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Necessity of the existence of the Lagrange differential equations. 

 

 The question of the necessity of the Lagrange criterion, i.e., the existence of the differential 

equations that are required by the vanishing of the first variation, was treated by A. Mayer (**) and 

A. Kneser (***), in particular. Here, I would like to give a rigorous, and at the same time very 

simple, path that leads to the desired proof of the necessity of the Lagrange criterion. 

 For brevity, I have assumed that the given functions and differential relations are analytic 

everywhere in the present communication, and in that way, the analytic character of the solutions 

that will come to be employed will likewise be ensured. 

 Furthermore, for sake of a more convenient representation (which will not restrict the 

generality of the method), we will choose the case of three desired functions y (x), z (x), s (x) of 

the independent variable x. Let them and their first derivatives with respect to x: 

 

 
 (*) Reproduced essentially unchanged from the Göttinger Nachrichten 1905. 

 (**) Math. Ann., Bd. 26, and Leipziger Berichte 1895. In the latter note, A. Mayer extended his foundation of 

the Lagrange differential equations to the most general problem. 

 (***) Lehrbuch der Variationsrechnung, Braunschweig, 1900, § 56-58. The problem was likewise addressed in 

full generality there. 
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dy

dx
 = ( )y x , 

dz

dx
 = ( )z x , 

ds

dx
 = ( )s x  

 

will be subject to two conditions of the form: 

 

(1) 
( , , , , , ; ) 0,

( , , , , , ; ) 0.

f y z s y z s x

g y z s y z s x

   =

   =
 

 

 y (x), z (x), s (x) might denote three particular function that satisfy the conditions (1) and have 

the following character: For all values of x that lie between x = a1 and x = a2, one has: 

 

(2)  

f f

y z

g g

y z

 

  

 

  

  0 . 

 

If we choose any other three functions Y (x), Z (x), S (x) that likewise satisfy the conditions (1) and 

for which we have: 

Y (a1) = y (a1) , Y (a2) = y (a2) , 

Z (a1) = z (a1) , Z (a2) = z (a2) , 

 S (a1) = s (a1) ,  S (a2) = s (a2) 

 

then we suppose that we constantly have: 

 

(3) Y (a3)  y (a3) 

 

[assuming that the functions Y (x), Z (x), S (x), along with their derivatives, or those particular 

functions y (x), z (x), s (x), and their derivatives, resp., differ sufficiently little]. If that minimal 

requirement is fulfilled then there will necessarily be two functions  (x),  (x) that do not both 

vanish identically for all x and that will fulfill the differential equations that arise by setting the 

first variation of the integral: 

 
2

1

{ ( , , , , , ; ) ( , , , , , ; )}

a

a

f y z s y z s x g y z s y z s x dx      +  

 

equal to zero, namely, the Lagrange equations: 

 

(4) 
( ) ( )d f g f g

dx y y

    +  +
−

 
 = 0 , 
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(5) 
( ) ( )d f g f g

dx z z

    +  +
−

 
 = 0 , 

 

(6) 
( ) ( )d f g f g

dx s s

    +  +
−

 
 = 0 , 

 

together with the functions y (x), z (x), s (x). 

 

 In order to prove that, we take any two well-defined functions 1 (x), 2 (x) that vanish for x = 

a1 and x = a2 and replace y, z, s in (1) with: 

 

  Y = Y (x, 1, 2) , 

  Z = Z (x, 1, 2) , 

  S = s (x) + 1 1 (x) + 2 2 (x) , 

 

resp., in which 1, 2 mean two parameters. We regard the two equations that arise in that way: 

 

(7)      
( , , , , , ; ) 0,

( , , , , , ; ) 0

f Y Z S Y Z S x

g Y Z S Y Z S x

   =

   =
 

 

as a system of two differential equations for determining the two functions Y, Z. As the theory of 

differential equations teaches us (*), due to the assumption (2), for sufficiently-small values of 1, 

2, there is certainly a system of two functions: 

 

 Y (x, 1, 2)  and  Z (x, 1, 2)  

 

that fulfill those equations identically in x, 1, 2, which go to y (x), z (x), resp., for 1 = 0, 2 = 0 

and further assume the values y (a1), z (a1), resp. for x = a1 and arbitrary 1, 2 . 

