg

denote the phase:
pg = 2l (ax+ fy+yz+\u),

with p = 277/ A.
The propagation of the vector potentials that were defimged8) and (8 in
paragraph 4 can be written:

(Fx, Fy, F, Fu) = (lEX, ﬁy,ﬁz,ﬁu) sinp¢ ,

O O O 0y — (0 £c0 £0 £0Y i
(Fx’Fy’Fz'Fu)_ (Fx’Fy’Fz’Fu)Slnp¢1
oF, _oF,

—-ihy =
0Xx Ou

That gives:
h =ip(Fa-FV)cosps,
(29) h, =ip(F,8-F\V)cosps,
h, =ip(Fy—FV)cospg,

in whichV is imaginaryhy is real,F, Fy, F; are real, ané, is pure imaginary.
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_0F, oF

%x—_
dy 0z

gives:
B, = p(F,f-Fy)cospg,
(29) B, = p(Fy-Fa)cospg,
B, = p(F,a—F,B)cospg ;

on the other handiv F = 0 will give:
(29" Fa+FB+Fy+FV=0.
One will get analogous equations upon expressiagds) in terms off” from (8):

(30) by =ip (F,;8-F,y)cospg, ...
(30) 9x=ip (F a —F V)cospg, ...

F., F,, F, are pure imaginary, whil&" is real.
Div F" = 0 yields:
(30) Fae 2+ Fiy+ FV =0,

On the other hand, dig = divB = 0 is written:
(31) V(Fia+FB+Fy)-F/=0,
and upon combining (3pand (31):

F =0, Fia+F B+Fy=0.

u

F is transversal and situated on the wave,Foist not. We now write the compatibility
relations by first equatin® ands), as they are inferred from (2%nd (30):

-VE’=FB-Fy,

(32) -V ﬁf =Fy-Fa,
A

-V F,'=Fa-Fg.

Suppose that the chosen system of axes is princgathat:
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Upon using thd andh that one infers from (29) and (30), resp., one will thein

1
V2

X

(33) F,B-Fy == Fua-FRV), ...

A simple combination of the preceding equation$ gwe:

2 2 2
2 + ﬁ 2+ y 2 =
Vi +VZ LV

which is the equation for the normal velocities.
From (28), the momentor that is derived fromr € 7) has a zero mean, and:

Adry=Aiv L.
On the other hand, from (28

Bp= Pa (R -FF) [sin® pg dx

will give:
pla*= =, = |x 1 _
np= (FB-F V)| =+——sin2pg |,
Bpe=—, B yy){z ppw pﬂ
pa’=,=_ = .y 1 _
= F(F,B-F V)| =+——=sin2pg |,
Bpp=— FR(FA yy){2 iop p¢}
pat=- = = [y 1 . |
0p= F(F,B-Fy)|=+——sin2pg |,
By RURB=Fp| 5+ sin20p)
_Pat=,=, = Ju, 1 _ )
Bs= v F.(F.B FyV)_E”LmS'nZFW_,
and
_ 0 0 0 0
477%’2—&,8),5)(25 ayﬁyuyg azﬁ9ﬁ+auﬁ§,&

If one expresses these quantities as functionte@fcomponents of the field and
induction then one will get:

1+V?
477- z:_ 2
-

jﬁu(ﬁyg— Ifyy) cos2pg = [b [h]y, .

That is what we had predicted. In the case @aictlinear wave, the principal torque
is provided by just the complementary term. Howetleat way of proceeding is hardly
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natural. Properly speaking, there is no propagation ofi@mbors, and we would like to
avoid the introduction of the factoss y, z u that enter into the expression f6rand
cannot be transposed to the general case.

On the other hand, if one envisions an elliptical wavetead of a rectilinear wave,
then it will propagate a real momentor that is providedhey(o + 7) terms in (28), and
L will not correspond to the propagation of momentoris then much less natural and
conforms to the spirit of these calculations to réfer the left-hand side to equation (28)
and write:

A(y+ 6 =Aiv (o+ 1),
and to take:
ArM =-(o+ 1)

to be the momentor that is transported by the wave.

