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The following considerations in regard to d’Alembert’s piphe are restricted to
systems that possess a finite number of degrees of freedBor that reason, the
“‘condition equations” that extend the kinetic diffeiehtequations will be mainly
excluded. Namely, corresponding ®lifford’'s way of thinking (“Elements of
Dynamics”), thecomplete systems of velocitiedll be placed at the forefront of the
developments, and in that way, at the same time, danimg of thd.agrangian systems
in kinetics will emerge in an especially clear way.

Of course, the author dfiécanique analytiqguéntroduced precisely those condition
equations into the general developments, but with thei@nslito the second edition of
his work, it emerged clearly that in the developmernti®bwn ideas, he started from that
formal manner of representation and he recognized tleatskential problem of the
mechanics of bound systems was the analytical formualaf thesystems of velocities

It is only when one actually works through that basineknatical fact that
d’Alembert’s principle, in conjunction with the principle of virtuaork, will take on a
far-reaching efficacy, whereas without it, a schema avoeinain that has been achieved,
as such, only in those cases where the system cowstli@ clearly in view, so the
systems of velocities would be known from the outset.

Moreover, the problem of mechanics for bound systerng i means resolved with
the exhibition of the explicit equations of motion; theéedmination of the reactions in
arbitrary cross-sections of the subsystems, the lankd,the supporting bearings will still
remain to be treated as a no-less-important group of pnslileinetostatics).

That second aspect of d’Alembert’s problem will be erspeal in the present paper,
while the presentations that general mechanics giveswdl ibe mostly just touched
upon superficially. However, the engineer is often poaition to be required to assign
great value to the stress equations over the precisstigagon of the motion of the
system.

Throughout history, theealm of applicationshas exerted a clearly-recognizable
influence on rational mechanics. At first, it wasr@sbmy that had especially required
the most fruitful way of treating the kinetics oé& systems of points, and then physics,
which had already influenced the kinetics of variableesystso broadly and in such a
singular way, that one could very well speak of “physit&chanics,” and in recent
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times, a host of interesting problems in the theorynathines unmistakably point to a
deeper analysis af Alembert’s principle as the natural foundation for kineticstatics

In the following presentation of d’Alembert’s prin@pblnd its consequences, we
have, without exception, regarded the kinematical and rdig@h quantities as vectors
and thenner andouter product of two vectors are also employed correspongioglthe
calculations in the algorithms. Those operations haeady been naturalized to such an
extent that we have only mentioned the notation heré,can refer to the numerous
papers (e.gA. Foppls, “Einfihrung in die Maxwellsche Theorie der ElektriZiya

We denote every vector by an overbar on the relevant dymHdence, thanner
product will be defined by the equation:

ab=abcos(b|a).

Theouterproduct is denoted by a continuous overbar, since it regseasew vector. If
we set:

b=t
thent will be perpendicular t@ andb , and its magnitude will be determined by:
c=absin (b|a).

It also follows from this that one must have:

ba =- ab,
since sin(b |a)= - sin (a|b).
For triple products, one has the relations gppl, Einfuhr, pp. 25)
abc=cab=bca
and (bid., pp. 27):
a(bo = (ac)b-(ab k.

Quadruple products will appear here only the following comiaminat
abcd=(ac)qbd)-(boLad.

Calculating with these simple tools has the advantage the usual analytical
coordinate methods (which is not appreciated nearly wsbugh) that it gives an
uninterrupted, intuitive insight into the natural procesproblem solving in which a
mostly constructive idea enters in place of the schentalculations with arithmetic
guantities that follows the undivided basic geometiacal mechanical concepts step-by-
step.
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A. Formulation of the principle.

1. The history of the principle. — Christian Huygens was the first to successfully
treat a difficult problem in the mechanics of bound system his Horologium
oscillatorium (1673), in which he determined the center of oscillatamttie compound
pendulum in a novel way by applying the principle of theseovation of energy. His
indirect method of solution of this problem, which was piai first posed by Pater
Mersenne was not to the taste of his contemporaries, andsthaed a scientific dispute
that lasted from then until the Eighteenth Centurje Tistory of d’Alembert’s problem
falls within that span of time (1681-1703)acob Bernoulli was the first to suggest a
direct solution when he came to the fortunate idea obmposing the vector of the
applied force (viz., gravity) for any material point oé thendulum into two components,
the first of which produces the effective acceleratbbrihe mass, while the other one
represents the reaction of the system constraints. lalter vectors collectively maintain
equilibrium, since they cannot influence the actual stdtenotion of the pendulum.
However, one still did not see the greater scope aif fimdamental argument in that
period of time, but only believed that one must applg ieach special case of a system
problem with some idiosyncratic artifice in order taarat the equations of motions.

