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 16. Euler’s equations of motion for rotating bodies. – From equations (3) and (3′) 
in Table V, the basic kinetic equations of a rotating rigid system are: 
 

hM = vM  and kM  = vdM

dt
, 

 
since the total moments of the reactions vanish.  In the formula: 
 

vM = m x x∑ ɺ , 

 

one needs only to replace xɺ  with the expression xσ  and sum over all mass-points of the 
body in order to obtain the impulse equation in explicit form.  However, one has (cf., the 
introduction): 

( )x xσ  = x2 ⋅⋅⋅⋅ σ  − ( )x xσ ⋅ . 
  

Ordinarily, one decomposes x  along three rectangular axes that are rigidly linked with 
the system when one sets: 

x  = 1 2 3a a a+ + . 

 
The corresponding components of the vector vM  follow in that way, namely: 

 
 Mv, 1 = 2 2

2 3 1 1 2 2 3 1 3( )m a a m a a m a aσ σ σ+ ⋅ − ⋅ − ⋅∑ ∑ ∑ , 

 Mv, 2 = 2 2
2 3 2 2 3 3 1 2 1( )m a a m a a m a aσ σ σ+ ⋅ − ⋅ − ⋅∑ ∑ ∑ , 

 Mv, 3 = 2 2
2 3 3 3 1 1 2 3 2( )m a a m a a m a aσ σ σ+ ⋅ − ⋅ − ⋅∑ ∑ ∑ , 

 
in which, we have set: 
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2 2
2 3( )m a a+∑  = A1 , 

2 2
3 1( )m a a+∑  = A2 , 

2 2
1 2( )m a a+∑  = A3 , 

 
to abbreviate, and have set: 
 

2 3m a a∑ = D1 , 3 1m a a∑ = D2 , 1 2m a a∑ = D3 , 

 
and have referred to those quantities as the moments of inertia and moments of deviation.  
The kinetic impulse equations then take on the usual form: 
 

(18)    
,1 1 1 3 2 2 3

,2 2 2 1 3 3 1

,3 3 3 2 1 1 2

,

,

.

h

h

h

M A D D

M A D D

M A D D

σ σ σ
σ σ σ
σ σ σ

 = ⋅ − ⋅ − ⋅
 = ⋅ − ⋅ − ⋅
 = ⋅ − ⋅ − ⋅

 

 
 In order to construct the Euler equations, we must now form the differential quotients 

/vdM dt .  Instead of doing that, one can also differentiate the elementary vector: 

 

vM  = ( ) ( )x x x xσ σ⋅ − ⋅  

with respect to time and get: 
 

vdM

dt
 = 2( ) ( ) ( ) ( ) ( )x x x x x x x x x xσ σ σ σ σ⋅ + ⋅ − ⋅ − ⋅ − ⋅ɺ ɺ ɺ ɺ ɺ . 

 
 However, one obviously has x xɺ = 0 and xσɺ  = 0, since the vectors in question are 
perpendicular to each other.  As a result, one will have: 
 

vdM

dt
= 2( ) ( ) ( )x x x x x xσ σ σ⋅ + ⋅ − ⋅ɺ ɺ ɺ  = ( ) ( ) vx x x x Mσ σ σ⋅ + ⋅ +ɺ ɺ , 

 
and correspondingly: 

(19)     vdM

dt
 = v

v

dM
M

dt
σ 

+ 
 

, 

 
in which the brackets around the derivative of vM  suggest that one must consider only 

the quantity σ  to be variable in that differentiation.  In our notations, the Euler equations 
will then read: 

(20)     kM = v
v

dM
M

dt
σ 

+ 
 

. 

 
They were first published in that form (naturally, without the symbolism of vector 
analysis) by Lagrange in his Mécan. anal. 2nd ed., t. 2, pp. 239, in which he derived them 
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from the kinetic principle of virtual displacements (cf., no. 13 of that book).  In that book, 
Lagrange employed the kinetic energy E of rotating systems, which will have the form: 
 

E = 1
2 ( )m x xσ σ⋅∑  = 2 2 21

1 1 2 2 3 32 ( )A A Aσ σ σ+ + − D1 σ2 σ3 – D2 σ3 σ1 – D3 σ1 σ2 ,  

 
due to the equation xɺ  = xσ .  From equations (18), one will then have: 
 

Mv,1 = 
1

E

σ
∂
∂

, Mv,2 = 
2

E

σ
∂
∂

, Mv,3 = 
3

E

σ
∂
∂

. 

 
As a result (or really, due to the essential difference between the derivations), for 

Lagrange, the quantities 
1

d E

dt σ
∂
∂

, 
2

d E

dt σ
∂
∂

, and 
3

d E

dt σ
∂
∂

 appeared in placed of the 

components of the relative velocity vdM

dt

 
 
 

. 

 If one refers the vector σ  to the principle axes then the moments of deviation in the 
expression for vM  will vanish, and one will get the usual Euler equations: 
 

(21)    

1
1 3 2 2 3 ,1

2
2 1 3 3 1 ,2

3
3 2 1 1 2 ,3

( ) ,

( ) ,

( )

k

k

k

d
A A A M

dt
d

A A A M
dt

d
A A A M

dt

σ σ σ

σ σ σ

σ σ σ

 + − =

 + − =

 + − =


 

from equation (20). 
 One can write down equation (19) directly, since it follows immediately from the 

principle of relative motion.  vdM

dt

 
 
 

 is obviously the vector of the relative change in 

velocity of vM  with respect to the rotating system, while vMσ is the vector of the 

associated guiding velocity (Führungsgeschwindigkeit).  Strictly speaking, Euler 
employed the same line of reasoning for the derivation of his equation, but without 
clothing it a definite analytical form. 
 
 
 17. Lagrange’s transitivity equations for rigid systems. – D’Alembert ’s principle, 
in the integral form that Lagrange and Hamilton  employed: 
 

(22)     [ ]
0

t

v t
Aδ ′  = 

0

( )
t

k

t

E A dtδ δ ′+∫ , 
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gives rise to a remarkable difficulty when one employs a system of velocities that is 
expressed by kinematical parameters that are not, at the same time, the time derivatives of 
coordinates, and which Lagrange was the first to clearly recognize and overcome with 
his own skill (for the case of rotating, rigid systems).  Namely, the variations δσi in the 
expression: 

(23)    δE = 1 2 3
1 2 3

E E Eδσ δσ δσ
σ σ σ

∂ ∂ ∂+ +
∂ ∂ ∂

 

 
must be transformed in such a way that they will contain only the δθi and the complete 
time derivatives of those quantities.  Lagrange (Mécan. anal., 2nd ed., t. 2, pp. 229) 
arrived at that by employing the relations that exist between the nine direction cosines.  
Instead of that, we shall pursue a more direct and convenient path by starting 
immediately with the concept of the systems of possible velocities.  As a result of the 

equation xɺ  = xσ , we will have: 
 

dx  = d xθ ⋅  and xδ  = xδθ ⋅ . 
 
By varying and differentiating this, one will get: 
 

dxδ  = d x d xδ θ θ δ⋅ + ⋅  and d xδ  = d x dxδθ δθ⋅ + ⋅ . 
 
Now, since one obviously has dxδ  = d xδ , it will follow by subtracting the foregoing 
equations that: 

( )d d xδ θ δθ− ⋅ = ( ) ( )d x d xθ δθ δθ θ⋅ − ⋅ ⋅  = ( )d xθ δθ⋅ ⋅ , 
 
or, since x  is completely arbitrary: 

(24)     d dδ θ δθ−  = dθ δθ⋅ . 
 
 That is Lagrange’s transitivity equation for a rotating, rigid system.  It is an 
immediate consequence of the kinematical expression for the system of velocity.  We 
conclude from this that every characteristic form for a system of velocities as a function 
of essentially-kinematical parameters must correspond to a special transitivity equation, 
which is likewise characteristic of the material system. 
 The relations between the axis components: 
 

(25)    
1 1 2 3 3 1

2 2 3 1 1 3

3 3 1 2 2 1

,

,

d d d d

d d d d

d d d d

δ θ δθ θ δθ θ δθ
δ θ δθ θ δθ θ δθ
δ θ δθ θ δθ θ δθ

= + ⋅ − ⋅
 = + ⋅ − ⋅
 = + ⋅ − ⋅

 

 
 
follow from equation (24), as Lagrange communicated in loc. cit. 
 We substitute those values, in conjunction with equation (23), in the integral 
expression: 
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(26)    [ ]
0

t

v t
Aδ ′ = 

0

( )
t

k

t

E A dtδ δ ′+∫ . 