14. Dragging of waves by a moving monorefringent medium- To fix ideas, we
consider a plane wave that propagates irztteection and is rectilinearly polarized, and
initially place ourselves in a system of axis in whiké tefringent medium is at rest. In
this system of axes:

Fu=0, div$ =0,

and the complementary torque will be annulled. Theehreal components of the
principal torque are real, and the wave does not transgainmomentor. Meanwhile, the
three imaginary components of the principal torques arezewd, and if one places
oneself in a new system of ax85that moves with respect to the preceding one with
velocity v then those three imaginary components will providead contribution to the
real components of the torquén the systen®’in the course of a change of axes. Inthe
present case, the annihilation of the complementarngsteloes not have an intrinsic or
invariant character, as it does in the vacuum case, andotuey will provide the
complementary terms in the system of a%es The change of axes that permits one to
pass from the syste&into S’ will transformF and yin the following manner if one uses
the formulas of paragraph 3:

Fx = Fxcos¢ +F,sing, Fy =Fy,
Fo =-Fxsing +Fycosg, F; =F;,

Kl’i:K/z, J'Qu':M(u1
Yox = Kx COSP + )4y SiN @,
Wy = Yy COSP = Ku Sin @,

We specialize the problem by supposing that the wave ggrattilinearly in the
direction in the syster§ i.e.:

he# 0, h,= 0, h,= 0.
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In the course of a change of axes, the 6-ve®drsnddt transform in the following

manner:
bX' = le hX’ = th bX' = n2 hx’ ’

hy’:hyZO, by.:by:O’
9,8 9,

bz = hz = ) ﬁy' = .
V1-p° V1-p°
b’ does not have the same directionhasn the systent’, and a real torque will
result. The problem is very analogous to the mmobkthat we treated previously —
namely, the birefringent medium — in which the twrqwas provided by only the
complementary terms. If one writes the imaginaryponents ojin the systens.

41T )gu =i {[ b O8] — [h ?]} «,
and if one uses the transformation formulas:

AT Voy = YuSIN @ + )44 COSP,

in which yx = 0 andys, # 0 then one will indeed find a real torque, and wilebe easily
assured that its value is:
4]7-%’)(' = [b’ m’]zx’ .

If one would like to obtain the expression for thementors then one must conclude
the calculation as in the preceding paragraphrédated to a birefringent medium. One
writes the expression féf andF in the systen®, and one subjects them to the Lorentz
transformation in order to obtain their values e systentS’, and one calculates the
terms o+ r and 5. Here again, the torque is provided by the complatary terms
uniquely, and it is natural to set:

A47rM = (o+ 1),

which will give a mean value of zero for the monwerthat is propagated by the wave.
The preceding calculation indeed shows the negefssitthe existence of the imaginary
components of.

15. Expressing for the moment in a form that uses F and’ Fsymmetrically. —
Recall the expression for the principal torque:

477-M<U = | {[b DB]YZ_ [h IJ:)]yz}y
4rr g, =1 {[b Ch]yz + [B D]z },
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and once one has made each of the vector produdisitexeplaceb and $ with their

expressions as functions of the vector poteftidly using (8 of paragraph 4.
Then set:

—rijDk = Fimi)ﬁ?k + iji)ﬁif + FKDE)JIUD,
-J =[F m;
ie..
-J’= F o’ + FyDEmDXy+ Foom" +F-am”
so one will have:

UEyy: _Uzsz = UuDux = 'JxD’
U?zz: _UExy = 0-512 = Js’
UzDuu: _Usyz = Uszx = 'JZD’
- UExu: _Usyu = _UzDzu = 'JuD’

ATy, + 46, = Aiv (0 + 1),

with
- 4m6,= - F Aiv M+ F,Aiv 9 = FOF, - F,OF,.

Hence:
(34) Ar(y+ 6" = — 4mhivy M7,
with:

0 [}

M=-2 L
47T

It is possible to form a more symmetric expressiortdiyng the momentor to be
M+M" . 0+8 .
——, so the complementary torque will bez— In order to apply this to a

concrete case, recall the problem of paragraphd&altulate the moment flux along the
z axis by taking:

. 1 . ab
C:=5(M+M )yy,= 8—7T[Fy53y+|:x55x+' (Fch + Fthy)] = %C-

The result is therefore unmodified. In a genenahner, the complementary torque
can be put into a less abstract form as follows:
Take the 4-vectog that is defined by:

471q = c Aiv 9.