Perhaps, one can regard the fact that the systetmatizd kinetics did not happen
sooner as more fortunate for the development of bigiry. In any event, one starts with
the drawback that a premature choice and definition ohargemethod has been carried
out for the free unfolding of the original thoughts andstauction of a lively intuition in
regard to the processes of motion in concrete casgsomften.

Newton appreciated the kinetics of bound systems, whrssalevelopmental phase
was known to him fronHuygenss work, but he made no mention of that fact in his
Principia (1687). When he confined himself to free systems of pothes dynamical
notion of system reactions was what mostly stood inMaig. By contrast, he did not
recognize the correct meaning of héx tertia for the mechanics of machines (cf.,
Principia, Leges motus, Scholium), in general. However, simeehad by no means
anticipatedBernoulli’s principle for the decomposition of vectors for boundeys, the
attempts of his great fellow countrymen, the Englidhotrs (e.g.;Thomson and Tait,
Perry), must be regarded as lacking. In assesNmgton's contributions to mechanics,
one should, above all, always keep in mind that he airéad enough to do with the
formal foundation and specialized research into the lafamotion for free point systems
(e.g., planetary problems), and that those problems ofgahysstronomy that related to
bound systems (e.g., precession of the equinoxes) demtowdedor dealing with them
that were not at all available to him.

2. The general conception of the principle by d’Alembert.— The Eighteenth
Century defined an entirely distinct chapter in the ystif the intellectual progress of
civilized people. The naive basic ideas lay behind themghwhad been promoted and
disseminated so far that the driving spirit now took onrdsponsibility of liberating
those ideas from the restrictive basis that arosen,frexploring their scope in all
directions, systematizing them, and thus erecting dicedor the exact sciences upon
pre-existing foundations that seemed humble in its beginrugsn looking back from



Heun — The meaning of d’Alembert’s principle for rigigstems and link mechanics 4

some future epoch). Yet, that imaginary architecturstils quite marvelous in the
Eighteenth Century.

The builder has seen excellent growth in his advanced gmsbl exceptionally
equipped with the rapidly-expanding mathematics as hpriglently and farsightedly
grateful for the numerous important discoveries imoastmy and physics and imbued
with a love and enthusiasm for its facts that has imga the character of a lively
classicism upon its services for all time.

D’Alembert stands in the middle of the bold works of that centurps a
philosopher, mathematician, and physicist, he had enriscéghce with numerous
treatises and with astonishing energy, but his most signifiachievements were in the
field of mechanics. Iraité de Dynamiqu€l1743), he laid the foundations of the
kinetics of bound systems, and therefore the evolubibideas thatGalileo had so
fruitfully inaugurated was brought to a certain systematitclusion. The unrestricted
validity of Bernoulli’s ideas on the decomposition of dynamical vectors wais
recognized, and its basis took the form of a specific kinginciple from the general
theory of motion that was an infallible tool. thAlembert’s version of things
(Dynamik pp. 58), that main recipe read:

“One decomposes the motioasb, c, etc., that are imposed upon each body
(i.e., mass-point) into two other onasa ; b, £ ; c, ) etc., in such a way that
when one imposes only the motioas, ¢, etc., upon the bodies, those motions
can be preserved without hindering each other, and that whe has imposed
only the motions, S, y; etc., upon them, the system would remain at rest.”

If an external impulseh, which provokes the quantity of motiomv starting the
state of rest, acts upon the mass-poimf the system then the reactionwill arise as a
consequence of the system constraints. One willllbga:

(1) h=mv+T

for each mass-point of the system, and the reactipnlgesr’, r”, r" will collectively
maintain equilibrium. If the system already possessedlocity, which will be denoted

by the symbolk,, before the impulsé appeared then:
(2) h =mu-y)+T

for each individual material point, and the resultanalbfreactionsr will be equal to
zero, as before. The last equation mediates thattoanom the kinetics of impulses to

the kinetics of continuously-acting forces. The impuis must be infinitely-small of the
same order for the time elemetif and thus equal td h. Correspondinglyf must also

() For the sake of greater accessibility, we shadl itie German edition byrthur Korn in Ostwald’s
Klassikersammlung. Leipzig 1899.
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be replaced withd 7. The associated velocity increage Vv, will be equal todVv, and
we will get the relation:
dh= mdv+ dT.
We further set:
dh=kdt, dr=7sdt,

so the continuously-acting forcds and 5 will relate to a unit time, and one will thus
arrive at the basic equation for the lasting dynanatfact in the form:

(3) k= mﬂ+_s.
dt

The reactions will again maintain equilibrium in regard te tcomplete system.
D’Alembert regarded that transition as entirely obvious, and fdr rémson he did not
emphasize it especially. One cannot blame him far. tHéhe advanced nature of the
concept of impulse has become modern now, and alsotheagenerally-unknown
advantage of being more intuitive than the direct camaittbn of continuous motions.