Now, one has the relation: 
 

δE = 1 2 3
1 2 3

E E Eδσ δσ δσ
σ σ σ

∂ ∂ ∂+ +
∂ ∂ ∂

 = vM δσ⋅ , 

 
in which, from equation (24), one has set: 
 

(27)     δσ = 
d

dt
δθ σ δθ+ ⋅ . 

As a result: 

δE = v v

d
M d M

dt
θ σ δθ⋅ + ⋅ ⋅  = ( ) v

v v

dMd
M d M

dt dt
θ δθ σ δθ⋅ − ⋅ − ⋅ . 

 
Equation (26) will then go to: 
 

[ ]
0

t

v t
Aδ ′ = 

0

( )
t

v
v k

t

dM
M M dt

dt
σ δθ  + − ⋅ ⋅  

  
∫ ; 

 

one will then have vM δθ⋅  = δ′ Av and vM δθ  = δ′ Ak , since translations are excluded.  

One must then have: 

v
v

dM
M

dt
σ  + 

 
 = kM , 

 
from which one will arrive at the Lagrangian form of the equations of motion by 
decomposing the latter equation into components: 
 

(28)    

2 3 ,1
1 3 2

3 1 ,2
2 1 3

1 2 ,3
3 2 1

,

,

.

k

k

k

d E E E
M

dt

d E E E
M

dt

d E E E
M

dt

σ σ
σ σ σ

σ σ
σ σ σ

σ σ
σ σ σ

  ∂ ∂ ∂+ − =  ∂ ∂ ∂ 
  ∂ ∂ ∂ + − =  ∂ ∂ ∂ 
  ∂ ∂ ∂ + − = 
 ∂ ∂ ∂ 

 

 
 
 18. Lagrange’s kinetic equations in general position coordinates. – We next 
assume an arbitrary system of possible velocities, which we suggest by the symbolic 
equation: 
(29)    xɺ  = func. 1 2 1 2( , , , , , , , )i iq q qε ε ε ɺ ɺ ɺ… … . 
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The ε  in this are vectors in the usual sense, while the q are real, mutually-independent 
position coordinates.  The number of the latter will be equal to the number of degrees of 
freedom, such that the motion of the systems is not restricted by any condition equations.  
The vectors ε  are generally single-valued functions of those coordinates.  It follows 
from the symbolic equation (29) that: 
 
(30)   xδ  = func. 1 2 1 2( , , , , , , , )i iq q qε ε ε δ δ δ… … . 

 
 For a free material point, one always has: 
 

xɺ  = 1 1 2 2 3 3q q qε ε ε⋅ + ⋅ + ⋅ɺ ɺ ɺ , 

and correspondingly: 
xδ = 1 1 2 2 3 3q q qε δ ε δ ε δ⋅ + ⋅ + ⋅ . 

As a result: 

δ′Av = x xδɺ  = 
3

1
S i i
i

x qε δ
=

⋅ɺ , 

or if we set: 

i xε ɺ  = pi , 

as usual, to abbreviate: 

  δ′ Av = 
3

1
S i i
i

p qδ
=

⋅ . 

 
 The quantities p are linear functions of the quantities qɺ .  We shall now impose the 
condition on the functional relation in equation (29), or equation (30), which coincides 
with it, that the scalar quantity δ′ Av that is derived from it must take the form: 
 

(31)     δ′ Av = 
3

1
S i i
i

p qδ
=

⋅ , 

 
and that the p must be linear functions of the qɺ . 

 With that assumption, one can always set δ′ Av = 
3

1
S i i
i

h qδ
=

⋅ , and in that way the basic 

equation for impulsive effects: 
(I)      δ′ Av = δ′ Ah 
will take the simple form: 
(32)     pi = hi     (i = 1, 2, 3, …, i). 
 
 In the equation for time-varying forces: 
 

(II)     [ ]
0

t

v t
Aδ ′ = 

0

( )
t

k

t

E A dtδ δ ′+∫ , 
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the kinetic energy E of the total system, which is, by assumption, expressed by equation 
(31), is a quadratic function of the qɺ .  That equation must also remain valid when δq is 
replaced with dq.  As a result: 

(33)     2E = 
3

1
S i
i

i

E
q

q=

∂ ⋅
∂
ɺ

ɺ
. 

Without that, one would have: 

δ E = 
3 3

1 1
S Si i
i i

i i

E E
q q

q q
δ δ

= =

∂ ∂⋅ + ⋅
∂ ∂

ɺ
ɺ

. 

 

In complete analogy with the equation δ′ Ah = 
3

1
S i i
i

h qδ
=

⋅ , and also for time-varying forces, 

we further set: 

(34)    δ′ Ak = k xδ⋅∑  = 
3

1
S i i
i

h qδ
=

⋅ , 

 
and, from the precedent set by Hertz (Prinzipien, pp. 218), call the quantities k1, k2, …, ki 
the components of the Lagrangian force, which we would like to symbolically denote by 
k.  As is known, Hertz called the symbol k a “vector relative to the total system.”  Now, 
since the q coordinates – i.e., the qɺ − are complete derivatives with respect to time, one 
will always have the equation: 

iqδ ɺ  = idq

dt
δ  = i

d
q

dt
δ , 

 
and the basic equation (II) will go to: 
 

0

3

1
S

t

i i
i

t

p qδ
=

 
⋅ 

 
= 

00

3 3

1 1
S S

t t

i i i
i i

i i itt

dE d E E
q k q dt

dq dt q q
δ δ

= =

   ∂ ∂⋅ + − + + ⋅   ∂ ∂  
∫

ɺ ɺ
. 

 
That equation can be fulfilled identically for arbitrary values of the δq only when one 
has: 

(35)     pi = 
i

E

q

∂
∂ ɺ

 

and 

(36)     i

i

dp E

dt q

∂−
∂

= ki . 

 
These are the Lagrange equations.  I would like to expressly point out that the impulse 
equations that one gets from combining formulas (32) and (35), namely: 
 

(37)     
i

E

q

∂
∂ ɺ

 = hi , 
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go back to Lagrange (Méc. anal., 2nd ed., t. 2, pp. 183), and not Niven, as Routh 
remarked in his Rigid Dynamics, and indeed, one finds them in the cited place in 
precisely the form that Routh gave to them.  Namely, the existence of a function Ω is 
assumed there that will yield the components: 
 

hi = 
iq

∂Ω
∂

. 

 
Clifford  gave a derivation of the Lagrangian equations in his Elements of Dynamic (v. 2 
of the posthumous publication, pp. 81) whose basic ideas we shall repeat here.  Let the 
system of velocities be dependent upon only two coordinates q1 and q2 .  With that 
assumption, one will have: 

v = 1 1 2 2q qε ε⋅ + ⋅ɺ ɺ . 

 
Clifford  then first set 1qɺ  = 1 and 2qɺ  = 0 and then 1qɺ  = 0 and 2qɺ  = 1.  The corresponding 

values of v  are: 1v  and 2v .  Now, he proved that 1

2

dv

dq
= 2

1

dv

dq
.  The energy of the system 

has the value: 
E = 2 21

1 1 1 1 2 1 2 2 2 22 ( 2 )q q q qε ε ε ε ε ε⋅ + ⋅ + ⋅ɺ ɺ ɺ ɺ . 

 
It then follows from this that: 

1

E

q

∂
∂ ɺ

= 1 vε , 
2

E

q

∂
∂ ɺ

= 2 vε . 

 
Now, one has the following equations, with no further conditions: 
 

1

v

q

∂
∂

= 1d

dt

ε
 and 

2

v

q

∂
∂

= 2d

dt

ε
. 