 Since our requirement of a minimum (3) says that Y (x, 1, 2), as a function of 1, 2, must 

certainly have a minimum for 1 = 0, 2 = 0, while the equation: 

 

Z (x, 1, 2) = z(a2) 

 

exists between 1, 2, the theory of the relative minimum of a function of two variables will say 

that there must necessarily be two non-zero constants l, m for which: 

 

 
 (*) Cf., É. Picard, Traité d’Analyse, t. III, chap. VIII. 
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(8)  

2 1 2 2 1 2

1 0

2 1 2 2 1 2

2 0

( ( , , ) ( , , ) )
0,

( ( , , ) ( , , ) )
0,

lY a m Z a

lY a m Z a

   



   



  +
= 

 

  +
= 

 

 

 

in which the subscript 0 means that both parameters 1, 2 are set equal to zero. 

 We now determine [and due to (2), this is certainly possible] two functions  (x),  (x) of the 

variable x that both satisfy linear homogeneous differential equations (4), (5) and for which, the 

boundary conditions: 

(9)      2

2

( )
,

( )

x a

x a

f g
l

y

f g
m

z

 

 

=

=

  +
=  

 + 
=  

 

 

at the location x = a2 . Since l, m are not both zero, the two functions  (x),  (x) that are determined 

in that way will certainly not both vanish identically. 

 By differentiating equations (7) with respect to 1, 2 and then setting the two parameters equal 

to zero, we will get the equations: 

 

1 1

1 1 1 10 0 0 0

Y f Y f Z f Z f f f

y y z z s s
 

   

                   
+ + + + +       

                  
 = 0 , 

1 1

1 1 1 10 0 0 0

Y g Y g Z g Z g g g

y y z z s s
 

   

                   
+ + + + +       

                  
 = 0 , 

2 2

2 2 2 20 0 0 0

Y f Y f Z f Z f f f

y y z z s s
 

   

                   
+ + + + +       

                  
 = 0 , 

2 2

2 2 2 20 0 0 0

Y g Y g Z g Z g g g

y y z z s s
 

   

                   
+ + + + +       

                  
 = 0 , 

 

in which, in turn, the subscript 0 means that both parameters 1, 2 are set equal to 0 in each case. 

Of those equations, on the one hand, the first one (second one, resp.) will be multiplied by ,  

and the equations that result will be added together and then integrated between the limits x = a1, 

x = a2. On the other hand, the third and fourth equation will be multiplied by , , resp., and the 

resulting equations added together and then integrated between the limits x = a1 and x = a2. In that 

way, we will get: 

 

2

1
1 1 1 10 0 00

( ) ( ) ( ) ( )
a

a

f g Y f g Y f g Z f g Z

y y z z

       

   

            +   +   +   + 
+ + +        
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1 1

( ) ( )f g f g
dx

s s

   
 

 +  + 
 + + 

  
 = 0 , 

(10) 

 

2

1
2 2 2 20 0 00

( ) ( ) ( ) ( )
a

a

f g Y f g Y f g Z f g Z

y y z z

       

   

            +   +   +   + 
+ + +        

                
  

2 2

( ) ( )f g f g
dx

s s

   
 

 +  + 
 + + 

  
 = 0 . 

 

 Now, on the one hand, due to the conventions that we encountered, we have: 

 

Y (a1, 1, 2) = y (a1) ,  Z (a1, 1, 2) = z (a1) , 

and therefore: 

  
1 0

Y



 
 

 
 = 0 , 

1 0

Z



 
 

 
 = 0 , 

  
2 0

Y



 
 
 

 = 0 , 
2 0

Z



 
 
 

 = 0 

 

at the location x = a1 . On the other hand, we infer from equations (8) and (9) that: 

 

  
1 10 0

( ) ( )f g Y f g Z

y z

   

 

    +   + 
+   

       
 = 0 , 

  
2 20 0

( ) ( )f g Y f g Z

y z

   

 

    +   + 
+   

       
 = 0 

 

for the location x = a2 . When we keep that in mind, it will follow from (10), by means of (4), (5), 

while using the formula for the integration of a product (viz., partial integration), that we will have 

the equations: 
2

1

1 1

( ) ( )
a

a

f g f g
dx

s s

   
 

 +  + 
 + 

  
  = 0 , 

 
2

1

2 2

( ) ( )
a

a

f g f g
dx

s s

   
 

 +  + 
 + 

  
  = 0 . 

 If we set: 

( , ) = 
2

1

( ) ( )
a

a

f g f g
dx

s s

   
 

 +  + 
 + 
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to abbreviate, then we can express the result that was just obtained as follows: 

 

 For any two functions 1, 2 that vanish at x = a1 and x = a2 , there is always a system of 

solutions ,  to the differential equations (4), (5) that do not vanish identically and for which one 

will get: 

( , ) = 0  and ( , ) = 0 . 

 

 If we now assume that for this system of solutions , , there is a function 3 such that the 

inequality exists: 

 

(11) ( , )  0 

 

and we then construct any system of solutions  ,   to the differential equations (4), (5) that does 

not vanish identically and is such that: 

 

(12) 3( , )     = 0 . 