If one denotes Hertz's free charge densityslfgs opposed tp, which denotes the
true charge density) then iscomponent will be equal torzg, = ic div h = 4rrice. We
can refer to the four components:
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COx, Oy, Oz, Qu=iC &

by the name ofree electric current density It is easy to see thdtiv q = 0, which
expresses the idea that free electric charge is cmsgust like true electric charge.
Consider the 4-vectd) that is defined by:

-471Q =ic div 1.
Its componen@, is such that:

4rQu=icdiv $ = 4rric 9,

in which d denotes the density of free magnetism (it is not tragnatism). We can refer
to the four components f:

Qx, Qy, Qz, Qu=ic o

by the name ofree magnetic current densityOn the other handyiv Q = 0, and free
magnetism will be conserved. The complementary tovgli¢hen take the form:

(6+ 6')y = %[(qXFE— AF) i (Qc Fu—Qu Fl

which is an expression that must be approached like gn¢hahwe found in the problem
of spheres in which the true electric charge densitynsazero in (25 of paragraph 8,

and like the one that we will find in the following chapteFhese ways of writing the
complementary torque are essential for the developofethie theory. | shall give their
interpretation in a later publication.



CHAPTER VI

MOMENTS IN LORENTZ'S THEORY

16. Conservation of moments=— In this theory, the only dielectric medium is the
vacuum. lIfpis the true density, angx, py, pz are the current densities then:

Cx = pX, Cy = py, C,= pz, Cu=ic p,

for a 4-vector. The 6-vectof8t and9t that were defined in paragraph 3 are equal to
each other:

myz: ﬁx1 mzx: ﬁyy mxy: 5321

Myu=—ihy, My=-ihy, Nu=-ih,,

and the Lorentz equations are written:

c Aiv 91 = 471C,
Aiv O = 0.

The components of the force density 4-veéttare given by:

1
f=p [hx +2(C,9,-CH y)} .
That can be written:
cf=[C DN,
ie.:
C fx = mexx"'cymxy"'czmxz"' Cugﬁxu-
The force density can be put into the form:

(35) f=—AivT,

in whichT is the symmetric energy-impulse tensor:
Too= (R4 R = R+ 5524 652- 69,
8
1
Tx =T X — " —— hx + $x )
y =Ty 471( hy + 9 $y)
i
Txu = Tux = z™ hz )
4]T(hyﬁﬁ )

T = L (h? + $7).
8
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The physical sense of these components is as follbwandj are indices, y, zthen
Tj is the impulse flux in the directiaracross a face that is normaltoTj, is the impulse
density in the direction up to a multiplicative constant.
We construct théorce moment densityith respect to the origin; i.e., we construct
the combinations:
ly=[r O =ifj—jf,

in whichi, j represent two of the four componenrty, z, u; for example:

l,=yf,-zf,
(36) { yz y z X

l,=xf,-uf.

The density thus-defined is a 6-vector. If one replacesvitees off with the
correspondind\iv T in the expression fdrthen one will get:

0 0
4 | Z: - TZX_ - TZ _Z
TTly I V% zT) dy Y Ty—2zTy
0 0
— Tzu_ Z \yy) —— Tzu_ Z Ly).
> (v T % (y T

The 24 parentheses that one obtains by taking the sititesl are the components
of a three-index tensor that we will refer to by tRkpressionmpulse moment tensand
we will have:

(37) [ =-AivL,
with
ALy =Y Toxx—2z T2, Arrlyy, =Yy Toy—Z Ty.

The significance of its components is as follows:L4 is the impulse moment flux
along thelk axis through a surface that is normaj.to

L 1
M= = (yTu—-2 =1
ic 4ric O Tau W =y

is the impulse moment density along {lzeaxis:

A=[r ],

in whichg is the impulse density. That is formula (2) ofgzaaph 1; indeed, up to now,
it seems to be almost the only that has been ust istudy of moments. Equation (37)
expresses the conservation of the impulse momenty, z u figure explicitly in the
expressions fol andL, which shows that the moment thus-defined is a emmnof the
first kind that is meaningful only when one givée tpoint with respect to which one
calculates it.
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Figure 1.

