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Part Il.
Thermo-mechanical processes
(The law of increasing entropy)
810. External coordinates (equation of state)

One of the advantages of thegrange method is that it relieves us of having to
specify the coupling equations. In fact, the generalizeddomates are chosen such that
it is not necessary for one to exhibit the condiggjuations between them. However, we
often encountecondition inequalitiesn the applications For example, the molecule in a
gas can be enclosed in a container in such a way #habtition of the molecule cannot
go beyond the space in the container. Now, it woulddsential for our considerations
for the system in each state to follow a path that spoeds to the direction of its
velocity, so the path curve would possess no kink, anéftireralls -surfaces that occur
would be closed and rounded everywhere. Admittedly, hatot the case for the
example that was just given, since the molecule aiidinge its direction discontinuously
at the wall. If one thinks of, e.g., a “one-dimensiogat” (Fig. 4a) — i.e., a single
material point that cannot leave a line segment — apeals toCartesian coordinates
then thes -curve will consist of two separate pieces (Fig. 4b).
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If we would now like to extend our analysis to alltése cases then we would need
only to assume that there is a potential energy leetwiee walls of the container and the
molecules. It would then be unnecessary to imposesartyof restriction on the mass
points. The penetration of a molecule into the walklso possible, although such an
exceeding of the normal bounds would be linked with the axppee of a significant
amount of potential energy. Furthermore, since undesetldrcumstances, the wall
cannot define an absolute obstacle, all path curves haWle to be continuous and
nowhere have a sharp kink. That would also corresporbto-surface appearing to be
closed and rounded. In the cases that we have beerrmemaeith, thes -curve might
perhaps take the form that is suggested in Fig. 4c. In twdektimately arrive at the
ideal limiting case of absolute rigidity, one needs aalgssume that the potential energy
will also become exceedingly large for even the séighpenetration of the surface of the
wall. It will then be impossible for the molecule ggenetrate very far into the wall for
finite initial energies. Nevertheless, one can chadisef infinite space to be the domain
of variation of the coordinates, and thus free onesethe condition equations. The
choice of the potential energy will then also have é#ffect that the position of the
molecule is restricted in practice to the interiortleé container without assuming such
inequalities.

The same argument will be true when the wall of theaioer is moving. We would
like to call such a moving container walpeton Since the piston is moving, we must
next treat the coordinates that determine it just likeahgr coordinates of the system
and assume that they are likewise subject to a eaitochange. Later, it will be shown
that those fluctuations are extremely minor, and thiitgive us the right to make an
exception for those coordinates.

We would like to consider an entirely special casehesé paragraphs. Let the
container be a rectangular cylinder that is bounded byctwgruent surfaces of ar&a
that amount to the lid or piston and the base. Lepigten move freely. Its position will
be determined by the coordinatenamely, the volume between the base, the pistwh, a
the outer surface of the cylinder. A presdu@ts on a unit area, so the potential energy
will be:

U=k [h[B,
in which:

W
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means the height of the piston above the base. I@nefére also has:
(145) U=ka

We would like to apply (42). That equation will give us:

(146) a— =1t

One must then address the determinatio@of da. Now, the potential energy also
contains a component that originates in the molectias are found to be in direct
contact with the piston, which is a summand that gharwitha in a manner that is not
easy to recognize. In order to confront that difficuliye assume generalized
coordinates. We next choose @artesan coordinate cross whoseaxis runs
perpendicular to the plane of the piston, and set:

q3i—2 = X’
(147) O = ¥
4 =¢(z,9),
_a
(148) h= 5
(149a) @ = % (z <h),
(149b) gi=1+@-h) (z >h).

These formulas shall be true everywhere, except innimeediate vicinity ofz = h.
Here, they shall be replaced with functional relatidhat will mediate a continuous
transition to the differential quotients. Howevdratt transition shall take place along a
line segment that is extremely small, even in compariedhe small line segment that a
molecule can penetrate into the piston, without propkamy appreciable potential
energy.

If we change the then the potential energy between the piston andamielevill
change. By contrast, it will remain unchanged whengthemains constant. In fact, if
we go to another value af while fixing theq, then, from (149), we will come to a new
state in which one finds just as many molecules as édfothe container’s interior, and
in which the molecules will penetrate just as deeply tine piston as before. If one
would then like to calculatés / 0a, where the partial differentiation with respectatts
performed with constarg, then one can ignore the potential energy betweepisten
and the molecule.