Our way of writing out equations (1) and (3) is obviously ebasipon the
parallelogram law for impulses and forcé3'Alembert employed the law of the lever as
a static principle, as well, and, in passing, the priecgdlvirtual velocities, in a context
that can be clearly recognized, since he, unlixeob Bernoulli (1717), did not regard
the inertia of the latter even once within that scogeor that reason, his numerous
examples have a somewhat relentlessly elementagyacter, even though their
significance for the state of affairs at the timaildonot be underestimated. The most
interesting part oTraité — namely, the mathematical treatment of the lawsodiisions —
must be excluded from the present considerations, siaceomplete implementation
would require more physical hypotheses.

3. The general, formal elimination of the reactions by Lagange.— In hisTraité,
d’Alembert said (cf., 57):

“Here, | shall be content to treat the motion of lesdihat collide with each
other in an arbitrary way, or ones that exert strajpen each other by means of
strings or inflexible rods. | shall devote more att@mtio this topic, since up to
now, the greatest geometers have given only a veryl sonaber of problems of
that kind, and | hope to put myself in a position to sa@itef the most difficult
problems of that kind that are known from arithmetid @he principles of
mechanics by the general method that | will present.”

That daring statement can quite easily give rise tomdisrstandings in regard to the
efficacy of d’Alembert’s method. For all simpler (i.e., easy to assesstem
constraints, it is obvious that the reactions or S can be eliminated, since the
elementary principles of statics suffice in those sasend one will arrive at the

differential equations of kinetics in that way. Howevérne were considering finite-
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dimensional rigid systems instead of the discrete {pasgs corp9 with their string and
rod constraints then one would come to know the limiftshe efficacy of the tools of
statics that one has at one’s command only to soawekker, the most important first
step towards founding the kinetics of bound systems hasdglrbeen taken. It is
precisely because one has generally reduced the prtésemtbthe equations of motion
of such systems to@moblem of purestaticsthat one will have posed a well-defined goal
for the mechanics of one’s time whose full scope does not know, namely, the
systematic construction of the statmSbound systems thaiagrange addressed, along
with his younger contemporaries, with truly astonishingess.

Building further uponJohann Bernoulli's idea, Lagrange created theorinciple of
virtual velocitiesas the more general formal foundation of the staifcall material
systems. That brilliant promoter of mechanics devdimaself to working out that
fundamental principle in the context of rigid systennsk systems of rigid structures,
systems of strings, fixed, elastic, and fluid continuanfithhe twenty-fourth year of his
life up to the end (1913). Of course, that accomplishroentipies a relatively small
space in his collected works, but it shined like a pricedesastone amidst all the rich
treasures that he had creatddécanique analytiqu€l788) was a “scientific poem” for
Hamilton and it will remain so as long as one considers mecbaaibe a “mathematical
paradise,” akeonardo da Vinci did.

The crux of the Lagrangian system of mechanics is stineng and purposeful
conception of the notion off@ossible velocityor the virtual element of velocity, which is
equivalent to it) of an arbitrary mass element ofirdefined material system. As long as
one can succeed imathematically formulatingsuch systems of possible velocities,
mechanics will have achieved a positive result; beyoat #il is darkness. If one knows
a unique, complete expression for the element of virtwdiom 5X of a system point of
massm whose position in space is determined by the vexttinen, from the principle of

virtual displacements, a system of impul$esr forcesk the equation':
2.hd% =0 or  Ykdx=0

will exist for equilibrium, in which the summations extleover theentire system. Upon
taking the “inner” vector product, each of these equatialslecompose into a system
of just as many independent static relations as the nuoibenutually-independent
parameters (system coordinates, resp.) that enterdixito We have then assumed that
oX admits a unique mathematical formulation, in the sehkagrange.