It is an impulse moment of that type that enters theoexperiments on the radiation
pressure of light. A vertical torsion filament cagia vertical mirrord) on which an
unpolarized light rayR falls normally at a distancefrom the filament. The radiation
pressure communicates an impulse moment of the fingt ta the torsion equipment.
Such impulse moments, which are calculated ftgroertainly exist physically then, but
that is not an intrinsic property of an electromagnetave. If one confines oneself to
them (and that seems to be what one often does)tiemwill have overlooked one-half
of the terms, and in fact, the most important osgege they belong to the moment that is
intrinsic to the wave; i.e., the momentor.

Let | represent the force moment density. However, idstefareplacing the
guantitiesf with their expressions in terms afin (36), express those quantities as
functions ofC and9:

(-2 c fy: Cx Myx + C; My, + Cy My,
V) C f;= Cu Mk + C. My + Cy M.

Multiply the first one by z and the second one, gyand then add them, while replacing
the quantitie<C with their expressions as functionsomt

411l =y (Mo Aivy M+ My Aivy I+ N,y Alvy )

Take one of the termsfor example:

m m
0z Jdu

om
y ¢ Aivy M :ysmzx(a axy+6 X2 4 g xu
y
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0 0 0
:mZX _(ymxy) +_(mxz) +_( ygjt xu) - me mzx-
oy 0z Jdu

The first three terms are of the first kind, siycenters into them explicitly, and
My My is of the second kind.

Group all of the terms of the first kind. One wgét:

9 9 9
M| Ly +L yI +— yIn
Zx(ay y Xy aZ y zZX a u y xuj

0 0 0
+mzy &ymyx+a/ ygjt yz-i_a'I ygjt xuj

+IN iygjtux-i_iygjt +— ygjt uzj
Yy Z

Zu ax

0
-m,, aizi)ﬁxy+i zZMm +i zﬂﬁxuj
y z

—i)ﬁyz a—meZX+a— M Zy+a_ 2N ZLJ
X Yy u

-IMm,, izi)ﬁux+i zﬁ)ﬁuy+i 2m |-
0x oy odu

If one uses identities of the form:

0 0 0
M, —ym = —((ymmn, )-ym, —<n_,
zX ay y Xy ay (y zX xy) y Xy ay 2

on the one hand, and the Lorentz equations, onttrex, then the terms of the first kind
can be put into the form:

in whichL is the three-index impulse moment tensor.
The terms of the second kind:

- gjtxy mzx - mzu muy + mxz gjtyx + gjtuz gjtyu = 47TK/Z =0

give a zero sum. The principal torque is zero amelntz’s theory, sinck andh, as well
as’B and$), have the same direction.

Replace the second symbol in each term by itsesgmn as a function &f, and if
one takes into account thaiv F = 0 then:



Chapter VI — Moments in Lorentz’s theory. 45

a4 0
0=2(C F.— G Ry +-2 (5 Fy— 5 Fx
s (G F.-GF) aX(ﬁy y —x Fy)
0 : 0 .
+—(— FX_ XF +|thu +— (- ZFX_ XFZ_Ih Fu
6y( 9y Fx=9HxFy ) az( 9 9 y Fu)
0 . .
+— Ih FZ_I F - XFU .
au( y h, Fy — $x Fu)

If one sets:
4n8:= "1, F- GF)
then one will get:
a; = %[C Fli

which is the complementary torque. Set:

_477Myxz:53x I:x_y)y I:y_y)z Fz,

If we group all of the terms then we will obtain the etra that express the
conservation of moments of the first and second kind:

(37) | +AiVL =0,
(38) 6+ Aiv M = 0.

Outside of matte(i.e., the electricity)f = 0,1 = 0,C = 0, 8= 0, and those equations
will become:

39
(39) AivM =0.

{ AivL =0,

The moment of the first kind is conservative, as & ioment of the second kind.
Therefore, outside of matter, there is no possibiityransforming moments of one kind
into moments of the other kind. On the contrary, ingiflenatter, equations (38) show
thatL andM are not conservative, sint@nd & are no longer zero, so a certain quantity
of moment of the first kind can be transformed intamaatum of the second kind by the
intermediary of matter.

