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 The following considerations in regard to d’Alembert’s principle are restricted to 
systems that possess a finite number of degrees of freedom.  For that reason, the 
“condition equations” that extend the kinetic differential equations will be mainly 
excluded.  Namely, corresponding to Clifford ’s way of thinking (“Elements of 
Dynamics”), the complete systems of velocities will be placed at the forefront of the 
developments, and in that way, at the same time, the meaning of the Lagrangian systems 
in kinetics will emerge in an especially clear way. 
 Of course, the author of Mécanique analytique introduced precisely those condition 
equations into the general developments, but with the additions to the second edition of 
his work, it emerged clearly that in the development of his own ideas, he started from that 
formal manner of representation and he recognized that the essential problem of the 
mechanics of bound systems was the analytical formulation of the systems of velocities. 
 It is only when one actually works through that basic kinematical fact that 
d’Alembert ’s principle, in conjunction with the principle of virtual work, will take on a 
far-reaching efficacy, whereas without it, a schema would remain that has been achieved, 
as such, only in those cases where the system constraints lie clearly in view, so the 
systems of velocities would be known from the outset. 
 Moreover, the problem of mechanics for bound systems is by no means resolved with 
the exhibition of the explicit equations of motion; the determination of the reactions in 
arbitrary cross-sections of the subsystems, the links, and the supporting bearings will still 
remain to be treated as a no-less-important group of problems (kinetostatics). 
 That second aspect of d’Alembert’s problem will be emphasized in the present paper, 
while the presentations that general mechanics gives to it will be mostly just touched 
upon superficially.  However, the engineer is often in a position to be required to assign 
great value to the stress equations over the precise investigation of the motion of the 
system. 
 Throughout history, the realm of applications has exerted a clearly-recognizable 
influence on rational mechanics.  At first, it was astronomy that had especially required 
the most fruitful way of treating the kinetics of free systems of points, and then physics, 
which had already influenced the kinetics of variable systems so broadly and in such a 
singular way, that one could very well speak of “physical mechanics,” and in recent 
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times, a host of interesting problems in the theory of machines unmistakably point to a 
deeper analysis of d’Alembert ’s principle as the natural foundation for kineticstatics. 
 In the following presentation of d’Alembert’s principle and its consequences, we 
have, without exception, regarded the kinematical and dynamical quantities as vectors 
and the inner and outer product of two vectors are also employed correspondingly for the 
calculations in the algorithms.  Those operations have already been naturalized to such an 
extent that we have only mentioned the notation here, and can refer to the numerous 
papers (e.g., A. Föppls, “Einführung in die Maxwellsche Theorie der Elektrizität”). 
 We denote every vector by an overbar on the relevant symbol.  Hence, the inner 
product will be defined by the equation: 
 

a b = a b cos ( | )b a . 
 

The outer product is denoted by a continuous overbar, since it represents a new vector.  If 
we set: 

ab = c  
 
then c  will be perpendicular to a  and b , and its magnitude will be determined by: 
 

c = ab sin ( | )b a . 
 
It also follows from this that one must have: 
 

b a = − ab, 

since sin ( | )b a = − sin ( | )a b . 
 For triple products, one has the relations (cf., Föppl, Einführ., pp. 25) 
 

a b c= c ab = b ca 
and (ibid., pp. 27): 

( )a b c = ( ) ( )a c b a b c⋅ − ⋅ . 
 

Quadruple products will appear here only the following combination: 
 

ab c d = ( ) ( ) ( ) ( )a c b d b c a d⋅ − ⋅ . 
 
 Calculating with these simple tools has the advantage over the usual analytical 
coordinate methods (which is not appreciated nearly well enough) that it gives an 
uninterrupted, intuitive insight into the natural process of problem solving in which a 
mostly constructive idea enters in place of the schematic calculations with arithmetic 
quantities that follows the undivided basic geometrical and mechanical concepts step-by-
step. 
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A. Formulation of the principle. 
 

 1. The history of the principle. – Christian Huygens was the first to successfully 
treat a difficult problem in the mechanics of bound systems in his Horologium 
oscillatorium (1673), in which he determined the center of oscillation for the compound 
pendulum in a novel way by applying the principle of the conservation of energy.  His 
indirect method of solution of this problem, which was probably first posed by Pater 
Mersenne, was not to the taste of his contemporaries, and that started a scientific dispute 
that lasted from then until the Eighteenth Century.  The history of d’Alembert’s problem 
falls within that span of time (1681-1703).  Jacob Bernoulli was the first to suggest a 
direct solution when he came to the fortunate idea of decomposing the vector of the 
applied force (viz., gravity) for any material point of the pendulum into two components, 
the first of which produces the effective acceleration of the mass, while the other one 
represents the reaction of the system constraints.  The latter vectors collectively maintain 
equilibrium, since they cannot influence the actual state of motion of the pendulum.  
However, one still did not see the greater scope of that fundamental argument in that 
period of time, but only believed that one must apply it to each special case of a system 
problem with some idiosyncratic artifice in order to arrive at the equations of motions. 
 Perhaps, one can regard the fact that the systematization of kinetics did not happen 
sooner as more fortunate for the development of that theory.  In any event, one starts with 
the drawback that a premature choice and definition of a general method has been carried 
out for the free unfolding of the original thoughts and construction of a lively intuition in 
regard to the processes of motion in concrete cases only so often. 
 Newton appreciated the kinetics of bound systems, whose first developmental phase 
was known to him from Huygens’s work, but he made no mention of that fact in his 
Principia (1687).  When he confined himself to free systems of points, the dynamical 
notion of system reactions was what mostly stood in his way.  By contrast, he did not 
recognize the correct meaning of his lex tertia for the mechanics of machines (cf., 
Principia, Leges motus, Scholium), in general.  However, since he had by no means 
anticipated Bernoulli ’s principle for the decomposition of vectors for bound systems, the 
attempts of his great fellow countrymen, the English scholars (e.g., Thomson and Tait, 
Perry), must be regarded as lacking.  In assessing Newton’s contributions to mechanics, 
one should, above all, always keep in mind that he already had enough to do with the 
formal foundation and specialized research into the laws of motion for free point systems 
(e.g., planetary problems), and that those problems of physical astronomy that related to 
bound systems (e.g., precession of the equinoxes) demanded tools for dealing with them 
that were not at all available to him. 
 