Now, from (147) to (149), one has:
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(150) 6 =3 @<

(151) 4=%  (@>h)

We next consider the first case. If one understdfnd® mean the component of the
energy of thé™ molecule in the-direction then, from (150), one has:

h°m .
(152) I = 2m a2,
so, from (1):
ps =h*m g,
(153) 6 = if’—m
Thus, from (152), one has:
|3i — p?n2 .
2h’m’
that is, from (148):
_ P B
154 I3 = —=—.
(154) 5% o
By contrast, for:
z >h,
one will have:
p3| = m q3| )
2 2
(155) l5i = 3m %ﬁ=%mp—3‘2:%fn—3‘-
One will then have:
a%: 213 (z <h),
a%: @z <h)
From (145), one will then have:
a%: ka+ Z -2, ,

in which only molecules that are found completelythim the container will be
considered. However, the larger the containethis,smaller will be the fraction of the
molecules that are in interaction with the pistoffe assume that the container is large
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enough that we can neglect that fraction. The sumthban be extended over all
molecules, and one can write:

a—=ka ZZIS,,

if one understands =n/ 3 to mean that number of all molecules. By tgkime mean, it
will emerge from this that:

= k_a+zn“—2|3i .
i=1

However, since the same component of kinetic ené&gyssigned to each degree of
freedom, one will have:

(156) Sy Z | =

wha

in which the right-hand side means the totalvivaof the gas molecule. We then get:

aa—: =ka-2L,
or, from (146):
(157) % =ka-2L
However, from (37), one has:
n
158 L=—t.
(158) >
Thus, one will have:
SR
a=t|—+=]|,
3 2
or, sincen is very large:
(159) a=1int,
so, from (158):
(160) a=4%L.

Equation (159) and (160) will be referred to aseteation of state
The piston, whose mass might be denotedvibywill also possess kinetic energy.
From (144), its mean will be:

1,05 _M
2

2 Oa

1 —_—
—a
B?
so, from (34), one must have:

I
N w

~
:‘QJI

and therefore:
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(161)

& _ KB
a Mn

Now, when we appeal to ordinary units, the right-hand sidéiis equation will be
extremely small. For instance, if only gravity actsmfe piston then:

Kk
M

wlae

in whichg means the acceleration of gravity, and one will have:

(162)

g 3gB
a n

in that case. However, since one has, in genBral (

(163) U2 <u?,
one will have:
a’<2 398
n
a< 9B 2

“n 73

If 7 denotes the time it takes to traverse thesurface once then the differential
guotient a will have the same sign only in a fractionof 7. During that timea will
suffer a fluctuatiom\a, for which one will have the relation:

N

(164)

B
@ 1 V39 or.
a

“Jn Ja
Obviously, the quantity on the right-hand side dremely small, so we would be

justified in assuming that experiences no noteworthy changes. Thereforezamealso
drop the mean value symbol in (160) and write, niowiefly:

() In general, fon arbitrary quantities, one will have:

(U + U+ .o +u)’ <n (U + U2+ + U5

In order to prove that inequality, one develops the laeftehside according to the polynomial law and
replaces each doubled produat 2, with the larger sunu’ + u/.
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(165) ka=Z2L.

wln

The energy generally also possesses a componemntchatesa, but since it is equal
to then™ part of the total kinetic energy, it can be negleced the energy can be
regarded as a function gf p, anda.

Now, when the force that acts upon the piston varfiesn (165),a will also
experience a chang®( One can generate such a change in force by organiciesen
but we would not like to draw that possibility into thealm of our argument?)(
However, still other cases are conceivable: It is jessihat the gas that we have
considered is coupled to a mechanical system whose infugiguite predominant in the
combined system. The complicated problem of treating gpleonthat is assembled in
that way will simplify in this case by a kind of distuition of work. In a first
examination, we can infer the values that certain coatéds will assume as functions of
time from the initial states of the influencing systand the mechanism of the influenced
one, and we can do that independently of which initiatesthe influenced system
possesses’)( In the second case under consideration, the cocedirihit were just
determined will be treated as constants, and the mofitime influenced system will be
treated by the principles of the first paragraph.

One can express that state of affairs by saying: Oteraysossesses coordinates that
prove to be constant for thermal processes, but carhdmeged from the outside. One
calls such coordinatesxternal coordinatesr variable parameter®f the system. Thus,
the volumea of a gas that is enclosed by a piston is an exteambtinate.