If the number of those parameteranifinite when it is take over the entire system
then the virtual work will be dealt witexplicitly only for a well-definedspatial element
of the system, and one will generally get partialedéhtial equations as the condition
equations of equilibrium for a force-system that musteb&blished for each spatial
element. The internal stresses will no longer dnatd the kinetic equations any more.

In generalLagrange did not always have theompleteexpression fordx in mind in
his static developments, but he seemed to have a sfm@aless for employing multiple
condition equationsn his general Ansatzen. However, as was remarked eyeddir
holonomic conditions are excluded from this, while nofehomic restrictions on the

() The case of inequality will be excluded from now on.
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motions (despite their great significance for the kasetf real processes of motion) will
be excluded from the present consideratiod’Afembert’s principle.

In the context of this narrower view of things, theekic equations will assume the
form:

D Tox =0 D> 50% =0,
and due to equations (1) and (3), one can also write iéise form:

(@) > (h-myox =0,

dv) .
©) Z[k— majé'x—

These equations define the foundations for thetkis of impulse effects and the
effects of continuous forces lragrange’s system. Lagrange’s specific achievement —
namely, working out these fundamental equationghfose groups of problems that shall
be considered here next — will find a more detailssdussion in Section C.

4. D’'Alembert’s principle for Poisson.—D’Alembert, as well as.agrange, had the
derivation of thedifferential equations of motion mind as the next and most important
goal, while the determinations of theactions in a problem was of subordinate
significance to them, although they certainly dat neglect those determinations in all
cases, but still pursued them no further from téeegal viewpoint. However, the ever-
expanding volume of applications of the rationakhamnics of systems must eventually
direct the attention of the mathematician to the fhat this initially-neglected aspect of
d’Alembert’s principle (viz., kinetostatics) is just as impmmt in practice as the
phenomena of motion as such. Ndwagrange especially preferred the applications of
mechanics to astronomical problems, while the exgging applications were distant to
him, as his complete neglect of surface frictionMécanique analytiqueshows well
enough.

Poissonlikewise had a great interest in astronomical gotsd (e.g., perturbation
theory, precession and nutation), but he still @ered the construction ahechanical
physicsas the main problem of his life and in that wag, vilas already prematurely
distracted from systematically advancing the casion of general rational mechanics.
Apart from that, he threw himself into some speciiractical problems with great
success, and along those lines he laid the groutkdi@oMécanique analytiquehat soon
found its cleverest and most zealous proponerRancelet We would also like to
ponderPoissons beautiful work on the effects of shooting a aamion the different parts
of its carriage (J. Polyt., cah. 21) in order tggest how his tendencies (in contrast to
those ofLagrange) had already noticeably taken a different direttio

In Poissoris Traité de Mécaniquél811), we then find a conceptionaAlembert’s
principle that sharply emphasizes the significan€dahe reactions (internal stresses,
support pressures of the moving system parts)jrapdrticular, considered the essential
influence offriction for practical problems.
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The numerous textbooks on rational mechanics that fedd®wissoris Traité added
nothing remarkable in regard to the formulationdo&lembert’s principle. Only the
superb, and in many ways, exceptionally profound, textbooRafth (viz., Rigid
Dynamic$ once more gives the stereotype conception that isectesh with an omission
of that the principle byAiry in a letter, which did not contain anything substantial,
however.

B. The basic kinematical and dynamical concepts.

5. Kinematic combinations with effective elements—- The basic concepts of the
kinematics of points are: the vector that determipesition, which we would like to

denote byXx, the total time derivative of that vectdrx/ dt = X = Vv, which represents
the analytical measure of the velocity, and the tateé derivatives of the velocity vector
X, dx/dt =% = w, which will be called the acceleration of the pointtime. We now
define the scalar functions:

P=1XX and E=1xx.

We call P the pole functionor the determining function of the vect@r. E is the
energy function (per unit mass) or the determiringtion of the vectorx . We further
define the three inner products and the three qurmalucts of the quantitie®, X, X.
One then sees immediately thak =dP/dt, Xx =d?P/dt?— 2, and x x= dE/ dt.

The outer producﬁ( is a vector that is perpendicular ¥ and X, and possesses the

magnitude x xsin (X |X). In point kinematics, one calls this vector twite sectoral
velocity of the vectorx, but here (due to the way that it is used in theximnics of
bound systems), we shall prefer the nanwnent of velocityand denote it bM . It is

obvious thatx = dM, /dt. The third combination in the outer product camstion is

xX. That vector is simultaneously perpendiculah®® telocity and the acceleration and

has the magnitude sin (x| X). As one will see with no further discussion, stalar
value is also equal to the quotiedt: ry , if the radius of principal curvature at the foin
in question along the path is denotedrby Up to now, onlySomoff has taken that
scalar into consideration kinematically. Sinceshi# has no name, we would like to
further preserve his anonymity, and in what follows shall characterize the scalar by
the symbolB.