 
 2. The general conception of the principle by d’Alembert. – The Eighteenth 
Century defined an entirely distinct chapter in the history of the intellectual progress of 
civilized people.  The naïve basic ideas lay behind them, which had been promoted and 
disseminated so far that the driving spirit now took on the responsibility of liberating 
those ideas from the restrictive basis that arose from, exploring their scope in all 
directions, systematizing them, and thus erecting an edifice for the exact sciences upon 
pre-existing foundations that seemed humble in its beginnings (when looking back from 
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some future epoch).  Yet, that imaginary architecture is still quite marvelous in the 
Eighteenth Century. 
 The builder has seen excellent growth in his advanced problems, exceptionally 
equipped with the rapidly-expanding mathematics as he is, prudently and farsightedly 
grateful for the numerous important discoveries in astronomy and physics and imbued 
with a love and enthusiasm for its facts that has imprinted the character of a lively 
classicism upon its services for all time. 
 D’Alembert  stands in the middle of the bold works of that century.  As a 
philosopher, mathematician, and physicist, he had enriched science with numerous 
treatises and with astonishing energy, but his most significant achievements were in the 
field of mechanics.   In Traité de Dynamique (1743), he laid the foundations of the 
kinetics of bound systems, and therefore the evolution of ideas that Galileo had so 
fruitfully inaugurated was brought to a certain systematic conclusion.  The unrestricted 
validity of Bernoulli ’s ideas on the decomposition of dynamical vectors was not 
recognized, and its basis took the form of a specific kinetic principle from the general 
theory of motion that was an infallible tool.  In d’Alembert ’s version of things (1) 
(Dynamik, pp. 58), that main recipe read: 
 

“One decomposes the motions a, b, c, etc., that are imposed upon each body 
(i.e., mass-point) into two other ones a, α ; b, β ; c, γ, etc., in such a way that 
when one imposes only the motions a, b, c, etc., upon the bodies, those motions 
can be preserved without hindering each other, and that when one has imposed 
only the motions α, β, γ, etc., upon them, the system would remain at rest.” 

 
 If an external impulse h , which provokes the quantity of motion mv  starting the 
state of rest, acts upon the mass-point m of the system then the reaction r  will arise as a 
consequence of the system constraints.  One will then have: 
 
(1)      h  = mv r+  
 
for each mass-point of the system, and the reaction impulses r ′ , r ′′ , r ′′′  will collectively 
maintain equilibrium.  If the system already possessed a velocity, which will be denoted 
by the symbol 0v , before the impulse h  appeared then: 

 
(2)      h  = 0( )m v v r− +  

 
for each individual material point, and the resultant of all reactions r  will be equal to 
zero, as before.  The last equation mediates the transition from the kinetics of impulses to 
the kinetics of continuously-acting forces.  The impulse h  must be infinitely-small of the 
same order for the time element dt, and thus equal to d h .  Correspondingly, r  must also 

                                                
 (1) For the sake of greater accessibility, we shall cite the German edition by Arthur Korn  in Ostwald’s 
Klassikersammlung. Leipzig 1899. 
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be replaced with d r .  The associated velocity increase 0v v−  will be equal to d v , and 

we will get the relation: 
d h = md v d r+ . 

We further set: 
d h = k dt , d r = s dt, 

 
so the continuously-acting forces k  and s  will relate to a unit time, and one will thus 
arrive at the basic equation for the lasting dynamical effect in the form: 
 

(3)      k = 
dv

m s
dt

+ . 

 
The reactions will again maintain equilibrium in regard to the complete system.  
D’Alembert  regarded that transition as entirely obvious, and for that reason he did not 
emphasize it especially.  One cannot blame him for that.  The advanced nature of the 
concept of impulse has become modern now, and also has the generally-unknown 
advantage of being more intuitive than the direct consideration of continuous motions. 
 Our way of writing out equations (1) and (3) is obviously based upon the 
parallelogram law for impulses and forces.  D’Alembert  employed the law of the lever as 
a static principle, as well, and, in passing, the principle of virtual velocities, in a context 
that can be clearly recognized, since he, unlike Jacob Bernoulli (1717), did not regard 
the inertia of the latter even once within that scope.  For that reason, his numerous 
examples have a somewhat relentlessly elementary character, even though their 
significance for the state of affairs at the time could not be underestimated.  The most 
interesting part of Traité – namely, the mathematical treatment of the laws of collisions – 
must be excluded from the present considerations, since its complete implementation 
would require more physical hypotheses. 
 