17. Transformation of moments of one kind into moments of asther kind.
- Imagine, for example, the torsion pendulum that wasribest above (Fig. 1) and was
intended to measure the impulse moment of theRraywe fix a horizontal half-wave
layer @) that receives a sheaf of light rai that are polarized circularly in such a
fashion that when they leave it, they will be inverseutar. That layer will experience a
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torque 3 / wand a force moment R/ c that directed in the opposite sense, whgrns

the power that is transported By andll is the power that is transported Ry Arrange
P andll in such a manner that the pendulum is in equilibriuen; fake:

Br_n

w C

Since the moments equilibrate, there will be a contisummansformation of moment of
one kind into moment of the other kind by the interragdof the solid. Now, suppose

M . . . .
that$>—, so the equipment will turn in the same sense asathation pressure.
w C

In the following chapter, we will see that the ratatof the half-wave layer will
change the pulsatiow = 27& of the rayR’; it will becomew’ > w We assume that the
operation is adiabatic — i.e., the mirror is perfecéftecting, and the half-wave layer is
perfectly transparent, such that no part of the enerytransform into heat — and we
assume, on the other hand, that the motion is infjnsé&w, so it will be possible to
neglect the kinetic energy of the equipment, whichssumed to be a perfect solid.
Replace the torsion filament with a frictionless susjpengivot, in order to eliminate the
loss of potential energy from the torsion in the filameWhen the mirror is moved far
away from the ray, there will be a reduction of the frequency of théeted ray, and
correspondingly, a reduction in the energy of that fépreover, there will be a transfer
of impulse moment to the solid at the same timetti@pulsationwof the rayR' changes
with the infinitely-slow rotation of the half-wave. inBe the operation is assumed to be
adiabatic, the energy that is lost Rys given toR', and correspondingly, the moment of
the first kind that corresponds to the energy thaisswill be transformed into a moment
of the second kind in the r&y.

Lorentz’s theory is itself capable of giving the medbm of that transformation: It is
obvious that this is not so, since unless one adds quaheornyt Lorentz’s theory is
incapable explaining the existence of solid bodies, becausesdiy it is incapable of
explaining the stability of the atoms that comprisedbid body. We then see that at its
basis, the mechanism that permits the transformatibnimpulse moments into
momentors, or conversely, will exceed the possibilibksorentz’s theory, so one must
introduce the constaht




CHAPTER VII

DOPPLER-FIZEAU EFFECT FOR ROTATION

18. Observable character of moments— One can envision the question of the
moments that are transported by light by using the prirgipfethermodynamics, and
thus exhibit the real and observable character of theentors that are transported by a
circular wave.

For the impulse moments of the first kind, ther@asdoubt about their observable
character. If a sheaf of light rays of powerfalls upon a mirror at a distancdrom an
axis of rotation then it will exert a force:

20N
f=—
C

and an impulse moment that effectively conforms tottiesretical result:

20r

c

Suppose that a mirroM receives the sheaf normally, and it displaces it
velocity v, which is regarded as positive in the sense of the incidendr, but infinitely
small. The mirror will impart a mechanical powegto the light:

f,=w=-AM =212,
C

Correspondingly, in the reflected sheaf, the frequewmtli diminish by the Doppler-
Fizeau effect. ltw= 27w is the pulsation of the incident light:

Aw_ _ v
w C
and
(40) w=-n2% - _an.
w

The Doppler effect is inseparable from the mechanicalepdhat is given to the
mirror. Now, it can be exhibited indirectly by meansoptical beats. For example,
construct an interference apparatus of the air-weclga ¢I’air) type with one fixed glass
layer and one moving layer. The light that is reBeclrom the fixed layer will have the
same pulsatiorw as the incident light, while the light reflected by theving layer will
have a pulsation ofv + A« and what will result is an optical beat that iseefively
realized at a fixed point in space by the displacemetiteninterference fringes that pass
through that point.
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The relation (40) has the consequence that if one pesfa finite adiabatic
transformation then the ratid / w will remain constant. It will then result that ght

energy€ of pulsationcwwill possess an entrofgthat is of function of only¥ / w:

(40) s=1(£].

w

Therefore, if one modifies the frequency of the ligplgt an arbitrary adiabatic process
then there will exist the following proportion betwebe energies and pulsations:

o) &6
o W

| previously indicated’j anadiabaticprocess for changing the frequency of circular
radiation by letting the radiation fall on a turningthaéve layer.