 
It will then follow from the energy equation: 
 

E = 1
2 v v  

that: 

1

E

q

∂
∂

=
1

v
v

q

∂ ⋅
∂

, 
2

E

q

∂
∂

= 
2

v
v

q

∂ ⋅
∂

, 

or 

1

E

q

∂
∂

= 1d
v

dt

ε ⋅ , 
2

E

q

∂
∂

= 2d
v

dt

ε ⋅ . 

However, one has: 
 

1

d E

dt q

∂
∂ ɺ

= 1
1

d dv
v

dt dt

ε ε⋅ + ⋅ , 
2

d E

dt q

∂
∂ ɺ

= 2
2

d dv
v

dt dt

ε ε⋅ + ⋅ . 
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One will get the Lagrange equations from this directly: 
 

1 1

d E E

dt q q

∂ ∂−
∂ ∂ɺ

= 1

dv

dt
ε ⋅ ,  

2 2

d E E

dt q q

∂ ∂−
∂ ∂ɺ

= 2

dv

dt
ε ⋅ . 

 
 One can rigorously derive the Lagrange equations for a free point kinematically.  In 
that simple case, v will then have the form: 
 

v = 1 1 2 2 3 3q q qε ε ε⋅ + ⋅ + ⋅ɺ ɺ ɺ . 

 
It will then follow that vιε  = pι , and a differentiation of this with respect to time will 

give: 
dv

dtιε ⋅ = 
dp d

v
dt dt

ι ιε− . 

 
Since v is a complete derivative with respect to time, due to the integrability conditions, 
one will have the equations: 

q
κ

ι

ε∂
∂

= 
q

ι

κ

ε∂
∂

. 

With that: 
v

qι

∂
∂

= 31 2
1 2 3q q q

q q qι ι ι

εε ε ∂∂ ∂⋅ + ⋅ + ⋅
∂ ∂ ∂
ɺ ɺ ɺ  = 1 2 3

1 2 3

q q q
q q q

ι ι ιε ε ε∂ ∂ ∂⋅ + ⋅ + ⋅
∂ ∂ ∂
ɺ ɺ ɺ , 

or: 
v

qι

∂
∂

= 
d

dt
ιε

. 

 
One immediately obtains the Lagrange equations from this in the kinematical form: 
 

dv

dtιε = 
dp E

dt q
ι

ι

∂−
∂

. 

 
 The “conceptual meaning” of the Lagrange equations has already been the subject of 
repeated investigations.  However, they seem to have yielded no satisfying results.  One 
therefore essentially addresses the question of how they emerge from the impulse 
equations pι = hι .  If one differentiates this with respect to time then the equations that 

one obtains, viz.: 
Dpι = Dhι  , 

must be identical to the equations: 

dpι – 
E

qι

∂
∂

dt = kι ⋅⋅⋅⋅ dt. 

Now, one has: 

pι = S qικ κκ
ε ⋅ ɺ , 
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dpι = S SSq dt q q dt
q

ικ
ικ κ ι κκ ι κ

κ

εε ∂⋅ ⋅ + ⋅
∂

ɺɺ ɺ ɺ  

 
or, if one considers the second term to be − ∂E / ∂qι ⋅⋅⋅⋅ dt: 
 

dpι = ( )S SSq dt q q dtι
ικ κ λκ λ κκ λ κ

ε γ⋅ ⋅ + ⋅ɺɺ ɺ ɺ . 

 
We can denote the first term on the right-hand side of this equation by (dpι) ⋅⋅⋅⋅ dt, as in the 
derivation of the Euler equations, if the parentheses suggest a pure impulse 
differentiation by which the coordinates will remain unchanged, which is consistent with 
the concept of impulse.  We will then get: 
 

Dpι = (dpι) + Cι = kι ⋅⋅⋅⋅ dt. 
 
The entire difficulty now comes down to the interpretation of the functions: 
 

Cι = ( )SS q qι
λκ λ κλ κ

γ ɺ ɺ . 

 
In all likelihood, these functions Cι , in which the coefficients ( )ι

λκγ  are identical with the 

Christoffel  symbols 
,λ κ
ι

 
 
 

, are the components (or rather, simple combinations of 

components) of a centrifugal acceleration.  However, up to now, I have not succeeded in 
proving that, and in that way, clarifying the special nature of things completely.  Perhaps, 
those remarks will serve to stimulate further investigations into this situation, which is 
not at all inessential in kinetics. 
 
 
 19. Explicit form of Lagrange’s equations. – As is known, Hamilton employed, not 

only the function E = 1
,2SS q qι κ ι κι κ

ε ɺ ɺ , but also the reciprocal function E = 1
,2SS p pι κ ι κι κ

η , 

which is linked with the latter by the linear relations vιε  = pι .  We shall now employ the 

equations: 
E

qι

∂
∂ ɺ

= pι , 
F

pι

∂
∂

= qιɺ , 
F

qι

∂
∂

= − 
E

qι

∂
∂

 

 
in order to get  an explicit representation of the Lagrange equations of motion, which we 
shall use as the basis for our study of the kinetostatics of systems of links.  We next have: 
 

qιɺɺ  = 
d F

dt pι

∂
∂

= 
2 2

S S k

dpF F
q

p p dt p p
κ

κ κ
ι κ ι κ

∂ ∂+ ⋅
∂ ∂ ∂ ∂

ɺ . 

 
It follows from the usual form of the Lagrange equations: 
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dp

dt
ι = kι = 

F

qι

∂
∂

. 

 
With that, the previous equation will go to: 
 

(38)   
dq

dt
ι = 

2 2 2

S SF F F F F
k

p q p p p q p p κκ κ
ι κ κ ι κ κ ι κ

 ∂ ∂ ∂ ∂ ∂− + ⋅ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
. 

 
The first term on the right-hand side of this equation is a homogeneous function of degree 
two in the quantities p1 , p2 , …, pi , and thus also the quantities 1qɺ , 2qɺ , …, qιɺ , as well.  

The following term contains only the coordinates q1 , q2 , …, qi , in addition to the 
generalized Lagrangian force components k1 , k2 , …, ki .  For that reason, we can also 
write equation (38) in the following form: 
 

(39)    
dq

dt
ι = ( )

, ,SS Sq q kι
λ κ λ κ ι κ κλ κ κ

α η+ ⋅ɺ ɺ . 

 
The coefficients ( )

,
ι

λ κα  and ηι,κ are known functions of the coordinates in this.  The 

quantities ( )
,
ι

λ κα can be expressed immediately in terms of the Christoffel  symbols of the 

second kind, which are denoted by 
,λ κ
ι

 
 
 

.  However, it does not seem necessary to go 

further into those relationships at the moment.  The ηι,κ are the coefficients in the 
reciprocal function F. 
 
 
 20. Rodrigues-Cayley position coordinates for rigid systems. – In order to shorten 
the derivation as much as possible, I shall now appeal to the Theorie des Kreisels by F. 
Klein  and A. Sommerfeld.  In that book (pp. 21 and 43), the components σ1, σ2, σ3 of 
the vector of rotational velocity are expressed in terms of the four quaternion components 
A, B, C, D in the following way: 
 

(40)    

1
12

1
22

1
32

( ),

( ),

( ).

DA AD BC CB

DB BD CA AC

DC CD AB BA

σ
σ
σ

 = − − −
 = − − −
 = − − −

ɺ ɺɺ ɺ

ɺ ɺɺ ɺ

ɺ ɺɺ ɺ

 

 
Actually, there are complex combinations of the σ on pp. 43 of that book, but they will 
imply equations (40) with no further assumption.  We shall now assume that A, B, C are 
the components of a vector λ .  Equations (40) can then be combined into a single vector 
equation, namely: 

(41)     1
2σ  = 2 d

dt

λµ λλ
µ

− ɺ , 
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in which we have set: 
1 − λ λ  = 1 – λ2 = µ2 , 

 
to abbreviate.  If we introduce yet another vector κ  by way of the equation: 
 

λ  = µ κ  

then we will have µ2 + µ2 κ2  = 1, and: 
 

(42)     σ  = 
2

1
( )

1
κ κ κ

κ
−

+
ɺ ɺ . 