 
 3.  The general, formal elimination of the reactions by Lagrange. – In his Traité, 
d’Alembert  said (cf., 57): 
 

“Here, I shall be content to treat the motion of bodies that collide with each 
other in an arbitrary way, or ones that exert strains upon each other by means of 
strings or inflexible rods.  I shall devote more attention to this topic, since up to 
now, the greatest geometers have given only a very small number of problems of 
that kind, and I hope to put myself in a position to solve all of the most difficult 
problems of that kind that are known from arithmetic and the principles of 
mechanics by the general method that I will present.” 

 
 That daring statement can quite easily give rise to misunderstandings in regard to the 
efficacy of d’Alembert ’s method.  For all simpler (i.e., easy to assess) system 
constraints, it is obvious that the reactions r  or s  can be eliminated, since the 
elementary principles of statics suffice in those cases, and one will arrive at the 
differential equations of kinetics in that way.  However, if one were considering finite-
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dimensional rigid systems instead of the discrete mass-points (corps) with their string and 
rod constraints then one would come to know the limits of the efficacy of the tools of 
statics that one has at one’s command only to soon.  However, the most important first 
step towards founding the kinetics of bound systems has already been taken.  It is 
precisely because one has generally reduced the presentation of the equations of motion 
of such systems to a problem of pure statics that one will have posed a well-defined goal 
for the mechanics of one’s time whose full scope one does not know, namely, the 
systematic construction of the statics of bound systems that Lagrange addressed, along 
with his younger contemporaries, with truly astonishing success. 
 Building further upon Johann Bernoulli’s idea, Lagrange created the principle of 
virtual velocities as the more general formal foundation of the statics of all material 
systems.  That brilliant promoter of mechanics devoted himself to working out that 
fundamental principle in the context of rigid systems, link systems of rigid structures, 
systems of strings, fixed, elastic, and fluid continua from the twenty-fourth year of his 
life up to the end (1913).  Of course, that accomplishment occupies a relatively small 
space in his collected works, but it shined like a priceless gemstone amidst all the rich 
treasures that he had created.  Mécanique analytique (1788) was a “scientific poem” for 
Hamilton  and it will remain so as long as one considers mechanics to be a “mathematical 
paradise,” as Leonardo da Vinci did. 
 The crux of the Lagrangian system of mechanics is the strong and purposeful 
conception of the notion of a possible velocity (or the virtual element of velocity, which is 
equivalent to it) of an arbitrary mass element of well-defined material system.  As long as 
one can succeed in mathematically formulating such systems of possible velocities, 
mechanics will have achieved a positive result; beyond that, all is darkness.  If one knows 
a unique, complete expression for the element of virtual motion xδ  of a system point of 
mass m whose position in space is determined by the vector x  then, from the principle of 
virtual displacements, a system of impulses h  or forces k  the equation (1): 
 

h xν νδ∑ = 0  or k xν νδ∑ = 0 

 
will exist for equilibrium, in which the summations extend over the entire system.  Upon 
taking the “inner” vector product, each of these equations will decompose into a system 
of just as many independent static relations as the number of mutually-independent 
parameters (system coordinates, resp.) that enter into xδ .  We have then assumed that 

xδ  admits a unique mathematical formulation, in the sense of Lagrange. 
 If the number of those parameters is infinite when it is take over the entire system 
then the virtual work will be dealt with explicitly only for a well-defined spatial element 
of the system, and one will generally get partial differential equations as the condition 
equations of equilibrium for a force-system that must be established for each spatial 
element.  The internal stresses will no longer drop out of the kinetic equations any more. 
 In general, Lagrange did not always have the complete expression for xδ  in mind in 
his static developments, but he seemed to have a special fondness for employing multiple 
condition equations in his general Ansätzen.  However, as was remarked before, all 
holonomic conditions are excluded from this, while non-holonomic restrictions on the 

                                                
 (1) The case of inequality will be excluded from now on.  



Heun – The meaning of d’Alembert’s principle for rigid systems and link mechanics 7 

motions (despite their great significance for the kinetics of real processes of motion) will 
be excluded from the present consideration of d’Alembert ’s principle. 
 In the context of this narrower view of things, the kinetic equations will assume the 
form: 

r xδ∑  = 0  s xδ∑  = 0, 

 
and due to equations (1) and (3), one can also write these in the form: 
 

(4)      ( )h mv xδ−∑  = 0, 

 

(5)      
dv

k m x
dt

δ
 

− 
 

∑ = 0. 

 
 These equations define the foundations for the kinetics of impulse effects and the 
effects of continuous forces in Lagrange’s system.  Lagrange’s specific achievement –  
namely, working out these fundamental equations for those groups of problems that shall 
be considered here next – will find a more detailed discussion in Section C. 
 