Now, envision such a layer that is perfectly transgasen receives a sheaf of
circularly-polarized light with a pulsation o and a power ofP normally. Count
rotations to be positive when they are in the same sagssthe incident circular
polarization. Let be the direction of the incident sheaf,Xetndy be two directions that
are fixed in space, normal @ and form a right trihedron with it. Letandy be the
components of the light vibration when the circulaver falls upon the layer:

X=acoswt, y=asinwt.

Suppose that the half-wave layer is such that onts girincipal directions forms an
angle ofa with x. A simple calculation will show that when thectilar wave leaves the
layer, it will be inverse circular, and one can write:

X1 =acos ¢ wt + 20a),
yi=asin ¢ wt+ 20).

Now, suppose that the layer turns around a directidndimarallel taz in the positive
sense with a very small angular velody

a = Qt,
X1 =acos | (wt — 2Qt)],
yi1 =asin [ (wt - 2Qt)],

and the frequency of the emergent lightus 2Q. It will be diminished if the layer turns
in the same sense as the incident circular wave, andeaatigthif it turns in the opposite
sense. It will produce a true Doppler effect, and theesponding change in frequency

() E. HENRIOT, “Les couples exercés par la lumiére pséaricirculairement,” C. R. Ac. St98
(1934), pp. 1146.
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can be exhibited in reality by a optical beat. Indeedvefjuxtapose the turning half-
wave layer with an immobile half-wave layer whosengipal directions are directed
alongx andy then the emergent vibration will be:

X2 =a cos € wt),
y2 =asin ¢ wt).

Irradiate the set of the two layers with a circudlave, one part of which falls upon
the turning layer, and the other of which falls upon thenarbile layer, and let those two
vibrations interfere with each other upon leaving.

X1+ X =2acos € wt+a)cosQt),
y1+Y2=2ac0s ¢ wt +a) cos Qt)

will then give the optical beat that corresponds tgotfeglicted change in frequency.

What will result is a continuous motion of the fringesa well-defined way that was
effectively stated by Righi'). It would be even simpler to interpret it as a behose
cancellations are produced four times per rotation thabbtans by turning a half-wave
layer between two crossed Nicol prisms with an angrdincity Q. The rectilinear wave
that leaves the first Nicol can be decomposed into tmverse circular waves of
frequencyaw Upon leaving the turning layer, one will have two ineesgcular waves of
frequencyw — 2, w + 2Q, while the second Nicol will permit one to make them
interfere and will give a beat that is a quadruple caaiteti be rotation.

There are few practical experiments that are moreeguthan that one, but at its
basis, it shows the reality of the angular Doppleeafaind its magnitude. Since the layer
is perfectly transparent, and the rotation is infinitelgw, if one assumes that the
operation is adiabati¢hen, from the relations (40 if 7, andP, are the powers before

and after traversal of the turning layer then:

(42) == =—
The reductiondP in power must have a counterpart in a mechaniocalep WV that is
given to the layer, since there is no heat emitted:
AN = - JP.
Since that mechanical power is correlated with tatien Q, that will demand that a

couplej must exist such that:
oP=-jQ.

() A. RIGHI, Mem. d. accad. d. scienze di Bologna [I¥],(1882), pp. 247. Seealso, R. DE.
ATKINSON, “Energy and angular momentum in certain optaablems,” Phys. Rev7 (1935), pp. 623.
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That value is deduced from arguments that are solelsgetie and kinematic, and is
precisely the one that is provided by electromagnetimryheThere is then a convergence
in the results that is mentally satisfying, but thermt@ynamic argument offers us
something more. The real, observable character oftthege in frequency by rotating
the half-wave layer permits one to consider the phemom of beats that was described
above as an indirect measurement of the coypdnd a proof of its observable,
measurable character in the same way as for the chsbe air wedge, so the
displacement of the fringes can be considered to bedirect measurement of the
radiation pressure.