 
Cayley published that beautiful equation [Camb. and Dublin J. 1 (1846)], which 
expresses σ  in terms of the necessary and sufficient number of coordinates, and then 
constructed a very elegant theory of the rotation of rigid bodies.  Although Somoff’s 
kinematics refers to that book, it has still not found the attention that it deserves, in our 
opinion.  Equation (42) implies the components of the rotational velocity in the clear and 
symmetric form: 

(43)    

1 1 2 3 3 22

2 2 3 1 1 32

3 3 1 2 2 12

2
[ ( )],

1
2

[ ( )],
1

2
[ ( )].

1

σ κ κ κ κ κ
κ

σ κ κ κ κ κ
κ

σ κ κ κ κ κ
κ

 = − − +

 = − − +
 = − − +

ɺ ɺ ɺ

ɺ ɺ ɺ

ɺ ɺ ɺ

 

 
If one substitutes these quantities into the value for the kinetic energy E then one can 
derive Lagrange’s equations of motion from the expression thus-obtained with no further 
discussion, since the κ1, κ2, κ3 are independent position coordinates. 
 
 
 21. The vector B . – Just as we could represent the energy E of a system with a finite 
number of degrees of freedom in the general Lagrangian coordinates q1, q2, …, qi , that 
can also be done for the system vector B .  However, we would like to restrict ourselves 
here to the elementary vector B  for a free material point (m = 1).  In the defining 
equation: 

B = x xɺ ɺɺ , 
one then sets: 

xɺ  = 1 1 2 2 3 3q q qε ε ε+ +ɺ ɺ ɺ  = v , 

and correspondingly: 
xɺ  = 1 1 2 2 3 3 1 1 2 2 3 3q q q q q qε ε ε ε ε ε+ + + + +ɺ ɺ ɺɺɺ ɺɺ ɺɺ ɺ ɺ ɺ . 

 
Carrying out that substitution will immediately yield: 
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 B  = 1 2 1 2 2 1 2 3 2 3 3 2 3 1 3 1 1 3( ) ( ) ( )q q q q q q q q q q q qε ε ε ε ε ε− + − + −ɺ ɺɺ ɺ ɺɺ ɺ ɺɺ ɺ ɺɺ ɺ ɺɺ ɺ ɺɺ  

 + 2
1 2 2 1 1 3 1 1 1( ) q q qε ε ε ε ε ε+ +ɺ ɺ ɺɺ ɺɺ ɺ  

 + 2
2 3 3 2 2 3 2 2 2( ) q q qε ε ε ε ε ε+ +ɺ ɺ ɺɺ ɺɺ ɺ  

 + 2
3 1 1 3 3 1 3 3 3( ) q q qε ε ε ε ε ε+ +ɺ ɺ ɺɺ ɺɺ ɺ . 

 
 If one now imagines that the equations: 
 

1εɺ  = 
1

v

q

∂
∂

, 2εɺ  = 
2

v

q

∂
∂

, 3εɺ  = 
3

v

q

∂
∂

 

 
are valid then one will see with no further assumptions that B  can be put into the 
following form: 
 

B  = 2 3 2 3 3 2 3 1 3 1 1 3 1 2 1 2 2 1( ) ( ) ( )q q q q q q q q q q q qε ε ε ε ε ε− + − + −ɺ ɺɺ ɺ ɺɺ ɺ ɺɺ ɺ ɺɺ ɺ ɺɺ ɺ ɺɺ + H, 

 
in which H means a homogeneous function of degree three in the velocity components 

1qɺ , 2qɺ , 3qɺ .  If one then sets: 

 

2 3ε ε  = 1ε ′ , 3 1ε ε = 2ε ′ ,  1 2ε ε = 3ε ′ , 

then one will have: 

v  = 1 1 2 2 3 3p p pε ε ε′ ′ ′+ + , 

 
such that one can also express B  in terms of the quantities 1qɺ , 2qɺ , 3qɺ  and q1, q2, q3 .  The 

quantities ιε ′  and /v qι∂ ∂  that enter into that expression are functions of the qι . 

 We would like to determine B  as the system vector only for rotating rigid bodies.  In 
order to do that, we substitute the values of xɺ  and xɺɺ  into: 
 

B = m x x∑ ɺ ɺɺ, 

namely: 

xɺ  = xσ  and xɺɺ  = 2( )x x xσ σ σ σ+ ⋅ − ⋅ɺ , 
and obtain: 

B  = 2 2 2( ) ( ) ( )m x x m x m xσ σ σ σ σ⋅ ⋅ − + ⋅∑ ∑ ∑ɺ , 

 
after some reductions.  However, we have: 
 

2 2 2( ) ( )m x m xσ σ−∑ ∑ = m x xσ σ∑  = 2E. 

 
Hence, we will have: 

B = 2E Gσ⋅ +  
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when we set: 

G = ( )m x xσ σ ⋅∑ ɺ , 

to abbreviate. 
 The components of that vector are: 
 

 
1 2 3 3 2 11 3 1 1 3 12 1 2 2 1 13

2 2 3 3 2 21 3 1 1 3 22 1 2 2 1 23

3 2 3 3 2 31 3 1 1 3 32 1 2 2 1 33

( ) ( ) ( ) ,

( ) ( ) ( ) ,

( ) ( ) ( ) ,

G T T T

G T T T

G T T T

σ σ σ σ σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ σ σ σ σ

 = − + − + −
 = − + − + −
 = − + − + −

ɺ ɺ ɺ ɺ ɺ ɺ

ɺ ɺ ɺ ɺ ɺ ɺ

ɺ ɺ ɺ ɺ ɺ ɺ

 

in which: 
Tλµ = m x xλ µ∑ . 

 
 If the angular acceleration is zero, or if its vector lies in the same direction as the 
angular velocity then the vector G  will vanish, and B  will then contain the direction of 
the momentary axis.  B  will then be proportional to the kinetic energy, as well as the 
angular velocity of the system.  The components of B  will then be homogeneous 
functions of degree three in the components of the angular velocity in this special case. 
 
 
 22. Euler’s equations for bar chains. – On pp. 154 of the first volume of Theorie 
des Kreisels by F. Klein and A. Sommerfeld, we find the following viewpoint of general 
kinetic interest expounded: 
 

“Euler ’s equations occupy an entirely singular position in the system of 
mechanics and do not subordinate themselves to the general type of mechanical 
differential equations that Lagrange presented.  Neither is it possible to exhibit 
equations for arbitrary mechanical systems that would afford advantages that are 
similar to the ones that Euler’s equations afford for rigid bodies.” 

 
 For us, the question of whether kinetic equations with the typical Euler form can be 
exhibited for a given system can be answered in a definite way in connection with the 
general argument that has been presented up to now.  Namely, if one succeeds in find the 
analytical expressions for the system of velocities that characterizes the system in terms 
of the necessary and sufficient number of purely-kinematical vectors (i.e., parameters) 
and presents the requisite transitivity equations for the latter, in addition, then 
d’Alembert ’s principle, in the integral form: 
 