 

If we assume, in turn, that there is a function 4 for which the inequality: 

 

(13) 4( , )      0 

 

exists then we can apply our previous result to the functions 3, 4 and infer the existence of a 

system of solutions  ,   to (4), (5) such that the equations: 

 

(14) 3( , )     = 0 , 

 

(15) 4( , )     = 0  

 

exist. Since ,  ;  ,   ;  ,   are solutions to a system of two first-order linear differential 

equations, two homogeneous linear relations of the form: 

 

  a a a     + +  = 0 , 

  a a a     + +  = 0 

 

must exist between them, in which a, a , a  mean constants that are not all zero. However, from 

(11), (12), (14), one would necessarily have a = 0, and it would then follow from (13), (15) that 

a  = 0, which is not possible, since indeed one would now have a   0 and the system of solutions 

 ,   does not vanish identically in x. 

 Our assumptions are inapplicable then and we conclude from this that either ,  or  ,   is 

a system of solutions to (4), (5) such that integral relation in question: 
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( , ) = 0  [ ( , )     = 0 , resp.] 

 

is true for any function . An application of the product integration (viz., partial integration) to 

that relation will then show that equation (6) must necessarily be true for the system of solutions 

,  [ ( , )    , resp.], and the desired proof is brought to completion with that. 

 

____________ 

 

 

Independence theorem and Jacobi-Hamilton theory of the associated integration problem. 

 

 In my lectures (*) “Mathematische Probleme,” I gave the following method for exhibiting the 

further necessary and sufficient criteria in the calculus of variations: 

 One deals with the simplest problem in the calculus of variations, namely, the problem of 

finding a function y of the variable x such that the integral: 

 

J = ( , ; )

b

a

F y y x dx   
dy

y
dx

 
 = 

 
 

 

takes on a minimum value in comparison to the values that the integral will assume when we 

replace y (x) in the integral with other functions of x with the same given initial and final values. 

 We now consider the integral: 

 

J 
 = { ( ) }

b

p

a

F y p F dx+ −   
( . ; )

( , ; ) , p

F p y x
F F p y x F

p

 
= = 

 
 

 

and ask how the p in it must be taken in order for the value of that integral J 
 to be independent 

of the path of integration in the xy-plane, i.e., the choice of the function y of the variable x. The 

answer is: One takes any one-parameter family of integral curves for the Lagrange differential 

equation: 

F
d

Fy

dx y



 
−


 = 0  [F = ( , ; )]F y y x   

 

and determines the value of the derivative y  at each point x, y of the curve of the family that goes 

through that point. The value of that derivative y  is a function p (x, y) with the desired behavior. 

 That “independence theorem” immediately implies not only the known criteria for the 

occurrence of the minimum, but also all essential facts in the Jacobi-Hamilton theory of the 

associated integration problem. 

 
 (*) Presented at the International Congress of Mathematicians in Paris 1900. 
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 A. Mayer (*) has proved the corresponding theorem for the case of several functions by 

calculation, and he exhibited its connection with the Jacobi-Hamilton theory. In what follows, I 

will show that the independence theorem admits a more general conceptualization, and also with 

no expenditure of calculations, by reducing it to the one that was just given, and very simple proofs 

of the special cases that were resolved in my lecture can be given. 

 For the sake of ease of comprehension, I shall base it upon only two functions y (x), z (x). The 

variational problem consists of choosing them such that the integral: 

 

J = ( , , , ; )

b

a

F y z y z x dx    ,
dy dz

y z
dx dx

 
 = = 

 
 

 

takes on a minimum value in comparison to those values that the integral assumes when we replace 

y (x), z (x) with other functions of x with the same given initial and final values. 

 

 We now consider the integral: 

 

J 
 = { ( ) ( ) }

b

p q

a

F y p F z q F dx + − + −   

( . ; ) ( . ; )
( , ; ) , ,p q

F p y x F p y x
F F p y x F F

p q

  
= = = 

  
 

 

and ask how the p, q in it must be chosen as functions of x, y, z in order for the value of that integral 

J 
 to be independent of the path of integration in xyz-space, i.e., to be independent of the choice 

of the function y (x), z (x). 

 

 In order to answer that question, we choose an arbitrary surface T (x, y, z) = 0 in xyz-space and 

imagine that the functions p, q in it are determined in such a way that when we extend the integral 

J 
 over any curve that lies on T = 0 and goes between two points on that surface, it will take on a 

value that is independent of the choice of that curve. At each point P of the surface T = 0, we then 

construct the integral curve of the Lagrange equations: 

 

F
d

Fy

dx y



 
−


 = 0 , 

  [F = ( , , , ; )]F y z y z x  , 

  

F
d

Fz

dx z



 −


 = 0 

 

 
 (*) Math. Ann. Bd. 58. 