The direct combinations of the basic kinematidainents are then summarized in a
table as:
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Table I.
Inner product: Outerproduct:
- _dpP — =

1) XX:E’ 1) xx=M,,

- _d?P — _dMm
2) XX = - 2E, 2 XX = —,
) XX dt ) dt
3 xx=2E 3) *x=8B

dt
P=1XX, E=1xX

6. Kinematical combinations with virtual elements.— We shall define only the
corresponding kinematical combinations of the virtual pd&iments withdx, but not

with 0°X, since we shall excludastatic kineticsfrom our consideration and construct
only the most rudimentary basic concepts from it. hWhat restriction, the scalar

product x X will next come into view. Its meaning is the usual &oen the kinematics
of systems. We setdx = & A, ; A, is then the function that has been calledatiion

(per unit mass) of the moving point. From now on, the sysrband o’ will denote the
differential (variational, resp.) expressions thdateeto the symbols in question, and they
will not generally be complete differentials (varats, resp.). One now finds the
following identity:

= d
XoxX =—(0'A) - &
dt( A)

by a simple differentiation of the foregoing relatiwith respect to time.
Naturally:

E = XIX
in that expression.

For the sake of completeness, we shall now addd¢b®wr productghat correspond
to thescalar products. The outer produ@( is perpendicular to the velocity and the
virtual path-element, and has the absoltexsin (0% | X) . If we setxdx = J'S, then
differentiating that with respect to time will yieldetidentity:

XX = % (F8)- 3%

We then have the following table of kinematic combinagiwith the virtual path element
OX:
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Table Il.
1) XoX =JA,, 1) Xxdx =0'S,
2) XX = %(5%) —E. 2)  XOx = %(a@v)—xT'x.

7. Dynamical combinations with effective elements- The corresponding basic
dynamicalconcepts are the impulde and the continuously-acting forde. The inner
productX h can then be referred to as the elementaigl of the impulsewhere we are
borrowing the nomenclature oflausius with a meaningless alteration from
instantaneous forces (impulses, resp.). Wexdet= V,, . The analogous concept for

time-varying forces — namelyxk — is germane to mechanics. If we sek = Vi and

refer to Vi as thevirial of the forcek then, since it is already commonplace, we will
change only the sign of the quantity tRdausius called by that name and drop the factor
5 that were introduced.

Consistent with the usual terminology, the products = L, and xk = L, mean
the powerof the impulseh and the time-varying forck . The outer productsh = M,
and xk = Mk are thenoment®f h andk relative to the starting point of the vector

The outer vector productsxh = N, and xk = N, shall be considered only

occasionally in what follows, since their mechanicalamegs have still not been
sufficiently investigated. However, it is precisely trat basis that we recommend
looking into those meanings here. In the developmetiiteomechanics of systems, it has
already been shown repeatedly that some formal candegit were initially regarded as
pointless can later take on great meaning. In that redastiall recall only the
centrifugal momenthat was treated in detail I8chweinand was since then brought to
general attention bglausiusandYvon Villarceau.

A summary of the dynamical combinations with effegtkinematical elements will
then yield the following overview:

Table lI.
For instantaneous forces: For time-varying forces:
1) YE:Vh 1') YE:Vk,
2) xh =L 2) xk=Lg,
3) xh= M, 3) xk=M,,
4) xh= N, . 4) xk= N,
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8. Dynamical combinations with the virtual path-element.— Theinner products

h®x= & A, and k [d x= & A are the most important ones under that rubric, simeg t
define the virtuailvork for instantaneous forces and time-varying forces, respyveMer,

along with that, we would also like to work with the cepending outer productisLdx
= J'S, andkdx = IS, here {), since they are of use in thstatic consideration of

system mechanics.
We then get the following summary:

Table V.

For instantaneous forces: For time-varying forces:

1) h@x= oA, , 1) k BXx= JA,
2) hdx= J'S,. 2) kDx=J'S,.