The only difficulty resides in the hypothesis that we made that thatiopeis truly
adiabatic. The displacement of the fringes in the air wedgem#dd, so one can make
only a number of fringes pass through a point of thevanige that depends upon the
more or less monochromatic state of the radiatiod, each fringe will preserve a well-
defined order number in the course of its displacemehésd circumstances do not exist
for the displacement of interference fringes that preduced by the turning and
immobile half-wave layers: The displacement of fringesthen unlimited, so an
indefinite number of fringes can pass through a point, and ndthem will preserve an
order number that is always the same in the coursésahation. The difference is
essential, and | will return to that difficulty in my nigoublication.

Furthermore, as convincing as such an indirect experimertecéor measuring the
radiation couples by the change in frequency, the only empet that would inspire
complete confidence would be the direct measuremeriteofmechanical couple that is
exerted, which | have attempted in the past, and it woalddsirable that it should be
realized despite the smallness of the couples: Theaittdn of short Hertzian radiation
might possibly provide a first indication in that sense.



CHAPTER VI

CONCLUSION

19. The problems that remain to be solved- In the foregoing treatise, for the sake
of completeness, | was forced to raise several ilmpbquestions that | passed over in
order to limit the scope of the treatise, and also umxd#here is no complete answer to
them in certain aspects. Notably, there is good reasaddpt the energetic viewpoint;
that is, to envision, on the one hand, the exchangesarfyy that are produced between
the electromagnetic field and matter by the intermgdi&torque, and on the other hand,
to analyze the physical significance of the imagineoynponents of the torque and
momentor.

The solution of a problem is always provisional, but itriportant, above all, to pose
it clearly.

The question of radiation couples is an important probéerd it has been generally
neglected in electromagnetism: The objective of thidyswas to pose it, along with all
of the difficulties that it entails, and to put itantlear focus.

With time and criticism, one might modify some poiatsd add some others, but it
will not involve any adventurous hypotheses nor leave éhtnr of classical theories, in
such a way that one can hope that its essence Wittstain.

In conclusion, | would like to indicate the reasorat tiietermined the organization of
this survey and pertain to the nature of the questiorf.itSehe Maxwell-Hertz theory
imagined a medium that was polarizable from a macroscef@indpoint, while in
Lorentz’s theory, it was microscopically polarizablen the latter theory, one imagines
that a sufficiently-subtle observer of the mediuam dollow the electrons of an atom or
polarizable medium in the course of their motions.wduld then follow that certain
problems would appear to be of the second kind in the Mé&keetz theory and of the
first kind in Lorentz’s theory. For example, take ttese of a wave that crosses a
birefringent or absorbent medium. In the Maxwell-Hdfteory, the problem is of the
second kind, and in that of Lorentz, one imagines thataan conceive of the motion of
the polarization electrons around the center of thenaamd envision the impulse of each
of them and take its moment with respect to the centleich will amount to a moment
of the first kind. That was the manner by which | peztesl in a previous articlé)(

However, we know from the statement of the princgflendeterminacy that there is
good reason to distinguish between what can be conceivkdviaat can be observed.
Now, one can conceive of the motion of electronanratom, but from the principle of
indeterminacy, one cannot imagine a corresponding exparitnat will tell us what the
impulse of an electron is at a given moment. Obsens of the atom will give only a
mean effect that translates into a matrix expresdioih the operation that consists of
taking the impulse of the electron at a given instawt ils moment with respect to the
center is an operation that lies outside of physitgesit does not correspond to any
realizable experiment. In wave mechanics, the imputseent of the trajectory and that
of the spin in an atom are both of the second kind,tle@dubtle Lorentz observer will

() E. HENRIOT, “Les couples mécaniques exercés par la tenpiélarisée elliptiquement,” Bull. Cl.
Sc. Acad. Roy. Beldl3(1927), pp. 143.
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lose his rights. Perhaps the Maxwell-Hertz theory pnavides the mean observables is
closer to the recent wave mechanics that that oéritar and that would explain the fact
that one must indicate how to choose one over the othen one attempts to show the
train of ideas in a natural manner. Torque and momentwse existence is necessarily
manifest in the first theory, are transposed into dw®id one by a sort of passage to the
limit when the polarizable medium becomes the vacuum, vaili then permit one to
solve a series of important problems that would be inselithout them.