Hilbert – On the calculus of variations. 9 
 

that lies in xyz-space and for which we will have: 

 

(16)     y  = p , z  = q , 

 

such that a two-parameter family of integral curves that fills up a spatial field arises in that way. 

We now imagine that this field determines the integral curve of that family that goes though each 

point x, y, z. The values of the derivatives y , z  at that point x, y, z will then be functions p (x, y, 

z), q (x, y, z) with the desired behavior. 

 In order to prove that assertion, we connect a certain point A of the surface T = 0 with an 

arbitrary point Q of the spatial field by means of a path w. We imagine that an integral curve from 

our two-parameter family goes through each point of that path w: The one-parameter family of 

integral curves will be represented by the equations: 

 

(17) 
( , ) ,

( , ).

y x

z x

 

 

=

=
 

 

Those points of the surface T = 0 from which the integral curves (17) start define a path wT on the 

surface T = 0 that goes from the point A to the point P on T = 0 from which the integral curve of 

the family that runs through Q will go. 

 A one-parameter family of curves (17) will generate a surface whose equation: 

 

(18)      z = f (x, y) 

 

will be obtained when one eliminates the parameter  from the two equations (17). 

 If we now introduce the function f (x, y) into F in place of z and set: 

 

, , , ( , );
f f

F y y y f x y x
x x

  
 + 

  
 = ( , ; )y y x  

 

then for every curve that lies on the surface (18), we will have: 

 

( , , , ; )

b

a

F y z y z x dx   = ( , , )

b

a

y y x dx , 

 

and as a result, for every curve of the family: 

 

(19) y =  (x, )  

 

in the xy-plane, the first variation of the integral: 
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(20)     ( , , )

b

a

y y x dx  

 

will also certainly vanish, i.e., the family of curves (19) in the xy-plane is a family of integral 

curves of the Lagrange differential equations that are required by the vanishing of the first variation 

of the integral (20). The validity of the independence theorem for one function y follows 

immediately from the fact that the integral: 

 

(21)      { ( ) }

b

p

a

y p dx + −   [ =  (p, y ; x)] 

 

possesses a value that is independent of the choice of the function y. 

 However, since: 

  z  = 
f f

y
x y

 
+

 
, 

  q  = 
f f

p
x y

 
+

 
, 

one will have: 

( )
f

y p
y


 −


 = z q − , 

and as a result, one will have: 

 

   (p, y ; x) + ( ) py p−   = F (p, q, y, z ; x) + ( ) p q

f
y p F F

y

 
 − + 

 
 

  = F (p, q, y, z ; x) + ( ) ( )p qy p F z q F − + − . 

 

 The independence of the integral (21) that was just proved then brings with it the fact that our 

original integral: 

J 
 = { ( ) ( ) }

b

p q

a

F y p F z q F dx + − + −  

 

also keeps its value when we replace w as an integration path with another one that lies on the 

surface (18) and goes from A to Q, namely, perhaps the path that is composed of the path wT and 

integral curve of the family (17) that starts from P and goes to Q. When we consider the fact that 

equations (16) are true along the path segment PQ, that fact can be expressed by the fact: 

 

(22) 
( )

{ ( ) ( ) }p q

w

F y p F z q F dx + − + −  = 
( )

{ ( ) ( ) }

T

Q

p q

w P

F y p F z q F dx F dx + − + − +   . 
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 If we let w  denote another path that goes from A to Q in our spatial pq-field and let Tw  denote 

the corresponding path on the surface T = 0 that goes from A to P then the same argument will also 

imply the equation: 

 

(22) 
( )

{ ( ) ( ) }p q

w

F y p F z q F dx + − + −  = 
( )

{ ( ) ( ) }

T

Q

p q

w P

F y p F z q F dx F dx + − + − +  , 

 

and since the first integrals on the right-hand sides of (22) and (23) have equal values as a result 

of our assumption, since wT and Tw  lie on T = 0, it will follow that the left-hand integrals in (22) 

and (23) are equal to each other, which proves our independence theorem. 

 The simplest way of choosing the functions p, q on the surface T = 0 that meet our requirement 

consists of determining them from the equations: 

 

(24)    F – p Fp – q Fq : Fp : Fq = : :
T T T

x y z

  

  
 . 

 

The integrand of the integral J 
 will then vanish for every path that lies on T = 0, and that integral 

will then have the value zero independently of the path on T = 0. 