The kinematical and dynamical combinations that wereteguan the foregoing
define a formal skeleton for the mechanics of systemgoaofts, within certain limits.
Naturally, one cannot later wish that mechanics shaaidally be developed by means
of such a schematic program. That would then imply the medaf making it the
guiding principle for progress, which would mostly run cangr to the healthy
development of mechanics. On the other hand, nowstatts and kinetics lie before in
a highly sophisticated phase of development, we probablg ti@ right to pose the
guestion of how we can organize the basic conceptsetinerged from many (and
frequently more-or-less random) demands into a sywetlsetiema. Even apparently-
isolated general laws of mechanics, such the theoremvoh Villarceau for free
systems of points, have their place in such a schélrha.theorem in question is nothing
but formula 2) of Table I, once the summation over theeesystem of points has been
performed.

For us, the presentation of the schema above had-defiakd purpose: Namely, we
would like to apply it directly tod’Alembert’s basic equation, which expresses the
decomposition of the dynamical vector, and in that wexhibit links between the
fundamental kinetic relations that seem to present sbkms in a not-so-casual way in
other respects.

C. General consequences of d’Alembert’s principle
9. Virial theorems for bound systems= It follows immediately frond’Alembert’s

impulse equation:
h =mXx+T,

() The equationds = 0 contains the complete and sufficient conditions afbrastatic forms of
equilibrium in its application to the rigid systems. wiill then accomplish the same thing here that the

equation of the virtual displacemerd®y = 0 does foposition equilibrium.
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by the operation of forming the inner product, that:

(6) Xh = mXXx+XT.

We now sum over all mass-poimtsof the system and set:
D> mxXx% =P, D> Xh =W, D XT

One will then have:

I
<

——_ dP
> mxX= —,
dt
and one will get the consequence of equation (6):

dP

which is valid for all systems, or when expressed diffeye

For each bound system, the difference between the system wirithle fmpulses and
reactions is equal to the complete derivative of the pole functibrr@gpect to time.

For a system that rotates rigidly around the startingtpaf the vectorx, P will
obviously be constant. As a result, one will havefdtlewing theorem in that case:

For the rotating rigid system on which only impulses act, the viriallampulses is
equal to the virial of all elementary reactions when both virial @ferred to the same
fixed point.

We can treatl’ Alembert’s equation for time-varying forces:

k= mx+s
in exactly the same way and then get:
Xk=mxx+
If we now set:
S mxx=E
for the entire system then if we recall equation (2)able I, it will follow that:

d’pP

(8) Vk - \/S = dtZ

- 2E,
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which will go over to the theorem &fvon Villarceau for free systems, and thus fds=
0. Hence, one has the general virial theorem for beysigms:

The virial of the elementary forces that act upon a system minugrihleof the
corresponding elementary reactions is equal to the second derivative assbeiated
pole function with respect to time minus two times the energy syskem.

P is independent for a body that rotates around a fixed.p&ne will then have the
theorem:

Two times the kinetic energy of a rotating rigid system is alvesysal to the

difference between the virial of the reactions that are refemwetthé fixed point and the
virial of the external forces.

10. The power law for bound systems— The theorems that come under
consideration here were already known in the firstettgmental period of system
mechanics, so here they will be only quoted, for the eékegical connectivity. It will
follow from the basic equations:

h=mx+T and k= mx+Ts,
when one multiplies them by and sums over all mass-points of the system, that:
D xh=) mxx+> xt and D Xxk=) mxX+) Xs.
However, fromd’Alembert’s principle, one will have:
D> xFT =0 and ) x35=0.
If we then set:

Z;E =Ly and Z;E: L

for the entire system, which is consistent with theviptes notations, then we will get the
well-known power formulas:

L, =2& and Ly=—.

The power in a system of impulses that acts upon a boshens at rest is equal to twice
the kinetic energy that is generated, and the powesyst@m of time-varying forces will
be measured by the change in the kinetic energy per mit ti
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11. The moment theorem— We multiply the equations:
h=mx+T and k= mXx+3
by the vectorx and get:
Xh=mxx+ xr and xk=mxx+ xs.

Summation over the entire system yields:

o
<

M,-M =M and M,-M_=—.

r \

%)
Q.
—

For a free, rigid system, one will haw¢, = 0 andM_= 0. One will then have the known
basic equation for its rotational motion:

<

M.= M,  and mk:ddv.

—

These are the analytical expressions for the areaiple.