 
 4. D’Alembert’s principle for Poisson. – D’Alembert , as well as Lagrange, had the 
derivation of the differential equations of motion in mind as the next and most important 
goal, while the determinations of the reactions in a problem was of subordinate 
significance to them, although they certainly did not neglect those determinations in all 
cases, but still pursued them no further from the general viewpoint.  However, the ever-
expanding volume of applications of the rational mechanics of systems must eventually 
direct the attention of the mathematician to the fact that this initially-neglected aspect of 
d’Alembert ’s principle (viz., kinetostatics) is just as important in practice as the 
phenomena of motion as such.  Now, Lagrange especially preferred the applications of 
mechanics to astronomical problems, while the engineering applications were distant to 
him, as his complete neglect of surface friction in Mécanique analytique shows well 
enough. 
 Poisson likewise had a great interest in astronomical problems (e.g., perturbation 
theory, precession and nutation), but he still considered the construction of mechanical 
physics as the main problem of his life and in that way, he was already prematurely 
distracted from systematically advancing the construction of general rational mechanics.  
Apart from that, he threw himself into some specific practical problems with great 
success, and along those lines he laid the groundwork for Mécanique analytique that soon 
found its cleverest and most zealous proponent in Poncelet.  We would also like to 
ponder Poisson’s beautiful work on the effects of shooting a cannon on the different parts 
of its carriage (J. Polyt., cah. 21) in order to suggest how his tendencies (in contrast to 
those of Lagrange) had already noticeably taken a different direction. 
 In Poisson’s Traité de Mécanique (1811), we then find a conception of d’Alembert ’s 
principle that sharply emphasizes the significance of the reactions (internal stresses, 
support pressures of the moving system parts), and in particular, considered the essential 
influence of friction for practical problems. 
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 The numerous textbooks on rational mechanics that followed Poisson’s Traité added 
nothing remarkable in regard to the formulation of d’Alembert ’s principle.  Only the 
superb, and in many ways, exceptionally profound, textbook of Routh (viz., Rigid 
Dynamics) once more gives the stereotype conception that is connected with an omission 
of that the principle by Airy  in a letter, which did not contain anything substantial, 
however. 
 
 

B. The basic kinematical and dynamical concepts. 
 

 5. Kinematic combinations with effective elements. – The basic concepts of the 
kinematics of points are: the vector that determines position, which we would like to 
denote by x , the total time derivative of that vector /d x dt = xɺ  = v , which represents 
the analytical measure of the velocity, and the total time derivatives of the velocity vector 
xɺ , /d x dtɺ  = xɺɺ  = w , which will be called the acceleration of the point motion.  We now 
define the scalar functions: 

P = 1
2 x x   and E = 1

2 x xɺ ɺ . 
 
 We call P the pole function or the determining function of the vector x .  E is the 
energy function (per unit mass) or the determining function of the vector xɺ .  We further 
define the three inner products and the three outer products of the quantities x , xɺ , xɺɺ .  
One then sees immediately that x xɺ  = dP / dt, x xɺɺ  = d 2P / dt 2 – 2E, and x xɺ ɺɺ = dE / dt.  

The outer product x xɺ  is a vector that is perpendicular to x  and xɺ , and possesses the 

magnitude sin ( | )x x x xɺ ɺ .  In point kinematics, one calls this vector twice the sectoral 
velocity of the vector x , but here (due to the way that it is used in the mechanics of 
bound systems), we shall prefer the name moment of velocity, and denote it by vM .  It is 

obvious that x xɺɺ  = /vdM dt .  The third combination in the outer product construction is 

x xɺ ɺɺ .  That vector is simultaneously perpendicular to the velocity and the acceleration and 

has the magnitude sin ( | )x x x xɺ ɺɺ ɺɺ ɺ .  As one will see with no further discussion, its scalar 
value is also equal to the quotient v3 : r1 , if the radius of principal curvature at the point 
in question along the path is denoted by r1 .  Up to now, only Somoff has taken that 
scalar into consideration kinematically.  Since he still has no name, we would like to 
further preserve his anonymity, and in what follows we shall characterize the scalar by 
the symbol B . 
 The direct combinations of the basic kinematical elements are then summarized in a 
table as: 
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Table I. 
 

Inner product: 
 

Outer product: 

1)      x xɺ  = 
dP

dt
, 1′)      x xɺ  = vM ,  

2)      x xɺɺ  = 
2

2

d P

dt
 − 2E, 2′)      x xɺɺ  = vdM

dt
, 

3)      x xɺ ɺɺ  = 
dE

dt
. 3′)      x xɺ ɺɺ  = B . 

             P = 1
2 x x ,              E = 1

2 x xɺ ɺ . 

