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(Continuation)

16. Euler's equations of motion for rotating bodies— From equations (3) and')3
in Table V, the basic kinetic equations of a rotating rgyistem are:

_ dm,

M, =M and M, 5

\

since the total moments of the reactions vanishhdrfdrmula:
M,= Y mxX,

one needs only to replace with the expressiom7_x and sum over all mass-points of the

body in order to obtain the impulse equation in explaiitn. However, one has (cf., the
introduction):

x(cX) =X 0F - (X7)[X.

Ordinarily, one decomposes along three rectangular axes that are rigidly linketth wi
the system when one sets:

X=3+3,+3.
The corresponding components of the vedtyr follow in that way, namely:

Mv,lzzm(a;'*' i)wl_z ma qwz_z ma do
|\/|V’2:Zm(322+ i)wz_z ma %ws_z ma g,
MV,3:Zm(a§+a§)w3—Z ma ‘fi‘wl_z ma &,

in which, we have set:
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>m(E+E) =A, Y m(E+) =A, Y m(F+ &) =As,
to abbreviate, and have set:
Zmazag:Dl, Zmasq:Dz, quast,

and have referred to those quantities as the momemsrtiiand moments of deviation.
The kineticimpulse equationthen take on the usual form:

Mh,l = Alljfl_ Dng— Dzws
(18) Mh,z = Az m7-2_ D1BT3_ D3|]71’
Mh,s = As ws_ D2 mj-1_ Dlwz

In order to construct théuler equations, we must now form the differential qeiots
dM, / dt. Instead of doing that, one can also differeatthe elementary vector:

M, = (XX) @ - (X&) (X
with respect to time and get:

d(';fv = 2(XX) T+ (XX) [ — (%) Ox- (%7) Tx (@) 0.

However, one obviously hagx= 0 andx& = 0, since the vectors in question are
perpendicular to each other. As a result, onehanle:

dT'\_:vz 2(XX) [ + (X&) X— (XT)Ox = (XX) &7+ (X&) x+ 0 M,

and correspondingly:

(19) dM, _ (deij
dt dt

v !

in which the brackets around the derivativeMf suggest that one must consider only

the quantityg to be variable in that differentiation. In ourtations, theEuler equations
will then read:

(20) M, = (dm"j+an.

dt

They were first published in that form (naturallyjthout the symbolism of vector
analysis) byLagrange in hisMécan. anal2™ ed., .2, pp. 239, in which he derived them
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from the kinetic principle of virtual displacements.(cfo.13 of that book). In that book,
Lagrange employed the kinetic enerdgyof rotating systems, which will have the form:

E=1Ym(o X X =1(Aoi+A05+A0%)-D105s—D2 05 61 —Ds 6 03,
due to the equatioR = o x. From equations (18), one will then have:

nyl:a_E’ My = oE  Mys= OE .
00, 2o, 00,

As a result (or really, due to the essential diffexe between the derivations), for
.. doE d oE d oE

Lagrange, the quantities——, — , and —
dtoog, dtado, dtdo,

appeared in placed of the

components of the relative veIociEydo%j :

If one refers the vector to the principle axes then the moments of deviatiothe
expression foM, will vanish, and one will get the usuller equations:

A (A= A)0,0= M,
(21) A d(;-z +(A-A)0,0,=M,,
A d(;[-3 +(A-A)o,o,= M, 3

from equation (20).
One can write down equation (19) directly, sincdollows immediately from the

principle of relative motion. (ddtvj iIs obviously the vector of the relative change in

velocity of M, with respect to the rotating system, whiteM is the vector of the

associated guiding velocityFighrungsgeschwindigkeit Strictly speaking, Euler
employed the same line of reasoning for the deawmabf his equation, but without
clothing it a definite analytical form.

17. Lagrange’s transitivity equations for rigid systems— D’Alembert’s principle,
in the integral form thatagrange andHamilton employed:

(22) [JA,]IO = j(JEmAJ dt,
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gives rise to a remarkable difficulty when one emplaysystem of velocities that is
expressed by kinematical parameters that are not, sathe time, the time derivatives of
coordinates, and whicbagrange was the first to clearly recognize and overcome with
his own skill (for the case of rotating, rigid syst¢m&lamely, the variationdg; in the
expression:
(23) dE:a—E§Ul+£502+E503

a0, 00, 00,

must be transformed in such a way that they will dandaly the 88 and the complete
time derivatives of those quantitiedagrange (Mécan. anal. 2" ed., t.2, pp. 229)
arrived at that by employing the relations that exist betwthe nine direction cosines.
Instead of that, we shall pursue a more direct and coenve path by starting
immediately with the concept of the systems of possuglocities. As a result of the

equationx = ox, we will have:

dx =dfdx and OXx = JFX.

By varying and differentiating this, one will get:

odx = odf[x+ ddLd x and dox = ddd X+ o6 Lilx.

Now, since one obviously haddx = dJdX, it will follow by subtracting the foregoing
equations that:

(3d6— do8) k= dO(00X) - IO = (dOBH) X,

or, sinceX is completely arbitrary:
(24) 0dg-ddo = doLes .