[ ]
0

t

v t
Aδ ′  = 

0

( )
t

k

t

E A dtδ δ ′+∫ , 

or in the simpler form: 
δ′ Av = δ′ Ah  

 
for impulses, will always yield the requisite number of vector equations, which will 
belong to the same genre as Euler’s equations of motion (impulse, resp.) 
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 In general, one can exhibit Lagrange’s equations (in the narrow sense of the term) 
only when the system of velocities can be represented by the necessary and sufficient 
number of coordinates and their first derivatives with respect to time. 
 If one then arrives at both representations – viz., the kinematical and the 
geometrical – for a certain material system then nothing will stand in the way of 
exhibiting the basic kinetic equation in both forms, as long as one necessarily 
assumes that the transitivity equations are known.  Naturally, the last requirement is 
superfluous for the equations of impulse. 
 An especially important class of systems for which equations of Euler type exist 
from the outset are the bar chains that are a type of engineering machine (in the 
general sense).  The link couplings of rigid subsystems are general very restricted in 
practice.  They essentially reduce to ball joints, cylindrical pin guides, and planar 
straight guides.  In what follows, we shall consider only ball joints, because the other 
two cases can be easily reduced to that case, or lead, in any event, to kinetic equations 
that do not deviate from the ones that have been mainly treated here. 
 In order to make the conceptualization of systems more precise, we imagine our 
starting point to be a fixed ball joint (or even several of them, which will not 
complicate the treatment).  A solid body of arbitrary shape with a ball pin might be an 
example of that.  The first body couples to a second one, or other ones, in the same 
way, and so on.  That multi-component bar chain can be open – i.e., the last 
component is not coupled to the first one – or closed, when one constrains it to move 
within a prescribed guide. 
 For the sake of simplicity in the following calculations, we would like to consider 
a bar chain that is open at the ends and consists of two rigid components, since that 
case is already sufficient to make the characteristics of the basic kinetic equations 
more intuitive. 
 The first link in the chain can exhibit only rotations, which can be represented by 

a rotation vector σ ′ .  The corresponding system of velocities is therefore xɺ  = aσ ′ ′ , 
if we denote the vector that determines the position of an arbitrary material point of 

the subsystem by a′ .  The reference point for a′  is obviously the center of the fixed 

ball joint.  We draw a vector c′  from the same point to the center of the moving ball 

joint and call the vector the velocity of the second point c′ɺ .  One then has c′ɺ  = cσ ′ ′ .  
the points of the second system component might be established in space by the 
equation: 

x′′= c′  + a′′ . 
 

The relative vectors a′′  are then referred to the center of the moving ball joint.  If we 

then denote the associated rotation vector by σ ′′  then we will have the equation: 
 

x′′ɺ  = c aσ σ′ ′ ′′ ′′+ , 
 
and we will get the associated elementary motion in the form: 
 

xδ ′  = aδθ ′ ′⋅ ,  xδ ′′  = c aδθ δθ′ ′ ′′ ′′⋅ + . 
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 The kinetic impulse equations for the combined system can be presented with the 
help of those relations.  For a material point of the first subsystem (with a unit mass), 
one has: 

vAδ ′ ′  = x xδ′ ′ɺ  = a aσ δθ′ ′ ′ ′⋅ ⋅  

or 

vAδ ′ ′  = ( )( ) ( )( )a a a aσ δθ δθ σ′ ′ ′ ′ ′ ′ ′ ′− . 

 
However, the moment of the velocity of that system of points is: 
 

aM ′  = ( )a aσ′ ′ ′ = ( ) ( )a a a aσ σ′ ′ ′ ′ ′ ′⋅ − ⋅ . 

 
As a result, one will have: 

(45)     vAδ ′ ′  = vM δθ′ ′⋅ . 

 
 For a point (m = 1) of the second subsystem, we have: 
 

vAδ ′ ′′= x xδ′′ ′′ɺ  = [( ) ( )][( ) ( )]c a c aσ σ δθ δθ′ ′ ′′ ′′ ′ ′′ ′′+ ⋅ + ⋅ , 

 
or when this is developed: 
 

vAδ ′ ′′  = c c c a a c a aσ δθ σ δθ σ δθ σ δθ′ ′ ′ ′ ′ ′ ′′ ′′ ′′ ′′ ′ ′ ′′ ′′ ′′ ′′⋅ + ⋅ + ⋅ + ⋅ . 

 
The first and fourth term in this expression for vAδ ′ ′′  can also be written: 

 

 c cσ δθ′ ′ ′ ′⋅  = ( )( ) ( )( )c c c cσ δθ δθ σ′ ′ ′ ′ ′ ′ ′ ′−  

 = ( )c cσ δθ′ ′ ′ ′  = cM δθ′ ′ , 
 

 a aσ δθ′′ ′′ ′′ ′′⋅  = ( )( ) ( )( )a a a aσ δθ δθ σ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′−  

 = ( )a cσ δθ′′ ′′ ′′ ′′⋅  = aM δθ′′ ′′ , 
 

in which aM ′′  and aM ′′  are sufficiently well-defined velocity moments.  Interpreting the 

middle two terms in the expression for vAδ ′ ′′  is not as simple.  Here, we would like to 

introduce two new vectors A′′  and C′′  whose magnitudes and directions can be deduced 
from the equations: 
 

c aσ δθ′ ′ ′′ ′′⋅  = A δθ′′ ′′ , a cσ δθ′′ ′′ ′ ′⋅  = C δθ′′ ′ . 
 
In that way, we will get the expression: 
 

(46)   vAδ ′′ ′′  = c aM M C Aδθ δθ δθ δθ′ ′ ′′ ′′ ′′ ′ ′′ ′′+ + + . 
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Now, we can go from equations (45) and (46) to the corresponding system equations by 
summing over the elementary quantities.  We set: 
 

am M′ ′′Σ  = aM ′ , am M′′ ′′′′Σ  = aM ′′ , m A′′ ′′′′Σ  = A′′ , m C′′ ′′′′Σ  = C′′ , 
 
and get: 

(47)   δ′ Av = a c aM M M M Aδθ δθ′ ′ ′′ ′ ′ ′′ ′′+ + ⋅ + + ⋅ . 

 
 Furthermore, when one considers the system of velocities for the applied impulse, one 
will have: 

 hAδ ′ ′  = h aδθ′ ′ ′  = a h δθ′ ′ ′ , 
 

 hAδ ′ ′′  = h a h aδθ δθ′′ ′ ′ ′′ ′′ ′′+  

  = c h a hδθ δθ′ ′′ ′ ′′ ′′ ′′⋅ + ⋅ , 
 
and when one goes over to the subsystems: 
 

 hAδ ′ ′  = a h δθ′ ′ ′⋅′Σ  = hM δθ′ ′⋅ , 

 

 hAδ ′ ′′  = c h a hδθ δθ′ ′′ ′ ′′ ′′ ′′⋅ + ⋅′′ ′′Σ Σ  

  = hc h Mδθ δθ′ ′′ ′ ′′ ′′⋅ + ⋅ , 

 

in which one has set h′′′′Σ  = h′′ . 
 If one substitutes these values into the equation: 
 

δ′ Ah = δ′ Av  
 
then one will get the impulse formulas: 
 

(48)    
,

.

h a c

h a

M c h M M C

M M A

 ′ ′ ′′ ′ ′ ′′+ = + +


′′ ′ ′′= +
 

 
The six quantities 1σ ′ , 2σ ′ , 3σ ′ , and 1σ ′′ , 2σ ′′ , 3σ ′′  can be determined from the equations 

once the impulses that act upon the system are given.  Naturally, the vectors aM ′ , aM ′′ , 

A′′ , and C′′  depend upon the moments of inertia and the moments of deviation of the 
subsystem. 
 The transition to Euler’s equations of motion is relatively simple now.  We have only 
to define the expression for the quantity δE in the equation: 
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[ ] b

a

t

v t
Aδ ′  = [ ]

b

a

t

t

E A dtδ δ+∫ . 

 
Now, for the individual material points (with masses m′ = 1 and m″ = 1), one has: 
 

E =  1
2 ( )( )a aσ σ′ ′ ′ ′  and δE′ = aM ′  ⋅⋅⋅⋅ δσ′, 

as well as: 

E″  = 1
2 [( ) ( )][( ) ( )]c a c aσ σ σ σ′ ′ ′′ ′′ ′ ′ ′′ ′′+ + . 

Hence: 

δE″  = a c aM M C M Aδσ δσ′ ′ ′′ ′ ′ ′′ ′+ + ⋅ + + ⋅ . 
 
The transitivity equations are: 

 δσ ′  = 
d

dt
δθ σ δθ′ ′ ′+ , 

 δσ ′′  = 
d

dt
δθ σ δθ′′ ′′ ′′+ . 

 
If one substitutes these values into the integral equation and considers the fact that the 

reduction of the time-varying forces k′  and k′′  is the same as it is in the case of impulse 
then one will get Euler’s equation of motion for the two-component system of links in 
the vector form: 

(49) 

,

,

k

k

d R
R M c k

dt

d R
R M

dt

σ

σ

  ′ ′ ′ ′ ′ ′′+ = +  
  


 ′′ ′′ ′′ ′′+ = 
 

 

in which one sets: 
 

a cM M C′ ′ ′′+ +  = R′ ,  aM A′′ ′′+ = R′′ ,  k′′∑ = k′′ , 
 
to abbreviate. 