12. Two analogous laws for the dynamical vectoN . — If one takes the outer
product with the velocity vectox then one will get the equations:

Z%:Zﬂ and Zﬂ(:ngﬁz X,

Zmﬂ: B

or, if one sets:

then one will get:
N,= N and N, - N,= B.

r

For the sake of overview, we summarizedgbeeralconsequences in the table below:
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Table V.
For instantaneous forces: For time-varying forces:
dP d?pP
1 - V = 1 1’ — - -
) Vo — M at ) -\ e 2E,
dE
2 Lh=2E 2 Ly =—,
) L AT
- - - M
3) M, -M,=M,, 3) M, -M_.= ddtv’
4) N,-N=o. 4) N,-N,=B.

D. The differential equations of motion.

13. The Lagrange-Hamilton form of d’Alembert’s principle for impulses and
time-forces. — It follows from the basic equation for the decompasitof the applied
impulses:

h=mx+T,

when one multiplies it by the virtual path elemeém and then sums over all mass-points
of the system:

S hox= Y mkax+ Y ToX
or
OA=0A+IA.

Sinced” Ar = 0, from the principle of virtual displacements, ond get the basic
equation for impulsive motion in the form:
9) OA=I0A .
For time-varying forces, one defines the expression:

> kDX =Y mX@Bx+) s,

or from eq. (2) of Table II:

(10) & A= dt (& A) - &,

dt
since ) S[AX = 0.
Equations (9) and (10) can be regarded as the formal igahlgxpression of
d’Alembert’s principle, and both of them go back tagrange. The expression that

emerges from equation (10) by integrating over ttmreas also completely familiar to
Lagrange (Méc. anal, 2" ed., t.1, pp. 307-310), and he used it as the basis for the
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derivative ofEuler’s equation for the rotating bodgc. anal, t. 2, pp. 238-240). It
seems necessary to me to expressly emphasize thidbeagise one always refers to the
integral formula:

(11) [JA,]:O = j(aemm dt

asHamilton’s principle even thoughdamilton, who knew abouMécanique analytique
very intimately, never actually claimed authorship far iHis service consisted in
presenting and employing thaaracteristic functionand knowing its meaning for the
formal representation of canonical integrals when eefdunction exists.

14. Analogous vector formulas in which the reactions are not elinated. — For
impulses, upon outer multiplying the basic equation, ofleget the relation:

S hx =Y mxDBx+ Y. rdx,

or in our notation:
(12) 5’31 :5’§V+5’_$.

When one recalls equation 2) of Table Il, the equation:
D kDX =Y MXDx+y 0>

will likewise imply the expression:

5S = %(53)—2 MYB % &S,
or, upon integrating over tinte
t —
(13) [aﬂsb];: [0S -5+Y mxd Kk d
)

The mechanical meaning of that formula, which | hasrered only in some simple
examples up to now, and have also transformed into @ew®et Lagrangian
coordinates, might remain unmentioned here, since | liope &ble to communicate it in
detail in the continuation of this paper dAlembert’s principle.

15. Systems of possible velocities. We understand a complete system of possible
velocities to mean an arbitrary material complex wamthe totality of the analytical
expressions foik or, what is equivalent to that, for the virtual digglmentsox that are
compatible with the system constraints, which one caweaat by considering the actual
elementary motions @l mass-points. Since we have restricted ourselvidgeteimplest
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types of material systems (viz., rigid systems and chain$inks), that system of
velocities will be mostly available to us in a finish®erm, even though perhaps there is
still much that has not been sufficiently worked thgb in the individual cases.

There are essentially two different paths to theesgmtation of systems of velocities
for all material systems with a finite number of degref freedom, and historically they
have been developed in connection with the rigid-bodyplpm. Euler, Clairaut, and
d’Alembert likewise arrived at the kinematical concept of themmaatary axis and the
associated rotational velocity by an exact intuitid®e shall now unite the two ways of
looking at things in the usual way into the concept single vectorg that falls along
the direction of the momentary axis, and its length rgpresent the magnitude of the
momentary angular velocit§. One’s immediate intuition will show that for evepgint
that is separated from the fixed po@tby the vectorx with a well-defined sense of
direction, the equation:

(14) X = ox

will be true. If we refer the rotational motion ta arbitrary starting poin€ that goes
from the reference point of the vect®&r through the vectot then we can ascribe the

translational velocityc of the system to the poift and obtain the following equation in
place of equation (14):

(15) X=C¢+0(x-0.