That is Lagrange's transitivity equationfor a rotating, rigid system. It is an
immediate consequence of the kinematical expressiothéosystem of velocity. We
conclude from this that every characteristic formdagystem of velocities as a function
of essentially-kinematicgbarameters must correspond to a special transitigiyatéon,
which is likewise characteristic of the material syst

The relations between the axis components:

506, = dod, + 6, (B9, - 49,86,
(25) 506, = dob, + dé, [36,- i, (6,
506, = dd6, + d6, (6, b, (56,

follow from equation (24), asagrange communicated itoc. cit.
We substitute those values, in conjunction with equation (E8)the integral
expression:
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t
(26) [FA], = [(BE+JA) dt.
)
Now, one has the relation:
E = 5_5501+E502+E503 = M, [do,
a0, 00, 00,

in which, from equation (24), one has set:

(27) d0 = %%—am.
As a result:
— —  — — d,- — dM, —
E=M, dé+M, Wwldd = —(M, o) ——[dF -0 M, o8
dt dt dt

Equation (26) will then go to:

[5AL = | {(dx“}(ahﬂv)—mk}wmt;

to

one will then haveM, (56 = &' A, and M 30 = & A, since translations are excluded.

One must then have:
(dej+UMV = Mk’
dt

from which one will arrive at théagrangian form of the equations of motion by
decomposing the latter equation into components:

d( oE 0E 0E _
|3 |t On "0 =M,
dt\ ag, 00, 00, ’
d( oE 0E oE
28 — +0, -0 =M, ,,
(28) dt(aazj ‘00, ‘oo, “°
d( oE 0E 0E _
P t0o, B’ =M
dt\ ao, 0o, 00, ’

18. Lagrange’s kinetic equations in general position coordinates: We next
assume an arbitrary system of possible velocidsch we suggest by the symbolic
equation:

(29) x =func. (,%,,...,£ ,0,,8,..- .9 ).
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The £ in this are vectors in the usual sense, whilectlage real, mutually-independent
position coordinates. The number of the latter welldgual to the number of degrees of
freedom, such that the motion of the systems iseagiticted by any condition equations.
The vectorsg are generally single-valued functions of those coordinatédollows
from the symbolic equation (29) that:

(30) ox =func. (¢,¢,,...,£,00,,00,.,..,0Q ).
For afree material point, one always has:

§ = gl |ﬁl-i_EZ |:QZ-*_E3|3:13’
and correspondingly:
OX = & [bg, +£,10q,+£,(00q,.

As a result:
pu— 3 pu—
OA, = XOX = §_Ixﬂ5q :
or if we set:
a ; = pl ]
as usual, to abbreviate:
3
Jm:§gmq

The quantitiep arelinear functions of the quantitieg). We shall now impose the
condition on the functional relation in equation (29),egquation (30), which coincides
with it, that the scalar quantiy A, that is derived from it must take the form:

3
(31) oA=Sp a0,

and that the must bdinear functions of theq.

3
With that assumption, one can always&e, = §h [dq, and in that way the basic
equation foimpulsiveeffects:

(1) OA =M
will take the simple form:
(32) pi=h (=123 ...J).

In the equation for time-varying forces:

(1) [JAL=jME+5A)m,
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the kinetic energ¥ of the total system, which is, by assumption, exprebgegjuation
(31), is a quadratic function of thg¢. That equation must also remain valid whignis
replaced withdg. As a result:

(33) £-S% 5
i= laqI

Without that, one would have:

OE = @q,+Sa—B5q
a i=109 q

3
In complete analogy with the equatiohA, = §h [dq, and also for time-varying forces,

we further set:

(34) 5 A=Y KB = é}n 5q ,

and, from the precedent setigrtz (Prinzipien pp. 218), call the quantitids, k, ..., k;

the components of tHeagrangian force, which we would like to symbolically denote by
k. As is knownHertz called the symbdt a “vector relative to the total system.” Now,
since theq coordinates- i.e., theq— arecompletederivatives with respect to time, one

will always have the equation:

and the basic equation (II) will go to:

3 t 3
{Spi @'q} {S—@q} +J.' —Ea—!5+a—|5+lg}5q [dit.
i=1 =L dg CouiFt dtog ogq

That equation can be fulfilled identically for arbitrarglues of thedq only when one
has:

oE
35 = —
(35) P 2
and
dp OE
36 =k
(36) at 9 ki

These are theagrange equations. | would like to expressly point out thatithpulse
equations that one gets from combining formulas (32) andr{@&ely:

(37) — =h,
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go back toLagrange (Méc. anal, 2 ed., t.2, pp. 183), and noNiven, as Routh
remarked in hisRigid Dynamics and indeed, one finds them in the cited place in
precisely the form thaRouth gave to them. Namely, the existence of a func€iois
assumed there that will yield the components:

hi:a_Q

aq, .

Clifford gave a derivation of tHeagrangian equations in hig€lements of Dynami. 2
of the posthumous publication, pp. 81) whose basic ideahatkrepeat here. Let the
system of velocities be dependent upon only two coordirgtesxd g, . With that
assumption, one will have:

V= El |jcnl-*-EZ EqZ'
Clifford then first setg, = 1 andg, = 0 and thery, = 0 andg, = 1. The corresponding

values ofv are:v, andVv,. Now, he proved thagl: % The energy of the system
% G
has the value:

E = %(gl. g1 mlz. + 25152m1q2+52§2[rf2) .