 
 
 6. Kinematical combinations with virtual elements. – We shall define only the 
corresponding kinematical combinations of the virtual path elements with xδ , but not 
with 2xδ , since we shall exclude astatic kinetics from our consideration and construct 
only the most rudimentary basic concepts from it.  With that restriction, the scalar 
product x xδɺ  will next come into view.  Its meaning is the usual one from the kinematics 

of systems.  We set x xδɺ  = δ′ Av ; Av is then the function that has been called the action 

(per unit mass) of the moving point.  From now on, the symbols d′ and δ′ will denote the 
differential (variational, resp.) expressions that relate to the symbols in question, and they 
will not generally be complete differentials (variations, resp.).  One now finds the 
following identity: 

x xδɺɺ  = 
d

dt
(δ′ Av) − δE 

 
by a simple differentiation of the foregoing relation with respect to time. 
 Naturally: 

δE = x xδɺ ɺ  
in that expression. 
 For the sake of completeness, we shall now add the vector products that correspond 

to the scalar products.  The outer product x xδɺ  is perpendicular to the velocity and the 

virtual path-element, and has the absolute sin ( | )x x x xδ δɺ ɺ  . If we set x xδɺ  = vSδ ′  then 

differentiating that with respect to time will yield the identity: 
 

x xδɺɺ  = 
d

dt
( )vS x xδ δ′ − ɺ ɺ . 

 
We then have the following table of kinematic combinations with the virtual path element 

xδ : 
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Table II. 
 

1)      x xδɺ  = δ′ Av , 1′)      x xδɺ  = vSδ ′  

2)      x xδɺɺ  = 
d

dt
(δ′ Av) – δE. 2′)      x xδɺɺ  = ( )v

d
S x x

dt
δ δ′ − ɺ ɺ . 

 
 
 7. Dynamical combinations with effective elements. – The corresponding basic 
dynamical concepts are the impulse h  and the continuously-acting force k .  The inner 
product x h  can then be referred to as the elementary virial of the impulse, where we are 
borrowing the nomenclature of Clausius with a meaningless alteration from 
instantaneous forces (impulses, resp.).  We set x h  = Vh .  The analogous concept for 

time-varying forces – namely, x k  − is germane to mechanics.  If we set x k = Vk and 

refer to Vk as the virial of the force k  then, since it is already commonplace, we will 
change only the sign of the quantity that Clausius called by that name and drop the factor 
1
2 that were introduced. 

 Consistent with the usual terminology, the products x hɺ  = hL  and x kɺ  = kL  mean 

the power of the impulse h  and the time-varying force k .  The outer products x h  = hM  

and x k  = kM  are the moments of h  and k  relative to the starting point of the vector x . 

 The outer vector products x hɺ  = hN  and x kɺ  = kN  shall be considered only 

occasionally in what follows, since their mechanical meanings have still not been 
sufficiently investigated.  However, it is precisely on that basis that we recommend 
looking into those meanings here.  In the development of the mechanics of systems, it has 
already been shown repeatedly that some formal concepts that were initially regarded as 
pointless can later take on great meaning.  In that regard, I shall recall only the 
centrifugal moment that was treated in detail by Schwein and was since then brought to 
general attention by Clausius and Yvon Villarceau. 
 A summary of the dynamical combinations with effective kinematical elements will 
then yield the following overview: 

Table III. 
 

 For instantaneous forces: 
 

 For time-varying forces: 

1) x h = Vh , 1′) x k = Vk , 
2) x hɺ = Lh , 2′) x kɶɺ = Lk , 
3) x h= hM , 3′) x k = kM , 

4) x hɺ = hN . 4′) x kɺ = kN . 
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 8. Dynamical combinations with the virtual path-element. – The inner products 
h xδ⋅ = δ′ Ah and k xδ⋅ = δ′ Ak are the most important ones under that rubric, since they 
define the virtual work for instantaneous forces and time-varying forces, resp.  However, 

along with that, we would also like to work with the corresponding outer products h xδ⋅  

= hSδ ′  and k xδ⋅  = kSδ ′  here (1), since they are of use in the astatic consideration of 

system mechanics. 
 We then get the following summary: 
 

Table IV. 
 

 For instantaneous forces: 
 

 For time-varying forces: 

1) h xδ⋅ = δ′Ah , 1′) k xδ⋅ = δ′Ak , 
2) h xδ⋅ = hSδ ′ . 2′) k xδ⋅ = kSδ ′ . 

 
 The kinematical and dynamical combinations that were quoted in the foregoing 
define a formal skeleton for the mechanics of systems of points, within certain limits.  
Naturally, one cannot later wish that mechanics should actually be developed by means 
of such a schematic program.  That would then imply the pedantry of making it the 
guiding principle for progress, which would mostly run contrary to the healthy 
development of mechanics.  On the other hand, now that statics and kinetics lie before in 
a highly sophisticated phase of development, we probably have the right to pose the 
question of how we can organize the basic concepts that emerged from many (and 
frequently more-or-less random) demands into a synthetic schema.  Even apparently-
isolated general laws of mechanics, such the theorem of Yvon Villarceau for free 
systems of points, have their place in such a schema.  The theorem in question is nothing 
but formula 2) of Table I, once the summation over the entire system of points has been 
performed. 
 For us, the presentation of the schema above has a well-defined purpose: Namely, we 
would like to apply it directly to d’Alembert ’s basic equation, which expresses the 
decomposition of the dynamical vector, and in that way, exhibit links between the 
fundamental kinetic relations that seem to present themselves in a not-so-casual way in 
other respects. 
 