 The vectors 
d A

dt

 ′′
 
 

 and 
dC

dt

 ′′
 
 

 have a certain analogy with the combined centripetal 

acceleration, which Coriolis introduced in his consideration of the relative motion of the 
individual mass-points. 
 Naturally, we can also present the Lagrange equations in generalized coordinates for 
our bar chain that consists of rigid components.  In order to do that, we can exhibit the 
Rodrigues-Cayley expressions for any subsystem, define the kinetic energy E of the 
entire system, and arrive at the explicit equations of motion from the known prescription.  
In the special examples that were worked through above, the result was six Lagrange 
equations that would suffice to determine the motion of the system completely. 
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 Equations (49) are always preferable when the motion results in the absence of 
external forces.  That theoretically-interesting case has no meaning for engineering 
mechanics, since the forces of friction are never absent in that realm.  However, in the 
treatment of kinetic machine problems, one will also be just as rarely called upon to 
consider general systems of velocities of the kind that we assumed in the discussion 
above.  However, in any event, the well-defined conceptualization of general processes of 
motion will also have great significance when their realization in practice is quite remote. 
 
 

E. Determining the reactions. 
 
 23. Introduction of the sectional reactions. – If a simple rigid body is found in its 
most general form of motion then the cohesion of its parts can be taken advantage of in 
various ways.  For the ideal structures that we call rigid systems, those internal forces can 
each assume arbitrary values, since we tacitly assume that their robustness is unbounded.  
Moreover, if a solid body were put into a general state of motion (viz., translation and 
rotation) then the internal stresses would attain values so large that the cohesive forces at 
the individual locations or in certain surface domains would no longer suffice to preserve 
the connectivity of the parts.  The body would shatter, and a new state of motion would 
arise.  However, even when we ignore that catastrophe for real systems (which are 
assumed to be rigid) that correspond to a well-defined velocity state, an increase in the 
stresses would occur for increasing velocity, which would no longer be permissible if the 
hypothesis of the “rigidity” of the system were to be maintained, since elastic or plastic 
deformations of appreciable magnitudes would occur.  The same thing is true to a greater 
degree for systems of links that consist of “rigid” components (i.e., they are assumed to 
be rigid in the first approximation).  In that sense, the kinetics of machines, and in 
particular, combustion engines with parts that go back and forth, have also directed 
special attention to the stresses, along with concept of motion.  The quantitative 
determination of the reactions in moving systems of masses is then an important chapter 
in engineering mechanics and, as such, deserves to be treated systematically. 
 In order to fix the concept of system reactions, we imagine that the entire connected 
material system is decomposed into two parts by a surface section without altering the 
force-system and the velocity state that exists in any way.  If the physical connection 
along the separating cut surface were suddenly canceled then each subsystem would 
generally have to begin a new form of motion at that moment.  All of the reactions of one 
piece would combine into a resultant system that, from d’Alembert ’s principle or 
Newton’s basic law of the equality of action and reaction, would be equivalent to the 
resultant system of the reactions of the other pieces in the opposite sense.  The 
decomposition of the system into two pieces corresponds to the decomposition of the 
total energy E into two parts E′ and E″, such that one would have: 
 

E = E′ + E″. 
 
We would like to further assume that the entire system is determined by coordinates, such 
that for the impulsive effects, the Lagrange equations will be: 
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pι = 
E

qι

∂
∂ ɺ

 = hι    (ι = 1, 2, 3, …, i). 

 
We likewise derive quantities pι of a kinetic character from the energy components E′ 
and E″, when we set: 

pι′ = 
E

qι

′∂
∂ ɺ

, pι′′ = 
E

qι

′′∂
∂ ɺ

. 

 
It will then follow directly from d’Alembert ’s principle that: 
 

pι′ = h rι ι′ ′− ,  pι′′ = h rι ι′′ ′′− , 

 
in which the quantities rι′ , rι′′  mean components of the resultant system of reactions, 

when expressed in terms of the general coordinates qι .  Since one must have rι′′= − rι′ , 

one of the foregoing systems of equations, say: 
 
(50)     rι′  = h pι ι′ ′− , 

 
will suffice to determine those reaction components. 
 One determines the impulse components hι′  that are required to calculate the rι′  from 

the formula: 

hAδ ′ ′  = h xδ⋅′Σ  

 
when one expresses the xδ  in it in terms of the qι and δqι , from which, one will obtain 
the equation: 

hAδ ′ ′  = 
=1

S
i

h qι ι
ι

δ′ ⋅ . 

 
 If the system is subjected to the effects of time-varying forces (k) then one will 
employ the usual Lagrange equations: 
 

E
p

qι
ι

∂−
∂

ɺ = kι     (ι = 1, 2, 3, …, i) 

 
for the determination of the components, and the aforementioned splitting of the system 
will yield the reaction formulas: 
 

E
p

qι
ι

′∂′ −
∂

ɺ = k sι ι′ ′−   and 
E

p
qι

ι

′′∂′′−
∂

ɺ = k sι ι′′ ′′+ , 

 
in which, one must once again set: 
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pι′ =
E

qι

′∂
∂ ɺ

 and pι′′ =
E

qι

′′∂
∂ ɺ

. 

 
 One can also employ Euler’s equations of motion in order to determine the 
corresponding components of the sectional reactions in an entirely similar way.  In the 
case of a simple rigid body that is not under the influence of external forces, that path will 
deviate from the simple one. 
 
 
 24. Explicit representation of the sectional reactions. – For impulse problems, the 
sectional reactions depend upon only the position coordinates and the external impulses 
that act upon material systems.  However, if time-varying forces act upon the system then 
the velocity state will also be crucial for the sectional reactions.  In the equations for the 
reactions, which we expressed in terms of generalized coordinates above, in the first case 
we can eliminate the generalized velocity components qιɺ  by means of the equations pι = 

hι , and in the second case the acceleration components qιɺɺ  can be eliminated by the use of 

the Lagrangian equations of motion, and in that way we will arrive at explicit 
representations for the components of the sectional reactions. 
 That is exceedingly simple for the impulse reactions: 
 

rι′  = h pι ι′ ′− . 

 
If we transform the kinetic energy E by introducing the hι = pι in place of the qιɺ  in 

Hamilton ’s reciprocal function F, which is now a homogeneous functions of degree two 
in the hι , then we will have: 

qιɺ = 
F

hι

∂
∂

. 

 
One substitutes these values in the equation: 
 

pι′  = 
=1
S
i

qικ κκ
η ′ ɺ , 

 
which is linear in the qιɺ , and obtains the final equations: 

 

(51)     rι′  = 
=1
S
i F

h
hι ικκ

ι

η ∂′ ′−
∂

  

 
for the explicit representation of the sectional reactions for impulses.  The coefficients 

ικη ′  are known functions of the position coordinates q1 , q2 , …, qi . 

 The analogous consideration for time-varying forces can be simplified greatly when 
we assume Lagrange’s equations of motion in the explicit form, which were represented 
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by equations (38) or (39) in no. 19.  That will permit us to substitute the quantities 1qɺɺ , 2qɺɺ , 

…, iqɺɺ  directly into the reaction formulas: 

 

(52)     sι′  = 
E

k p
qι ι

ι

′∂′ ′+ −
∂

ɺ . 

We will then have: 

pι′ɺ  = S qικ κκ
η′ ɺ , 

and as a result: 

pι′ɺ  = ( )SS Sq q qι
κλ κ λ ικ κκ λ κ

γ η ′+ ⋅ɺ ɺ ɺɺ . 

 
 By substituting this expression in equation (52) and combining the terms of the same 
type, one will get the final formula for the reaction components: 
 

(53)    sι′  = ( ) ( )

1 1 1
S S S
i i i

k k q qι ι
ι κ κ κλ κ κκ κ λ

η ε
= = =

′ − + ɺ ɺ , 

 
in which the coefficients ( )ι

κη  and ( )ι
κλε  depend upon only the position coordinates q1, q2, 

…, qi .  In words, that result reads: 
 
 The Lagrangian components of the sectional reactions for a system of links upon 
which arbitrary external forces act is composed of two parts:  The first part depends 
upon only the driving forces and the position coordinates, while the second one will be 
represented by a homogeneous function of degree two in the generalized velocity 
components, just like the kinetic energy of the entire system. 
 