It then follows from this that:

OoE _ _ oE _ _ _
—=&V, —=§&\V.

g, (0

Now, one has the following equations, with no furtherdibons:

v _dg v _dg,

dg, dt dg, dt

It will then follow from the energy equation:

E=1VV
that:
a_E:a_\_/EV a_E:a_\_/
o, 09~ 0q, Od,
or

6E_d§lw, 6E:d§2W.
og, dt dg, dt

However, one has:

d 0E _d& o, . v d 0E _d5, 5, . gV,
dtog dt dt dtog, dt dt



Heun — The meaning of d’Alembert’s principle for rigigstems and link mechanics (cont.) 9

One will get the_agrange equations from this directly:

d dE 6E__Bdi d JE 6E__£

dtog oq * dt’ dtag, oq, 2 dt’

One can rigorously derive thegrange equations for a free poikinematically. In
that simple casey will then have the form:

V= E [0+, 0, + £, 0,

It will then follow that £ v = p, , and a differentiation of this with respect to tim
give:
= Gd_\—/_ dp de _

=—-—'V.
“dt dt  dt

Sincev is a complete derivative with respect to time, duthéintegrability conditions,
one will have the equations:

0, _ 0%
oq  oq,
With that:
v _ 0, . . 0%, 0z, . _ 0% 0F 0F
g oq “Toq *Toq *oq " og U og ¥
or.
ov _ dg
aq @

One immediately obtains theagrange equations from this in the kinematical form:

_dv_dp OE

“dt dt oq

The “conceptual meaning” of theagrange equations has already been the subject of
repeated investigations. However, they seem to hal@egiano satisfying results. One
therefore essentially addresses the question of h@y &merge from the impulse
equationsp,= h, . If one differentiates this with respect to timeritthe equations that

one obtains, viz.:

Dp, =Dh, ,
must be identical to the equations:
dp, — 2E dt =k, ot
aq,

Now, one has:

p/ = Sg//( mK )
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. Ex o s
dp = Se, @, s SS g g
K ! K qK

or, if one considers the second term to-la / dq, CHt:
dp, = Se, @, Ct+ §S§> 4, ¢ Cdt.

We can denote the first term on the right-hand sfdais equation bydp,) [Ht, as in the
derivation of the Euler equations, if the parentheses suggestpuae impulse
differentiation by which the coordinates will remain banged, which is consistent with
the concept of impulse. We will then get:

Dp, = dp) + C, =k, [t

The entire difficulty now comes down to the interptin of the functions:
C=S94 4, q,.

In all likelihood, these function€,, in which the coefficientg/) are identical with the
: A K . I
Christoffel symbols{ } are the components (or rather, simple combinatidns o
/

components) of a centrifugal acceleration. Howewprto now, | have not succeeded in
proving that, and in that way, clarifying the special natdrdings completely. Perhaps,
those remarks will serve to stimulate further invesiige into this situation, which is

not at all inessential in kinetics.

19. Explicit form of Lagrange’s equations.— As is known, Hamilton employed, not
only the functiork = %SS&’,YK g ¢, , but also the reciprocal functidh= %SS/],YK P P,

which is linked with the latter by the linear relatiofj¥ =p,. We shall now employ the

equations:

a_E:p a_F:q a_F:—a_E
a, o ' dq oq

in order to get an explicit representation of thgrange equations of motion, which we
shall use as the basis for our study of the kinetostafisystems of links. We next have:

. _dioF_c 0°F de+Q62F

dtdp ~opdp, dt ~opap

(G, -

It follows from the usual form of thieagrange equations:
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dp,_k_aF

—=K, =

dt aq
With that, the previous equation will go to:

2 2 2
(38) dq_g OF OF 0% OF| goF .
dt «|dpdq op. OpoR G| «0pdp

The first term on the right-hand side of this equatsoa homogeneous function of degree
two in the quantitiep., p2, ..., pi , and thus also the quantitiés, d,, ..., ¢, as well.
The following term contains only the coordinams, . , ..., g, in addition to the
generalized_agrangian force componentk; , k2, ..., k. For that reason, we can also
write equation (38) in the following form:

(39) B -SSa a0+ Sk

The coefficientsa{’, and 7,, are known functions of the coordinates in this. The
quantitiesa}’, can be expressed immediately in terms ofGheistoffel symbols of the

A
second kind, which are denoted k%y
/

}. However, it does not seem necessary to go

further into those relationships at the moment. The are the coefficients in the
reciprocal functiorf.

20. Rodrigues-Cayley position coordinates for rigid systems: In order to shorten
the derivation as much as possible, | shall now appeileTheorie des Kreiselby F.
Klein andA. Sommerfeld In that book (pp. 21 and 43), the componenisc, oz of
the vector of rotational velocity are expressed in tesfriee four quaternion components
A, B, C, D in the following way:

1g,=DA- AD-(BC- CB,
(40) 10,=DB-BD-(CA- AQ,
10,=DC-CD-(AB- BA.

Actually, there are complex combinations of wi@n pp. 43 of that book, but they will
imply equations (40) with no further assumption.e ¥hall now assume that B, C are
the components of a vectdr. Equations (40) can then be combined into a singttor
equation, namely:

(41) Ly

T = 1F—-A,
H dtu

N
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in which we have set:
1-A4 =1-=47,

to abbreviate. If we introduce yet another ve@oby way of the equation:

A = uK
then we will have/? + 17 ¥ =1, and:
(42) g=—1 (%-k£)
1+ k2 '

Cayley published that beautiful equation [Camb. and Dublin1J(1846)], which
expressesz in terms of the necessary and sufficient numberoofdinates, and then
constructed a very elegant theory of the rotation gitirbodies. AlthouglSomoffs
kinematics refers to that book, it has still not fduhe attention that it deserves, in our
opinion. Equation (42) implies the components of the aativelocity in the clear and
symmetric form:

2 . ) .
o, = 1+ &2 [Kl_(KZKS_K3K2)]’

2 . ) .