 

C. General consequences of d’Alembert’s principle 
 

 9. Virial theorems for bound systems. – It follows immediately from d’Alembert ’s 
impulse equation: 

h  = m x r+ɺ , 
 

                                                
 (1) The equation δSk = 0 contains the complete and sufficient conditions for all astatic forms of 
equilibrium in its application to the rigid systems.  It will then accomplish the same thing here that the 
equation of the virtual displacements δ′Ak = 0 does for position equilibrium. 
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by the operation of forming the inner product, that: 
 
(6)      x h  = m x x x r+ɺ . 
 
We now sum over all mass-points m of the system and set: 
 

m x x∑  = P,  x h∑  = Vh ,  x r∑  = Vr . 

 
One will then have: 

m x x∑ ɺ = 
dP

dt
, 

 
and one will get the consequence of equation (6): 
 

(7)      Vh – Vr = 
dP

dt
, 

 
which is valid for all systems, or when expressed differently: 
 
 For each bound system, the difference between the system virials for the impulses and 
reactions is equal to the complete derivative of the pole function with respect to time. 
 
 For a system that rotates rigidly around the starting point of the vector x , P will 
obviously be constant.  As a result, one will have the following theorem in that case: 
 
 For the rotating rigid system on which only impulses act, the virial of all impulses is 
equal to the virial of all elementary reactions when both virial are referred to the same 
fixed point. 
 
 We can treat d’Alembert ’s equation for time-varying forces: 
 

k = m x s+ɺɺ  
in exactly the same way and then get: 
 

x k = m x x x s+ɺɺ . 
If we now set: 

m x x∑ ɺ ɺ = E 

 
for the entire system then if we recall equation (2) of Table I, it will follow that: 
 

(8)      Vk – Vs = 
2

2

d P

dt
 − 2E, 
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which will go over to the theorem of Yvon Villarceau for free systems, and thus for Vs = 
0.  Hence, one has the general virial theorem for bound systems: 
 
 The virial of the elementary forces that act upon a system minus the virial of the 
corresponding elementary reactions is equal to the second derivative of the associated 
pole function with respect to time minus two times the energy of the system. 
 
 P is independent for a body that rotates around a fixed point.  One will then have the 
theorem: 
 
 Two times the kinetic energy of a rotating rigid system is always equal to the 
difference between the virial of the reactions that are referred to the fixed point and the 
virial of the external forces. 
 
 
 10. The power law for bound systems. – The theorems that come under 
consideration here were already known in the first developmental period of system 
mechanics, so here they will be only quoted, for the sake of logical connectivity.  It will 
follow from the basic equations: 
 

h  = m x r+ɺ  and k = m x s+ɺɺ , 
 
when one multiplies them by xɺ  and sums over all mass-points of the system, that: 
 

x h∑ ɺ = m x x x r+∑ ∑ɺ ɺ ɺ  and x k∑ ɺ = m x x x s+∑ ∑ɺɺ ɺ ɺ . 

 
However, from d’Alembert ’s principle, one will have: 
 

x r∑ ɺ  = 0 and x s∑ ɺ = 0. 

If we then set: 
x h∑ ɺ  = Lh and x k∑ ɺ = Lk 

 
for the entire system, which is consistent with the previous notations, then we will get the 
well-known power formulas: 
 

Lh = 2E and Lk = 
dE

dt
. 

 
The power in a system of impulses that acts upon a bound system at rest is equal to twice 
the kinetic energy that is generated, and the power in a system of time-varying forces will 
be measured by the change in the kinetic energy per unit time. 
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 11. The moment theorem. – We multiply the equations: 
 

h  = m x r+ɺ  and k = m x s+ɺɺ  
 
by the vector x  and get: 
 

x h=m x x x r+ɺ  and x k =m x x x s+ɺ ɺɺ . 
 

Summation over the entire system yields: 
 

h rM M− = vM  and k sM M− = vdM

dt
. 

 
For a free, rigid system, one will have rM = 0 and sM = 0.  One will then have the known 

basic equation for its rotational motion: 
 

hM = vM  and kM = vdM

dt
. 

 
These are the analytical expressions for the areal principle. 
 
 
 12. Two analogous laws for the dynamical vector N . – If one takes the outer 
product with the velocity vector xɺ  then one will get the equations: 
 

xh∑ ɺ = x r∑ ɺ   and xk∑ ɺ = m x x x s+∑ ∑ɺɺ ɺ ɺ , 

or, if one sets: 

m x x∑ ɺɺ ɺ = B  

then one will get: 

hN = rN  and  k sN N− = B . 

 
 For the sake of overview, we summarize the general consequences in the table below: 
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Table V. 
 

 For instantaneous forces: 
 

 For time-varying forces: 

1)     Vh – Vr = 
dP

dt
, 1′)    Vk – Vs = 

2

2

d P

dt
− 2E, 

2) Lh = 2E 2′)   Lk =
dE

dt
, 

3)    k rM M− = vM ,  3′)   k sM M− = vdM

dt
, 

   4)   h rN N− = 0.    4′)   k sN N− = B . 