 In particular, one can replace the surface T = 0 with a point. All of the integral curves of the 

Lagrange differential equations that run through that point will then define a two-parameter family 

of curves that one must employ in order to construct the spatial pq-field. 

 Since the integral J 
 is independent of the path, it will represent a function of position for a 

variable upper limit, i.e., a function of the endpoint x, y, z in the spatial pq-field. We set: 

 

(25)    J (x, y, z) = 

, ,

{ ( ) ( ) }

x y z

p q

A

F y p F z q F dx + − + − . 

 

That function obviously satisfies the equations: 

 

  
J

x




 = F – p Fp – q Fq , 

  
J

y




 = Fp , 

  
J

z




 = Fq . 

 

If we eliminate the quantities p, q from this then that will imply the Jacobi-Hamilton first-order 

partial differential equation for J (x, y, z). In particular, if the values of p, q on T = 0 in the 

construction of the spatial pq-field were determined in such a way that the integrand of the integral 
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J   vanished [i.e., (24) exists] then J (x, y, z) will be that solution of that Jacobi-Hamilton 

differential equation that vanishes on T = 0. 

 If we imagine that the surface T = 0 belongs to a two-parameter family of surface and let a, b 

denote the parameters of that family then the functions p, q of the spatial field, and therefore the 

function J (x, y, z), as well, will also depend upon those parameters. Differentiating equation (25) 

with respect to those parameters a, b will yield: 

 

J

a




 = 

, ,

( ) ( )

x y z

p q

A

F F
y p z q dx

a a

  
 − + − 

  
 , 

 

J

b




 = 

, ,

( ) ( )

x y z

p q

A

F F
y p z q dx

b b

  
 − + − 

  
 , 

 

and since obviously, from (16), the integrand in the integral on the right-hand side will vanish 

when one advances along an integral curve, those integrals will represent functions of x, y, z that 

assume the same value on every individual integral curve, i.e., if c, d mean integration constants, 

just like a, b, then the equations: 

J

a




 = c , 

J

b




 = d 

 

will be nothing but the integrals of the Lagrange differential equations. 

 That proof might suffice to show how the essential theorems of Jacobi-Hamilton theory arise 

directly from the independence theorem. 

 

_____________ 

 

 

Adapting the method of the independent integral to double integrals. 

 

 If one treats merely the question of the conditions for a minimum of an integral then one will 

not need to construct a spatial pq-field. Rather, it will suffice to construct a one-parameter family 

of integral curves (17) of the Lagrange equations in such a way that the surface that it generates 

includes the varied curve w. An application of the independence theorem for one function will then 

lead to that objective in the way that presented before. 

 That remark is useful when one would like to adapt the method of the independent integral to 

the problem of finding the minimum of a double integral that includes several unknown functions 

of several independent variables. 
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 In order to treat such a problem, we let z, t denote two functions of the two variables x, y and 

seek to determine those functions in such a way that the double integral that is extended over a 

given region  in the xy-plane: 

J =
( )

( , , , , , ; , )x y x yF z z t t z t x y d


  

, , ,x y x y

z z t t
z z t t

x y x y

    
= = = = 

    
 

 

will take a minimal value in comparison to the values that the integral assumes when we replace 

z, t with any other functions z , t  that possess the same prescribed values as z, t on the boundary 

S of the region . The Lagrange equations that are implied by the vanishing of the first variation 

read: 

x y

d F d F F

dx z dy z z

  
+ −

  
 = 0 , 

x y

d F d F F

dx t dy t t

  
+ −

  
 = 0 , 

in this case. 

 We now use a well-defined solution z, t of the Lagrange equations as a basis and let z , t  be 

any system of varied functions that fulfills the same boundary condition as z, t. We then determine 

a function S (x, y) of the variables x, y such that the equation S (x, y) = 0 represents the boundary 

curve of  in the xy-plane, while S (x, y) = 1 is fulfilled by only the coordinates of a single point 

inside of . Finally, the equation S (x, y) =  should represent a family of curves that fills up the 

interior of the region  simply and with no gaps when the value of  runs between 0 and 1. We 

then determine the functions: 

(26) 
( , , ) ,

( , , )

z x y

t x y

 

 

=

=
 

 

that satisfy the Lagrange differential equations and possess the same prescribed values on the curve 

S (x¸y) =  as the system of varied functions ( , )z x y , ( , )t x y  such that the functions (26) will go 

to the basic solution z, t for  = 0. The functions (26) will obviously define a one-parameter family 

of systems of solutions to the Lagrange equations then for which the equations: 

 

  ( , )z x y  =  (x, y, S (x, y)) , 

  ( , )t x y  =  (x, y, S (x, y)) 

are fulfilled identically in x, y. 