(43) Uzzm[Kz_(KaKl_KlKa)]s

2 .. . .
g, =W[K3—(K1K2—K2K1)].

If one substitutes these quantities into the valuetherkinetic energy then one can
deriveLagrange's equations of motion from the expression thus-obthawigh no further
discussion, since the, 2, k3 are independent position coordinates.

21. The vectorB. — Just as we could represent the en&rgya system with a finite
number of degrees of freedom in the genkegrangian coordinatesy, oy, ..., g, that
can also be done for the system vedBar However, we would like to restrict ourselves
here to the elementary vect® for a free material pointnf = 1). In the defining
equation:

B= X%,

X

one then sets:

X = é_‘lq1+g2q2+g3q3 = \_/’
and correspondingly:
X =¢

+§2 q2+§3 a3+glql+£2q2+g 3q2'

O
=

Carrying out that substitution will immediately yield:
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B =66(00,-0,0)+6,6,( 0,0 ®0)+& £ 00 G
(6,6, ,8) 0,0, €6,
+(E, £, £,6,) A, U+ € ,8, 0,
(36, +£,6,) 0,0, £ £,

If one now imagines that the equations:

=% -9 .
7 0, T

o
0q;

[y

ES

are valid then one will see with no further assumgtitimat B can be put into the
following form:

B = E(QZ Q?,_ qg qz) +§1( ‘qs"ch_ qlqg +§£ 'qi‘qz_ q2q1+ H,

in which H means a homogeneous function of dedheee in the velocity components
¢, 4, §. If one then sets:

then one will have:

such that one can also exprdssn terms of the quantitieg, ¢,, ¢, andqs, o, gz . The

quantities?,' anddv/0q that enter into that expression are functions ofjthe

We would like to determind® as thesystem vectoonly for rotating rigid bodies. In
order to do that, we substitute the valuescoénd X into:

B= Y mxX,
namely:
X = ox and X = ox+(@X)F-0°[K,
and obtain:

B =Y mxd)X-Y ma ¥+ nfo® N,
after some reductions. However, we have:
> m(o? ®¥)-Y. M@ R*= Y Mo xo x = E.

Hence, we will have:

os]
I

EO0+G
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when we set:
G=Y m(eoyx,
to abbreviate.
The components of that vector are:

C_51:(0.-20-3_0.-30-2)-1-114'(0.-30-1_0.-10-}le'*'(a.- g 50 g)T

C_52:(0’203—0'302)T21+(0'301—0'10)T22+(0"p’ 70 g)T 4

C_53:(0.-20-3_0.-30-2)-1-314'(0.-30-1_0.-10-}-I-sz'*'(0.-p- 70 )T 4
in which:

Tou=) mx X, .

If the angular acceleration is zero, or if its teeclies in the same direction as the
angular velocity then the vect@ will vanish, andB will then contain the direction of
the momentary axis.B will then be proportional to the kinetic energg, well as the

angular velocity of the system. The componentsBofwill then be homogeneous
functions of degree three in the components obtigular velocity in this special case.

22. Euler's equations for bar chains— On pp. 154 of the first volume dheorie
des Kreiseldy F. Klein andA. Sommerfeld we find the following viewpoint of general
kinetic interest expounded:

“Euler’s equations occupy an entirely singular positiontihe system of
mechanics and do not subordinate themselves tgaheral type of mechanical
differential equations thdtagrange presented. Neither is it possible to exhibit
equations for arbitrary mechanical systems thatlavatford advantages that are
similar to the ones th&uler’s equations afford for rigid bodies.”

For us, the question of whether kinetic equatwiih the typicalEuler form can be
exhibited for a given system can be answered iefeite way in connection with the
general argument that has been presented up to Namely, if one succeeds in find the
analytical expressions for the system of velocitiest characterizes the system in terms
of the necessary and sufficient numberpafely-kinematicalvectors (i.e., parameters)
and presents the requisite transitivity equations the latter, in addition, then
d’Alembert’s principle, in the integral form:

[gA], = j(aemm dt,

or in the simpler form:
OA=0MA

for impulses, will always yield the requisite numbef vector equations, which will
belong to the same genrekagler’s equations of motion (impulse, resp.)
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In general, one can exhidibgrange's equations (in the narrow sense of the term)
only when the system of velocities can be represebyethe necessary and sufficient
number ofcoordinatesand their first derivatives with respect to time.

If one then arrives aboth representations — viz., the kinematical and the
geometrical — for a certain material system then nothiitigstand in the way of
exhibiting the basic kinetic equation in both forms, asgl@s one necessarily
assumes that the transitivity equations are knowatundlly, the last requirement is
superfluous for the equations of impulse.

An especially important class of systems for whichatiqus ofEuler type exist
from the outset are thiear chainsthat are a type of engineering machine (in the
general sense). The link couplings of rigid subsystemgeateral very restricted in
practice. They essentially reduce to ball jointsjnclyical pin guides, and planar
straight guides. In what follows, we shall considerdydll joints, because the other
two cases can be easily reduced to that case, orfeandy ievent, to kinetic equations
that do not deviate from the ones that have been magdyed here.

In order to make the conceptualization of systems rogeise, we imagine our
starting point to be a fixed ball joint (or even seVayhthem, which will not
complicate the treatment). A solid body of arbitramape with a ball pin might be an
example of that. The first body couples to a secwm& or other ones, in the same
way, and so on. That multi-component bar chain carogen — i.e., the last
component is not coupled to the first one €losed when one constrains it to move
within a prescribed guide.