 We have made no special assumptions up to now about the form of the system 
section.  If the individual parts in the link-system are cylindrically-extended bodies 
(which is frequently the case for machines) then one will mostly choose a planar section 
that is perpendicular to the longitudinal axis in order to study the cross-sectional stresses 
that appear in those parts.  By contrast, if one would like to find the pressures in the 
moving links, which is extremely important in engineering, then one should make the 
system section along the supporting surface (Lagerfläche) in question. 
 Here, we are concerned with only giving the general Ansätze that will make it 
possible to determine the system reactions on the basis of d’Alembert ’s principle, and in 
that way, to show that Lagrange’s idea about the solution of those problems will suffice 
completely.  In any case, the scope of rational mechanics can be extended in a fruitful 
way by including general problems in kinetostatics, along with the specific static and 
kinetic ones, and in that way accommodate some entirely-justified demands of 
engineering. 
 
 
 25. The fundamental reactions of simply or multiply-coupled link-systems. – 
From d’Alembert ’s basic equation for impulses: 
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r = h m x− ɺ , 
 
if we consider the entire link-system then we will next derive the expressions: 
 

r∑ = h m x−∑ ∑ ɺ  

and 

x r∑ = x h m x x−∑ ∑ ɺ ɺ  

and write them in the form: 

(54)     
,

.v h x

r h m x

M M M

 = −


= − ɺ

ɺ

 

 
The rigid and immobile foundation, along with the link-system, defines a larger material 
complex.  As a result, from d’Alembert ’s principle, the resulting reaction components 

r and rM , which refer to only the moving parts, will not vanish, in general.  They will 

be included in the foundation at rest as pressures and virtual rotational moments.  One 

must observe in this that the vector rM  refers to a certain static reduction point, and its 

value and direction will change as long as that reference point shifts its position to the 
foundation.  However, as in any static problem that is concerned with rigid bodies, one 
will also be able to determine the central axis here, and in that way obtain the vectors r  

and rM  in one direction. 

 If the rigid foundation supports the moving system with more than one resting link 
then one can pose the question of how to distribute the fundamental reactions over the 
individual supports in that case.  One now splits the common base into as many pieces as 
the number of supports that are present, gives each part the corresponding virtual motion 
relative to the absolute coordinate system, and applies Lagrange’s principle of virtual 
work for the determination of the individual reactions. 
 For the total foundation reactions under time-varying forces, the following equations 
will enter in place of equations (54): 

(55)     
,

.s h x

s k m x

M M M

 = −
 = − ɺɺ

ɺɺ
 

 
That case is examined in detail in the theory of machines in a special example (parallel 
crank mechanisms that act upon a common shaft), and for that reason, we would like to 
go into it somewhat deeper in what follows. 
 
 
 26. The problem of adjusting the effects of mass in link systems. – The quantities 

s  and sM  in equations (55) each consist of two terms:  The first one will be derived 

from the external forces that act upon the system, and for that reason, it will depend upon 
the mass distribution of the entire system.  One makes the second term equal to zero (up 
to vanishingly-small residual contributions) in the case of multi-crank steam engines by a 
suitable arrangement of the system, and in that way, eliminates the effect of mass on the 
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foundation in practice.  We would now like to examine the conditions for the vanishing 

of the vectors m xɺɺ and xM
ɺɺ
 for bar chains in the general case.  To that end, we shall 

determine the center of gravity in each rigid subsystem.  Let the vectors of the individual 
centers of gravity be, in turn: 

sx′ , sx′′ ,…, ( )
sx ν , …, ( )n

sx , 

 
as measured from the absolute reference point (O).  If we choose them to be the relative 

reference points (O′, O″, etc.) for the vectors a′ , a′′ , … that establish the individual 
material points of the subsystems then the absolute vectors of those points are: 
 

( )x ν = ( ) ( )
sx aν ν+ . 

 

Let the vector of the center of gravity of the entire system be sx .  We will then have: 

 

m x∑ = m sx  

and 

m xɺɺ = sm xɺɺ . 
 

As a result, the reaction m xɺɺ will vanish only when the velocity of the common center of 
gravity of all subsystems remains unchanged during the motion. 
 In order to investigate the moments, we form the equation: 
 

 ( ) ( )x xν ν
ɺɺ  = ( ) ( ) ( ) ( )( )( )s sx a x aν ν ν ν+ +ɺɺ ɺɺ  

  = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
s s s sx x x a a x a aν ν ν ν ν ν ν ν+ + +ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ , 

and upon summation, we will get: 
 

( ) ( ) ( )m x xν ν νΣ ɺɺ  = ( ) ( ) ( ) ( ) ( ) ( )
s sm x x ma aν ν ν ν ν ν+Σ Σɺɺ ɺɺ , 

since the quantities: 
( ) ( ) ( )

sm x aν ν νΣ ɺɺ , ( ) ( ) ( )
sma xν ν νΣ  

 
will vanish for rigid bodies.  Therefore, we will have: 
 

xM
ɺɺ
= ( ) ( ) ( ) ( )

=1 =1
S S
n n

s sm x x m a aν ν ν ν
ν νν ν

+ɺɺ ɺɺ , 

 
in which one sets Σ(ν)m = m(ν), to abbreviate.  For multi-cylindered steam engines, the 
value of the second term in this equation will always stay within narrow limits, because it 
has the order of magnitude of the rotational acceleration.  In that special case, however, 
the conditions for the reduction of the mass effects to a rigid foundation can be 
represented in the form: 
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(56)    sdx

dt
= 0 and ( ) ( )

=1
S
n

s s

d
m x x

dt
ν ν

νν
ɺ = 0. 

 
The further discussion of these equations is a problem for engineering mechanics.  H. 
Lorenz gave a thorough presentation of the problem of mass effects in his Dynamik der 
Kurbelgetriebe mit besonderer Berücksichtigung der Schiffsmaschinen (1901). 
 
 

F. Kinetostatic requirements. 
 
 27. Normal stresses and shear stresses. – The theory of static stresses was first 
developed for elastic prismatic rods (i.e., beams).  In the simplest case, forces act only in 
the direction of the longitudinal axes, which one distinguishes from each other by calling 
them forces of tension and compression.  They generate an internal stress state for which 
elastic forces will be provoked along that axis.  In a second case, the external forces 
reduce to a force-couple whose plane intersects the cross-section perpendicularly along 
one of the two principal axes.  The elastic effect expresses itself as a bending of the 
beam.  Tensions and bending stresses will be commonly referred to as normal stresses.  If 
the axis of the force-couple lies along the longitudinal axis of the rod then angular 
deviations of the body elements, which are assumed to be rectangular parallelepipeds, 
will occur along with the extensions, and one calls those angular deviations shears or 
slips.  A torsional stress will arise that is statically-equivalent to the deforming force-
couple.  Finally, we can also imagine that the force that acts on things lies completely 
within the plane of a cross-section of the rod and strives to make the one part of the body 
slide along the other one along the sectional plane.  A shearing stress will now come 
about in the cross-section in question.  Torsional stresses and shear stresses will be 
collectively referred to as “shear stresses.”  We shall now apply this elementary concept 
from the theory of solids to the rigid bodies and the bar chains with rigid bars.  Although 
deformations will be excluded in that way, one can still carry out the reduction of the 
internal reaction forces in such a way that the components will correspond to the usual 
categories of influences.  At the same time, by doing that, one will get an intuitive 
overview of the results that is not intrinsic to the general reduction that uses Lagrangian 
coordinates. 
 
 
 28. Determining the stress components. – It follows from d’Alembert ’s basic 
equation for time-varying forces: 

k  = m x s+ɺɺ  
that 

(57)    s′Σ  = m x k m x x−′ ′Σ Σ ɺɺ , 
 
in which all summations extend over those parts of a rigid body that are virtually 
separated by a plane section.  However, for each rigid system (without translation), one 
has: 

xɺ  = xσ , 
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and it will follow from this by differentiating with respect to time that: 
 

xɺɺ  = ( )x xσ σ σ+ɺ , 
 
or upon expanding the triple vector product: 
 

xɺɺ  = ( ) ( )x x xσ σ σ σ σ+ ⋅ − ⋅ɺ . 
 