We then now leave the way in which such a change is peddudatside of view, and
consider only the case in which the paramatenanges very slowly. We imagine, e.g., a
gas and suppose that the pressure that is exerted upoiest gi@dually. However, it is,
in turn, necessary to assume that a potential energysexetween the piston and the
molecule. In fact, under these circumstances, nothiangls in the way of enclosing the
g in the domain of variation from o to + o, so the space that is availablegtavill not
change witla.

§ 11. Adiabatic processes.

The considerations of the previous paragraph make it stageiable how the concept
of external coordinates can be combined with our foundatiowe now set aside the
specialization that we introduced and assume a sysham possesses an external
coordinate that varies by external agencies. We dertiaatdthe energy should be a
function ofq, p, anda:

(166) £=£(q, p, 9),

and assume that in the example that was considerasultdwin fact, be made plausible
that:

() In order to exhibit it, one will require the energy eipr in addition to (165).

() H.Hertz, Mechanik pp. 45.

() Ifone, e.g., atmospheric presskracts upon the piston then the respeatizan be determined from
(165). The value df depends upon the dynamics of the sea of air, so theyparticitial state of the gases
has an infinitely small reaction on it.
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1. No couplings are prescribed between the, anda (and also no condition
equations).

2. The change iais left to our whims.

3. The change in thepandp takes place according to equations (2) and (3).

If we leta be constant then we will have a mechanism of the thiadwe considered
in the first part of our investigation. The changes ex¢landp can be anticipated when
one knowsa, as long ag is given as a function of tleeandp. If a is varied then a new
functional dependency will appear betwesandqg andp. We can say: We go to a new
mechanism. We are then dealing with changes in théanem in the second part. In
that regard, it hardly needs to be remarked that theepdrof mechanism possesses only
a relative meaning. If one regardsas a variable in the same way then one will be
dealing with a new state manifold for the same mechanldawever, it is convenient to
appeal to the terminology that was just introduced.

An autonomous system always takes on new phased, wilt constantly keep the
samee. € can be changed by thermal effects, but, p) will still remain the same
function. A third kind of process is characterized by rsgythat the functional
dependency betweenandp andqg changes in such a way that the mechanism will be
altered. We must turn to the second part for that.

Thus, the mechanism shall be varied — i.e., an exteomatimatea. We ask what
variation ofV is linked to it. That quantity must be changed for twoaerss

1. From (166), anothes will belong to the sameg andp for a new choice oé&.
After a new choice od, a phase for whicls was previously less than can continue to
satisfy that condition, and conversely. Therefone,sames” will correspond to another
V with a new choice d.

2. The change ia is generally impossible, unlessitself is also given a new value.
If we consider a change on these two grounds then wevritid:

(167) V=V(a &),

dv _dV vV ac"

168 AL G N-AS Ly
(168) da oda 0&” 0a

We next seek to determin®’/ / da.

£(@@)

Figure 5.
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With the original valuea' of a, there will be a well-defined -surface in whose
interior all phases for whicls < £ will lie. Another £-surface will belong to the new
value ofa that might lie, e.g., inside the first one (Fig. 5).wé understandv to mean
the distance between them then:

(169) N=- j dodv.

How big isdv then?

Let P’ mean a point on the surfagg¢a + &), and letP be the point on the surface
£ (a) that lies opposite to it. H=a + d& then thes that belongs t®’ will be equal to
£, by construction, so when the parametera’, one will have, from (166):

£ - 9¢ Ok .
ov

On the other hand, far= a, theethat corresponds #®’ must likewise be equal i©, by
construction, so foa=a, &- will also be given by:

* €
E — —
ov
It follows from this that:
(170) _ oeloa &
oelov

so, from (169):
oV _ _J- doaslaa,
oa oelov
or, from (18) and (19): o
(171) 6_V = - a_VD% .
oa 0e- oa

Secondly, the differential quotiede / da will be calculated. We then give a small
incrementda to a and ask what the associated chadigen £ would be. We think of the
variation da as being broken into very many starting points that dmcig about a
change oba. Each changea might last for a time interval that is small inngparison to

the period of the system on tlsesurface; on the other hand, the intervals between the
individual changeg®a might be very large in comparison to the period. qlaadp will

not change essentially during a process however, from (166), the energy will
probably experience an incrementaf[Ps / da, and transport the system to a higher

surface. In total, the incremedd will be linked with a change in energy E aaBg—g.
a