For the sake of simplicity in the following calcudats, we would like to consider
a bar chain that is open at the ends and consists afigwlocomponents, since that
case is already sufficient to make the charactesisif the basic kinetic equations
more intuitive.

The first link in the chain can exhibit only rotations, whiamn be represented by

a rotation vector’ . The corresponding system of velocities is therefore Jga,

if we denote the vector that determines the positioanorbitrary material point of
the subsystem by’ . The reference point foa' is obviously the center of the fixed
ball joint. We draw a vectot' from the same point to the center of the moving ball
joint and call the vector theelocityof the second point' . One then hag' = o'c'.

the points of the second system component might bélissied in space by the
equation:

The relative vectorg’ are then referred to the center of the moving bait jolf we
then denote the associated rotation vectoobyhen we will have the equation:

X =0c+od,
and we will get the associated elementary motionarfahm:

oxX =00 &, oX' =00 +00"a' .
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The kineticimpulse equationfor the combined system can be presented with the
help of those relations. For a material point offife subsystem (with a unit mass),
one has:

OA =XoX =cdbd &
or
OA = (0 dF)aa)-(ddd)(dd).

However, the moment of the velocity of that systeipoints is:

M! =d(d'a)=o'[{a a)-d{d o).

As a result, one will have:
(45) oA =M, oE .

For a point in = 1) of the second subsystem, we have:

IA =X oX =[(0c) +(a" (90 E) + 0" T ,

or when this is developed:

OA =ocdflE+ocof0d+0" dddc+0" add'0a.

The first and fourth term in this expression 8#, can also be written:

ogcdE = () c)-(d)d ¢
=cd(d'c)of =M! 7,
oA = (0" (a" &)~ (d 56") (0" d)

LB =M 3

in which M” and M! are sufficiently well-defined velocity moments. Inteeting the
middle two terms in the expression fotA; is not as simple. Here, we would like to

introduce two new vector®&’ and C" whose maghnitudes and directions can be deduced
from the equations:

o'c o =N, oga T =C" oF.
In that way, we will get the expression:

(46) SN =N GG+ M 3T +C 30+ R oF .
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Now, we can go from equations (45) and (46) to the correspgisystem equations by
summing over the elementary quantities. We set:

Z'mM =M, "mM =M, Z'mA=A, 2'mc =C,
and get:
(47) OA=M_+M_+M"[BF + M+ A" [d6".

Furthermore, when one considers the system of veedor the applied impulse, one
will have:

A =hogd+H o d
=ch D6 +d H ",

and when one goes over to the subsystems:
SA =2 aNB0 =M, (b7,
oA =" me+2" dH 0

_ W 35 + W} 57,

in which one has s&. " =1 .
If one substitutes these values into the equation:
O A=A

then one will get the impulse formulas:

(48)

The six quantitieso, , o,, g,, and g;, 0,, g, can be determined from the equations
once the impulses that act upon the system are git&urally, the vectord’, M”

A", and C" depend upon the moments of inertia and the momentsvédtive of the

subsystem.
The transition tdeuler’'s equations of motiors relatively simple now. We have only

to define the expression for the quantiyin the equation:
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)
[GA]" = [[GE+OA dt.

Now, for the individual material points (with masse = 1 andm" = 1), one has:

E=1i(da)c'd) and ‘=M. b,
as well as:

E” =1[(gc)+(g"d)l(o' c) +(o" d)] .
Hence:
E”=M.+M. +C"Bc + M, + A [0 .

The transitivity equations are:
5o =3w+78,

dt
d

— 06" +0" 6 .
dt

00" =

If one substitutes these values into the integgalaéon and considers the fact that the

reduction of the time-varying forcdg andk” is the same as it is in the case of impulse
then one will getEuler’s equation of motion for the two-component systafninks in
the vector form:

dt
(49)
[_dR}ﬁ:—;,
dt
in which one sets:
M.+M.+C" =R, MI+A=R, K=K,

to abbreviate.

The vector{dd—'?j and [dd_ct:j have a certain analogy with the combined centaipet

acceleration, whiclkCoriolis introduced in his consideration of the relativetioo of the
individual mass-points.

Naturally, we can also present thegrange equations in generalized coordinates for
our bar chain that consists of rigid components.onder to do that, we can exhibit the
Rodrigues-Cayley expressions for any subsystem, define the kinetergyE of the
entire system, and arrive at the explicit equatimingotion from the known prescription.
In the special examples that were worked throughv@pthe result was sikagrange
equations that would suffice to determine the motbthe system completely.
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Equations (49) are always preferable when the motiounltsegr the absence of
external forces. That theoretically-interesting céass no meaning for engineering
mechanics, since the forces of friction are never absethiat realm. However, in the
treatment of kinetic machine problems, one will alsojus as rarely called upon to
consider general systems of velocities of the kind & assumed in the discussion
above. However, in any event, the well-defined concdipai®mn of general processes of
motion will also have great significance when thealization in practice is quite remote.