 If we interpret the basic solution z, t to the Lagrange equations as a two-dimensional surface 

in the four-dimensional xyzt-space and likewise interpret the varied system of functions z , t  then 

the two-dimensional integral surfaces in that xyzt-space will generate a one-parameter family (26) 

of a three-dimensional space whose equation is given by eliminating  from (26). Let the equation 

of that three-dimensional space have the form: 
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t = f (x, y, z) . 

 

We assume that the one-parameter family (26) fills up that three-dimensional space simply and 

without gaps. 

 If we substitute the function f (x, y, z) for t in F and set: 

 

, , , , , ( , , ); ,x y x y

f f f f
F z z z z z f x y z x y

x x y y

    
+ + 

    
 =  (zx , zy , z ; x, y) 

 

then it will only be necessary for us to apply the independence theorem that I proved in the 

aforementioned lectures for one unknown function, and the argument that is linked with it, to the 

integral: 

( )

( , , ; , )x yz z z x y d


  

 

in order to see that the integral J actually assumes a minimum value under the assumption that the 

E-function is positive for the given system of functions z(x, y), t (x, y). The occurrence of a 

minimum is then linked with the two following requirements: 

 

 1. The constructability of the family (28). That requirement is certainly fulfilled when the 

Lagrange partial differential equations always possess systems of solutions z, t that possess any 

sort of prescribed values along a closed curve K that lies inside of , while they are regular 

functions of x, y in the region that is bounded by K. 

 

 2. A simple and gapless covering of three-dimensional space by the family (26). That 

requirement is certainly fulfilled when any system of solutions z, t to the Lagrange equation is 

determined uniquely by its boundary values on any arbitrary closed curve K that lies inside of . 

 

 We can summarize the result briefly as follows: 

 

 Our criterion for the occurrence of a minimum demands that the boundary-value problem for 

the Lagrange differential equations relative to every closed curve K that lies inside of  is 

uniquely soluble for arbitrary boundary values. Our consideration shows that this criterion is 

certainly sufficient. 

 

 In particular, when the given function F under the integral sign proves to have degree two in 

zx, zy, tx, ty, z, t, the Lagrange differential equation will be linear in those quantities, and in that case 

the boundary-value problem that is required for the application of our criterion can be treated 

completely with the help of my theory of integral equations. 

 In order to develop the argument is applied in this case more closely, we define the system of 

homogeneous linear differential equations that arises from the Lagrange equations by dropping the 

terms that are free of z, t. We would like to refer to that system of equations as the Jacobi equations. 
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In is now immediately clear that the boundary-value problem for a curve K will admit several 

systems of solutions only when the Jacobi equations possess a system of solutions z, t that are zero 

on a curve K, but not everywhere inside of the region that is bounded by K. Now, the theory of 

integral equation shows that the latter case is, at the same time, the only one in which the boundary-

value problem is not soluble for certain prescribed boundary values. 

 

 In the case of a quadratic F, our criterion for the occurrence of a minimum then will emerge 

from the demand that the Jacobi equations should admit no system of solutions besides zero that 

are zero on the boundary S or a closed curve that lies inside of . (The fulfillment of the criterion 

is also necessary in that case.) 

 

 In the general case when the given function F under the integral sign is not quadratic, in 

particular, but depends upon the functions z, t to be determined and their derivatives arbitrarily, 

we must apply the criterion that was just expressed to the second variation of the integral J and 

thus arrive at a criterion that is precisely analogous to the known Jacobi criterion in the case of one 

independent variable or one function of several independent variables to be determined, and might 

therefore be briefly referred to as the Jacobi criterion. 

 

_____________ 

 

 

Minimum of the sum of a double integral and a simple boundary integral. 

 

 Finally, we shall treat the problem of determining a function z of the variables x, y in such a 

way that a double integral that is extended over a given region  in the xy-plane plus an integral 

that extends over a part S1 of the boundary of , namely, the sum of the integrals: 

 

J = 

1( ) ( )

( , , ; , ) ( , ; )z y s

S

F z z z x y d f z z s ds


+    , ,x y s

z z dz
z z z

x y ds

  
= = = 

  
, 

 

attains a minimum value when z has prescribed values on the remaining part S2 of the boundary. 

In that way, F, f are given functions of their arguments, and s means the arc-length of the boundary 

curve S of , which is calculated from a fixed point of it in the positive sense of traversal. 