 
 

D. The differential equations of motion. 
 

 13. The Lagrange-Hamilton form of d’Alembert’s principle for impulses and 
time-forces. – It follows from the basic equation for the decomposition of the applied 
impulses: 

h = m x r+ɺ , 
 
when one multiplies it by the virtual path element xδ  and then sums over all mass-points 
of the system: 

h xδ∑ = m x x r xδ δ+∑ ∑ɺ  

or 
δ′ Ah = δ′ Av + δ′ Ar . 

 
 Since δ′ Ar = 0, from the principle of virtual displacements, one will get the basic 
equation for impulsive motion in the form: 
 
(9)      δ′ Ah = δ′ Av . 
 
For time-varying forces, one defines the expression: 
 

k xδ⋅∑  = m x x s xδ δ⋅ + ⋅∑ ∑ɺɺ , 

 
or from eq. (2) of Table II: 

(10)     δ′ Ak = 
d

dt
(δ′ Av) – δE, 

since s xδ⋅∑  = 0. 

 Equations (9) and (10) can be regarded as the formal analytical expression of 
d’Alembert ’s principle, and both of them go back to Lagrange. The expression that 
emerges from equation (10) by integrating over time t was also completely familiar to 
Lagrange (Méc. anal., 2nd ed., t. 1, pp. 307-310), and he used it as the basis for the 
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derivative of Euler’s equation for the rotating body (Méc. anal., t. 2, pp. 238-240).  It 
seems necessary to me to expressly emphasize this here, because one always refers to the 
integral formula: 

(11)     [ ]
0

t

v t
Aδ ′  = 

0

( )
t

k

t

E A dtδ δ ′+∫  

 
as Hamilton’s principle, even though Hamilton , who knew about Mécanique analytique 
very intimately, never actually claimed authorship for it.  His service consisted in 
presenting and employing the characteristic function and knowing its meaning for the 
formal representation of canonical integrals when a force function exists. 
 
 
 14. Analogous vector formulas in which the reactions are not eliminated. – For 
impulses, upon outer multiplying the basic equation, one will get the relation: 

h xδ⋅∑  = m x x r xδ δ⋅ + ⋅∑ ∑ɺ , 

or in our notation: 
(12)     hSδ ′  = v rS Sδ δ′ ′+ . 

 
 When one recalls equation 2) of Table II, the equation: 
 

k xδ⋅∑  = m x x s xδ δ⋅ + ⋅∑ ∑ɺɺ  

 
will likewise imply the expression: 
 

     kSδ ′ = ( )v s

d
S m x x S

dt
δ δ δ′ ′− ⋅ +∑ ɺ ɺ , 

 
or, upon integrating over time t : 
 

(13)    
0

t

v t
Sδ ′   = 

0

[ ]
t

k s

t

S S m x x dtδ δ δ′ ′− + ⋅∑∫ ɺ ɺ . 

 
 The mechanical meaning of that formula, which I have examined only in some simple 
examples up to now, and have also transformed into generalized Lagrangian 
coordinates, might remain unmentioned here, since I hope to be able to communicate it in 
detail in the continuation of this paper on d’Alembert ’s principle. 
  
 
 15. Systems of possible velocities. – We understand a complete system of possible 
velocities to mean an arbitrary material complex to mean the totality of the analytical 
expressions for xɺ  or, what is equivalent to that, for the virtual displacements xδ  that are 
compatible with the system constraints, which one can arrive at by considering the actual 
elementary motions of all mass-points.  Since we have restricted ourselves to the simplest 
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types of material systems (viz., rigid systems and chains of links), that system of 
velocities will be mostly available to us in a finished form, even though perhaps there is 
still much that has not been sufficiently worked through in the individual cases. 
 There are essentially two different paths to the representation of systems of velocities 
for all material systems with a finite number of degrees of freedom, and historically they 
have been developed in connection with the rigid-body problem.  Euler, Clairaut , and 
d’Alembert  likewise arrived at the kinematical concept of the momentary axis and the 
associated rotational velocity by an exact intuition.  We shall now unite the two ways of 
looking at things in the usual way into the concept of a single vector σ  that falls along 
the direction of the momentary axis, and its length will represent the magnitude of the 
momentary angular velocity θɺ .  One’s immediate intuition will show that for every point 
that is separated from the fixed point O by the vector x  with a well-defined sense of 
direction, the equation: 

(14)     xɺ  = xσ  
 
will be true.  If we refer the rotational motion to an arbitrary starting point C that goes 
from the reference point of the vector x  through the vector c  then we can ascribe the 
translational velocity cɺ  of the system to the point C and obtain the following equation in 
place of equation (14): 

(15)     xɺ = ( )c x cσ+ −ɺ . 
 
That equation contains the complete analytical expression for the system of velocities for 
a free, rigid body. 
 It will be established when one is given the two kinematical vectors cɺ  and σ .  If one 

sets σ  = 
d

dt

θω ⋅ , such that ω  represents a unit vector that determines the momentary 

axis, then one will have: 

  d x = ( )d c x c dtω+ − ⋅ . 
 
In what follows, we shall mostly write this as: 
 

  d x = ( )d c d x cθ+ − , 
 

in which we have set dtω ⋅ = dθ , and thus regarded the amplitude as a vector.  The 
general expression for the possible elementary motions of a free, rigid system will then 
be: 

(16)     xδ = ( )c x cδ δθ+ − . 
 