That equation contains the complete analytical exmredsr the system of velocities for
a free, rigid body.
It will be established when one is given the two kinecaatiectorsc and . If one

setsg = @B((jj—f, such thatew represents a unit vector that determines the momentary
axis, then one will have:
dX= d<C+w(x— ¢t

In what follows, we shall mostly write this as:

dx=dc+dd(x 9,

in which we have se@ldit= dé&, and thus regarded the amplitude as a vector. The
general expression for the possible elementary motibasfree, rigid system will then
be:

(16) O0X=0CT+d0(x—-0.
If only the rotation comes into consideration then wriehave:

(17) OX = 06X

when one lets the reference pdintoincide withC.
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Lagrange was not satisfied with the derivation of that formwkehich followed
directly from intuition, but sought to arrive at it amother way. He applied a strange and
especially remarkable method in t. 1NMécan. analytiquepp. 159-165. In it, he started
from the notion that every curve of double curvature ingal system must remain
invariable; i.e., any three infinitesimally-close seqisgoints of that curve must remain
in a rigid orientation with respect to each other. that way, he got a system of
differential equation that the componentsdof must satisfy.

Verdam (1864) has presented that line of reasoning thoroughly inBiysifage tot
de toepassing van het beginsel \dAlembert, overeenkomstig de rekenwijze van
Lagrange.”

It is also interesting to arrive at equation (19) by tiagathe elementary
deformations of an infinitesimal triple of rays thathought of as being variable. For the
sake of simplicity, we take them to be rectangular emsiderdx; , ., oz to be the
rectangular components a@¥x, so it will then follow from negating the changes of

lengths that one gets from the basic kinematical equsatibthe theory of elasticity that:

0 0 0
—O0x =0, —0x, =0, —Ix=0,
0X & 0X, % 0%, %

and it will follow from negating the shear deformatiaighe elementary body that:

0 0 0 0 0 0
— 0%, +—O0X%,=0, —O0X +—0X%=0, —O0x,+—0x=0.
0X, % 0% % 0%, % 0% % 0% % 0%, &

The integration of these equations yields, with no furdssumptions:

X = &1 + 06 s — 065 [ko,
XKy = OCp + 06 [ — 06, [Ks,
O3 = &3 + 06, Ok — 06> [kq,

in which é&c; , dc,, &3, o6, 06>, dBs mean the integration constants. The expressions
thus-obtained are identical with equation (16)der 0.

That method is passed over in most textbooks on tlogytlod elasticity.

It is not necessary here to comment further uponmbst useful way of presenting
equation (17) by differentiating the formulas for the climate transformations with
respect to the cosines of the axis angles, sinceighdiscussed in all presentations of
mechanics and is reproduced again and again.

The characteristic element in the expressior o x is the vectorz, and therefore a
purely kinematical parameter that says nothing about teafiguration of the system
directly, and which is, in addition, unsuitable for atiablly establishing the system of
forces. For that reason, for the complete definitbd a problem concerned with a rigid
body, it is necessary to express the kinematicabveaztin terms of coordinates, and in
that way, one will get aecond analytical representatidior the system of possible
velocities.
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It is known that this was already done Byler (Mém. Ac. Berl., 1758) by
introducing the three position angles that are namedifar Lexel (Nov. Com. Ac.
Petrop., 1755) had also already represented the cositks akes in terms of three of
them, and in that way, likewise achieved a position detetion in terms of
(independent) coordinates. These three processes haessantial flaw, since the
symmetry of the formulas cannot be maintained. Catlglesymmetric coordinate
expressions for the vect@ seem to have been presented for the first timEdoyley
(Camb. Dubl. Math. J., 1846), who employed the coordir@t&odrigues|[J. de Liouv.
5 (1840)] for that purpose. One can find thorough presentatidnshe recent
investigations on this topic iff. Klein and A. Sommerfeld Uber die Theorie des
Kreisels(Heft 1, 1897 and Heft 2, 1898)(

These considerations can now be adapted to arbitratersy of links whose
individual terms are rigid bodies with no special diffims (of course, not always
without great complications). From the principle ofatiwe motion, in each of those
cases, it must be possible to exhibit two expressiotisedbrm:

x = funct. (K',K,...,X)
and
x =funct. (q,,0,,...,q,X)

for all points of the systems, such thétk”,... mean a sufficient number of kinematical
vectors, andy, O, ..., g mean the corresponding position coordinates. Eaeajytical

form of the complete system of velocities corresponds to a special form of the general
reduction of the forces and a form for the kineticed#htial equations that is peculiar to
that system. Hence, the special forms ofdia¢icsandkineticsof the material system in
guestion will be characterized completely in that way.

(To be continued)

() Cf., alsoF. Kétter: “Bemerkungen zu F. Klein und A. Sommerfelds Theorie Kiessels (1899).
(Ed. rem.)