 The vanishing of the first variation demands that the desired function z, as a function of x, y in 

the interior of , must fulfill the partial differential equation: 

 

(27)     
x y

d F d F F

dx z dy z z

  
+ −

  
 = 0  

while the differential relation: 
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(28)    

11
y x sSS

F dx F dy d F F

z ds z ds ds z z

      
− + −         

 = 0 

 

has to be true on the boundary S1. The dx / ds, dy / ds in that are understood to mean the derivatives 

of the functions x (s), y (s) that define the boundary curve S1 . 

 We now consider the sum of the integrals: 

 

J   = 

1( ) ( )

{ ( ) ( ) } { ( ) }z p y q s

S

F z p F z q F d f z f ds 


+ − + − + + −   

 

( , , ; , ), , , ( , ; ),p q

F F f
F F p q z x y F F f f z s f

p q




   
= = = = = 

   
, 

 

and we would like to seek to determine the p, q in that as functions of x, y, z, and p as a function 

of s, z in such a way that the value of that sum of integrals is independent of the surface z = z (x, 

y) that spans , i.e., of the choice of the function z, when it has prescribed boundary values on 

only S2 . The sum of the integral J 
 has the form: 

 

1( ) ( )

{ } { }z y s

S

A z B z C d a z b ds


+ − + −  , 

 

in which A, B, C represent functions of x, y, z, and a, b are functions of s, z. As one easily sees, 

that sum of integrals will be independent of the desired sense of the surface z = z (x, y) when the 

differential equation: 

(29)     
A B C

x y z

  
+ +

  
 = 0  

 

is fulfilled identically in x, y, z in the xyz-space that projects onto the region  and the differential 

equation: 

 

(30)    
1 1

( ) ( )S S

dx dy a b
B A

ds ds s z

 
− + +

 
 = 0 

 

is fulfilled identically in s, z in the sz-cylinder surface that projects onto the boundary curve S1. 

When we set A, B, C, a, b equal to their values: 

 

  A = Fp , 

  B = Fq , 

(31) C = p Fp + q Fq – F , 

  a = fp , 
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  b =  f – f , 

 

the two equations (29), (30) will represent partial differential equations for the functions p, q, . 

 We now determine a one-parameter family of functions: 

 

(32) z =  (x, y, ) 

 

that satisfy the Lagrange equations (27), (28) and set: 

 

(33) z =  (x (s), y (s), ) =  (s, ) 

 

on the boundary. We assume that this one-parameter family fills up the spatial field in a single-

valued and gapless way. We then calculate  as a function of x, y, z from (32) and  as a function 

of s, z from (33) and define the expressions: 

 

p (x, y, z) = 
( , , )

( , , )

x y z

x y

x  

 

=

 
  

, 

q (x, y, z) = 
( , , )

( , , )

x y z

x y

y
 

 

=

 
 

 
, 

   (s, z) = 
( , )

( , )

s z

s

s  

 

=

 
  

. 

 

 The functions p, q of x, y, z and p of s, z are ones with the desired property. 

 Indeed, the fact that the functions p, q satisfy the equation (29) will follows easily when one 

considers the equation: 

p p
q

y z

 
+

 
 = 

q q
p

x z

 
+

 
, 

 

if one considers the fact that  (x, y, ) should fulfill the Lagrange equation identically for all 

values x, y, . In order to prove the validity of (30), we set: 

 

zx = p , 

zq = q , 

zs =  , 

 

  
2

2

d z

ds
 = 

s z

 


 
+

 
 

 

in the Lagrange equation (28), which is fulfilled identically in s, , and it will then go to the 

equation: 
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1 1

2 2 2

2
( ) ( )q S p S

dx dy f f f f
F F

ds ds s z z s z

 
 

  

      
− + + + + − 

        
 = 0 , 

 

which is true identically for all s, z. We will get precisely the same equation when we substitute 

the expressions (31) into formula (30). With that, the proof of the independence theorem for the 

present problem is complete. 

 As before, it follows from the independence theorem that: 

 

  E (zx, zy, p, q)   F (zx, zy) – F (p, q) – (zx – p) Fp – (zy – q) Fq > 0 , 

  E (zs, )  f (zs) – f () – (zs – ) f > 0 , 

 

such that two Weierstrass E-functions come under consideration in the present problem: one for 

the interior and one for the boundary S1 . 

 On the other hand, in order for a one-parameter family (32) to exist that generates a field that 

is covered simply and in a gapless manner in the desired way, we pose the requirement that every 

solution z of the Lagrange equations (27), (28) is determined uniquely by its boundary values on 

any arbitrary curved path K that is closed or begins and ends in S1 and lies inside of . Our 

consideration then shows that this criterion is certainly sufficient. 