If only the rotation comes into consideration then one will have: 
 

(17)     xδ = xδθ ⋅  
 
when one lets the reference point O coincide with C. 
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 Lagrange was not satisfied with the derivation of that formula, which followed 
directly from intuition, but sought to arrive at it in another way.  He applied a strange and 
especially remarkable method in t. 1 of Mécan. analytique, pp. 159-165.  In it, he started 
from the notion that every curve of double curvature in a rigid system must remain 
invariable; i.e., any three infinitesimally-close sequential points of that curve must remain 
in a rigid orientation with respect to each other.  In that way, he got a system of 
differential equation that the components of xδ  must satisfy. 
 Verdam (1864) has presented that line of reasoning thoroughly in his “Biydrage tot 
de toepassing van het beginsel van d’Alembert , overeenkomstig de rekenwijze van 
Lagrange.” 
 It is also interesting to arrive at equation (19) by negating the elementary 
deformations of an infinitesimal triple of rays that is thought of as being variable.  For the 
sake of simplicity, we take them to be rectangular and consider δx1 , δx2 , δx3 to be the 
rectangular components of xδ , so it will then follow from negating the changes of 
lengths that one gets from the basic kinematical equations of the theory of elasticity that: 
 

1
1

x
x

δ∂
∂

 = 0, 2
2

x
x

δ∂
∂

 = 0, 3
3

x
x

δ∂
∂

= 0, 

 
and it will follow from negating the shear deformations of the elementary body that: 
 

3 2
2 3

x x
x x

δ δ∂ ∂+
∂ ∂

= 0,  1 3
3 1

x x
x x

δ δ∂ ∂+
∂ ∂

= 0,  2 1
1 2

x x
x x

δ δ∂ ∂+
∂ ∂

= 0. 

 
The integration of these equations yields, with no further assumptions: 
 
 δx1 = δc1 + δθ2 ⋅⋅⋅⋅    x3 − δθ3 ⋅⋅⋅⋅    x2 , 
 δx2 = δc2 + δθ3 ⋅⋅⋅⋅    x1 − δθ1 ⋅⋅⋅⋅    x3 , 
 δx3 = δc3 + δθ1 ⋅⋅⋅⋅    x2 − δθ2 ⋅⋅⋅⋅    x1 , 
 
in which δc1 , δc2 , δc3 , δθ1 , δθ2 , δθ3 mean the integration constants.  The expressions 
thus-obtained are identical with equation (16) for c = 0. 
 That method is passed over in most textbooks on the theory of elasticity. 
 It is not necessary here to comment further upon the most useful way of presenting 
equation (17) by differentiating the formulas for the coordinate transformations with 
respect to the cosines of the axis angles, since that is discussed in all presentations of 
mechanics and is reproduced again and again. 

 The characteristic element in the expression xɺ  = xσ  is the vector σ , and therefore a 
purely kinematical parameter that says nothing about the configuration of the system 
directly, and which is, in addition, unsuitable for analytically establishing the system of 
forces.  For that reason, for the complete definition of a problem concerned with a rigid 
body, it is necessary to express the kinematical vector σ  in terms of coordinates, and in 
that way, one will get a second analytical representation for the system of possible 
velocities. 
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 It is known that this was already done by Euler (Mém. Ac. Berl., 1758) by 
introducing the three position angles that are named for him.  Lexel (Nov. Com. Ac. 
Petrop., 1755) had also already represented the cosines of the axes in terms of three of 
them, and in that way, likewise achieved a position determination in terms of 
(independent) coordinates.  These three processes have an essential flaw, since the 
symmetry of the formulas cannot be maintained.  Completely-symmetric coordinate 
expressions for the vector σ  seem to have been presented for the first time by Cayley 
(Camb. Dubl. Math. J., 1846), who employed the coordinates of Rodrigues [J. de Liouv. 
5 (1840)] for that purpose.  One can find thorough presentations of the recent 
investigations on this topic in F. Klein and A. Sommerfeld: Über die Theorie des 
Kreisels (Heft 1, 1897 and Heft 2, 1898) (1). 
 These considerations can now be adapted to arbitrary systems of links whose 
individual terms are rigid bodies with no special difficulties (of course, not always 
without great complications).  From the principle of relative motion, in each of those 
cases, it must be possible to exhibit two expressions of the form: 
 

xɺ  = funct. ( , , , )k k x′ ′′…  
and 

xɺ  = funct. 1 2( , , , , )iq q q x…  

 
for all points of the systems, such that , ,k k′ ′′…  mean a sufficient number of kinematical 
vectors, and q1, q2, …, qi mean the corresponding position coordinates.  Every analytical 
form of the complete system of velocities xɺ  corresponds to a special form of the general 
reduction of the forces and a form for the kinetic differential equations that is peculiar to 
that system.  Hence, the special forms of the statics and kinetics of the material system in 
question will be characterized completely in that way. 
 

(To be continued) 
 

____________ 
 

 

                                                
 (1) Cf., also F. Kötter : “Bemerkungen zu F. Klein und A. Sommerfelds Theorie des Kreisels (1899). 
(Ed. rem.) 