We decompose that acceleration along three rectangular axes that are fixed in the rigid 
body and denote the relevant projections of the vector x  by a1, a2, a3 : 
 
  1xɺɺ  = 2 2

2 3 3 2 2 3 1 1 2 2 1 3 3( )a a aσ σ σ σ σ σ σ σ σ σ− + + + +ɺ ɺ , 

  2xɺɺ  = 2 2
3 1 1 3 3 1 2 2 3 3 2 1 1( )a a aσ σ σ σ σ σ σ σ σ σ− + + + +ɺ ɺ , 

  3xɺɺ  = 2 2
1 2 2 1 1 2 3 3 1 1 3 2 2( )a a aσ σ σ σ σ σ σ σ σ σ− + + + +ɺ ɺ . 

 
 The components 1σɺ , 2σɺ , 3σɺ  in these expressions must be eliminated with the help of 

Euler’s equations of rotation (21): 
 
 1 1A σɺ  = (A2 – A3) σ2 σ3 + Mh, 1 , 

 2 2A σɺ  = (A3 – A1) σ3 σ1 + Mh, 2 , 

 3 3A σɺ  = (A1 – A2) σ1 σ2 + Mh, 3 . 

That will give: 
 A2 A3 ⋅⋅⋅⋅ 1xɺɺ  = A2 A3 

2 2
2 3( )σ σ+ ⋅⋅⋅⋅ a1 + A2 (A3 – A1 + A2) σ1 σ2 ⋅⋅⋅⋅ a2 

  + A3 (A2 – A3 + A1) σ1 σ2 ⋅⋅⋅⋅ a3 + A3 Mh, 2 ⋅⋅⋅⋅ a3 − A2 Mh, 3 ⋅⋅⋅⋅ a2 , 
 
 A3 A1 ⋅⋅⋅⋅ 2xɺɺ  = A3 A1 

2 2
3 1( )σ σ+ a2 + A3 (A1 – A2 + A3) σ2 σ3 ⋅⋅⋅⋅ a3 

  + A1 (A3 – A1 + A2) σ2 σ1 ⋅⋅⋅⋅ a1 + A1 Mh, 3 ⋅⋅⋅⋅ a1 − A3 Mh, 1 ⋅⋅⋅⋅ a3 , 
 
 A1 A2 ⋅⋅⋅⋅ 3xɺɺ  = A1 A2 

2 2
1 2( )σ σ+ ⋅⋅⋅⋅ a3 + A1 (A2 – A3 + A1) σ3 σ1 ⋅⋅⋅⋅ a1 

  + A2 (A1 – A2 + A3) σ3 σ2 ⋅⋅⋅⋅ a2 + A2 Mh, 1 ⋅⋅⋅⋅ a2 − A3 Mh, 2 ⋅⋅⋅⋅ a3 . 
 If we set: 

s′Σ  = s′ , k′Σ = k′ , m′Σ = m′, 
 
to abbreviate, then equations (57) will yield the components of the resultant force of the 
internal stresses in the explicit form: 
 

A2 A3 ⋅⋅⋅⋅ 1s′ = A2 A3 ⋅⋅⋅⋅ 1k′ + m′ (A2 Mk, 3 ⋅⋅⋅⋅ 2a∗  − A3 Mk, 2 ⋅⋅⋅⋅ 3a∗ ) 

+ m′{ A2 (A1 – A2 + A3) σ1 σ2 ⋅⋅⋅⋅ 2a∗ + A3 (A3 – A1 + A2) σ1 σ3 ⋅⋅⋅⋅ 3a∗  − A2 A3 
2 2
2 3( )σ σ+ ⋅⋅⋅⋅ 1a∗ }, 
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and two analogous expressions for 2s′ , 3s′  that will follow by cyclic permutation of the 

indices. 
 For the sake of getting a better overview, we write: 
 

(59)     s′ = k m u m w′ ′ ′+ ⋅ + ⋅ . 
 
u  then means a vector that depends essentially upon the total moment of the rotating 
forces, and w  means a second time-varying vector that is determined mainly by the 
velocity state of the system.  The components 1a∗ , 2a∗ , 3a∗  of the center of gravity vector 

a∗  of the virtually-separated pieces of the body appear as magnitudes in the components 
of u  and w , as well.  If one goes from one separating plane to another then the position 

of that center of gravity will change, and the components of s′  will be affected in a way 
that is easy to see. 
 With our notation, we can write equation (58), which determines the moment of the 
reaction forces relative to the fixed point, as: 
 

sM ′  = k xM M′ ′−
ɺɺ

 

or 

sM ′  = v
k

dM
M

dt

′′ − . 

 
 However, from no. 16, equation (19), one has: 
 

vdM

dt

′
= v

v

dM
M

dt
σ

 ′ ′+ 
 

. 

Hence, one will have: 

(60)    sM ′  = v
k v

dM
M M

dt
σ

 ′′ ′− −  
 

, 

or when decomposed into components: 
 
 ,1sM ′  = ,1 3 2 2 3 1 1( )kM A A Aσ σ σ′ ′ ′ ′− − − ɺ , 

 ,2sM ′  = ,2 1 3 3 1 2 2( )kM A A Aσ σ σ′ ′ ′ ′− − − ɺ , 

 ,3sM ′  = ,3 2 1 1 2 3 3( )kM A A Aσ σ σ′ ′ ′ ′− − − ɺ . 

 

1A′ , 2A′ , 3A′  are the principal moments of inertia of the virtually-separated pieces of the 

body. 
 By eliminating the components of the angular acceleration with the help of Euler’s 
equations of motion, which are true for the entire system, we will get, with no further 
discussion: 
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(61)    
1 ,1 1 ,1 1 ,1 1 2 3

2 ,2 2 ,1 2 ,1 2 3 1

3 ,3 3 ,3 3 ,3 3 1 2

,

,

,

s k k

s k k

s k k

A M A M A M D

A M A M A M D

A M A M A M D

σ σ
σ σ
σ σ

′ ′ ′ ′ = − + ⋅
 ′ ′ ′ ′= − + ⋅
 ′ ′ ′ ′= − + ⋅

 

in which one sets: 
 1D′  = 1 2 1 2 1 3 1 3( ) ( )A A A A A A A A′ ′ ′ ′− − − , 

 2D′  = 2 3 2 3 2 1 2 1( ) ( )A A A A A A A A′ ′ ′ ′− − − , 

 3D′  = 3 1 3 1 3 2 3 2( ) ( )A A A A A A A A′ ′ ′ ′− − − . 

 

The vector sM ′  then has the form: 

sM ′  = P Q+ . 

 
P  depend essentially upon the external forces, while Q  is constrained by the mainly the 
velocity state of the system.  The moment of inertia of the virtually-separated parts of the 
body will affect both vectors. 

 Up to now, sM  has been referred to the fixed point.  If we then take the moment 

relative to a point of the cross-section then the known rules of statics will be true for that 
transformation.  However, that new reference point can be chosen in the plane of the 
cross-section in such a way that the resultant and moment of the reactions will lie in a 
plane that is perpendicular to the plane of the section.  Since the locus of those reference 
points is a line, we will still be free to choose which of its points should be assumed to be 
the definitive reduction point.  Once that choice has been made, we decompose the 
resultant and the moment into components, which will fall in the plane of the section or 
be perpendicular to it, resp., and thus obtain the quantities that are required by the 
virtually-separated part of the body in regard to tension (or compression), bending, 
torsion, and shearing. 
 Should the components of the kinetostatic requirements be determined for a system of 
links, we would proceed in a manner that is similar to what we do for an isolated rigid 
body.  The single difference consists of the fact that we must add the known reactions of 
the next-lying line (or, more generally, all of the links that are on the same side of surface 
of the section).  Since we have calculated those link reactions completely, we can also 
consider this general problem to be solved. 
 
 Berlin , 1 February 1901 
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