Here, one must understand that the arguments of thedmrare the phases over all
possible energy surfaces. However, infinitely-smallcosd-order errors will be
introduced when each phase is replaced with the one oprifieal € -surface that
corresponds to it. Since the time interval between itltgvidual da is large in
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comparison to the period, all possible phases in thecsrfa & will occur as arguments
o€/ oa, and each of them according to its frequency in the tiatal One can then set:

* €
O = —a,

z oda

but that is:
&=%s
oda

or ():

R
(172) 9t %
fda oda

Moreover, it follows from (168) and (170):

av _

(173) -

0.

It is then impossible to arrive at other value¥ddy changing only the mechanism.

For this analysis, it was essential to assumetiigatiomain of variation of thgandp
is also the same for a varying path; i.e., that no lotygpexist between the g, andp. If
such a coupling were present then it could happen that tleeswhat runs at a distance

€ o . . * . .. *
of w=— / — inside ofe = £ contains phases that are no longer admissible foa

da/ ov

+ . One also now sees how it is necessary to conliéepotential energy between
molecules and the wall whenever one is given a mtdesystem that includes a wall.
For example, in the case of ideal gases, one carditeCartesian coordinates if they
are not considered. A drop in the piston would thevdethee -surface essentially
unchanged, except that only a very small fraction wbiuld cease to be admissible. One
would then haveV / da = 0, which would not be compatible with (173) and (168), since,
from experimentde / da # 0. The contradiction is resolved as long as one assame
potential energy that also becomes infinite for atdinpenetration. Moreover, the
differential quotientos / dv that appears in (170) will become infinite at some gdac
One would do best in that case to appeal to the gerextatimordinates that were
introduced in the preceding paragraphs.

The changes that we are concerned with here, likertbg that were considered in §
8, will be induced by the influencing system. Thus, our eaf@oach to the proof will
be based upon equation (166) essentially. That will demaatdtile energy of the
influencing system can be determined frgnp, anda with no hindsight of the past (cf.,
pp. 7). Now, the external coordinatesof the influenced system are connected with
certain external coordinates of the influencing systeamd thus, a change in the
mechanism of the influenced system, a change in the misanaof the influenced
system, and thus, with a change in the energy comporbat are assigned to the
observable coordinates in the influencing system, withhiangical work. On the other

() For the complete analysis, c.,W. Gibbs, pp. 153 (158)et seq.
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hand, no energy can be transferred in the mannemiasitdepicted in 8§ 8 during the
process, since otherwise equation (166) would not be vélidsically, that means that
the external system loses no heat energy, but onihanémal energy, or that no heat is
introduced immediately into the system in question. h§uocesses are callediabatic
and one can thus express (173) as: The quavitiigmains constant under adiabatic
processes.

8§ 12. Reversible processes.

According toEinstein (%), the general thermo-mechanical process is composad of
isopycnic one and an adiabatic one. The increlasef the energy will be equal to the
sum of the thermal energyQ that is given by external systems and the mechanical
energy —-dAthat they contribute. Therefore:

de =dQ - dA
or
(174) dQ=ds +dA
Now, one will have the equations:
(155) d—tQ =dInv,
(176) I aQ =InV + const.

t

In the first casedQ = 0, and that will contain our statement in (173). hiem $econd case,

dA = 0, and our assertion will be a consequence of (174) and ()44)kus, if the

general mechanical-thermal process can be composedatiatd and isopycnic ones

then one will generally have:

J-@ _ J’ de”+dA
t t

(177) =S+ const.

(178) S=InV ).

The quantityS= InV can then be referred to estropy

Due to the invertibility of the mechanical equations, #igabatic influence of a
system must prove to be reversible. From (173), themnivill be preserved by it. An
isopycnic change of state will then be reversible wtie influencing system possesses
almost the same temperature as the influenced onen (#%7), the total entropy will not
be changed by such a process. One can then deducelobed system the entropy is
conserved by reversible processes.

t instein, I, pp. 429¢t seq.ll, pp. 178.et seq.

A A.E
() A.Einstein, II, pp. 180.
() J.W. Gibbs, formula 485.
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8 13. Irreversible processes.