E. Determining the reactions.

23. Introduction of the sectional reactions— If a simple rigid body is found in its
most general form of motion then the cohesion opads can be taken advantage of in
various ways. For the ideal structures that weraall systemsthose internal forces can
each assume arbitrary values, since we tacitly assameheir robustness is unbounded.
Moreover, if a solid body were put into a general stdtenotion (viz., translation and
rotation) then the internal stresses would attain vadodarge that the cohesive forces at
the individual locations or in certain surface domainsildano longer suffice to preserve
the connectivity of the parts. The body would shatiad a new state of motion would
arise. However, even when we ignore that catastrdpheeal systems (which are
assumed to be rigid) that correspond to a well-defireddcity state, an increase in the
stresses would occur for increasing velocity, which wowd longer be permissible if the
hypothesis of the “rigidity” of the system were to baimained, since elastic or plastic
deformations of appreciable magnitudes would occur. The #anggis true to a greater
degree for systems of links that consist of “rigid” gmments (i.e., they are assumed to
be rigid in the first approximation). In that sense, kirgetics of machines, and in
particular, combustion engines with parts that go bauk farth, have also directed
special attention to thatresses along with concept of motion. The quantitative
determination of the reactions in moving systems ofsemss then an important chapter
in engineering mechanics and, as such, deserves to tezltsgatematically.

In order to fix the concept of system reactions, weginathat the entire connected
material system is decomposed into two parts by a sustac@n without altering the
force-system and the velocity state that exists inwaay. If the physical connection
along the separating cut surface were suddenly canceled albbnsabsystem would
generally have to begin a new form of motion at thatment. All of the reactions of one
piece would combine into a resultant system that, fidiAlembert’s principle or
Newton's basic law of the equality of action and reaction, doe equivalent to the
resultant system of the reactions of the other pigneshe opposite sense. The
decomposition of the system into two pieces correspamdbhet decomposition of the
total energyE into two part€”andE”, such that one would have:

E=E'+E”

We would like to further assume that the entire systedetermined by coordinates, such
that for the impulsive effects, tihegrange equations will be:
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p/:a_E :h/ (/:1, 2, 3,])

oq,

We likewise derive quantitigg, of a kinetic character from the energy compondiits
andE”, when we set:

p’:a_E, p":a_E"
4 aq’ I aq

It will then follow directly fromd’Alembert’s principle that:

pI’: h,’_ r;’, pI" - h,"_ r;" ,

n

in which the quantities;,, r" mean components of the resultant system of reactions

when expressed in terms of the general coordirgatesSince one must have = -1,
one of the foregoing systems of equations, say:

(50) r=h-p,

will suffice to determine those reaction components.
One determines the impulse componemtshat are required to calculate thefrom
the formula:

A =2 hBx

when one expresses tld& in it in terms of they, and A, , from which, one will obtain
the equation:

IA = Snhog.

=1

If the system is subjected to the effects of timesng forces k) then one will
employ the usudlagrange equations:

p-—=k (=123, ..J)
aq,

for the determination of the components, and the afangomed splitting of the system
will yield the reaction formulas:

p-Lzk-g  and p-T=k+g,
q

aq,

1

in which, one must once again set:
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=

p _OE' ,,_aE"
! aq

and =,
9) 2

One can also emplo¥uler’s equations of motion in order to determine the
corresponding components of the sectional reactions enérely similar way. In the
case of a simple rigid body that is not under the imibeeof external forces, that path will
deviate from the simple one.

24. Explicit representation of the sectional reactions- For impulse problems, the
sectional reactions depend upon only the position coordinatetha external impulses
that act upon material systems. However, if timesng forces act upon the system then
the velocity state will also be crucial for the sl reactions. In the equations for the
reactions, which we expressed in terms of generalizedlicabes above, in the first case

we can eliminate the generalized velocity componéntsy means of the equatiops=
h,, and in the second case the acceleration compotjentn be eliminated by the use of

the Lagrangian equations of motion, and in that way we will arrive eatplicit
representations for the components of the sectionatioss.
That is exceedingly simple for the impulse reactions

r=n-g.

If we transform the kinetic enerdy by introducing theh, = p, in place of theq, in
Hamilton’s reciprocal functiorf, which is now a homogeneous functions of degree two
in theh, , then we will have:
. _ OF
q= a
One substitutes these values in the equation:

o =S4,

which is linear in thej, , and obtains the final equations:

~ |, OF
51 r=h-Sp 2=
( ) / h K:1,7/K ah/

for the explicit representation of the sectionalct®as for impulses. The coefficients
n.. are known functions of the position coordinagesaz, .., g -

The analogous consideration for time-varying forcestsaisimplified greatly when
we assuméagrange’'s equations of motion in the explicit form, which weepresented
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by equations (38) or (39) in n9. That will permit us to substitute the quantitigs d,,
..., ¢ directly into the reaction formulas:

(52) g =k+E g
daq,
We will then have:
o= S8,

and as a result:

o= SL a.6,+ I, .

By substituting this expression in equation (52) and combimiaeddrms of the same
type, one will get the final formula for the reactimmgponents:

(53) g =k-Snk+S S g q,

Kk=1A=1

in which the coefficient;” and ) depend upon only the position coordinagesdp,

K

.., 0 . Inwords, that result reads:

The Lagrangian components of the sectional reactions for a sysiéndnks upon
which arbitrary external forces act is composedtwbd parts: The first part depends
upon only the driving forces and the position caoates, while the second one will be
represented by a homogeneous function of degreeiriwthe generalized velocity
components, just like the kinetic energy of theeesystem.

We have made no special assumptions up to now aboubtime of the system
section. If the individual parts in the link-system andindrically-extended bodies
(which is frequently the case for machines) then onemalstly choose a planar section
that is perpendicular to the longitudinal axis in ordestudy the cross-sectional stresses
that appear in those parts. By contrast, if one woulkel to find the pressures in the
moving links, which is extremely important in engineerirtigrt one should make the
system section along the supporting surfaegérflacheg in question.