 In particular, when the given functions F, f under the integral sign in the problem being treated 

prove to have degree two in zx, zy, z (zs, s, resp.) the Lagrange differential equations will be linear. 

If we then define the homogeneous linear differential equations that arise from the Lagrange 

equations by dropping the terms that are free of z and referring to them as Jacobi equations then it 

will be immediately clear that the boundary-value problem for a curve K will admit several 

solutions only when the Jacobi equations possess a solution z that is zero on K, but not everywhere 

inside of the region that is bounded by K (K and S1, resp.). 

 

 In the case of quadratic F, f, our criterion for the occurrence of a minimum will then emerge 

from the requirement that the Jacobi equations must admit no solution z besides zero that is zero 

on the boundary S2 or on a curve K that lies within  and is closed or begins and ends in S1 . 

 

 In the general case when the given functions F, f are not quadratic, in particular, but depend 

upon the function z to be determined and its derivatives arbitrarily, we must apply the criterion 

that was just expressed to the second variation of the integral sum J and thus arrive at a criterion 

that is precisely analogous to the known Jacobi criterion and might therefore be briefly referred to 

as such. 

 When we pose the problem of making the double integral: 

 

( )

( , , ; , )x yF z z z x y d


  

 

a minimum, while the boundary value of the desired function z should fulfill the auxiliary 

condition: 
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f (zs, z ; s) = 0 , 

 

we can apply the formulas and arguments of the problem that was just treated immediately. It is 

necessary to add the equation f = 0 and replace f (s) with  (s) f everywhere in the formulas, where 

the Lagrange factor  (s) is regarded as function of s that is yet to be determined. 

 

____________ 

 

 

General rule for treating variational problems and exhibiting a new criterion. 

 

 In conclusion, allow me to abstract a general rule for the treatment of variational problems in 

which the values of the functions to be determined are prescribed everywhere on the boundary 

from one of the cases that were treated above. 

 One first arrives at the Lagrange equations L of the variational problem by setting the first 

variation equal to zero. One then lets a system Z be known of solutions to those differential 

equations L that likewise fulfill all conditions B of the variational problem that relate to the interior, 

as well as the boundary. 

 If the Weierstrass E-functions for our system of solutions Z proves to be positive then we refer 

to the system of solutions Z as one with a positive-definite character. 

 We now focus on any subset T of the domain of integration and denote the boundary of the 

subregion T (to the extent that it belongs to the boundary of the original domain of integration) by 

ST, but when it falls within the interior of the original domain of integration (so a new boundary 

arises), we will denote it by sT . 

 Thus, when no other system of solutions to the Lagrange equation L exists that fulfills the 

conditions B besides the system of solutions Z, and when no other system of solutions to the 

Lagrange equations L for every subregion T that fulfills the conditions BT other than the system of 

solutions Z inside of T, the system of solutions Z will then be said to have an intrinsically-unique 

character. 

 A minimum will certainly occur for the system of solutions Z when it has a positive-definite 

and intrinsically-unique character. 

 As one sees, a new requirement enters into the general statement that is then expressed along 

with the Weierstrass requirement of the definite character of the solution Z, namely, the 

requirement of the intrinsically-unique character of the solution Z. Now, the latter requirement has 

the same relationship to the Jacobi criterion (to the extent that it has been formulated in the calculus 

of variations up to now) that the Weierstrass criterion has to the Legendre criterion when one 

regards the Weierstrass criterion as the appropriate extension of the Legendre criterion that would 

be necessary. In fact, just as the Weierstrass criterion will arise from Legendre’s by applying the 

second variation, the criterion that I posed (viz., the requirement of the intrinsically-unique 

character of the solution Z) will arise from Jacobi’s by applying the second variation. Namely, if 

we construct the homogeneous linear Jacobi equations [L] from the Lagrange equations L, by an 

analogy that is easy to see, and likewise construct the homogeneous linear conditions [B] that are 

associated with the given conditions B, then our criterion will emerge from the requirement that 
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this system of homogeneous linear equations and conditions cannot possess any solution besides 

zero, and indeed not even for any subregion T, when we also prescribe the boundary value of zero 

on the newly-arising boundary sT of that subregion. However, the criterion that I posed is (by 

analogy with the Weierstrass criterion) valid as a sufficient condition with no restrictions even 

when arbitrary variations come under consideration and not merely ones in a sufficiently-close 

neighborhood. It is likewise applicable when, for example, the judgement of a minimum must be 

made for a curve between two conjugate points, which is where the Jacobi criterion breaks down. 

 Whether the criterion that I posed is also sufficient for boundary values that are not given as 

fixed (how it is to be modified then, resp.) requires more investigation in some special cases. 

 

____________ 

 