Let two systemz,; and X, be given with different temperature$ and t,, resp.,
whose energies; , &, resp., belong to functiong’ andV,, resp. One can then find a
pair of valueg; , &, that are different frong;, &,, resp., for which one has:

(179) g +& =&+,
(180) tl(é‘f) :tz(é‘; .

From (61), (63), (65), among all of the pairs of valued Hatisfy (179), the paif; , &,
will give Vi(&) V(&) its greatest value. Thus:

(181) Vi) Va(£7) > V(&) Vo(£) -

However, from what we said in § 5 and (180), the bodidgakie on the energies’ and
&, after the resulting contact. ThusSifdenotes the total entropy before the contact and
S” the total entropy after it then, due to (181) and (178)volhéave:

(182) s >9

Contact between two bodies of different temperaturdsi@ad to an increase in the
entropy.

However, it follows from this that such processes iemversible, and since they
alone among the purely thermal processes are irreleeraib can further state: Entropy
increases for irreversible thermal processgs (

If we employ the fact that, the state of the syspain will be more probable after
contact in the proof then we will have introduced no newhagical axiom, but merely
inferred a consequence from the concept of probabilitye @hysical assumptions that
were used up to now were based upon only the fact thatiages in the -surface would
always be traversed again. However, the fact thasysgem-pair will be found with
greatest probability in the most probable phase by a suddak bt a random point in
time follows from an axiom that precedes any mechamind, belongs to merely the
theory of probability itself. Thus, one cannot speakaofontinuous change in the
guantityS=InV. That function is not defined at all, in a certainsge for a well-defined
time point, but only for a time interval in which tlsesurface can be traversed several
times. A newe -surface will be traversed by a circulation after estitand Inv; + In'\.
will have a value that is larger than before by adimimount.

() Despite the invertibility of all mechanical processi¢ is no contradiction to speak of irreversibility
in a mechanical theory. When two systems that wen@qusly separate are combined, one will artificially
generate a lower value on the cuhie(e — a) V. (a), which can hardly ever be separated in the natural
course of two permanently-coupled systems. CfW. Gibbs, pp. 150 (153). P. andT. Ehrenfest,
Mathematisch-naturwissenschaftl. Blafteo. 11 and 12, 1906; Phys. Zeit. (1907), & keq.
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In order to make the concept of probability more pescige can also think of a
virtual ensemble oft system-pairs. They might possess all possible positim the

curve f(a) before contact. After contact, and the resulting sjoay, the majority of
them will be found on the summit of the curi¢e). In other words: The phase that is
most probable in the temporal ensemble of the individuaésypairs will be assumed
by the majority of them. However, not only does egalchiseof the system-pair possess a
probability inside of its temporal ensemble, but thgtribution of the 9t system-pairs

over the phases will possess one, as well. Thus, theepb of probability will be

regarded in a well-defined sense that was first giveiBdlyzmann and applied in a
completely different way from what we did here. Whane, likeEinstein (%), assumes
that more probable distributions will follow more impeble ones, one will thus
introduce a special assumption that is based upon no fsevidence and is not at all
required by the proof. Such an assumption was generatiie myGibbs (?), and seems
to me to be applicable, despite the objections that vaésed against it.

Whereas the representation of entropy that was ohds¥e would change
discontinuously under the separation, hibbs theory led to a continuous change in
entropy. The fact that the concept of virtual ensemisighysically justified was shown
in 8 5. By contrast, the definition of entropy thatb&sed upon them is linked with
another difficulty. In order to verify the charaaséic property [formula (177)] of the
expression for entropy that is presented in that wag, must define the temperature to
be the modulus of a canonical ensemble. However, sudfimtion does not need to
possess any physical meaning. Therefore, it seems tatnfegast up to now, that the
definition of entropy that was given here, which likegvigoes back t&ibbs and
deviates from th&instein definition only inessentially, is preferable.

Heidelberg, 24 May.

(Received on 25 May 1910).

() A. Einstein, II, pp. 184. In addition, the use of the canonical enserdinplicates the physical
interpretation. The theory of probability was used ifierent sense — namely, the one here — in a second
derivation byEinstein, I, pp. 326.

() J.W. Gibbs, pp. 150 (pp. 153).

() E.Zermelo, Jahresberichte der deutschen Mathematiker-VereinigBif906), pp. 238.T andP.
Ehrenfest, Wiener Ber115 (1906).