Here, we are concerned with only giving the general &es#hat will make it
possible to determine the system reactions on the dbgidlembert’s principle, and in
that way, to show thdtagrange's idea about the solution of those problems will seffic
completely. In any case, the scope of rational mecharan be extended in a fruitful
way by including general problems in kinetostatics, along with specific static and
kinetic ones, and in that way accommodate some enjusiified demands of
engineering.

25. The fundamental reactions of simply or multiply-coupled ihk-systems. —
Fromd’Alembert’s basic equation for impulses:
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T=h-mx,
if we consider the entire link-system then we wilkinderive the expressions:

SF= Y h-Y mx

and

and write them in the form:
(54) r
M. =M, M.

The rigid and immobile foundation, along with thekisystem, defines a larger material
complex. As a result, frord’Alembert’s principle, the resulting reaction components

rand M_r which refer to only the moving parts, will notnish, in general. They will
be included in the foundation at rest as pressanesvirtual rotational moments. One
must observe in this that the vectidr refers to a certain static reduction point, asd it

value and direction will change as long as thatrexfce point shifts its position to the
foundation. However, as in any static problem tkatoncerned with rigid bodies, one
will also be able to determine the central axisshand in that way obtain the vectars

and M_ in onedirection.

If the rigid foundation supports the moving systesth more than one resting link
then one can pose the question of how to distritheefundamental reactions over the
individual supports in that case. One now sphiess¢common base into as many pieces as
the number of supports that are present, gives eatithe corresponding virtual motion
relative to the absolute coordinate system, andiesppagrange's principle of virtual
work for the determination of the individual reacts.

For the total foundation reactions under time-irayyforces, the following equations
will enter in place of equations (54):

(55) { S

1
|

-m

1
<
ZI x:|

M -

s h X
That case is examined in detail in the theory ofmzes in a special example (parallel

crank mechanisms that act upon a common shatft)faarthat reason, we would like to
go into it somewhat deeper in what follows.

26. The problem of adjusting the effects of mass in linkystems.— The quantities
s and M_S in equations (55) each consist of two terms: Tits one will be derived
from the external forces that act upon the systend, for that reason, it will depend upon
the mass distribution of the entire system. Onkeamdhe second term equal to zero (up

to vanishingly-small residual contributions) in tt&se of multi-crank steam engines by a
suitable arrangement of the system, and in that elayinates the effect of mass on the
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foundation in practice. We would now like to examine ¢beditions for the vanishing
of the vectorsmx and M, for bar chains in the general case. To that end,ha# s

determine the center of gravity in each rigid subsysteet.the vectors of the individual
centers of gravity be, in turn:

I I

as measured from the absolute reference p@nt (f we choose them to be the relative

reference points@’, O”, etc.) for the vectors’, a’, ... that establish the individual
material points of the subsystems then the absolutergsat those points are:

Let the vector of the center of gravity of the ensiystem be>_<S . We will then have:

> mx=mx,
and
mX=m%X.

As a result, the reactiom x will vanish only when the velocity of the common cerae

gravity of all subsystems remains unchanged during the motion
In order to investigate the moments, we form the equatio

NOEQ

O +a)(K + @)
XSO+ A+ W+ B

and upon summation, we will get:

D WIm ) $) = Z‘”)m>§”) ) +20ma& &
since the quantities:

Z(v)m )é”) #¥) Z(v)m a” )é”)

will vanish for rigid bodies. Therefore, we wilhte:
= Sm I+ S BT

in which one set&”m = my,, to abbreviate. For multi-cylindered steam engjirtbe
value of the second term in this equation will afgratay within narrow limits, because it
has the order of magnitude of the rotational ace&ts. In that special case, however,
the conditions for the reduction of the mass effeid a rigid foundation can be
represented in the form:
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U‘):

(56) X o and % m, X ¥ = 0.

dt

1
=

The further discussion of these equations is a problenerfgineering mechanicsH.
Lorenz gave a thorough presentation of the problem of mass ®ffettisDynamik der
Kurbelgetriebe mit besonderer Berlucksichtigung der Schiffsmasc{iiém).

F. Kinetostatic requirements.

27. Normal stresses and shear stresses.The theory of static stresses was first
developed for elastic prismatic rods (i.e., beams)thénsimplest case, forces act only in
the direction of the longitudinal axes, which one dguishes from each other by calling
them forces of tension and compression. They genaraitg&ernal stress state for which
elastic forces will be provoked along that axis. Ineaosid case, the external forces
reduce to a force-couple whose plane intersects tlss-sextion perpendicularly along
one of the two principal axes. The elastic effeqiresses itself as a bending of the
beam. Tensions and bending stresses will be commomelyedfto amormal stresseslf
the axis of the force-couple lies along the longitudiagik of the rod then angular
deviations of the body elements, which are assumed tedtangular parallelepipeds,
will occur along with the extensions, and one callss¢hangular deviationshearsor
slips A torsional stress will arise that is staticadiguivalent to the deforming force-
couple. Finally, we can also imagine that the for@ #tts on things lies completely
within the plane of a cross-section of the rod angestrto make the one part of the body
slide along the other one along the sectional plaAeshearing stress will now come
about in the cross-section in question. Torsional steesnd shear stresses will be
collectively referred to as “shear stresses.” Wadlstow apply this elementary concept
from the theory of solids to the rigid bodies and thedbeins with rigid bars. Although
deformations will be excluded in that way, one can s#liry out the reduction of the
internal reaction forces in such a way that the comgsn&il correspond to the usual
categories of influences. At the same time, by doira, thne will get an intuitive
overview of the results that is not intrinsic to tfeneral reduction that uskagrangian
coordinates.

28. Determining the stress components- It follows from d’Alembert’s basic
equation for time-varying forces:

k =mx+s
that
(57) >'s =2 mxk-2' m x>,

in which all summations extend over those parts of @ rgpdy that are virtually
separated by a plane section. However, for each sigitem (without translation), one
has:

X =OX,
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and it will follow from this by differentiating with spect to time that:

X =ox+0(oX),
or upon expanding the triple vector product:
X = ox+(FX) T - (F0)[X.

We decompose that acceleration along three rectangxdsr that are fixed in the rigid
body and denote the relevant projections of the vectoy a;, a,, as :

- . 2 2
- 0'283—0'382+(0'2+0'3) utoo 0,00 0O,
- . 2 2
- 03a1_01a3+(03+01) Qto,00F0 00,
T . 2 2

- 0'182—0'281+(0'1+0'2) apto,00 00 0.

X<l il

The component®,, 0,, J, in these expressions must be eliminated with the help of
Euler’s equations of rotation (21):

Ao, =(A—A) 2 a3+ M 1,
Acg,=RAs—A) oL+ M2,
Ao, =A1-A) 01 b+ My 3.
That will give:
Ao A%, =Ap As (07 +0) Thy + As (As —AL + A) 01 & [y
+Az (A2 —Az + A 01 & [z + As M, 2 [hs — A2 My, 3 (g,

AsALOX, =As AL (G5 +0))ap +As (A —As + As) & &5 (s
+AL (As—A1L+A) & 01 Ty + Ar My, 3 Thy — As My, 1 [Bs,

ALA 0% = AL A (07 +07) Thg + A (Ao —As + A) &5 01 Ty
+A (AL —Ao+Ag) o 02 Tl + Ax M 1 [Thy — As M, 2 [Bs.
If we set:

2's=5, 2Z'k=k, Z'm=m,

to abbreviate, then equations (57) will yield the componehtke resultant force of the
internal stresses in the explicit form:

Ao Ag [F = Ao As Tk + mi (Ax My 3 0a) — As My 2 (&)
+m{A (AL —Ax+Ag) 0l 5 0]+ As (As —AL +A) o s 0] — Ao As (07 +02) 0a '},
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and two analogous expressions & s; that will follow by cyclic permutation of the

indices.
For the sake of getting a better overview, we write:

(59) S =K +m o+ MmO

U then means a vector that depends essentially upon tharotaént of the rotating
forces, andw means a second time-varying vector that is determinedlynby the

velocity state of the system. The componemtsa,, a; of the center of gravity vector

a” of the virtually-separated pieces of the body appearagmitudes in the components
of u andw, as well. If one goes from one separating planentdher then the position

of that center of gravity will change, and the compamnerfits’ will be affected in a way
that is easy to see.

With our notation, we can write equation (58), which deteesithe moment of the
reaction forces relative to the fixed point, as:

[
k

x: "‘

s
or
— d

<-|

(ﬂ'—|

X -

dt

However, from nol6, equation (19), one has:

am, _ [dMVj+UML.

dt
Hence, one will have:

(60) M! =M, -oM! —(d'\"vj,

or when decomposed into components:

M;,l = Mli,l_(A's_A'z)Uzaa_ Ala-]’
M;,z = Mi,z—(Al—A's)UgUl— Aza-z’
M;,s = Mli,s_(A'z_Ai)Ulaz_ As)a-e-

A, A, A are the principal moments of inertia of the virtuakyparated pieces of the
body.

By eliminating the components of the angular acceteravith the help oEuler’s
equations of motion, which are true for the entire systwe will get, with no further
discussion:
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AMg =AM - AM + D& o,
(61) AM =AM~ AM + D)oo,
AM =AM, -AM +Dloo,
in which one sets:
D; =(AA-AA)-(AA- AA,
D, =(AA-AA)-(AA- AAH,
D; = (AA-AA-(AA- AAH.

The vectorM! then has the form:

=P+Q.

P depend essentially upon the external forces, wqilis constrained by the mainly the

velocity state of the system. The moment of iaeofithe virtually-separated parts of the
body will affect both vectors.

Up to now, M_ has been referred to the fixed point. If we theke the moment

relative to a point of the cross-section then thevin rules of statics will be true for that
transformation. However, that new reference poant be chosen in the plane of the
cross-section in such a way that the resultantraathent of the reactions will lie in a
plane that is perpendicular to the plane of théimec Since the locus of those reference
points is a line, we will still be free to choosaiah of its points should be assumed to be
the definitive reduction point. Once that choicas heen made, we decompose the
resultant and the moment into components, whichfalilin the plane of the section or
be perpendicular to it, resp., and thus obtain dbantities that are required by the
virtually-separated part of the body in regard émsion (or compression), bending,
torsion, and shearing.

Should the components of the kinetostatic requar@sibe determined forsystem of
links, we would proceed in a manner that is similar tatwve do for an isolated rigid
body. The single difference consists of the faet tve must add the known reactions of
the next-lying line (or, more generally, all of tiveks that are on the same side of surface
of the section). Since we have calculated thade rieactions completely, we can also
consider this general problem to be solved.

Berlin, 1 February 1901




